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Preface

This volume contains the papers presented at WINE 2014, the 10th Conference
on Web and Internet Economics, held during December 14–17, 2014, at the
Academy of Mathematics and Systems Science (AMSS), Chinese Academy of
Sciences, Beijing, China.

Over the past decade, researchers in theoretical computer science, artificial
intelligence, and microeconomics have joined forces to tackle problems involv-
ing incentives and computation. These problems are of particular importance
in application areas like the Web and the Internet that involve large and di-
verse populations. The Conference on Web and Internet Economics (WINE) is
an interdisciplinary forum for the exchange of ideas and results on incentives
and computation arising from these various fields. This year, WINE was held
in cooperation with the ACM and was co-located with the 11th Workshop on
Algorithms and Models of the Web Graph (WAW 2014).

WINE 2014 received 107 submissions. All submissions were rigorously peer
reviewed and evaluated on the basis of originality, soundness, significance, and
exposition. The Program Committee decided to accept 32 regular and 13 short
papers. We allowed the accepted papers to be designated as working papers.
For these papers, only 1-2 pages of an extended abstract are published in the
proceedings. This allows subsequent publication in journals that do not accept
papers where full versions have previously appeared in conference proceedings.
Of all the accepted papers, four are working papers. The conference program
also included six invited talks by Robert Aumann (Hebrew University), Xiaotie
Deng (Shanghai Jiao Tong University), Noam Nisan (Microsoft Research), Chris-
tos Papadimitriou (University of California at Berkeley), Andrew Chi-Chih Yao
(Tsinghua University), and Peng Ye (Alibaba Group). In addition, WINE 2014
featured three tutorials on December 14: Computation of Equilibrium in Asym-
metric First Price Auctions, by Nir Gavish (Technion),Theoretical Analysis of
Business Models, by Kamal Jain (eBay Research), and Price of Anarchy and
Stability, by Martin Gairing (University of Liverpool).

The successful organization of WINE 2014 is a joint effort of many people
and organizations. In particular, we would like to thank Baidu, Microsoft Re-
search, Google, and Facebook, for their generous financial support to WINE
2014, the Academy of Mathematics and Systems Science and Tsinghua Uni-
versity for hosting the event, as well as the Operation Research Community
of China and National Center for Mathematics and Interdisciplinary Sciences
of China for their great support. In addition, we would like to acknowledge
the Program Committee for their hard work in paper reviewing, Springer for
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helping with the proceedings, and the EasyChair paper management system for
providing quality and flexible support during the paper review process.

October 2014 Tie-Yan Liu
Qi Qi

Yinyu Ye



Organization

Program Committee Chairs

Tie-Yan Liu Microsoft Research
Qi Qi Hong Kong University of Science and

Technology, Hong Kong
Yinyu Ye Stanford University, USA

Program Committee

Allan Borodin University of Toronto, Canada
Peter Bro Miltersen Aarhus University, Denmark
Yang Cai University of California, Berkeley, USA
Bruno Codenotti Istituto di Informatica e Telematica, Italy
Jose R. Correa Universidad de Chile, Chile
Nikhil R. Devanur Microsoft Research
Edith Elkind University of Oxford, UK
Qizhi Fang Ocean University, China
Amos Fiat Tel Aviv University, Israel
Nir Gavish Technion-Israel Institute of Technology,

Israel
Dongdong Ge Shanghai University of Finance and Economic,

China
Vasilis Gkatzelis Stanford University, USA
Gagan Goel Google Research
Mordecai J. Golin Hong Kong University of Science and

Technology, Hong Kong
Martin Hoefer Max-Planck-Institut für Informatik, Germany
Krishnamurthy Iyer Cornell University, USA
Kamal Jain eBay Research
Ming-Yang Kao Northwestern University, USA
David Kempe University of Southern California, USA
Peter Key Microsoft Research
Piotr Krysta University of Liverpool, UK
Ron Lavi Technion-Israel Institute of Technology, Israel
Mohammad Mahdian Google Research
Azarakhsh Malekian University of Toronto, Canada
Evangelos Markakis Athens University of Economics and Business,

Greece
Nimrod Megiddo IBM Research



VIII Organization

Vahab Mirrokni Google Research
Hamid Nazerzadeh University of Southern California, USA
Cheng-Zhong Qin University of California, Santa Barbara, USA
Aaron Roth University of Pennsylvania, USA
Rahul Savani University of Liverpool, UK
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Cake Cutting Algorithms for
Piecewise Constant and Piecewise Uniform Valuations

Haris Aziz1 and Chun Ye2

1 NICTA and UNSW, Sydney, Australia NSW 2033
haris.aziz@nicta.com.au

2 Columbia University, New York, NY 10027-6902, USA
cy2214@columbia.edu

Abstract. Cake cutting is one of the most fundamental settings in fair divi-
sion and mechanism design without money. In this paper, we consider differ-
ent levels of three fundamental goals in cake cutting: fairness, Pareto optimality,
and strategyproofness. In particular, we present robust versions of envy-freeness
and proportionality that are not only stronger than their standard counter-parts
but also have less information requirements. We then focus on cake cutting
with piecewise constant valuations and present three desirable algorithms: CCEA
(Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and
MCSD (Mixed Constrained Serial Dictatorship). CCEA is polynomial-time, ro-
bust envy-free, and non-wasteful. Then, we show that there exists an algorithm
(MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal.
Moreover, we show that for piecewise uniform valuations, MEA and CCEA are
group-strategyproof and are equivalent to Mechanism 1 of Chen et. al.(2013). We
then present an algorithm MCSD and a way to implement it via randomization
that satisfies strategyproofness in expectation, robust proportionality, and una-
nimity for piecewise constant valuations. We also present impossibility results
that show that the properties satisfied by CCEA and MEA are maximal subsets
of properties that can be satisfied by any algorithm.

1 Introduction

Cake cutting is one of the most fundamental topics in fair division (see e.g., [7, 17]). It
concerns the setting in which a cake is represented by an interval [0, 1] and each of the
n agents has a value function over the cake that specifies how much that agent values a
particular subinterval. The main aim is to divide the cake fairly. The framework is gen-
eral enough to encapsulate the important problem of allocating a heterogeneous divis-
ible good among multiple agents with different preferences. The cake cutting problem
applies to many settings including the division of rent among housemates, disputed land
between land-owners, and work among co-workers. It is especially useful in scheduling
the use of a valuable divisible resource such as server time.

In this paper, we approach the cake cutting problem from a mechanism design per-
spective. We assume that each cake recipient, which we will refer to as an agent, has
a private value density function over the cake. Throughout the paper we focus on the
fundamental classes of value functions called piecewise constant value density func-
tions.We also consider piecewise uniform valuations which are a restricted class of

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014



2 H. Aziz and C. Ye

piecewise constant valuations. We consider three of the most enduring goals in mecha-
nism design and fair division: fairness, Pareto optimality and strategyproofness. Since
many fair division algorithms need to be deployed on a large scale, we will also aim
for algorithms that are computationally efficient. Strategyproofness has largely been
ignored in cake-cutting barring a few recent exceptions [9, 10, 14, 15, 20]. The main re-
search question in this paper is as follows: among the different levels of fairness, Pareto
optimality, strategyproofness, and efficient computability, what are the maximal set of
properties that can be satisfied simultaneously for piecewise constant and piecewise
uniform valuations? Our main contribution is a detailed study of this question includ-
ing the formulation of a number of desirable cake cutting algorithms satisfying many
of the properties. A few works that are directly relevant to this paper are [8, 9, 10, 11].
Chen et al. [9, 10] presented a deterministic, strategyproof, polynomial-time, envy-free
and Pareto optimal algorithm for piecewise uniform valuations. They left open the prob-
lem of generalizing their algorithm for piecewise constant valuations. Cohler et al. [11]
and Brams et al. [8] formulated linear programs to compute envy-free allocations for
piecewise constant valuations. However, the algorithms are not Pareto optimal in gen-
eral. Two of the algorithms in our paper rely on transforming the problem of allocating
a cake to agents with piecewise constant value density functions to an equivalent prob-
lem of allocating objects to agents where each agent has a homogeneous preference
for each object. The transformation is done by pre-cutting the cake into subintervals
using the union of discontinuity points of the agents’ valuation function. This transfor-
mation allows us to adopt certain well-known results of random assignment and market
equilibrium to the problem at hand.

Drawing the connection between cake cutting and random assignment, we present
CCEA (Controlled Cake Eating Algorithm) for piecewise constant valuations. CCEA
is polynomial-time and satisfies robust envy-freeness and robust proportionality, which
are stronger than the notions of fairness that have been considered in the cake cut-
ting literature. The main idea of an allocation being robust envy-free/proportional is
that even if an agent re-adjusts or perturbs his value density function, as long as the
ordinal information of the function is unchanged, then the allocation remains envy-
free/proportional.1 CCEA depends on a reduction to the generalizations [1, 13] of the
PS (probabilistic serial) algorithm introduced by Bogomolnaia and Moulin [4] in the
context of random assignments.2

If we insist on Pareto optimality, then we show that there exists an algorithm
which we refer to as the MEA (Market Equilibrium Algorithm) that is deterministic,
polynomial-time Pareto optimal, envy-free, and proportional for piecewise constant
valuations. The main computation of MEA lies in solving the Eisenberg-Gale con-
vex program for market equilibrium. Although similar ideas using linear programs
and market equilibria have been used explicitly to compute envy-free allocations in

1 Although full information is a standard assumption in cake cutting, it can be argued that it is
unrealistic that agents have exact vNM utilities for each segment of the cake. Even if they do
report exact vNM utilities, they may be uncertain about these reports.

2 The CC algorithm of Athanassoglou and Sethuraman [1] is a generalization of the EPS al-
gorithm [13] which in turn is a generalization of PS algorithm of Bogomolnaia and Moulin
[4].
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cake-cutting[11, 8], they do not necessarily return a Pareto optimal allocation. In a
recent paper, Tian [20] characterized a class of strategyproof and Pareto optimal mech-
anisms for cake cutting when agents have piecewise uniform valuation functions. The
algorithm of Tian involves maximizing the sum of concave functions over the set of fea-
sible allocations. It is worth noting that MEA when restricted to the piecewise uniform
valuation setting is a special case of his algorithm. We show that for piecewise uniform
valuations, CCEA and MEA not only coincide but are also group-strategyproof. Pre-
viously, Chen et al. [9, 10] presented a deterministic, strategyproof, polynomial-time,
envy-free and Pareto optimal algorithm for piecewise uniform valuations. We prove
that for piecewise uniform valuations, CCEA and MEA are in fact equivalent to their
algorithm and are group-strategyproof instead of just strategyproof.

Although CCEA and MEA are desirable algorithms, they are not strategyproof for
piecewise constant valuations. This is because the incentive of the agents for the piece-
wise uniform valuation setting is rather limited: each agent only cares about obtaining
as much of their desired pieces of the cake as possible. On the other hand, for piecewise
constant valuations, agents also care about the tradeoff in quantities of having pieces at
different levels of desirability. Another difficulty of obtaining a strategyproof algorithm
via the aforementioned transformation is that the discontinuity points of each agent’s
valuation function is private information for the agent. In particular, unlike the setting
of allocating multiple homogenous objects, where it suffices for an algorithm to output
the fractional amount of each object that an agent will receive, the method of conversion
from fractions of intervals into an actual allocation in terms of the union of subintervals
is also a necessary step of the algorithm, which may be subject to strategic manipula-
tion by the agents. To drive this point further, in the paper we give an example of an
algorithm that is strategyproof in the random assignment setting, but is no longer strate-
gyproof if we implement the conversion process from fractions of intervals to the union
of subintervals in a deterministic fashion.

To tackle this difficulty, we present another algorithm called MCSD (Mixed Con-
strained Serial Dictatorship) which is strategyproof in expectation, robust proportional,
and satisfies unanimity. For the important case of two agents3, it is polynomial-time,
and robust envy-free. To the best of our knowledge, it is the first cake cutting algorithm
for piecewise constant valuations that satisfies strategyproofness, (ex post) proportion-
ality, and (ex post) unanimity at the same time. MCSD requires some randomization
to achieve strategyproofness in expectation. However, MCSD is deterministic in the
sense that it gives the same utility guarantee (with respect to the reported valuation
functions) over all realizations of the random allocation. Although MCSD uses some
essential ideas of the well-known serial dictatorship rule for discrete allocation, it is
significantly more involved. In contrast to serial dictatorship, MCSD achieves ex post
fairness. Our main technical results are as follows.

Theorem 1. For piecewise constant valuations, there exists an algorithm (CCEA) that
is deterministic, polynomial-time, robust envy-free, and non-wasteful.

Theorem 2. For piecewise constant valuations, there exists an algorithm (MEA) that
is deterministic, polynomial-time, Pareto optimal, and envy-free.

3 Many fair division problems involve disputes between two parties.
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Table 1. Properties satisfied by the cake cutting algorithms for pw (piecewise) constant valu-
ations: DET (deterministic), R-EF (robust envy-freeness), EF (envy-freeness), R-PROP (robust
proportionality), PROP (proportionality), GSP (group strategyproof), W-GSP (weak group strat-
egyproof), SP (strategyproof), PO (Pareto optimal), NW (non-wasteful), UNAN (unanimity) and
POLYT (polynomial-time)

Restriction DET R-EF EF R-PROP PROP GSP W-GSP SP PO NW UNAN POLYT
Algorithms

CCEA - + + + + + - - - - + + +

CCEA pw uniform + + + + + + + + + + + +

MEA + - + - + - - - + + + +

MEA pw uniform + + + + + + + + + + + +

MCSD - - - - + + - - + - - + -
MCSD pw uniform - - - + + - - + + - + -
MCSD 2 agents - + + + + - - + - - + +

Theorem 3. For piecewise uniform valuations, there exist algorithms (CCEA and
MEA) that are deterministic, group strategyproof, polynomial-time, robust envy-free
and Pareto optimal.

Theorem 4. For piecewise constant valuations, there exists a randomized implemen-
tation of an algorithm (MCSD) that is (ex post) robust proportional, (ex post) sym-
metric, and (ex post) unanimous and strategyproof in expectation. For two agents, it is
polynomial-time, robust proportional and robust envy-free.

Our positive results are complemented by the following impossibility results. These
impossibility results show that the properties satisfied by CCEA and MEA are maximal
subsets of properties that can be satisfied by any algorithm.

Theorem 5. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is both Pareto optimal and robust proportional.

Theorem 6. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is strategyproof, Pareto optimal, and proportional.

Theorem 7. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is strategyproof, robust proportional, and non-wasteful.

Some of our main results are also summarized in Table 1. Some of our results even
extend to more general domains with variable claims and private endowments. As a
consequence of CCEA and MEA, we generalize the positive results regarding piecewise
uniform valuations in [9, 10] and piecewise constant valuations in [11] in a number of
ways such as handling richer cake cutting settings, handling more general valuations
functions, achieving a stronger fairness concept, or a stronger strategyproofness notion.

2 Preliminaries

Cake cutting setting. We consider a cake which is represented by the interval [0, 1]. A
piece of cake is a finite union of disjoint subintervals of [0, 1]. The length of an interval
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I = [x, y] is len(I) = y − x. As usual, the set of agents is N = {1, . . . , n}. Each agent
has a piecewise continuous value density function vi : [0, 1] → [0,∞). The value of a
piece of cake X to agent i is Vi(X) =

∫
X

vi(x)dx =
∑

I∈X
∫

I
vi(x)dx. As generally assumed,

valuations are non-atomic (Vi([x, x]) = 0) and additive: Vi(X∪Y) = Vi(X)+Vi(Y) where
X and Y are disjoint. The basic cake cutting setting can be represented by the set of
agents and their valuations functions, which we will denote as a profile of valuations. In
this paper we will assume that each agent’s valuation function is private information for
the agent that is not known to the algorithm designer. Each agent reports his valuation
function to the designer.

Preference functions. In this paper we will only consider piecewise uniform and piece-
wise constant valuation functions. A function is piecewise uniform if the cake can
be partitioned into a finite number of intervals such that for some constant ki, either
vi(x) = ki or vi(x) = 0 over each interval. A function is piecewise constant if the
cake can be partitioned into a finite number of intervals such that vi is constant over
each interval. In order to report his valuation function to the algorithm designer, each
agent will specify a set of points {d1, ..., dm} that represents the consecutive discontinu-
ity points of the agent’s valuation function as well as the constant value of the valuation
function between every pair of consecutive d j’s. For a function vi, we will refer by
V̂i = {v′i : vi(x) ≥ vi(y) > 0 ⇐⇒ v′i(x) ≥ v′i(y) > 0 ∀x, y ∈ [0, 1]} as the set of density
functions ordinally equivalent to vi.

Properties of allocations. An allocation is a partition of the interval [0, 1] into a set
{X1, . . . , Xn,W}, where Xi is a piece of cake that is allocated to agent i and W is the
piece of the cake that is not allocated. All of the fairness and efficiency notations that
we will discuss next are with respect to the reported valuation functions. Within the
cake cutting literature, the most important criteria of a fair allocation are envy-freeness
and proportionality. In an envy-free allocation, we have Vi(Xi) ≥ Vi(X j) for each pair
of agent i, j ∈ N, that is every agent considers his allocation at least as good as any
other agent’s allocation. In a proportional allocation, we have Vi(Xi) ≥ 1

n Vi([0, 1]), that
is, each agent gets at least 1/n of the value he has for the entire cake. Envy-freeness
implies proportionality provided that every desirable part of the cake is allocated. An
even stronger condition that envy-freeness is equitability which requires that each agent
is indifferent between his allocation and the allocations of other agents.

An allocation is Pareto optimal if no agent can get a higher value without some other
agent getting less value. Formally, X is Pareto optimal if there does not exists another
allocation Y such that Vi(Yi) ≥ Vi(Xi) for all i ∈ N and Vi(Yi) > Vi(Xi) for some i ∈ N. In
the case where Pareto efficiency cannot be satisfied, we also consider a weaker notion of
efficiency called non-wastefulness. For any S ⊆ [0, 1], define D(S ) = {i ∈ N|Vi(S ) > 0}.
An allocation X is non-wasteful if for all S ⊆ [0, 1], S ⊆ ∪i∈D(S )Xi. In other words, an
allocation is non-wasteful if every portion of the cake desired by at least one agent is
allocated to some agent who desires it.

For fairness, we do not only consider the standard notions envy-freeness and pro-
portionality but we also propose the concept of robust fairness — in particular robust
envy-freeness and robust proportionality. An allocation satisfies robust proportionality

if for all i, j ∈ N and for all v′i ∈ V̂i,
∫

Xi
v′i(x)dx ≥ 1/n

∫ 1

0
v′i(x)dx. An allocation satisfies



6 H. Aziz and C. Ye

robust envy-freeness if for all i, j ∈ N and for all v′i ∈ V̂i,
∫

Xi
v′i(x)dx ≥ ∫

X j
v′i (x)dx. The

main idea of an allocation being robust envy-free is that even if an agent re-adjusts or
perturbs his value density function, as long as the ordinal information of the function is
unchanged, then the allocation remains envy-free. The main advantages of robust envy-
freeness are less information requirements and envy-freeness under uncertainty. It also
addresses a criticism in cake cutting models that an agent has the ability to ascribe an
exact number to each tiny segment of the cake.4 Note that even equitability does not
imply robust envy-freeness because by perturbing the valuation function, equitability
can easily be lost.

Let us fix a piecewise constant value density function v. Let (I1, I2, . . . , Ik) be the
positively valued intervals induced by the discontinuity points of the value function
sorted in the order of decreasing preference, that is, v(x) is higher on Ii than it is on
I j if i < j. Let x and x′ be two allocation vectors whose i-th component specifies the
length of Ii that is allocated to the agent, then we say that x stochastically dominates
x′ with respect to the preference ordering if

∑ j
i=1 xi ≥ ∑ j

i=1 x′i for every j = 1, . . . , k.
It can be shown that an allocation x for the agent with valuation function v is robust
envy-free if and only if it stochastically dominates any other allocation x′ with respect
to the preference ordering. Moreover, it can be shown that an allocation x is robust
proportional if and only if

∑ j
i=1 xi ≥ 1/n

∑ j
i=1 |Ii| for every j = 1, . . . , k. Both robust

envy-freeness and robust proportionality require each agent to get a piece of cake of the
same length if every agent desires the entire cake.

Properties of cake cutting algorithms. A deterministic cake cutting algorithm is a map-
ping from the set of valuation profiles to the set of allocations. A randomized cake
cutting algorithm is a mapping from the set of valuation profiles to a space of distribu-
tions over the set of allocations. The output of the algorithm in this case for a specific
valuation profile is a random sample of the distributional function over the set of alloca-
tion for that profile. An algorithm (either deterministic or randomized) satisfies property
P if it always returns an allocation that satisfies property P. A deterministic algorithm
is strategyproof if no agent ever has an incentive to misreport in order to get a bet-
ter allocation. The notion of strategyproofness is well-established in social choice and
much stronger than the notion of ‘strategyproofness’ used in some of the cake-cutting
literature (see e.g., [6]), where truth-telling is a maximin strategy and it need not be
dominant strategy incentive compatible. Similarly, a deterministic algorithm is group-
strategyproof if there exists no coalition S ⊆ N such that members of S can misreport
their preferences so that each agent in S gets at least as preferred an allocation and at
least one agent gets a strictly better payoff. A deterministic algorithm is weak group-
strategyproof if there exists no coalition S ⊆ N such that members of S can misreport
their preferences so that each agent in S gets a strictly more preferred allocation. A
randomized algorithm is strategyproof in expectation if the expected utility from the
random allocation that every agent receives in expectation under a profile where he re-
ported truthfully is at least as large as the expected utility that he receives under a profile

4 Let us say that a cake is part chocolate and part vanilla. An agent may easily state that chocolate
is more preferable than vanilla but would require much more effort to say that if the vanilla
piece is α times bigger than the chocolate piece then he would prefer both pieces equally.
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where he misreports while fixing the other agents’ reports. We say that a cake cutting
algorithm satisfies unanimity, if when each agent has positive valuation for at most 1/n
of the cake and the interval of the cake for which he has positive valuation does not
intersect with intervals of the cake for which other agents have positive valuation, then
each agent is allocated the whole interval for which he has positive valuation.

Relation between the properties of cake cutting algorithms. We highlight some impor-
tant relations between the main properties of cake cutting algorithms.

Remark 1. For cake cutting, a) Envy-freeness and non-wastefulness =⇒ proportional-
ity; b) Robust proportionality =⇒ proportionality; c) Robust envy-freeness =⇒ envy-
freeness; d) Robust envy-freeness and non-wastefulness =⇒ robust proportionality;
e) Group strategyproofness =⇒ weak group strategyproofness =⇒ strategyproof-
ness; f) Pareto optimality =⇒ non-wastefulness =⇒ unanimity; g) two agents,
proportionality =⇒ envy-freeness; h) two agents, robust proportionality =⇒ robust
envy-freeness.

The free disposal assumption. We may assume without lost of generality that every
part of the cake is desired by at least one agent. If that is not the case, then we can
discard the parts that are desired by no one and rescale what is left so that we get
a [0, 1] interval representation of the cake. Notice that this procedure preserves the
aforementioned properties of fairness and efficiency. The free disposal assumption is
necessary to ensure the algorithm of Chen et al. [10], which is a special case of two of
our algorithms, to be strategyproof for piecewise uniform valuations. The existence of a
non-free disposal algorithm that satisfies all of the desirable properties in the piecewise
uniform setting remains an open question. Now we are ready to present our algorithms.

3 CCEA — Controlled Cake Eating Algorithm

CCEA (Controlled Cake Eating Algorithm) is based on CC (Controlled Consuming) al-
gorithm of Athanassoglou and Sethuraman [1]. Since the original PS algorithm is also
known as the simultaneous eating algorithm, we give our algorithm the name Controlled
Cake Eating Algorithm. CCEA first divides the cake up into disjoint intervals each of
whose endpoints are consecutive points of discontinuity of the agents’ valuation func-
tions. We will refer to these intervals as intervals induced by the discontinuity points.
The idea is to form a one-to-one correspondence of the set of cake intervals with a set
of houses of an assignment problem. In an assignment problem, we have a set of agents
and a set of houses. Each agent has a preference ordering over the set of houses. Given
two houses h and h′, we will use the notation h �i h′ to indicate that agent i prefers h
over h′. In our case, the preferences of agents over the houses are naturally induced by
the relative height of the piecewise constant function lines in the respective intervals.
The technical heart of the algorithm is in CC (Controlled Consuming) algorithm of
Athanassoglou and Sethuraman [1]. Note that even though in the standard assignment
problem, each house has a size of one and each agent has a demand of one house, the
CC algorithm still applies in the case where the intervals corresponding to the houses
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have different lengths and there is no constraint on the total length of an agent’s alloca-
tion. Once CC has been used to compute a fractional assignment p, it is straightforward
to compute a corresponding cake allocation. If an agent i gets a fraction of house h j,
then in the cake allocation agent i gets the same fraction of subinterval J j.

Input: Piecewise constant value functions.
Output: A robust envy-free allocation.

1 Divide the regions according to agent value functions. Let J = {J1, . . . , Jm} be the set of
subintervals of [0, 1] formed by consecutive discontinuity points.

2 Consider (N,H,�, size(·)) where

– H = {h1, . . . , hm} where hi = Ji for all i ∈ {1, . . . ,m}
– � is defined as follows: h �i h′ if and only if vi(x) ≥ vi(y) for x ∈ h and y ∈ h′;
– size(hj) = 1 for hj ∈ arg max j∈{1,...,m}(len(Jj));

size(hj) =
len(J j)

(max j∈{1,...,m}(len(J j)))
for all hj � arg max j∈{1,...,m}(len(Jj));

3 Discard the houses that give every agent a utility of zero from H to obtain H′.
4 p←− CC(N,H′,�, size(·))
5 For interval Jj, agent i is an allocated subinterval of Jj, denoted by Ji

j, which is of length
pih j/size(hj) × len(Jj). For example, if Jj = [aj, bj], then one possibility of Ji

j can be [aj +∑i−1
n=1 pih j/size(hj) × len(Jj), aj +

∑i
n=1 pih j/size(hj) × len(Jj)].

Xi ←− ⋃m
j=1 Ji

j for all i ∈ N
6 return X = (X1, . . . , Xn)

Algorithm 1. CCEA (Controlled Cake Eating Algorithm)

CCEA satisfies the strong fairness property of robust envy-freeness.

Proposition 1. For piecewise constant valuations, CCEA satisfies robust envy-freeness
and non-wastefulness.

Proposition 2. CCEA runs in time O(n5m2 log(n2/m)), where n is the number of agents
and m is the number of subintervals defined by the union of discontinuity points of the
agents’ valuation functions.

Although CCEA satisfies the demanding property of robust envy-freeness, we show
that CCEA is not strategyproof even for two agents. Later (in Section 5), we will present
a different algorithm that is both robust envy-free and strategyproof for two agents.

Proposition 3. For piecewise constant valuations, CCEA is not strategyproof even for
two agents.

If we restrict the preferences to piecewise uniform valuations, then CCEA is not
only strategyproof but group-strategyproof. We first show that in this restricted setting,
CCEA is in fact equivalent to the algorithm of [9].

Lemma 1. For piecewise uniform value functions, CCEA is equivalent to Mechanism
1 of Chen et al. [9].
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Since the set of valuations that can be reported is bigger in cake cutting than in the as-
signment problem, establishing group strategyproofness does not follow automatically
from group-strategyproofness of CC for dichotomous preferences (Theorem 2, [5]). We
show that that CCEA and hence Mechanism 1 of Chen et al. [9] is group strategyproof
for piecewise uniform valuations.5

Proposition 4. For piecewise uniform value functions, CCEA is group strategyproof.

For piecewise uniform valuations, CCEA is also Pareto optimal. The result follows
from Lemma 1 and the fact that Mechanism 1 of Chen et al. [9] is Pareto optimal.

Proposition 5. For piecewise uniform value functions, CCEA is Pareto optimal.

4 MEA — Market Equilibrium Algorithm

In the previous section we presented CCEA which is not Pareto optimal for piecewise
constant valuations. If we relax the robust notion of fairness to envy-freeness, then we
can use fundamental results in general equilibrium theory to formulate a convex pro-
gram that always returns an envy-free and Pareto optimal allocation as its optimal solu-
tion. For each valuation profile, let J = {J1, . . . , Jm} be the intervals whose endpoints are
consecutive points in the union of break points of the agents’ valuation functions. Let
xi j be the length of any subinterval of Ji that is allocated to agent j. Then we run a con-
vex program to compute a Pareto optimal and envy-free allocation. Once we determine
the length of J j to be allocated to an agent, we allocate any subinterval of that length
to the agent. We will call the convex program outlined in Algorithm 2 as the Market
Equilibrium Algorithm (MEA). MEA is based on computing the market equilibrium via
a primal-dual algorithm for a convex program that was shown to be polynomial-time
solvable by Devanur et al. [12].

Proposition 6. MEA is polynomial-time, Pareto optimal and envy free.

We mention here that the connection between cake cutting and computing market
equilibria is not completely new: Reijnierse and Potters [16] presented an algorithm to
compute an approximately envy-free and Pareto optimal allocation for cake cutting with
general valuations. However their algorithm is not polynomial-time even for piecewise
constant valuations [21]. MEA requires the machinery of convex programming. It re-
mains open whether MEA can be implemented via linear programming. Cohler et al.
[11] presented an algorithm that uses a linear program to compute an optimal envy-free
allocation. The allocation is Pareto optimal among all envy-free allocations. However
it need not be Pareto optimal in general. Similarly, Brams et al. [8] used a similar con-
nection to a linear Fisher market as MEA to compute a maxsum envy-free allocations.
However the allocation they compute may not be Pareto optimal even for piecewise uni-
form valuations (Theorem 7, [8]). Although MEA is not robust envy-free like CCEA,
it is Pareto optimal because it maximizes the Nash product. What is interesting is that

5 Chen et al. [9] had shown that their mechanism for piecewise uniform valuations is
strategyproof.
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Input: Cake-cutting problem with piecewise constant valuations.
Output: A proportional, envy-free, and Pareto optimal allocation.

1 Let J = {J1, . . . , Jm} be the intervals whose endpoints are consecutive points in the union of
break points of the agents’ valuation functions. Discard any interval that gives an utility of
zero to every agent. Let xi j be the length of any subinterval of Ji that is allocated to agent j.

2 li ←− len(Ji)
3 Solve the following convex program.

min −
n∑

j=1

log(uj)

s.t. uj =

m∑

i=1

vi j xi j ∀ j = 1, . . . , n;
n∑

j=1

xi j ≤ li ∀i = 1, . . . ,m; xi j ≥ 0 ∀i, j.

4 Let u�j , x�i j be an optimal solution to the convex program. Partition every interval Ji into n

subintervals where the j-th subinterval J j
i has length x�i j.

5 Yj ←− ∪m
i=1J j

i be the allocation of each j = 1, . . . , n.
6 return Y = (Y1, . . . ,Yn).

Algorithm 2. MEA (Market Equilibrium Algorithm)

under uniform valuations, both MEA and CCEA are equivalent. In the next result we
demonstrate this equivalence (Proposition 7). The proof requires a careful comparison
of both CCEA and MEA under uniform valuations.

Proposition 7. For piecewise uniform valuations, the allocation given by CCEA is
identical to that given by MEA.

Corollary 1. For piecewise uniform valuations, MEA is group-strategyproof.

Thus if we want to generalize Mechanism 1 of Chen et al. [9] to piecewise con-
stant valuations and maintain robust envy-freeness then we should opt for CCEA. On
the other hand, if want to still achieve Pareto optimality, then MEA is the appropriate
generalization. In both generalizations, we lose strategyproofness.

5 MCSD — Mixed Constrained Serial Dictatorship Algorithm

Thus far, we presented two polynomial-time algorithms, each of which satisfies a dif-
ferent set of properties. CCEA is robust envy-free and non-wasteful, whereas MEA is
Pareto optimal and envy-free. This naturally leads to the following question: does there
exist an algorithm that satisfies all of the properties that CCEA and MEA satisfy? The
answer is no, as there is no algorithm that is both Pareto optimal and robust proportional
(Theorem 5). Similarly, there is no algorithm that satisfies the properties MEA satisfies
along with strategyproofness (Theorem 6). Lastly, there is no algorithm that satisfies the
properties CCEA satisfies plus strategyproofness (Theorem 7). Consequently, we may
conclude that the properties satisfied by CCEA and MEA are respectively maximal
subsets of properties that an algorithm can satisfy for piecewise constant valuations.
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We saw that CCEA and MEA are only strategyproof for piecewise uniform valua-
tions. In light of the impossibility results established, it is reasonable to ask what other
property along with strategyproofness can be satisfied by some algorithm. It follows
from (Theorem 3, [19]) that the only type of strategyproof and Pareto optimal mecha-
nisms are dictatorships. Chen et al. [10] raised the question whether there exists a strat-
egyproof and proportional algorithm for piecewise constant valuations. The algorithm
MCSD answers this question partially.

Before diving into the MCSD algorithm, it is worth noting that there is a fundamen-
tal difference between the setting of assignment objects to agents where the agents have
homogeneous preferences over the objects and the cake cutting setting. In the former
setting, the objects that we are allocating are well defined and known to the public. On
the other hand, in the cake cutting setting, the discontinuity points of each agent’s val-
uation function is private information for the agent. In order to illustrate this difficulty,
consider the uniform allocation rule. The uniform allocation rule (that assigns 1/n of
each house) is both strategyproof and proportional in the random assignment setting.
However it cannot be adapted for cake cutting with piecewise constant valuations since
strategyproofness is no longer satisfied if converting 1/n of each interval (induced by
the agent valuations) to actual subintervals is done deterministically. Chen et al. [10] re-
sorted to randomizing the conversion process from fractions of intervals to subintervals
in order to make the uniform allocation rule strategyproof in expectation.

Proposition 8. No deterministic algorithm that implements the uniform allocation rule
can be strategyproof if it also satisfies the free disposal property.

In order to motivate MCSD, we first give a randomized algorithm that is strate-
gyproof and robust proportional in expectation. The algorithm is a variant of random
dictatorship. Under random dictatorship, if the whole cake is acceptable to each agent,
then each time a dictator is chosen, he will take the whole cake which is unfair ex post.
We add an additional requirement which is helpful. We require that each time a dictator
is chosen, the piece he takes has to be of maximum value 1/n length of the total size
of the cake. This algorithm Constrained Random Serial Dictatorship (CRSD) draws a
random permutation of the agents. It then makes the allocation to agents in the order
that the lottery is drawn. Every time that it is agent i’s turn to receive his allocation,
CRSD looks at the remaining portion of the cake and allocates a maximum value 1/n
length piece of the cake to agent i (breaking ties arbitrarily). Notice that CRSD is strat-
egyproof, as in every draw of lottery, it is in the best interest of the agents to report
their valuation function truthfully in order to obtain a piece that maximizes his valu-
ation function out of the remaining pieces of cake. We will see, through the proof of
Proposition 10, that CRSD is robust proportional in expectation.

MCSD is an algorithm that derandomizes CRSD by looking at its allocation for all
n! different permutations and aggregating them in a suitable manner. The algorithm is
formally presented as Algorithm 3. Although MCSD does not necessarily require n!
cuts of the cake, it is #P-complete to implement [3, 18] and may take exponential time
if the number of agents is not a constant.

Proposition 9. For piecewise constant valuations, MCSD is well-defined and returns a
feasible cake allocation in which each agent gets a piece of size 1/n.
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Input: Cake-cutting problem with piecewise constant valuations.
Output: A robust proportional allocation.

1 for each π ∈ ΠN do
2 C ←− [0, 1] (intervals left)
3 for i = 1 to n do
4 Xππ(i) ←− maximum preference cake piece of size 1/n from C
5 C ←− C − Xππ(i); i←− i + 1.
6 end for
7 end for
8 Construct a disjoint and exhaustive interval set J ′ induced by the discontinuity points in

agent valuations and the cake cuts in the n! cake allocations.
9 Yi ←− empty allocation for each i ∈ N.

10 for each Jj = [aj, bj] ∈J ′ do
11 for each i ∈ N do
12 Let pi j =

count(i,J j)
n! where count(i, Jj) is the number of permutations in which i gets Jj.

13 Generate Ai j ⊆ Jj, which is of length pi j |Jj| according to some subroutine.
14 Yi ←− Yi ∪ Ai j

15 end for
16 end for
17 return Y = (Y1, . . . ,Yn)

Algorithm 3. MCSD (Mixed Constrained Serial Dictatorship)

Proposition 10. For piecewise constant valuations, MCSD satisfies robust proportion-
ality and symmetry.

Unlike CRSD, MCSD interprets the probability of allocating each interval to an
agent as allocating a fractional portion of the interval to that agent. Unless the actual
way of allocating the fractions is specified, one cannot discuss the notion of strate-
gyproofness for MCSD because a deviating agent is unable to properly evaluate his
allocation against his true valuation function in the reported profile. Contrary to intu-
ition, MCSD may or may not be strategyproof depending on how the fractional parts of
each interval are allocated.

Remark 2. MCSD is not strategyproof if the fraction of each interval of J ′ is allocated
deterministically.

In light of this difficulty, we will implement a method (Algorithm 5) that randomly
allocates the fractions of intervals to agents. For every interval, the method chooses a
starting point in the interval uniformly at random to make the cut. Agent 1 receives the
left-most subinterval from the starting point with length dictated by MCSD, followed by
agent 2, so on and so forth. To generate this starting point for all subintervals, it suffices
to use a single bit of randomness together with the proper dilation and translation for
every interval. With this implementation, MCSD is strategyproof in expectation.

Proposition 11. MCSD implemented with the aforementioned random allocation rule
is strategyproof in expectation.

Although MCSD is strategyproof in expectation, it fails to satisfy truthfulness based
on group-based deviations no matter how the fractions of each interval are allocated.
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1: Generate U j ∼ uni f [aj, bj].
2: For aj ≤ x ≤ 2bj − aj, let mod (x) = x if aj ≤ x ≤ bj and x − (bj − aj) if x > bj. Let

Ai j = [ mod (U j +

i−1∑

k=1

pk j(bj − aj)), mod (U j +

i∑

k=1

pk j(bj − aj))]

if mod (U j +
∑i−1

k=1 pk j(bj − aj)) ≤ mod (U +
∑i

k=1 pk j(bj − aj)) and

Ai j = [aj, mod (U j +

i∑

k=1

pk j(bj − aj))] ∪ [ mod (U j +

i−1∑

k=1

pn j(bj − aj)), bj] otherwise.

Algorithm 4. A subroutine that converts fractional allocation into subintervals via randomization

Proposition 12. For cake cutting with piecewise constant valuations, MCSD is not
weakly group-strategyproof even for two agents.

Moreover, for cake cutting with piecewise uniform valuations, MCSD is not weakly
group-strategyproof since RSD is not for random assignment for dichotomous prefer-
ences [5]. On the fairness front, even though MCSD satisfies both proportionality and
symmetry, it does not satisfy the stronger notion of envy-freeness.

Proposition 13. MCSD is not necessarily envy-free for three agents even for piecewise
uniform valuations.

Another drawback of MCSD is that it is not Pareto optimal for piecewise constant
valuations. However for two agents, it is robust envy-free and polynomial-time.

Proposition 14. For two agents and piecewise constant valuations, MCSD is (ex post)
robust envy-free, and polynomial-time but not Pareto optimal.

6 Conclusion

We presented three deterministic cake-cutting algorithms — CCEA, MEA, and MCSD.
We then proposed a specific randomized version of MCSD that is truthful in expecta-
tion. All the algorithms have their relative merits. Some of our results also extend to
the more general cake-cutting setting in which agents do not have uniform claims to the
cake or when agents are endowed with the cake pieces [2]. Cake cutting is a fundamen-
tal problem with numerous applications to computer science. In order for theory to be
more relevant to practice, we envision exciting work in richer models of cake cutting.
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market might be shared among a subset of these firms. In this situation, a bipartite
graph models the access restriction where firms are on one side, markets are on
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1 Introduction

In the crude oil market the equilibrium price is set by the interplay of supply and de-
mand. Since there are several ways for transporting crude oil from an oil-producing
country to an oil-importing country, the market for crude oil seems to be an oligopoly
with almost a single worldwide price1. In particular, the major portion of the market
share belongs to the members of the Organization of Petroleum Exporting Countries
(OPEC). The worldwide price for crude oil is mainly influenced by OPEC, and the few
fluctuations in regional prices are negligible.

The power of an oil-producing country, in market for crude oil, mainly depends on
its resources and its cost of production rather than its position in the network. 2

The market for natural gas behaves differently from that for crude oil and matches
our study well. Unlike the crude oil market with a world-wide price, the natural gas
market is segmented and regional [40, 35]. Nowadays, pipelines are the most efficient
way for transporting natural gas from one region to another. This fragments the market
into different regional markets with their own prices. Therefore, the market for natural
gas can be modeled by a network where the power of each country highly depends
on its position in the network. For example, an importing country with access to only
one exporting country suffers a monopolistic price, while an importing country having
access to multiple suppliers enjoys a lower price as a result of the price competition. As
an evidence, EU Commission Staff Working Document (2006) reports different prices
for natural gas in different markets, varying from almost 0 to C300 per thousand cubic
meters [15].

In this paper we study selling a utility with a distribution network—e.g., natural gas,
water and electricity—in several markets when the clearing price of each market is de-
termined by its supply and demand. The distribution network fragments the market into
different regional markets with their own prices. Therefore, the relations between suppli-
ers and submarkets form a complex network [11, 39, 10, 18, 15]. For example, a market
with access to only one supplier suffers a monopolistic price, while a market having
access to multiple suppliers enjoys a lower price as a result of the price competition.

Antoine Augustin Cournot introduced the first model for studying the duopoly com-
petition in 1838. He proposed a model where two individuals own different springs of
water, and sell it independently. Each individual decides on the amount of water to sup-
ply, and then the aggregate water supply determines the market price through an inverse
demand function. Cournot characterizes the unique equilibrium outcome of the market
when both suppliers have the same marginal costs of production, and the inverse de-
mand function is linear. He argued that in the unique equilibrium outcome, the market
price is above the marginal cost.

Joseph Bertrand 1883 criticized the Cournot model, where the strategy of each player
is the quantity to supply, and in turn suggested to consider prices, rather than quantities,
as strategies. In the Bertrand model each firm chooses a price for a homogeneous good,
and the firm announcing the lowest price gets all the market share. Since the firm with
the lowest price receives all the demand, each firm has incentive to price below the

1 An oligopoly is a market that is shared between several sellers.
2 However, political relations may also affect the power of a country.
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current market price unless the market price matches its cost. Therefore, the market
price will be equal to the marginal cost in an equilibrium outcome of the Bertrand
model, assuming all marginal costs are the same and there are at least two competitors
in the market.

The Cournot and Bertrand models are two basic tools for investigating the competi-
tive market price, and have attracted much interest for modeling real markets; see, e.g.,
[11, 39, 10, 18]. In particular, the predictive power of each strongly depends on the na-
ture of the market, and varies from application to application. For example, the Bertrand
model explains the situation where firms literally set prices, e.g., the cellphone market,
the laptop market, and the TV market. On the other hand, Cournot’s approach would be
suitable for modeling markets like those of crude oil, natural gas, and electricity, where
firms decide about quantities rather than prices.

There are several attempts to find equilibrium outcomes of the Cournot or Bertrand
competitions in the oligopolistic setting, where a small number of firms compete in
only one market; see, e.g., [27, 36, 34, 21, 20, 41]. Nevertheless, it is not entirely clear
what equilibrium outcomes of these games are when firms compete over more than
one market. In this paper, we investigate the problem of finding equilibrium outcomes
of the Cournot competition in a network setting where there are several markets for a
homogeneous good and each market is accessible to a subset of firms.

The reader is referred to the full version of the paper to see a warm-up basic ex-
ample for the Cournot competition in the network setting. In general due to interest of
space, all missing proofs and examples are in the longer version of this paper on arXiv
(http://arxiv.org/abs/1405.1794).

1.1 Related Work

Despite several papers that investigate the Cournot competition in an oligopolistic set-
ting (see, e.g., [36, 21, 20, 41]), little is known about the Cournot competition in a
network. Independently and in parallel to our work, Bimpikis et al. [6] (EC’14) study
the Cournot competition in a network setting, and considers a network of firms and mar-
kets where each firm chooses a quantity to supply in each accessible market. The core
of their work lies in building connections between the equilibrium outcome of the game
and paths in the underlying network, and changes in profits and welfares upon coalition
of two firms. While Bimpikis et al. [6] (EC’14) only consider the competition for lin-
ear inverse demand functions and quadratic cost functions (of total production), in this
study, we consider the same model when the cost functions and the demand functions
may have quite general forms. We show the game with linear inverse demand functions
is a potential game and therefore has a unique equilibrium outcome. Furthermore, we
present two polynomial-time algorithms for finding an equilibrium outcome for a wide
range of cost functions and demand functions.

While we investigate the Cournot competition in networks, there is a paper which
considers the Bertrand competition in network setting [3], albeit in a much more re-
stricted case of only two firms competing in each market. While we investigate the
Cournot competition in networks, there is a recent line of research exploring bargaining
processes in networks; see, e.g., Bateni et al. [4], Kanoria et al. [24], Farczadi et al.
[16], Chakraborty et al. [9]. Agents may cooperate to generate surplus to be divided

http://arxiv.org/abs/1405.1794
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based on an agreement. A bargaining process determines how this surplus is divided
between the participants.

The final price of each market in the Cournot competition is one that clears the mar-
ket. Finding a market clearance equilibrium is a well-established problem, and several
papers propose polynomial-time algorithms for computing such equilibria. Examples
include Arrow-Debreu market and its special case Fisher market (see related work on
these markets [14, 13, 23, 12, 19]). The first polynomial-time algorithm for finding an
Arrow-Debreu market equilibrium is proposed by Jain [23] for a special case with lin-
ear utilities. The Fisher market, a special case of the Arrow-Debreu market, attracted a
lot of attention as well. Eisenberg and Gale [14] present the first polynomial-time al-
gorithm by transferring the problem to a concave cost maximization problem. Devanur
et al. [13] design the first combinatorial algorithm which runs in polynomial time and
finds the market clearance equilibrium when the utility functions are linear. This result
is later improved by Orlin [33].

For the sake of completeness, we refer to recent works in the computer science lit-
erature [22, 17], which investigate the Cournot competition in an oligopolistic setting.
Immorlica et al. [22] study a coalition formation game in a Cournot oligopoly. In this
setting, firms form coalitions, and the utility of each coalition, which is equally divided
between its members, is determined by the equilibrium of a Cournot competition be-
tween coalitions. They prove the price of anarchy, which is the ratio between the social
welfare of the worse stable partition and the social optimum, is Θ(n2/5) where n is
the number of firms. Fiat et al. [17] consider a Cournot competition where agents may
decide to be non-myopic. In particular, they define two principal strategies to maximize
revenue and profit (revenue minus cost) respectively. Note that in the classic Cournot
competition all agents want to maximize their profit. However, in their study each agent
first chooses its principal strategy and then acts accordingly. The authors prove this
game has a pure Nash equilibrium and the best response dynamics will converge to
an equilibrium. They also show the equilibrium price in this game is lower than the
equilibrium price in the standard Cournot competition.

