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Abstract. Cake cutting is one of the most fundamental settings in fair divi-
sion and mechanism design without money. In this paper, we consider differ-
ent levels of three fundamental goals in cake cutting: fairness, Pareto optimality,
and strategyproofness. In particular, we present robust versions of envy-freeness
and proportionality that are not only stronger than their standard counter-parts
but also have less information requirements. We then focus on cake cutting
with piecewise constant valuations and present three desirable algorithms: CCEA
(Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and
MCSD (Mixed Constrained Serial Dictatorship). CCEA is polynomial-time, ro-
bust envy-free, and non-wasteful. Then, we show that there exists an algorithm
(MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal.
Moreover, we show that for piecewise uniform valuations, MEA and CCEA are
group-strategyproof and are equivalent to Mechanism 1 of Chen et. al.(2013). We
then present an algorithm MCSD and a way to implement it via randomization
that satisfies strategyproofness in expectation, robust proportionality, and una-
nimity for piecewise constant valuations. We also present impossibility results
that show that the properties satisfied by CCEA and MEA are maximal subsets
of properties that can be satisfied by any algorithm.

1 Introduction

Cake cutting is one of the most fundamental topics in fair division (see e.g., [7, 17]). It
concerns the setting in which a cake is represented by an interval [0, 1] and each of the
n agents has a value function over the cake that specifies how much that agent values a
particular subinterval. The main aim is to divide the cake fairly. The framework is gen-
eral enough to encapsulate the important problem of allocating a heterogeneous divis-
ible good among multiple agents with different preferences. The cake cutting problem
applies to many settings including the division of rent among housemates, disputed land
between land-owners, and work among co-workers. It is especially useful in scheduling
the use of a valuable divisible resource such as server time.

In this paper, we approach the cake cutting problem from a mechanism design per-
spective. We assume that each cake recipient, which we will refer to as an agent, has
a private value density function over the cake. Throughout the paper we focus on the
fundamental classes of value functions called piecewise constant value density func-
tions.We also consider piecewise uniform valuations which are a restricted class of
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piecewise constant valuations. We consider three of the most enduring goals in mecha-
nism design and fair division: fairness, Pareto optimality and strategyproofness. Since
many fair division algorithms need to be deployed on a large scale, we will also aim
for algorithms that are computationally efficient. Strategyproofness has largely been
ignored in cake-cutting barring a few recent exceptions [9, 10, 14, 15, 20]. The main re-
search question in this paper is as follows: among the different levels of fairness, Pareto
optimality, strategyproofness, and efficient computability, what are the maximal set of
properties that can be satisfied simultaneously for piecewise constant and piecewise
uniform valuations? Our main contribution is a detailed study of this question includ-
ing the formulation of a number of desirable cake cutting algorithms satisfying many
of the properties. A few works that are directly relevant to this paper are [8, 9, 10, 11].
Chen et al. [9, 10] presented a deterministic, strategyproof, polynomial-time, envy-free
and Pareto optimal algorithm for piecewise uniform valuations. They left open the prob-
lem of generalizing their algorithm for piecewise constant valuations. Cohler et al. [11]
and Brams et al. [8] formulated linear programs to compute envy-free allocations for
piecewise constant valuations. However, the algorithms are not Pareto optimal in gen-
eral. Two of the algorithms in our paper rely on transforming the problem of allocating
a cake to agents with piecewise constant value density functions to an equivalent prob-
lem of allocating objects to agents where each agent has a homogeneous preference
for each object. The transformation is done by pre-cutting the cake into subintervals
using the union of discontinuity points of the agents’ valuation function. This transfor-
mation allows us to adopt certain well-known results of random assignment and market
equilibrium to the problem at hand.

Drawing the connection between cake cutting and random assignment, we present
CCEA (Controlled Cake Eating Algorithm) for piecewise constant valuations. CCEA
is polynomial-time and satisfies robust envy-freeness and robust proportionality, which
are stronger than the notions of fairness that have been considered in the cake cut-
ting literature. The main idea of an allocation being robust envy-free/proportional is
that even if an agent re-adjusts or perturbs his value density function, as long as the
ordinal information of the function is unchanged, then the allocation remains envy-
free/proportional.1 CCEA depends on a reduction to the generalizations [1, 13] of the
PS (probabilistic serial) algorithm introduced by Bogomolnaia and Moulin [4] in the
context of random assignments.2

If we insist on Pareto optimality, then we show that there exists an algorithm
which we refer to as the MEA (Market Equilibrium Algorithm) that is deterministic,
polynomial-time Pareto optimal, envy-free, and proportional for piecewise constant
valuations. The main computation of MEA lies in solving the Eisenberg-Gale con-
vex program for market equilibrium. Although similar ideas using linear programs
and market equilibria have been used explicitly to compute envy-free allocations in

1 Although full information is a standard assumption in cake cutting, it can be argued that it is
unrealistic that agents have exact vNM utilities for each segment of the cake. Even if they do
report exact vNM utilities, they may be uncertain about these reports.

