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Abstract. We study revenue maximization in settings where agents’
valuations exhibit positive network externalities. In our model, items
have unlimited supply, and agents are unit demand. In a departure
from previous literature, we assume agents have value based external-
ities, meaning that their valuation depends not only on their own sig-
nal, but also on the signals of other agents in their neighborhood who
win the item. We give a complete characterization of ex-post incentive
compatible and individually rational auctions in this setting. Using this
characterization, we show that the optimal auction is in fact determin-
istic, and can be computed in polynomial time when the agents’ signals
are independent. We further show a constant factor approximation when
the signals of agents are correlated, and an optimal mechanism in this
case for a constant number of bidders.

1 Introduction

There are many goods and services for which the utility of an individual con-
sumer increases with the number of consumers using the same good or service.
This phenomenon is called positive externalities in the economics literature.
There have been extensive studies on various settings of positive externalities
in both the economics and computer science communities. Most of the literature
so far has focused on the cardinality based utility model given by Katz et al. [11],
where the utility of an agent is of the form r + v(y) − p. Here r is the agent’s
intrinsic type, i.e., her private information about the good. The quantity y is the
number of agents using the good; v is an non-decreasing function that measures
the externalities by the number of agents using the good; p is the price for the
good. Such a model of externality is motivated by several factors:

– The physical effect of the number of buyers on the quality of the good. For
example choosing a telephone network over other competing brands depends
on the number of users each network has.
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– An indirect effect that gives rise to consumption externalities. For example
the amount of software available in different operating systems is a function
of the number of people using them.

– The availability and quality of post-purchase services depend on the size of
the community using the good.

1.1 Value Based Externality Model

The cardinality based externality model discussed above assumes the externality
leads to an additive increase in value depending on the number of users who
obtain service. This implicitly assumes agents are identical in terms of how much
they use the service. In several scenarios, the extent to which agents use the
service is itself a function of their intrinsic value for the good. This motivates us
to introduce the value based externality model. Agents are unit demand. Given
the agents’ intrinsic types {si}, suppose the set of agents winning the item is W .
Then, the valuation for agent i ∈ W is vi(si,W ) = hi(si) +

∑
j∈W j �=i gij(sj).

On the other hand, for i /∈ W , we have vi(si,W ) = 0. Since we consider positive
externalities, we assume the functions hi and gij are non-negative and non-
decreasing.

As an example to illustrate the usefulness of this model, suppose agent i
is deciding to adopt a social network. The agent’s type is her signal si. This
signal stands for how much she plans to use social networks. Furthermore, the
agent receives externalities if her friend j also uses the same social network. The
amount of externality received by i from j is determined by how much j plans to
use the same network (gij(sj)). Therefore, under the value based utility model,
the agent’s utility depends linearly on her friends’ private information about how
much they use the social network.

Note that the value based utility model naturally captures the network ex-
ternality case, where the agents are located in a network G(V,E), and receive
externality only from neighbors in the network. Our valuation function is not
only a generalization of cardinality based externality functions, but also of the
weighted sum values model introduced in [15,12], generalized to the setting with
network externalities.

1.2 Summary of Results

In this paper, we consider the Bayesian setting, where the agents’ intrinsic types
are assumed to be drawn from a known distribution. We assume there is unlim-
ited supply of the item, and agents are unit demand. The goal of the auctioneer
is to design an incentive compatible and individually rational mechanism that
optimizes expected revenue, where the expectation is over the distribution of
types, as well as the randomness introduced by the mechanism. Our solution
concept will be ex-post, meaning that even when agents know the signals of the
other agents, truthfulness and rationality hold in expectation over the random-
ness introduced by the mechanism. For formal definitions, see Section 2.
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We present a characterization of ex-post (randomized) mechanisms in Sec-
tion 3. Using this characterization, we show in Section 4 that when the intrinsic
types of the agents are drawn from a regular product distribution, the optimal
auction can be computed in polynomial time. Our characterization allows us to
define a virtual value on each agent’s private signal in a standard way. However,
the winning set can have agents to have negative virtual values if they produce
enough externalities. We show that despite this difficulty, we can modify the
densest subgraph algorithm [5] in an interesting way to compute the minimal
densest subgraph, and this allows us to design the optimal, polynomial time
computable mechanism.