1.2 Results and Techniques

We consider the problem of Cournot competition on a network of markets and firms
(NCC) for different classes of cost and inverse demand functions. Adding these two di-
mensions to the classical Cournot competition which only involves a single market and
basic cost and inverse demand functions yields an engaging but complicated problem
that requires advanced techniques to analyze. For simplicity of notation we model the
competition by a bipartite graph rather than a hypergraph: vertices on one side denote
the firms, and vertices on the other side denote the markets. An edge between a firm
and a market shows that the firm has access to the market. The complexity of finding
the equilibrium, in addition to the number of markets and firms, depends on the classes
that inverse demand and production cost functions belong to.
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Cost functions Inverse demand functions Running time Technique
Convex Linear O(E3) Convex optimization, Poten-

tial game formulation

Convex Strongly monotone marginal
revenue function3 poly(E)

Reduction to a nonlinear
complementarity problem

Convex, separable Concave O(n log2 Qmax) Supermodular optimization,
nested binary search

We summarize our results in the above table, where E denotes the number of edges
of the bipartite graph, n denotes the number of firms, and Qmax denotes the maximum
possible total quantity in the oligopoly network at any equilibrium. In our results we
assume the inverse demand functions are nonincreasing functions of total production in
the market. This is the basic assumption in the classical Cournot Competition model:
As the price in the market increases, it is reasonable to believe that the buyers drop out
of the market and demand for the product decreases. The classical Cournot Competi-
tion model as well as many previous works on Cournot Competition model assumes
linearity of the inverse demand function [6, 22]. In fact there is little work on general-
izing the inverse demand function in this model. The second and third rows of the table
show we have developed efficient algorithms for more general inverse demand func-
tions satisfying concavity rather than linearity. The assumption of monotonicity of the
inverse demand function is a standard assumption in Economics [2, 1, 30]. We assume
cost functions to be convex which is the case in many works related to both Cournot
Competition and Bertrand Network [28, 42]. In a previous work [6], the author consid-
ers NCC, however, assumes that inverse demand functions are linear and all the cost
functions are quadratic function of the total production by the firm in all markets which
is quite restrictive. Most of the results in other related works in Cournot Competition
and Bertrand Network require linearity of the cost functions [3, 22]. Next comes a brief
overview of our results.

Linear Inverse Demand Functions. In case inverse demand functions are linear and
production costs are convex, we present a fast algorithm to obtain the equilibrium. This
approach works by showing that NCC belongs to a class of games called potential
games. In such games, the collective strategy of the independent players is to maximize
a single potential function. The potential function is carefully designed so that changes
made by one player reflects in the same way in the potential function as in their own util-
ity function. Based on network structure, we design a potential function for the game,
and establish the desired property. Moreover, in the case of convex cost functions, we
prove concavity of the designed potential function (Theorem 6) concluding convex op-
timization methods can be employed to find the optimum and hence, the equilibrium of
the original Cournot competition. We also discuss uniqueness of equilibria if the cost
functions are strictly concave. We prove the following theorems in Section 3.

Theorem 1. NCC with linear inverse demand functions forms a potential game.

3 Marginal revenue function is the vector function mapping production quantities on edges to
marginal revenue along them.
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Theorem 2. Our designed potential function for NCC with linear inverse demand func-
tions is concave provided that the cost functions are convex. Furthermore, the poten-
tial function is strictly concave if the cost functions are strictly convex, and hence the
equilibrium for the game is unique. In addition, a polynomial-time algorithm finds the
optimum of the potential function which describes the market clearance prices.

The General Case. Since the above approach does not work for nonlinear inverse
demand functions, we design another interesting but more involved algorithm to cap-
ture more general forms of inverse demand functions. We show that an equilibrium
of the game can be computed in polynomial time if the production cost functions are
convex and the revenue function is monotone. Moreover, we show under strict mono-
tonicity of the revenue function, the solution is unique, and therefore our results in
this section is structural; i.e., we find the one and only equilibrium4. For convergence
guarantee we also need Lipschitz condition on derivatives of inverse demand and cost
functions. We start the section by modeling our problem as a complementarity prob-
lem. Then we prove how holding the aforementioned conditions for cost and revenue
functions yields satisfying Scaled Lipschitz Condition (SLC) and semidefiniteness for
matrices of derivatives of the profit function. SLC is a standard condition widely used
in convergence analysis for scalar and vector optimization [43]. Finally, we present our
algorithm, and show how meeting these new conditions by inverse demand and cost
functions helps us to guarantee polynomial running time of our algorithm. We also give
examples of classes of inverse demand functions satisfying the above conditions. These
include many families of inverse demand functions including quadratic functions, cubic
functions and entropy functions. The following theorem is the main result of Section 4
which summarizes the performance of our algorithm.

Theorem 3. A solution to NCC can be found in polynomial number of iterations under
the following conditions:

1. The cost functions are (strongly) convex.
2. The marginal revenue function is (strongly5) monotone.
3. The first derivative of cost functions and inverse demand functions and the sec-
ond derivative of inverse demand functions are Lipschitz continuous.

Furthermore, the solution is unique assuming only the first condition. Therefore, our
algorithm finds the unique equilibrium of NCC.

Cournot Oligopoly. Another reasonable model for considering cost functions of the
firms is the case where the production cost in a market depends only on the quantity
produced by the firm in that specific market (and not on quantities produced by this
firm in other markets). In other words, the firms have completely independent sections

4 It is worth mentioning that Bimpikis et al. [6] prove the uniqueness of the equilibrium in a
concurrent work.

5 For at least one of the first two conditions, strong version of condition should be satisfied, i.e.,
either cost functions should be strongly convex or the marginal revenue function should be
strongly monotone.
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for producing different goods in various markets, and there is no correlation between
production cost in separate markets. In this case the competitions are separable; i.e.,
equilibrium for NCC can be found by finding the quantities at equilibrium for each
market individually. This motivates considering Cournot game where the firms compete
over a single market. We present a new algorithm for computing equilibrium quantities
produced by firms in a Cournot oligopoly, i.e., when the firms compete over a single
market. Cournot Oligopoly is a well-known model in Economics, and computation of
its Cournot Equilibrium has been subject to a lot of attention. It has been considered in
many works including [37, 25, 32, 29, 8] to name a few. The earlier attempts for calcu-
lating equilibrium for a general class of inverse demand and cost functions are mainly
based on solving a Linear Complementarity Problem or a Variational Inequality. These
settings can be then turned into convex optimization problems of size O(n) where n
is the number of firms. This means the runtime of the earlier works cannot be better
than O(n3) which is the runtime of the most efficient algorithm known for convex opti-
mization. We give a novel combinatorial algorithm for this important problem when the
quantities produced are integral. Our algorithm runs in time O(n log2(Qmax)) where
Qmax is an upper bound on total quantity produced at equilibrium. The following is the
main result of Section 5.

Theorem 4. A polynomial-time algorithm successfully computes the quantities pro-
duced by each firm at an equilibrium of the Cournot oligopoly if the inverse demand
function is nonincreasing, and the cost functions are convex. In addition, the algorithm
runs in time O(n log2(Qmax)) where Qmax is the maximum possible total quantity in
the oligopoly network at any equilibrium.

2 Notations

Suppose we have a set of n firms denoted by F and a set of m markets denoted byM.
A single good is produced in each market. Each firm may or may not be able to supply
a particular market. A bipartite graph is used to demonstrate these relations. In this
graph, the markets are denoted by the numbers 1, 2, . . . ,m on one side, and the firms
are denoted by the numbers 1, 2, . . . , n on the other side. For simplicity, throughout the
paper we use the notation i ∈ M meaning the market i, and j ∈ F meaning firm j.
For firm j ∈ F and market i ∈ M there exists an edge between the corresponding
vertices in the bipartite graph if and only if firm j is able to produce the good in market
i. This edge will be denoted (i, j). The set of edges of the graph is denoted by E , and the
number of edges in the graph is shown by E. For each market i ∈ M, the set of vertices
NM(i) is the set of firms that this market is connected to in the graph. Similarly, NF(j)
denotes the set of neighbors of firms j among markets. The edges in E are sorted and
numbered 1, . . . , E, first based on the number of their corresponding market and then
based on the number of their corresponding firm. More formally, edge (i, j) ∈ E is
ranked above edge (l, k) ∈ E if i < l or i = l and j < k. The quantity of the good
that firm j produces in market i is denoted by qij . The vector q is an E × 1 vector that
contains all the quantities produced over the edges of the graph in the same order that
the edges are numbered.
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The demand for good i denoted by Di is
∑

j∈NM(i) qij . The price of good i, denoted
by the function Pi(Di), is only a decreasing function of total demand for this good and
not the individual quantities produced by each firm in this market. For a firm j, the
vector sj denotes the strategy of firm j, which is the vector of all quantities produced
by this firm in the markets NF(j). Firm j ∈ F has a cost function related to its strategy
denoted by cj(sj). The profit that firm j makes is equal to the total money that it obtains
by selling its production minus its cost of production. More formally, the profit of firm
j is πj =

∑
i∈NF (j) Pi(Di)qij − cj(sj).

3 Cournot Competition and Potential Games

In this section, we design an efficient algorithm for the case where the price functions
are linear. More specifically, we design an innovative potential function that captures
the changes of all the utility functions simultaneously, and therefore, show how finding
the quantities at the equilibrium would be equivalent to finding the set of quantities
that maximizes this function. We use the notion of potential games as introduced in
Monderer and Shapley [31]. In that paper, the authors introduce potential games as the
set of games for which there exists a potential function P ∗ such that the pure strategy
equilibrium set of the game coincides with the pure strategy equilibrium set of a game
where every party’s utility function is P ∗.

Next we design a potential function for NCC if the price functions are linear. Inter-
estingly, this holds for any cost function meaning NCC with arbitrary cost functions is
a potential game as long as the price functions are linear. Furthermore, we show when
the cost functions are convex, the potential function is concave, and hence any convex
optimization method can find the equilibrium of such a Network Cournot Competition.
In case cost functions are strictly convex, the potential function is strictly concave. We
show the equilibrium that we find is the one and only equilibrium of the game. The
pure strategy equilibrium set of any potential game coincides with the pure strategy
equilibrium set of a game with the potential function P ∗ as all parties’ utility function.

Theorem 5. NCC with linear price functions (of quantities) is a potential game.

We can efficiently compute the equilibrium of the game if the potential function P ∗ is
easy to optimize. Below we show that this function is concave.

Theorem 6. The potential function P ∗ from the previous theorem is concave provided
that the cost functions of the firms are convex. Moreover, if the cost functions are strictly
convex then the potential function is strictly concave.

The following well-known theorem discusses the uniqueness of the solution to a
convex optimization problem.

Theorem 7. Let f : K → Rn be a strictly concave and continuous function for some
finite closed convex space K ∈ Rn. Then the convex optimization problem max f(x) :
x ∈ K has a unique solution.
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By Theorem 6, if the cost functions are strictly convex then the potential function is
strictly concave and hence, by Theorem 7 the equilibrium of the game is unique.

Let ConvexP (E , (α1, . . . , αm), (β1, . . . , βm), (c1, . . . , cn)) be the following con-
vex optimization program:

min −
∑
i∈M

[
αi

∑
j∈NM(i)

qij − βi

∑
j∈NM(i)

q2ij − βi

∑
k≤j

k,j∈NM(i)

qijqik −
∑

j∈NM(i)

cj(sj)

|NF (j)|

]
(1)

subject to qij ≥ 0 ∀(i, j) ∈ E .

Note that in this optimization program we are trying to maximize P ∗ for a bipartite
graph with set of edges E , linear price functions characterized by the pair (αi, βi) for
each market i, and cost functions cj for each firm j. This algorithm has a time complex-
ity equal to the time complexity of a convex optimization algorithm with E variables.
The best such algorithm has a running time O(E3) [7].

4 Finding Equilibrium for Cournot Game with General Cost and
Inverse Demand Functions

In this section, we focus on a much more general class of price and cost functions.
Our approach is based on reducing NCC to a polynomial time solvable class of Non-
linear Complementarity Problem (NLCP). First in 4.1, we introduce our marginal profit
function as the vector of partial derivatives of all firms with respect to the quantities
they produce. Then in 4.2, we show how this marginal profit function helps in reducing
NCC to a general NLCP. We also discuss uniqueness of equilibrium in this situation.
Unfortunately, in its most general form, NLCP is computationally intractable. For a
large class of functions, though, these problems are polynomial time solvable. In 4.3,
we rigorously define the conditions under which NLCP is polynomial time solvable. We
then present our algorithm with a theorem, showing it converges in polynomial number
of steps. To show the conditions required for quick convergence are not restrictive, we
refer the reader to the full version of this paper on arXiv, where we explore a wide range
of important price functions that satisfy them.

Assumptions. Throughout the rest of this section we assume that the price functions are
decreasing and concave and the cost functions are strongly convex (to be defined later).
We also assume that for each firm there is a finite quantity at which extra production
ceases to be profitable even if that is the only firm operating in the market. Thus, all pro-
duction hence supply quantities are finite. In addition, we assume Lipschitz continuity
and finiteness of the first and the second derivatives of price and cost functions. We note
that these Lipschitz continuity assumptions are very common for convergence analysis
in convex optimization [7] and finiteness assumptions are implied by Lipschitz continu-
ity. In addition, they are not very restrictive as we do not expect unbounded price/cost
fluctuation with supply change. For sake of brevity, we use the terms inverse demand
function and price function interchangeably.
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4.1 Marginal Profit Function

For the rest of this section, we assume that Pi and ci are twice differentiable functions
of quantities. For a firm j and a market i such that (i, j) ∈ E , we define fij = − ∂πj

∂qij
=

−Pi(Di)− ∂Pi(Di)
∂qij

qij+
∂cj
∂qij

. Recall that the price function of a market is only a function
of the total production in that market and not the individual quantities produced by
individual firms. Thus ∂Pi(Di)

∂qij
= ∂Pi(Di)

∂qik
∀j, k ∈ NM(i). Therefore, we replace these

terms by P ′
i (Di) to obtain fij = −Pi(Di)− P ′

i (Di)qij +
∂cj
∂qij

.
Let vector F be the vector of all fij’s corresponding to the edges of the graph in

the same format that we defined the vector q. Note that F is a function of q. Moreover,
we separate the part representing marginal revenue from the part representing marginal
cost in function F . More formally, we split F into two functions R and S such that F =
R + S, and the element corresponding to the edge (i, j) ∈ E in the marginal revenue
function R(q) is rij = − ∂πj

∂qij
= −Pi(Di)− P ′(Di)qij , whereas for the marginal cost

function S(q) is sij =
∂cj
∂qij

.

4.2 Non-linear Complementarity Problem

We now formally define NLCP, and prove our problem is an NLCP.

Definition 1. Let F : Rn → Rn be a continuously differentiable function on Rn
+. The

complementarity problem seeks a vector x ∈ Rn that satisfies x ≥ 0, F (x) ≥ 0, and
xTF (x) = 0.

Theorem 8. The problem of finding the vector q at equilibrium in the Cournot game is
a complementarity problem.

Definition 2. F : K → Rn is said to be strictly monotone at x∗ if 〈[F (x)−F (x∗)]T , x−
x∗〉 ≥ 0, ∀x ∈ K. Then, F is said to be strictly monotone if it is strictly monotone at any
x∗ ∈ K. Equivalently, F is strictly monotone if its Jacobian matrix is positive definite.

The following theorem is a well known theorem for Complementarity Problems.

Theorem 9. [26] Let F : K → Rn be a continuous and strictly monotone function
with a point x ∈ K such that F (x) ≥ 0 (i.e., there exists a potential solution to the
CP). Then the Complementarity Problem introduced in Definition 1 characterized by
function F has a unique solution.

Hence, the Complementarity Problem characterized by functionF has a unique solu-
tion under the assumption that the revenue function is strongly monotone (special case
of strictly monotone). In the next subsection, we aim to find this unique equilibrium of
the NCC problem.

4.3 Designing a Polynomial-Time Algorithm

In this subsection, we present an algorithm to find the equilibrium of NCC, and establish
its polynomial time convergence by Theorem 10. This theorem requires the marginal
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profit function to satisfy Scaled Lipschitz Condition (SLC) and monotonicity. We first
introduce SLC, and show how the marginal profit function satisfies SLC and mono-
tonicity by Lemmas 1 to 5. We present in in Lemma 5 the conditions that the cost and
price functions should have in order for the marginal profit function to satisfy SLC
and monotonicity. Finally, in Theorem 10, we show convergence of our algorithm in
polynomial time.

Before introducing the next theorem, we explain what the Jacobians ∇R, ∇S, and
∇F are for the Cournot game. First note that these are E × E matrices. Let (i, j) ∈ E
and (l, k) ∈ E be two edges of the graph. Let e1 denote the index of edge (i, j), and e2
denote the index of edge (l, k) in the vector as we discussed in the first section. Then the
element in row e1 and column e2 of matrix∇R, denoted∇Re1e2 , is equal to ∂rij

∂qlk
. We

name the corresponding elements in∇F and∇S similarly. We have∇F = ∇R+∇S
as F = R + S.

Definition 3 (Scaled Lipschitz Condition (SLC)). A function G : D 	→ Rn, D ⊆ Rn

is said to satisfy Scaled Lipschitz Condition (SLC) if there exists a scalar λ > 0 such
that ∀ h ∈ Rn, ∀ x ∈ D, such that ‖X−1h‖ ≤ 1, we have ‖X [G(x + h) − G(x) −
∇G(x)h]‖∞ ≤ λ|hT∇G(x)h|, where X is a diagonal matrix with diagonal entries
equal to elements of the vector x in the same order, i.e., Xii = xi for all i ∈ M.

Satisfying SLC and monotonicity are essential for marginal profit function in The-
orem 10. In Lemma 5 we discuss the assumptions for cost and revenue function under
which these conditions hold for our marginal profit function. We use Lemmas 1 to 5 to
show F satisfies SLC. More specifically, we demonstrate in Lemma 1, if we can derive
an upperbound for LHS of SLC for R and S, then we can derive an upperbound for
LHS of SLC for F = R + S too. Then in Lemma 2 and Lemma 3 we show LHS of S
and R in SLC definition can be upperbounded. Afterwards, we show monotonicity of
S in Lemma 4. In Lemma 5 we aim to prove F satisfies SLC under some assumptions
for cost and revenue functions. We use the fact that LHS of SLC for F can be upper-
bounded using Lemma 3 and Lemma 2 combined with Lemma 1. Then we use the fact
that RHS of SLC can be upperbounded using strong monotonicity of R and Lemma 4.
Using these two facts, we conclude F satisfies SLC in Lemma 5.

Lemma 1. Let F,R, S be three Rn → Rn functions such that F (q) = R(q) + S(q),
∀q ∈ Rn. Let R and S satisfy the following inequalities for some C > 0 and ∀ h such
that ‖X−1h‖ ≤ 1:

‖X [R(q + h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2,
‖X [S(q + h)− S(q)−∇S(q)h]‖∞ ≤ C‖h‖2,

where X is the diagonal matrix with Xii = qi. Then we have:

‖X [F (q + h)− F (q)−∇F (q)h]‖∞ ≤ 2C‖h‖2.

The following lemmas give upper bounds for LHS of the SLC for S and R
respectively.
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Lemma 2. Assume X is the diagonal matrix with Xii = qi. ∀ h such that ‖X−1h‖ ≤
1, there exists a constant C > 0 satisfying: ‖X [S(q + h) − S(q) − ∇S(q)h]‖∞ ≤
C‖h‖2.

Lemma 3. Assume X is the diagonal matrix with Xii = qi. ∀ h such that ‖X−1h‖ ≤
1, ∃C > 0 such that‖X [R(q+ h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2.

If R is assumed to be strongly monotone, we immediately have a lower bound on
RHS of the SLC for R. The following lemma gives a lower bound on RHS of the SLC
for S.

Lemma 4. If cost functions are (strongly) convex, S is (strongly) monotone.

The following lemma combines the results of Lemma 2 and Lemma 3 using Lemma
1 to derive an upper bound for LHS of the SLC for F . We bound RHS of the SLC from
below by using strong monotonicity of R and Lemma 4.

Lemma 5. F satisfies SLC and is monotone if: (1) Cost functions are convex. (2)
Marginal revenue function is monotone. (3) Cost functions are strongly convex or
marginal revenue function is strongly monotone.

We wrap up with the description of the algorithm. The algorithm first constructs
the vector F of length E. It then finds the initial feasible solution (F (x0), x0) for the
complementarity problem. (This solution should satisfy x0 ≥ 0 and F (x0) ≥ 0.) If
finally run Algorithm 3.1 from [43] to find the solution (F (x∗), x∗) to the CP char-
acterized by F , which gives the vector q of quantities produced by firms at equilib-
rium. Lemma 5 guarantees that our problem satisfies the two conditions mentioned in
Zhao and Han 1999. Therefore, we can prove the following theorem.

Theorem 10. The algorithm converges to an equilibrium of Network Cournot Compe-
tition in time O

(
E2 log(μ0/ε)

)
under the following assumptions:

1. The cost functions are strongly convex.
2. The marginal revenue function is strongly monotone.
3. The first derivative of cost functions and price functions and the second deriva-
tive of price functions are Lipschitz continuous.

This algorithm outputs an approximate solution (F (q∗), q∗) satisfying (q∗)TF (q∗)/n ≤
ε where μ0 = (q0)

TF (q0)/n, and (F (q0), q0) is the initial feasible point 6.

For a discussion of price functions that satisfy the convergence conditions for our
algorithm, we refer the reader to the full version of the paper on arXiv.

5 Algorithm for Cournot Oligopoly

In this section we present a new algorithm for computing the equilibrium in a Cournot
oligopoly, i.e., when the firms compete over a single market. Computation of Cournot

6 Initial feasible solution can be trivially found. E.g., it can be the same production quantity along
each edge, large enough to ensure losses for all firms. Such quantity can easily be found by
binary search between [0, Q].
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Equilibrium is an important problem in its own right. A considerable body of literature
has been dedicated to this problem [37, 25, 29, 8]. All earlier work computing Cournot
equilibrium for a general class of price and cost functions rely on solving a Linear
Complementarity Problem or a Variational Inequality which in turn are set up as con-
vex optimization problems of size O(n) where n is the number of firms in oligopoly.
Thus, the runtime guarantee of the earlier works is O(n3) at best. We give a novel
combinatorial algorithm for this important problem when the quantities produced are
integral. Our algorithm runs in time n log2(Qmax) where Qmax is an upper bound on
total quantity produced at equilibrium. There is always an upper bound for Qmax since
if Q =

∑
i∈F qi is large enough the price function would become negative and no firm

has any incentive to produce a higher quantity. We note that, for two reasons, the re-
striction to integral quantities is practically no restriction at all. Firstly, in real-world
all commodities and products are traded in integral (or rational) units. Secondly, this
algorithm can easily be adapted to compute approximate Cournot-Nash equilibrium for
the continuous case and since the quantities at equilibrium may be irrational numbers,
this is the best we can hope for.

With only a single market present, we simplify the notation. Let [n] = {1, . . . , n}
be the set of firms competing over the single market. Let q = (q1, q2, . . . , qn) be the
set of all quantities they produce, one quantity for each firm. Let Q =

∑
i∈[n] qi. In

this case, there is only a single inverse demand function P : Z 	→ R≥0, which maps
total supply, Q, to market price. We assume that, P is a decreasing function of Q. For
each firm i ∈ [n], the function ci : Z 	→ R≥0 denotes the cost to firm i for producing
quantity qi of the good. We assume convex cost functions. The profit of firm i ∈ [n]
as a function of qi and Q, denoted πi(qi, Q), is P (Q)qi − ci(qi). Also let fi(qi, Q) =
πi(qi + 1, Q + 1) − πi(qi, Q) be the marginal profit for firm i of producing one extra
unit. Although the quantities are nonnegative integers, for simplicity we assume the
functions ci, P , πi and fi are zero whenever any of their inputs are negative. Also, we
refer to the forward difference P (Q+ 1)− P (Q) by P ′(Q).

Polynomial Time Algorithm. We leverage the supermodularity of price functions and
Topkis’ Monotonicity Theorem [38] to design a nested binary search algorithm to find
the Cournot equilibrium. Intuitively, the algorithm works as follows. At each point we
guess Q′ to be the total quantity of good produced by all the firms. Then we check
how good this guess is by computing for each firm the set of quantities that it can
produce at equilibrium if we assume the total quantity is the fixed integer Q′. We
prove that for given Q′, the set of possible quantities for each firm at equilibrium is
a consecutive set of integers. Let Ii = {qli, qli + 1, . . . , qui − 1, qui } be the range of all
possible quantities for firm i ∈ [n] assuming Q′ is the total quantity produced in the
market. We can conclude Q′ was too low a guess if

∑
i∈[n] q

l
i > Q′. This implies our

search should continue among total quantities above Q′. Similarly, if
∑

i∈[n] q
u
i < Q′,

we can conclude our guess was too high, and the search should continues among to-
tal quantities below Q′. If neither case happens, then for each firm i ∈ [n], there
exists a q′i ∈ Ii such that Q′ =

∑
i∈[n] q

′
i and firm i has no incentive to change

this quantity if the total quantity is Q′ and we have found an equilibrium. The pseu-
docode for the algorithm and its correctness is proved in the full version of this paper
(http://arxiv.org/abs/1405.1794).

http://arxiv.org/abs/1405.1794
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[29] Mathiesen, L.: Computation of economic equilibria by a sequence of linear complementar-

ity problems. In: Economic Equilibrium: Model Formulation and Solution, pp. 144–162.
Springer (1985)

[30] Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic
complementarities. Econometrica (1990)

[31] Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14(1), 124–
143 (1996)

[32] Okuguchi, K., Szidarovszky, F.: On the existence and computation of equilibrium points
for an oligopoly game with multi-product firms. Annales, Univ. Sci. bud. Roi. Fotvos Nom
(1985)

[33] Orlin, J.B.: Improved algorithms for computing fisher’s market clearing prices: Computing
fisher’s market clearing prices. In: STOC 2010, pp. 291–300. ACM (2010)

[34] Osborne, M.J., Pitchik, C.: Price competition in a capacity-constrained duopoly. Journal of
Economic Theory 38(2), 238–260 (1986)

[35] Siliverstovs, B., L’Hégaret, G., Neumann, A., von Hirschhausen, C.: International market
integration for natural gas? A cointegration analysis of prices in Europe, North America and
Japan. Energy Economics 27(4), 603–615 (2005)

[36] Singh, N., Vives, X.: Price and quantity competition in a differentiated duopoly. The RAND
Journal of Economics, 546–554 (1984)

[37] Thorlund-Petersen, L.: Iterative computation of cournot equilibrium. Games and Economic
Behavior 2(1), 61–75 (1990)

[38] Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. (1978)
[39] Ventosa, M., Baıllo, A., Ramos, A., Rivier, M.: Electricity market modeling trends. Energy

Policy 33(7), 897–913 (2005)
[40] Villar, J.A., Joutz, F.L.: The relationship between crude oil and natural gas prices. Energy

Information Administration, Office of Oil and Gas (2006)
[41] Vives, X.: Oligopoly pricing: old ideas and new tools. The MIT Press (2001)
[42] Weibull, J.W.: Price competition and convex costs. Technical report. SSE/EFI Working Pa-

per Series in Economics and Finance (2006)
[43] Zhao, Y.B., Han, J.Y.: Two interior-point methods for nonlinear p∗(τ )-complementarity

problems. J. Optimiz. Theory App. 102(3), 659–679 (1999)



Bounding the Potential Function in Congestion
Games and Approximate Pure Nash Equilibria

Matthias Feldotto1, Martin Gairing2, and Alexander Skopalik1,�

1 Heinz Nixdorf Institute & Department of Computer Science,
University of Paderborn, Germany
{feldi,skopalik}@mail.upb.de
2 University of Liverpool, U.K.

gairing@liverpool.ac.uk

Abstract. In this paper we study the potential function in congestion
games. We consider both games with non-decreasing cost functions as
well as games with non-increasing utility functions.

We show that the value of the potential function Φ(s) of any outcome
s of a congestion game approximates the optimum potential value Φ(s∗)
by a factor ΨF which only depends on the set of cost/utility functions F ,
and an additive term which is bounded by the sum of the total possible
improvements of the players in the outcome s.

The significance of this result is twofold. On the one hand it provides
Price-of-Anarchy-like results with respect to the potential function. On
the other hand, we show that these approximations can be used to com-
pute (1+ ε) ·ΨF -approximate pure Nash equilibria for congestion games
with non-decreasing cost functions. For the special case of polynomial
cost functions, this significantly improves the guarantees from Caragian-
nis et al. [FOCS 2011]. Moreover, our machinery provides the first guar-
antees for general latency functions.

1 Introduction

A central problem in large scale networks like the Internet is network conges-
tion, or more generally contention for scarce resources. Congestion games were
introduced by Rosenthal [22] and provide us with a general model for the non-
cooperative sharing of them. In a congestion game, we are given a set of resources
and each player selects a subset of them (e.g. a path in a network). Each resource
has a cost function that depends on the load induced by the players that use
it. Each player aims to minimize the sum of the resources’ costs in its strategy
given the strategies chosen by the other players. A state in which no player can
improve by unilaterally changing its strategy is called a Nash equilibrium [21].

Congestion games always admit a pure Nash equilibrium, where players pick
a single strategy and do not randomize. Rosenthal [22] showed this by means
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of a potential function. Such a function has the following property: if a single
player deviates to a different strategy, then the value of the potential changes
by the same amount as the cost of the deviating player. Pure Nash equilib-
ria now correspond to local optima of the potential function. Games admitting
such a potential function are called potential games and each potential game is
isomorphic to a congestion game [20].

Besides establishing the existence of a pure Nash equilibrium, the potential
function has played an important role for proving various results in potential
games. Its use ranges from bounding the price of stability [9,11,13] to tracking
the convergence rate of best response dynamics [4,10].

Fabrikant et al. [15] showed that the problem of computing a pure Nash
equilibrium in congestion games is PLS-complete, that is, computing a pure
Nash equilibrium is as hard as the problem of finding a local optimum. PLS was
defined as a class of local search problems where local optimality can be verified
in polynomial time [18]. Computing a pure Nash equilibrium in congestion games
stays a hard problem even if the cost functions are linear [1]. Efficient algorithms
are only known for special cases, e. g. for symmetric network congestion games
[15] or when the strategies are restricted to be bases of matroids [1].

The hardness of computing a pure Nash equilibrium in congestion games mo-
tivates relaxing the Nash equilibrium conditions and asking for approximations
instead. One possible approximation is a ρ-approximate pure Nash equilibrium,
a state in which no player can improve by a factor larger than ρ. Without re-
stricting the cost (or utility) functions the problem of computing ρ-approximate
pure Nash equilibria in congestion games remains PLS-complete for any fixed ρ
[24]. However, the problem becomes tractable for certain subclasses of conges-
tion and potential games with varying approximation guarantees. For symmetric
congestion games certain best response dynamics converge in polynomial time
to a (1+ε)-Nash equilibrium [10]. For asymmetric congestion games, it has been
shown that for linear resource cost functions a (2 + ε)-approximate Nash equi-
librium can be computed in polynomial time [7]. More generally, for polynomial
resource cost functions with maximum degree d, the best known approximation
guarantee is dO(d) [7]. These results have recently been extended to congestion
games with weighted players [8]. For linear cost functions it is shown how to
compute a 3+

√
5

2 + ε-approximate equilibrium. For polynomial cost functions it
is proved that d!-approximate equilibria always exist and d2d+o(d)-approximate
equilibria can be computed in polynomial time. The bounds for the existence of
approximate equilibria in weighted congestion games were improved by [17] to
d + 1 for polynomial cost functions and 3

2 for concave cost functions. Existing
approaches [5,7] for computing ρ-approximate pure Nash equilibria (with small
ρ) heavily build on the ability to compute intermediate states that approximate
the optimum potential value and satisfy certain more local conditions. By fo-
cussing on approximating the potential function, our results significantly further
this line of research.

Our Contribution. In this paper we show that for any outcome s of a con-
gestion game the value of the potential function Φ(s) can be bounded by the
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optimum potential value Φ(s∗), a factor ΨF which only depends on the set of
cost/utility functions F , and an additive term D(s, s∗) which is bounded by
the sum of the total possible improvements of the players in the outcome s.
We consider both games with non-decreasing cost functions (Section 4.2), in
which players seek to minimize cost, as well as games with non-increasing utility
functions (Section 4.1), in which players seek to maximize utility. As a direct
corollary we get that any outcome s provides us with a bound on the optimum
potential value. For both cases we also present lower bounds. The lower bound
for non-increasing utility functions matches the upper bound. For non-decreasing
cost-functions, our lower bound is matching if some technical constraint on the
resource functions F is fulfilled.

To achieve this result we introduce a transition graph, which is defined on a
pair of outcomes s, s∗ and captures how to transform s into s∗. On this transition
graph we define an ordered path-cycle decomposition. We upper bound the change
in the potential for every path and cycle in the decomposition, and lower bound
their contribution to the potential Φ(s). The result then follows by summing up
over all paths and cycles.

For games with non-decreasing cost functions, our result can be used to obtain
ρ-approximate equilibria with small values of ρ = ΨF(1 + ε) with the method of
[7]. Our technique significantly improves the approximation [7] for polynomial
cost functions. Moreover, our analysis suggests and identifies large and practi-
cally relevant classes of cost functions for which ρ-approximate equilibria with
small ρ can be computed in polynomial time .

For example, in games where resources have a certain cost offset, e.g., traffic
networks, the approximation factor ρ drastically decreases with the increase of
offsets or coefficients in delay functions. In particular for congestion games with
linear functions with strictly positive offset, ρ is smaller than 2. To the best of
our knowledge this is the first work to show that ρ-approximate equilibria with
ρ < 2 are polynomial time computable without restricting the strategy spaces.

Other Related Work. Our bounds on the spread of the potential function
for two outcomes are related to results on the price of anarchy (PoA). The PoA
was introduced in [19] as the worst case ratio between the value of some global
objective function in a Nash equilibrium and its optimum value. Most results
on the PoA in congestion games use the total latency (i.e., the sum of the play-
ers’ costs) as the global objective function. For this setting, Christodoulou and
Koutsoupias [12] showed that the PoA for non-decreasing affine cost functions
is 5

2 . Aland et. al. [2] obtained the exact value on the PoA for polynomial cost
functions. Roughgarden’s [23] smoothness framework determines the PoA with
respect to any set of allowable cost functions. These results have been extended
to the more general class of weighted congestion games [2,3,6,12].

For congestion games, the total latency and the value of the potential function
are related. So, for Nash [2,12,23] and approximate Nash equilibria [14], bounds
on the potential function can be derived from the corresponding results on the
price of anarchy. However, this approach yields much weaker guarantees than
our approach. Congestion games with non-increasing utility functions where the
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global objective is defined as the potential function are a subclass of valid utility
games as introduced by Vetta [25]. Thus the bound on the price of anarchy
from [25] for such games implies that Φ(s)

Φ(s∗) ≤ 2 for any pair of outcomes s, s∗,
where s is a Nash equilibrium. Our result in Theorem 3 refines (as it holds for
all outcomes s) and improves (the factor of) this bound.

2 Notation

Congestion Games. A congestion game is a tuple Γ=(N , E, (Si)i∈N , (fe)e∈E)).
Here, N = {1, 2, . . . , |N |} is a set of n players and E is a set of resources. Each
player chooses as her strategy a set si ⊆ E, si ∈ Si from a given set of avail-
able strategies Si ⊆ 2E. Associated with each resource e ∈ E is a non-negative
function fe : N 	→ R+. We consider both cost minimizing and utility maximiz-
ing congestion games, so these functions either describe costs or utilities to be
credited to the players for using resource e. An outcome (or strategy profile) is a
choice of strategies s = (s1, s2, . . . , s|N |) by players with si ∈ Si. For an outcome
s define ne(s) = |i ∈ N : e ∈ si| as the number of players that use resource e. In
cost minimizing games the cost for player i is defined by ci(s) =

∑
e∈si

fe(ne(s))
(in utility maximizing games ui(s) =

∑
e∈si

fe(ne(s))). For two outcomes s and
s′ define D(s, s′) =

∑
i∈N (ci(s−i, s

′
i) − ci(s)) (and analogously for utility max-

imizing games). Here, (s−i, s
′
i) denotes the outcome that results when player i

changes its strategy in s from si to s′i.

Pure Nash Equilibria. A pure Nash equilibrium is an outcome s where no
player has an incentive to deviate from its current strategy. Formally, s is a pure
Nash equilibrium if for each player i ∈ N and s′i ∈ Si, an alternative strategy
for player i, we have ci(s) ≤ ci(s−i, s

′
i) (or ui(s) ≥ ui(s−i, s

′
i)).

Approximate Pure Nash Equilibria. An outcome s is a ρ-approximate pure
Nash equilibrium if for each player i ∈ N and s′i ∈ Si, an alternative strategy
for player i, we have ci(s) ≤ ρ · ci(s−i, s

′
i) (or ui(s) ≥ ρ · ui(s−i, s

′
i)).

Potential Function. Congestion games admit a potential function Φ(s) =∑
e∈E

∑ne(s)
j=1 fe(j) which was introduced by Rosenthal [22] and has the following

remarkable property: for any two outcomes s and (s−i, s
′
i) that differ only in the

strategy of player i ∈ N , we have Φ(s) − Φ(s−i, s
′
i) = ci(s) − ci(s−i, s

′
i) (and

analogously for utility maximizing games). Thus, the set of pure Nash equilibria
corresponds to the set of local optima of the potential function. For any resource
e ∈ E denote Φe(s) =

∑ne(s)
j=1 fe(j) the contribution of e to the potential.

3 Path-Cycle Decomposition

In this section we introduce a directed multigraph G, called transition graph,
which is defined for two given strategy profiles s, s∗ and captures how to trans-
form s into s∗. We then define a path-cycle decomposition of G which will be
important for our analysis in the following sections.
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Transition Graph. Given a congestion game and two strategy profiles s, s∗ we
construct a directed edge-weighted multi-graph G = G(s, s∗). For each player
i ∈ N , denote E1

i := si \ s∗i and E2
i := s∗i \ si and augment the smaller of those

sets with dummy resources with utility/cost function fe(x) = 0 until |E1
i | = |E2

i |.
The node set of G consists of all resources of the congestion game including the
dummy resources. For each player i ∈ N construct a perfect matching between
E1

i and E2
i and introduce |E1

i | = |E2
i | directed edges from E1

i to E2
i accordingly.

Denote Ai the set of these directed edges and let A = ∪i∈NAi be the multiset
consisting of all directed edges. We can think of each edge a ∈ Ai as being a
sub-player of player i ∈ N . For each directed edge a = (e1, e2) ∈ A, define
δa = fe2(ne2(s) + 1)− fe1(ne1(s)) as the weight of a. For any set B ⊆ A of edges
denote DB =

∑
a∈B δa. This completes the construction of G.

Path-Cycle Decomposition. We now decompose G into directed cycles and
paths as follows:
– While there is a directed cycle C in G, remove C from G. Let C = {C1,C2,...}

be the set of removed cycles.
– For the remaining directed acyclic multigraph G′ = G− C iteratively find a

maximal path P , i.e., one which cannot be augmented further, and remove
it from G′. Let P = {P1, P2, . . .} be the ordered set of removed paths.

We call (C,P) the ordered path-cycle decomposition of G. By construction, reas-
signing all sub-players a ∈ A according to the path-cycle decomposition (C,P)
has the same effect on the potential as reassigning all players i ∈ N from s
to s∗. However, the ordered path-cycle decomposition has some nice structural
properties which we will exploit for our results on approximating the potential.

4 Approximating the Potential

4.1 Non-increasing Utility Functions

Now, we study the difference of potential function values of two strategy profiles
s and s∗. We begin with the easier case of non-increasing utility functions. We
show that the ratio of the potential values of s and s∗ can be bounded by D(s, s∗)
and a parameter ΨF of the class of cost functions which is defined as follows.

Definition 1. For a class of functions F define

ΨF = sup

{
n · (f(n)− f(n+ 1))∑n

j=1 f(j)
: f ∈ F , n ∈ N

}
.

Observe that ΨF ≤ 1. By reorganizing terms we directly get the following lemma.

Lemma 2. For all f ∈ F and n ∈ N we have f(n+ 1) ≥ f(n)− ΨF ·
∑n

j=1 f(j)

n .

Theorem 3. Let F be a set of non-increasing functions. Consider a congestion
game with utility functions in F and two arbitrary outcomes s, s∗. Then Φ(s∗) ≤
(1 + ΨF ) · Φ(s) +D(s, s∗).
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Proof. Given s, s∗ let (C,P) be the ordered path-cycle decomposition of the tran-
sition graph G(s, s∗) as defined in Section 3. We will now reassign the sub-players
corresponding to cycles and paths in order. We upper bound their corresponding
change in the potential and lower bound their contribution to the potential Φ(s).
We split Φe(s) equally among all players using e. Therefore, we further subdivide
Φe(s) with respect to the path-cycle decomposition C ∪ P as follows: For every
B ∈ C ∪ P with e ∈ B, denote Φe,B(s) the fraction of e with respect to B of
Φe(s) and let ΦB(s) =

∑
e∈B Φe,B(s). Hence,

Φe,B(s) =
1

ne(s)
·
ne(s)∑
i=1

fe(i). (1)

Observe that Φe(s) ≥
∑

B∈C∪P Φe,B(s). For any B ∈ C ∪ P denote ΔB(Φ) the
change in the potential due to the reassignment of sub-players in B at time of
the reassignment.

First consider the cycles in C. Observe that ΔC(Φ) = 0 for all C ∈ C. Consider
a directed cycle C of k ∈ N nodes (k, k − 1, . . . , 1, k). With a slight abuse of
notation denote δj = δ(j,j−1) for j ∈ {2, . . . , k} and δ1 = δ(1,k). Then by the
definition of δj , and by (1) and Lemma 2,

DC =
k∑

j=1

δj =
k∑

j=1

fj(nj + 1)−
k∑

j=1

fj(nj)

≥
k∑

j=1

(
−ΨF · Φj,C(s) + fj(nj)

)
−

k∑
j=1

fj(nj) = −ΨF · ΦC(s). (2)

Now consider the paths in P = {P1, P2, . . .}. Consider an arbitrary path P� ∈ P
with k edges and P� = (k, k − 1, . . . , 1, 0). Denote δj = δ(j,j−1) for j ∈ [k].

Denote s̃ the strategy profile of the players just before we reassign P�. By
the property that earlier reassigned paths (P1, . . . , P�−1) could not be further
extended we know that nodes in the subpath (k, k − 1, . . . , 1) were not the final
node of some earlier path, while nodes in (k− 1, . . . , 1, 0) were not the first node
of some earlier path. This implies nk (̃s) ≤ nk(s), n0(̃s) ≥ n0(s), and ni(̃s) = ni(s)
for all i ∈ {1, . . . , k − 1}. We derive:

ΔP�
(Φ) = f0(n0(̃s) + 1)− fk(nk (̃s))

≤ f0(n0(s) + 1)− fk(nk(s)) = f1(n1(s)) + δ1 − fk(nk(s))

≤ ΨF · Φ1,P�
(s) + f1(n1(s) + 1) + δ1 − fk(nk(s))

= ΨF · Φ1,P�
(s) + f2(n2(s)) +

2∑
j=1

δj − fk(nk(s))
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Iterating the last two steps along the path P� yields

ΔP�
(Φ) ≤ ΨF ·

k−1∑
j=1

Φj,P�
(s) + fk(nk(s)) +

k∑
i=1

δi − fk(nk(s))

≤ ΨF · ΦP�
(s) +DP�

(3)

Combining (2) and (3), we get

Φ(s∗)− Φ(s) =
∑
P∈P

ΔP (Φ) ≤ ΨF ·
∑
P∈P

ΦP (s) +
∑
P∈P

DP

≤ ΨF ·
(
Φ(s)−

∑
C∈C

ΦC(s)

)
+D(s, s∗)−

∑
C∈C

DC

≤ ΨF ·
(
Φ(s)−

∑
C∈C

ΦC(s)

)
+D(s, s∗) + ΨF ·

∑
C∈C

ΦC(s)

= ΨF · Φ(s) +D(s, s∗)

or equivalently Φ(s∗) ≤ (1+ΨF ) ·Φ(s) +D(s, s∗), as claimed in the theorem. ��

Denote s′i the best response of player i ∈ N to the outcome s. Then we can
upper bound D(s, s∗) =

∑
i∈N (ui(s−i, s

∗
i ) − ui(s)) ≤

∑
i∈N (ui(s−i, s

′
i) − ui(s))

which yields the following corollary:

Corollary 4. Given any outcome s denote s′i the best response of player i ∈ N
to s. Then, Φ(s∗) ≤ (1+ΨF ) ·Φ(s) +

∑
i∈N (ui(s−i, s

′
i)−ui(s)). So, any outcome

s provides us with an upper bound on the maximum potential value.

The following theorem provides a matching lower bound, even for the case
that s is a Nash equilibrium.

Theorem 5. Given a class of non-increasing functions F , there is a congestion
game ΓF with utility functions in F and two strategy profiles s and s∗ with
Φ(s∗) = (1 + ΨF) · Φ(s) and ui(s−i, s

∗
i )− ui(s) = 0 for all players i.

4.2 Non-decreasing Cost Functions

We now consider the case of non-decreasing cost functions. As in the previous
section we reassign the sub-players corresponding to cycles and paths and upper
bound their corresponding change in the potential and lower bound their contri-
bution to the potential. Unlike before, we cannot split the potential of a resource
equally among the players using it. We have to differentiate whether a node in
the path-cycle decomposition is the start of some path or an intermediate node.
For non-decreasing cost functions the crucial parameter ΨF is defined as follows.

Definition 6. For a class of functions F define
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ΨF = sup

{
(n−m) · f(n+ 1)− n · f(n) +

∑n
j=1f(j)∑n−m

j=1 f(j)
: f ∈ F ,n,m ∈ N,n > m

}

By reorganising terms we derive the following lemma.

Lemma 7. For all f ∈ F and n,m ∈ N with n > m we have

f(n+1)≤(ΨF−1)·
∑n−m

j=1 f(j)

n−m +

(
1−

∑n
j=n−m+1f(j)

m·f(n)

)
· m

n−m ·f(n)+f(n)

Theorem 8. Let F be a set of non-decreasing cost functions. Consider a con-
gestion game with cost functions in F and two arbitrary outcomes s, s∗. Then
Φ(s) ≤ ΨF · Φ(s∗)−D(s, s∗).

Proof. Given s, s∗ let (C,P) be the ordered path-cycle decomposition of the tran-
sition graph G(s, s∗) as defined in Section 3. As before let denote ΔB(Φ) the
change in the potential due to the reassignment of sub-players in B ∈ C ∪ P
at time of the reassignment and Φe,B(s) the contribution of e with respect
to B to Φe(s) and ΦB(s) =

∑
e∈B Φe,B(s). For each resource e ∈ E denote

me the number of times e is a start node of some path in P . Observe, that
me = max{0, ne(s)− ne(s

∗)}.
To simplify notation let ne := ne(s) and define αe =

∑ne
j=ne−me+1 fe(j)

me·fe(ne)
, for

each resource e ∈ E if me > 0 and αe = 1 if me = 0. If B ∈ P is a path, e is the
start node of B then

Φe,B(s) = αe · fe(ne)−
1− αe

ΨF − 1
· fe(ne) =

(
ΨF · αe − 1

ΨF − 1

)
· fe(ne) (4)

In all other cases this contribution is

Φe,B(s) =

∑ne−me

j=1 fe(j)

ne −me
+

1− αe

ΨF − 1
· me

ne −me
· fe(ne). (5)

Observe that Φe(s) ≥
∑

B∈C∪P Φe,B(s).
First consider the cycles in C. Observe that ΔC(Φ) = 0 for all C ∈ C. Consider

a directed cycle C of k ∈ N nodes (k, k − 1, . . . , 1, k). With a slight abuse of
notation denote δj = δ(j,j−1) for j ∈ {2, . . . , k} and δ1 = δ(1,k). Then by the
definition of δj , and by (5) and Lemma 7,

DC =

k∑
j=1

δj =

k∑
j=1

fj(nj + 1)−
k∑

j=1

fj(nj)

≤
k∑

j=1

(
(ΨF − 1) · Φj,C(s) + fj(nj)

)
−

k∑
j=1

fj(nj) = (ΨF − 1) · ΦC(s). (6)
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Now consider the paths in P = {P1, P2, . . .}. Consider an arbitrary path
P� ∈ P with k edges. Name the nodes so that P� = (k, k − 1, . . . , 1, 0). Similar
as before, denote δj = δ(j,j−1) for j ∈ [k]. Denote s̃ the strategy profile of the
players just before we reassign P�. By the property that earlier reassigned paths
(P1, . . . , P�−1) could not be further extended we know that n0(̃s) ≥ n0(s). By
averaging over all events with node k as start node of some path in P we get

ΔP�
(Φ)=αe·fk(nk(s))−f0(n0 (̃s)+1)≤αe·fk(nk)−f0(n0+1)

(4)
=

ΨF−1
ΨF

·Φk,P�
(s)+

fk(nk)

ΨF
−f0(n0+1)

=
ΨF−1
ΨF

·Φk,P�
(s)+

fk−1(nk−1+1)

ΨF
− δk
ΨF
−f0(n0+1)

≤ΨF−1
ΨF

·Φk,P�
(s)+

ΨF−1
ΨF

Φk−1,P�
(s)+

fk−1(nk−1)

ΨF
− δk
ΨF
−f0(n0+1)

=
ΨF−1
ΨF

·
k∑

j=k−1

Φj,P�
(s)+

fk−1(nk−1)

ΨF
− δk
ΨF
−f0(n0+1),

where the last inequality follows with (5) and Lemma 7. Iterating along P� yields

ΔP�
(Φ) ≤ ΨF − 1

ΨF
·

k∑
j=1

Φj,P�
(s)−

k∑
j=1

δj
ΨF

+
f0(n0 + 1)

ΨF
− f0(n0 + 1)

≤ ΨF − 1

ΨF
· ΦP�

(s)− DP�

ΨF
. (7)

Combining (6) and (7), we get

Φ(s)−Φ(s∗)=
∑
P∈P

ΔP (Φ)≤
ΨF−1
ΨF

·
∑
P∈P

ΦP (s)−
∑

P∈PDP

ΨF

≤ΨF−1
ΨF

(
Φ(s)−

∑
C∈C

ΦC(s)

)
−
D(s,s∗)−

∑
C∈CDC

ΨF

≤ΨF−1
ΨF

(
Φ(s)−

∑
C∈C

ΦC(s)

)
−
D(s,s∗)−(ΨF−1)·

∑
C∈CΦC(s)

ΨF

=
ΨF−1
ΨF

·Φ(s)−D(s,s∗)

ΨF
,

or equivalently Φ(s) ≤ ΨF · Φ(s∗)−D(s, s∗), as claimed in the theorem. ��

Denote s′i the best response of player i ∈ N to the outcome s. Then we can
lower bound D(s, s∗) =

∑
i∈N (ci(s−i, s

∗
i ) − ci(s)) ≥

∑
i∈N (ci(s−i, s

′
i) − ci(s))

which yields the following corollary:

Corollary 9. Given any outcome s denote s′i the best response of player i ∈ N
to s. Then, Φ(s∗) ≥ 1

ΨF
(Φ(s) +

∑
i∈N (ci(s−i, s

′
i) − ci(s))). So, any outcome s

provides us with a lower bound on the minimum potential value.
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We have a matching lower bound in the case in which the set of functions
F satisfies a technical condition. Let (f, n,m) be a tuple of parameters that
determine ΨF in Definition 6 and define DF = (n−m)f(n+ 1)− nf(n).