2 The CC algorithm of Athanassoglou and Sethuraman [1] is a generalization of the EPS al-
gorithm [13] which in turn is a generalization of PS algorithm of Bogomolnaia and Moulin
[4].
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cake-cutting[11, 8], they do not necessarily return a Pareto optimal allocation. In a
recent paper, Tian [20] characterized a class of strategyproof and Pareto optimal mech-
anisms for cake cutting when agents have piecewise uniform valuation functions. The
algorithm of Tian involves maximizing the sum of concave functions over the set of fea-
sible allocations. It is worth noting that MEA when restricted to the piecewise uniform
valuation setting is a special case of his algorithm. We show that for piecewise uniform
valuations, CCEA and MEA not only coincide but are also group-strategyproof. Pre-
viously, Chen et al. [9, 10] presented a deterministic, strategyproof, polynomial-time,
envy-free and Pareto optimal algorithm for piecewise uniform valuations. We prove
that for piecewise uniform valuations, CCEA and MEA are in fact equivalent to their
algorithm and are group-strategyproof instead of just strategyproof.

Although CCEA and MEA are desirable algorithms, they are not strategyproof for
piecewise constant valuations. This is because the incentive of the agents for the piece-
wise uniform valuation setting is rather limited: each agent only cares about obtaining
as much of their desired pieces of the cake as possible. On the other hand, for piecewise
constant valuations, agents also care about the tradeoff in quantities of having pieces at
different levels of desirability. Another difficulty of obtaining a strategyproof algorithm
via the aforementioned transformation is that the discontinuity points of each agent’s
valuation function is private information for the agent. In particular, unlike the setting
of allocating multiple homogenous objects, where it suffices for an algorithm to output
the fractional amount of each object that an agent will receive, the method of conversion
from fractions of intervals into an actual allocation in terms of the union of subintervals
is also a necessary step of the algorithm, which may be subject to strategic manipula-
tion by the agents. To drive this point further, in the paper we give an example of an
algorithm that is strategyproof in the random assignment setting, but is no longer strate-
gyproof if we implement the conversion process from fractions of intervals to the union
of subintervals in a deterministic fashion.

To tackle this difficulty, we present another algorithm called MCSD (Mixed Con-
strained Serial Dictatorship) which is strategyproof in expectation, robust proportional,
and satisfies unanimity. For the important case of two agents3, it is polynomial-time,
and robust envy-free. To the best of our knowledge, it is the first cake cutting algorithm
for piecewise constant valuations that satisfies strategyproofness, (ex post) proportion-
ality, and (ex post) unanimity at the same time. MCSD requires some randomization
to achieve strategyproofness in expectation. However, MCSD is deterministic in the
sense that it gives the same utility guarantee (with respect to the reported valuation
functions) over all realizations of the random allocation. Although MCSD uses some
essential ideas of the well-known serial dictatorship rule for discrete allocation, it is
significantly more involved. In contrast to serial dictatorship, MCSD achieves ex post
fairness. Our main technical results are as follows.

Theorem 1. For piecewise constant valuations, there exists an algorithm (CCEA) that
is deterministic, polynomial-time, robust envy-free, and non-wasteful.

Theorem 2. For piecewise constant valuations, there exists an algorithm (MEA) that
is deterministic, polynomial-time, Pareto optimal, and envy-free.

3 Many fair division problems involve disputes between two parties.
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Table 1. Properties satisfied by the cake cutting algorithms for pw (piecewise) constant valu-
ations: DET (deterministic), R-EF (robust envy-freeness), EF (envy-freeness), R-PROP (robust
proportionality), PROP (proportionality), GSP (group strategyproof), W-GSP (weak group strat-
egyproof), SP (strategyproof), PO (Pareto optimal), NW (non-wasteful), UNAN (unanimity) and
POLYT (polynomial-time)

Restriction DET R-EF EF R-PROP PROP GSP W-GSP SP PO NW UNAN POLYT
Algorithms

CCEA - + + + + + - - - - + + +

CCEA pw uniform + + + + + + + + + + + +

MEA + - + - + - - - + + + +

MEA pw uniform + + + + + + + + + + + +

MCSD - - - - + + - - + - - + -
MCSD pw uniform - - - + + - - + + - + -
MCSD 2 agents - + + + + - - + - - + +

Theorem 3. For piecewise uniform valuations, there exist algorithms (CCEA and
MEA) that are deterministic, group strategyproof, polynomial-time, robust envy-free
and Pareto optimal.