In Section 5 we show how to achieve near optimal ex post revenue when the
distributions are correlated. Our mechanism takes the better of two deterministic
mechanisms. One mechanism focuses on extracting revenue from the intrinsic
value, the other one from the externalities. We show that the better of these two
mechanisms produces at least 1

4 of the optimal revenue.
We finally show an LP formulation whose size is polynomial in the size of

the support of the joint distribution of the signal space. We round the solution
to this LP to obtain an optimal mechanism when there a constant number of
agents with correlated signals. More interestingly, this algorithm shows that the
optimal ex-post incentive compatible and individually rational mechanism is
always deterministic, i.e., there is no gap between the revenues of the optimal
deterministic and randomized mechanisms.

1.3 Related Work

The seminal work by Myerson [13] pioneered the study of optimal auctions in
the Bayesian setting, where the bidders’ values are assumed to be drawn from
known distributions. In this setting, Myerson showed that any incentive compat-
ible and rational mechanism satisfies monotonicity of the expected allocations of
a bidder, and a relation between price and allocation. However with value-based
externalities, a bidder’s value also depends on her neighbor’s private informa-
tion. We therefore assume an agent’s type (a.k.a. signal) is drawn from a known
distribution, and her value is determined by her own signal, together with her
neighbors’ signals. The common approach when an agent’s value depends not
only on her own type but also on others’ types is called the interdependent val-
ues setting. The key difference between the interdependent value model and the
externalities model is that, in the interdependent value model, an agent can
influence another agent even when she does not win the auction. However in
the externalities model, an agent can influence another agent only if both of
them win the items. Nevertheless our study is closely related to the literature
of interdependent values, here we mention the most relevant works [15,12,6].
Roughgarden et al. [15] develop an analog to the Myerson’s characterization for
interdependent values under a matroid constraint. We show a similar character-
ization in the value based utility model. In terms of approximation algorithms,
Li [12] showed a constant approximation for MHR distributions with interde-
pendent values under a matroid constraint and Chawla et al. [6] generalized
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this result to arbitrary distributions building on a result due to Ronen [14]. We
show a constant approximation to the externality model when the signals are
correlated using the result in [6] as a subroutine.

Network externalities effects received much attention in recent years. These
models generalize the classical model of Katz et al. [11], the value of player
is her intrinsic value plus a function of the total number of winners. The work
of [10,3,1,8,9] extends this model to the setting where agents are located in
a network, and derive utility from the set of winners in their neighborhood.
However, in all this work, the externality function only takes the identity of the
winners into account, and does not take the types (signals) of the neighbors
into account. In particular, the work of Haghpanah et al. [9] considered two
interesting valuation functions which they call concave externalities and step-
function externalities. In concave externalities, the value of an agent is a function
of the set of the neighboring winners; in step-function externalities, the value of
an agent is her own type if she and one of her neighbors win at the same time.
Under their valuation model they studied the near optimal Bayesian incentive
compatible mechanisms. We depart from this literature in considering the setting
where the externality depends on the signals of the winning agents, and not
just their identities. As mentioned before, with type-dependent externality, the
valuation of an agent becomes multi-dimensional (depending on the types of
other agents).

We finally note that in the ex-interim setting, the Bayesian optimal mechanism
can be designed in polynomial time using the techniques in [4,2], even when the
agents’ signals are correlated. Similarly, for independent signals, it is not too
hard to compute a constant approximation using techniques such as [10,9]; the
hard part is to obtain an optimal auction.

2 Preliminaries

In this paper, we consider unconstrained environments, where the auctioneer can
serve any subset of the agents simultaneously. As mentioned before, in our setting
there are n unit-demand agents, and an unlimited supply of a homogeneous item.