With these parameters at hand, we are ready to present the matching lower
bound for families of functions F that satisfy DF ≥ 0.

Theorem 10. Given a class of non-decreasing functions F with DF ≥ 0 there
is a congestion game ΓF with cost functions in F and two strategy profiles s and
s∗ with Φ(s) = ΨF · Φ(s∗) and ci(s−i, s

∗
i )− ci(s) = 0 for all players i ∈ N .

5 Computing Approximate Pure Nash Equilibria

We use our results to compute approximate Nash equilibria. Our approach is
based on the idea of [7] and we improve the analysis of their algorithm.

Input : A congestion game G = (N , E, (si)i∈N , (fe)e∈E) with n players and a
constant c > max {1, logn ΨF}

Output: A strategy profile s of G
1 Set q = 1 + n−c, θ(q) = ΨF

1− 1−q
q

n
, p =

(
1

θ(q)
− n−c

)−1

and Δ = maxe∈E
fe(n)
fe(1)

;

2 foreach u ∈ N do set �u = cu (BRu(0)) Set �min = minu∈N �u,
�max = maxu∈N �u, and set m = 1 + �log2Δn2c+2 (�max/�min)�;

3 (Implicitly) partition players into blocks B1, B2, . . . , Bm, such that

u ∈ Bi ⇔ �u ∈
(
�max

(
2Δn2c+2

)−i
, �max

(
2Δn2c+2

)−i+1
]
;

4 foreach u ∈ N do set u to play the strategy su ← BRu(0) for phase i ← 1 to
m− 1 such that Bi �= ∅ do

5 while there exists a player u that either belongs to Bi and has a p-move or
belongs to Bi+1 and has a q-move do

6 u deviates to the best-response strategy su ← BRu(s1, . . . , sn).
7 return s

Algorithm 1. Computing approximate equilibria in congestion games

Algorithm 1 divides the set of players into polynomially many blocks depend-
ing on the costs of the players. For any strategy profile s we denote BRu(s) the
best response of player u to s. Let BRu(0) be the best response of a player u
if no other player participates in the game. We partition the players into blocks
according to their costs in BRu(0). The lower and upper bounds of theses blocks
are polynomially related in n and Δ, where Δ = maxe∈E

fe(n)
fe(1)

. The algorithm
proceeds in phases, starting with the blocks of players with high costs. Each
phase the players of two consecutive blocks Bi and Bi+1 are allowed to make
approximate best response moves until they reach an approximate equilibrium.
The players in Bi make p-approximate move with p being slightly larger than
ΨF and the players in Block Bi+1 do q-approximate moves with q being slightly
larger that 1. After polynomially many phases the algorithm terminates.
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Theorem 11. For every constant c > max {1, logn ΨF}, the algorithm com-
putes a (1+O(n−c))ΨF -approximate equilibrium for every congestion game with
cost functions from F and n players. The algorithm terminates after at most
O
(
Δ3n5c+5

)
best-response moves.

Proof. To prove the theorem we need several additional notations. Let bi be the
boundaries of the different blocks, exactly bi = 2Δn2c+2bi+1 with b1 = �max. In
addition to the set of players in a block Bi, we define Ri as the set of players
who move during the phase i of the algorithm. With si we denote the strategy
profile after phase i, where s0 gives the strategy profile after the execution of
step 4. For the following proof we will use sub games among a subset of players
F ⊆ N . All other players of N \F are frozen to their strategies. In this sub game
nF
e (s) = |i ∈ F : e ∈ si| gives the number of players in F which uses resource e in

strategy profile s and the latency function is defined as fF
e (x) = fe(x+n

N\F
e (s))

with n
N\F
e (s) = |i ∈ N \ F : e ∈ si|. Then, the potential is defined as ΦF =∑

e∈E

∑nF
e (s)

j=1 fF
e (j).

Firstly, we bound the potential value of an arbitrary q-approximate equilib-
rium with the minimal potential value:

Lemma 12. Let s be a q-approximate equilibrium and s∗ be a strategy profile
with minimal potential then ΦF (s) ≤ θ(q)ΦF (s

∗) for every F ⊆ N .

Proof. Since s is a q-approximate equilibrium, we have ci(s) ≤ qci(s−i, s
∗
i ). Thus,

ci(s−i, s
∗
i )− ci(s) ≥

1− q

q
ci(s) ≥

1− q

q
ΦF (s).

With the definition of D(s, s∗), we get −D(s, s∗) ≤ n 1−q
q ΦF (s) and using Theo-

rem 8 gives us

ΦF (s) ≤ ΨFΦF (s
∗) + n

1− q

q
ΦF (s),

or equivalently

ΦF (s) ≤
ΨF

1− 1−q
q n

ΦF (s
∗).

Together with our definition of θ(q) we have shown the lemma. ��

Afterwards we denote the key argument where we show with the help of
Lemma 12 that the potential of the sub game is significantly smaller than bi.
Therefore, the costs experienced by players moving in phase i are considerably
lower than the costs of any player in blocks B1, . . . , Bi−1:

Lemma 13. For every phase i ≥ 2, it holds that ΦRi(s
i−1) ≤ bi

nc .

Further, we can show that for players in block Bt neither its costs increase
considerably nor a deviation to another strategy with considerably lower costs is
interesting caused by the movements of the other players in all following rounds:
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Lemma 14. Let u be a player in the block Bt, where t ≤ m − 2. Let s′u be a
strategy different from the one assigned to u by the algorithm at the end of phase
t. Then, for each phase i ≥ t, it holds that

cu(s
i) ≤ p · cu(si−u, s

′
u) +

p+ 1

nc

i∑
k=t+1

bk.

Finally, we have to show that in the state sm−1, computed by the algorithm
after the last phase, no player has an incentive to deviate to another strategy
in order to decrease her costs by a factor of at least p

(
1 + 4

nc

)
. The claim is

obviously true for the players in the blocks Bm−1 and Bm by the definition of
the last phase of the algorithm. Let u be a player in block Bt with t ≤ m − 2
and let s′u be any strategy different from the one assigned to u by the algorithm
after phase t. We apply Lemma 14 to player u. By the definition of bi, we have∑m

k=t+1 bk ≤ 2bt+1. Also, cu(s
m−1
−u , s′u) ≥ bt+1, since u belongs to block Bt.

Hence, Lemma 14 implies that

cu(s
m−1) ≤ p · cu(sm−1

−u , s′u) +
2(p+ 1)

nc
cu(s

m−1
−u , s′u) ≤ p

(
1 +

4

nc

)
cu(s

m−1
−u , s′u),

as desired. The last inequality follows since p ≥ 1.
By the definition of the parameters q and p, we obtain that the computed

state is a ρ-approximate equilibrium with ρ ≤
(

1
θ(q) −

1
nc

)−1 (
1 + 4

nc

)
, where

θ(q) = ΨF
1− 1−q

q n
and q = 1 + n−c. By making simple calculations, we obtain

ρ ≤ 1
1+ n

nc+1

ΨF − n−c

(
1 +

4

nc

)
≤ ΨF

1 + n
nc+1 −

ΨF
nc

(
1 +

4

nc

)
≤
(
1 +O

(
1

nc

))
ΨF

The last inequality holds as c > logn ΨF .
We will consider the different phases of the algorithm to upper-bound the total

number of best-response moves. In line 4, n best-response moves are executed in
which each player deviates to her best strategy if there would not be any other
player. Afterwards, we have at most n remaining phases. We start by looking
at the first phase: Due to the definition of block B1 and the relation between
the cost functions Δ, any player has a latency of at most Δb1. We can bound
the potential with ΦR1(s

0) ≤
∑

u∈R1
cu(s

0) ≤ nΔb1. On the other side no player
which moves has a latency smaller than b3, otherwise she would not change in
this phase. Hence, the decrease of the potential caused by each q−move is at
least (q − 1)b3. Therefore, we can bound the maximal moves in the first phase
with the definition of bi by nΔb1

(q−1)b3
= 4Δ3n5c+5.

For all other phase i ≥ 2 Lemma 13 implies that ΦRi(s
i−1) ≤ bi

nc . Equivalently
to the first phase, each player in Ri experiences a latency of at least bi+2 and
each move decreases the potential by at least (q−1)bi+2. As result, the maximal
number of moves in each phase is bounded by bi

nc(q−1)bi+2
= 4Δ2n4c+4.

Altogether, we can upper-bound the number of best-response moves during
the execution of the algorithm by O

(
Δ3n5c+5

)
. ��
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6 Conclusions

We presented a novel technique to analyze the value of potential function Φ
of an arbitrary strategy profile. This allows for better bounds for computing
approximate pure Nash equilibria in congestion games. It would be interesting
to see whether our techniques can be extended to other classes of games – most
prominently weighted congestion games.
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Abstract. Assume a seller wants to sell a digital product in a social
network where a buyer’s valuation of the item has positive network ex-
ternalities from her neighbors that already have the item. The goal of
the seller is to maximize his revenue. Previous work on this problem [7]
studies the case where clients are offered the item in sequence and have to
pay personalized prices. This is highly infeasible in large scale networks
such as the Facebook graph: (1) Offering items to the clients one after the
other consumes a large amount of time, and (2) price-discrimination of
clients could appear unfair to them and result in negative client reaction
or could conflict with legal requirements.

We study a setting dealing with these issues. Specifically, the item is
offered in parallel to multiple clients at the same time and at the same
price. This is called a round. We show that with O(log n) rounds, where
n is the number of clients, a constant factor of the revenue with price
discrimination can be achieved and that this is not possible with o(log n)
rounds. Moreover we show that it is APX-hard to maximize the revenue
and we give constant factor approximation algorithms for various further
settings of limited price discrimination.

1 Introduction

With the appearance of online social networks the issue of monetizing network
information arises. Many digital products such as music, movies, apps, e-books,
and computer games are sold via platforms with social network functionality.
Often these products have so called positive network externalities : the valuation
of a client for a product increases (potentially marginal) when a related client
(e.g., a friend) buys the product, i.e., a product appears more valuable for a client
if a friend already owns the same product. In the presence of positive network
externalities, motivating a client to buy a product by lowering the price he has
to pay could incentivize his friends to also buy the product. Consequently, it
could increase future revenue. Thus, when trying to maximize revenue there is
an interesting trade off between the current and the future revenue.

We follow the work of Hartline et al. [7] for modeling network externalities
and (marketing) strategies in social networks with the goal of maximizing the
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seller’s revenue. We model the seller’s information about the clients’ valuations
by using a directed weighted graph or, more generally, by using submodular set
functions. For our positive results we assume that the seller has only incomplete
information about the valuations, i.e., we are in a Bayesian setting where the
seller is given a distribution of each client’s valuation but not the valuation itself.
The seller’s strategy decides (a) when to offer the product to a client and (b) at
which price. Thus each strategy assigns each client a (time, price)-pair.

In [7] a setting with full price discrimination is studied where a seller offers
a product sequentially for a different price to different clients. (See [2,4,5] for
further work on settings with full price discrimination.) While it gives a good
baseline to compare with, this approach has multiple drawbacks. First, process-
ing one client after the other and waiting for the earlier client’s decision requires
too much time if the number of clients is large. Second, price-discrimination
could appear unfair to the clients and could result in a negative reaction of some
clients [10]; moreover, it might be in conflict with legal requirements. On the
other side offering all clients the same price (i.e., a uniform price) reduces the
revenue significantly, namely, by a factor of logn, as we show below.

Hence, we introduce rounds such that in a round the product is offered to a
set of clients at the same time and we consider strategies with a limited number
of rounds and/or limited price discrimination. Specifically we study k-round
strategies where the product is offered to the clients in k rounds with 1 ≤
k ≤ n such that only clients that have purchased the product in a previous
round can influence the valuation functions of the clients to whom the product
is offered in the current round. Following [7] the strategies offer the product only
once to each client to avoid that clients behave strategically, i.e., wait for price
decreases in the future. We study two types of k-round strategies: (1) k-PD
strategies where each client has a personalized price (limited number of rounds),
and (2) k-PR strategies where all clients in the same round are offered the
same price (limited number of rounds and limited price discrimination). Thus,
k-PR strategies generalize the simple uniform price setting, where one might
distribute free copies at the beginning and then charge everyone the same price.
The setting in [7] corresponds to the n-PR setting. Throughout the paper we use

R̂ to denote the optimal revenue achievable by an n-PR strategy. To summarize
we study the natural question of how many different prices/rounds are necessary
and sufficient if we want to achieve a constant factor approximation algorithm.

Our main results are: (1) There is a logn-PR strategy that achieves a con-

stant factor approximation of R̂ for very general valuation functions, namely
probabilistic submodular valuation functions. Thus only logn different prices
are necessary. We show that this result is tight (up to constant factors) in two
regards: (a) It cannot be achieved with o(log n) rounds, even for very limited
valuations with deterministic and additive externalities. (b) There exists a con-

stant c such that it is NP-hard to compute a c-approximation of R̂, no matter
how many rounds, i.e., maximizing revenue in k-PR strategies (as well as k-PD
strategies) is APX-hard. (2) There is a 2-PR strategy that achieves an O(log n)-

approximation of R̂. (3) We give (nearly) 1/16-approximation algorithms for
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the maximum revenue achievable by any k-PR strategy when compared to the
optimal k-PR strategy (i.e., not compared with R̂).

All algorithms we present are polynomial in the number of clients. Inter-
estingly, all of them make very limited use of the network structure: They only
exploit information about the neighbors of a node and not any global properties.

Discussion of Related Work. In the presence of network externalities two main
types of revenue maximizing strategies have been used in the literature: strate-
gies with price discrimination (each client pays a different price), and strategies
with uniform price (every paying client pays the same price). We have already
mentioned the work of Hartline et al. [7] on price discriminating strategies with n
rounds (n-PD). They study so-called influence-and-exploit strategies consisting
of two steps: (1) the influence step, in which the product is given for free to a
set of influence nodes; and (2) the exploit step, in which clients are approached
sequentially and each client is offered the product at a personalized price. Hart-
line et al. give a randomized influence-and-exploit strategy that gives an e

4e−2 -

approximation of the optimal revenue R̂. Note that the revenue of our general-
ization to k-PD in Section 3 is quite close to this as it gives an e

4e−2+2/(k−1) -

approximation. In particular for k ≥ 10 our strategy k-PD(q) achieves more
than 95% of the revenue of their strategy. Moreover with the improvements of
Theorem 3 and k ≥ 10 we get even better constants than [7]. Additionally, Hart-
line et al. present an algorithm that, together with a novel result on submodular
function maximization [3], 0.5-approximates the optimal influence set.

Later, Fotakis and Siminelakis [5] studied a restricted model of client valu-
ations and improved the approximation algorithms of Hartline et al. [7]. Fur-
thermore, they study the ratio between the optimal strategies and the optimal
influence-and-exploit strategies. Babaei et al. [2] experimentally evaluated sev-
eral marketing strategies without an influence step, instead giving the most
influential clients discounts. They conclude that discounts increase the revenue
in the considered artificial and real networks.

Influence-and-exploit strategies with uniform prices have been studied by Mir-
rokni et al. [9]. They use generic algorithms for submodular function maximiza-
tion to obtain an influence set with at least 1/2 of the revenue of the optimal

uniform price influence-and-exploit strategy, not of R̂. In both, [7] and [9], similar
graph models with concave influences (CG) are introduced as model for network
externalities.

Akhlaghpour et al. [1] study a different scenario with uniform prices, without
any price discrimination: The product is offered on k consecutive rounds to all
clients for the same price, and a client buys the product when its value exceeds
the price for the day. They present an FPTAS for the Basic scenario, where
a client buying the product immediately influences the valuation of the other
clients who then may also buy the product in the same round. A round ends
(the price changes) when no client is willing to buy the product for the current
price. This model does not fit well to our assumptions of limited time and a large
network. In the Rapid scenario, where buyers on the same day do not affect each
other (like in our setting) they show that no constant factor approximation is
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possible and give an O(logk n) approximation. The main difference to our setting
is that in [1] the product has to be offered to every client (not having the product)
in each round and thus there is no influence round where clients get the product
for free.

For non-digital goods Ehsani et al. [4] study revenue maximizing strategies
with both price discrimination and uniform prices with full information about
the clients valuations and with production costs per unit in a setting where
clients arrive randomly. They give an FPTAS for the optimal uniform price.
Recall that we are studying digital goods without full information about the
valuation functions.

Haghpanah et al. [6] study submodular network externalities for bidders in
auctions and provide auctions that give a 0.25-approximation of the optimal
revenue. In our models the strategies have to offer items in rounds since the
clients are only influenced by clients, who bought the product in a previous
round; that is an important difference to the auctions in [6].

Structure of the paper. In Section 2, we present our model for networks ex-
ternalities as well as the different kinds of marketing strategies we consider in
this paper. In Section 3, we study the effect of restricting the number of rounds,
i.e., the effect of offering the product to several clients in parallel, but allowing
full price discrimination. In Section 4 we compare the optimal revenue achiev-
able with individual prices against the optimal revenue achievable with uniform
prices. Efficiently computable k-PR strategies are studied in Section 5. In Sec-
tion 6 we discuss several extensions of our model. All omitted proofs are provided
in the full version available online.

2 Preliminaries

We are given a network G = (V,E) of n clients V and edges E ⊆ V × V that
represent their relationships. Suppose that we want to offer a digital product
(i.e., the unit costs of the product are zero and we can produce an arbitrary
number of copies) to each client i ∈ V for some price pi ∈ R≥0 and maximize
our revenue. We call a client that has bought our product active client or buyer ;
otherwise we call him inactive client. We define the valuation of client i ∈ V by
vi : V \ {i} → R≥0, such that the valuation of i only depends on his neighbors,
i.e., for A being the set of active clients and Ni being the set of neighbors of i in G
holds vi(A) = vi(A∩Ni). We try to exploit this dependency of the valuation on
the status of the neighbors (called externality) by offering the product to clients
in a certain order, i.e., we want to compute an order on the clients. Furthermore,
we restrict ourselves to a single offer to each client. We assume that clients
are individually rational and have quasi-linear utilities. Thus client i buys the
product if and only if the price pi is not larger than the valuation vi(A).

Valuation Functions. We describe the different models for externalities for
a client i ∈ V and his active neighbors B. Our main focus is on submodular1

1 A set function f : 2S → R is called submodular if for all X ⊆ Y ⊆ S and each
x ∈ S \ Y it holds that f(X ∪ {x})− f(X) ≥ f(Y ∪ {x}) − f(Y ).
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valuation functions, based on the intuition that the positive influence of a fixed
neighbor does not increase when the set of active neighbors grows. Next we
define the models we consider in the paper:

– Simple Additive Model (SA). There are non-negative weights wi,i and wi,j

for (i, j) ∈ E. The valuation of i is given by vi(B) =
∑

j∈B∪{i} wi,j .

– Deterministic Submodular Model (DS). There are monotone, submodular
set functions gi : V \{i} → R≥0. The valuation of i is given by vi(B) = gi(B).

– Probabilistic Submodular Model (SM) [6]. The valuation of i is given by
vi(B) = ṽi ·gi(B) where gi : V \{i} → [0, 1] is a (publicly known) monotone,
submodular function with gi(V \ {i}) = 1 and the private value ṽi ≥ 0 is
drawn from a (publicly known) distribution with the CDF Fi.

In the first two models the seller has full information about the valuation while
in the SM-model she only knows the distribution. We have that the DS-model
generalizes the SA model and the SM-model generalizes both the SA and the
DS-model. To simplify the presentation in this paper we state positive results
for the SM-model and hardness results (whenever possible) for the SA-model.
For all the models we call vi(∅) the intrinsic valuation of client i ∈ V . Note that
vi(V \ {i}) is the maximum valuation of client i ∈ V in each model. We will use
this fact for upper bounds on the revenue any strategy can extract from a client.

Seller Information. By the previous definitions the valuation functions model
the information of the seller about the real valuation of the clients. If the seller
has full information, the seller maximizes her revenue by setting pi = vi(B),
where B are the active neighbors of i ∈ V . For the case of incomplete information
price setting is more challenging. In particular, multiple prices could maximize
the expected payment, the so-called myopic prices, and we do not know in general
how likely it is that the client accepts one of those myopic prices.

Definition 1. Given a client i ∈ V , and the set of active clients B ⊆ V \ {i},
the myopic prices of client i are defined as argmaxp∈R≥0

p · P [vi(B) ≥ p]. If
P [vi(B) ≥ 0] = 0 we define zero as the unique myopic price.

The frequently used monotone hazard rate condition implies that there is a

unique myopic price. The hazard rate of a PDF fi,B is defined to be
fi,B(y)

1−Fi,B(y)

for y ≥ 0. If the hazard rate of fi,B is a monotone non-decreasing function of
y ≥ 0 where y satisfies Fi,B(y) < 1 we say that Fi,B has a monotone hazard rate.
In the SM-model with monotone hazard rates we assume that for each i ∈ V
the CDF Fi has monotone hazard rate. Note that for full information models,
Fi,B(y) = 0 and fi,B(y) = 0 for all y < vi(B) and Fi,B(y) = 1 for all y ≥ vi(B).

Lemma 1 ([7]). In the SM-model with monotone hazard rates each client has
a unique myopic price which is accepted with probability at least 1

e . For a set of
active clients B we denote the unique myopic price of client i as p̂i(B).

We will also assume that we can compute this myopic price in polynomial time.

(Marketing) Strategies. A marketing strategy determines in each round to
which clients and at what prices the product is offered in this round. This choice
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may depend on the already visited clients, the active clients and the number of
rounds remaining.

Definition 2. A k-round (marketing) strategy is a probabilistic function s that
maps (C,B, j) to (Vj , p), where C ⊆ V are the clients visited so far, B ⊆ C are
the buyers in the previous rounds, j ∈ [k] is the current round, Vj ⊆ V \ C are
the clients in round j, and p : Vj→R≥0 gives the prices for clients in Vj.

2

In the following we consider two classes of k-round strategies, (i) one where
each client gets an individual price, i.e., the rounds only influence the valuations
and place no additional restrictions on the price, and (ii) one where the seller
must set uniform prices in each round, and for each of them also the subclass of
Influence and Exploit (IE)-strategies, where the seller offers the product for free
to the clients of the first round, i.e., the price in the first round is fixed to 0. In
1-round strategies the seller has to offer the product to all clients at the same
time and thus network externalities do not come into play at all.

Price Discrimination. [k-PD] This class contains all k-round strategies. If
we set k = |V | we get the class of all possible strategies. For k ≥ 2 we consider
the subclass [k-PDIE] of k-round influence and exploit strategies, where the seller
gives the product for free to the clients selected in the first round.

Uniform Prices Per Round. [k-PR] This class contains all k-round uni-
form price strategies, where all clients visited in the same round are offered the
same price. For k ≥ 2 the k-round uniform price influence and exploit strategies
[k-PRIE] are the k-PR strategies with the first round having uniform price 0.

Given a strategy s we use R(s) to denote the (expected) revenue obtained by s.

By R̂k-PD , R̂
IE
k-PD , R̂k-PR and R̂IE

k-PR we denote the optimal revenues achievable

by the above classes of strategies, where R̂ = R̂n-PD is the optimal revenue
achievable by any strategy. Restricted to k-rounds and uniform prices, our main
goals are to achieve constant factor approximations of R̂ and R̂k-PR.

3 Strategies with Individual Prices

In this section we analyze k-PD strategies, i.e., k-round strategies with full price
discrimination. We first show that maximizing the revenue of such strategies is
computationally hard even in the SA-model; in particular, we show that it is NP-
hard to approximate better than within a factor of 34k/(1+34k). The reduction
uses the fact that even in the SA-model, the problem of maximizing the revenue
of k-PD generalizes Maximum k-Cut, and the latter is APX-hard [8].

Theorem 1. Maximizing the revenue of k-PD, resp. k-PDIE, is APX-hard in
the SA-model; it is NP-hard to 34k

1+34k -approximate R̂k-PD, resp. R̂
IE
k-PD, for k≥2.

2 In principle it suffices that s(·, ·, j) is defined on the possible outcomes of round j−1.
In particular for j = 1 it has only to be defined for s(∅, ∅, 1).



50 L. Cigler et al.

On the positive side we generalize the result in [7] to the SM-model with
monotone hazard rates and to k rounds. Specifically, we show that the following
IE strategy gives a constant factor approximation of the optimal k-round revenue
as well as of the optimal revenue R̂ and can be computed in polynomial time.
We will use these results in the following sections as they imply that any k-PR
strategy that is an α-approximation of R̂k-PD is an O(α)-approximation of R̂.

Algorithm 1 (Strategy k-PD(q)). Let q be in [0, 1].

1. Assign clients in V independently with probability q to set V1. Give the
clients in V1 the product for free.

2. Partition the clients in V \ V1 into sets V2, . . . , Vk s.t. each client is in Vj

independently of the other client with probability (1 − q)/(k − 1).
3. Offer the clients in Vj the product in parallel for their myopic price.

To analyze the strategy we first consider the expected payment πi(S) = p̂i(S) ·
P [vi(S) ≥ p̂i(S)] we can extract from a client i given the active clients S. By the
definition of the myopic price, we can show that p̂i(S) = p̂i(V \ {i}) · gi(S). The
crucial idea in Lemma 2 is now that we can lower bound the expected revenue
πi(S) collected from client i by the maximum revenue that can be collect from
i, namely πi(V \ {i}), multiplied by the probability β that a client is in S. Note
that β is a function of q. Theorem 2 then determines the value β, which in turn
sets q. Finally we use a well-known property of submodular functions [7] to lower
bound the revenue of k-PD(q).

Lemma 2. Let S ⊆ V \ {i} be the random set of clients and let each client
j ∈ V \ {i} be in S independently with a probability of at least β. Then it holds
that ES [πi(S)] ≥ β · πi(V \ {i}).

Theorem 2. Consider the SM-model with monotone hazard rates. For q = 1−
e·(k−1)

2e(k−1)−k+2 it follows that R(k-PD(q)) ≥ e·(k−1)
4e(k−1)−2k+4 R̂ and thus also R̂k-PD ≥

e·(k−1)
4e(k−1)−2k+4 R̂.

For k = 2, buyers are only influenced by clients in the influence set and The-
orem 2 gives a 2-PD strategy, i.e., 2-PD(0.5), which achieves at least 1

4 of the
optimal revenue (a similar result was given in [7]). However the main challenge in
the above algorithm is to exploit also the externalities from the other preceding
rounds. The 2-round case will be crucial for our k-PR-algorithm in Section 5.

Corollary 1. Given the SM-model with monotone hazard rates, it follows that
R̂k-PD ≥ R̂IE

k-PD ≥ 1
4 · R̂ for k ≥ 2.

Fotakis and Siminelakis [5] show that myopic prices are not necessarily optimal
for IE-strategies. They provide IE-strategies, using lower prices, that beat those
of [7] if the valuations follow the uniform additive model. In the following we
generalize this idea to (a) submodular valuations with monotone hazard rates
and (b) to the k-round setting. That is, we consider strategies that use different
discount factors αj for different rounds j. To be more precise in each round the
seller charges every client only an αj-fraction of his myopic price. Moreover, we
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also consider different probabilities qj for a client being assigned to round j. The
next theorem shows that charging less than the myopic price can improve the
overall revenue.

Algorithm 2 (Strategy k-PD(q̄, ᾱ)). Let q̄ and ᾱ be vectors of length k with
entries in [0, 1] and let the entries of q̄ sum up to 1.

1. Partition V into sets V1, . . . , Vk s.t. each client i ∈ V is in Vj independently
of the others with probability qj .

2. Offer the clients i ∈ Vj the product in parallel for price αj · p̂i where p̂i is
the myopic price of client i.

Theorem 3. Given the SM-Model with monotone hazard rates, for each k there
exist vectors q̄, ᾱ such that R(k-PD(q̄, ᾱ)) ≥ Ck · R̂, where C3 = 0.279, C5 =
0.298, C8 = 0.308, and C10 = 0.311.

Computing Ck is a multi-parameter optimization problem (with 2k parameters)
that we solved numerically. More details are provided in the full version. Finally,
note that the Algorithms 1 and 2 use the network structure only in the compu-
tation of the myopic prices, which only requires to know the active neighbors.

4 Comparing Individual Prices to Uniform Prices

In this section we study k-PR strategies where there are k rounds and in each
round we offer the product to a subset of the clients for a uniform price. We first
analyze the impact that restricting the strategies to be uniform price strategies
has on the optimal revenue for a constant number of rounds. We show that in
the SM-model the optimal revenue can decrease in the worst case by a factor of
Θ(1/n). Thus, if we do not make assumptions on the probability distributions
we cannot do better than in each round just selecting the most valuable client
and offer the product to him for his myopic price. However, if we consider the
SM-model with monotone hazard rates the optimal revenue can decrease in the
worst case by a factor of Θ(1/ logn). As a result we will focus on models with
monotone hazard rates in the remainder of the paper.

Theorem 4. Assume that the valuations of the clients follow the SM-model.

1. For every ε > 0 and k ≥ 1 there exists a network and valuations vi such that
R̂k-PR ≤ k+ε

n R̂k-PD.

2. For any network and valuations vi, R̂1-PR ≥ 1
n R̂1-PD.

3. For any network and valuations vi, R̂
IE
2-PR ≥ 1

n R̂
IE
2-PD ≥ 1

4n R̂.

The next theorem shows three points: (1) Even with monotone hazard rates,

no k-PR strategy can be better than a k/Hn-approximation of R̂k-PD and, thus,

also of R̂. Recall, that the SA-model satisfies the monotone hazard rate condition
and is a special case of a DS and an SM-model and thus these negative results
also extend to these models. Thus without price discrimination within a round
no constant factor approximation of R̂ with o(log n) different rounds exists.
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(2) Even with only 2 rounds the optimal 2-PR strategy achieves an O(log n)

approximation of R̂IE
2-PD, which, by Corollary 1, achieves a 4-approximation of

R̂. Thus, the optimal 2-PR strategy achieves an O(log n) approximation of R̂.
This is a large improvement over the negative result from Theorem 4, which
holds for valuations that do not have monotone hazard rates. However, we show
in the next section that computing the optimal 2-PR strategy is NP-hard.

Theorem 5. Assume that valuations of the clients follow the SM-model with
monotone hazard rates.

1. For each k ≥ 1 there exists a network and valuations vi such that R̂k-PR ≤
k
Hn

R̂k-PD (even in the SA-model).

2. For any network and valuations vi, R̂1-PR ≥ 1
e·Hn

R̂1-PD.

3. For any network and valuations vi, R̂
IE
2-PR ≥ 1

e·Hn
R̂IE

2-PD.

Recall that we want to achieve a constant approximation of R̂ using a uniform
price strategy. Thus, in the next section we give a polynomial time computable
k-PR strategy, with k ∈ Θ(log n), that achieves a constant factor approximation.

5 Strategies with Uniform Prices

In the analysis of the algorithms in Section 3 we exploited that the expected
revenue from a client i was submodular in the set of active neighbors. This is
not true in the PR setting, as we can only extract revenue from a client if his
valuation is larger than the uniform price. Still we can show the following: (1) We
give a polynomial-time approximation scheme (PTAS) for one round strategies in
the SM-model with monotone hazard rates, i.e., for finding the optimal uniform
price for one round. (2) We show that finding an optimal 2-PR strategy is not
only NP-hard but also APX-hard, even for the DS-model. (3) We give a constant

factor approximation of R̂ with O(log n) rounds for valuations from the SM-
model with monotone hazard rates. (4) From Section 4 we know that k-PR
strategies, where k is a constant, lose a factor of logn of the optimum revenue
when compared to R̂. Thus, in this case the best we can hope for is a constant
factor approximation of R̂k-PR, not of R̂. We have two such results: (4a) We

give a (1/16 − ε) approximation of R̂k-PR for the SM-model with monotone
hazard rates. (4b) We show that under certain conditions we can even give

a (1/4 − ε)-approximation of R̂2-PR. Combined with Theorem 5 this gives an

O(log(n)/k)-approximation of R̂ in k rounds.
We first give a PTAS for computing the optimal price for the one round

setting. This will be a useful tool for the 2-round setting.

Algorithm 3. Let c = (1− ε)−1 and ε > 0.

1. Compute p̂max = maxi∈V p̂i.
2. For all j ∈ {0, . . . , �logc(e · n)�}:

Compute the expected revenue Rj for the uniform price pj =
p̂max

cj .
3. Return pj with maximal Rj .
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Theorem 6. Given the SM-model with monotone hazard rates, then for each
ε > 0 Algorithm 3 gives a 1-PR strategy s (i.e., a uniform price), such that

R(s) ≥ (1− ε) · R̂1-PR in polynomial time.

The basic idea of the proof is that the optimal uniform price p∗ cannot be
less than p̂max/(e ·n) and if we pick a price within (1− ε) of p∗ we get a (1− ε)-

approximation of R̂1-PR.
Next we show that for two rounds the problem becomes APX-hard. That is

it is NP-hard to approximate better than within a factor of 259/260. The proof
is via a reduction from the dominated set problem. In this reduction a client
has valuation 1 iff at least one of its neighbors is in the dominating set, and
0 otherwise. This function is not additive and thus the result requires the DS-
model (and not the SA-model).

Theorem 7. Maximizing the revenue of 2-PR, resp. 2-PRIE, is APX-hard for
the DS-model (and also for the concave graph models of [7,9]), in particular, it
is not approximable within 259/260.

Next we present the constant factor approximation of R̂ for k ∈ Ω(log n). In
the following strategy the set A of clients for the first round is given. We will
then choose A using the 2-PDIE-strategy of Theorem 2 to get the final result.

Algorithm 4 (Strategy k-PR(c, A)). Let A ⊆ V be the influence set and
c > 1 be a constant.

1. Give the product to all clients in A for free in the first round.
2. Set (p̂1, p̂2, . . . , p̂t) to the myopic prices of the clients in V \A for the influence

set A in descending order.

3. Set Sj =
{
i | p̂1

cj−1 ≥ p̂i >
p̂1

cj

}
and select the first k − 1 non-empty sets.

4. Each of these sets Sj becomes a set of clients that is offered the product in
one round with uniform price p(j) = mini∈Sj p̂i.

Our analysis of this strategy only collects revenue for clients in V \A and only
exploits externalities induced by clients in A, i.e., from clients in the first round.
Thus this algorithm would have the same performance if all nodes in V \A are
offered the item in the same round but with k − 1 different prices.

We denote by k-PR∗(c, q) the strategy where the influence set A is chosen
randomly such that each client is in A with probability q, independently of the
other clients. For the clients in the selected sets Sj we extract at least 1/c of the
revenue the optimal 2-PD strategy would extract from them. Additional in each
set there is one client that gets his myopic price (i.e., an additional (1 − 1/c)
factor of his optimal revenue). We show in the proof below that this second
contribution can be used to compensate for the optimal revenue of the clients
which are not in a selected set, resulting in the bound of the next theorem.

Theorem 8. Let c > 1 be a constant. Given valuations from the SM-model with
monotone hazard rates then for every 2-PDIE strategy s with influence set A

the strategy (k+1)-PR(c, A) achieves at least min{ 1c ,
(ck−1)

(ck−1)+e(n−k)(c−1)} of the
revenue R(s) of s.
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Proof. Consider the set V \ A = {1, . . . , n} and let p̂ := (p̂1, p̂2, . . . , p̂n) be the
vector of (myopic) prices induced by A. W.l.o.g., we assume that the prices and
the corresponding clients are sorted in a descending order. By the definition
R(s) =

∑n
i=1 p̂i ·P [vi ≥ p̂i].

For each client i we denote the price charged by the strategy (k+1)-PR(c, A)
by p∗i . The uniform price in round j is denoted by p(j). Then the revenue of
(k + 1)-PR(c, A) is given by: R((k + 1)-PR(c, A)) =

∑n
i=1 p

∗
i ·P [vi ≥ p∗i ]

Now, by construction of Sj , either p
∗
i ≥ p̂i/c in the case where i is in one of the

selected sets (the first k non-empty sets), or p∗i = 0 otherwise.
Let J be the set of the indices of the selected sets and l the largest index

among them. Let m be the number of clients that are offered the product, i.e.,
m is the client with the lowest myopic price in Sl.

Consider suitable chosen α ≤ 1/c. For each client i in a selected set the
algorithm collects at least a revenue of αp̂i · P [vi ≥ p̂i]. Additionally for each
j ∈ J there exists at least one client ij ∈ Sj who is charged his myopic price and
thus the algorithm collects the full revenue p̂ij ·P

[
vij ≥ p̂ij

]
.

R((k + 1)-PR(c, A)) ≥
∑

1≤i≤m

αp̂i ·P [vi ≥ p̂i] + (1 − α)
∑
j∈J

p(j) ·P
[
vij ≥ p(j)

]
The first term is an α-approximation for the revenue of the first m clients. We
next relate the second term to the revenue of the remaining clients and compute
an approximation factor α such that:

(1 − α)
∑
j∈J

p(j) ·P
[
vij ≥ p(j)

]
≥ α

∑
m+1≤i≤n

p̂i ·P [vi ≥ p̂i]

By the definition of the sets, p(j) ≥ p̂1

cj and by the monotone hazard rate condi-
tion P

[
vij ≥ p(j)

]
≥ 1/e. Thus

∑
j∈J

p(j) ·P
[
vij ≥ p(j)

]
≥

∑
l−k+1≤j≤l

p̂1c
−j 1

e
=

ck−l

e
· p̂1(1− c−k)

(c− 1)
=

p̂1(c
k − 1)

(c− 1)cle
.

Using (a) m ≥ k, (b) P [vi ≥ p̂i] ≤ 1 and (c) p̂i ≤ p̂1 · c−l for all i ≥ m + 1
we get

∑n
i=m+1 p̂i · P [vi ≥ p̂i] ≤ (n − k)p̂1c

−l. When resolving the inequality
(1−α)p̂1(c

k−1)
(c−1)cle ≥ α(n−k)p̂1

cl we obtain α ≤ (ck−1)
(ck−1)+e·(n−k)(c−1) =: β. Now setting

α = min(β, 1/c) yields the claim. ��

If the number of rounds is Ω(log n) and we are using the influence set from the
2-PDIE strategy 2-PD(0.5) in Theorem 2 we get a constant factor approximation.

Corollary 2. Assuming valuations from the SM-model with monotone hazard
rates, R(((logc n) + 1)-PR∗(c, 1/2)) ≥ R̂/(4c · e) for any constant c > 1.

Proof. Consider the 2-PDIE strategy s from Theorem 2, i.e., 2-PD(0.5), which

is a 1/4-approximation of R̂, i.e., R(s) ≥ R̂/4. Using the influence set A from
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s, i.e., randomly picking nodes with probability 1/2, we get that k-PR(c, A) is
equal to k-PR∗(c, 1/2). If we set k = logc n + 1 then Theorem 8 shows that
R(((logc n) + 1)-PR∗(c, 1/2)) ≥ R(S)/(c · e). Combining the two results we get

a 1
4e·c -approximation of R̂. ��

To obtain a k-PR strategy that matches the bound of Theorem 5 one can
first construct the ((logc n) + 1)-PR∗(c, 1/2) strategy from above. Then for the
k-PR strategy one uses the same influence set for the first round and for the
remaining rounds one picks the k− 1 rounds with the highest expected payment
in the strategy ((logc n) + 1)-PR∗(c, 1/2).3

Now let us consider 2-PR strategies. Due to the results in Section 4, the
best we can hope for is a constant factor approximation of R̂2-PR, not of R̂
or of R̂2-PD. We first show that we can restrict ourselves to approximating the
optimal IE strategy, as a revenue optimal IE strategy is within half of the revenue
optimal 2-PR strategies. The proof idea is to design two IE strategies, one for
the case that at least half of the revenue of the optimal k-PR strategy comes
from the first round, and one or the case that it does not. In either case, at most
half of the revenue is lost.

Lemma 3. Given valuations vi from the SM-model, then R̂IE
k-PR ≥ 1

2 R̂k-PR.

Thus it suffices to approximate R̂IE
k-PR. We give a simple 2-round algorithm for

the SM-model that is based on our 1-round strategy from Algorithm 3.

Algorithm 5 (Strategy PR0.5(ε)). Let ε be in R>0.

1. Assign each client in V to an influence set A, s.t. each client is a member of
A independently of the others with probability 1/2. Give the product to the
clients in A for free in the first round.

2. Use Algorithm 3 to compute a (1− ε)-approximation of the optimal revenue
for the given influence set A.

In the analysis of Algorithm 5 we first bound the probability that the valu-
ation of a client is larger than a fixed uniform price. This is different from the
approach in Section 3, where it was sufficient to argue about the expected rev-
enue we collect from a client. Then we use a technique similar to [9] to show

that R(PR0.5(ε)) is a (1/8− ε)-approximation of R̂IE
2-PR.

Theorem 9. Given valuations vi from the SM-model with monotone hazard
rates, then R(PR0.5(ε)) ≥

(
1
8 − ε

)
· R̂IE

2-PR for every ε > 0.

Together with Lemma 3 we then obtain that the above algorithm achieves at
least 1/16 of R̂2-PR in the SM-model with monotone hazard rates. By Theorem 5,

R̂IE
2-PR is a 1

eHn
-approximation of R̂IE

2-PD the above strategy is thus also a Θ( 1
Hn

)-

approximation of R̂.

Corollary 3. Given valuations vi from the SM-model with monotone hazard

rates, then R(PR0.5(ε)) ≥ (1/8−ε)
4Hn

· R̂IE
2-PD ≥

(1/8−ε)
16Hn

· R̂ for every ε > 0.

3 The authors are grateful to an anonymous reviewer for pointing this out.
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The above results can be generalized to k-PR strategies.

Theorem 10. Given valuations vi from the SM-model with monotone hazard
rates, for any k ≥ 2 and ε > 0 there exists a polynomial-time computable k-PR
strategy s such that R(s) ≥

(
1
8 − ε

)
· R̂IE

k-PR and thus R(s) ≥
(

1
16 − ε

)
· R̂k-PR.

The proof of Theorem 10 exploits that (i) we only lose a constant factor when
ignoring the influence between the latter rounds and that (ii) when given the
influence set and an instance without influence between the other clients we can
give an approximation scheme for the optimal uniform prices and compute the
corresponding round assignment.

Mirrokni et al. [9] study a different less general model, called concave graph
model (CG). They give an algorithm that, under certain assumptions, finds an
influence set A which achieves at least 1/2 of the revenue achieved by the optimal
influence set. We extend this result to 2-PRIE strategies in the SM-model. The
key ideas of the proof are that (1) if the seller charges a uniform price sufficiently
close to the optimal price then she only loses an ε of the revenue and (2) once
the seller has fixed the posted price, under the assumptions of the theorem, the
expected revenue is a submodular function of the influence set.

Theorem 11. Let μ > 0, Mv ≥ 0 and Mp ≥ 0 such that Mp ≤ Mv · μ. For
each client, let their valuations follow the SM-model with the following additional
assumptions: gi(∅) ≥ μ > 0, and ṽi is drawn from a probability distribution Fi

whose probability density function fi is positive, differentiable, non-decreasing on
(0,Mv) and for all x ∈ (0,Mv), fi(x) ≤ f̄ for some constant f̄ , and Fi(0) = 0,
Fi(Mv) = 1. Let the price be in the interval 0 ≤ p ≤ Mp. Then for every ε =
o(|V |−1) there is an algorithm finding a 2-PRIE strategy s, i.e., an influence set

A∗ and a uniform price p∗ for the second round, such that R(s) ≥
(
1
2 − ε

)
·R̂IE

2-PR.

By Lemma 3, the algorithm of Theorem 11 achieves at least (1/4− ε) of R̂2-PR.

6 Extensions of the Model

Our models and results can be extended in several directions.
First, one can consider more general classes of externalities. In the General

Monotone Model (GM) the valuation vi(B) of i is drawn from a (known) dis-
tribution with the CDF Fi,B such that P [vi(B) ≥ p] ≥ P [vi(B

′) ≥ p] for all
B′ ⊆ B and p ∈ R≥0. Notice that the proofs of Theorems 4 and 8 do not ex-
ploit the fact that the valuations are from the SM-model and thus extend to the
GM-model.

Second, the monotone hazard rate condition can be relaxed. For all theorems,
except Theorem 3, the crucial part we use is that there is a myopic price with a
certain acceptance probability. The exact approximation bound then depends on
this acceptance probability. If one can guarantee a higher acceptance probability
than 1/e also the presented approximation guarantees improve. For instance, if
one considers only uniform distributions for ṽi then the acceptance probability of
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the myopic price is 1/2 and the approximation guarantee of Theorem 1 improves
to (k − 1)/(3k − 2).

Third, one can consider different classes of marketing strategies. For instance
strategies where clients are split into k groups and l rounds such that (a) each
client belongs to exactly one group and round, (b) all clients in the same group
are offered the same price independent of their round and (c) only clients that
have purchased the product in a previous round can influence the valuation
functions of the clients in the current round, but this influence is independent of
their group. For instance, a group could model all clients that live in the same
country, preferred clients, or an age group. Our results extend to this setting
as well. That is, one can get a constant factor of R̂ using O(log n) different
groups/prices, but not with o(logn) different groups/prices.
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Abstract. In an ε-Nash equilibrium, a player can gain at most ε by
unilaterally changing his behaviour. For two-player (bimatrix) games
with payoffs in [0, 1], the best-known ε achievable in polynomial time
is 0.3393 [23]. In general, for n-player games an ε-Nash equilibrium can
be computed in polynomial time for an ε that is an increasing function
of n but does not depend on the number of strategies of the players.
For three-player and four-player games the corresponding values of ε are
0.6022 and 0.7153, respectively. Polymatrix games are a restriction of
general n-player games where a player’s payoff is the sum of payoffs from
a number of bimatrix games. There exists a very small but constant
ε such that computing an ε-Nash equilibrium of a polymatrix game is
PPAD-hard. Our main result is that an (0.5+δ)-Nash equilibrium of an n-
player polymatrix game can be computed in time polynomial in the input
size and 1

δ
. Inspired by the algorithm of Tsaknakis and Spirakis [23], our

algorithm uses gradient descent on the maximum regret of the players.