Theorem 4. For piecewise constant valuations, there exists a randomized implemen-
tation of an algorithm (MCSD) that is (ex post) robust proportional, (ex post) sym-
metric, and (ex post) unanimous and strategyproof in expectation. For two agents, it is
polynomial-time, robust proportional and robust envy-free.

Our positive results are complemented by the following impossibility results. These
impossibility results show that the properties satisfied by CCEA and MEA are maximal
subsets of properties that can be satisfied by any algorithm.

Theorem 5. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is both Pareto optimal and robust proportional.

Theorem 6. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is strategyproof, Pareto optimal, and proportional.

Theorem 7. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is strategyproof, robust proportional, and non-wasteful.

Some of our main results are also summarized in Table 1. Some of our results even
extend to more general domains with variable claims and private endowments. As a
consequence of CCEA and MEA, we generalize the positive results regarding piecewise
uniform valuations in [9, 10] and piecewise constant valuations in [11] in a number of
ways such as handling richer cake cutting settings, handling more general valuations
functions, achieving a stronger fairness concept, or a stronger strategyproofness notion.

2 Preliminaries

Cake cutting setting. We consider a cake which is represented by the interval [0, 1]. A
piece of cake is a finite union of disjoint subintervals of [0, 1]. The length of an interval
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I = [x, y] is len(I) = y − x. As usual, the set of agents is N = {1, . . . , n}. Each agent
has a piecewise continuous value density function vi : [0, 1] → [0,∞). The value of a
piece of cake X to agent i is Vi(X) =

∫
X

vi(x)dx =
∑

I∈X
∫

I
vi(x)dx. As generally assumed,

valuations are non-atomic (Vi([x, x]) = 0) and additive: Vi(X∪Y) = Vi(X)+Vi(Y) where
X and Y are disjoint. The basic cake cutting setting can be represented by the set of
agents and their valuations functions, which we will denote as a profile of valuations. In
this paper we will assume that each agent’s valuation function is private information for
the agent that is not known to the algorithm designer. Each agent reports his valuation
function to the designer.

Preference functions. In this paper we will only consider piecewise uniform and piece-
wise constant valuation functions. A function is piecewise uniform if the cake can
be partitioned into a finite number of intervals such that for some constant ki, either
vi(x) = ki or vi(x) = 0 over each interval. A function is piecewise constant if the
cake can be partitioned into a finite number of intervals such that vi is constant over
each interval. In order to report his valuation function to the algorithm designer, each
agent will specify a set of points {d1, ..., dm} that represents the consecutive discontinu-
ity points of the agent’s valuation function as well as the constant value of the valuation
function between every pair of consecutive d j’s. For a function vi, we will refer by
V̂i = {v′i : vi(x) ≥ vi(y) > 0 ⇐⇒ v′i(x) ≥ v′i(y) > 0 ∀x, y ∈ [0, 1]} as the set of density
functions ordinally equivalent to vi.

Properties of allocations. An allocation is a partition of the interval [0, 1] into a set
{X1, . . . , Xn,W}, where Xi is a piece of cake that is allocated to agent i and W is the
piece of the cake that is not allocated. All of the fairness and efficiency notations that
we will discuss next are with respect to the reported valuation functions. Within the
cake cutting literature, the most important criteria of a fair allocation are envy-freeness
and proportionality. In an envy-free allocation, we have Vi(Xi) ≥ Vi(X j) for each pair
of agent i, j ∈ N, that is every agent considers his allocation at least as good as any
other agent’s allocation. In a proportional allocation, we have Vi(Xi) ≥ 1

n Vi([0, 1]), that
is, each agent gets at least 1/n of the value he has for the entire cake. Envy-freeness
implies proportionality provided that every desirable part of the cake is allocated. An
even stronger condition that envy-freeness is equitability which requires that each agent
is indifferent between his allocation and the allocations of other agents.

An allocation is Pareto optimal if no agent can get a higher value without some other
agent getting less value. Formally, X is Pareto optimal if there does not exists another
allocation Y such that Vi(Yi) ≥ Vi(Xi) for all i ∈ N and Vi(Yi) > Vi(Xi) for some i ∈ N. In
the case where Pareto efficiency cannot be satisfied, we also consider a weaker notion of
efficiency called non-wastefulness. For any S ⊆ [0, 1], define D(S ) = {i ∈ N|Vi(S ) > 0}.
An allocation X is non-wasteful if for all S ⊆ [0, 1], S ⊆ ∪i∈D(S )Xi. In other words, an
allocation is non-wasteful if every portion of the cake desired by at least one agent is
allocated to some agent who desires it.