Player types. An agent’s type stands for all the private information about the
good that is available to the agent. We denote bidder i’s type by si. We call
s = (s1, s2, . . . , sn) the signal profile of all the bidders. And we denote (s′i, s−i)
as the signal profile when we change bidder i’s signal from si to s′i and keep
signals of all other bidders the same.

As in the optimal auction design literature, we assume that the signals s is
drawn from a known distribution with probability density function (PDF) f .
In Section 4 the distribution is a product distribution over the bidders, and
is regular. In Section 5 we allow the distribution to be general and possibly
correlated across bidders. We denote the marginal PDF and CDF of bidder i
as fi(si|s−i) and Fi(si|s−i) respectively, where we drop s−i if the marginals are
independent. For analytic convenience, we assume the type space is continuous
unless otherwise stated; our results easily extend to discrete type spaces.
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Player values. As mentioned in the introduction, given an unconstrained envi-
ronment and a signal profile s, when the winning set is W the valuation for a
winning agent i ∈ W is vi(si,W ) = hi(si)+

∑
j∈W j �=i gij(sj). If i does not win,

i /∈ W , we have vi(si,W ) = 0. The functions hi and gij are non-negative and
non-decreasing.

Auction. An auction or a mechanism is specified by an allocation rule x and a
payment rule p. We allow the mechanisms to be randomized, so that when the
reported signal profile is s, we denote xi(s) the probability that agent i wins.
Denote pi(s) as the payment of agent i. The utility of an agent is her value minus
her payment. An auction is deterministic if xi(s) only takes value 0 or 1. Denote
yi,j(s) the probability that both agent i and j win.

Solution Concepts. In this paper we focus on ex post incentive compatible (IC)
and ex post individual rational (IR) auctions. There are three popular notions of
equilibria. In this paper we focus on ex post IC and IR mechanisms. We denote
W1 the winning set when agent i tells the truth si, and W2 is the winning set
when she misreports s′i. An auction is Ex post IC if for all agents i, reported
signal profiles s,

xi(s)v(s,W1)− pi(s) ≥ x(s′i, s−i)v(s,W2)− pi(s
′
i, s−i)

Note that this solution concept is defined agnostic to the prior distribution,
which may not even be common knowledge. Ex post individually rational (IR)
means that the agents do not receive negative utility, so that the condition
xi(s)v(s,W1)− pi(s) ≥ 0 always holds.

Optimal AuctionDesign. The total expected revenue of an auction isEs[
∑

i pi(s)].
The expectation is taken over all the possible signal profile s, according to the
distribution with PDF f , as well as the randomness introduced by the mechanis.
In this paper we focus on achieving optimal expected revenue when s is drawn
from independent regular distributions and near optimal expected revenue when
s is drawn from correlated distributions.

3 Characterization of Ex-Post Mechanisms

In this section we develop a characterization of ex post IC and IR mechanisms
for the value based utility model. We note that this characterization holds for
both independent and correlated distributions over the signal profile.

Theorem 1 (characterization). A (possibly randomized) mechanism is ex
Post IC IR if and only if it satisfies the following two conditions:

1. (Monotonicity) xi(s) ≤ xi(s
′) for all s = (si, s−i) and s′ = (s′i, s−i) where

si < s′i;



152 K. Munagala and X. Xu

2. (Payment Identity) Fixing the signals of the other agents, the expected
payment of agent i is

pi(s) = h(si)xi(s)−
∫ si

0

h′(z)(xi(z, s−i))dz +
∑

j �=i

g(sj)yij(s)

Proof. We focus on agent i and drop the subscripts in hi(si) and gij(sj). Consider
any ex-post IC and IR mechanism. The IC conditions imply:

h(si) · xi(s) +
∑

j �=i

g(sj) · yij(s)− pi(s) ≥ h(si) · xi(s
′) +

∑

j �=i

g(sj) · yij(s′)− pi(s
′)

h(s′i) · xi(s
′) +

∑

j �=i

g(sj) · yij(s′)− pi(s
′) ≥ h(s′i) · xi(s) +

∑

j �=i

g(sj) · yij(s)− pi(s)

From these two inequalities it is easy to derive that:

xi(s)(h(si))− h(s′i)) ≥ xi(s
′)(h(si)− h(s′i))

Therefore xi(s) ≤ xi(s
′) since si ≤ s′i, showing monotonicity.