1 Introduction

Approximate Nash Equilibria. Nash equilibria are the central solution con-
cept in game theory. Since it is known that computing an exact Nash equilib-
rium [9,5] is unlikely to be achievable in polynomial time, a line of work has arisen
that studies the computational aspects of approximate Nash equilibria. The most
widely studied notion is of an ε-approximate Nash equilibrium (ε-Nash), which
requires that all players have an expected payoff that is within ε of a best re-
sponse. This is an additive notion of approximate equilibrium; the problem of
computing approximate equilibria of bimatrix games using a relative notion of
approximation is known to be PPAD-hard even for constant approximations [8].

So far, ε-Nash equilibria have mainly been studied in the context of two-player
bimatrix games. A line of work [11,10,2] has investigated the best ε that can
be guaranteed in polynomial time for bimatrix games. The current best result,
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due to Tsaknakis and Spirakis [23], is a polynomial-time algorithm that finds a
0.3393-Nash equilibrium of a bimatrix game with all payoffs in [0, 1].

In this paper, we study ε-Nash equilibria in the context ofmany-player games,
a topic that has received much less attention. A simple approximation algo-
rithm for many-player games can be obtained by generalising the algorithm of
Daskalakis, Mehta and Papadimitriou [11] from the two-player setting to the
n-player setting, which provides a guarantee of ε = 1 − 1

n . This has since been
improved independently by three sets of authors [3,18,2]. They provide a method
that converts a polynomial-time algorithm that for finding ε-Nash equilibria in
(n − 1)-player games into an algorithm that finds a 1

2−ε -Nash equilibrium in
n-player games. Using the polynomial-time 0.3393 algorithm of Tsaknakis and
Spirakis [23] for 2-player games as the base case for this recursion, this allows us
to provide polynomial-time algorithms with approximation guarantees of 0.6022
in 3-player games, and 0.7153 in 4-player games. These guarantees tend to 1 as
n increases, and so far, no constant ε < 1 is known such that, for all n, an ε-Nash
equilibrium of an n-player game can be computed in polynomial time.

For n-player games, we have lower bounds for ε-Nash equilibria. More pre-
cisely, Rubinstein has shown that when n is not a constant there exists a constant
but very small ε such that it is PPAD-hard to compute an ε-Nash equilibrium [22].
This is quite different from the bimatrix game setting, where the existence of
a quasi-polynomial time approximation scheme rules out such a lower bound,
unless all of PPAD can be solved in quasi-polynomial time [21].

Polymatrix Games. In this paper, we focus on a particular class of many-
player games called polymatrix games. In a polymatrix game, the interaction
between the players is specified by an n vertex graph, where each vertex repre-
sents one of the players. Each edge of the graph specifies a bimatrix game that
will be played by the two respective players, and thus a player with degree d
will play d bimatrix games simultaneously. More precisely, each player picks a
strategy, and then plays this strategy in all of the bimatrix games that he is
involved in. His payoff is then the sum of the payoffs that he obtains in each of
the games.

Polymatrix games are a class of succinctly represented n-player games: a poly-
matrix game is specified by at most n2 bimatrix games, each of which can be
written down in quadratic space with respect to the number of strategies. This
is unlike general n-player strategic form games, which require a representation
that is exponential in the number of players.

There has been relatively little work on the approximation of polymatrix
games. Obviously, the approximation algorithms for general games can be ap-
plied in this setting, but to the best of our knowledge there have been no upper
bounds that are specific to polymatrix games. On the other hand, the lower
bound of Rubinstein mentioned above is actually proved by constructing poly-
matrix games. Thus, there is a constant but very small ε such that it is PPAD-hard
to compute an ε-Nash equilibrium [22], and this again indicates that approxi-
mating polymatrix games is quite different to approximating bimatrix games.
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Our Contribution. Our main result is an algorithm that, for every δ in the
range 0 < δ ≤ 0.5, finds a (0.5 + δ)-Nash equilibrium of a polymatrix game in
time polynomial in the input size and 1

δ . Note that our approximation guarantee
does not depend on the number of players, which is a property that was not
previously known to be achievable for polymatrix games, and still cannot be
achieved for general strategic form games.

We prove this result by adapting the algorithm of Tsaknakis and Spirakis [23]
(henceforth referred to as the TS algorithm). They give a gradient descent algo-
rithm for finding a 0.3393-Nash equilibrium in a bimatrix game. We generalise
their algorithm to the polymatrix setting, and show that it always arrives at a
(0.5 + δ)-Nash equilibrium after a polynomial number of iterations.

In order to generalise the TS algorithm, we had to overcome several issues.
Firstly, the TS algorithm makes the regrets of the two players equal in every
iteration, but there is no obvious way to achieve this in the polymatrix setting.
Instead, we show how gradient descent can be applied to strategy profiles where
the regrets are not necessarily equal. Secondly, the output of the TS algorithm
is either a point found by gradient descent, or a point obtained by modifying the
result of gradient descent. In the polymatrix game setting, it is not immediately
obvious how such a modification can be derived with a non-constant number
of players (without an exponential blowup). Thus we apply a different analy-
sis, which proves that the point resulting from gradient descent always has our
approximation guarantee. It is an interesting open question whether a better
approximation can be achieved when there is a constant number of players.

An interesting feature of our algorithm is that it can be applied even when
players have differing degrees. Originally, polymatrix games were defined only
for complete graphs [19]. Since previous work has only considered lower bounds
for polymatrix games, it has been sufficient to restrict the model to only includ-
ing complete graphs, or in the case of Rubinstein’s work [22], regular graphs.
However, since this paper is proving an upper bound, we must be more careful.
As it turns out, our algorithm will find a 0.5-Nash equilibrium, no matter what
graph structure the polymatrix game has.

Related Work. An FPTAS for the problem of computing an ε-Nash equilib-
rium of a bimatrix game does not exist unless every problem in PPAD can be
solved in polynomial time [5]. Arguably, the biggest open question in equilib-
rium computation is whether there exists a PTAS for this problem. As we have
mentioned, for any constant ε > 0, there does exist a quasi-polynomial -time al-
gorithm for computing an ε-Nash equilibria of a bimatrix game, or any game
with a constant number of players [21,1], with running time kO(log k) for a k× k
bimatrix game. Consequently, in contrast to the many-player case, it is not be-
lieved that there exists a constant ε such that the problem of computing an
ε-Nash equilibrium of a bimatrix game (or any game with a constant number
of players) is PPAD-hard, since it seems unlikely that all problems in PPAD have
quasi-polynomial-time algorithms. On the other hand, for multi-player games,
as mentioned above, there is a small constant ε such that it is PPAD-hard to
compute an ε-Nash equilibrium of an n-player game when n is not constant.
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One positive result we do have for multi-player games is that there is a PTAS
for anonymous games (where the identity of players does not matter) when the
number of strategies is constant [12].

Polymatrix games have played a central role in the reductions that have
been used to show PPAD-hardness of games and other equilibrium prob-
lems [9,5,13,15,6]. Computing an exact Nash equilibrium in a polymatrix game
is PPAD-hard even when all the bimatrix games played are either zero-sum games
or coordination games [4]. Polymatrix games have been used in other contexts
too. For example, Govindan and Wilson proposed a (non-polynomial-time) al-
gorithm for computing Nash equilibria of an n-player game, by approximating
the game with a sequence of polymatrix games [16]. Later, they presented a
(non-polynomial) reduction that reduces n-player games to polymatrix games
while preserving approximate Nash equilibria [17]. Their reduction introduces a
central coordinator player, who interacts bilaterally with every player.

2 Preliminaries

We start by fixing some notation. We use [k] to denote the set of integers
{1, 2, . . . , k}, and when a universe [k] is clear, we will use S̄ = {i ∈ [k], i /∈ S} to
denote the complement of S ⊆ [k]. For a k-dimensional vector x, we use x−S to
denote the elements of x with with indices S̄, and in the case where S = {i} has
only one element, we simply write x−i for x−S .

Polymatrix Games. An n-player polymatrix game is defined by an undirected
graph (V,E) with n vertices, where every vertex corresponds to a player. The
edges of the graph specify which players interact with each other. For each i ∈ [n],
we use N(i) = {j : (i, j) ∈ E} to denote the neighbours of player i, and we use
d(i) = |N(i)| to denote player i’s degree.

Each edge (i, j) ∈ E specifies that a bimatrix game will be played between
players i and j. Each player i ∈ [n] has a fixed number of pure strategies mi, and
the bimatrix game on edge (i, j) ∈ E will therefore be specified by an mi ×mj

matrix Aij , which gives the payoffs for player i, and an mj × mi matrix Aji,
which gives the payoffs for player j. We assume that all payoff lie in the range
[0, 1], and therefore each payoff matrix Aij lies in [0, 1]mi×mj .

Strategies. Amixed strategy for player i is a probability distribution over player
i’s pure strategies. Formally, for each positive integer k, we denote the (k − 1)-

dimensional simplex by Δk := {x : x ∈ Rk, x ≥ 0,
∑k

i=1 xi = 1}, and therefore
the set of strategies for player i is Δmi . For each mixed strategy x ∈ Δm, the
support of x is defined as supp(x) := {i ∈ [m] : xi �= 0}, which is the set of
strategies played with positive probability by x.

A strategy profile specifies a mixed strategy for every player. We denote the
set of mixed strategy profiles as Δ := Δm1 × . . .×Δmn . Given a strategy profile
x = (x1, . . . , xn) ∈ Δ, the payoff of player i under x is the sum of the payoffs
that he obtains in each of the bimatrix games that he plays. Formally, we define:
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ui(x) := xT
i

∑
j∈N(i)

Aijxj . (1)

We denote by ui(x
′
i,x) the payoff for player i when he plays x′

i and the other
players play according to the strategy profile x. In some cases the first argument
will be xi − x′

i which may not correspond to a valid strategy for player i but we
still apply the equation as follows:

ui(xi − x′
i,x) := xT

i

∑
j∈N(i)

Aijxj − x′T
i

∑
j∈N(i)

Aijxj = ui(xi,x)− ui(x
′
i,x).

Best Responses. Let vi(x) be the vector of payoffs for each pure strategy of
player i when the rest of players play strategy profile x. Formally,

vi(x) =
∑

j∈N(i)

Aijxj .

For each vector x ∈ Rm, we define suppmax(x) to be the set of indices that
achieve the maximum of x, that is, we define suppmax(x) = {i ∈ [m] : xi ≥
xj , ∀j ∈ [m]}. Then the pure best responses of player i against a strategy profile
x (where only x−i is relevant) is given by:

Bri(x) = suppmax

⎛⎝ ∑
j∈N(i)

Aijxj

⎞⎠ = suppmax(vi(x)). (2)

The corresponding best response payoff is given by:

u∗
i (x) = max

k

⎧⎨⎩( ∑
j∈N(i)

Aijxj

)
k

⎫⎬⎭ = max
k

{(
vi(x)

)
k

}
. (3)

Equilibria. In order to define the exact and approximate equilibria of a polyma-
trix game, we first define the regret that is suffered by each player under a given
strategy profile. For each player i, we define the regret function fi : Δ→ [0, 1] as:

fi(x) :=
1

d(i)

(
u∗
i (x)− ui(x)

)
. (4)

Note that here we have taken the standard definition of regret, and divided it
by the player’s degree. This rescales the regret so that it lies in the range [0, 1],
which ensures that our approximation guarantee is comparable with those in
the literature. The maximum regret under a strategy profile x is given by the
function f(x) where:

f(x) := max{f1(x), . . . , fn(x)}. (5)

We say that x is an ε-approximate Nash equilibrium (ε-NE) if we have f(x) ≤ ε,
and x is an exact Nash equilibrium if we have f(x) = 0.
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3 The Gradient

Our goal is to apply gradient descent to the regret function f . In this section,
we formally define the gradient of f in Definition 1, and give a reformulation of
that definition in Lemma 3. In order to show that our gradient descent method
terminates after a polynomial number of iterations, we actually need to use a
slightly modified version of this reformulation, which we describe at the end of
this section in Definition 5.

Given a point x ∈ Δ, a feasible direction from x is defined by any other
point x′ ∈ Δ. This defines a line between x and x′, and formally speaking, the
direction of this line is x′ − x. In order to define the gradient of this direction,
we consider the function f((1 − ε) · x + ε · x′) − f(x) where ε lies in the range
0 ≤ ε ≤ 1. The gradient of this direction is given in the following definition.

Definition 1. Given profiles x,x′ ∈ Δ and ε ∈ [0, 1], we define:

Df(x,x′, ε) := f((1− ε) · x+ ε · x′)− f(x).

Then, we define the gradient of f at x in the direction x′ − x as:

Df(x,x′) = lim
ε→0

1

ε
Df(x,x′, ε).

This is the natural definition of the gradient, but it cannot be used directly
in a gradient descent algorithm. We now show how this definition can be re-
formulated. Firstly, for each x,x′ ∈ Δ, and for each player i ∈ [n], we define:

Dfi(x,x
′) :=

1

d(i)

(
max

k∈Bri(x)

{(
vi(x

′)
)
k

}
− ui(xi,x

′) + ui(xi − x′
i,x)

)
. (6)

Next we define K(x) to be the set of players that have maximum regret under
the strategy profile x.

Definition 2. Given a strategy profile x, define K(x) as follows:

K(x) :=
{
i ∈ [n], fi(x) = f(x)

}
=

{
i ∈ [n], fi(x) = max

j∈[n]
fj(x)

}
. (7)

The following lemma provides our reformulation.

Lemma 3. The gradient of f at point x along direction x′ − x is:

Df(x,x′) = max
i∈K(x)

Dfi(x,x
′)− f(x).

In order to show that our gradient descent algorithm terminates after a poly-
nomial number of steps, we have to use a slight modification of the formula given
in Lemma 3. More precisely, in the definition of Dfi(x,x

′), we need to take the
maximum over the δ-best responses, rather than the best responses.

We begin by providing the definition of the δ-best responses.
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Definition 4 (δ-best response). Let x ∈ Δ, and let δ ∈ (0, 0.5]. The δ-best
response set Brδi (x) for player i ∈ [n] is defined as:

Brδi (x) :=
{
j ∈ [mi] :

(
vi(x)

)
j
≥ u∗

i (x) − δ · d(i)
}
.

Observe that we have multiplied δ by d(i), because d(i) is the maximum possible
payoff that player i can obtain. We now define the function Df δ

i (x,x
′).

Definition 5. Let x,x′ ∈ Δ, let ε ∈ [0, 1], and let δ ∈ (0, 0.5]. We define
Df δ

i (x,x
′) as:

Df δ
i (x,x

′) :=
1

d(i)

(
max

k∈Brδi (x)

{(
vi(x

′)
)
k

}
− ui(xi,x

′)− ui(x
′
i,x) + ui(xi,x)

)
.

(8)
Furthermore, we define Df δ(x,x′) as:

Df δ(x,x′) = max
i∈K(x)

Df δ
i (x,x

′)− f(x). (9)

Our algorithm works by performing gradient descent using the function Df δ

as the gradient. Obviously, this is a different function to Df , and so we are not
actually performing gradient descent on the gradient of f . It is important to
note that all of our proofs are in terms of Df δ, and so this does not affect the
correctness of our algorithm. We gave Lemma 3 in order to explain where our
definition of the gradient comes from, but the correctness of our algorithm does
not depend on the correctness of Lemma 3.

4 The Algorithm

In this section, we describe our algorithm for finding a (0.5+δ)-Nash equilibrium
in a polymatrix game by gradient descent. Each iteration of the algorithm com-
prises of two steps. First we find the direction of steepest descent with respect
to Df δ, and then we determine how far we should move in that direction. In
this section, we describe these two components, and then we combine them in
order to give our algorithm.

The Direction of Steepest Descent. We show that the direction of steepest
descent can be found by solving a linear program. Our goal is, for a given strategy
profile x, to find another strategy profile x′ so as to minimize the gradient
Df δ(x,x′). Recall that Df δ is defined in Equation (9) to be:

Df δ(x,x′) = max
i∈K(x)

Df δ
i (x,x

′)− f(x).

Note that the term f(x) is a constant in this expression, because it is the same
for all directions x′. Thus, it is sufficient to formulate a linear program in order
to find the x′ that minimizes maxi∈K(x)Df δ

i (x,x
′). Using the definition of Df δ

i

in Equation (8), we can do this as follows.
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Definition 6 (Steepest descent linear program). Given a strategy pro-
file x, the steepest descent linear program is defined as follows. Find x′ ∈ Δ,
l1, l2, . . . , l|K(x)|, and w such that:

minimize w

subject to
(
vi(x

′)
)
k
≤ li ∀k ∈ Brδi (x), ∀i ∈ K(x)

1

d(i)

(
li − ui(xi,x

′)− ui(x
′
i,x) + ui(x)

)
≤ w ∀i ∈ K(x)

x′ ∈ Δ.

The li variables deal with the maximum in the term maxk∈Brδi (x)

{(
vi(x

′)
)
k

}
,

while the variable w is used to deal with the maximum over the functions Df δ
i .

Since the constraints of the linear program correspond precisely to the definition
of Df δ, it is clear that, when we minimize w, the resulting x′ specifies the direc-
tion of steepest descent. For each profile x, we define Q(x) to be the direction
x′ found by the steepest descent LP for x.

The Descent Distance. Once we have found the direction of steepest descent,
we then need to know how far we should move in that direction. This can also be
formulated as a linear program. Formally, given a strategy profile x and a descent
direction x′, we wish to find the ε that minimizes the value of f(x+ ε(x′ − x)).
The following definition shows how to write this as a linear program.

Definition 7 (Optimal distance linear program). Given two strategy pro-
files x and x′ we define the following linear program over the variables ε, w, and
l1, l2, . . . , ln:

min w

vi(x+ ε(x′ − x)) ≤ li ∀i ∈ [n]

1

d(i)

(
li + ui(x+ ε(x′ − x))

)
≤ w ∀i ∈ [n]

ε ∈ [0, 1].

To see that this is correct, observe that we have simply expanded f(x+ε(x′−x))
using Equations (5) and (4). The li variables are used to handle the max used in
the definition of u∗

i (x) from Equation (3), and the variable w is used to minimise
the overall expression. Thus, in the solution to this LP, we have that the variable
ε will hold the value that minimises the expression f(x+ ε(x′ − x)).

The Algorithm. We can now formally describe our algorithm. The algorithm
takes a parameter δ ∈ (0, 0.5], which will be used as a tradeoff between running
time and the quality of approximation.
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Algorithm 1

1. Choose an arbitrary strategy profile x ∈ Δ.

2. Solve the steepest descent LP with input x to obtain x′ = Q(x).

3. Solve the optimal distance linear program for x and x′. Let ε be the
value returned by the LP, and set x := x+ ε(x′ − x).

4. If f(x) ≤ 0.5 + δ then stop, otherwise go to step 2.

A single iteration of this algorithm corresponds to executing steps 2, 3, and 4.
Since this only involves solving two linear programs, it is clear that each iteration
can be completed in polynomial time. The rest of this paper is dedicated to
showing the following theorem, which is our main result.

Theorem 8. Algorithm 1 finds a (0.5 + δ)-NE after at most O( 1
δ2 ) iterations.

To prove Theorem 8, we will show two properties. Firstly, in Section 5, we show
that our gradient descent algorithm never gets stuck in a stationary point before
it finds a (0.5 + δ)-NE. To do so, we define the notion of a δ-stationary point,
and we show that every δ-stationary point is at least a (0.5+ δ)-NE, which then
directly implies that the gradient descent algorithm will not get stuck before it
finds a (0.5 + δ)-NE.

Secondly, in Section 6, we prove the upper bound on the number of iterations.
To do this we show that, if an iteration of the algorithm starts at a point that
is not a δ-stationary point, then that iteration will make a large enough amount
of progress. This then allows us to show that the algorithm will find a (0.5+ δ)-
NE after O( 1

δ2 ) many iterations, and therefore the overall running time of the
algorithm is polynomial.

5 Stationary Points

Recall that Definition 6 gives a linear program for finding the direction x′ that
minimises Df δ(x,x′). Our steepest descent procedure is able to make progress
whenever this gradient is negative, and so a stationary point is any point x for
which Df δ(x,x′) ≥ 0. In fact, our analysis requires us to consider δ-stationary
points, which we now define.

Definition 9 (δ-stationary point). Let x∗ be a mixed strategy profile, and let
δ > 0. We have that x∗ is a δ-stationary point if for all x′ ∈ Δ:

Df δ(x∗,x′) ≥ −δ.

We now show that every δ-stationary point of f(x) is a (0.5 + δ)-NE. Recall
from Definition 5 that:

Df δ(x,x′) = max
i∈K(x)

Df δ
i (x,x

′)− f(x).
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Therefore, if x∗ is a δ-stationary point, we must have, for every direction x′:

f(x∗) ≤ max
i∈K(x)

Df δ
i (x

∗,x′) + δ. (10)

Since f(x∗) is the maximum regret under the strategy profile x∗, in order to
show that x∗ is a (0.5+ δ)-NE, we only have to find some direction x′ such that
that maxi∈K(x) Df δ

i (x,x
′) ≤ 0.5. We do this in the following lemma.

Lemma 10. In every stationary point x∗, there exists a direction x′ such that:

max
i∈K(x)

Df δ
i (x

∗,x′) ≤ 0.5.

Proof. First, define x̄ to be a strategy profile in which each player i ∈ [n] plays
a best response against x∗. We will set x′ = x̄+x∗

2 . Then for each i ∈ K(x), we
have that Df δ

i (x
∗,x′), is less than or equal to:

1

d(i)

(
max

k∈Brδ
i
(x∗)

{(
vi(

x̄+ x∗

2
)
)
k

}
− ui(x

∗
i ,

x̄+ x∗

2
)− ui(

x̄i + x∗
i

2
,x∗) + ui(x

∗
i ,x

∗)

)

=
1

d(i)

(
1

2
max

k∈Brδ
i
(x∗)

{(
vi(x̄+ x∗)

)
k

}− 1

2
ui(x

∗
i , x̄)− 1

2
ui(x̄i,x

∗)

)

≤ 1

2d(i)

(
max

k∈Brδi (x
∗)

{(
vi(x̄)

)
k

}
+ max

k∈Brδi (x
∗)

{(
vi(x

∗)
)
k

}− ui(x
∗
i , x̄)− ui(x̄i,x

∗)

)

=
1

2d(i)

(
max

k∈Brδ
i
(x∗)

{(
vi(x̄)

)
k

}− ui(x
∗
i , x̄)

)
because x̄i is a b.r. to x∗

≤ 1

2d(i)

(
max

k∈Brδ
i
(x∗)

{(
vi(x̄)

)
k

})

≤ 1

2d(i)
· d(i) = 1

2
.

Thus, the point x′ satisfies maxi∈K(x)Df δ
i (x

∗,x′) ≤ 0.5. ��

We can sum up the results of the section in the following lemma.

Lemma 11. Every δ-stationary point x∗ is a (0.5 + δ)-Nash equilibrium.

6 The Time Complexity of the Algorithm

In this section, we show that Algorithm 1 terminates after a polynomial number
of iterations. Let x be a strategy profile that is considered by Algorithm 1, and
let x′ = Q(x) be the solution of the steepest descent LP for x. These two profiles
will be fixed throughout this section. Recall that Algorithm 1 moves from x to
the point x̄ := x + ε(x′ − x), where ε is found by solving the optimal distance
linear program. In this section, we show a lower bound on f(x+ε(x′−x))−f(x),
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which corresponds to showing a lower bound on the amount of progress made
by each iteration of the algorithm.

To simplify our analysis, we show our lower bound for ε = δ
δ+2 , which will be

fixed throughout the rest of this section. Since ε = δ
δ+2 gives a feasible point in

the optimal distance linear program, a lower bound for the case where ε = δ
δ+2

is also a lower bound for the case where ε solves the optimal distance LP.
We first prove a lemma that will be used to show our bound on the number of

iterations. To simplify our notation, throughout this section we define fnew :=
f(x+ε(x′−x)) and f := f(x). Furthermore, we define D = maxi∈[n] Df δ

i (x,x
′).

The following lemma gives a relationship between f and fnew.

Lemma 12. In every iteration of Algorithm 1 we have:

fnew − f ≤ ε(D − f) + ε2(1−D). (11)

In the next lemma we prove that, if we are not in a δ-stationary point, then
we have a bound on the amount of progress made in each iteration. We use this
in order to bound the number of iterations needed before we reach a point x
where f(x) ≤ 0.5 + δ.

Lemma 13. Fix ε = δ
δ+2 , where 0 < δ ≤ 0.5. Either x is a δ-stationary point

or:

fnew ≤
(
1−

(
δ

δ + 2

)2
)
f. (12)

Proof. Recall from Lemma 12 the gain in each iteration of the steepest descent is:

fnew − f ≤ ε(D − f) + ε2(1−D). (13)

We consider the following two cases:

a) D − f > −δ. Then, by definition, we are in a δ-stationary point.
b) D − f ≤ −δ. We have set ε = δ

δ+2 . If we solve for δ we get that δ = 2ε
1−ε .

Since D − f ≤ −δ, we have that (D − f)(1− ε) ≤ −2ε. Thus we have:

(D − f)(ε− 1) ≥ 2ε

0 ≥ (D − f)(1− ε) + 2ε

0 ≥ (D − f) + ε(2−D + f)

−εf − ε ≥ (D − f) + ε(1−D) (ε ≥ 0)

−ε2f − ε2 ≥ ε(D − f) + ε2(1−D).

Thus, since ε2 ≥ 0 we get:

−ε2f ≥ ε(D − f) + ε2(1−D)
≥ fnew − f According to (13).
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Thus we have shown that:

fnew − f ≤− ε2f

fnew ≤(1− ε2)f.

Finally, using the fact that ε = δ
δ+2 , we get that

fnew ≤
(
1−

(
δ

δ + 2

)2
)
f.

��
So, when the algorithm has not reached yet a δ-stationary point, there is a
decrease on the value of f that is at least as large as the bound specified in (12)
in every iteration of the gradient descent procedure. In the following lemma we
prove that after O( 1

δ2 ) iterations of the steepest descent procedure the algorithm
finds a point x where f(x) ≤ 0.5 + δ.

Lemma 14. After O( 1
δ2 ) iterations of the steepest descent procedure the algo-

rithm finds a point x where f(x) ≤ 0.5 + δ.

Proof. Let x1, x2, . . . , xk be the sequence of strategy profiles that are considered
by Algorithm 1. Since the algorithm terminates as soon as it finds a (0.5+δ)-NE,
we have f(xi) > 0.5 + δ for every i < k. Therefore, for each i < k we we can
apply Lemma 11 to argue that xi is not a δ-stationary point, which then allows
us to apply Lemma 13 to obtain:

f(xi+1) ≤
(
1−

(
δ

δ + 2

)2
)
f(xi).

So, the amount of progress made by the algorithm in iteration i is:

f(xi)− f(xi+1) ≥ f(xi)−
(
1−

(
δ

δ + 2

)2
)
f(xi)

=

(
δ

δ + 2

)2

f(xi)

≥
(

δ

δ + 2

)2

· 0.5.

Thus, each iteration of the algorithm decreases the regret by at least ( δ
δ+2 )

2 ·0.5.
The algorithm starts at a point x1 with f(x1) ≤ 1, and terminates when it
reaches a point xk with f(xk) ≤ 0.5 + δ. Thus the total amount of progress
made over all iterations of the algorithm can be at most 1− (0.5+ δ). Therefore,
the number of iterations used by the algorithm can be at most:

1− (0.5 + δ)(
δ

δ+2

)2

· 0.5
≤ 1− 0.5(

δ
δ+2

)2

· 0.5

=
(δ + 2)2

δ2
=

δ2

δ2
+

4δ

δ2
+

4

δ2
.



70 A. Deligkas et al.

Since δ < 1, we have that the algorithm terminates after at most O( 1
δ2 ) itera-

tions. ��

Lemma 14 implies that that after polynomially many iterations the algorithm
finds a point such that f(x) ≤ 0.5 + δ, and by definition such a point is a
(0.5 + δ)-NE. Thus we have completed the proof of Theorem 8.

7 Conclusions and Open Questions

We have presented a polynomial-time algorithm that finds a 0.5-Nash equilib-
rium of a polymatrix game. Though we do not have examples that show that
the approximation guarantee is tight for our algorithm, we do not see an obvious
approach to prove a better guarantee. The initial choice of strategy profile affects
our algorithm, and it is conceivable that one may be able to start the algorithm
from an efficiently computable profile with certain properties that allow a better
approximation guarantee. One natural special case is when there is a constant
number of players, which may allow one to derive new strategy profiles from a
stationary point as done by Tsaknakis and Sprirakis [23]. It may also be possible
to develop new techniques when the number of pure strategies available to the
players is constant, or when the structure of the graph is restricted in some way.

This paper has considered ε-Nash equilibria, which are the most well-studied
type of approximate equilibria. However, ε-Nash equilibria have a drawback:
since they only require that the expected payoff is within ε of a pure best re-
sponse, it is possible that a player could be required to place probability on
a strategy that is arbitrarily far from being a best response. An alternative,
stronger, notion is an ε-well supported approximate Nash equilibrium (ε-WSNE).
It requires that players only place probability on strategies that have payoff
within ε of a pure best response. Every ε-WSNE is an ε-Nash, but the converse
is not true. For bimatrix games, the best-known additive approximation that
is achievable in polynomial time gives a

(
2
3 − 0.0047

)
-WSNE [14]. It builds on

the algorithm given by Kontogiannis and Spirakis that achieves a 2
3 -WSNE in

polynomial time [20]. Recently a polynomial-time algorithm with a better ap-
proximation guarantee have been given for symmetric bimatrix games [7]. Note,
it has been shown that there is a PTAS for finding ε-WSNE of bimatrix games if
and only if there is a PTAS for ε-Nash [9,5]. For n-player games with n > 2 there
has been very little work on developing algorithms for finding ε-WSNE. This is
a very interesting direction, both in general and when n > 2 is a constant.
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Optimal Cost-Sharing in Weighted Congestion

Games
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Abstract. We identify how to share costs locally in weighted congestion
games with polynomial cost functions in order to minimize the worst-case
price of anarchy (PoA). First, we prove that among all cost-sharing meth-
ods that guarantee the existence of pure Nash equilibria, the Shapley
value minimizes the worst-case PoA. Second, if the guaranteed existence
condition is dropped, then the proportional cost-sharing method mini-
mizes the worst-case PoA over all cost-sharing methods. As a byproduct
of our results, we obtain the first PoA analysis of the simple marginal
contribution cost-sharing rule, and prove that marginal cost taxes are
ineffective for improving equilibria in (atomic) congestion games.

Keywords: cost-sharing, selfish routing, congestion games.

1 Introduction

Sharing Costs to Optimize Equilibria. Weighted congestion games [35] are a
simple class of competitive games that are flexible enough to model diverse
settings (e.g., routing [38], network design [3], and scheduling [26]). These games
consist of a ground set of resources E and a set of players N who are competing
for the use of these resources. Every player i ∈ N is associated with a weight
wi, and has a set of strategies Pi ⊆ 2E , each of which corresponds to a subset
of the resources. Given a strategy profile P = (Pi)i∈N , where Pi ∈ Pi. The
set of players Sj = {i : j ∈ Pi} using some resource j ∈ E generates a social
cost Cj(fj) on this resource (e.g., Cj(fj) = α · fd

j ), which is a function of their
total weight fj =

∑
i∈Sj

wi; this joint cost could represent monetary cost, or

a physical cost such as aggregate queueing delay [40]. The social cost of every
resource can be distributed among the players using it. As a result, each player
i suffers some cost cij(P ) from each of the resources j ∈ Pi, and its goal is to
choose a strategy that minimizes the cost

∑
j∈Pi

cij(P ) that it suffers across all
the resources that it uses.

How can a system designer minimize the sum of the players’ costs∑
i∈N

∑
j∈Pi

cij(P ) =
∑
j∈E

Cj(fj) (1)

over all possible outcomes P? The answer depends on what the designer can do.
We are interested in settings where centralized optimization is infeasible, and

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 72–88, 2014.
c© Springer International Publishing Switzerland 2014
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the designer can only influence players’ behavior through local design decisions.
Precisely, we allow a designer to choose a cost-sharing rule that defines what
share ξj(i, Sj) of the joint cost Cj(fj) each player i ∈ Sj is responsible for
(so cij(P ) = ξj(i, Sj)). Such cost-sharing rules are “local” in the sense that they
depend only on the set of players using the resource, and not on the users of other
resources. Given a choice of a cost-sharing rule, we can quantify the inefficiency
in the resulting game via the price of anarchy (PoA) — the ratio of the total cost
at the worst equilibrium and the optimal cost. The set of equilibria and hence
the PoA are a complex function of the chosen cost-sharing rule.

The goal of this paper is to answer the following question.

Which cost-sharing rule minimizes the worst-case PoA in polynomial
weighted congestion games?

In other words, when a system designer can only indirectly influence the game
outcome through local design decisions, what should he or she do?

The present work is the first to study this question. Previous work on the
PoA in weighted congestion games, reviewed next, has focused exclusively on
evaluating the worst-case PoA with respect to a single cost-sharing rule. Previous
work on how to best locally influence game outcomes in other models is discussed
in Section 1.2.

Example: Proportional Cost Sharing. Almost all previous work on weighted con-
gestion games has studied the proportional cost-sharing rule [4, 6, 18, 20, 21, 29,
30, 36]. According to this rule, at each resource j, each player i ∈ Sj is responsi-
ble for a wi/fj fraction of the joint cost, i.e., a fraction proportional to its weight.
The worst-case PoA is well understood in games with proportional cost sharing.
For polynomial cost functions Cj(fj) of maximum degree d, the worst-case PoA
is φd

d, where φd = Θ(d/ ln d) is the positive root of fd(x) = xd − (x + 1)d−1 [2].
One of the main disadvantages of this cost-sharing rule is that it does not guar-
antee the existence of a pure Nash equilibrium (PNE), but the upper bounds
are still meaningful since they apply to much more general equilibrium concepts,
like coarse correlated equilibria, which do exist [37].

Example: Shapley Cost Sharing. The only other cost-sharing rule for which the
worst-case PoA of weighted congestion games is known is the Shapley cost shar-
ing rule. The cost shares defined by the Shapley value can be derived in the
following manner: given an ordering over the users of a resource, these users
are introduced to the resource in that order and each user is responsible for
the marginal increase of the cost caused by its arrival. The Shapley cost share
of each user is then defined as its average marginal increase over all orderings.
Unlike proportional cost sharing, this cost-sharing rule guarantees the existence
of a PNE in weighted congestion games [25]. The worst-case PoA of this rule
for polynomials of maximum degree d is χd

d, where χd ≈ 0.9 · d is the root of
gd(x) = 3 · xd − (x+ 1)d − 1 [25].
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Other Cost-Sharing Rules. Without the condition of guaranteed PNE existence,
there is obviously a wide range of possible cost-sharing rules. The space of rules
that guarantee the existence of PNE is much more limited but still quite rich. [19]
showed that the space of such rules correspond exactly to the weighted Shapley
values. This class of cost-sharing rules generalizes the Shapley cost sharing rule
by assigning a sampling weight λi to each player i. The cost shares of the play-
ers are then defined to be an appropriately weighted average of their marginal
increases over different orderings (see Section 2.1); hence the “design space” is
(k − 1)-dimensional, where k is the number of players.1

1.1 Our Results

Our two main results resolve the question of how to optimally share cost in
weighted congestion games to minimize the worst-case PoA.

Main Result 1 (Informal): Among all cost-sharing rules that guarantee the
existence of PNE, the worst-case PoA of weighted congestion games is minimized
by the Shapley cost sharing rule.

For example, the plot of Figure 1 shows how the worst-case PoA varies for a
well-motivated subclass of the weighted Shapley rules parameterized by a vari-
able γ (details are in Section 2.1). The PoA of these cost-sharing rules varies and
it exhibits discontinuous behavior, but in all cases it is at least as large as the
PoA when the parameter value is γ = 0, which corresponds to the (unweighted)
Shapley cost-sharing rule.

Main Result 2 (Informal): Among all cost-sharing rules, the worst-case PoA
of weighted congestion games is minimized by the proportional cost sharing rule.

In the second result, we generously measure the PoA of pure Nash equilibria
only in instances where such equilbria exist. That is, our lower bounds construct
games that have a PNE that is far from optimal. For the optimal rule (propor-
tional cost-sharing), however, the PoA upper bound applies more generally to
equilibrium concepts that are guaranteed to exist, including coarse correlated
equilibria.

As a byproduct of our results, we also obtain tight bounds for the worst-
case PoA of the marginal contribution cost-sharing rule (see Section 2.2). The
marginal contribution rule defines individual cost shares that may in general add
up to more than the total joint costs, but we show that, even if any additional
costs are disregarded, which reduces this policy to marginal cost taxes, the worst-
case PoA remains high.

1 The sampling weights λi can be chosen to be related to the players’ weights wi, or
not. The joint cost is a function of players’ weights wi; the sampling weights only
affect how this joint cost is shared amongst them.
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Fig. 1. PoA of parameterized weighted Shapley values for quadratic resource costs

1.2 Further Related Work

This paper contributes to the literature on how to design and modify games
to minimize the inefficiency of equilibria. Several previous works consider how
the choice of a cost-sharing rule affects this inefficiency in other models: [33] in
participation games; [11, 15] in the network cost-sharing games of [3]; [32, 31, 22]
in queueing games; and [28] in distributed welfare games. Closely related in
spirit is previous work on coordination mechanisms, beginning with [12] and
more recently in [23, 5, 24, 8, 13, 1, 14]. Most work on coordination mechanisms
concerns scheduling games, and how the price of anarchy varies with the choice
of local machine policies (i.e., the order in which to process jobs assigned to
the same machine). Some of the recent work comparing the price of anarchy of
different auction formats, such as [27, 7, 41], also has a similar flavor.

1.3 Organization of the Paper

In Section 2, we restrict ourselves to cost-sharing rules that guarantee the exis-
tence of PNE and we prove worst-case PoA bounds for such policies. In Section 3,
we remove this restriction and we provide lower bounds for the worst-case PoA
of arbitrary cost-sharing rules.

2 Cost-Sharing Rules That Guarantee PNE Existence

In this section we restrict our attention to cost-sharing rules that guarantee the
existence of a PNE. This class of cost-sharing rules corresponds to weighted
Shapley values, parameterized by a set of sampling weights λi, one for each
player i [19]. We focus on congestion games with resource cost functions Cj(fj)
that are polynomials with positive coefficients and maximum degree d ≥ 1, and
we provide worst-case PoA bounds parameterized by d. Note that every game
with such cost functions has an equivalent game such that all cost functions
have the form α · xk for α ≥ 0 and k ∈ [1, d] (each resource is decomposed into
many resources of this form that can only be used as a group). Hence, we will
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be assuming that all games studied in what follows have cost functions of the
form Cj(x) = αj ·xkj . We conclude this section with a byproduct of our results:
tight worst-case PoA bounds for the marginal contribution cost-sharing rule.

2.1 Weighted Shapley Values

We first describe how a weighted Shapley value defines payments for the players
S that share a cost given by function C(·). For a given ordering π of the players
in S, the marginal cost increase caused by player i is C(fπ

i +wi)−C(fπ
i ), where

fπ
i denotes the total weight of the players preceding i in π. Given a distribution
over orderings, the cost share of player i is given by

Eπ [C(fπ
i + wi)− C(fπ

i )] . (2)

A weighted Shapley value then defines a distribution over orderings by assigning
to each player i a sampling parameter λi > 0: the last player of the ordering is
picked with probability proportional to its λi; given this choice, the penultimate
player is chosen randomly from the remaining ones, again with probability pro-
portional to its λi, and so on. Below we present an example of how the values
of the λi’s lead to the distribution over orderings of the players.

Example 1. Consider players a, b, c, with sampling parameters 1, 2, 3, respec-
tively. The probability that a is the last in the ordering is 1/(1+2+3). Similarly
we get 2/(1 + 2 + 3) for player b and 3/(1 + 2 + 3) for player c. Also, suppose c
was chosen to be the last, then the probability that b is the second is 2/(1 + 2),
while the probability that a is the second is 1/(1 + 2). This yields the following
distribution over orderings: 1/3 probability for ordering (a, b, c), 1/4 for (a, c, b),
1/6 for (b, a, c), 1/10 for (b, c, a), 1/12 for (c, a, b), and 1/15 for (c, b, a).

Defining a weighted Shapley value reduces to choosing a λi value for each
player i. In weighted congestion games the weight wi of each player fully defines
the impact that this player has on the social cost of the resources it uses. Hence,
this is the only pertinent attribute of the player and it would be natural to
assume that λi depends only on the value of wi. Nevertheless, our results hold
even if we allow the value of λi to also depend on the ID of player i, which enables
treating players with the same weight wi differently in an arbitrary fashion.

We first focus on an interesting subclass of weighted Shapley values for which
λi is a function of wi parameterized by a real number γ. In particular, we let the
sampling parameter λi of each player i be λi = λ(wi) = wγ

i . Within this class,
which contains all the previously studied weighted Shapley value variants, we
prove that the unweighted Shapley value is optimal with respect to the PoA. We
then extend this result, proving that the optimality of the unweighted Shapley
value remains true even if we let λi be an arbitrary continuous function.

A parameterized class of weighted Shapley values. For the weighted Shapley
values induced by a function of the form λ(wi) = wγ

i , we show that their PoA
lies between that of the (unweighted) Shapley value, i.e., approximately (0.9·d)d,
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and (1.4 · d)d. This class of λi values is interesting because it contains all the
well-known weighted Shapley values: If γ = 0, then the induced cost-sharing
rule is equivalent to the (unweighted) Shapley value. With γ = −1, we recover
the most common weighted Shapley value [39]. For γ → +∞ (resp. γ → −∞)
we get the order-based cost-sharing rule that introduces players to the resource
from smallest to largest (resp. largest to smallest) and charges them the increase
they cause to the joint cost when they are introduced. Also, as we show with
Lemma 1, this class of λi values is natural because these are the only ones
that induce scale-independent cost-sharing rules when the cost functions of the
resources are homogeneous (e.g., in our setting which has Cj(x) = αj · xk

j ).

Lemma 1. For any homogeneous cost function, the weighted Shapley value cost-
sharing rule is scale-independent if and only if λ(w) = wγ for some γ ∈ R.

The parameter γ fully determines our cost-sharing rule. Higher values of λi

for some player i imply higher cost shares so, if γ > 0, this benefits lower weight
players, and if γ < 0, this benefits higher weight players. We therefore use γ in
order to parameterize the PoA that the cost-sharing rules of this class yield. The
following theorem, which follows directly from Lemma 2 and Lemma 3, shows
that, for any value of γ other than 0, the PoA of the induced cost-sharing rule
is strictly worse. Figure 1 plots the PoA for d = 2.

Theorem 1. The optimal PoA among weighted Shapley values of the form
λ(wi) = wγ

i is achieved for γ = 0, which recovers the (unweighted) Shapley
value. Hence, the optimal PoA is approximately (0.9 · d)d.

Before presenting our lower bounds in Lemma 2 and Lemma 3, we begin with
an upper bound on the PoA of any weighted Shapley value, for polynomials with
maximum degree d.

Theorem 2. The PoA of any weighted Shapley value is at most(
2

1
d − 1

)−d

≈ (1.4 · d)d .

Proof. Let P be a PNE and P ∗ the optimal profile. We get∑
j∈E

Cj(fj) =
∑
j∈E

∑
i∈N

ξj(i, Sj) =
∑
i∈N

∑
j∈Pi

ξj(i, Sj) ≤
∑
i∈N

∑
j∈P∗

i

ξj(i, Sj ∪ {i}). (3)

The inequality follows from the equilibrium condition on P . Note that, when
the cost-sharing method is a weighted Shapley value and the resource costs are
convex, the cost share of any player on any resource is upper bounded by the
increase that would be caused to the joint resource cost if that player was be the
last in the ordering. This means that for every j ∈ P ∗

i we get

ξj(i, Sj ∪ {i}) ≤ Cj(fj + wi)− Cj(fj). (4)
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Combining (3) with (4), we get∑
j∈E

Cj(fj) ≤
∑
i∈N

∑
j∈P∗

i

Cj(fj + wi)− Cj(fj) (5)

=
∑
j∈E

∑
i:j∈P∗

i

Cj(fj + wi)− Cj(fj) (6)

≤
∑
j∈E

Cj(fj + f∗
j )− Cj(fj), (7)

where f∗
j is the total weight on j in P ∗. The last inequality follows by convexity

of the expression as a function of wi. We now claim that the following is true,
for any x, y > 0, and d ≥ 1:

(x+ y)d − xd ≤ λ̂ · yd + μ̂ · xd, (8)

with

λ̂ = 2(d−1)/d ·
(
21/d − 1

)−(d−1)

and μ̂ = 2(d−1)/d − 1. (9)

We can verify this as follows. Note that, without loss of generality, we can set
y = 1 (equivalent to dividing both sides of (8) with yd and renaming x/y to q).
We can then see that the value of q that maximizes (q + 1)d − (μ̂+ 1) · qd, and,
hence, is the worst case for (8), is q = 1/(21/d − 1), for which inequality (8) is

tight. Also, note that the expressions for λ̂ and μ̂ are increasing as functions of
d, which implies that the given values for degree d, satisfy (8) for smaller degrees
as well. This means we can combine (7), (8), and (9), to get∑

j∈E

Cj(fj) ≤
∑
j∈E

λ̂ · Cj(f
∗
j ) + μ̂ · Cj(fj). (10)

Rearranging, we get
∑

j∈E Cj(fj)/
∑

j∈E Cj(f
∗
j ) ≤ λ̂/(μ̂ + 1) =

(
21/d − 1

)−d
,

which completes the proof. ��

We now proceed with our lower bounds for γ �= 0.

Lemma 2. The PoA of any weighted Shapley value of the form λ(wi) = wγ
i ,

for γ > 0 is at least (
2

1
d − 1

)−d

≈ (1.4 · d)d .

Proof. Define ρ = (21/d − 1)−1 and let T be a set of ρ/ε players with weight ε
each, where ε > 0 is an arbitrarily small parameter. Consider a player i with
weight wi = 1 and suppose she uses a resource j with cost function Cj(x) = xd

with the players in T , for our weighted Shapley value with γ > 0. We now argue
that, as we let ε→ 0, the cost share of i in j becomes (ρ+1)d−ρd. Consider the
probability p that i is not among the last δ · |T | players of the random ordering
generated by our sampling weights (i.e., i is not among the first δ · |T | players
sampled), for some δ < 1. This probability is upper bounded by the probability
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that i is not drawn, using our sampling weights, among everyone in T ∪ {i},
δ · |T | = δ · ρ/ε times. Note that the sampling weight of i is 1 and the total
sampling weight of the players in T is ρ · εγ−1. Hence, if γ ≥ 1, we get:

p ≤
(
1− 1

1 + ρ · εγ−1

)δ·ρ/ε
≤
(
1− 1

1 + ρ

)δ·ρ/ε
, (11)

which goes to 0 as ε→ 0. Similarly, if γ < 1, we get:

p ≤
(
1− 1

1 + ρ · εγ−1

)δ·ρ/ε
≤ exp

(
−δ · ρ

ε
· 1

1 + ρ · εγ−1

)
, (12)

which always goes to 0 as ε→ 0, for any arbitrarily small δ > 0. Then, by letting
δ → 0, our claim that the cost share of i is (ρ+1)d−ρd follows by the definition
of the weighted Shapley value. Similarly, it follows that if a player with weight w
shares a resource with cost function a ·xd with ρ/ε players with weight w ·ε each,
her cost share will be a ·wd · ((ρ+ 1)d − ρd) (since scaling the cost function and
the player weights does not change the fractions of the cost that are assigned to
the players), which, for our choice of ρ is equal to a · wd · ρd.

Using facts from the previous paragraph as building blocks, we construct a
game such that the total cost in the worst equilibrium is ρd times the optimal.
Suppose our resources are organized in a tree graph G = (E,A), where each
vertex corresponds to a resource. There is a one-to-one mapping between the set
of edges of the tree, A, and the set of players of the game, N . The player i, that
corresponds to edge (j, j′), has strategy set {{j}, {j′}}, i.e., she must choose one
of the two endpoints of her designated edge. Tree G has branching factor ρ/ε
and l levels, with the root positioned at level 1.