For fairness, we do not only consider the standard notions envy-freeness and pro-
portionality but we also propose the concept of robust fairness — in particular robust
envy-freeness and robust proportionality. An allocation satisfies robust proportionality

if for all i, j ∈ N and for all v′i ∈ V̂i,
∫

Xi
v′i(x)dx ≥ 1/n

∫ 1

0
v′i(x)dx. An allocation satisfies
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robust envy-freeness if for all i, j ∈ N and for all v′i ∈ V̂i,
∫

Xi
v′i(x)dx ≥ ∫

X j
v′i (x)dx. The

main idea of an allocation being robust envy-free is that even if an agent re-adjusts or
perturbs his value density function, as long as the ordinal information of the function is
unchanged, then the allocation remains envy-free. The main advantages of robust envy-
freeness are less information requirements and envy-freeness under uncertainty. It also
addresses a criticism in cake cutting models that an agent has the ability to ascribe an
exact number to each tiny segment of the cake.4 Note that even equitability does not
imply robust envy-freeness because by perturbing the valuation function, equitability
can easily be lost.

Let us fix a piecewise constant value density function v. Let (I1, I2, . . . , Ik) be the
positively valued intervals induced by the discontinuity points of the value function
sorted in the order of decreasing preference, that is, v(x) is higher on Ii than it is on
I j if i < j. Let x and x′ be two allocation vectors whose i-th component specifies the
length of Ii that is allocated to the agent, then we say that x stochastically dominates
x′ with respect to the preference ordering if

∑ j
i=1 xi ≥ ∑ j

i=1 x′i for every j = 1, . . . , k.
It can be shown that an allocation x for the agent with valuation function v is robust
envy-free if and only if it stochastically dominates any other allocation x′ with respect
to the preference ordering. Moreover, it can be shown that an allocation x is robust
proportional if and only if

∑ j
i=1 xi ≥ 1/n

∑ j
i=1 |Ii| for every j = 1, . . . , k. Both robust

envy-freeness and robust proportionality require each agent to get a piece of cake of the
same length if every agent desires the entire cake.

Properties of cake cutting algorithms. A deterministic cake cutting algorithm is a map-
ping from the set of valuation profiles to the set of allocations. A randomized cake
cutting algorithm is a mapping from the set of valuation profiles to a space of distribu-
tions over the set of allocations. The output of the algorithm in this case for a specific
valuation profile is a random sample of the distributional function over the set of alloca-
tion for that profile. An algorithm (either deterministic or randomized) satisfies property
P if it always returns an allocation that satisfies property P. A deterministic algorithm
is strategyproof if no agent ever has an incentive to misreport in order to get a bet-
ter allocation. The notion of strategyproofness is well-established in social choice and
much stronger than the notion of ‘strategyproofness’ used in some of the cake-cutting
literature (see e.g., [6]), where truth-telling is a maximin strategy and it need not be
dominant strategy incentive compatible. Similarly, a deterministic algorithm is group-
strategyproof if there exists no coalition S ⊆ N such that members of S can misreport
their preferences so that each agent in S gets at least as preferred an allocation and at
least one agent gets a strictly better payoff. A deterministic algorithm is weak group-
strategyproof if there exists no coalition S ⊆ N such that members of S can misreport
their preferences so that each agent in S gets a strictly more preferred allocation. A
randomized algorithm is strategyproof in expectation if the expected utility from the
random allocation that every agent receives in expectation under a profile where he re-
ported truthfully is at least as large as the expected utility that he receives under a profile

4 Let us say that a cake is part chocolate and part vanilla. An agent may easily state that chocolate
is more preferable than vanilla but would require much more effort to say that if the vanilla
piece is α times bigger than the chocolate piece then he would prefer both pieces equally.
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where he misreports while fixing the other agents’ reports. We say that a cake cutting
algorithm satisfies unanimity, if when each agent has positive valuation for at most 1/n
of the cake and the interval of the cake for which he has positive valuation does not
intersect with intervals of the cake for which other agents have positive valuation, then
each agent is allocated the whole interval for which he has positive valuation.

Relation between the properties of cake cutting algorithms. We highlight some impor-
tant relations between the main properties of cake cutting algorithms.