The above two inequalities imply:
∑

j �=i

(yij(s
′)− yij(s))g(sj) + (xi(s

′)− xi(s))h(si)

≤ pi(s
′)− pi(s) ≤

∑

j �=i

(yij(s
′)− yij(s))g(sj) + (xi(s

′)− xi(s))h(s
′
i)

Since we assumed the type space is continuous, we have:

dpi(s)

dsi
=

d
∑

j �=i g(sj)yij(s)

dsi
+ h(si)

dxi(s)

dsi

Taking the integral, we have:

pi(s) = pi(0, s−i) +

∫ si

0

g(sj) d
∑

j �=i

yij(z, s−i) +

∫ si

0

h(z) dxi(z, s−i)

= h(si)xi(s))−
∫ si

0

h′(z)xi(z, s−i))dz +
∑

j �=i

g(sj)yij(s)

The second equality is true because we assume i pays 0 when she reports 0. This
shows that the payment identity holds.

Suppose a mechanism satisfies monotonicity and the payment identity. Plug-
ging in the payment identity into the ex post IC condition, we need to show:

xi(s
′
i, s−i)(h(s

′
i)− h(si)) ≥

∫ s′i

si

h′(z)xi(z, s−i)dz

The monotonicity condition now implies the above inequality directly. This
shows that any mechanism that satisfies monotonicity and the payment identity
is ex-post IC and IR.
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4 Optimal Mechanism for Independent, Regular Signals

Using the characterization developed so far, we design an optimal auction when
the distributions of the agents’ signals are independent and regular. We show
that the payment identity implies we can perform optimization for each signal
profile individually. For each signal profile, the resulting problem is a densest sub-
graph problem, which has an optimal solution computable in polynomial time [5].
However, in order to preserve monotonicity, we need a densest subgraph with a
specific property, that we term the minimum densest subgraph. We show that
even this solution is poly-time computable, which yields the desired mechanism.

Definition 1. Let fi and Fi denote the PDF and CDF of the distribution of si,
which are assumed to be independent for different i. We define ϕi(si) = hi(si)−
1−Fi(si)
fi(si)

h′
i(si). We say ϕi(si) is the virtual value for agent i when she reports si.

A distribution is said to be regular if when si ≥ s′i, then ϕi(si) ≥ ϕi(s
′
i).

4.1 Revenue Expression

Lemma 1. Fixing s−i, the expected payment of agent i is Esi [pi(s)] =
Esi [ϕi(si)xi(s) +

∑
i�=j yij(s)gij(sj)].

Proof. Since we fix s−i we replace xi(s), pi(s) and yij(s) by xi(si), pi(si) and
yij(si) in this proof. By Theorem 1,

Esi [pi(si)] =

∫ h

z=0

pi(z)f(z)dz

=

∫ h

z=0

(xi(z)hi(z)−
∫ z

b=0

h′
i(b)x(b)db +

∑

i�=j

yij(sz)gij(sj))f(z)dz

By integration by parts and changing the order of integration of the second term:

∫ h

z=0

xi(z)hi(z)f(z)dz −
∫ h

b=0

xi(b)

∫ h

z=b

f(z)dzh′
i(b)db+

∫ h

z=0

∑
i�=j

yij(sz)gij(sj)f(z)dz

Renaming the variables, we get:

Esi [pi(si)] =

∫ h

z=0

xi(z)hi(z)f(z)dz −
∫ h

z=0

xi(z)[1− F (z)]h′
i(z)dz

+

∫ h

z=0

∑

i�=j

yij(sz)gij(sj)f(z)dz

=

∫ h

z=0

ϕi(si)xi(z)f(z)dz +

∫ h

z=0

∑

i�=j

yij(sz)gij(sj)f(z)dz

= Esi [ϕi(si)xi(s) +
∑

i�=j

yij(s)gij(sj)]
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Corollary 1. The expected revenue of an ex post IC and IR mechanism is
Es[Rev] = Es[

∑n
i ϕi(si)xi(s) +

∑
i�=j(gij(sj) + gji(si))yij(s)]

We call the sum in the expectation virtual surplus.