Player weight. The weight of every player (edge) between resources (vertices) at
levels j and j + 1 of the tree is εj−1.

Cost functions. The cost function of any resource (vertex) at level j = 1, 2, . . . , l−
1, is:

Cj(x) =

(
1

ρ · εd−1

)j−1

· xd. (13)

The cost functions of any resource (vertex) at level l is equal to:

Cl(x) =
ρd−l+1

ε(d−1)·(l−1)
· xd. (14)

Pure Nash equilibrium. Let P be the outcome that has all players play the
resource closer to the root. We claim that this outcome is a PNE. The cost
of every player, using a resource at level j < l, in P , is (ρ/ε)d−j. If one of
the players that are adjacent to the leaves were to switch to her other strategy
(play the leaf resource), she would incur a cost equal to (ρ/ε)d−l+1, which is
the same as the one she has in P . Consider any other player and her potential
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deviation from the resource at level j, to the resource at level j + 1. By the
analysis in the first paragraph of this proof (she would be a player with weight
εj−1 sharing a resource with ρ/ε players with weight εj), her cost would be
(ρ · εd−1)j · εd·(j−1) · ρd = (ρ/ε)d−j, which is her current cost in P . This proves
that the equilibrium condition holds for all players in P .

Price of anarchy. As we have shown, every player using a resource at level j
has cost (ρ/ε)d−j in P . There are (ρ/ε)j such players, which implies the total
cost of P is (l − 1) · (ρ/ε)d, since there are l − 1 levels of nonempty resources,
and every level has the same total cost, (ρ/ε)d. Now, let P ∗ be the outcome that
has all players play the resource further from the root. In this outcome, every
player using a resource at level j = 2, . . . , l − 1, has cost ρ−j+1/εd−j+1. There
are (ρ/ε)j−1 such players, hence, the total cost at level j is (1/ε)d. Similarly, we
get that the total cost at level l is (ρ/ε)d. In total, the cost of P ∗ is (l − 2) ·
(1/ε)d +(ρ/ε)d. We can then see that, as l → +∞, the ratio between the cost of
P and the cost of P ∗ becomes ρd. ��

Lemma 3. The PoA of any weighted Shapley value of the form λ(wi) = wγ
i ,

for γ < 0 is at least dd.

Proof. We construct a game such that the total cost in the worst equilibrium
is dd times the optimal. Suppose our resources are organized in a tree graph
G = (E,A), where each vertex corresponds to a resource. There is a one-to-
one mapping between the set of edges of the tree, A, and the set of players
of the game, N . The player i, that corresponds to edge (j, j′), has strategy set
{{j}, {j′}}, i.e., she must choose one of the two endpoints of her designated edge.
Tree G has branching factor 1/(d · ε), with ε > 0 an arbitrarily small parameter,
and l levels.

Player weights. The weight of every player (edge) between resources (vertices)
at levels j and j + 1 of the tree is εj−1.

Cost functions. The cost function of any resource (vertex) at level j = 2, 3, . . . , l,
is:

Cj(x) =

(
d

εd−1

)j−2

· xd. (15)

The cost functions of the root is:

C1(x) = xd. (16)

PNE. Let P be the outcome that has all players play the resource further from
the root. We prove that this outcome is a PNE. The cost of every player that has
played a resource at level j is (d · ε)j−2. If one of the players that are adjacent
to the root were to switch to her other strategy (play the root), she would incur
a cost equal to 1, which is the same as the one she has in P . Consider any other
player and her potential deviation from the resource at level j, to the resource at
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level j−1. Since our construction considers ε arbitrarily close to 0, the deviating
player will go last with probability 1 in the Shapley ordering (since γ < 0) and
her cost will be equal to (d/εd−1)j−3 ·

(
(εj−1 + εj−2)d − ε(j−1)·d) = (d · ε)j−2,

which is equal to her current cost in P . Hence, the equilibrium condition holds
for all players.

PoA. As we have shown, every player playing a resource at level j has cost
(d · ε)j−2 in P . There are 1/(d · ε)j−1 such players, hence, the total cost at level j
is 1/(d ·ε). Then, it follows that the total cost of P is (l−1)/(d ·ε). Now let P ∗ be
the outcome that has all players play the resource closer to the root. Then the
joint cost at the root is 1/(d · ε)d. The joint cost of every other resource at level
j is (d · ε)j−2/dd, and the number of resources at level j is 1/(d · ε)j−1. Hence, we
get in total, that the cost of P ∗ is (l− 2)/(dd+1 · ε) + 1/(d · ε)d. We can then see
that, as l→ +∞, the ratio of the cost of P to the cost of P ∗ becomes dd. ��

We defer details on deriving the plot in Figure 1 to our full version.

Main result. We now state the main result of the section. The proof applies
arguments similar to the ones we used for Lemma 2 and Lemma 3 but on a more
technical level. We defer the details to the full version.

Theorem 3. The optimal PoA among weighted Shapley values induced by a
collection of continuous functions λi(·) is achieved by the (unweighted) Shapley
value.

2.2 Marginal Contribution

We now focus on the marginal contribution cost-sharing rule which dictates
that every player i is responsible for the marginal increase it causes to the joint
resource cost. Namely, the cost share of player i ∈ Sj on resource j is equal to
Cj(fj)−Cj(fj−wi). Although the marginal contribution rule does induce games
that always possess PNE, the total cost suffered by the players will, in general,
be greater than the total cost that they generate, something that places the
marginal contribution rule outside the scope of our model. To see this, note that
in (1) the left hand side can be larger than the right hand side when the marginal
contribution rule is used. In fact, for polynomial cost functions of maximum
degree d the total cost suffered can be up to d times the generated cost. The
following theorem, which is a byproduct of our previous results, provides the
exact worst-case PoA of this cost-sharing rule.

Theorem 4. The PoA of the marginal contribution rule is(
2

1
d − 1

)−d

≈ (1.4 · d)d .

Theorem 4, shows that the worst-case PoA of marginal contribution is equal to
that of the worst weighted Shapley value (see Theorem 2). In fact, this holds even
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if the equilibrium cost on each resource j is measured as
∑

i∈Sj
ξj(i, Sj) instead

of Cj(fj), i.e., even if the additional costs that the marginal contribution rule
enforces are disregarded when evaluating the quality of the outcome. Measuring
the PoA with respect to the cost generated by the players (instead of the cost that
they actually suffer) can be motivated by thinking of the costs suffered by the
players as tolls that the system uses in order to affect the incentives of the players.
There has been a sequence of results focusing on designing tolls of this form in
order to optimize this PoA measure for atomic congestion games [10, 17, 9, 16],
and the marginal contribution rule is known as marginal cost pricing tolls in this
literature. In this context, Theorem 4 leads to the following corollary.

Corollary 1. There exists a weighted congestion game with marginal cost pric-
ing tolls that has a PNE with joint cost (21/d − 1)−d times the optimal joint
cost.

3 Unrestricted Cost-Sharing Rules

In this section we consider any possible cost-sharing rule and show that the
price of anarchy is always at least Θ(d/ ln d)d. In fact, our lower bound is ap-
proximately (1.3·d/ ln d)d, which is also the approximate value of the PoA of pro-
portional sharing. Before presenting this main result, we provide, as a warm-up,
the proof of a weaker, but still exponential in d, lower bound for all cost-sharing
rules; this simpler proof carries some of the ideas used in the more elaborate
proof of Theorem 5. A key idea in the proof is to define a tournament amongst
the players, with the winner of a match of players i, j corresponding to the player
with the larger cost share when i and j are together. This tournament admits a
Hamiltonian path [34], which we use to construct a bad example.

Proposition 1. The PoA of any cost-sharing rule is at least 2d−1.

Proof. The structure of this proof resembles the proof structure of the main
theorem of this section: we begin by partly defining the elements of the problem
instance (the number of players and resources, as well as the cost functions of
the resources), and then, using any given cost-sharing rule as input, we come up
with a set of strategies for each player. This way, even though the cost-sharing
rule may not be anonymous, we can still ensure that we “place” each players in a
role such that some inefficient strategy profile is a PNE for the given cost-sharing
rule.

Instance initialization: Our resources are organized as a line graph G = (E,A).
The edge between resources i and i+1 is a player that has to pick one of the two
resources. All players have unit weight. Call vertex (resource) 1, which has cost
C1(x) = xd, the root. As we move along the path, resources are getting better
by a factor of 2d−1, which means Ci(x) = xd/2(i−1)·(d−1). Resource n is the only
exception and has the same cost function as its neighbor. For the instance to
be complete, we now also need to define what the strategy set of each player is.
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We are given identities of n− 1 players and we must decide how to place them
on the edges of G, i.e., determine who will be player i, the one that must choose
between resources i and i+ 1.

Player placement : To determine the strategy sets of the players, we will first
define a permutation π and then we will let player π(i) be the π(i)-th edge of G.
In choosing this permutation, we seek that the following property is satisfied for
all i = 1, 2, . . . , n− 1: when players π(i) and π(i+ 1) share one of the resources
in E, the cost-sharing rule2 distributes at least half of the induced cost to player
π(i). We now show that a permutation satisfying this property always exists.

Consider a directed graph whose vertices correspond to the players of our in-
stance and a directed edge from i to i′ exists if and only if player i suffers at least
half of the cost induced when it shares a resource with player i′. This is a tour-
nament graph and hence it has at least one Hamiltonian path; starting from its
first vertex and following this Hamiltonian path implies a desired permutation.

Now that we have established existence of such a permutation π, we let each
player π(i) pick between resources π(i) and π(i+ 1). Given the property that is
guaranteed by the permutation, it is not hard to verify that the strategy profile
P , which has total cost C, and according to which every player π(i) chooses
resource π(i), is a PNE, while the strategy profile P ∗ according to which every
player π(i) chooses resource π(i + 1) is the one that achieves the optimal total
cost. The corresponding total costs are

n∑
j=1

2−(d−1)·(j−1) and 2−(d−1)·(j−1) +

n−1∑
j=1

2−(d−1)·j.

The ratio of the two approaches 2d−1 as n→ +∞. ��

The main result of this section strengthens this, more intuitive, lower bound
further. Let

Υ (d) =
(�φd�+ 1)2·(d−1)+1 − �φd�d · (�φd�+ 2)d−1

(�φd�+ 1)d − (�φd�+ 2)d−1 + (�φd�+ 1)d−1 − �φd�d
,

where φd corresponds to the solution of xd = (x+1)d−1. The following theorem
shows that the PoA of any cost-sharing rule that may depend on the weights
and IDs of the players in an arbitrary fashion has a PoA of at least Υ (d), which

is approximately (1.3 · d/ ln d)d and, in fact, is at least �φd�d.

Theorem 5. The PoA of any cost-sharing rule is at least Υ (d).

2 Even though it is not necessary for our results we assume for simplicity that if
Cj′(x) = α · Cj(x), then for every i ∈ T we have ξj′(i, T ) = α · ξj(i, T ). To see why
this is not necessary note that in any game we can substitute a resource with cost
function α · C(x) with α · M resources with cost functions C(x) which can only be
used as a group. Here M is a very large number and the incentive structure remains
unaltered.
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Proof. Our resources are organized in a graph G = (E,A), which we describe
below. A vertex of the tree corresponds to a resource, and an edge in A corre-
sponds to a specific player, who must select one of the two endpoints of the edge
as her strategy. All but one of the vertices of G are part of a tree as follows. At
the root there is a complete d-ary tree with k + 1 levels. The leaves of this tree
are roots for complete (d − 1)-ary trees with k + 1 levels, and so on until the
final stage with unary trees with k + 1 levels. The final vertex of G is isolated
and will have only self-loops (i.e., players that will only have this resource as
their possible strategy). The main idea is that in the optimal profile P ∗, all tree
players move away from the root and are alone, while in the worst PNE P all
tree players move towards the root and are congested. The purpose of the iso-
lated resource is to cancel out any benefit the cost-sharing rule could extract by
introducing major asymmetries on the players (using their IDs) as we will see
in what follows. The construction of our lower bound is a three-stage process.
During the first stage, we initialize our instance and set temporary cost functions
for the resources that yield the required PoA. During the second stage we start
with a very large number of players |N |, place a subset of them on the tree, and
fix the rest on the isolated resource. This placement of players will happen in
a way that will allow us to turn P into a PNE in the next stage. During the
final stage we tweak the cost functions on the tree in order to maintain the fact
that the profile with everyone moving towards the root is a PNE while, at the
same time, we manage to keep the total costs of the PNE and the optimal profile
intact.

Instance initialization: The cost function of resource j at level (d − i) · k + j

of the tree is initialized as (
∏d

l=i+1 l/(l + 1))(d−1)·(k−1) · (i/(i + 1))(d−1)·j · xd.

The constant multipliers of xd on the resources are not finalized yet and will
be altered during Stage 3 of our construction. The cost function of the extra
resource is constant δ · xd, with δ arbitrarily small. With P and P ∗ as above
we get a ratio of Υ (d) between the two total costs (see [18] for the detailed
calculation).

Player placement : Suppose the game has a very large number of players |N |.
Some of these players will be used to fill all slots of the tree and the rest will be
fixed on the 0-cost resource. The players on the 0-cost resource will clearly have
no impact on the PNE and optimal costs and their only purpose is to cancel out
any benefit the cost-sharing rule could extract by using the player IDs in order
to introduce asymmetry. Focus on a single resource of the tree. The structure of
the tree clearly dictates how many players should have that resource as the top
endpoint of the corresponding edge (we will call them the children players of the
resource) and that one player should have that resource as the bottom endpoint
of its corresponding edge (we will call this the parent player of the resource).
Our claim is that given a large enough number of players, we can always find a
subset of them to place on the tree such that for every vertex, the parent player
covers for at least its proportional share when all children and the parent are on
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the resource. We will call this the parent property. Once we prove this fact, we
will be ready to finalize the cost functions and prove our result.

Here we describe how the placement of players on the tree is performed. Let S
be the set of available players which is initialized to all players N and is updated
at each iteration. We will fill the edges of the tree in a bottom-up fashion. At
each iteration we select a resource j that has not been assigned children players
and has the maximum depth among such resources. We will select its children
players from S simultaneously. Suppose j must have t children players. We must
find a group T of t players, use them on these edges, and delete them from S.
Then we look at each player i left in S. If i pays at least its proportional share
when using j with the players in T , then i remains in S, otherwise i is assigned
a unique possible strategy, which is the 0-cost resource and is removed from
S. This way we ensure that no matter what our future choices are, the parent
property will hold on resource j. We will pick the set T that maximizes the size
of S after its placement.

The key question is how much smaller does S become at each iteration? The
candidate sets of size t are

(|S|
t

)
. The number of times a t+ 1-th player pays its

fair share and can be a parent of a t-sized group is at least the number of groups
of size t + 1, i.e.,

( |S|
t+1

)
. This means there is a set T for which there exist at

least
( |S|
t+1

)
/
(|S|

t

)
= (|S|− t)/(t+1) players that can be used as its corresponding

parent. So the set S is getting smaller by a factor that is a function of d at each
iteration and the number of iterations is a function of d and k. This means we
can take the initial |N | large enough so that we can complete the process.

Cost function update: Recall P is the strategy profile such that every player
on the tree picks the resource closer to the root. We want this to be a PNE.
We know that, because of Stage 2, the parent property holds on every resource,
hence every deviation has a player pay at least its proportional share on its new
resource. We can also see that the initial cost functions are such that if a player
pays its proportional share in P , then the deviation is at least tight (possibly
the deviation costs more depending on what the cost-sharing rule does, but it
is at least tight due to the parent property). To ensure that P is a PNE in our
construction we make the following update on the cost functions. We start from
the root and move towards the leaves examining every player i. If player i pays
γi times its proportional share on its resource in P , then the cost function of
the resource j it can deviate to, and the cost functions of the resources of the
whole subtree rooted at j, are multiplied by γi. Given the facts described above
with respect to the parent property and the cost functions, it follows that P is
a PNE in our game.

Recall P ∗ is the profile such that every player picks the resource that is further
from the root. At this point, all that is left to show is that the total cost of P
and P ∗ do not change after we update the cost functions. Since, both in P and
in P ∗, at every level the total weight on every resource is the same, the initial
multipliers of every resource cost function were identical, and the sum of the
scaling factors we applied is equal to 1, it follows that the total costs remain
unchanged. ��
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Abstract. We study procurement games where each seller supplies mul-
tiple units of his item, with a cost per unit known only to him. The buyer
can purchase any number of units from each seller, values different com-
binations of the items differently, and has a budget for his total payment.
For a special class of procurement games, the bounded knapsack problem,
we show that no universally truthful budget-feasible mechanism can ap-
proximate the optimal value of the buyer within lnn, where n is the total
number of units of all items available. We then construct a polynomial-
time mechanism that gives a 4(1 + lnn)-approximation for procurement
games with concave additive valuations, which include bounded knapsack
as a special case. Our mechanism is thus optimal up to a constant fac-
tor. Moreover, for the bounded knapsack problem, given the well-known
FPTAS, our results imply there is a provable gap between the optimiza-
tion domain and the mechanism design domain. Finally, for procurement
games with sub-additive valuations, we construct a universally truthful

budget-feasible mechanism that gives an O( log2 n
log log n

)-approximation in
polynomial time with a demand oracle.

Keywords: procurement auction, budget-feasible mechanism, optimal
mechanism, approximation.

1 Introduction

In a procurement game/auction, m sellers compete for providing their items
(referred to as products or services in some scenarios) to the buyer. Each seller
i has one item and can provide at most ni units of it, with a fixed cost ci
per unit which is known only to him. The buyer may purchase any number of
units from each seller. For example, a local government may buy 50 displays
from Dell, 20 laptops from Lenovo, and 30 printers from HP.1 The buyer has a
valuation function for possible combinations of the items, and a budget B for the
total payment he can make. We consider universally truthful mechanisms that
(approximately) maximize the buyer’s value subject to the budget constraint.

Procurement games with budgets have been studied in the framework of
budget-feasible mechanisms (see, e.g., [35, 19, 17, 10]). Yet most studies focus

1 In reality Dell also sells laptops and Lenovo also sells displays. But for the purpose
of this paper we consider settings where each seller has one item to supply, but has
many units of it. However, we allow cases where different sellers have the same item,
just as one can buy the same laptops from Best Buy and/or Walmart.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 89–105, 2014.
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on settings where each seller has only one unit of his item. Thus there are only
two possible allocations for a seller: either his item is taken or it is not.2 When a
seller has multiple units and may benefit from selling any number of them, there
are more possibilities for him to deviate into and it becomes harder to provide
incentives for him to be truthful. To the best of our knowledge, this is the first
time where multi-unit budget-feasible mechanisms are systematically studied.

Multi-unit procurements with budgets can be used to model many interesting
problems. For example, in the classic bounded knapsack problem the buyer has
a value vi for one unit of item i, and his total value is the sum of his value for
each unit he buys. In job scheduling, the planner may assign multiple jobs to
a machine, with different values for different assignments. As another example,
in the Provision-after-Wait problem in healthcare [11], the government needs to
serve n patients at m hospitals. Each patient has his own value for being served
at each hospital, and the value of the government is the social welfare.

1.1 Our Main Results

We present our main results in three parts. Due to lack of space, most of the
proofs are provided in the full version of this paper [14].

An impossibility result. Although budget-feasible mechanisms with constant ap-
proximation ratios have been constructed for single-unit procurements [35, 17],
our first result, formally stated and proved in Section 3, shows that this is im-
possible in multi-unit settings, even for the special case of bounded knapsack.

Theorem 1. (rephrased) No universally truthful, budget-feasible mechanism can
do better than a lnn-approximation for bounded knapsack, where n is the total
number of units of all items available.

This theorem applies to all classes of multi-unit procurement games considered
in this paper, since they all contain bounded knapsack as a special case.

An optimal mechanism for concave additive valuations. A concave additive val-
uation function is specified by the buyer’s marginal values for getting the j-th
unit of each item i, vij , which are non-increasing in j. The following theorem is
formally stated in Section 4.

Theorem 2. (rephrased) There is a polynomial-time mechanism which is a 4(1+
lnn)-approximation for concave additive valuations.

Our mechanism is very simple. The central part is a greedy algorithm, which
yields a monotone allocation rule. However, one needs to be careful about how to
compute the payments, and new ideas are needed for proving budget-feasibility.

Since bounded knapsack is a special case of concave additive valuations, our
mechanism is optimal within a constant factor. More interestingly, given that
bounded knapsack has an FPTAS when there is no strategic considerations, our
results show that there is a gap between the optimization domain and the mech-
anism design domain for what one can expect when solving bounded knapsack.

2 In the coverage problem a player has a set of elements, but still the allocation is
bimodal for him: either his whole set is taken or none of the elements is taken.
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Beyond concave additive valuations. We do not know how to use greedy algo-
rithms to construct budget-feasible mechanisms for larger classes of valuations.
The reason is that they may not be monotone: if a player lowers his cost, he
might actually sell fewer units. This is demonstrated by our example in Section
5.1. Thus we turn to a different approach, random sampling [10, 24, 18, 16, 6, 7].
The following theorem is formally stated in Section 5.3.

Theorem 5. (rephrased) Given a demand oracle, there is a polynomial-time

mechanism which is an O( log2 n
log logn )-approximation for sub-additive valuations.

A demand oracle is a standard assumption for handling sub-additive val-
uations [19, 10, 8], since such a valuation function takes exponentially many
numbers to specify. Notice that for bounded knapsack and concave additive val-
uations our results are presented using the natural logarithm, since those are
the precise bounds we achieve; while for sub-additive valuations we present our
asymptotic bound under base-2 logarithm, to be consistent with the literature.

Our mechanism generalizes that of [10], which gives an O( logn
log logn )-

approximation for single-unit sub-additive valuations. Several new issues arise
in the multi-unit setting. For example, we must distinguish between an item
and a unit of that item, and in both our mechanism and our analysis we need
to be careful about which one to deal with. Also, we have constructed, as a
sub-routine, a mechanism for approximating the optimal single-item outcome:
namely, an outcome that only takes units from a single seller. We believe that
this mechanism will be a useful building block for budget-feasible mechanisms
in multi-unit settings.

1.2 Related Work

Various procurement games have been studied [30, 33, 32, 21, 22], but without
budget considerations. In particular, frugal mechanisms [5, 13, 20, 27, 36, 15, 28]
aim at finding mechanisms that minimize the total payment. As a “dual” prob-
lem to procurement games, auctions where the buyers have budget constraints
have also been studied [2, 23], but the models are very different from ours.

Single-unit budget-feasible mechanisms were introduced by [35], where the
author achieved a constant approximation for sub-modular valuations. In [17]
the approximation ratio was improved and variants of knapsack problems were
studied, but still in single-unit settings. In [19] the authors considered single-
unit sub-additive valuations and constructed a randomized mechanism that is
an O(log2 n)-approximation and a deterministic mechanism that is an O(log3 n)-
approximation. We notice that their randomized mechanism can be generalized
to multi-unit settings, resulting in an O(log3 n)-approximation. In [10] the au-
thors consider both prior-free and Bayesian models. For the former, they provide
a constant approximation for XOS valuations and an O( logn

log logn )-approximation
for sub-additive valuations; and for the latter, they provide a constant approx-
imation for the sub-additive case. As mentioned we generalize their prior-free
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mechanism, but we need to give up a logn factor in the approximation ratio. It is
nice to see that the framework of budget-feasible mechanism design generalizes
to multi-unit settings.

In [25] the author considered settings where each seller has multiple items.
Although it was discussed why such settings are harder than single-item settings,
no explicit upper bound on the approximation ratio was given. Instead, the focus
there was a different benchmark. The author provided a constant approximation
of his benchmark for sub-modular valuations, but the mechanism does not run in
polynomial time. Also, budget-feasible mechanisms where each seller has one unit
of an infinitely divisible item have been considered in [3], under the large-market
assumption: that is, the cost of buying each item completely is much smaller
than the budget. The authors constructed a deterministic mechanism which is
a 1 − 1/e approximation for additive valuations and which they also prove to
be optimal. In our study we do not impose any assumption about the sellers
costs, and the cost of buying all units of an item may or may not exceed the
budget. Moreover, in [9] the authors studied online procurements and provided a
randomized posted-price mechanism that is an O(log n)-approximation for sub-
modular valuations under the random ordering assumption.

Finally, knapsack auctions have been studied by [1], where the underlying
optimization problem is the knapsack problem, but a seller’s private information
is the value of his item, instead of the cost. Thus the model is very different from
ours and from those studied in the budget-feasibility framework in general.

1.3 Open Problems

Many questions can be asked about multi-unit procurements with budgets and
are worth studying in the future. Below we mention a few of them.

First, it would be interesting to close the gap between the upper bound in
Theorem 1 and the lower bound in Theorem 5, even for subclasses such as sub-
modular or diminishing-return valuations, as defined in Section 2. A related
problem is whether the upper bound can be bypassed under other solution con-
cepts. For example, is there a mechanism with price of anarchy [29, 34] better
than lnn? How about a mechanism with a unique equilibrium? Solution concepts
that are not equilibrium-based are also worth considering, such as undominated
strategies and iterated elimination of dominated strategies. Another problem is
whether a better approximation can be achieved for other benchmarks, such as
the one considered in [25], by truthful mechanisms that run in polynomial time.

Second, online procurements with budget constraints have been studied in
both optimization settings [26] and strategic settings [9]. But only single-unit
scenarios are considered in the latter. It is natural to ask, what if a seller with
multiple units of the same item can show up at different time points, and the
buyer needs to decide how many units he wants to buy each time.

Finally, the buyer may have different budgets for different sellers, a seller’s
cost for one unit of his item may decrease as he sells more, or the number of units
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each seller has may not be publicly known3. However, the last two cases are not
single-parameter settings and presumably need very different approaches.

2 Procurement Games

Now let us define our model. In a procurement game there are m sellers who
are the players, and one buyer. There are m items and they may or may not
be different. Each player i can provide ni units of item i, where each unit is
indivisible. The total number of units of all the items is n �

∑
i ni. The true

cost for providing one unit of item i is ci ≥ 0, and c = (c1, . . . , cm). The value of
ci is player i’s private information. All other information is public.

An allocation A is a profile of integers, A = (a1, . . . , am). For each i ∈ [m],
ai ∈ {0, 1, . . . , ni} and ai denotes the number of units bought from player i. An
outcome ω is a pair, ω = (A,P ), where A is an allocation and P is the payment
profile: a profile of non-negative reals with Pi being the payment to player i.
Player i’s utility at ω is ui(ω) = Pi − aici.

The buyer has a valuation function V , mapping allocations to non-negative
reals, such that V (0, . . . , 0) = 0. For allocations A = (a1, . . . , am) and A′ =
(a′1, . . . , a

′
m) with ai ≤ a′i for each i, V (A) ≤ V (A′) —namely, V is monotone.4

The buyer has a budget B and wants to implement an optimal allocation,

A∗ ∈ argmax
A:

∑
i∈[m] ciai≤B

V (A),

while keeping the total payment within the budget. An outcome ω = (A,P ) is
budget-feasible if

∑
i∈[m] Pi ≤ B.

The solution concept. A deterministic revealing mechanism is dominant-strategy
truthful (DST) if for each player i, announcing ci is a dominant strategy:

ui(ci, c
′
−i) ≥ ui(c

′
i, c

′
−i) ∀c′i, c′−i.

A deterministic mechanism is individually rational if ui(c) ≥ 0 for each i. A
randomized mechanism is universally truthful (respectively, individually rational)
if it is a probabilistic distribution over deterministic mechanisms that are DST
(respectively, individually rational).

A deterministic DST mechanism is budget-feasible if its outcome under c is
budget-feasible. A universally truthful mechanism is budget-feasible (in expecta-
tion) if the expected payment under c is at most B.

3 In many real-life scenarios the numbers of available units are public information,
including procurements of digital products, procurements of cars, some arms trades,
etc. Here procurement auctions are powerful tools and may result in big differences
in prices, just like in the car market. However, there are also scenarios where the
sellers can hide the numbers of units they have, particularly in a seller’s market. In
such cases they may manipulate the supply level, hoping to affect the prices.

4 Monotonicity is a standard assumption for single-unit budget-feasible mechanisms.
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Definition 1. Let C be a class of procurement games and f(n) ≥ 0. A univer-
sally truthful mechanism is an f(n)-approximation for class C if, for any game
in C, the mechanism is individually rational and budget-feasible, and the outcome

under the true cost profile c has expected value at least V (A∗)
f(n) .

Remark 1. One can trade truthfulness for budget-feasibility: given a universally
truthful budget-feasible mechanism, by paying each player the expected payment
he would have received, we get a mechanism that is truthful in expectation and
meets the budget constraint with probability 1. As implied by Theorem 1, no uni-
versally truthful mechanism that meets the budget constraint with probability
1 can do better than a lnn-approximation. Thus there has to be some trade-off.

Remark 2. We allow different players to have identical items, just like different
dealers may carry the same products, with or without the same cost. But we re-
quire the same player’s units have the same cost. In the future, one may consider
cases where one player has units of different items with different costs: that is,
a multi-parameter setting instead of single-parameter.

Below we define several classes of valuation functions for procurement games.

Concave additive valuations and the bounded knapsack problem. An impor-
tant class of valuation functions are the additive ones. For such a function V ,
there exists a value vik for each item i and each k ∈ [ni] such that, V (A) =∑

i∈[m]

∑
k∈[ai]

vik for any A = (a1, . . . , am). Indeed, vik is the marginal value
from the k-th unit of item i given that the buyer has already gotten k−1 units, no
matter how many units he has gotten for other items. V is concave if for each i,
vi1 ≥ vi2 ≥ · · · ≥ vini ; namely, the margins for the same item are non-increasing.

A special case of concave additive valuations is the bounded knapsack problem,
one of the most classical problems in computational complexity. Here, all units
of an item i have the same value vi: that is, vi1 = vi2 = · · · = vini = vi.

Sub-additive valuations. A much larger class is the sub-additive valuations. Here
a valuation V is such that, for any A = (a1, . . . , am) and A′ = (a′1, . . . , a

′
m),

V (A ∨ A′) ≤ V (A) + V (A′),

where ∨ is the item-wise max operation: A ∨ A′ = (max{a1, a′1}, . . . ,
max{am, a′m}).

Notice that the requirement of sub-additivity is imposed only across different
players, and values can change arbitrarily across units of the same player. Indeed,
when A and A′ differ at a single player, sub-additivity does not impose any
constraint on V (A) and V (A′), not even that there are decreasing margins. Thus
this definition is more general than requiring sub-additivity also across units of
the same player. Following the literature, we stick to the more general notion.
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Between concave additivity and sub-additivity, two classes of valuations have
been defined, as recalled below.5 To the best of our knowledge, no budget-feasible
mechanisms were considered for either of them in multi-unit settings.

– Diminishing return: for any A and A′ such that ai ≤ a′i for each i, and for
any item j, V (A + ej) − V (A) ≥ V (A′ + ej) − V (A′), where A + ej means
adding one extra unit of item j to A unless aj = nj , in which case A+ej = A.

– Sub-modularity: for any A and A′, V (A ∨A′) + V (A ∧A′) ≤ V (A) + V (A′),
where ∧ is the item-wise min operation.6

Diminishing return implies sub-modularity, andboth collapse to sub-modularity
in single-unit settings. The reason for diminishing return to be considered sepa-
rately is that multi-unit sub-modularity is a very weak condition: when A and A′

differ at a single player, it does not impose any constraint, as sub-additivity. Di-
minishing return better reflects the idea behind single-unit sub-modularity: the
buyer’s value for one extra unit of any item gets smaller as he buys more.

Since the valuation classes defined above are nested:

bounded knapsack ⊆ concave additivity ⊆ diminishing return

⊆ sub-modularity ⊆ sub-additivity,

any impossibility result for one class applies to all classes above it, and any
positive result for one class applies to all classes below it. Moreover, since sub-
additivity contains additivity, any positive result for the former also applies to
the latter.

Demand oracle. A sub-additive valuation function V may take exponentially
many numbers to specify. Thus following the studies of single-unit sub-additive
valuations [35, 10], we consider a demand oracle, which takes as input a set of
players {1, . . . ,m}, a profile of costs (p1, . . . , pm) and a profile of numbers of
units (n1, . . . , nm),7 and returns, regardless of the budget, an allocation

Â ∈ argmax
A=(a1,...,am):ai≤ni∀i

V (A)−
∑
i∈[m]

aipi.

It is well known that a demand oracle can simulate in polynomial time a value
oracle, which returns V (A) given A. Thus we also have access to a value oracle.

5 The literature of multi-unit procurements has been particularly interested in valua-
tions with some forms of “non-increasing margins”, thus has considered classes that
contain all concave additive valuations but not necessarily all additive ones.

6 The item-wise max and min operations when defining sub-additivity and sub-
modularity follow directly from the set-union and set-intersection operations when
defining them in general settings, and have been widely adopted in the literature
(see, e.g., [12] and [26]). One may consider alternative definitions where, for exam-
ple, ∨ represents item-wise sum rather than item-wise max. However, we are not
aware of existing studies where the alternative definitions are used.

7 In single-unit settings a demand oracle takes as input a set of players and the costs.
For multi-unit settings it is natural to also include the numbers of units.
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Our goal. We shall construct universally truthful mechanisms that are individ-
ually rational, budget-feasible, and approximate the optimal value of the buyer.
Our mechanisms run in polynomial time for concave additive valuations, and in
polynomial time given the demand oracle for sub-additive valuations.

Single-parameter settings with budgets. Since the cost ci is player i’s only private
information, we are considering single-parameter settings [4]. Following Myer-
son’s lemma [31] or the characterization in [4], the only truthful mechanisms are
those with a monotone allocation rule and threshold payments. In multi-unit
settings, each unit of an item i has its own threshold and the total payment to
i will be the sum of the thresholds for all of his units bought by the mechanism.

With a budget constraint, this characterization still holds, but the problem
becomes harder: the monotone allocation rule must be such that, not only (1) it
provides good approximation to the optimal value, but also (2) the unique total
payment that it induces must satisfy the budget constraint. Therefore, similar to
single-unit budget-feasible mechanisms, we shall construct monotone allocation
rules while keeping an eye on the structure of the threshold payments. We need
to make sure that when the two are combined, both (1) and (2) are satisfied.

3 Impossibility Results for Bounded Knapsack

The following observation for bounded knapsack is immediate.

Observation 1. No deterministic DST budget-feasible mechanism can be an
n-approximation for bounded knapsack.

Proof. When m = 1, n1 = n, v1 = 1 and c1 = B, a DST mechanism, being
an n-approximation, must buy 1 unit and pay the player B. When c1 = B/n,
the mechanism must still buy 1 unit and pay B, otherwise the player will bid B
instead. Thus the mechanism’s value is 1, while the optimal value is n. �

Clearly, buying 1 unit from a player i ∈ argmaxj vj and paying him B is an
n-approximation. For randomized mechanisms we have the following.

Theorem 1. No universally truthful mechanism can be an f(n)-approximation
for bounded knapsack with f(n) < lnn.

Proof. Consider the case where m = 1, n1 = n, and v1 = 1. For any b, c ∈ [0, B],
let u1(b; c) be the player’s expected utility by bidding b when c1 = c. For each
k ∈ [n], consider the bid B

k : let P
k be the expected payment and, for each j ∈ [n],

let pkj be the probability for the mechanism to buy j units. When c1 = B
k , the

optimal value is k and ∑
j∈[n]

pkj · j ≥
k

f(n)
∀k ∈ [n], (1)

as the mechanism is an f(n)-approximation. By universal truthfulness and indi-
vidual rationality, u1(

B
k ;

B
k ) ≥ u1(

B
k−1 ;

B
k ) ∀k > 1 and u1(B;B) ≥ 0. Namely,
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P k − B

k

∑
j∈[n]

pkj · j ≥ P k−1 − B

k

∑
j∈[n]

pk−1
j · j ∀k > 1, and

P 1 −B
∑
j∈[n]

p1j · j ≥ 0.

Summing up these n inequalities, we have∑
k∈[n]

P k −
∑
k∈[n]

B

k

∑
j∈[n]

pkj · j ≥
∑

1≤k<n

P k −
∑

1≤k<n

B

k + 1

∑
j∈[n]

pkj · j,

which implies

Pn ≥ B

n

∑
j∈[n]

pnj · j +
∑

1≤k<n

B

k(k + 1)

∑
j∈[n]

pkj · j.

By Equation 1, we have

Pn ≥ B

f(n)
+

∑
1≤k<n

B

(k + 1)f(n)
=

B

f(n)

∑
k∈[n]

1

k
≥ B lnn

f(n)
.

By budget-feasibility, Pn ≤ B. Thus f(n) ≥ lnn, implying Theorem 1. �

Remark 3. Notice that as long as the mechanism is truthful in expectation and
individually rational in expectation (namely, with respect to the players’ expected
utilities), the analysis of Theorem 1 implies that it cannot do better than a lnn-
approximation. Also notice that the impossibility result does not impose any
constraint on the running time of the mechanism.

Remark 4. When there is a single player, that player has a monopoly and it is
not too surprising that no mechanism can do better than a lnn-approximation.
For example, in frugality mechanism design in procurement games, it has been
explicitly assumed that there is no monopoly. However, when monopoly might
actually exist, it is interesting to see that there is a tight bound (by Theorems
1 and 2) on the power of budget-feasible mechanisms in multi-unit settings.

4 An Optimal Mechanism for Concave Additive
Valuations

We construct a polynomial-time universally truthful mechanism MAdd that is a
4(1 + lnn)-approximation for procurement games with concave additive valua-
tions. Our mechanism is very simple, and the basic idea is a greedy algorithm
with proportional cost sharing, as has been used for single-unit settings [17, 35].
However, the key here is to understand the structure of the threshold payments
and to show that the mechanism is budget-feasible, which requires ideas not seen
before. Moreover, given our impossibility result, this mechanism is optimal up to
a constant factor. In particular, it achieves the optimal approximation ratio for
bounded knapsack. The simplicity and the optimality of our mechanism make it
attractive to be actually implemented in real-life scenarios.
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Notations and Conventions. Without loss of generality, we assume vij > 0 for
each item i and j ∈ [ni], since otherwise the mechanism can first remove the units
with value 0 from consideration. Because we shall show that MAdd is universally
truthful, we describe it only with respect to the truthful bid (c1, . . . , cn). Also, we
describe the allocation rule only, since it uniquely determines the threshold pay-
ments. An algorithm for computing the thresholds will be given in the analysis.
Finally, let i∗ ∈ argmaxi vi1 be the player with the highest marginal value, ei∗

be the allocation with 1 unit of item i∗ and 0 unit of others, and A⊥ = (0, . . . , 0)
be the allocation where nothing is bought. We have the following.

Mechanism MAdd for Concave Additive Valuations

1. With probability 1
2(1+lnn)

, go to Step 2; with probability 1
2
, output ei∗ and

stop; and with the remaining probability, output A⊥ and stop.
2. For each i ∈ [m] and j ∈ [ni], let the value-rate rij = vij/ci.

(a) Order the n pairs (i, j) according to rij decreasingly, with ties broken lex-
icographically, first by i and then by j.
For any � ∈ [n], denote by (i�, j�) the �-th pair in the ordered list.

(b) Let k be the largest number in [n] satisfying
cik

vikjk
≤ B∑

�≤k vi�j�
.

(c) Pick up the first k pairs in the list: that is, output allocation A =
(a1, . . . , an) where ai = |{� : � ≤ k and i� = i}|.

Theorem 2. Mechanism MAdd runs in polynomial time, is universally truthful,
and is a 4(1+ lnn)-approximation for procurement games with concave additive
valuations.

Combining Theorems 1 and 2 we immediately have the following.

Corollary 1. Mechanism MAdd is optimal up to a constant factor among all
universally truthful, individually rational, and budget-feasible mechanisms for
multi-unit procurement games with concave additive valuations.

Remark 5. Theorems 1 and 2 show that multi-unit settings are very different
from single-unit settings. In single-unit settings various constant-approximation
mechanisms have been constructed, while in multi-unit settings an O(log n)-
approximation is the best, and our mechanism provides such an approximation.

Furthermore, for bounded knapsack, without strategic considerations there is
an FPTAS, while with strategic considerations the best is a lnn-approximation.
Thus we have shown that bound knapsack is a problem for which provably there
is a gap between the optimization domain and the mechanism design domain.

Finally, it would be interesting to see how the constant gap between Theorems
1 and 2 can be closed, and whether there is a mechanism that meets the budget
constraint with probability 1 and achieves an O(log n)-approximation.

An optimal mechanism for symmetric valuations. A closely related class of valu-
ations are the symmetric ones: there exists v1, . . . , vn such that, for any allocation
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A with k units, V (A) =
∑

�≤k v�. In general, symmetric valuations are not con-
cave additive, nor are concave additive valuations necessarily symmetric. But
they are equivalent with a single seller. Thus the proof of Theorem 1 implies no
mechanism can do better than a lnn-approximation for symmetric valuations, as
stated in the first part of the theorem below. Similar to our analysis of Theorem
2, one can verify that the following mechanism is a 4(1+lnn)-approximation for
symmetric valuations: it is the same as MAdd except in Step 2, where k is set to
be the largest number in [n] satisfying cik ≤ B

k . We omit the analysis since it is
very similar to that of MAdd, and only present the following theorem.

Theorem 3. For symmetric valuations, no universally truthful mechanism can
be an f(n)-approximation with f(n) < lnn, and there exists a polynomial-time
universally truthful mechanism which is a 4(1 + lnn)-approximation.

5 Truthful Mechanisms for Sub-additive Valuations

5.1 The Non-monotonicity of the Greedy Algorithm

Although the greedy algorithm with proportional cost-sharing played an im-
portant role in budget-feasible mechanisms, we do not know how to use it for
multi-unit sub-additive valuations, since it is not monotone. Indeed, by lowering
his cost, a player i will still sell his first unit as in the old allocation. But once
the rank of his first unit changes, all units after that will be re-ranked according
to their new marginal value-rates. Under the new ordering there is no guarantee
whether player i will sell any of his remaining units. Below we give an example
demonstrating this phenomenon in settings with diminishing returns.

Example 1. There are 3 players, n1 = 1, n2 = n3 = 2, c1 = c3 = 1, c2 = 1+ ε for
some arbitrarily small ε > 0, and B = 3+2ε. To highlight the non-monotonicity
of the greedy algorithm, we work through the algorithm and define the marginal
values on the way. The valuation function will be defined accordingly.

Given any allocation A and player i, denote by V (i|A) the marginal value of
item i, namely, V (A+ ei)− V (A). The greedy algorithm works as follows.

– At the beginning, the allocation is A0 = (0, 0, 0).
– V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 1 has the

largest marginal value-rate, thus A1 = (1, 0, 0).
– V (1|A1) = 0 (item 1 is unavailable now), V (2|A1) = 5 + 5ε, and V (3|A1) =

5− ε. Item 2 has the largest marginal value-rate, thus A2 = (1, 1, 0).
– V (1|A2) = 0, V (2|A2) = 1 + ε, and V (3|A2) = 1 − ε. Item 2 has the largest

marginal value-rate, thus A3 = (1, 2, 0).
– The budget is used up, the final allocation is A3, and player 2 sells 2 units.

Now let c′2 = 1− ε < c2. The greedy algorithm works as follows.

– A0 = (0, 0, 0).
– V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 2 has the

largest marginal value-rate, thus A′
1 = (0, 1, 0).

Notice that player 2 sells his first unit earlier than before.
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– V (1|A′
1) = 5 + 4ε, V (2|A′

1) = 5 − 5ε, and V (3|A′
1) = 5 + 5ε. Item 3 has the

largest marginal value-rate, thus A′
2 = (0, 1, 1).

– V (1|A′
2) = 1− 2ε, V (2|A′

2) = 1− ε, and V (3|A′
2) = 1+ ε, thus A′

3 = (0, 1, 2).
– The remaining budget is 3ε, no further unit can be added, and the final

allocation is A′
3. But player 2 only sells one unit, violating monotonicity.

Given the marginal values, the valuation function is defined as follows:

V (0, 0, 0) = 0, V (1, 0, 0) = 10, V (0, 1, 0) = 10 + ε, V (0, 0, 1) = 10− ε,

V (1, 1, 0) = 15 + 5ε, V (1, 0, 1) = 15− ε, V (0, 2, 0) = 15− 4ε, V (0, 1, 1) = 15 + 6ε,

V (0, 0, 2) = 15,

V (1, 2, 0) = 16 + 6ε, V (1, 1, 1) = 16 + 4ε, V (1, 0, 2) = 16, V (0, 2, 1) = 16 + 5ε,

V (0, 1, 2) = 16 + 7ε,

V (0, 2, 2) = V (1, 2, 1) = V (1, 1, 2) = 16 + 7ε, V (1, 2, 2) = 16 + 7ε.

One can verify that V is consistent with the marginal values and has diminishing
returns. Indeed, for any allocation with k units for k from 0 to 4, the marginal
value of adding 1 more unit is roughly 10, 5, 1, ε, 0, and thus diminishing.

Given the non-monotonicity of the greedy algorithm, we turn to another ap-
proach for constructing truthful mechanisms, namely, random sampling. We pro-
vide our main mechanism in Section 5.3. In Section 5.2 we first construct a
mechanism that will be used as a subroutine.

5.2 Approximating the Optimal Single-Item Allocation

From the analysis of Theorem 1, we notice that part of the hardness in designing
mechanisms for multi-unit settings comes from cases where a single player’s item
contributes a lot to the optimal solution. In order to obtain a good approxima-
tion, we need to identify such a player and buy as many units as possible from
him. More precisely, given the true cost profile (c1, . . . , cn), let

i∗∗ ∈ argmax
i

V (min{ni, �
B

ci
�} · ei),

where for any λ ∈ [ni], λei is the allocation with λ units of item i and 0 unit of
others. Ideally we want to buy λ∗∗ � min{ni∗∗ , � B

ci∗∗
�} units from i∗∗ and pay

him (at most) B. We shall refer to (i∗∗, λ∗∗) as the optimal single-item allocation.
Notice that a similar scenario occurs in single-unit settings: part of the value

approximation comes from a single player i∗ with the highest marginal value. The
problem is, although the identity of player i∗ is publicly known, both i∗∗ and λ∗∗

depend on the players’ true costs and have to be solved from their bids. Below
we construct a universally truthful mechanism, MOne, which is budget-feasible
and approximates V (λ∗∗ei∗∗) within a 1 + lnn factor. We have the following
theorem.

Theorem 4. Mechanism MOne is universally truthful, individually rational,
budget-feasible, and is a (1 + lnn)-approximation for V (λ∗∗ei∗∗).
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Mechanism MOne for Approximating the Optimal Single-item Allocation

With probability 1
1+lnn

, do the following.

1. Let vi = V (min{ni, �B
ci
�} · ei) and order the players according to the vi’s

decreasingly, with ties broken lexicographically.
Let i∗∗ be the first player in the list and λ∗∗ = min{ni∗∗ , � B

ci∗∗
�}.

2. Let k ∈ [λ∗∗] be the smallest number such that player i∗∗ is still ordered the
first with cost c′i∗∗ = B

k
.

3. Set θ� =
B
k

for each � ≤ k and θ� =
B
�
for each k + 1 ≤ � ≤ λ∗∗.

4. Output allocation λ∗∗ei∗∗ and pay
∑

�≤λ∗∗ θ� to player i∗∗.

Since the impossibility result in Theorem 1 applies to settings with a single
item, we have the following corollary.

Corollary 2. Mechanism MOne is optimal for approximating V (λ∗∗ei∗∗) among
all universally truthful, individually rational, and budget-feasible mechanisms.

Remark 6. As it will become clear from the analysis, MOne does not require the
valuation to be sub-additive. The only thing it requires is that, for each player i,
V (λei) is non-decreasing in λ. Thus it can be used for valuations that are not
even monotone, as long as they are monotone across units of the same item.

Furthermore, given that (i∗∗, λ∗∗) is the multi-unit counterpart of player i∗

in single-unit settings, and given the important role i∗ has played in single-unit
budget-feasible mechanisms, we believe mechanism MOne will be a useful build-
ing block in the design of budget-feasible mechanisms for multi-unit settings.