Remark 1. For cake cutting, a) Envy-freeness and non-wastefulness =⇒ proportional-
ity; b) Robust proportionality =⇒ proportionality; c) Robust envy-freeness =⇒ envy-
freeness; d) Robust envy-freeness and non-wastefulness =⇒ robust proportionality;
e) Group strategyproofness =⇒ weak group strategyproofness =⇒ strategyproof-
ness; f) Pareto optimality =⇒ non-wastefulness =⇒ unanimity; g) two agents,
proportionality =⇒ envy-freeness; h) two agents, robust proportionality =⇒ robust
envy-freeness.

The free disposal assumption. We may assume without lost of generality that every
part of the cake is desired by at least one agent. If that is not the case, then we can
discard the parts that are desired by no one and rescale what is left so that we get
a [0, 1] interval representation of the cake. Notice that this procedure preserves the
aforementioned properties of fairness and efficiency. The free disposal assumption is
necessary to ensure the algorithm of Chen et al. [10], which is a special case of two of
our algorithms, to be strategyproof for piecewise uniform valuations. The existence of a
non-free disposal algorithm that satisfies all of the desirable properties in the piecewise
uniform setting remains an open question. Now we are ready to present our algorithms.

3 CCEA — Controlled Cake Eating Algorithm

CCEA (Controlled Cake Eating Algorithm) is based on CC (Controlled Consuming) al-
gorithm of Athanassoglou and Sethuraman [1]. Since the original PS algorithm is also
known as the simultaneous eating algorithm, we give our algorithm the name Controlled
Cake Eating Algorithm. CCEA first divides the cake up into disjoint intervals each of
whose endpoints are consecutive points of discontinuity of the agents’ valuation func-
tions. We will refer to these intervals as intervals induced by the discontinuity points.
The idea is to form a one-to-one correspondence of the set of cake intervals with a set
of houses of an assignment problem. In an assignment problem, we have a set of agents
and a set of houses. Each agent has a preference ordering over the set of houses. Given
two houses h and h′, we will use the notation h �i h′ to indicate that agent i prefers h
over h′. In our case, the preferences of agents over the houses are naturally induced by
the relative height of the piecewise constant function lines in the respective intervals.
The technical heart of the algorithm is in CC (Controlled Consuming) algorithm of
Athanassoglou and Sethuraman [1]. Note that even though in the standard assignment
problem, each house has a size of one and each agent has a demand of one house, the
CC algorithm still applies in the case where the intervals corresponding to the houses
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have different lengths and there is no constraint on the total length of an agent’s alloca-
tion. Once CC has been used to compute a fractional assignment p, it is straightforward
to compute a corresponding cake allocation. If an agent i gets a fraction of house h j,
then in the cake allocation agent i gets the same fraction of subinterval J j.

Input: Piecewise constant value functions.
Output: A robust envy-free allocation.

1 Divide the regions according to agent value functions. Let J = {J1, . . . , Jm} be the set of
subintervals of [0, 1] formed by consecutive discontinuity points.

2 Consider (N,H,�, size(·)) where

– H = {h1, . . . , hm} where hi = Ji for all i ∈ {1, . . . ,m}
– � is defined as follows: h �i h′ if and only if vi(x) ≥ vi(y) for x ∈ h and y ∈ h′;
– size(hj) = 1 for hj ∈ arg max j∈{1,...,m}(len(Jj));

size(hj) =
len(J j)

(max j∈{1,...,m}(len(J j)))
for all hj � arg max j∈{1,...,m}(len(Jj));

3 Discard the houses that give every agent a utility of zero from H to obtain H′.
4 p←− CC(N,H′,�, size(·))
5 For interval Jj, agent i is an allocated subinterval of Jj, denoted by Ji

j, which is of length
pih j/size(hj) × len(Jj). For example, if Jj = [aj, bj], then one possibility of Ji

j can be [aj +∑i−1
n=1 pih j/size(hj) × len(Jj), aj +

∑i
n=1 pih j/size(hj) × len(Jj)].

Xi ←− ⋃m
j=1 Ji

j for all i ∈ N
6 return X = (X1, . . . , Xn)

Algorithm 1. CCEA (Controlled Cake Eating Algorithm)

CCEA satisfies the strong fairness property of robust envy-freeness.

Proposition 1. For piecewise constant valuations, CCEA satisfies robust envy-freeness
and non-wastefulness.

Proposition 2. CCEA runs in time O(n5m2 log(n2/m)), where n is the number of agents
and m is the number of subintervals defined by the union of discontinuity points of the
agents’ valuation functions.