4.2 Linear Program

We call following linear program as the linear program for signal profile s.

maximize

n∑

i=1

ϕi(si)xi +
∑

i�=j

(gji(si) + gij(sj))yij

subject to xi ≥ yij , i �= j

xj ≥ yij , i �= j

0 ≤ xi ≤ 1 , ∀i

Lemma 2. The optimal value of the linear program for signal profile s is an
upper bound on the optimal expected revenue from any ex post IC IR mechanism.

Proof. Take any ex post IC IR mechanism and set the linear program variables
according to the allocation rules of the mechanism. We can easily see the linear
program constraints are satisfied. By Corollary 1 we have that objective of the
linear program is the expected revenue of the mechanism. Therefore the optimal
value of the linear program for signal profile s is an upper bound for the optimal
expected revenue from any ex post IC IR mechanisms.

The linear program for signal profile s encodes a relaxation of the densest
subgraph problem (see [5]), which we define below.

Densest Subgraph Problem. Let G = (V,E) be an weighted undirected graph,
and let S = (VS , ES) be a subgraph of G. We define the density to be the sum
of the weights induced by S. The densest subgraph problem asks to find the
subgraph S which maximizes the density. Note that there are different definitions
of density in the literature. In a LP relaxation of the densest subgraph problem,
we have a variable xi for vertex i, which is 1 if i belongs to the solution, and a
variable yij for edge (i, j) if both i and j are in the solution. The constraints are
exactly those in the LP written above. We can therefore view the LP for signal
profile s as solving a densest subgraph problem on the agents.

Lemma 3. [5] The linear program relaxation for densest subgraph problem has
an optimal integral solution which can be found in polynomial time.

Proof. Take an fractional optimal solution to the above linear program x̂i, ŷij
with optimal value v. Choose a number r ∈ [0, 1]. We call Vr = {i : xi ≥ r} and
Er = {(ij) : yij ≥ r}. Round xi for all i ∈ Vr to 1, and set all other xi to 0.
It is easy to see that yij = 1 if and only if (ij) ∈ Er, since yij = min{xi, xj}.
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Define function f(r) =
∑

i∈Vr
ϕi(si)+

∑
(i,j)∈Er

(gji(si)+ gij(sj)). We have that
∫ 1

r=0
f(r)dr =

∑n
i=1 ϕi(si)x̂i +

∑
i�=j(gji(si) + gij(sj))ŷij = v. Therefore there

must be at least one r such that f(r) ≥ v. In other words the LP has an integral
optimal solution. To find the right r one need only to look for all distinct Vr

sets. Note that there are at most n such sets. For details please see [5].

Definition 2. We call the winning set found by the integral optimal solution
(with optimal value v) found in Lemma 3 as a densest subgraph. Among all
densest subgraphs let Vr be the set that has the smallest cardinality. We say that
Vr(s) is the minimum densest subgraph with density v for signal profile s.

Lemma 4. The minimum densest subgraph can be computed in polynomial time.

Proof. Let G denote the original problem instance. Denote d be any number that
is smaller than the difference between the optimal solution to G, and the solution
with next highest density. Add a term −ε

∑n
i=1 xi to the objective function in the

linear program, where ε = d/n2. Modify this instance to G′ where we subtract
ε from the weights on all the vertices. By our choice of ε, it is easy to see that
the densest subgraphs for G and G′ differs at most d/n. Therefore the densest
subgraph for instance G′ can only be selected from the integral solutions for G.
The modified LP finds the optimal integral solution for G′, hence it computes
the minimum cardinality solution to instance G.