5.3 A Truthful Mechanism for Sub-additive Valuations

Our mechanism for sub-additive valuations generalizes that of [10]. In particular,
the algorithm AMax and the mechanism MRand below are respectively variants
of their algorithm SA-alg-max and mechanism SA-random-sample. Several
new issues arise in multi-unit settings. For example, we must now distinguish
between an item and a unit of that item. In the mechanism and its analysis,
we sometimes deal with an item —thus all of its units at the same time— and
sometimes deal with a single unit. Also, as discussed in Section 5.2, the role of
player i∗ with the highest marginal value is replaced by player i∗∗, and the way
i∗∗ contributes to the value approximation has changed a lot —this is where the
extra logn factor comes. Indeed, to construct and analyze our mechanism one
need good understanding of the problem in multi-unit settings. Our mechanism
MSub is a uniform distribution between MRand and the mechanism MOne of
Section 5.2. We have the following theorem.

Theorem 5. Mechanism MSub runs in polynomial time, is universally truthful,

and is an O( (logn)2

log log n )-approximation for procurement games with sub-additive
valuations.
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Algorithm AMax

Since this algorithm will be used multiple times with different inputs, we specify
the inputs explicitly to avoid confusion. Given players 1, . . . ,m, numbers of units
n1, . . . , nm, costs c1, . . . , cm, budget B, and a demand oracle for the valuation func-
tion V , do the following.

1. Let n′
i = min{ni, �B

ci
�} for each i, i∗∗ = argmaxi V (n′

iei), v
∗ = V (n′

i∗∗ei∗∗),

and V = {v∗, 2v∗, . . . ,mv∗}.
2. For v ∈ V from mv∗ to v∗,

(a) Set pi =
v
2B

· ci for each player i. Query the oracle with m players, number
of units n′

i and cost pi for each i, to find
S = (s1, . . . , sm) ∈ argmaxA=(a1,...,am):ai≤n′

i
∀i V (A)−∑

i∈[m] aipi.

(When there are multiple optimal solutions, the oracle always returns the
same one whenever queried with the same instance.)

(b) Set allocation Sv = A⊥. (Recall A⊥ = (0, . . . , 0) represents buying noth-
ing.)

(c) If V (S) < v
2
, then continue to the next v.

(d) Else, order the players according to sici decreasingly with ties broken lex-
icographically, and denote them by i1, . . . , im.
Let k be the largest number in [m] satisfying

∑
�≤k si�ci� ≤ B, and let Sv

be S projected on {i1, . . . , ik}: Sv =
∨

�≤k si�ei� , namely, Sv consists of
taking si� units of item i� for each � ≤ k, and taking 0 unit of others.

3. Output SMax ∈ argmaxv∈V V (Sv).
(When there are several choices, the algorithm chooses one arbitrarily, but
always outputs the same one when executed multiple times with the same
input.)

Mechanism MRand

1. Put each player independently at random with probability 1/2 into group T ,
and let T ′ = [m] \ T .

2. Run AMax with the set of players T , number of units ni and cost ci for each
i ∈ T , budget B, and the demand oracle for valuation function V . Let v be the
value of the returned allocation.

3. For k from 1 to
∑

i∈T ′ ni,

(a) Run AMax with the set of players Tk = {i : i ∈ T ′, ci ≤ B
k
}, number of

units ni and cost B
k

for each i ∈ Tk, budget B, and the demand oracle for
V . Denote the returned allocation by X = (x1, . . . , xm), where xi = 0 for
each i /∈ Tk.

(b) If V (X) ≥ log log n
64 log n

· v, then output allocation X, pay xi · B
k

to each player
i, and stop.

4. Output A⊥ and pay 0 to each player.
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Since diminishing return, sub-modularity, and additivity all imply
sub-additivity, we immediately have the following.

Corollary 3. MSub is an O( (logn)2

log logn )-approximation for procurement games with
diminishing returns, those with sub-modular valuations, and those with additive
valuations.

Remark 7. The worst case of the approximation above comes from cases where
V (λ∗∗ei∗∗) (and thus MOne) is the main contribution to the final value. Unlike
single-unit settings, we need an additional logn factor because the optimal ap-
proximation ratio for V (λ∗∗ei∗∗) is O(log n). For scenarios where the players’
costs are very small, in particular, where nici ≤ B for each i, the optimal single-
item allocation (i∗∗, λ∗∗) is publicly known, just as the player i∗ in single-unit
settings. In such a small-cost setting, which is very similar to the large-market
setting considered by [3] except that the items here are not infinitely divisi-
ble, the subroutine MOne in MSub can be replaced by “allocating ni∗∗ units of
item i∗∗ and paying him B”, and the logn factor is avoided, resulting in an
O( log n

log logn )-approximation.
A small-cost setting is possible in some markets, but it is not realistic in many

others. For example, in the Provision-after-Wait problem in healthcare [11], it
is very unlikely that all patients can be served at the most expensive hospital
within the government’s budget. Also, in many procurement games, a seller, as
the manufacture of his product, can be considered as having infinite supply, and
the total cost of all units he has will always exceed the buyer’s budget. Thus one
need to be careful about where the small-cost condition applies.
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Abstract. We propose the study of computing the Shapley value for a
new class of cooperative games that we call budgeted games, and inves-
tigate in particular knapsack budgeted games, a version modeled after
the classical knapsack problem. In these games, the “value” of a set S of
agents is determined only by a critical subset T ⊆ S of the agents and
not the entirety of S due to a budget constraint that limits how large
T can be. We show that the Shapley value can be computed in time
faster than by the näıve exponential time algorithm when there are suf-
ficiently many agents, and also provide an algorithm that approximates
the Shapley value within an additive error. For a related budgeted game
associated with a greedy heuristic, we show that the Shapley value can
be computed in pseudo-polynomial time. Furthermore, we generalize our
proof techniques and propose what we term algorithmic representation
framework that captures a broad class of cooperative games with the
property of efficient computation of the Shapley value. The main idea is
that the problem of determining the efficient computation can be reduced
to that of finding an alternative representation of the games and an asso-
ciated algorithm for computing the underlying value function with small
time and space complexities in the representation size.

1 Introduction

The Shapley value is a well-studied solution concept for fair distribution of profit
among agents in cooperative game theory. Given a coalition of agents that col-
lectively generate some profit, fair distribution is important to maintain a stable
coalition such that no subgroup of agents has an incentive to unilaterally deviate
and form its own coalition. While the Shapley value is not a stability concept,
it uniquely satisfies a set of desirable properties for fair profit distribution based
on individual contributions. It has been shown useful on a wide range of coop-
erative games and, more recently, applied beyond the game-theoretic setting in
problems related to social networks [19, 17] and computer networks [14, 18].
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Efficient — (pseudo) polynomial time — computation of the Shapley value
has been studied for many classes of cooperative games. One such example is
weighted voting games that model parliamentary voting where agents are parties,
the weight of each party is the number of the same party representatives, and
a coalition of parties is winning (has value 1) if its total weight is at least some
quota, or losing (has value 0) otherwise. It was shown that computing the Shapley
value in the weighted majority games, where the quota is half the total weight of
all the agents, is #P-complete [8] and NP-hard [16]. Note, however, that there
is a pseudo-polynomial time algorithm using dynamic programming [15].

In another line of research, representation schemes for cooperative games have
been proposed in [7, 11, 12, 1]; if a given cooperative game has a small alternative
representation in one of these schemes, then the Shapley value can be computed
efficiently in time polynomial in the size of the alternative representation. For
example, we can represent a given cooperative game as a collection of smaller
cooperative games in multi-issue representation [7], or in terms of logic rules in
marginal contribution net representation [11].

We propose a new class of cooperative games that we call budgeted games and
study the Shapley value computation in these games. In cooperative games, the
value function v(S) for a coalition S is determined by all the agents in S, but may
explicitly depend on a sub-coalition in some domains (e.g., [3, 5, 2]). We study
value functions conditioned on a budget B where v(S) may be totally determined
by a potentially strict subset T ⊂ S of agents. That is, budget B models a
physical or budget constraint that may limit the actual value of a coalition to be
less than simply the total aggregate value of all the individual contributions and,
hence, the profit generation of a coalition is determined only by a sub-coalition
of the agents. There are many examples we can readily formulate as budgeted
games to model real-life scenarios:

– (Graph Problems) Consider a network of nodes that correspond to facilities
and edges between them that correspond to communication links. This can
be modeled as a graph G with weights on nodes. For any subset S of nodes,
vB(S), the value created by set S under budget B, may be the maximum
weight of an independent set of at most B nodes.

– (Set Problems) Let each agent be a sales agent targeting a specific set of
customers. Then vB(S) may be the maximum number of customers that can
be targeted by a subset of size at most B of sales agents from S.

– (Packing Problems) Consider creating a task force from a pool S of available
agents where each agent is associated with some value and cost. Then vB(S)
may be the largest total aggregate value from a subset of the agents with
total cost at most B.

– (Data Mining Problems1) Let each agent represent a document with some
quality measure with respect to a fixed search query. We may approximate
the total value of an ordered list of documents S, ordered by the quality

1 This is the Shapley value computation problem for what is commonly known as the
Top-k problem.
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measure, by those that appear at the top of the list. Then, the corresponding
vB(S) is the sum of the top B quality scores of documents in S.

For the Shapley value to be useful in value division problems modeled as bud-
geted games, we cannot simply apply the formula for the Shapley value as it
would lead to an exponential time algorithm. Hence, it is important to under-
stand its computational complexity in these games, and we study the knapsack
version (equivalently, Packing Problems) in this paper. As far as we know, the
budgeted games have not been studied previously. A related class of games called
bin-packing games [9, 13, 20] has been studied for different solution concepts of
core and ε-core.2

Our Contributions. First, we propose a new class of cooperative games, bud-
geted games, and investigate the computational complexity of the Shapley value
in a particular version of budgeted games. Second, we generalize our proof tech-
niques and propose a general framework, algorithmic representation, for coopera-
tive games. We note that all our algorithms have running times with a polynomial
dependence on the number of agents. More specifically, our contributions are as
follows:

– We study the knapsack version of budgeted games and show that computing
the Shapley value in these games is NP-hard. On the other hand, we show
that the Shapley value can be computed in time faster than by the näıve
exponential time algorithm when there are sufficiently many agents.

– We provide an additive approximation scheme for the Shapley value via
rounding; our approach does not use the standard sampling and normal
distribution techniques [4, 10] in estimating the Shapley value.

– We consider the value function obtained by a 2-approximation greedy algo-
rithm for the classical knapsack problem and show that for this function, the
Shapley value can be computed in pseudo-polynomial time.

– We provide generalizations and present the algorithmic representation frame-
work that captures a broad class of cooperative games with the property of
efficient computation of the Shapley value. This includes many known classes
of cooperative games in [8, 15, 17] and those with concise representations us-
ing schemes in [7, 11, 1].

Due to space constraints, we refer to the long version of this paper [6] for more
details.

2 Preliminaries

We represent the profit distribution problem as a cooperative game (N, v) where
N is the set of agents and v : 2N → R is the characteristic function that assigns

2 While items and bins separate and bins model linear constraints in knapsack bud-
geted games, both items and bins are treated as agents and the goal is to share profit
among them in a fair way in bin-packing games.
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a value to each subset of agents, with v(∅) = 0. We also call v the value function
and use both characteristic and value functions interchangeably. For a subset of
agents S ⊆ N , we interpret v(S) as the value that these agents can generate
collectively; v(N) is the total value that the whole group generates.

The Shapley value [21] is a solution concept based on marginal contributions
that divides the total value v(N) into individual shares φ1, . . . , φ|N | satisfying
an intuitive notion of fairness. For i ∈ N and S ⊆ N \ {i}, we define agent i’s
marginal contribution to S to be v(S ∪ {i}) − v(S). The Shapley value is the
unique profit distribution solution that satisfies the following properties:

1. (Efficiency)
∑

i∈N φi(v) = v(N);
2. (Symmetry) If v(S ∪ {i})− v(S) = v(S ∪ {j})− v(S) for all S ⊆ N \ {i, j},

then φi(v) = φj(v);
3. (Null Player) If v(S ∪ {i})− v(S) = 0 for all S ⊆ N \ {i}, then φi(v) = 0;
4. (Linearity) For any two cooperative games (N, v) and (N,w) and their com-

bined game (N, v + w), φi(v) + φi(w) = φi(v + w) for all i ∈ N .

The Shapley value for each agent i is computed as

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)). (1)

Note the Shapley value is a weighted average of agent i’s marginal contribu-
tions. Equivalently, it can also be computed as φi(v) =

1
|N |!

∑
π∈Π v(P i

π ∪{i})−
v(P i

π), where Π is the set of all |N |! permutations of the agents and P i
π is the

set of agents preceding agent i in the order represented by permutation π.
There are two sources of computational complexity in the Shapley value: an

exponential number of terms in the summation and individual evaluations of
the characteristic function v. Directly applying the above equations leads to a
näıve algorithm with running time at least exponential in the number of agents,
Ω(2|N |); furthermore, each individual evaluation of v can be expensive.

3 Knapsack Budgeted Games

A knapsack budgeted game (N, v) is a cooperative game with the alternative rep-
resentation given by a nonnegative integer tuple ({(l1, w1), . . . , (l|N |, w|N |)}, lbin)
such that v(S) = maxS′⊆S:l(S′)≤lbin w(S

′) for all S ⊆ N , where l(S′) =
∑

k∈S′ lk
and w(S′) =

∑
k∈S′ wk. Each agent i is described by (li, wi) where li and wi

are the agent’s length and weight, respectively. The variable lbin is the bin size
that restricts which set of agents can directly determine the value function v.
For a set of agents S, the value v(S) is determined by solving an optimization
problem where the total value of selected agents, possibly a strict subset of S,
is optimized subject to a budget constraint; the other unselected agents do not
contribute explicitly. Note the similarities with the classical knapsack problem
in which the objective is to find the maximum total value of items that can be
packed into a fixed size bin.
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Knapsack budgeted games are useful when the characteristic function v of a
cooperative game can be modeled as the objective value of an optimization prob-
lem subject to linear constraints. In this paper, we only consider the games with a
single linear constraint, but our results extend to knapsack budgeted games with
multiple linear constraints. In a knapsack budgeted game with multiple budget
constraints, each agent is associated with a length vector l = (l1, . . . , ld) and a
weight and there is a budget constraint on each coordinate, i.e., l1bin, . . . , l

d
bin,

assuming d budget constraints.
For an application, we can use knapsack budgeted games and the Shapley

value to model value division in a sport team. We would like to give out bonuses
proportional to the Shapley value solution. Assume each player i is associated
with a skill level wi and, in a game of the sport, at most B players from each
team can play. We model the value of the team as the total aggregate skill
level of its best B players, since they usually start and play the majority of the
games. Then, this is a knapsack budgeted game with skill levels as weights, unit
lengths, and lbin = B. Note the Shapley value of a player not in the top B may
be positive. Since he is still contributing to the team as a reserve player and
might be one of the top B players in a subset of the team, say available players
in an event of injury, he should be compensated accordingly.

In the following sections, we assume that the knapsack budgeted game (N, v)
has the representation ({(l1, w1), . . . , (l|N |, w|N |)}, lbin). We define wmax = �lbin ·
maxi wi/li�, which is an upper bound on the value v(N). We use shorthand
notations l(S) =

∑
k∈S lk and w(S) =

∑
k∈S wk for any subset S. The set of

agents are ordered and labeled with 1, . . . , |N |. For a set of agents X and two
integers a and b, we use Xa,b to denote the subset {i ∈ X : a ≤ i ≤ b}. To avoid
degenerate cases, we further assume 0 < li ≤ lbin for all i. We use the indicator
function Id that equals to 1 if all the input conditions hold, or 0 otherwise.

4 The Shapley Value in Knapsack Budgeted Games

We present a hardness result, an algorithm for computing the Shapley value
exactly, and a deterministic approximation scheme that approximates within an
additive error.

4.1 Exact Computation

By the NP-completeness of the classical knapsack problem and the efficiency
property of the Shapley value, it follows that (see [6] for details):

Theorem 1. The problem of computing the Shapley value in the knapsack bud-
geted games is NP-hard.

While a polynomial time algorithm for computing the Shapley value may or
may not exist, the näıve exponential time algorithm is too slow when |N | is
large. When |N | is sufficiently large, especially when |N | � lbin, we show that a
faster algorithm exists:
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Theorem 2. In the knapsack budgeted games, the Shapley value can be com-
puted in time O(lbin(wmax + 1)lbin+1|N |2) for each agent.

To prove Theorem 2, we associate each subset S ⊆ N with a vector from a
finite-sized vector space that completely determines an agent’s marginal contri-
bution to S. If the cardinality of the vector space is small and the partitions of
the 2|N | subsets corresponding to the vectors can be found efficiently, we can
evaluate v once for each vector instead of once for each subset, reducing the
overall computation time. Note that the well-known dynamic programming al-
gorithm, call it A, for the classical knapsack problem can be used to compute
v; for a given S, the algorithm iteratively updates an integer array of length
lbin + 1 holding the optimal values for the sub-problems with smaller bin sizes
and returns a final value determined by the array at termination.3 We associate
with each subset S the final state of the array when A runs on S and determine
the cardinalities of resulting partitions using a dynamic program, different but
related to A; the dynamic program counts the number of optimal solutions to the
sub-problems grouped by objective value while A simply computes the optimal
solutions to the sub-problems.

We use the following lemma to prove Theorem 2; it shows that if the set of
possible marginal contribution values for agent i is small, then we can reduce
the number of evaluations of v by grouping subsets of N \ {i} by marginal
contribution value and evaluating v once for each group (see [6] for a proof).

Lemma 1. Assume there exist positive integers pi and partition functions Pi :
2N\{i} → {1, . . . , pi}, for i = 1, . . . , |N |, such that if Pi(S) = Pi(S

′) for two
different S, S′ ⊆ N \ {i}, then v(S ∪ {i}) − v(S) = v(S′ ∪ {i}) − v(S′). Let
mi(p) be agent i’s marginal contribution to S for all S satisfying Pi(S) = p, and
c(i, s, p) = #{S ⊆ N \ {i} : |S| = s, Pi(S) = p} for i ∈ N , 0 ≤ s ≤ |N | − 1, and
1 ≤ p ≤ pi. Then, the Shapley value for agent i can be computed as

φi =
∑pi

p=1

∑|N |−1
s=0 c(i, s, p) s!(|N |−s−1)!

|N |! mi(p)

in time O(pmax(t + q)|N |), where pmax = maxi pi, t is an upper bound on the
computation time of the coefficients c, and q is the evaluation time of v.

We now prove Theorem 2 by applying Lemma 1:

Proof. (of Theorem 2) We compute the Shapley value for some fixed agent i.
We define VA,b = maxS′⊆A:l(S′)≤b w(S

′), for A ⊆ N and 0 ≤ b ≤ lbin, and
vector VS = (VS,0, . . . , VS,lbin), for subsets S ⊆ N . Let V be the finite vector
space {0, . . . , wmax}lbin+1 that contains vectors VS . We use the 0-based index
to indicate coordinates of a vector in V ; so, v(S) = VS,lbin = VS(lbin) for all S.
GivenVS , agent i’s marginal contribution to S can be computed in constant time

3 Assume the agents in S are labeled 1, . . . , |S| for simplicity. For 1 ≤ j ≤ |S|, we define
c(j, b) = maxS′⊆S1,j :l(S

′)≤b w(S′). It has the recurrence relation c(j, b) = max{c(j −
1, b), c(j − 1, b − lj) + wj}. We compute c(j, b)’s and, hence, v(S) = c(|S|, lbin) in
O(|S|lbin) time.
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as v(S ∪{i})− v(S) = max{VS(lbin− li)+wi−VS(lbin), 0}. Let this expression
be defined more generally as mi(v) = max{v(lbin − li) + wi − v(lbin), 0} for
v ∈ V .

We partition 2N\{i} by the pair (|S|,VS) so that for each possible (s,v) pair,
all subsets S satisfying |S| = s and VS = v are grouped together. Clearly, the
marginal contribution of agent i is the same within each partition. To compute
the cardinality of each partition, we use dynamic programming. Let N ′ = N\{i},
ordered and relabeled 1, . . . , |N | − 1. For 0 ≤ j ≤ |N | − 1, 0 ≤ s ≤ j, and v ∈ V ,
we define ĉ(j, s,v) = #

{
S ⊆ N ′

1,j : |S| = s,VS = v
}
. Note ĉ has the recurrence

relation

ĉ(j, s,v) = ĉ(j − 1, s,v) +
∑

u:UPDATE(u,l′j,w
′
j)=v ĉ(j − 1, s− 1,u),

with the base case ĉ(0, 0,0) = 1, where l′j and w′
j correspond to the j-th

agent in order in N ′ and UPDATE is an O(lbin) algorithm that updates u
with the additional agent: 1) Initialize v = u; 2) For j = l′j , . . . , lbin, v(j) =
max{v(j),u(j − l′j) + w′

j}; and 3) Return v.
Using the recurrence relation, we compute ĉ(j, s,v) for all j, s, and v in time

O(lbin(wmax + 1)lbin+1|N |2). By Lemma 1,

φi =
∑

v∈V
∑|N |−1

s=0 ĉ(|N | − 1, s,v) s!(|N |−s−1)!
|N |! mi(v),

and the Shapley value can be calculated in time O((wmax + 1)lbin+1|N |) using
the precomputed values of ĉ. The computation of ĉ dominates the application
of the Shapley value equation, and the overall running time is O(lbin(wmax +
1)lbin+1|N |2) per agent. ��

4.2 Additive Approximation

Similar to the fully polynomial time approximation scheme for the classical knap-
sack problem (see [22]), we show an approximation scheme for the Shapley value
by rounding down the weights wi’s and computing the Shapley value of the
cooperative game (N, v′) where v′ is an approximation of v. Our technique of
computing the Shapley value by approximating the characteristic function v is
deterministic and does not require concentration inequalities like the standard
statistical methods of sampling and normal distribution techniques in [4, 10].

The following lemma formalizes how an approximation of the characteristic
function v leads to an additive error in the Shapley value computation (see [6]
for a proof):

Lemma 2. If v′ is an α-additive approximation of v, i.e., v′(S) ≤ v(S) ≤
v′(S) + α for all S ⊆ N , then the Shapley value φ′

i computed with respect to v′

is within an α-additive error of the Shapley value φi computed with respect to v,
for all i.

When wmax is sufficiently larger than lbin, the approximation scheme’s running
time is faster than that of the exact algorithm of Theorem 2:
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Theorem 3. In the knapsack budgeted games, the Shapley value can be com-
puted within an εwmax-additive error in O((lbin

2/ε+1)lbin+1|N |2) for each agent,
where ε > 0.4

Proof. We construct an approximate characteristic function v′ of v as follows.
Let ε > 0 and k = εwmax/lbin. Note that when lbin

2/ε < wmax, k > 1. For
each agent i, let the rounded weight w′

i be �wi

k �. The lengths do not change. To
compute v′(S), we compute the optimal set S′ ⊆ S, using dynamic programming,
with respect to the rounded weights w′

1, . . . , w
′
|N | and let v′(S) = k

∑
i∈S′ w′

i. In

other words, v′(S) = k ·maxS′⊆S:l(S′)≤lbin w
′(S) for all S ⊆ N , where we use the

shorthand notation w′(S) =
∑

k∈S w′
k.

We show v(S) ≥ v′(S) ≥ v(S) − εwmax, for all S ⊆ N . Let S be a subset
and TO, T

′ ⊆ S be the optimal subsets using original and rounded weights,
respectively, such that v(S) = w(TO) and v′(S) = k · w′(T ′). Note that both
optimal sets have cardinality at most lbin. Because of rounding down, wi −
kw′

i ≤ k and
∑

j∈TO
wj − k

∑
j∈TO

w′
j ≤ klbin. Since T ′ is optimal with respect

to the rounded weights,
∑

j∈T ′ w′
j ≥

∑
j∈TO

w′
j . Then, v

′(S) = k
∑

j∈T ′ w′
j ≥

k
∑

j∈TO
w′

j ≥
∑

j∈TO
wj − klbin = v(S) − εwmax. Since wi ≥ kw′

i for all i,
v(S) = w(TO) ≥ w(T ′) ≥ kw′(T ′) = v′(S). Hence, v′ is an εwmax-additive
approximation of v. Then, the Shapley value computed with respect to v′ is
within εwmax of the original Shapley value by Lemma 2.

We now compute the Shapley value with respect to v′. For A ⊆ N , 0 ≤ b ≤
lbin, we define V ′

A,b = maxS′⊆A:l(S′)≤b w
′(S′). For a subset S ⊆ N , we define

vector V′
S = (V ′

S,0, . . . , V
′
S,lbin

). Note that w′
i = �wi

k � ≤ �
wmax

k � = � lbinε �. Then,
we can upper bound w′(S) ≤ lbin� lbinε �, for all S. Let V ′ = {0, . . . , lbin� lbinε �}lbin+1

that vectors V′
S are contained in. Note v′(S) = k ·V′

S(lbin) for all S. From vector
V′

S , we can compute agent i’s marginal contribution to S with respect to v′ in
constant time: v′(S ∪ {i})− v′(S) = k ·max{V′

S(lbin − li) + w′
i −V′

S(lbin), 0}.
From here, we follow the proof of Theorem 2. We compute the analogue of

ĉ in O((lbin
2/ε + 1)lbin+1|N |2), and this is the dominating term in the Shapley

value computation with respect to v′. ��

5 Greedy Knapsack Budgeted Games

Motivated by the approximation scheme in Theorem 3, we investigate greedy
knapsack budgeted games, a variant of knapsack budgeted games, and show the
Shapley value in these games can be computed in pseudo-polynomial time. A
greedy knapsack budgeted game has the same representation as the knapsack
budgeted games, but its characteristic function is computed by a 2-approximation
heuristic for the classical knapsack problem. We defer proofs to [6].

4 For agent i, its Shapley value φi is clearly in [0, wmax]. Using the approximation
scheme, we can compute φi within 1

7
wmax for instance. As long as ε > lbin

2/wmax,
the approximation scheme has a faster running time than the exact algorithm in
Theorem 2; this observation about ε is also true for the fully polynomial time ap-
proximation scheme for the classical knapsack problem (see [22]).
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Algorithm 1. Greedy Heuristic A′(S, lbin)

1: Let a = argmaxk∈S wk.
2: Select agents in S in decreasing order of wi

li
and stop when the next agent does not

fit into the bin of size lbin; let S
′ be the selected agents.

3: Return S′ if w(S′) ≥ wa, or {a} otherwise.

Theorem 4. In the greedy knapsack budgeted games (N, v) with v(S) =
A′(S, lbin) for all S, the Shapley value can be computed in O(lbin

5wmax
5|N |8) for

each agent, where the greedy heuristic A′(S, lbin) is computed as in
Algorithm 1.

While motivated by knapsack budgeted games, we use a different proof tech-
nique using the following lemma to prove Theorem 4. It generalizes the observa-
tion that in the simple cooperative game (N, v) where the agents have weights
w1, . . . , w|N | and the characteristic function v is additive, i.e., v(S) =

∑
k∈S wk,

the Shapley value φi is exactly wi for all i.

Lemma 3. Assume that the cooperative game (N, v) has a representation
(M,w,A) where M is a set, w : M → R is a weight function, and A : 2N → 2M

is a mapping such that v(S) =
∑

e∈A(S) w(e), ∀S ⊆ N . Let c+(i, s, e) = #{S ⊆
N \ {i} : |S| = s, e ∈ A(S ∪ {i})} and c−(i, s, e) = #{S ⊆ N \ {i} : |S| = s, e ∈
A(S)}, for i ∈ N , e ∈ M , and 0 ≤ s ≤ |N | − 1. Then, the Shapley value for
agent i can be computed as

φi =
∑

e∈M

∑|N |−1
s=0 (c+(i, s, e)− c−(i, s, e))

s!(|N |−s−1)!
|N |! w(e).

in time O(t|M ||N |) where t is an upper bound on the computation time of the
coefficients c+ and c−.

6 Generalizations

We present generalizations of our proof techniques and propose an unifying
framework that captures a broad class of cooperative games in which comput-
ing the Shapley value is tractable, including many known classes of coopera-
tive games in [8, 15, 17] and those with concise representations using schemes
in [7, 11, 1]. The main idea is that the problem of computing the Shapley value
reduces to that of finding an efficient algorithm for the cooperative game’s char-
acteristic function. More precisely, if a cooperative game (N, v) is described in
terms of an alternative representation I and an algorithm A with low time and
space complexities that computes v, formalized in terms of decomposition, then
we can compute the Shapley value efficiently. To illustrate the generalizations’
applicability, we use them to give examples of cooperative games in which the
Shapley value can be computed efficiently.

For each generalization, we consider two cases: the order-agnostic case in
which A processes agents in an arbitrary order, and the order-specific case in
which A processes in a specific order, like the greedy heuristic in Theorem 4.
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Algorithm 2. Computing A(I, S) with a decomposition (Asetup, Aupdate, Afinal)

1: Asetup(I) outputs I
′, x

2: for i ∈ S do
3: x = Aupdate(I

′, i,x)
4: end for
5: Return Afinal(I

′,x)

Definition 1. Assume a cooperative game (N, v) has an alternative representa-
tion I and a deterministic algorithm A such that v(S) = A(I, S) for all S ⊆ N .
Algorithm A has a decomposition (Asetup, Aupdate, Afinal) if A(I, S) can be com-
puted as in Algorithm 2. We denote the the running times of the sub-algorithms
of the decomposition tsetup, tupdate and tfinal, respectively.

In Algorithm 2, x = (x1, x2, . . .) is a vector of variables that is initialized
to some values independent of subset S and determines the algorithm A’s final
return value. I ′ is an auxiliary data structure or states that only depend on the
representation I and is used in subsequent steps for ease of computation; I ′ can
be simply I if no such preprocessing is necessary. Theorem 2 can be generalized
as follows:

Theorem 5. Assume a cooperative game (N, v) has an alternative representa-
tion I and a deterministic algorithm A that computes v. If A has a decompo-
sition (Asetup, Aupdate, Afinal) such that at most n(I) variables x are used with
each taking at most m(I) possible values as S ranges over all subsets of N , then
the Shapley value can be computed in O(tsetup + tupdatem

n|N |2 + tfinalm
n|N |)

for each agent. In order-specific cases, for Steps 2-4 of Algorithm 2, the run-
ning time is O(tsetup + tupdatem

2n|N |2 + tfinalm
2n|N |). Note that n and m are

representation-dependent numbers and the argument I has been omitted.

Proof. Given the alternative representation I, we compute the Shapley value of
agent i. We associate v(S) with the final values, xS,final, of n(I) variables x in
A(I, S), for all S ⊆ N \ {i}. We partition 2N\{i} by the pair (|S|,xS,final) into
at most mn|N | partitions, omitting the argument I from n and m. Let X be
the set of all possible final values of the variables x; note that its cardinality
is at most mn. We compute the cardinalities of the partitions using dynamic
programming. Let N ′ = N \ {i}, ordered and relabeled 1, . . . , |N | − 1, and i =
|N |. For 0 ≤ j ≤ |N | − 1, 0 ≤ s ≤ j, and v ∈ X , we define ĉ(j, s,v) =
#
{
S ⊆ N ′

1,j : |S| = s,xS,final = v
}
. Then, ĉ has the recurrence relation

ĉ(j, s,v) = ĉ(j − 1, s,v) +
∑

u:Aupdate(I′,j,u)=v ĉ(j − 1, s− 1,u)

with the base case ĉ(0, 0, s) = 1, where s is the initial states of variables x.
Using Asetup, we compute I ′ and the initial values s in O(tsetup). Using the
recurrence relation and Aupdate, we compute ĉ(j, s,v) for all j, s, and v in time
O(tupdatem

n|N |2). Note that for a subset S ⊆ N \ {i}, we can compute agent i’s
marginal contribution to S, i.e., v(S ∪{i})− v(S), in O(tupdate+ tfinal) from the
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Algorithm 3. Computing A(S) with a per-element decomposition
{(Ae

setup, A
e
update, A

e
final)}e∈M

1: Initialize S′ = ∅
2: for e ∈ M do
3: Ae

setup(M,w) outputs I ′, x
4: For i ∈ S: x = Ae

update(I
′, i,x)

5: If Afinal(I
′,x) = 1, S′ = S′ ∪ {e}

6: end for
7: Return S′

final values of x associated with the partition that S belongs to, i.e., xS,final; let
mi(v) be the agent i’s marginal contribution to subsets associated with v ∈ X .
By Lemma 1,

φi =
∑

v∈X
∑|N |−1

s=0 ĉ(|N | − 1, s,v) s!(|N |−s−1)!
|N |! mi(v),

and the Shapley value can be calculated in time O((tupdate+ tfinal)m
n|N |) using

the precomputed values of ĉ. The overall running time is O(tsetup+tupdatem
n|N |2

+ (tupdate + tfinal)m
n|N |).

Now assume that the agents have to be processed in a specific order deter-
mined by representation I. For a given S and its final values xS,final, we cannot
compute xS∪{i},final as Aupdate(I

′, i,xS,final) and compute agent i’s marginal con-
tribution to S, because it would violate the order if some agents in S have to
be processed after i. Instead, we associate S with the final values xS,final and
xS∪{i},final and partition 2N\{i} by the tuple (|S|,xS,final,xS∪{i},final) into at
most m2n|N | partitions, omitting the argument I. Following the same argument
as before, we get the running time O(tsetup+tupdatem

2n|N |2+tfinalm
2n|N |). ��

The following definition and theorem generalize Theorem 4 and can also be
considered a specialization of Theorem 5. See [6] for proof details.

Definition 2. Assume a cooperative game (N, v) has an alternative representa-
tion (M,w,A) as described in Lemma 3 such that v(S) =

∑
e∈A(S) w(e), for all

S ⊆ N . Algorithm A has a per-element decomposition (Ae
setup, A

e
update, A

e
final)

for all e ∈ M if A(S) can be computed as in Algorithm 3. We denote the upper
bounds, over all e ∈M , on running times of the sub-algorithms of the per-element
decomposition tsetup, tupdate and tfinal, respectively.

Theorem 6. Assume a cooperative game (N, v) has an alternative represen-
tation (M,w,A), as given in Lemma 3. If A has a per-element decomposition
(Ae

setup, A
e
update, A

e
final) for all e ∈ M such that at most n(M,w)

variables x are used with each taking at most m(M,w) possible values as S
ranges over all subsets of N and e over M , the Shapley value can be computed
in O((tsetup + tupdatem

n|N |2 + tfinalm
n|N |)|M |) for each agent. In order-specific

cases, for Step 4 of Algorithm 3, the running time is O((tsetup+tupdatem
2n|N |2+

tfinalm
2n|N |)|M |). Note that n and m are representation-dependent numbers and

the argument (M,w) has been omitted.
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The above definitions apply broadly and suggest the following framework for
cooperative games that we term algorithmic representation; we represent each
cooperative game (N, v) in terms of an alternative representation I and an ac-
companying algorithm A that computes v. As we can represent any cooperative
game by a table with exponentially many entries for v values and a simple
lookup algorithm, the algorithmic representation always exist. The main chal-
lenge is to determine an “efficient” algorithmic representation for cooperative
games in general. The algorithmic representation framework subsumes the con-
cise representation schemes in [7, 11, 1] as these assume specific structures on the
alternative representation I. It also captures the notion of classes of cooperative
games for we can represent a class of cooperative games by a set of alternative
representations corresponding to those games in the class. In this framework,
Theorems 5 and 6 show that if the algorithms for computing v satisfy the de-
composability properties outlined in Definitions 1 and 2, then the Shapley value
can be computed efficiently as long as these algorithms are efficient.

Using the generalizations, we can reproduce many previous results on efficient
computation of the Shapley value up to a (pseudo) polynomial factor in the
running time.5 As concrete examples, we prove several such results (and a new
one on the Data Mining Problem in Section 1). We defer proofs to [6]:

Corollary 1. (Weighted Majority Games) Assume a cooperative game (N, v)
has a representation given by |N | + 1 nonnegative integers q, w1, . . . , w|N | such
that v(S) is 1 if

∑
i∈S wi ≥ q, or 0 otherwise. Then, the Shapley value can be

computed in pseudo-polynomial time O(q|N |2) for each agent. (Identical to [15])

Corollary 2. (MC-net Representation) Assume a cooperative game (N, v) has
a marginal-contribution (MC) net representation with boolean rules R = {r1, . . . ,
rm} with each ri having value vi and of the form (p1 ∧ . . .∧ pa ∧¬n1 ∧ . . .∧¬nb)
such that v(S) =

∑
ri:Ssatisfies ri

vi for all S ⊆ N .6 Then, the Shapley value can

be computed in O(m|N |2(maxi |ri|)2) for each agent, where |r| is the number of
literals in rule r. (Compare to O(mmaxi |ri|), linear time in the representation
size, in [11])

Corollary 3. (Multi-Issue Representation) Assume a cooperative game (N, v)
has a multi-issue representation with subsets C1, . . . , Ct ⊆ N and characteristic
functions vi : 2

Ci → R for all i such that v(S) =
∑t

i=1 vi(S ∩Ci) for all S ⊆ N .
Then, the Shapley value can be computed in O(t2maxi |Ci||N |2 maxi |Ci|) for each
agent. (Compare to O(t2maxi |Ci|) in [7])

Corollary 4. (Data Mining Problem) Assume a cooperative game (N, v) has a
representation given by |N | + 1 nonnegative integers k, w1, . . . , w|N | such that

5 The slightly slower running times can be attributed to our generalizations’ inability
to derive closed form expressions on a game-by-game basis; for instance, evaluating
the sum

∑n
i=1 i in O(n) instead of using the identity n(n+1)

2
=

∑n
i=1 i in O(1). As

generalizations apply in a black-box manner, we argue the loss in running time is
reasonable for (pseudo) polynomial time computation.

6 If r = (1 ∧ 2 ∧ ¬3), then S = {1, 2} satisfies r, but S = {1, 3} does not.



118 S. Bhagat et al.

v(S) = maxS′⊆S:|S′|≤k w(S
′). Then, the Shapley value can be computed in poly-

nomial time O(|N |3) for each agent. (This is our own problem.)

7 Further Discussion

We have introduced a class of cooperative games called budgeted games and
investigated the computational complexity of the Shapley value in the knapsack
version, knapsack budgeted games, in particular. We presented exact and ap-
proximation algorithms for knapsack budgeted games and a pseudo-polynomial
time algorithm for closely related greedy knapsack budgeted games. These algo-
rithms have only polynomial dependence on |N |, the number of agents, and are
more efficient than the näıve exponential time algorithm when |N | is large. Our
results extend to knapsack budgeted games with multiple budget constraints. We
believe knapsack budgeted games are useful in modeling value division problems
in real-life scenarios and our algorithms applicable; for example, when finding a
profit distribution solution for a joint venture of, say, 100-plus agents.

We also provided generalizations and proposed the algorithmic representation
framework in which we represent each cooperative game in terms of an alterna-
tive representation and an accompanying algorithm that computes the underly-
ing value function. We formalized efficient algorithmic representations and used
the generalizations to show that computing the Shapley value in those coopera-
tive games with efficient algorithmic representations can be done efficiently. To
demonstrate the generalizations’ applicability, we proved old and new results on
the efficient computation of the Shapley value.

We note that further improvement to our algorithmic results might be possi-
ble. While the exact algorithm in Theorem 2 has polynomial time dependence
on |N |, it is not a pseudo-polynomial time algorithm and the hardness result in
Theorem 1 does not preclude the existence of a polynomial time algorithm for
the Shapley value computation in the restricted case of |N | � lbin.

7 Similarly,
we do not know if the results in Theorems 3 and 4 are the best possible. We
pose these as open problems.

Finally, we believe our techniques can have applications beyond the games
considered in this paper and to other economic concepts such as the Banzhaf
index. It would be also interesting to investigate the computational complexity
of the Shapley value in other kinds of budgeted games.

Acknowledgements. We would like to thank Vasilis Gkatzelis for his helpful
comments.

7 In this case, the O(|N |lbin) dynamic programming time algorithm for the classical
knapsack problem algorithm in Footnote 3 becomes an O(|N |2) algorithm, and the
classical knapsack problem can be solved in polynomial time.



The Shapley Value in Knapsack Budgeted Games 119

References

[1] Aadithya, K.V., Michalak, T.P., Jennings, N.R.: Representation of coalitional
games with algebraic decision diagrams. In: AAMAS 2011 (2011)

[2] Aziz, H., Sorensen, T.B.: Path coalitional games. In: CoopMAS 2011 (2011)
[3] Bachrach, Y., Lev, O., Lovett, S., Rosenschein, J.S., Zadimoghaddam, M.: Coop-

erative weakest link games. In: AAMAS 2014 (to appear, 2014)
[4] Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A.D., Rosenschein, J.S.,

Saberi, A.: Approximating power indices: Theoretical and empirical analysis. In:
Autonomous Agents and Multi-Agent Systems (March 2010)

[5] Bachrach, Y., Porat, E.: Path disruption games. In: AAMAS 2010 (2010)
[6] Bhagat, S., Kim, A., Muthukrishnan, S., Weinsberg, U.: The shapley value in

knapsack budgeted games. arXiv:1409.5200 (2014)
[7] Conitzer, V., Sandholm, T.: Computing shapley values, manipulating value divi-

sion schemes, and checking core membership in multi-issue domains. In: AAAI
2004 (2004)

[8] Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution con-
cepts. Mathematics of Operations Research 19(2) (1994)

[9] Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative
games. Zeitschrift für Operations Research 38(2) (1993)

[10] Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for
the shapley value. Artificial Intelligence 172(14) (2008)

[11] Ieong, S., Shoham, Y.: Marginal contribution nets: A compact representation
scheme for coalitional games. In: EC 2005 (2005)

[12] Ieong, S., Shoham, Y.: Multi-attribute coalitional games. In: EC 2006 (2006)
[13] Kuipers, J.: Bin packing games. Mathematical Methods of Operations Re-

search 47(3) (1998)
[14] Ma, R.T., Chiu, D., Lui, J.C., Misra, V., Rubenstein, D.: Internet economics: The

use of shapley value for isp settlement. In: CoNEXT 2007 (2007)
[15] Matsui, T., Matsui, Y.: A survey of algorithms for calculating power indices of

weighted majority games. J. Oper. Res. Soc. Japan (2000)
[16] Matsui, Y., Matsui, T.: Np-completeness for calculating power indices of weighted

majority games. Theoretical Computer Science (2001)
[17] Michalak, T.P., Aadithya, K.V., Szczepanski, P.L., Ravindran, B., Jennings, N.R.:

Efficient computation of the shapley value for game-theoretic network centrality.
J. Artif. Int. Res. (January 2013)

[18] Misra, V., Ioannidis, S., Chaintreau, A., Massoulié, L.: Incentivizing peer-assisted
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Abstract. Approximating the optimal social welfare while preserving
truthfulness is a well studied problem in algorithmic mechanism design.
Assuming that the social welfare of a given mechanism design prob-
lem can be optimized by an integer program whose integrality gap is at
most α, Lavi and Swamy [1] propose a general approach to designing
a randomized α-approximation mechanism which is truthful in expec-
tation. Their method is based on decomposing an optimal solution for
the relaxed linear program into a convex combination of integer solu-
tions. Unfortunately, Lavi and Swamy’s decomposition technique relies
heavily on the ellipsoid method, which is notorious for its poor practical
performance. To overcome this problem, we present an alternative de-
composition technique which yields an α(1 + ε) approximation and only
requires a quadratic number of calls to an integrality gap verifier.

Keywords: Convex decomposition, Truthful in expectation, Mechanism
design, Approximation algorithms.

1 Introduction

Optimizing the social welfare in the presence of self-interested players poses two
main challenges to algorithmic mechanism design. On the one hand, the social
welfare consists of the player’s valuations for possible outcomes of the mech-
anism. However, since these valuations are private information, they can be
misrepresented for personal advantage. To avoid strategic manipulation, which
may harm the social welfare, it is important to encourage truthful participa-
tion. In mechanism design, this is achieved through additional payments which
offer each player a monetary incentive to reveal his true valuation. Assuming
that the mechanism returns an optimal outcome with respect to the reported
valuations, the well known Vickrey, Clarke and Groves (VCG) principle [2–4]
provides a general method to design payments such that each player maximizes
his utility if he reports his valuation truthfully. On the other hand, even if
the player’s valuations are known, optimizing the social welfare is NP-hard for
many combinatorial mechanism design problems. Since an exact optimization
is intractable under these circumstances, the use of approximation algorithms
becomes necessary. Unfortunately, VCG payments are generally not compatible
with approximation algorithms.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 120–132, 2014.
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To preserve truthfulness, so called maximal-in-range (MIR) approximation
algorithms must be used [5]. This means there must exist a fixed subset of out-
comes, such that the approximation algorithm performs optimally with respect
to this subset. Given that the players are risk-neutral, the concept of MIR algo-
rithms can be generalized to distributions over outcomes. Together with VCG
payments, these maximal-in-distribution-range (MIDR) algorithms allow for the
design of randomized approximation mechanisms such that each player max-
imizes his expected utility if he reveals his true valuation [6]. This property,
which is slightly weaker than truthfulness in its deterministic sense, is also re-
ferred to as truthfulness in expectation.

A well-known method to convert general approximation algorithms which
verify an integrality gap of α into MIDR algorithms is the linear programing
approach of Lavi and Swamy [1]. Conceptually, their method is based on the
observation that scaling down a packing polytope by its integrality gap yields
a new polytope which is completely contained in the convex hull of the original
polytope’s integer points. Considering that the social welfare of many combi-
natorial mechanism design problems can be expressed naturally as an integer
program, this scaled polytope corresponds to a set of distributions over the out-
comes of the mechanism. Thus, by decomposing a scaled solution of the relaxed
linear program into a convex combination of integer solutions, Lavi and Swamy
obtain an α-approximation mechanism which is MIDR.

Algorithmically, Lavi and Swamy’s work builds on a decomposition technique
by Carr and Vempala [7], which uses a linear program to decompose the scaled
relaxed solution. However, since this linear program might have an exponential
number of variables, one for every outcome of the mechanism, it can not be solved
directly. Instead, Carr and Vempala use the ellipsoid method in combination
with an integrality gap verifier to identify a more practical, but still sufficient,
subset of outcomes for the decomposition. Although this approach only requires
a polynomial number of calls to the integrality gap verifier in theory, the ellipsoid
method is notoriously inefficient in practice [8].

In this work, we propose an alternative decomposition technique which does
not rely on the ellipsoid method and is general enough to substitute Carr and
Vempala’s [7] decomposition technique. The main component of our decompo-
sition technique is an algorithm which is based on a simple geometric idea and
computes a convex combination within an arbitrarily small distance ε to the
scaled relaxed solution. However, since an exact decomposition is necessary to
guarantee truthfulness, we slightly increase the scaling factor of the relaxed solu-
tion and apply a post-processing step to match the convex combination with the
relaxed solution. Assuming that ε is positive and fixed, our technique yields an
α(1 + ε) approximation of the optimal social welfare but uses only a quadratic
number of calls to the integrality gap verifier, with respect to the number of
positive components in the relaxed solution vector.

It turns out that our method has interesting connections to an old algorithm
of Von Neumann reproduced by Dantzig [9] 1. At first sight, similarities in the

1 We thank the anonymous referee of WINE 2014 who pointed us to this paper.



122 D. Kraft, S. Fadaei, and M. Bichler

sampling and geometric techniques used in both algorithms can be observed.
However, Von Neumann’s algorithm may sample fractional points whereas our
setting requires integral points. Due to these more involved constraints, a direct
usage of Von Neumann’s technique in our setting is impossible.

2 Setting

Integer programming is a powerful tool in combinatorial optimization. Using
binary variables to indicate whether certain goods are allocated to a player, the
outcomes of various NP-hard mechanism design problems, such as combinatorial
auctions or generalized assignment problems [1, 10], can be modeled as integer
points of an n-dimensional packing polytope X ⊆ [0, 1]n.

Definition 1. (Packing Polytope) Polytope X satisfies the packing property
if all points y which are dominated by some point x from X are also contained
in X

∀x, y ∈ Rn
≥0 : x ∈ X ∧ x ≥ y ⇒ y ∈ X.