Although CCEA satisfies the demanding property of robust envy-freeness, we show
that CCEA is not strategyproof even for two agents. Later (in Section 5), we will present
a different algorithm that is both robust envy-free and strategyproof for two agents.

Proposition 3. For piecewise constant valuations, CCEA is not strategyproof even for
two agents.

If we restrict the preferences to piecewise uniform valuations, then CCEA is not
only strategyproof but group-strategyproof. We first show that in this restricted setting,
CCEA is in fact equivalent to the algorithm of [9].

Lemma 1. For piecewise uniform value functions, CCEA is equivalent to Mechanism
1 of Chen et al. [9].
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Since the set of valuations that can be reported is bigger in cake cutting than in the as-
signment problem, establishing group strategyproofness does not follow automatically
from group-strategyproofness of CC for dichotomous preferences (Theorem 2, [5]). We
show that that CCEA and hence Mechanism 1 of Chen et al. [9] is group strategyproof
for piecewise uniform valuations.5

Proposition 4. For piecewise uniform value functions, CCEA is group strategyproof.

For piecewise uniform valuations, CCEA is also Pareto optimal. The result follows
from Lemma 1 and the fact that Mechanism 1 of Chen et al. [9] is Pareto optimal.

Proposition 5. For piecewise uniform value functions, CCEA is Pareto optimal.

4 MEA — Market Equilibrium Algorithm

In the previous section we presented CCEA which is not Pareto optimal for piecewise
constant valuations. If we relax the robust notion of fairness to envy-freeness, then we
can use fundamental results in general equilibrium theory to formulate a convex pro-
gram that always returns an envy-free and Pareto optimal allocation as its optimal solu-
tion. For each valuation profile, let J = {J1, . . . , Jm} be the intervals whose endpoints are
consecutive points in the union of break points of the agents’ valuation functions. Let
xi j be the length of any subinterval of Ji that is allocated to agent j. Then we run a con-
vex program to compute a Pareto optimal and envy-free allocation. Once we determine
the length of J j to be allocated to an agent, we allocate any subinterval of that length
to the agent. We will call the convex program outlined in Algorithm 2 as the Market
Equilibrium Algorithm (MEA). MEA is based on computing the market equilibrium via
a primal-dual algorithm for a convex program that was shown to be polynomial-time
solvable by Devanur et al. [12].

Proposition 6. MEA is polynomial-time, Pareto optimal and envy free.

We mention here that the connection between cake cutting and computing market
equilibria is not completely new: Reijnierse and Potters [16] presented an algorithm to
compute an approximately envy-free and Pareto optimal allocation for cake cutting with
general valuations. However their algorithm is not polynomial-time even for piecewise
constant valuations [21]. MEA requires the machinery of convex programming. It re-
mains open whether MEA can be implemented via linear programming. Cohler et al.
[11] presented an algorithm that uses a linear program to compute an optimal envy-free
allocation. The allocation is Pareto optimal among all envy-free allocations. However
it need not be Pareto optimal in general. Similarly, Brams et al. [8] used a similar con-
nection to a linear Fisher market as MEA to compute a maxsum envy-free allocations.
However the allocation they compute may not be Pareto optimal even for piecewise uni-
form valuations (Theorem 7, [8]). Although MEA is not robust envy-free like CCEA,
it is Pareto optimal because it maximizes the Nash product. What is interesting is that

5 Chen et al. [9] had shown that their mechanism for piecewise uniform valuations is
strategyproof.
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Input: Cake-cutting problem with piecewise constant valuations.
Output: A proportional, envy-free, and Pareto optimal allocation.

1 Let J = {J1, . . . , Jm} be the intervals whose endpoints are consecutive points in the union of
break points of the agents’ valuation functions. Discard any interval that gives an utility of
zero to every agent. Let xi j be the length of any subinterval of Ji that is allocated to agent j.

2 li ←− len(Ji)
3 Solve the following convex program.

min −
n∑

j=1

log(uj)

s.t. uj =

m∑

i=1

vi j xi j ∀ j = 1, . . . , n;
n∑

j=1

xi j ≤ li ∀i = 1, . . . ,m; xi j ≥ 0 ∀i, j.

4 Let u�j , x�i j be an optimal solution to the convex program. Partition every interval Ji into n

subintervals where the j-th subinterval J j
i has length x�i j.

5 Yj ←− ∪m
i=1J j

i be the allocation of each j = 1, . . . , n.
6 return Y = (Y1, . . . ,Yn).

Algorithm 2. MEA (Market Equilibrium Algorithm)

under uniform valuations, both MEA and CCEA are equivalent. In the next result we
demonstrate this equivalence (Proposition 7). The proof requires a careful comparison
of both CCEA and MEA under uniform valuations.