Lemma 5. For any signal profile s and agent i, if agent i belong to the minimum
densest subgraph Vr(s), fixing s−i, if agent i increases her signal to s′i > si, and
denote the new signal profile s′. Then in the new instance, i ∈ Vr(s

′).

Proof. First, the minimum densest subgraph Vr(s) is unique for any signal profile
s. Suppose not. Let there be Vr �= V ′

r , and denote the induced edge sets Er and
E′

r. Suppose that

∑

i∈Vr

ϕi(si)+
∑

(i,j)∈Er

(gji(si)+gij(sj)) =
∑

i∈V ′
r

ϕi(si)+
∑

(i,j)∈E′
r

(gji(si)+gij(sj)) = v

It is easy to see that since gji(si) ≥ 0 ∀i, j, we have

∑

i∈Vr∪V ′
r

ϕi(si) +
∑

(i,j)∈Er∪E′
r

(gji(si) + gij(sj)) > v

unless ∑

i∈Vr−V ′
r

ϕi(si) +
∑

(i,j)∈Er−E′
r

(gji(si) + gij(sj)) = 0

However it contradicts the fact that both Vr and V ′
r are minimum densest sub-

graphs.

Next, denote ϕ′
j(sj) the new virtual value for agent j when i increased her

signal. Note that ϕ′
j(sj) = ϕj(sj) ∀j �= i since the signals are independent, and

ϕi(si) ≤ ϕ′
i(si) by regularity. Suppose i ∈ Vr(s) but i /∈ Vr(s

′), we have that:
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∑

j∈Vr(s′)

ϕ′
j(sj) +

∑

(j,k)∈Er(s′)

(gkj(sj) + gjk(sk))

≥
∑

j∈Vr(s)

ϕ′
j(sj) +

∑

(j,k)∈Er(s)

(gkj(sj) + gjk(sk))

≥
∑

j∈Vr(s)

ϕj(sj) +
∑

(j,k)∈Er(s)

(gkj(sj) + gjk(sk))

≥
∑

j∈Vr(s′)

ϕj(sj) +
∑

(j,k)∈Er(s′)

(gkj(sj) + gjk(sk))

=
∑

j∈Vr(s′)

ϕ′
j(sj) +

∑

(j,k)∈Er(s′)

(gkj(sj) + gjk(sk))

The last equality holds because by our assumption, i /∈ Vr(s
′) and the fact that

ϕ′
j(sj) = ϕj(sj) ∀j �= i. This implies Vr(s) and Vr(s

′) are two distinct minimum
densest subgraphs for signal profile s. This contradicts the fact that the minimum
densest subgraph is unique for any input s. This completes the proof.

Algorithm 1. Mechanism 1 for Independent Signals

1. Ask for the signal profile s = (s1, s2, . . . , sn).
2. Compute the ϕ virtual values based on s.
3. Solve the linear program for signal profile s. Calculate the threshold
signals(corollary 4.2).
4. Allocate according to the minimal densest subgraph Vr(s), and make
payments pi = vi((s

∗
i , s−i), Vr(s)) where s∗i is the threshold signal and Vr(s) is

the minimum densest subgraph for signal profile s.

Our mechanism is illustrated in Mechanism 1. We now show several prop-
erties of this mechanism. First, as a corollary of Lemma 5, we have that if we
maximize the objective in the above linear program by choosing the minimum
densest subgraph for all signal profiles s, then if an agent i increases her signal,
her allocation is non-decreasing. Therefore, the allocation rule in Mechanism 1
satisfies the monotonicity condition in Theorem 1.

Fixing the signal profile s−i, to calculate the correct payment for agent i we
have to compute the minimum signal s∗i for agent i for her to be selected by the
minimum densest subgraph. As a direct consequence of Lemma 5, we have the
following corollary.