Together with a vector μ ∈ Rn
≥0 which denotes the accumulated valuations of

the players, it is possible to express the social welfare as an integer program of
the form maxx∈Z(X)

∑n
k=1 μkxk, where Z(X) denotes the set of integer points in

X . Using the simplex method, or other standard linear programming techniques,
an optimal solution x∗ ∈ X of the relaxed linear program maxx∈X

∑n
k=1 μkxk

can be computed efficiently for most mechanism design problems. Note that for
combinatorial auctions, where the dimension of X grows exponentially with the
number of available goods, special attention is necessary to preserve compu-
tational feasibility. One possible approach is the use of demand queries which
yields an optimal solution in polynomial time and with a polynomial number of
positive components [1].

The maximum ratio between the original program and its relaxation is called
the integrality gap of X . Assuming this gap is at most α ∈ R≥1, Lavi and

Swamy [1] observe that the scaled fractional solution x∗
α can be decomposed

into a convex combination of integer solutions. More formally, there exists a

convex combination λ from the set Λ = {λ ∈ R
Z(X)
≥0

|
∑

x∈Z(X) λx = 1} such

that the point σ(λ), which is defined as σ(λ) =
∑

x∈Z(X) λxx, is equal to x∗
α .

Regarding λ as a probability distribution over the feasible integer solutions, the
MIDR principle allows for the construction of a randomized α-approximation
mechanism which is truthful in expectation.

From an algorithmic point of view, the main challenge in decomposing x∗
α is

the computation of suitable integer points. Since the size of Z(X) is typically
exponential in n, it is intractable to consider the entire polytope. Instead, Carr
and Vempala [7] propose the use of an approximation algorithm A : Rn

≥0 →
Z(X) which verifies an integrality gap of α to sample a more practical, but still
sufficient, subset of integer points.
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Definition 2. (Integrality Gap Verifier) Approximation algorithm A veri-
fies an integrality gap of α if the integer solution which is computed by A is at
least α times the optimal relaxed solution for all non-negative vectors μ

∀μ ∈ Rn
≥0 : α

n∑
k=1

μkA(μ)k ≥ max
x∈X

n∑
k=1

μkxk.

As it turns out, Carr and Vempala’s approach only requires a polynomial number
of calls to to A with respect to n. In particular, this implies that the number
of integer points in λ, which is defined as ψ(λ) = |{x ∈ Z(X) | λx > 0}|, is
polynomial as well. Observe that for sparse x∗, which are common in the case of
combinatorial auctions, it is only necessary to consider the subspace of positive
components in x∗. This is possible since no point in Z(X) which has a positive
component k can contribute to λ if x∗

k is 0. In either case, the fact that Carr
and Vempala strongly rely on the ellipsoid method indicates that their results
are more of theoretical importance than of practical use.

3 Decomposition with Epsilon Precision

The first part of our decomposition technique is to construct a convex combina-
tion λ such that the point σ(λ) is within an arbitrarily small distance ε ∈ R>0

to the scaled relaxed solution x∗
α . Similar to Carr and Vempala’s approach, our

technique requires an approximation algorithm A′ : Rn → Z(X) to sample inte-
ger points from X . It is important to note that A′ must verify an integrality gap
of α for arbitrary vectors μ ∈ Rn whereas A, only accepts non-negative vectors.
However, since X satisfies the packing property, it is easy to extend the domain
of A while preserving an approximation ratio of α.

Lemma 1. Approximation algorithm A can be extended to a new approximation
algorithm A′ which verifies an integrality gap of α for arbitrary vectors μ.

Proof. The basic idea of A′ is to replace all negative components of μ by 0 and
run the original integrality gap verifier A on the resulting non-negative vector,
which is defined as ξ(μ)k = max({μk, 0}). Exploiting the fact that X is a packing
polytope, the output of A is then set to 0 for all negative components of μ. More
formally, A′ is defined as

A′(μ)k =

{
A(ξ(μ))k if μk ≥ 0

0 if μk < 0.

Since A′(μ)k is equal to 0 if μk is negative and otherwise corresponds to
A(ξ(μ))k, it holds that

n∑
k=1

μkA′(μ)k =

n∑
k=1

ξ(μ)kA′(μ)k =

n∑
k=1

ξ(μ)kA(ξ(μ))k.



124 D. Kraft, S. Fadaei, and M. Bichler

Furthermore, since X only contains non-negative points, maxx∈X

∑n
k=1 ξ(μ)kxk

must be greater or equal to maxx∈X

∑n
k=1 μkxk. Together with the fact that

A verifies an integrality gap of α for ξ(μ) this proves that A′ verifies the same
integrality gap for μ

α

n∑
k=1

μkA′(μ)k = α

n∑
k=1

ξ(μ)kA(ξ(μ))k ≥ max
x∈X

n∑
k=1

ξ(μ)kxk ≥ max
x∈X

n∑
k=1

μkxk.

��

Once A′ is specified, algorithm 1 is used to decompose x∗
α . Starting at the

origin, which can be expressed trivially as a convex combination from Λ due to
the packing property of X , the algorithm gradually improves σ(λi) until it is
sufficiently close to x∗

α . For each iteration of the algorithm, μi denotes the vector

which points from σ(λi) to x∗
α . If the length of μi is less or equal to ε, then σ(λi)

must be within an ε-distance to x∗
α and the algorithm terminates. Otherwise, A′

samples a new integer point xi+1 based on the direction of μi. It is important
to observe that all points on the line segment between σ(λi) and xi+1 can be
expressed as a convex combination of the form δλi+(1− δ)τ(xi+1), where δ is a
value between 0 and 1 and τ(xi+1) denotes a convex combination such that the
coefficient τ(xi+1)xi+1 is equal to 1 while all other coefficients are 0. Thus, by
choosing λi+1 as the convex combination which minimizes the distance between
the line segment and x∗

α , an improvement over the current convex combination
is possible. As theorem 1 shows, at most �nε−2� − 1 iterations are necessary to
obtain the desired ε-precision.

Algorithm 1. Decomposition with Epsilon Precision

Input: an optimal relaxed solution x∗, an approximation algorithm A′, a precision ε
Output: a convex combination λ which is within an ε-distance to x∗

α

x0 ← 0, λ0 ← τ (x0), μ0 ← x∗
α

− σ(λ0), i ← 0
while ‖μi‖2 > ε do

xi+1 ← A′(μi)
δ ← argminδ∈[0,1] ‖x∗

α
− (δσ(λi) + (1− δ)xi+1)‖2

λi+1 ← δλi + (1− δ)τ (xi+1)
μi+1 ← x∗

α
− σ(λi+1)

i ← i+ 1
end while
return λi

Theorem 1. Algorithm 1 returns a convex combination within an ε-distance to
the scaled relaxed solution x∗

α after at most �nε−2� − 1 iterations.

Proof. Clearly, algorithm 1 terminates if and only if the distance between σ(λi)
and x∗

α becomes less or equal to ε. Thus, suppose the length of vector μi is still
greater than ε. Consequently, approximation algorithm A′ is deployed to sample
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x∗
α

σ(λi)

σ(λi+1)

zi+1

xi+1

μi+1

μi

hyperplane

Fig. 1. Right triangle between the points x∗
α
, σ(λi

x) and zi+1

a new integer point xi+1. Keeping in mind that A′ verifies an integrality gap of
α, the value of xi+1 must be greater or equal to the value of x∗

α with respect to
vector μi

n∑
k=1

μi
kx

i+1
k =

n∑
k=1

μi
kA′(μi)k ≥ max

x∈X

n∑
k=1

μi
k

xk

α
≥

n∑
k=1

μi
k

x∗

α
.

Conversely, since the squared distance between σ(λi) and x∗
α is greater than ε2,

and therefore also greater than 0, it holds that the value of σ(μi) is less than
the value of x∗

α with respect to vector μi

0 <

n∑
k=1

(x∗
k

α
− σ(λi)k

)2

⇐⇒ 0 <

n∑
k=1

((x∗
k

α

)2

− 2
x∗
k

α
σ(λi)k + σ(λi)2k

)
⇐⇒

n∑
k=1

(x∗
k

α
σ(λi)k − σ(λi)2k

)
<

n∑
k=1

((x∗
k

α

)2

− x∗
k

α
σ(λi)k

)
⇐⇒

n∑
k=1

μi
kσ(λ

i)k <

n∑
k=1

μi
k

x∗
k

α
.

As a result, the hyper plane {x ∈ Rn |
∑n

k=1 μ
i
kxk =

∑n
k=1 μ

i
k
x∗
k

α } separates
σ(λi) from xi+1, which in turn implies that the line segment conv({σ(λi), xi+1})
intersects the hyperplane at a unique point zi+1.

Since the hyperplane is orthogonal to μi, the points x∗
α , σ(λi

x) and zi+1 form
a right triangle, as figure 1 illustrates. Furthermore, the altitude of this triangle
minimizes the distance from the line segment conv({σ(λi), xi+1}) to x∗

α and
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therefore corresponds to the length of new vector μi+1. According to the basic
relations between the sides in a right triangle, the length of μi+1 can be expressed
as

∥∥μi+1
∥∥
2
=

√√√√ ∥∥μi
∥∥2
2

∥∥x∗
α − zi+1

∥∥2
2∥∥μi

∥∥2
2
+
∥∥x∗

α − zi+1
∥∥2
2

.

Unfortunately, the exact position of zi+1, depends on the implementation A′.
To obtain an upper bound on the length μi+1 which does not rely on zi+1, it is
helpful to observe that the altitude of the triangle grows as the distance between
zi+1 and x∗

α increases. However, since both points are contained in the standard
hyper cube [0, 1]n, the square of this distance is at most n

∥∥x∗

α
− zi+1

∥∥2
2
=

n∑
k=1

(x∗
k

α
− zi+1

k

)2

≤
n∑

k=1

1 = n,

which means that the maximum length of μi+1 is given by

∥∥x∗

α
− zi+1

∥∥2
2
≤ n

⇐⇒
∥∥x∗

α − zi+1
∥∥2
2∥∥μi

∥∥2
2
+
∥∥x∗

α − zi+1
∥∥2
2

≤ n∥∥μi
∥∥2
2
+ n

⇐⇒
∥∥μi

∥∥2
2

∥∥x∗
α − zi+1

∥∥2
2∥∥μi

∥∥2
2
+
∥∥x∗

α − zi+1
∥∥2
2

≤
∥∥μi

∥∥2
2
n∥∥μi

∥∥2
2
+ n

⇐⇒

√√√√ ∥∥μi
∥∥2
2

∥∥x∗
α − zi+1

∥∥2
2∥∥μi

∥∥2
2
+
∥∥x∗

α − zi+1
∥∥2
2

≤

√√√√ ∥∥μi
∥∥2
2
n∥∥μi

∥∥2
2
+ n

.

It is important to note that this upper bound on the length of μi+1, which is
illustrated in figure 2, only depends on the previous vector μi and the dimension
n. Solving the recurrence inequality yields yet another upper bound which is
based on the initial vector μ0 and the number of iterations i

∥∥μi
∥∥2
2
≤

∥∥μi−1
∥∥2
2
n∥∥μi−1

∥∥2
2
+ n

⇐⇒
∥∥μi

∥∥2
2

n
≤

∥∥μi−1
∥∥2
2∥∥μi−1

∥∥2
2
+ n

⇐⇒ n∥∥μi
∥∥2
2

≥ n∥∥μi−1
∥∥2
2

+ 1 ...
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Fig. 2. Upper bound on the distance between σ(λi) and x∗
α

for the first 7 iterations
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∥∥μi

∥∥2
2

n
≤

∥∥μ0
∥∥2
2∥∥μ0

∥∥2
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⇐⇒
∥∥μi

∥∥
2
≤

√√√√ ∥∥μ0
∥∥2
2
n∥∥μ0

∥∥2
2
i+ n

.

Considering that the squared length of vector μ0, which corresponds to the
distance between x∗

α and the origin, is at most n

∥∥μ0
∥∥2
2
=

n∑
k=1

(x∗
k

α

)2

≤
n∑

k=1

1 = n,
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it follows that

∥∥μi
∥∥
2
≤

√√√√ ∥∥μ0
∥∥2
2
n∥∥μ0

∥∥2
2
i+ n

≤
√

n2

ni+ n
=

√
n

i+ 1
.

Finally, this proves that the distance between σ(λi) and x∗
α must be less or equal

to ε after not more than �nε−2� − 1 iterations, at which point the algorithm
terminates

∥∥μ�nε−2�−1
∥∥
2
≤
√

n

1 + (�nε−2� − 1)
≤ ε.

��

At this point, it should be mentioned that the upper bound on the number of
iterations given in theorem 1 can be further refined with a simple modification of
A′. Due to the packing property ofX it is possible to set all components ofA′(μi)
which correspond to a component of value 0 in x∗ to 0 as well. Given that μ0 is
equal to x∗

α and all other μi+1 are defined recursively as the difference between
x∗
α and a convex combination of x∗

α −μi and A′(μi), every vector μi+1 must share
the 0 components of x∗. As a result, the new A′ preserves the approximation
ratio and algorithm 1 still works as expected. Furthermore, only integer points
from the subspace of positive components in x∗ are considered, which means that
the convergence of algorithm 1 depends on the number of positive components
in x∗ rather than n.

4 Exact Decomposition

Although the convex combination λ which is returned by algorithm 1 is within
an ε-distance to x∗

α , an exact decomposition of the relaxed solution is necessary
to guarantee truthfulness. Assuming that an additional scaling factor of

√
nε is

admissible, the second part of our decomposition technique shows how to convert
λ into a new convex combination λ′′ such that σ(λ′′) is equal to x∗

α(1+
√
nε)

. Note

that this additional scaling factor depends on ε, which means that it can still
be made arbitrarily small. In particular, running algorithm 1 with a precision
of ε√

n
, instead of ε, reduces the factor to ε and yields a decomposition which

is equal to x∗
α(1+ε) . However, since this new precision is not independent of n

anymore, the maximum number of iterations is increased to �n( ε√
n
)−2� − 1,

which is quadratic in n. It is helpful to observe that the techniques which are
introduced in this chapter can be adapted easily to the subspace of positive
components in x∗. Hence, all complexity results carry over directly from n to
the number of positive components in x∗.

To adjust σ(λ) component-wisely, it is helpful to consider the integer points
ek ∈ {0, 1}n. For every dimension k, the kth component of ek is defined to be 1
while all other components are 0. Since X has a finite integrality gap and also
satisfies the packing property, all points ek must be contained in X .
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Lemma 2. The polytope X contains all points ek.

Proof. For the sake of contradiction, assume there exists a dimension k for which
ek is not contained in X . Since X satisfies the packing property, this implies that
there exists no point in X whose kth component is 1, in particular no integer
point. As a result, the optimal solution for the integer program with respect to
the vector ek must be 0

max
x∈Z(X)

n∑
l

ekl xl = max
x∈Z(X)

xk = 0.

Keeping in mind that X has an integrality gap of at most α, it immediately
follows that the optimal solution for the relaxed linear program with respect to
ek must also be 0

max
x∈X

n∑
l

ekl xl = max
x∈X

xk = 0.

However, this implies that the kth component of every point in X is 0, which
contradicts the fact that X is n-dimensional. ��

Applying theorem 2, our decomposition technique uses the points ek to construct
an intermediate convex combination λ′ such that σ(λ′) dominates x∗

α(1+
√
nε)

.

Theorem 2. Convex combination λ can be converted into a new convex combi-
nation λ′ which dominates x∗

α(1+
√
nε)

.

Proof. According to lemma 2, the points ek are contained in Z(X). Thus, they

can be added to λ to construct a positive combination λ+
∑n

k=1 |
x∗
k

α −σ(λ)k|τ(ek)
which dominates x∗

α

σ
(
λ+

n∑
k=1

∣∣∣x∗
k

α
− σ(λ)k

∣∣∣τ(ek)) = σ(λ) +
( n∑

k=1

∣∣∣x∗
k

α
− σ(λ)k

∣∣∣ek)
≥ σ(λ) +

( n∑
k=1

(x∗
k

α
− σ(λ)k

)
ek
)

= σ(λ) +
x∗

α
− σ(λ)

=
x∗

α
.

Since the sum over the additional coefficients
∑n

k=1 |
x∗
k

α − σ(λ)k| is equivalent
to the L1 distance between σ(λ) and x∗

α , it is bounded by the Hölder inequality

n∑
k=1

∣∣∣x∗
k

α
− σ(λ)k

∣∣∣ = ∥∥∥x∗

α
− σ(λ)

∥∥∥
1
≤
∥∥∥1∥∥∥

2

∥∥∥x∗

α
− σ(λ)

∥∥∥
2
≤
√
nε.



130 D. Kraft, S. Fadaei, and M. Bichler

As a result, scaling down the positive combination by a factor of 1+
√
nε yields a

new positive combination which dominates x∗
α(1+

√
nε)

and whose coefficients sum

up to a value less or equal to 1. To ensure that this sum becomes exactly 1, the

coefficients must be increased by an additional value of
√
nε−

∑n
k=1 |

x∗
k

α −σ(λ)k|.
An easy way to achieve this is by adding the origin, which is trivially contained
in Z(X) due to the packing property of X , to the positive combination. Thus,
the desired convex combination λ′ corresponds to

λ+
∑n

k=1

∣∣x∗
k

α − σ(λ)k
∣∣τ(ek) + (√

nε−
∑n

k=1

∣∣x∗
k

α − σ(λ)k
∣∣)τ(0)

1 +
√
nε

.

��

In the final step, our decomposition technique exploits the packing property
of X to convert λ′ into an exact decomposition of x∗

α(1+
√
nε)

. A simple but general

approach to this problem is provided by algorithm 2. Given a point x ∈ X which
is dominated by σ(λ′), the basic idea of the algorithm is to iteratively weaken
the integer points which comprise λ′ until the desired convex combination λ′′ is

reached. As theorem 3 shows, this computation requires at most |ψ(λ)|n+ n2+n
2

iterations.

Algorithm 2. From a Dominating to an Exact Decomposition

Input: a convex combination λ′, a point x which is dominated by σ(λ′)
Output: a convex combination λ′′ which is an exact decomposition of x

λ0 ← λ′, i ← 0
for all 1 ≤ k ≤ n do

while σ(λi)k > xk do
y ← pick some y from Z(X) such that λi

y > 0 and yk = 1
if λi

y ≥ σ(λi)k − xk then
λi+1 ← λi − (σ(λi)k − xk)τ (y) + (σ(λi)k − xk)τ (y − ek)

else
λi+1 ← λi − λi

yτ (y) + λi
yτ (y − ek)

end if
i ← i+ 1

end while
end for
return λi

Theorem 3. Assuming that σ(λ′) dominates the point x, algorithm 2 converts
λ′ into a new convex combination λ′′ such that σ(λ′′) is equal to x. Furthermore,

the required number of iterations is at most |ψ(λ′)|n+ n2+n
2 .

Proof. In order to match σ(λ′) with x, algorithm 2 considers each dimension
k separately. Clearly, while σ(λi)k is still greater than xk, there must exist at
least one point y in λi which has a value of 1 in component k. If λi

y is greater or

equal to the difference between σ(λi)k and xk, it is reduced by the value of this
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difference. To compensate for this operation, the coefficient of the point y − ek,
which is trivially contained in X due to its packing property, is increased by the
same value. Thus, the value of σ(λi+1)k is equal to xk

σ(λi+1)k = σ(λi)k − (σ(λi)k − xk)τ(y)k + (σ(λi)k − xk)τ(y − ek)k

= σ(λi)k − (σ(λi)k − xk)

= xk,

which means that the algorithm succeeded at computing a matching convex
combination for x at component k. It should be noted that the other components
of λi+1 are unaffected by this update.

Conversely, if λi
y is less than the remaining difference between σ(λi)k and

xk, the point y can be replaced completely by y − ek. In this case the value of
σ(λi+1)k remains greater than xk

σ(λi+1)k = σ(λi)k − λi
yτ(y)k + λi

yτ(y − ek)k = σ(λi)k − λi
y > xk

Furthermore, the number of points in λi+1 which have a value of 1 at component
k is reduced by one with respect to λi. Considering that the number of points
in λi is finite, this implies that the algorithm must eventually compute a convex
combination λ′′ which matches x at component k.

To determine an upper bound on the number of iterations, it is helpful to
observe that the size of the convex combination can only increase by 1 for every
iteration of the for loop, namely if λi

y is greater than the difference between

σ(λi)k and xk. As a result, the number of points which comprise a convex com-
bination during the kth iteration of the for loop is at most ψ(λ′) + k. Since this
number also gives an upper bound on the number of iterations performed by the
while loop, the total number of iterations is at most

n∑
k=1

(|ψ(λ′)|+ k) = n|ψ(λ′)|+
n∑

k=1

k = n|ψ(λ′)|+ n2 + n

2
.

��
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Abstract. We examine strategy-proof elections to select a winner amongst a set
of agents, each of whom cares only about winning. This impartial selection prob-
lem was introduced independently by Holzman and Moulin [5] and Alon et al. [1].
Fischer and Klimm [4] showed that the permutation mechanism is impartial and
1
2

-optimal, that is, it selects an agent who gains, in expectation, at least half the
number of votes of the most popular agent. Furthermore, they showed the mecha-
nism is 7

12
-optimal if agents cannot abstain in the election. We show that a better

guarantee is possible, provided the most popular agent receives at least a large
enough, but constant, number of votes. Specifically, we prove that, for any ε > 0,
there is a constant Nε (independent of the number n of voters) such that, if the
maximum number of votes of the most popular agent is at least Nε then the per-
mutation mechanism is ( 3

4
− ε)-optimal. This result is tight.

Furthermore, in our main result, we prove that near-optimal impartial mecha-
nisms exist. In particular, there is an impartial mechanism that is (1− ε)-optimal,
for any ε > 0, provided that the maximum number of votes of the most popular
agent is at least a constant Mε.

1 Introduction

Imagine an election where the voters are the candidates and each voter is allowed to vote
for as many of the other candidates as she wishes. Now suppose each voter cares only
about winning. The goal of the mechanism is to elect the candidate with the maximum
support. To achieve this, we desire that the election mechanism be strategy-proof. Thus,
we want an impartial mechanism, where voting truthfully cannot affect an agent’s own
chances of election.

This problem, called the impartial selection problem, was introduced independently
by Holzman and Moulin [5] and Alon et al. [1]. In addition to elections, they were
motivated by nomination mechanisms for prestigious prizes and committees, hyperlink
formations, and reputation systems in social networks. Fischer and Klimm [4] also pro-
posed the use of such mechanisms for peer review evaluation processes.

The impartial selection problem can be formalized via a directed graph G = (V,A).
There is a vertex v ∈ V for each voter (candidate) v, and there is an arc (u, v) ∈ A if u
votes for v. The aim is to maximize the in-degree of the selected vertex, and we say that
an impartial mechanism is α-optimal, for α ≤ 1, if the in-degree of the vertex it selects
is always at least α times the in-degree of the most popular vertex.

Unfortunately, Holzman and Moulin [5] and Alon et al. [1] observed that a deter-
ministic impartial mechanism must have an arbitrarily poor approximation guarantee α.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 133–146, 2014.
c© Springer International Publishing Switzerland 2014
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Specifically, a deterministic mechanism may have to select a vertex with zero in-degree
even when other vertices receive votes; or it may be forced to select a vertex with in-
degree one whilst another vertex receives n − 1 votes! This negative result motivated
Alon et al. [1] to study randomized impartial mechanisms. In particular, they examined
a simple mechanism dubbed the 2-partition mechanism. This mechanism independently
assigns each vertex to one of two groups {V1, V2}. Then, only the arcs from vertices
in V1 to vertices in V2 are counted as votes. The vertex with the maximum number
of counted votes in V2 is selected (breaking ties arbitrarily). It is straight-forward to
verify that this mechanism is impartial and is 1

4 -optimal. They further conjectured the
existence of an 1

2 -optimal impartial randomized mechanism.
This conjecture was recently proven by Fischer and Klimm [4]. Specifically, they

proved that the permutation mechanism is impartial and 1
2 -optimal. This election mech-

anism examines the vertices in a random order, and can only count the votes of a vertex
that go to vertices behind it in the ordering. (See Section 3 for a detailed description
of the mechanism and a short proof of Fischer and Klimm’s result.) Interestingly, the
factor 1

2 -approximation guarantee is tight. Consider an n-vertex graph containing only
a single arc (u, v). Then, unless u is before v in the random permutation the mechanism
will select a vertex with in-degree zero. Thus the expected in-degree of the vector is at
most one half.

Observe that this tight example is rather unsatisfactory. It is extremely unnatural
and relies on the fact that every vertex bar one abstains from voting. Indeed, Fischer
and Klimm [4] showed that without abstentions the permutation mechanism is at least
7
12 -optimal. They leave open the possibility that the permutation mechanism actually
proffers a better approximation guarantee than 7

12 . They do prove, however, that without
abstentions the permutation mechanism can be no better than 2

3 -optimal. Moreover,
Fischer and Klimm [4] provide an even stronger inapproximation bound: no impartial
mechanism can be better than 3

4 -optimal, even without abstentions.
This appears to severely limit the potential for progress. But, again, the lower bounds

are somewhat unsatisfactory. The issue now is not low out-degrees (that is, abstentions)
but rather low in-degrees. The lower bounds are all based on instances with extremely
small maximum in-degree Δ−. Specifically, the factor 1

2 optimal example [1] for the
permutation mechanism with abstentions has Δ− = 1; the factor 2

3 optimal example
[4] for the permutation mechanism without abstentions has Δ− = 3; the factor 3

4 op-
timal example [4] for any randomized mechanism without abstentions has Δ− = 2.
Of course, in applications with a large number n of voters, we would anticipate that
the most popular agent receives a moderate number of votes. Do these inapproximabil-
ity bounds still apply for these more realistic settings? Interestingly, the answer is no,
even for cases where the most popular agent receives only a (large enough) constant
number of votes. Specifically, we first prove that the permutation mechanism is nearly
3
4 -optimal in such instances.

Theorem 1. For any ε > 0, there is a constant Nε such that if Δ− ≥ Nε then the
permutation mechanism is (34 − ε)-optimal.

This result is tight. We show that the permutation mechanism cannot produce a guaran-
tee better than 3

4 regardless of the magnitude of Δ−.
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This result suggests that it may be possible to find a mechanism that beats the 3
4 -

inapproximability bound of [4], even for constant maximum in-degree. This is indeed
the case and spectacularly so. There is an impartial mechanism, which we call the slic-
ing mechanism, that produces a near optimal approximation guarantee.

Theorem 2. For any ε > 0, there is a constant Mε such that if Δ− ≥ Mε then the
slicing mechanism is (1− ε)-optimal.

The slicing mechanism differs from previous mechanisms in that it adds an initial sam-
pling phase. In this first phase, it samples a small fraction of the vertices. It then uses the
votes of these vertices to build a non-random ordering of the other vertices. This spe-
cific ordering is exploited in the second phase to elect a vertex with very high expected
in-degree.

These results, as in previous works [1,4,5], relate to single-winner elections. Some of
the motivating applications, however, involve multiple-winner elections. We remark that
our main result can be generalized to multiple-winner elections via small modifications
to the mechanism.

2 The Model

We begin by formalizing the impartial selection problem and introducing some neces-
sary notation. An election is represented via a directed graph G = (V,A). The number
of vertices of G is denoted by n, and each vertex represents an agent (voter/candidate).
An agent can make multiple votes, but cannot vote for herself nor vote more than once
for any other agent. Thus, the graph G is loopless and contains no multiple arcs.

A vertex u is an in-neighbor of v (resp. out-neighbor of v) if there is an arc uv ∈ A
(resp. vu ∈ A). In this case, we say that u votes for v. Given a subset Y ⊆ V and
v ∈ V , the in-degree of v in Y , denoted by d−Y (v), is the number of in-neighbors of
v in Y . For simplicity, we denote d−V (v), the in-degree of v, by d−(v). The maximum
in-degree of any vertex in G is denoted in by Δ−(G), or simply by Δ when there is no
ambiguity.

A mechanism is impartial if, for every vertex v, the probability of selecting v is not
modified when the out-neighborhood of v is modified. That is, if v changes its votes
then this does not affect the probability of v being elected. More formally, take any pair
of graphs G and G′ on the same vertex set V . Let v be a vertex. Then we require that
the probability that v is elected in G is equal to the probability that v is elected in G′,
whenever the sets of out-neighbors of u and v are equal for every u �= v.

Given 1 ≥ α ≥ 0, an impartial mechanism is α-optimal if for any graph G, the
expected degree of the winner differs from the maximum degree by a factor of at most
α, that is, ∑

v∈V d−(v) · Pr(v is the winner)

Δ
≥ α

3 The Permutation Mechanism

In this section, we analyze the permutation mechanism of Fischer and Klimm [4]. This
election mechanism examines the vertices in a random order {π1, π2, . . . , πn}. At time
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t, the mechanism selects a provisional leader yt amongst the set Πt = {π1, . . . πt}.
At time t + 1 the mechanism then examines πt+1. If πt+1 receives at least as many
votes from Πt \ yt as yt from the set of voters before him then πt+1 is declared the
provisional leader yt+1. Otherwise yt+1 := yt. The winner of the election is yn. A
formal description of the permutation mechanism is given in Procedure 1 (where di
denotes the in-degree of the provisional leader). Given an integern, the set {1, 2, . . . , n}
is denoted by [n].

Procedure 1. The Permutation Mechanism
Input: A directed graph G = (V,A).
Let π be a random permutation of V = [n].
y1 ← π1;
d1 ← 0;
for i = 1 to n− 1 do

if d−Πi\{yi}(πi+1) ≥ di then
yi+1 ← πi+1;
di+1 ← d−Πi

(πi+1)
else

yi+1 ← yi;
di+1 ← di

end if
end for
output yn

Observe that the permutation mechanism is impartial because it has the following
property: the votes of a vertex are only considered after it has been eliminated. Specifi-
cally, the votes of πt are considered at time τ > t only if πt is not the provisional leader
at time τ − 1. But, if πt is not the provisional leader at time τ > t then it cannot be
elected. This ensures that eliminated agents have no interest to lie, i.e. the mechanism
is impartial. Fischer and Klimm [4] proved this mechanism is 1

2 -optimal using an intri-
cate analysis based upon viewing the permutation mechanism as a generalization of the
2-partition mechanism. First, we present a simpler proof of their result.

Theorem 3. [4] The permutation mechanism is 1
2 -optimal.

Proof. Let v be a vertex with maximum in-degree Δ. Now suppose exactly j of its
in-neighbors appear before v in the random ordering π. In this case, at the time v is
considered it has received at least j − 1 valid votes (one of the j votes may not be
counted if it comes from the provisional leader).

Suppose v is now declared the provisional leader. Then all j of these votes become
valid. (Indeed, if one of the in-neighbors of v was the provisional leader, this is no
longer the case.) On the other-hand, suppose v is now declared a loser. Then, because
ties are broken in favor of newly examined vertices, the provisional leader must already
be receiving at least j valid votes. Thus in either case, the final winner yn must also
receive at least j valid votes (the in-degree of the provisional leader is non-decreasing).
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Now with probability 1
Δ+1 , exactly j of its in-neighbors appear before v, for any

0 ≤ j ≤ Δ. Thus, in expectation, the winner receives at least 1
Δ+1 ·

∑Δ
j=0 j = 1

2Δ
votes. ��

As discussed in the introduction, the factor 1
2 -approximation guarantee in Theorem 3 is

tight. This tightness is slightly misleading, though. Recall that the tight example was a
graph with just a single arc. Under a natural assumption that the maximum in-degree is
large enough, the permutation mechanism is 3

4 -optimal. Specifically,

Theorem 1. For any ε > 0, there is a constant Nε such that if Δ− ≥ Nε then the
permutation mechanism is (34 − ε)-optimal.

The 3
4 bound in Theorem 1 is tight in a very strong sense. There are tight examples for

any choice of Δ, no matter how large; see Theorem 4. The proof of Theorem 1 has two
basic components. The first is the basic observation, used above in the proof of Theorem
3, that the mechanism will perform well if the vertex v of highest in-degree has many in-
neighbors before it in the random permutation. The second is the observation that if the
mechanism does well when v does not participate then it will do at least as well when
v does participate. In order to be able to apply these two observations simultaneously,
however, we must show random permutations are "well-behaved". Specifically, we say
that a permutation π of [n] is (Δ, ε)-balanced if, for every 0 ≤ k ≤ n,

|[Δ] ∩Πk| ≥
(
k

n
− ε

)
·Δ

and we want to show that a random permutation is typically balanced.
To do this, we need the following result, which provides a large deviation bound for

the size of intersection of two sets of fixed cardinalities.

Lemma 1. For every ε1 > 0, there exists N1 such that for all positive integers N1 <
Δ ≤ n and k ≤ n the following holds. If X ⊆ [n] are chosen uniformly at random
subject to |X | = Δ, then

Pr

[∣∣∣∣|X ∩ [k]| − kΔ

n

∣∣∣∣ ≥ ε1 ·Δ
]
< ε1 (1)

Due to space restriction, the proof of the following lemma is not included in this ex-
tended abstract 1.

Lemma 2. For every 0 < ε2 < 1, there exists N2 such that, for all n ≥ Δ > N2, at
least (1 − ε2) · n! permutations of [n] are (Δ, ε2)-balanced.

Proof. Let N1 be chosen to satisfy Lemma 1 with ε1 :=
ε22
4 . We choose N2 ≥

max(N1,
12
ε2
). Let k1, k2, . . . , kl ∈ [n] be a collection of integers such that for every

k ∈ [n] there exists i ∈ [l] satisfying 0 ≤ k − ki ≤ ε2 · n
3 . Clearly such a collection

can be chosen with l ≤ n
�ε2·n/3� ≤

4
ε2

, where the last inequality holds as n ≥ 12
ε2

.

1 A complete version of this paper can be found at http://arxiv.org/abs/1407.8535

http://arxiv.org/abs/1407.8535
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Let π be a permutation of [n] chosen uniformly at random. By Lemma 1 and the choice
of N2 we have

Pr

[
|[Δ] ∩Πki | ≤

(
ki
n
− ε1

)
·Δ

]
< ε1 (2)

for every 1 ≤ i ≤ l.
We claim that if |[Δ] ∩Πki | ≥

(
ki

n − ε1
)
·Δ for every 0 ≤ i ≤ l then |[Δ] ∩Πk| ≥(

k
n − ε2

)
·Δ for every 0 ≤ k ≤ n. Indeed, given k let i ∈ [l] satisfy 0 ≤ k−ki ≤ ε2 · n3 .

Then

|[Δ] ∩Πk| ≥ |[Δ] ∩Πki | ≥
(
ki
n
− ε1

)
·Δ

≥
(
k

n
− ε2

3
− ε1

)
·Δ =

(
k

n
− ε2

3
− ε22

4

)
·Δ

≥
(
k

n
− ε2

)
·Δ

as claimed. By the union bound applied to (2) we have

Pr

[
∀i : i ≤ l : |[Δ] ∩Πki | ≥

(
ki
n
− ε1

)
·Δ

]
≥ 1− l · ε1 ≥ 1− 4

ε2
· ε

2
2

4

= 1− ε2 (3)

The lemma immediately follows from (3) and the claim above. ��

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let N2 be chosen to satisfy Lemma 2 with ε2 := ε
3 . We show

that Nε := max(N2, � 6
ε2
�) satisfies the theorem. Let v be a vertex of G with in-degree

Δ := Δ−(G). We assume that V (G) = [n], where v is vertex n, and [Δ] is the set
of in-neighbors of v. For a permutation π, let d(π) denote the in-degree of the winner
determined by the mechanism.

Let π′ be a fixed (Δ, ε2)-balanced permutation of [n− 1]. We claim that

E[d(π) | π|[n−1] = π′] ≥
(
3

4
− ε/2

)
·Δ (4)

Note that the theorem follows from (4), as the probability that π|[n−1] is not (Δ, ε2)-
balanced is at most ε2 by the choice of Nε, and thus

E[d(π)] ≥ (1 − ε2) ·
(
3

4
− ε/2

)
·Δ ≥

(
3

4
− ε

)
·Δ

It remains to prove (4). Let w be the winner when the permutation mechanism is applied
to G \ v and π′, and let x be the number of votes w receives from its left (i.e. from
vertices before it in the permutation). Let π be a permutation of [n] such that π|[n−1] =
π′. It is not hard to check that if at least (x + 1) in-neighbors of v precede v in π then
v wins the election. Moreover, whilst the addition of vertex v can change the winner
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(and, indeed, produce a less popular winner), it cannot decrease the “left” degree of
any vertex. Thus, the (new) winner has still in-degree at least x after the addition of v.
So, as π′ is (Δ, ε2)-balanced, we have |[Δ] ∩ Πcn| ≥ cΔ − ε2Δ ≥ x + 1, whenever
c ≥ x+1

Δ + ε2. Furthermore, Pr[π(v) > cn] ≥ 1 − c. Thus the probability that v wins
the election is at least 1− (x + 1)/Δ− ε2. It follows that

E[d(π) | π|[n−1] = π′] ≥
(
x+ 1

Δ
+ ε2

)
· x+

(
1− x+ 1

Δ
− ε2

)
·Δ

≥ Δ2 − (x+ 1)Δ+ (x+ 1)x

Δ
− ε2Δ

≥
(
3

4
− ε2 −

1

Δ

)
·Δ+

(x −Δ/2)2

Δ
≥
(
3

4
− ε

2

)
·Δ ��

The 3
4 bound provided in Theorem 1 is tight for any Δ.

Theorem 4. For every 0 < ε < 1/4 and every N > 0, there exists a directed graph G
such that Δ−(G) ≥ N and the expected degree of the winner selected by the permuta-
tion mechanism is at most (34 + ε)Δ−(G).

Proof. Without loss of generality we assume that N ≥ 1/ε. Let G′ be a directed graph
such that n := |V (G′)| ≥ (N + 1)(N2 +N + 1) · ln 1

ε , and d−(v) = d+(v) = N for
every v ∈ V (G′). Let G be obtained from G′ by adding a new vertex v0 and 2N − 1
directed edges from arbitrary vertices in V (G′) to v0. Thus Δ := Δ−(G) = d−(v0) =
2N − 1.

Now, in G′ one can greedily construct a set Z of at least n/(N2 +N + 1) vertices,
such that no two vertices of Z have common in-neighbors and no two vertices of Z are
joined by an edge. After a vertex z ∈ Z is chosen, simply remove z, the in-neighbors
and out-neighbors of z, and the out-neighbors of z’s in-neighbors (the inequality is
satisfied since the in-neighbors have a common out-neighbor). Then recurse. Let π be
a permutation of V (G) chosen uniformly at random. Let Xv denote the event that a
vertex v ∈ V (G′) is preceded by all of its in-neighbors in π. Clearly Pr[Xv] =

1
N+1

for every v ∈ V (G′), and moreover, by construction of Z , the events {Xv}v∈Z are
mutually independent. Hence

Pr[∪v∈V (G′)Xv] ≥ 1−
(
1− 1

N + 1

) n
N2+N

≥ 1−
(
1− 1

N + 1

)(N+1)·ln 1
ε

≥ 1− ε.

Note that if the event ∪v∈V (G′)Xv occurs then one of the vertices of G′ receives N
votes in the permutation mechanism. By symmetry the probability that v0 is preceded
by at most (N − 1) of its in-neighbors in π is equal to 1/2. Thus v0 is not selected as a
winner with probability at least 1/2− ε. We deduce that the expected in-degree of the
winner is at most(
1

2
− ε

)
· Δ+ 1

2
+

(
1

2
+ ε

)
·Δ =

(
3

4
+ ε

)
·Δ− εN +

1

4
≤
(
3

4
+ ε

)
·Δ. ��
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Procedure 2 . The Slicing Mechanism

SAMPLING PHASE
[Sample] Draw a random sample X , where each vertex is sampled with probability ε.
for all v ∈ V \ X do

[Estimated-Degree.] de(v) ← 1
ε
· d−X (v)

end for

SLICING PHASE
[Slices] Create τ = � 1

ε2
� sets {S1, . . . , Sτ} initialized to empty sets.

Δe ← maxv∈V \X (de(v))
for all v ∈ V \ X do

for i = 1 to τ do
if (i− 1)ε2 ·Δe ≤ de(v) ≤ iε2 ·Δe then

Si ← Si ∪ {v}
end if

end for
end for

ELECTION PHASE
[Revealed Set] R ← X
[Provisional Winner] y0 ← argmaxu∈V \R(d−R(u)) [Break ties arbitrarily.]

for i = 1 to τ do
for all v ∈ Si \ {yi−1} do

R ← R∪ {v} with probability (1− ε).
end for
y′
i ← argmaxu∈V \R(d−R(u)) [Break ties arbitrarily.]

R ← (R∪⋃
j≤i Sj) \ {y′

i} [Only yi−1 can be in Sj with j < i]

[Provisional Winner] yi ← argmaxu∈V \R(d−R(u)) [Break ties arbitrarily.]

R ← (R∪⋃
j≤i Sj) \ {yi} [Only y′

i can be in ∪j≤iSj]

end for
The elected vertex is yτ .

4 The Slicing Mechanism

In this section, we present the slicing mechanism and prove that it outputs a vertex
whose expected in-degree is near optimal.

Theorem 2. For any ε > 0, there is a constant Mε such that if Δ− ≥ Mε then the
slicing mechanism is (1− ε)-optimal.

The constant Mε is independent of the number of vertices and is a polynomial func-
tion of 1

ε . We remark that we have made no attempt to optimize this constant. The
slicing mechanism is formalized in Procedure 2.

This mechanism consists of three parts which we now informally discuss. In the
first part, the sampling phase, we independently at random collect a sample X of the
vertices. We use arcs incident to X to estimate the in-degree of every other vertex in
the graph. In the second part, the slicing phase, we partition the unsampled vertices into
slices, where each slice consists of vertices with roughly the same estimated-degree.
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The third part, the election phase, selects the winning vertex. It does this by considering
each slice in increasing order (of estimated-degrees). After the i-th slice is examined the
mechanism selects as provisional leader, yi, the vertex that has the largest number of
in-neighbors amongst the set of vertices R that have currently been eliminated. The
winning vertex is the provisional leader after the final slice has been examined.

We emphasize, again, that the impartiality of the mechanisms follows from the fact
that the votes of a vertex are only revealed when it has been eliminated, that is, added
to R. Observe that at any stage we have one provisional leader; if this leader changes
when we examine a slice then the votes of the previous leader are revealed if its slice
has already been examined.

4.1 Analysis of the Sampling Phase

Observe that the sampling phase is used to estimate the in-degree of each unsampled
vertex v. Since each in-neighbor of v is sampled in X with probability ε, we anticipate
that an ε-fraction of the in-neighbors of v are sampled. Thus, we have an estimated in-
degree de(v) := 1

ε · d
−
X (v), for each vertex v ∈ V \ X . It will be important to know

how often these estimates are (roughly) accurate. In particular, we say that a vertex u is
ε̂-well-estimated if |de(u)− d(u)| ≤ ε̂d(u).

We will be interested in the case where ε̂ ! ε. (In particular, we will later select
ε̂ = ε2

4 .) Before analyzing the probability that a vertex is ε̂-well-estimated, recall the
classical Chernoff bound.

Theorem 5. [Chernoff bound]
Let (Xi)i≤n be n independent Bernouilli variables each having probability p. Then

Pr[|
∑

Xi − pn| ≥ δpn] ≤ e−
δ2pn

3 .

Corollary 1. For any vertex v of in-degree at least Δ0 = max(2109, 9ε
2

ε̂4 ), the proba-
bility that v is not ε̂-well-estimated is at most 1

d(v)6 .

Proof. The proof is an application of Theorem 5. For every in-neighbor ui of v, the ver-
tex ui is sampled with probability ε. Denote by Xi the Bernoulli variable corresponding
to “ui is in X ” which has value 1 if ui ∈ X and 0 otherwise. The variables Xi are ob-
viously independent and identically distributed. Note that

∑
Xi = ε · de(u) and its

expectation is ε · d(u).

Pr
(
|de(u)− d(u)| ≥ ε̂

ε
· d(u)

)
= Pr

(
|ε · de(u)− ε · d(u)| ≥ ε̂ · d(u)

)
≤ e−

ε̂2d(u)
3ε ≤ e−

ε̂2
√

Δ0
3ε

·
√

d(u) ≤ e−
√

d(u)

≤ 1

d(u)6

Here the first inequality is an application of Theorem 5 with δ = ε̂
ε . The second in-

equality holds because d(u) ≥ Δ0. The third inequality follows as Δ0 ≥ 9ε2

ε̂4 . Finally,
the fourth inequality holds since

√
d(u) ≥ 6 ln(d(u)) when d(u) ≥ Δ0 ≥ 2109. ��
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Let ε̂ := ε2

4 . We will be interested in the probability that every vertex of high degree
in a local region is ε̂-well-estimated. Specifically, let x be a vertex of maximum in-
degree Δ. Denote by N−k(x) the set of vertices which can reach x with an oriented
path of length at most k. For instance, N−1(x) is the in-neighborhood of x plus x.
Applying the union bound with Corollary 1, we obtain:

Corollary 2. Let x be a vertex of in-degree Δ. If Δ ≥ Δ1 = max(Δ0

ε2 ,
3
ε5 ) then, with

probability (1−ε), any vertex of N−3(x) of in-degree at least ε2 ·Δ is ε̂-well-estimated.

Proof. Since ε2 ·Δ ≥ Δ0, Corollary 1 ensures that a vertex of in-degree at least ε2 ·Δ
is not ε̂-well-estimated with probability at most 1

(ε2Δ)6 . There are at most 1+Δ+Δ2+

Δ3 ≤ 3 · Δ3 vertices in N−3(x) since Δ ≥ 2. The union bound implies that every
vertex in N−3(x) with in-degree at least ε2Δ is ε̂-well-estimated with probability at
least (1− 3Δ3

ε12Δ6 ). As Δ ≥ 3
ε5 , the conclusion holds. ��

It the rest of this section we will make a set of assumptions. Given these assumptions,
we will prove that the mechanism outputs a vertex of high expected in-degree. We will
say that the mechanism “fails" if these assumptions do not hold. We will then show that
the probability that the mechanism fails is very small. The two assumptions we make
are:

(A1) Vertex x is not sampled. This assumption fails with probability ε.

(A2) Every vertex in N−2(x) with in-degree at least ε2 · Δ is regionally well-
estimated. Here, we say a vertex is regionally well-estimated if its degree is ε̂-well-
estimated and all its in-neighbors of in-degree at least ε2Δ are also ε̂-well-estimated.
Corollary 2 ensures that all the vertices of N−2(x) of degree at least ε2 · Δ are re-
gionally well-estimated with probability (1 − ε). Thus, this assumption also fails with
probability at most ε.

4.2 Analysis of the Slicing Phase

Now we consider the slicing phase. In this phase we partition the unsampled vertices
into groups (slices) according to their estimated degrees. The width of a slice is the
difference between the upper and lower estimated-degree requirements for vertices in
that group. We will need the following bounds on the width of a slice.

Lemma 3. The width of any slice is at least (1− ε̂)ε2 ·Δ and at most ε ·Δ.

Proof. By assumption, the vertex x of maximum degree is ε̂-well-estimated. Thus,
Δe ≥ (1 − ε̂) ·Δ. Therefore the width of any slice is at least (1 − ε̂)ε2 ·Δ.

On the other-hand, take any vertex u. At most Δ of u’s in-neighbors can be sampled
because it has degree at most Δ. It follows that de(u) ≤ Δ

ε . Thus, Δe ≤ Δ
ε , and the

width of any slice is at most ε ·Δ. ��
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4.3 Analysis of the Election Phase

We are now ready to analyze the election phase. Initially we reveal every vertex in the
sample X . The vertex y0 with largest estimated-degree is then the provisional winner.
We then treat the slices in increasing order of estimated-degree. When we the slice Si

has been considered, all the vertices in Si except at most one (if it is the provisional
winner yi) have been revealed. For technical reasons, we will denote by S0 the set X .
Observe that the setR is the set of already revealed (eliminated) vertices.