Proposition 7. For piecewise uniform valuations, the allocation given by CCEA is
identical to that given by MEA.

Corollary 1. For piecewise uniform valuations, MEA is group-strategyproof.

Thus if we want to generalize Mechanism 1 of Chen et al. [9] to piecewise con-
stant valuations and maintain robust envy-freeness then we should opt for CCEA. On
the other hand, if want to still achieve Pareto optimality, then MEA is the appropriate
generalization. In both generalizations, we lose strategyproofness.

5 MCSD — Mixed Constrained Serial Dictatorship Algorithm

Thus far, we presented two polynomial-time algorithms, each of which satisfies a dif-
ferent set of properties. CCEA is robust envy-free and non-wasteful, whereas MEA is
Pareto optimal and envy-free. This naturally leads to the following question: does there
exist an algorithm that satisfies all of the properties that CCEA and MEA satisfy? The
answer is no, as there is no algorithm that is both Pareto optimal and robust proportional
(Theorem 5). Similarly, there is no algorithm that satisfies the properties MEA satisfies
along with strategyproofness (Theorem 6). Lastly, there is no algorithm that satisfies the
properties CCEA satisfies plus strategyproofness (Theorem 7). Consequently, we may
conclude that the properties satisfied by CCEA and MEA are respectively maximal
subsets of properties that an algorithm can satisfy for piecewise constant valuations.
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We saw that CCEA and MEA are only strategyproof for piecewise uniform valua-
tions. In light of the impossibility results established, it is reasonable to ask what other
property along with strategyproofness can be satisfied by some algorithm. It follows
from (Theorem 3, [19]) that the only type of strategyproof and Pareto optimal mecha-
nisms are dictatorships. Chen et al. [10] raised the question whether there exists a strat-
egyproof and proportional algorithm for piecewise constant valuations. The algorithm
MCSD answers this question partially.

Before diving into the MCSD algorithm, it is worth noting that there is a fundamen-
tal difference between the setting of assignment objects to agents where the agents have
homogeneous preferences over the objects and the cake cutting setting. In the former
setting, the objects that we are allocating are well defined and known to the public. On
the other hand, in the cake cutting setting, the discontinuity points of each agent’s val-
uation function is private information for the agent. In order to illustrate this difficulty,
consider the uniform allocation rule. The uniform allocation rule (that assigns 1/n of
each house) is both strategyproof and proportional in the random assignment setting.
However it cannot be adapted for cake cutting with piecewise constant valuations since
strategyproofness is no longer satisfied if converting 1/n of each interval (induced by
the agent valuations) to actual subintervals is done deterministically. Chen et al. [10] re-
sorted to randomizing the conversion process from fractions of intervals to subintervals
in order to make the uniform allocation rule strategyproof in expectation.

Proposition 8. No deterministic algorithm that implements the uniform allocation rule
can be strategyproof if it also satisfies the free disposal property.

In order to motivate MCSD, we first give a randomized algorithm that is strate-
gyproof and robust proportional in expectation. The algorithm is a variant of random
dictatorship. Under random dictatorship, if the whole cake is acceptable to each agent,
then each time a dictator is chosen, he will take the whole cake which is unfair ex post.
We add an additional requirement which is helpful. We require that each time a dictator
is chosen, the piece he takes has to be of maximum value 1/n length of the total size
of the cake. This algorithm Constrained Random Serial Dictatorship (CRSD) draws a
random permutation of the agents. It then makes the allocation to agents in the order
that the lottery is drawn. Every time that it is agent i’s turn to receive his allocation,
CRSD looks at the remaining portion of the cake and allocates a maximum value 1/n
length piece of the cake to agent i (breaking ties arbitrarily). Notice that CRSD is strat-
egyproof, as in every draw of lottery, it is in the best interest of the agents to report
their valuation function truthfully in order to obtain a piece that maximizes his valu-
ation function out of the remaining pieces of cake. We will see, through the proof of
Proposition 10, that CRSD is robust proportional in expectation.

MCSD is an algorithm that derandomizes CRSD by looking at its allocation for all
n! different permutations and aggregating them in a suitable manner. The algorithm is
formally presented as Algorithm 3. Although MCSD does not necessarily require n!
cuts of the cake, it is #P-complete to implement [3, 18] and may take exponential time
if the number of agents is not a constant.

Proposition 9. For piecewise constant valuations, MCSD is well-defined and returns a
feasible cake allocation in which each agent gets a piece of size 1/n.
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Input: Cake-cutting problem with piecewise constant valuations.
Output: A robust proportional allocation.