Claim. Fixing s−i the threshold signal s∗i for which agent i remains in the min-
imum densest subgraph can be computed in polynomial time.

Proof. By lemma 5 we can use binary search to find the minimum s∗i so that
agent i remains in the minimum densest subgraph in at most O(log h) linear
programming computations where h is the maximum possible value for any
signals.
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Putting all this together, we have the following theorem. As a corollary, we
also observe that the optimal mechanism is also deterministic.

Theorem 2. Mechanism 1 is ex post IC and IR, polynomial time computable,
and it achieves optimal expected revenue among all ex post mechanisms when
the signal profile s is drawn from a regular product distribution.

5 Mechanisms for Correlated Signals

In this section we present ex post mechanisms when the signals of the agents
are correlated. For small type spaces, this mechanism is optimal, while it is
an approximation algorithm for implicitly specified type spaces. We use the
conditional virtual values as defined in [15].

Definition 3. [15] For correlated signals, we define

ϕi(si|s−i) = hi(si)− 1− Fi(si|s−i)

fi(si|s−i)
h′
i(si)

as the conditional virtual value for agent i when she reports si. As before, we
call the sum of the conditional virtual values together with the externalities the
virtual surplus.

Using Theorem 1, we have the following lemma, whose proof is identical to
Lemma 1.

Lemma 6. Fixing s−i the expected payment of agent i is

E(si|s−i)[pi(s|s−i)] = E(si|s−i)[ϕi(si|s−i)xi(s) +
∑

j �=i

yij(s)gij(sj)]

Here, xi(s) is the probability that agent i gets the item when the signal profile
is s; and yij(s) is the corresponding probability that both agents i and j get the
item. Therefore, the expected revenue of an ex post IC and IR mechanism with
correlated signals is

E[Rev] = E[
n∑

i

ϕi(si|s−i)xi(s) +
∑

i�=j

(gij(sj) + gji(si))yij(s)]

The approach in the previous section does not extend to correlated signals.
Since when a winning agent increases her signal, the conditional virtual values
for the other agents in the winning set also change. As a result, the agent can be
rule out from the new optimal winning set. Nevertheless we can develop optimal
and near optimal ex post IC IR mechanisms below.

Definition 4. For signal profile s we define the auction H(s) to be the auction
in which each agent’s value is simply hi(si). We denote Rev(H(s)) the optimal
expected ex post revenue for auction H(s). Let G(s) =

∑
i�=j(gij(sj) + gji(si)).
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5.1 Optimal Mechanism for Constant Number of Bidders

We now present an optimal mechanism that runs in polynomial time under the
following assumptions. Bidder i’s signal si ∈ Qi = {0, 1, 2, . . . , Ri}, and let T =
×n

i=1Qi denote the joint type space, that has size O(Rn), where R = maxiRi.
We assume n is constant, so that |T | = O(Rn) is poly-bounded. We assume
f(s) > 0 for all s ∈ T . The definition of conditional virtual value (Def. 3) easily
extends to such discrete spaces. Using the revenue formula, Lemma 6, and the
monotonicity characterization Theorem 1, it is easy to check that the following
integer program encodes the optimal mechanism.

Maximize Es∈T

⎡

⎣
∑

i

ϕi(si|s−i)xi(s) +
∑

(ij),i�=j

yij(s)(gij(sj) + gji(si))

⎤

⎦

xi(s) ≥ yij(s) ∀i, j, s ∈ T
xj(s) ≥ yij(s) ∀i, j, s ∈ T

xi(si, s−i) ≥ xi(s
′
i, s−i) ∀i, s−i, R ≥ si ≥ s′i ≥ 0

xi(s), yij(s) ∈ {0, 1} ∀i, j, s ∈ T

Here, the third set of constraints encodes monotonicity; the first and second
set of constraints simply encodes that agents obtain externality from each other
only if they both receive the item. We relax the final constraints so that the
variables are real values in [0, 1]. Since the support of the signals, |T |, is poly-
nomial size, the above LP has polynomial size and can be solved in polynomial
time. Using the same technique as in the proof of Lemma 3, we choose an r
uniformly at random in [0, 1]. For every variable, if its value is at least r, we set
that variable to 1, else we set it to 0. It is easy to check that the resulting integer
solution satisfies all the constraints, and its objective is the same as the LP in
expectation. Hence, we have a valid mechanism that satisfies monotonicity, and
whose expected revenue has the same as the LP solution. We omit the details,
and note that with some technical work, this result also extends to arbitrary
discrete type spaces with poly-bounded support.