1 for each π ∈ ΠN do
2 C ←− [0, 1] (intervals left)
3 for i = 1 to n do
4 Xππ(i) ←− maximum preference cake piece of size 1/n from C
5 C ←− C − Xππ(i); i←− i + 1.
6 end for
7 end for
8 Construct a disjoint and exhaustive interval set J ′ induced by the discontinuity points in

agent valuations and the cake cuts in the n! cake allocations.
9 Yi ←− empty allocation for each i ∈ N.

10 for each Jj = [aj, bj] ∈J ′ do
11 for each i ∈ N do
12 Let pi j =

count(i,J j)
n! where count(i, Jj) is the number of permutations in which i gets Jj.

13 Generate Ai j ⊆ Jj, which is of length pi j |Jj| according to some subroutine.
14 Yi ←− Yi ∪ Ai j

15 end for
16 end for
17 return Y = (Y1, . . . ,Yn)

Algorithm 3. MCSD (Mixed Constrained Serial Dictatorship)

Proposition 10. For piecewise constant valuations, MCSD satisfies robust proportion-
ality and symmetry.

Unlike CRSD, MCSD interprets the probability of allocating each interval to an
agent as allocating a fractional portion of the interval to that agent. Unless the actual
way of allocating the fractions is specified, one cannot discuss the notion of strate-
gyproofness for MCSD because a deviating agent is unable to properly evaluate his
allocation against his true valuation function in the reported profile. Contrary to intu-
ition, MCSD may or may not be strategyproof depending on how the fractional parts of
each interval are allocated.

Remark 2. MCSD is not strategyproof if the fraction of each interval of J ′ is allocated
deterministically.

In light of this difficulty, we will implement a method (Algorithm 5) that randomly
allocates the fractions of intervals to agents. For every interval, the method chooses a
starting point in the interval uniformly at random to make the cut. Agent 1 receives the
left-most subinterval from the starting point with length dictated by MCSD, followed by
agent 2, so on and so forth. To generate this starting point for all subintervals, it suffices
to use a single bit of randomness together with the proper dilation and translation for
every interval. With this implementation, MCSD is strategyproof in expectation.

Proposition 11. MCSD implemented with the aforementioned random allocation rule
is strategyproof in expectation.

Although MCSD is strategyproof in expectation, it fails to satisfy truthfulness based
on group-based deviations no matter how the fractions of each interval are allocated.



Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations 13

1: Generate U j ∼ uni f [aj, bj].
2: For aj ≤ x ≤ 2bj − aj, let mod (x) = x if aj ≤ x ≤ bj and x − (bj − aj) if x > bj. Let

Ai j = [ mod (U j +

i−1∑

k=1

pk j(bj − aj)), mod (U j +

i∑

k=1

pk j(bj − aj))]

if mod (U j +
∑i−1

k=1 pk j(bj − aj)) ≤ mod (U +
∑i

k=1 pk j(bj − aj)) and

Ai j = [aj, mod (U j +

i∑

k=1

pk j(bj − aj))] ∪ [ mod (U j +

i−1∑

k=1

pn j(bj − aj)), bj] otherwise.

Algorithm 4. A subroutine that converts fractional allocation into subintervals via randomization

Proposition 12. For cake cutting with piecewise constant valuations, MCSD is not
weakly group-strategyproof even for two agents.

Moreover, for cake cutting with piecewise uniform valuations, MCSD is not weakly
group-strategyproof since RSD is not for random assignment for dichotomous prefer-
ences [5]. On the fairness front, even though MCSD satisfies both proportionality and
symmetry, it does not satisfy the stronger notion of envy-freeness.

Proposition 13. MCSD is not necessarily envy-free for three agents even for piecewise
uniform valuations.

Another drawback of MCSD is that it is not Pareto optimal for piecewise constant
valuations. However for two agents, it is robust envy-free and polynomial-time.

Proposition 14. For two agents and piecewise constant valuations, MCSD is (ex post)
robust envy-free, and polynomial-time but not Pareto optimal.

6 Conclusion

We presented three deterministic cake-cutting algorithms — CCEA, MEA, and MCSD.
We then proposed a specific randomized version of MCSD that is truthful in expecta-
tion. All the algorithms have their relative merits. Some of our results also extend to
the more general cake-cutting setting in which agents do not have uniform claims to the
cake or when agents are endowed with the cake pieces [2]. Cake cutting is a fundamen-
tal problem with numerous applications to computer science. In order for theory to be
more relevant to practice, we envision exciting work in richer models of cake cutting.
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