As a consequence, since the above LP has an integral optimum solution, we
have the following.

Theorem 3. For the value based utility model, there is no gap between the ex-
pected revenue of the optimal deterministic and randomized mechanisms.

5.2 Approximation Algorithm for the General Case

We now present an approximation algorithm when there are polynomially many
bidders, and the type space of the signals is continuous. We use the VCG-L
mechanism of Chawla et al. [6] as a subroutine.

Note that for items with unlimited supply, the V CG − L auction simply
offers each agent a posted price which is the conditional monopoly price for that
agents’ marginal distribution, given the signals of the other agents. For the sake
of completeness, we state the result of Chawla et al. [6].
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Algorithm 2. Mechanism 2 for Correlated Signals

1. Run the mechanism that yields higher expected revenue (over all signal
profiles).
2. Either allocate to all agents and charge each agent i

∑
j �=i gij(sj); or

3. Run the V CG − L [6] auction for correlated private values on H(s).

Theorem 4. [6] The V CG−L auction with conditional monopoly reserves ob-
tains at least half of the optimal revenue under a matroid feasibility constraint
when the agent have correlated private values.

Lemma 7. The optimal expected ex post revenue for correlated signal profile s
is at most Rev(H(s)) +G(s).

Proof. For any signal profile s, let M be any ex post IC IR mechanism for valua-
tions which externalities. Denote M ’s allocation rule and payment rule by (x, p).
We can construct a mechanism for auction H(s) by keeping the allocation rule
of M exactly the same and let the winning set be W . Subtract the externalities
from the payments of all winning agents in M , that is the new payment for any
winning agent i in H(s) is p′i = pi −

∑
j �=i, j∈W gi,j(sj). We call the new mech-

anism M ′. By Theorem 1, p′i = h(s∗i ) ≤ h(si). Therefore M ′ is ex post IR for
H(s). On the other hand it is also easy to see M ′ is ex post IC for H(s) since M ′

satisfies the two conditions in Theorem 1 for the auctionH(s) with zero external-
ity. We denote the expected payment from M ′ by Es[

∑
i p

′
i(s)] and the expected

payment from M by Es[
∑

i pi(s)] . Therefore by definition of Rev(H(s)),we
have Es[

∑
i pi(s)]−G(s) ≤ Es[

∑
i pi(s)] −

∑
(i,j),j �=i,i,j∈W (gi,j(sj) + gj,i(si)) =

Es[
∑

i p
′
i(s)] ≤ Rev(H(s)) since G(s) is an upper bound on the amount of ex-

ternality subtracted. Therefore we have Es[
∑

i pi(s)]−G(s) ≤ Rev(H(s)).

Theorem 5. Mechanism 2 is ex post IC IR, and a 4 approximation to the ex-
pectation of the optimal ex post revenue.

Proof. We first observe that mechanism 2 is ex post IC and IR. It takes the bet-
ter of two deterministic ex post IC IR mechanisms. By Lemma 7, the optimal
expected revenue is upper bounded Rev(H(s))+G(s). If step 2 is used, the rev-
enue is REV1 =

∑
i�=j(gi,j(sj)+ gj,i(si)) = G(s). If step 3 is used, by Theorem 4

we have the revenue REV2 ≥ Rev(H(s)). Overall we have the expected revenue
REV = max(REV1, REV2) ≥ 1/4Es[(G(s) +Rev(H(s)))].
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