Now let S≤� = ∪�
j=0Sj , and denote by d�(u) = |{v ∈ S≤� : vu ∈ A} the number

of in-neighbors of v that are in Sj , for j ≤ �. Then we begin by proving two lemmas.
The first, Lemma 4, states that if a vertex u ∈ S� has a large d�−1(u) then the elected
vertex has large in-degree. The second, Lemma 5, guarantees that the elected vertex has
a large in-degree (with high probability) if there are many regionally well-estimated
vertices in S� with large d�(u). These lemmas will be applied to a vertex x of in-degree
Δ: either many in-neighbors of x are in slices beforex and Lemma 4 will apply, or many
in-neighbors of x are in its slice and we will apply Lemma 5 to this set of in-neighbors.

Lemma 4. Take u ∈ S�+1. If d�(u) = d, the elected vertex has in-degree at least d−1.

Proof. When we select the provisional winner y� all vertices of S≤� = ∪�
j=0Sj (but

at most one, y′�, if it is in this set) have been revealed. Now u ∈ S�+1 is an eligible
candidate for y�. Thus, at that time, d−R(y�) ≥ d−R(u) ≥ d�(u) − 1 = d − 1. Since
the in-degrees of the provisional winners can only increase, the elected vertex yτ has is
in-degree at least d− 1. Note that the minus one comes from the fact that y′� can be an
in-neighbor of u. ��

Lemma 5. Let Δ ≥ Δ2 = 122

ε̂4 . If there exists an integer � and a set Z ⊆ S� of size
at least εΔ of regionally well-estimated vertices with d�(z) ≥ (1 − 3ε)Δ+ 1 for every
z ∈ Z , then with probability at least (1− ε) we have d(y′�) ≥ (1− 5ε)Δ.

Proof. First, by selecting a subset of Z if necessary, we may assume that Z = �εΔ�.
Now we define a collection of bad events and show that d(y�) ≥ (1 − 5ε)Δ if none of
these events arise. We then show the probability that any of these bad events occurs is
small.

Let B0 be the event that every vertex in Z is placed inRwhen we sample the vertices
of slice �. We may assume the provisional leader y�−1 is not in Z . Thus, since |Z| ≥ εΔ,
the probability of event B0 is at most

(1 − ε)εΔ = eεΔ·ln(1−ε) ≤ e−ε2Δ ≤ ε

2

Here the first inequality holds since ln(1 − ε) ≤ −ε. The second inequality holds as
Δ ≥ 2

ε4 ≥
122

ε̂4 .
Now take any z ∈ Z and let Uz be the set of in-neighbors of z in S≤� \ {y�−1}. We

have |Uz| ≥ (1− 3ε) ·Δ. Let Bz be the event that less than (1− 5ε) ·Δ vertices of |Uz|
are inR at the time we sample the vertices of slice �.

To analyze the probability of this event consider any ui ∈ Uz . Now, if ui ∈ Sj for
j < � then ui is already in R. Otherwise, if ui ∈ S� then it is now added to R with
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probability (1− ε). So consider a random variable Yi which has value 1 if ui ∈ R after
this sampling and 0 otherwise. Note the Yi are not identically distributed. So let Xi be
variables which are independent and identically distributed and such that Xi = Yi if
ui ∈ S� and Xi has value 1 with probability (1− ε) otherwise. We have

Pr[
∑
i

Yi ≤ (1− ε− ε̂) · |Uz|] ≤ Pr[
∑
i

Xi ≤ (1− ε− ε̂) · |Uz|]

≤ e−ε̂2(1−ε)·|Uz|/3 ≤ e−
1
3 ε̂

2(1−ε)(1−3ε)Δ

≤ e−2
√
Δ ≤ 1

3Δ

Here the first inequality follows from Theorem 5. The second inequality holds as |Uz| ≥
(1 − 3ε)Δ. The third inequality holds by the choice

√
Δ ≥ 12

ε̂2 ≥
6

ε̂2(1−ε)(1−3ε) . The
fourth one is satisfied since Δ ≥ 100.

We now apply the union bound to the events B0 ∪
⋃

z∈Z Bz . Since Z = �εΔ�,
none of these events occur with probability at least 1 − εΔ+1

3Δ − ε
2 ≥ 1 − ε. Thus,

with probability at least 1 − ε, after the sampling of the slice S�, there is a vertex
z ∈ Z that is not in R but that has at least (1 − 5ε) · Δ in-neighbors in R. The new
provisional leader y′� must then satisfy d−R(y′�) ≥ d−R(z) ≥ (1 − 5ε)Δ, as required,
since (1− 5ε) ·Δ ≤ (1− ε− ε̂) · |Uz|. ��

Proof of Theorem 2. We may now prove that the slicing mechanism is nearly optimal.
We assume that Δ ≥ Mε = max(Δ1, Δ2) and that ε ≤ 1

8 . Let x be a vertex of in-
degree Δ. We assume that x is not selected in X during the sampling phase and that
all the vertices of N−2(x) with in-degree at least ε2Δ are regionally well-estimated.
We need the following claim, where k denotes the integer such that the vertex x of
maximum in-degree is in Sk.

Claim. Let u be a vertex in N−3(x) that is not in S≤k. Then u ∈ Sk+1.

Proof. Take a vertex u ∈ N−3(x). If d−(u) ≤ ε2Δ, then its estimated degree is at
most εΔ ≤ de(x). Thus now we can assume that d−(u) ≥ ε2Δ and then u is ε̂-well-
estimated by assumption on x. First observe that the set of possible estimated degrees
of u intersects at most two slices. To see this note that the range of de(u) is less than
2ε̂ ·Δ as u is ε̂-well-estimated. On the other-hand, by Lemma 3, the width of a slice is
at least (1 − ε̂)ε2 ·Δ. Since ε̂ = ε2

4 we have

2ε̂Δ ≤ 1

2
ε2Δ < (1− ε̂)ε2Δ

Since the range is less than the width, the observation follows.
The vertex x of maximum degree is ε̂-well-estimated and is in the slice k. Therefore,

because u is ε̂-well-estimated (and necessarily d(u) ≤ d(x)), there must be a slice
smaller than or equal to k in its range of u. Thus u cannot be in a slice with index
exceeding k + 1. ��

Assume first that there exists a set Z1 of at least εΔ vertices of N−2(x) such that
Z1 ∩ Si = ∅ for i ≤ k. The claim ensures that Z1 ⊆ Sk+1. By considering a subset of
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Z1, we may assume that |Z1| = εΔ. (We assume that εΔ is an integer, for simplicity.)
Then, for any z ∈ Z1, we have de(z) ≥ de(x) since z is in the slice after x. Moreover, as
x and z are ε̂-well-estimated, the facts that |de(z)−d(z)| ≤ ε̂Δ and |de(x)−d(x)| ≤ ε̂Δ
imply that

d(z) ≥ (1− 2ε̂)Δ ≥ (1 − ε)Δ

Furthermore, by the above claim, we must have that dk+1(z) = d(z). Consequently, we
may apply Lemma 5 to the set Z1. This ensures that the in-degree of the elected vertex
is at least (1− 5ε)Δ with probability at least (1 − ε).

On the other hand, assume that now less than εΔ vertices of N−2(x) are in Sk+1. In
particular, we have dk(x) ≥ (1 − ε)Δ. If dk−1(x) ≥ (1− 4ε) ·Δ+ 1 then the elected
vertex has degree at least (1 − 4ε)Δ by Lemma 4.

So, assume that dk−1(x) ≤ (1−4ε)Δ. Then at least 3εΔ in-neighbors of x are in Sk.
Denote by Z2 a set of εΔ in-neighbors of x in Sk. Every vertex z ∈ Z2 has in-degree
at least (1− ε− 2ε̂)Δ ≥ (1− 2ε)Δ+ 1; this follows because both x and z are ε̂-well-
estimated and because the width of a slice is at most εΔ (Lemma 3). For any z ∈ Z2,
since at most εΔ of the in-neighbors of z are in Sk+1, we have dk(z) ≥ (1− 3ε)Δ+1.
Moreover, by assumption all the vertices of Z2 are regionally well-estimated. Hence,
by Lemma 5, with probability at least (1− ε), the degree of the elected vertex is at least
(1− 5ε)Δ, as desired.

Consequently, the slicing mechanism typically outputs a near-optimal vertex. So
what is the probability that assumptions made during the proof fail to hold? Recall
that Assumptions (A1) and (A2) fail to hold with probability at most 2ε. Given these
two assumptions, Lemma 5 fails to output a provisional leader with in-degree at least
(1 − 5ε) ·Δ with probability at most ε. Thus the total failure probability is at most 3ε.
Consequently, the expected in-degree of the elected vertex is at least (1− 3ε)(1− 5ε) ·
Δ ≥ (1− 8ε)Δ, which concludes the proof of Theorem 2. ��

We conclude with some remarks. Here Mε = O( 1
ε8 ); the degree of this polynomial

can certainly be improved as we did not attempt to optimize it.
The slicing mechanism can be adapted to select a fixed number c of winners rather

than one. Let us briefly explain how. Instead of selecting only one provisional winner
y during each iteration of the election phase, we can select a set of size c containing
unrevealed vertices maximizing d−R.

Let x1, . . . , xc be the c vertices of highest in-degree. With high probability all the
vertices of N−2(xi) are regionally well-estimated for every i ≤ c and with high prob-
ability none of them are selected during the sampling phase. Now consider two cases:
either N−2(x1) contains many vertices of degree almost Δ, and then an adaptation of
Lemma 5 ensures that with high probability c vertices are not sampled during the sam-
pling of the election phase and the c elected vertices have large degree. Or N−2(x1)
has few vertices of degree almost Δ and then when the slice of x1 is considered, if x1 is
not selected, then all the selected vertices have degree almost Δ by Lemma 4. A similar
argument can be repeated for every vertex xi.
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Abstract. We study revenue maximization in settings where agents’
valuations exhibit positive network externalities. In our model, items
have unlimited supply, and agents are unit demand. In a departure
from previous literature, we assume agents have value based external-
ities, meaning that their valuation depends not only on their own sig-
nal, but also on the signals of other agents in their neighborhood who
win the item. We give a complete characterization of ex-post incentive
compatible and individually rational auctions in this setting. Using this
characterization, we show that the optimal auction is in fact determin-
istic, and can be computed in polynomial time when the agents’ signals
are independent. We further show a constant factor approximation when
the signals of agents are correlated, and an optimal mechanism in this
case for a constant number of bidders.

1 Introduction

There are many goods and services for which the utility of an individual con-
sumer increases with the number of consumers using the same good or service.
This phenomenon is called positive externalities in the economics literature.
There have been extensive studies on various settings of positive externalities
in both the economics and computer science communities. Most of the literature
so far has focused on the cardinality based utility model given by Katz et al. [11],
where the utility of an agent is of the form r + v(y) − p. Here r is the agent’s
intrinsic type, i.e., her private information about the good. The quantity y is the
number of agents using the good; v is an non-decreasing function that measures
the externalities by the number of agents using the good; p is the price for the
good. Such a model of externality is motivated by several factors:

– The physical effect of the number of buyers on the quality of the good. For
example choosing a telephone network over other competing brands depends
on the number of users each network has.
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CCF-1348696, and IIS-1447554; and by grant W911NF-14-1- 0366 from the Army
Research Office (ARO).
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– An indirect effect that gives rise to consumption externalities. For example
the amount of software available in different operating systems is a function
of the number of people using them.

– The availability and quality of post-purchase services depend on the size of
the community using the good.

1.1 Value Based Externality Model

The cardinality based externality model discussed above assumes the externality
leads to an additive increase in value depending on the number of users who
obtain service. This implicitly assumes agents are identical in terms of how much
they use the service. In several scenarios, the extent to which agents use the
service is itself a function of their intrinsic value for the good. This motivates us
to introduce the value based externality model. Agents are unit demand. Given
the agents’ intrinsic types {si}, suppose the set of agents winning the item is W .
Then, the valuation for agent i ∈ W is vi(si,W ) = hi(si) +

∑
j∈W j �=i gij(sj).

On the other hand, for i /∈ W , we have vi(si,W ) = 0. Since we consider positive
externalities, we assume the functions hi and gij are non-negative and non-
decreasing.

As an example to illustrate the usefulness of this model, suppose agent i
is deciding to adopt a social network. The agent’s type is her signal si. This
signal stands for how much she plans to use social networks. Furthermore, the
agent receives externalities if her friend j also uses the same social network. The
amount of externality received by i from j is determined by how much j plans to
use the same network (gij(sj)). Therefore, under the value based utility model,
the agent’s utility depends linearly on her friends’ private information about how
much they use the social network.

Note that the value based utility model naturally captures the network ex-
ternality case, where the agents are located in a network G(V,E), and receive
externality only from neighbors in the network. Our valuation function is not
only a generalization of cardinality based externality functions, but also of the
weighted sum values model introduced in [15,12], generalized to the setting with
network externalities.

1.2 Summary of Results

In this paper, we consider the Bayesian setting, where the agents’ intrinsic types
are assumed to be drawn from a known distribution. We assume there is unlim-
ited supply of the item, and agents are unit demand. The goal of the auctioneer
is to design an incentive compatible and individually rational mechanism that
optimizes expected revenue, where the expectation is over the distribution of
types, as well as the randomness introduced by the mechanism. Our solution
concept will be ex-post, meaning that even when agents know the signals of the
other agents, truthfulness and rationality hold in expectation over the random-
ness introduced by the mechanism. For formal definitions, see Section 2.
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We present a characterization of ex-post (randomized) mechanisms in Sec-
tion 3. Using this characterization, we show in Section 4 that when the intrinsic
types of the agents are drawn from a regular product distribution, the optimal
auction can be computed in polynomial time. Our characterization allows us to
define a virtual value on each agent’s private signal in a standard way. However,
the winning set can have agents to have negative virtual values if they produce
enough externalities. We show that despite this difficulty, we can modify the
densest subgraph algorithm [5] in an interesting way to compute the minimal
densest subgraph, and this allows us to design the optimal, polynomial time
computable mechanism.

In Section 5 we show how to achieve near optimal ex post revenue when the
distributions are correlated. Our mechanism takes the better of two deterministic
mechanisms. One mechanism focuses on extracting revenue from the intrinsic
value, the other one from the externalities. We show that the better of these two
mechanisms produces at least 1

4 of the optimal revenue.
We finally show an LP formulation whose size is polynomial in the size of

the support of the joint distribution of the signal space. We round the solution
to this LP to obtain an optimal mechanism when there a constant number of
agents with correlated signals. More interestingly, this algorithm shows that the
optimal ex-post incentive compatible and individually rational mechanism is
always deterministic, i.e., there is no gap between the revenues of the optimal
deterministic and randomized mechanisms.

1.3 Related Work

The seminal work by Myerson [13] pioneered the study of optimal auctions in
the Bayesian setting, where the bidders’ values are assumed to be drawn from
known distributions. In this setting, Myerson showed that any incentive compat-
ible and rational mechanism satisfies monotonicity of the expected allocations of
a bidder, and a relation between price and allocation. However with value-based
externalities, a bidder’s value also depends on her neighbor’s private informa-
tion. We therefore assume an agent’s type (a.k.a. signal) is drawn from a known
distribution, and her value is determined by her own signal, together with her
neighbors’ signals. The common approach when an agent’s value depends not
only on her own type but also on others’ types is called the interdependent val-
ues setting. The key difference between the interdependent value model and the
externalities model is that, in the interdependent value model, an agent can
influence another agent even when she does not win the auction. However in
the externalities model, an agent can influence another agent only if both of
them win the items. Nevertheless our study is closely related to the literature
of interdependent values, here we mention the most relevant works [15,12,6].
Roughgarden et al. [15] develop an analog to the Myerson’s characterization for
interdependent values under a matroid constraint. We show a similar character-
ization in the value based utility model. In terms of approximation algorithms,
Li [12] showed a constant approximation for MHR distributions with interde-
pendent values under a matroid constraint and Chawla et al. [6] generalized



150 K. Munagala and X. Xu

this result to arbitrary distributions building on a result due to Ronen [14]. We
show a constant approximation to the externality model when the signals are
correlated using the result in [6] as a subroutine.

Network externalities effects received much attention in recent years. These
models generalize the classical model of Katz et al. [11], the value of player
is her intrinsic value plus a function of the total number of winners. The work
of [10,3,1,8,9] extends this model to the setting where agents are located in
a network, and derive utility from the set of winners in their neighborhood.
However, in all this work, the externality function only takes the identity of the
winners into account, and does not take the types (signals) of the neighbors
into account. In particular, the work of Haghpanah et al. [9] considered two
interesting valuation functions which they call concave externalities and step-
function externalities. In concave externalities, the value of an agent is a function
of the set of the neighboring winners; in step-function externalities, the value of
an agent is her own type if she and one of her neighbors win at the same time.
Under their valuation model they studied the near optimal Bayesian incentive
compatible mechanisms. We depart from this literature in considering the setting
where the externality depends on the signals of the winning agents, and not
just their identities. As mentioned before, with type-dependent externality, the
valuation of an agent becomes multi-dimensional (depending on the types of
other agents).

We finally note that in the ex-interim setting, the Bayesian optimal mechanism
can be designed in polynomial time using the techniques in [4,2], even when the
agents’ signals are correlated. Similarly, for independent signals, it is not too
hard to compute a constant approximation using techniques such as [10,9]; the
hard part is to obtain an optimal auction.

2 Preliminaries

In this paper, we consider unconstrained environments, where the auctioneer can
serve any subset of the agents simultaneously. As mentioned before, in our setting
there are n unit-demand agents, and an unlimited supply of a homogeneous item.

Player types. An agent’s type stands for all the private information about the
good that is available to the agent. We denote bidder i’s type by si. We call
s = (s1, s2, . . . , sn) the signal profile of all the bidders. And we denote (s′i, s−i)
as the signal profile when we change bidder i’s signal from si to s′i and keep
signals of all other bidders the same.

As in the optimal auction design literature, we assume that the signals s is
drawn from a known distribution with probability density function (PDF) f .
In Section 4 the distribution is a product distribution over the bidders, and
is regular. In Section 5 we allow the distribution to be general and possibly
correlated across bidders. We denote the marginal PDF and CDF of bidder i
as fi(si|s−i) and Fi(si|s−i) respectively, where we drop s−i if the marginals are
independent. For analytic convenience, we assume the type space is continuous
unless otherwise stated; our results easily extend to discrete type spaces.
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Player values. As mentioned in the introduction, given an unconstrained envi-
ronment and a signal profile s, when the winning set is W the valuation for a
winning agent i ∈ W is vi(si,W ) = hi(si)+

∑
j∈W j �=i gij(sj). If i does not win,

i /∈ W , we have vi(si,W ) = 0. The functions hi and gij are non-negative and
non-decreasing.

Auction. An auction or a mechanism is specified by an allocation rule x and a
payment rule p. We allow the mechanisms to be randomized, so that when the
reported signal profile is s, we denote xi(s) the probability that agent i wins.
Denote pi(s) as the payment of agent i. The utility of an agent is her value minus
her payment. An auction is deterministic if xi(s) only takes value 0 or 1. Denote
yi,j(s) the probability that both agent i and j win.

Solution Concepts. In this paper we focus on ex post incentive compatible (IC)
and ex post individual rational (IR) auctions. There are three popular notions of
equilibria. In this paper we focus on ex post IC and IR mechanisms. We denote
W1 the winning set when agent i tells the truth si, and W2 is the winning set
when she misreports s′i. An auction is Ex post IC if for all agents i, reported
signal profiles s,

xi(s)v(s,W1)− pi(s) ≥ x(s′i, s−i)v(s,W2)− pi(s
′
i, s−i)

Note that this solution concept is defined agnostic to the prior distribution,
which may not even be common knowledge. Ex post individually rational (IR)
means that the agents do not receive negative utility, so that the condition
xi(s)v(s,W1)− pi(s) ≥ 0 always holds.

Optimal AuctionDesign. The total expected revenue of an auction isEs[
∑

i pi(s)].
The expectation is taken over all the possible signal profile s, according to the
distribution with PDF f , as well as the randomness introduced by the mechanis.
In this paper we focus on achieving optimal expected revenue when s is drawn
from independent regular distributions and near optimal expected revenue when
s is drawn from correlated distributions.

3 Characterization of Ex-Post Mechanisms

In this section we develop a characterization of ex post IC and IR mechanisms
for the value based utility model. We note that this characterization holds for
both independent and correlated distributions over the signal profile.

Theorem 1 (characterization). A (possibly randomized) mechanism is ex
Post IC IR if and only if it satisfies the following two conditions:

1. (Monotonicity) xi(s) ≤ xi(s
′) for all s = (si, s−i) and s′ = (s′i, s−i) where

si < s′i;
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2. (Payment Identity) Fixing the signals of the other agents, the expected
payment of agent i is

pi(s) = h(si)xi(s)−
∫ si

0

h′(z)(xi(z, s−i))dz +
∑
j �=i

g(sj)yij(s)

Proof. We focus on agent i and drop the subscripts in hi(si) and gij(sj). Consider
any ex-post IC and IR mechanism. The IC conditions imply:

h(si) · xi(s) +
∑
j �=i

g(sj) · yij(s)− pi(s) ≥ h(si) · xi(s
′) +

∑
j �=i

g(sj) · yij(s′)− pi(s
′)

h(s′i) · xi(s
′) +

∑
j �=i

g(sj) · yij(s′)− pi(s
′) ≥ h(s′i) · xi(s) +

∑
j �=i

g(sj) · yij(s)− pi(s)

From these two inequalities it is easy to derive that:

xi(s)(h(si))− h(s′i)) ≥ xi(s
′)(h(si)− h(s′i))

Therefore xi(s) ≤ xi(s
′) since si ≤ s′i, showing monotonicity.

The above two inequalities imply:∑
j �=i

(yij(s
′)− yij(s))g(sj) + (xi(s

′)− xi(s))h(si)

≤ pi(s
′)− pi(s) ≤

∑
j �=i

(yij(s
′)− yij(s))g(sj) + (xi(s

′)− xi(s))h(s
′
i)

Since we assumed the type space is continuous, we have:

dpi(s)

dsi
=

d
∑

j �=i g(sj)yij(s)

dsi
+ h(si)

dxi(s)

dsi

Taking the integral, we have:

pi(s) = pi(0, s−i) +

∫ si

0

g(sj) d
∑
j �=i

yij(z, s−i) +

∫ si

0

h(z) dxi(z, s−i)

= h(si)xi(s))−
∫ si

0

h′(z)xi(z, s−i))dz +
∑
j �=i

g(sj)yij(s)

The second equality is true because we assume i pays 0 when she reports 0. This
shows that the payment identity holds.

Suppose a mechanism satisfies monotonicity and the payment identity. Plug-
ging in the payment identity into the ex post IC condition, we need to show:

xi(s
′
i, s−i)(h(s

′
i)− h(si)) ≥

∫ s′i

si

h′(z)xi(z, s−i)dz

The monotonicity condition now implies the above inequality directly. This
shows that any mechanism that satisfies monotonicity and the payment identity
is ex-post IC and IR.
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4 Optimal Mechanism for Independent, Regular Signals

Using the characterization developed so far, we design an optimal auction when
the distributions of the agents’ signals are independent and regular. We show
that the payment identity implies we can perform optimization for each signal
profile individually. For each signal profile, the resulting problem is a densest sub-
graph problem, which has an optimal solution computable in polynomial time [5].
However, in order to preserve monotonicity, we need a densest subgraph with a
specific property, that we term the minimum densest subgraph. We show that
even this solution is poly-time computable, which yields the desired mechanism.

Definition 1. Let fi and Fi denote the PDF and CDF of the distribution of si,
which are assumed to be independent for different i. We define ϕi(si) = hi(si)−
1−Fi(si)
fi(si)

h′
i(si). We say ϕi(si) is the virtual value for agent i when she reports si.

A distribution is said to be regular if when si ≥ s′i, then ϕi(si) ≥ ϕi(s
′
i).

4.1 Revenue Expression

Lemma 1. Fixing s−i, the expected payment of agent i is Esi [pi(s)] =
Esi [ϕi(si)xi(s) +

∑
i�=j yij(s)gij(sj)].

Proof. Since we fix s−i we replace xi(s), pi(s) and yij(s) by xi(si), pi(si) and
yij(si) in this proof. By Theorem 1,

Esi [pi(si)] =

∫ h

z=0

pi(z)f(z)dz

=

∫ h

z=0

(xi(z)hi(z)−
∫ z

b=0

h′
i(b)x(b)db +

∑
i�=j

yij(sz)gij(sj))f(z)dz

By integration by parts and changing the order of integration of the second term:

∫ h

z=0

xi(z)hi(z)f(z)dz −
∫ h

b=0

xi(b)

∫ h

z=b

f(z)dzh′
i(b)db+

∫ h

z=0

∑
i	=j

yij(sz)gij(sj)f(z)dz

Renaming the variables, we get:

Esi [pi(si)] =

∫ h

z=0

xi(z)hi(z)f(z)dz −
∫ h

z=0

xi(z)[1− F (z)]h′
i(z)dz

+

∫ h

z=0

∑
i�=j

yij(sz)gij(sj)f(z)dz

=

∫ h

z=0

ϕi(si)xi(z)f(z)dz +

∫ h

z=0

∑
i�=j

yij(sz)gij(sj)f(z)dz

= Esi [ϕi(si)xi(s) +
∑
i�=j

yij(s)gij(sj)]
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Corollary 1. The expected revenue of an ex post IC and IR mechanism is
Es[Rev] = Es[

∑n
i ϕi(si)xi(s) +

∑
i�=j(gij(sj) + gji(si))yij(s)]

We call the sum in the expectation virtual surplus.

4.2 Linear Program

We call following linear program as the linear program for signal profile s.

maximize

n∑
i=1

ϕi(si)xi +
∑
i�=j

(gji(si) + gij(sj))yij

subject to xi ≥ yij , i �= j

xj ≥ yij , i �= j

0 ≤ xi ≤ 1 , ∀i

Lemma 2. The optimal value of the linear program for signal profile s is an
upper bound on the optimal expected revenue from any ex post IC IR mechanism.

Proof. Take any ex post IC IR mechanism and set the linear program variables
according to the allocation rules of the mechanism. We can easily see the linear
program constraints are satisfied. By Corollary 1 we have that objective of the
linear program is the expected revenue of the mechanism. Therefore the optimal
value of the linear program for signal profile s is an upper bound for the optimal
expected revenue from any ex post IC IR mechanisms.

The linear program for signal profile s encodes a relaxation of the densest
subgraph problem (see [5]), which we define below.

Densest Subgraph Problem. Let G = (V,E) be an weighted undirected graph,
and let S = (VS , ES) be a subgraph of G. We define the density to be the sum
of the weights induced by S. The densest subgraph problem asks to find the
subgraph S which maximizes the density. Note that there are different definitions
of density in the literature. In a LP relaxation of the densest subgraph problem,
we have a variable xi for vertex i, which is 1 if i belongs to the solution, and a
variable yij for edge (i, j) if both i and j are in the solution. The constraints are
exactly those in the LP written above. We can therefore view the LP for signal
profile s as solving a densest subgraph problem on the agents.

Lemma 3. [5] The linear program relaxation for densest subgraph problem has
an optimal integral solution which can be found in polynomial time.

Proof. Take an fractional optimal solution to the above linear program x̂i, ŷij
with optimal value v. Choose a number r ∈ [0, 1]. We call Vr = {i : xi ≥ r} and
Er = {(ij) : yij ≥ r}. Round xi for all i ∈ Vr to 1, and set all other xi to 0.
It is easy to see that yij = 1 if and only if (ij) ∈ Er, since yij = min{xi, xj}.
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Define function f(r) =
∑

i∈Vr
ϕi(si)+

∑
(i,j)∈Er

(gji(si)+ gij(sj)). We have that∫ 1

r=0
f(r)dr =

∑n
i=1 ϕi(si)x̂i +

∑
i�=j(gji(si) + gij(sj))ŷij = v. Therefore there

must be at least one r such that f(r) ≥ v. In other words the LP has an integral
optimal solution. To find the right r one need only to look for all distinct Vr

sets. Note that there are at most n such sets. For details please see [5].

Definition 2. We call the winning set found by the integral optimal solution
(with optimal value v) found in Lemma 3 as a densest subgraph. Among all
densest subgraphs let Vr be the set that has the smallest cardinality. We say that
Vr(s) is the minimum densest subgraph with density v for signal profile s.

Lemma 4. The minimum densest subgraph can be computed in polynomial time.

Proof. Let G denote the original problem instance. Denote d be any number that
is smaller than the difference between the optimal solution to G, and the solution
with next highest density. Add a term −ε

∑n
i=1 xi to the objective function in the

linear program, where ε = d/n2. Modify this instance to G′ where we subtract
ε from the weights on all the vertices. By our choice of ε, it is easy to see that
the densest subgraphs for G and G′ differs at most d/n. Therefore the densest
subgraph for instance G′ can only be selected from the integral solutions for G.
The modified LP finds the optimal integral solution for G′, hence it computes
the minimum cardinality solution to instance G.

Lemma 5. For any signal profile s and agent i, if agent i belong to the minimum
densest subgraph Vr(s), fixing s−i, if agent i increases her signal to s′i > si, and
denote the new signal profile s′. Then in the new instance, i ∈ Vr(s

′).

Proof. First, the minimum densest subgraph Vr(s) is unique for any signal profile
s. Suppose not. Let there be Vr �= V ′

r , and denote the induced edge sets Er and
E′

r. Suppose that∑
i∈Vr

ϕi(si)+
∑

(i,j)∈Er

(gji(si)+gij(sj)) =
∑
i∈V ′

r

ϕi(si)+
∑

(i,j)∈E′
r

(gji(si)+gij(sj)) = v

It is easy to see that since gji(si) ≥ 0 ∀i, j, we have∑
i∈Vr∪V ′

r

ϕi(si) +
∑

(i,j)∈Er∪E′
r

(gji(si) + gij(sj)) > v

unless ∑
i∈Vr−V ′

r

ϕi(si) +
∑

(i,j)∈Er−E′
r

(gji(si) + gij(sj)) = 0

However it contradicts the fact that both Vr and V ′
r are minimum densest sub-

graphs.

Next, denote ϕ′
j(sj) the new virtual value for agent j when i increased her

signal. Note that ϕ′
j(sj) = ϕj(sj) ∀j �= i since the signals are independent, and

ϕi(si) ≤ ϕ′
i(si) by regularity. Suppose i ∈ Vr(s) but i /∈ Vr(s

′), we have that:
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∑
j∈Vr(s′)

ϕ′
j(sj) +

∑
(j,k)∈Er(s′)

(gkj(sj) + gjk(sk))

≥
∑

j∈Vr(s)

ϕ′
j(sj) +

∑
(j,k)∈Er(s)

(gkj(sj) + gjk(sk))

≥
∑

j∈Vr(s)

ϕj(sj) +
∑

(j,k)∈Er(s)

(gkj(sj) + gjk(sk))

≥
∑

j∈Vr(s′)

ϕj(sj) +
∑

(j,k)∈Er(s′)

(gkj(sj) + gjk(sk))

=
∑

j∈Vr(s′)

ϕ′
j(sj) +

∑
(j,k)∈Er(s′)

(gkj(sj) + gjk(sk))

The last equality holds because by our assumption, i /∈ Vr(s
′) and the fact that

ϕ′
j(sj) = ϕj(sj) ∀j �= i. This implies Vr(s) and Vr(s

′) are two distinct minimum
densest subgraphs for signal profile s. This contradicts the fact that the minimum
densest subgraph is unique for any input s. This completes the proof.

Algorithm 1. Mechanism 1 for Independent Signals

1. Ask for the signal profile s = (s1, s2, . . . , sn).
2. Compute the ϕ virtual values based on s.
3. Solve the linear program for signal profile s. Calculate the threshold
signals(corollary 4.2).
4. Allocate according to the minimal densest subgraph Vr(s), and make
payments pi = vi((s

∗
i , s−i), Vr(s)) where s∗i is the threshold signal and Vr(s) is

the minimum densest subgraph for signal profile s.

Our mechanism is illustrated in Mechanism 1. We now show several prop-
erties of this mechanism. First, as a corollary of Lemma 5, we have that if we
maximize the objective in the above linear program by choosing the minimum
densest subgraph for all signal profiles s, then if an agent i increases her signal,
her allocation is non-decreasing. Therefore, the allocation rule in Mechanism 1
satisfies the monotonicity condition in Theorem 1.

Fixing the signal profile s−i, to calculate the correct payment for agent i we
have to compute the minimum signal s∗i for agent i for her to be selected by the
minimum densest subgraph. As a direct consequence of Lemma 5, we have the
following corollary.

Claim. Fixing s−i the threshold signal s∗i for which agent i remains in the min-
imum densest subgraph can be computed in polynomial time.

Proof. By lemma 5 we can use binary search to find the minimum s∗i so that
agent i remains in the minimum densest subgraph in at most O(log h) linear
programming computations where h is the maximum possible value for any
signals.
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Putting all this together, we have the following theorem. As a corollary, we
also observe that the optimal mechanism is also deterministic.

Theorem 2. Mechanism 1 is ex post IC and IR, polynomial time computable,
and it achieves optimal expected revenue among all ex post mechanisms when
the signal profile s is drawn from a regular product distribution.

5 Mechanisms for Correlated Signals

In this section we present ex post mechanisms when the signals of the agents
are correlated. For small type spaces, this mechanism is optimal, while it is
an approximation algorithm for implicitly specified type spaces. We use the
conditional virtual values as defined in [15].

Definition 3. [15] For correlated signals, we define

ϕi(si|s−i) = hi(si)−
1− Fi(si|s−i)

fi(si|s−i)
h′
i(si)

as the conditional virtual value for agent i when she reports si. As before, we
call the sum of the conditional virtual values together with the externalities the
virtual surplus.

Using Theorem 1, we have the following lemma, whose proof is identical to
Lemma 1.

Lemma 6. Fixing s−i the expected payment of agent i is

E(si|s−i)[pi(s|s−i)] = E(si|s−i)[ϕi(si|s−i)xi(s) +
∑
j �=i

yij(s)gij(sj)]

Here, xi(s) is the probability that agent i gets the item when the signal profile
is s; and yij(s) is the corresponding probability that both agents i and j get the
item. Therefore, the expected revenue of an ex post IC and IR mechanism with
correlated signals is

E[Rev] = E[
n∑
i

ϕi(si|s−i)xi(s) +
∑
i�=j

(gij(sj) + gji(si))yij(s)]

The approach in the previous section does not extend to correlated signals.
Since when a winning agent increases her signal, the conditional virtual values
for the other agents in the winning set also change. As a result, the agent can be
rule out from the new optimal winning set. Nevertheless we can develop optimal
and near optimal ex post IC IR mechanisms below.

Definition 4. For signal profile s we define the auction H(s) to be the auction
in which each agent’s value is simply hi(si). We denote Rev(H(s)) the optimal
expected ex post revenue for auction H(s). Let G(s) =

∑
i�=j(gij(sj) + gji(si)).



158 K. Munagala and X. Xu

5.1 Optimal Mechanism for Constant Number of Bidders

We now present an optimal mechanism that runs in polynomial time under the
following assumptions. Bidder i’s signal si ∈ Qi = {0, 1, 2, . . . , Ri}, and let T =
×n

i=1Qi denote the joint type space, that has size O(Rn), where R = maxiRi.
We assume n is constant, so that |T | = O(Rn) is poly-bounded. We assume
f(s) > 0 for all s ∈ T . The definition of conditional virtual value (Def. 3) easily
extends to such discrete spaces. Using the revenue formula, Lemma 6, and the
monotonicity characterization Theorem 1, it is easy to check that the following
integer program encodes the optimal mechanism.

Maximize Es∈T

⎡⎣∑
i

ϕi(si|s−i)xi(s) +
∑

(ij),i�=j

yij(s)(gij(sj) + gji(si))

⎤⎦
xi(s) ≥ yij(s) ∀i, j, s ∈ T
xj(s) ≥ yij(s) ∀i, j, s ∈ T

xi(si, s−i) ≥ xi(s
′
i, s−i) ∀i, s−i, R ≥ si ≥ s′i ≥ 0

xi(s), yij(s) ∈ {0, 1} ∀i, j, s ∈ T

Here, the third set of constraints encodes monotonicity; the first and second
set of constraints simply encodes that agents obtain externality from each other
only if they both receive the item. We relax the final constraints so that the
variables are real values in [0, 1]. Since the support of the signals, |T |, is poly-
nomial size, the above LP has polynomial size and can be solved in polynomial
time. Using the same technique as in the proof of Lemma 3, we choose an r
uniformly at random in [0, 1]. For every variable, if its value is at least r, we set
that variable to 1, else we set it to 0. It is easy to check that the resulting integer
solution satisfies all the constraints, and its objective is the same as the LP in
expectation. Hence, we have a valid mechanism that satisfies monotonicity, and
whose expected revenue has the same as the LP solution. We omit the details,
and note that with some technical work, this result also extends to arbitrary
discrete type spaces with poly-bounded support.

As a consequence, since the above LP has an integral optimum solution, we
have the following.

Theorem 3. For the value based utility model, there is no gap between the ex-
pected revenue of the optimal deterministic and randomized mechanisms.

5.2 Approximation Algorithm for the General Case

We now present an approximation algorithm when there are polynomially many
bidders, and the type space of the signals is continuous. We use the VCG-L
mechanism of Chawla et al. [6] as a subroutine.

Note that for items with unlimited supply, the V CG − L auction simply
offers each agent a posted price which is the conditional monopoly price for that
agents’ marginal distribution, given the signals of the other agents. For the sake
of completeness, we state the result of Chawla et al. [6].
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Algorithm 2. Mechanism 2 for Correlated Signals

1. Run the mechanism that yields higher expected revenue (over all signal
profiles).
2. Either allocate to all agents and charge each agent i

∑
j 	=i gij(sj); or

3. Run the V CG − L [6] auction for correlated private values on H(s).

Theorem 4. [6] The V CG−L auction with conditional monopoly reserves ob-
tains at least half of the optimal revenue under a matroid feasibility constraint
when the agent have correlated private values.

Lemma 7. The optimal expected ex post revenue for correlated signal profile s
is at most Rev(H(s)) +G(s).

Proof. For any signal profile s, let M be any ex post IC IR mechanism for valua-
tions which externalities. Denote M ’s allocation rule and payment rule by (x, p).
We can construct a mechanism for auction H(s) by keeping the allocation rule
of M exactly the same and let the winning set be W . Subtract the externalities
from the payments of all winning agents in M , that is the new payment for any
winning agent i in H(s) is p′i = pi −

∑
j �=i, j∈W gi,j(sj). We call the new mech-

anism M ′. By Theorem 1, p′i = h(s∗i ) ≤ h(si). Therefore M ′ is ex post IR for
H(s). On the other hand it is also easy to see M ′ is ex post IC for H(s) since M ′

satisfies the two conditions in Theorem 1 for the auctionH(s) with zero external-
ity. We denote the expected payment from M ′ by Es[

∑
i p

′
i(s)] and the expected

payment from M by Es[
∑

i pi(s)] . Therefore by definition of Rev(H(s)),we
have Es[

∑
i pi(s)]−G(s) ≤ Es[

∑
i pi(s)] −

∑
(i,j),j �=i,i,j∈W (gi,j(sj) + gj,i(si)) =

Es[
∑

i p
′
i(s)] ≤ Rev(H(s)) since G(s) is an upper bound on the amount of ex-

ternality subtracted. Therefore we have Es[
∑

i pi(s)]−G(s) ≤ Rev(H(s)).

Theorem 5. Mechanism 2 is ex post IC IR, and a 4 approximation to the ex-
pectation of the optimal ex post revenue.

Proof. We first observe that mechanism 2 is ex post IC and IR. It takes the bet-
ter of two deterministic ex post IC IR mechanisms. By Lemma 7, the optimal
expected revenue is upper bounded Rev(H(s))+G(s). If step 2 is used, the rev-
enue is REV1 =

∑
i�=j(gi,j(sj)+ gj,i(si)) = G(s). If step 3 is used, by Theorem 4

we have the revenue REV2 ≥ Rev(H(s)). Overall we have the expected revenue
REV = max(REV1, REV2) ≥ 1/4Es[(G(s) +Rev(H(s)))].
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Abstract. We study uncoordinated matching markets with additional
local constraints that capture, e.g., restricted information, visibility, or
externalities in markets. Each agent is a node in a fixed matching network
and strives to be matched to another agent. Each agent has a complete
preference list over all other agents it can be matched with. However,
depending on the constraints and the current state of the game, not all
possible partners are available for matching at all times.

For correlated preferences, we propose and study a general class of he-
donic coalition formation games that we call coalition formation games
with constraints. This class includes and extends many recently studied
variants of stable matching, such as locally stable matching, socially sta-
ble matching, or friendship matching. Perhaps surprisingly, we show that
all these variants are encompassed in a class of “consistent” instances
that always allow a polynomial improvement sequence to a stable state.
In addition, we show that for consistent instances there always exists
a polynomial sequence to every reachable state. Our characterization is
tight in the sense that we provide exponential lower bounds when each
of the requirements for consistency is violated.

We also analyze matching with uncorrelated preferences, where we
obtain a larger variety of results. While socially stable matching always
allows a polynomial sequence to a stable state, for other classes different
additional assumptions are sufficient to guarantee the same results. For
the problem of reaching a given stable state, we show NP-hardness in
almost all considered classes of matching games.

1 Introduction

Matching problems are at the basis of many important assignment and alloca-
tion tasks in computer science, operations research, and economics. A classic
approach in all these areas is stable matching, as it captures distributed control
and rationality of participants that arise in many assignment markets. In the
standard two-sided variant, there is a set of men and a set of women. Each man
(woman) has a preference list over all women (men) and strives to be matched
to one woman (man). A (partial) matching M has a blocking pair (m,w) if both
m and w prefer each other to their current partner in M (if any). A matching
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M is stable if it has no blocking pair. A large variety of allocation problems in
markets can be analyzed using variants and extensions of stable matching, e.g.,
the assignment of jobs to workers, organs to patients, students to dormitory
rooms, buyers to sellers, etc. In addition, stable matching problems arise in the
study of distributed resource allocation problems in networks.

In this paper, we study uncoordinated matching markets with dynamic match-
ing constraints. An underlying assumption in the vast majority of works on stable
matching is that matching possibilities are always available – deviations of agents
are only restricted by their preferences. In contrast, many assignment markets
in reality are subject to additional (dynamic) constraints in terms of informa-
tion, visibility, or externalities that prohibit the formation of certain matches (in
certain states). Agents might have restricted information about the population
and learn about other agents only dynamically through a matching process. For
example, in scientific publishing we would not expect any person to be able to
write a joint paper with a possible collaborator instantaneously. Instead, agents
first have to get to know about each other to engage in a cooperation. Alterna-
tively, agents might have full information but exhibit externalities that restrict
the possibility to form certain matches. For example, an agent might be more
reluctant to accept a proposal from the current partner of a close friend knowing
that this would leave the friend unmatched.

Recent work has started to formalize some of these intuitions in generalized
matching models with dynamic restrictions. For example, the lack of information
motivates socially [5] or locally stable matching [4], externalities between agents
have been addressed in friendship matching [3]. On a formal level, these are
matching models where the definition of blocking pair is restricted beyond the
condition of mutual improvement and satisfies additional constraints depend-
ing on the current matching M (expressing visibility/externalities/...). Conse-
quently, the resulting stable states are supersets of stable matchings. Our main
interest in this paper are convergence properties of dynamics that evolve from it-
erative resolution of such restricted blocking pairs. Can a stable state be reached
from every initial state? Can we reach it in a polynomial number of steps? Will
randomized dynamics converge (with probability 1 and/or in expected poly-
nomial time)? Is it possible to obtain a particular stable state from an initial
state (quickly)? These questions are prominent also in the economics literature
(for a small survey see below) and provide valuable insights under which condi-
tions stable matchings will evolve (quickly) in uncoordinated markets. Also, they
highlight interesting structural and algorithmic aspects of matching markets.

Perhaps surprisingly, there is a unified approach to study these questions
in all the above mentioned scenarios (and additional ones) via a novel class
of coalition formation games with constraints. In these games, the coalitions
available for deviation in a state are specified by the interplay of generation and
domination rules. We provide a tight characterization of the rules that allow to
show polynomial-time convergence results. They encompass all above mentioned
matching models and additional ones proposed in this paper. In addition, we
provide lower bounds in each model.
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Contribution and Outline. A formal definition of stable matching games, so-
cially stable, locally stable, and friendship matching can be found in Section 1.1.
In addition, we describe a novel scenario that we term considerate matching.

In Section 2 we concentrate on stable matching with correlated preferences,
in which each matched pair generates a single number that represents the utility
of the match to both agents. Blocking pair dynamics in stable matching with
correlated preferences give rise to a lexicographical potential function [1, 2]. In
Section 2.1 we present a general approach on coalition formation games with
constraints. These games are hedonic coalition formation games, where deviat-
ing coalitions are characterized by sets of generation and domination rules. We
concentrate on classes of rules that we term consistent. For correlated preferences
all matching scenarios introduced in Section 1.1 can be formulated as coalition
formation games with constraints and consistent rules. For games with consis-
tent rules we show that from every initial coalition structure a stable state can
be reached by a sequence of polynomially many iterative deviations. This shows
that for every initial state there is always some stable state that can be reached
efficiently. In other words, there are polynomial “paths to stability” for all con-
sistent games. Consistency relies on three structural assumptions, and we show
that if either one of them is relaxed, the result breaks down and exponentially
many deviations become necessary. This also implies that in consistent games
random dynamics converge with probability 1 in the limit. While it is easy to
observe convergence in expected polynomial time for socially stable matching,
such a result is impossible for all consistent games due to exponential lower
bounds for locally stable matching. The question for considerate and friendship
matching remains an interesting open problem.

In Section 2.2 we study the same question for a given initial state and a given
stable state. We first show that if there is a sequence leading to a given stable
state, then there is also another sequence to that state with polynomial length.
Hence, there is a polynomial-size certificate to decide if a given (stable) state
can be reached from an initial state or not. Consequently, this problem is in
NP for consistent games. We also provide a generic reduction in Section 2.2 to
show that it is NP-complete for all, socially stable, locally stable, considerate,
and friendship matching, even with strict correlated preferences in the two-sided
case. Our reduction also works for traditional two-sided stable matching with
either correlated preferences and ties, or strict (non-correlated) preferences.

In Section 3 we study general preferences with incomplete lists and ties that
are not necessarily correlated.We show that for socially and classes of considerate
and friendship matching we can construct for every initial state a polynomial
sequence of deviations to a stable state. Known results for locally stable matching
show that such a result cannot hold for all consistent games.

Related Work. For a general introduction to stable matching and variants of
the model we refer to textbooks in the area [26]. Over the last decade, there
has been significant interest in dynamics, especially in economics, but usually
there is no consideration of worst-case convergence times or computational com-
plexity. While the literature is too broad to survey here, a few directly related
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works are as follows. If agents iteratively resolve blocking pairs in the two-sided
stable marriage problem, dynamics can cycle [25]. On the other hand, there is
always a “path to stability”, i.e., a sequence of (polynomially many) resolutions
converging to a stable matching [28]. If blocking pairs are chosen uniformly at
random at each step, the worst-case convergence time is exponential. In the case
of weighted or correlated matching, however, random dynamics converge in ex-
pected polynomial time [2,27]. More recently, several works studied convergence
time of random dynamics using combinatorial properties of preferences [20], or
the probabilities of reaching certain stable matchings via random dynamics [8].

In the roommates problem, where every pair of players is allowed to match,
stable matchings can be absent, but deciding existence can be done in polyno-
mial time [23]. If there exists a stable matching, there are also paths to stabil-
ity [13]. Similar results hold for more general concepts like P -stable matchings
that always exist [21]. Ergodic sets of the underlying Markov chain have been
studied [22] and related to random dynamics [24]. Alternatively, several works
have studied the computation of (variants of) stable matchings using iterative
entry dynamics [7,9,10], or in scenarios with payments or profit sharing [3,6,18].

Locally stable matching was introduced by [4] in a two-sided job-market
model, in which links exist only among one partition. More recently, we studied
locally stable matching with correlated preferences in the roommates case [16],
and with strict preferences in the two-sided case [19]. For correlated preferences,
we can always reach a locally stable matching using polynomially many resolu-
tions of local blocking pairs. The expected convergence time of random dynam-
ics, however, is exponential. For strict non-correlated preferences, no converging
sequence might exist, and existence becomes NP-hard to decide. Even if they ex-
ist, the shortest sequence might require an exponential number of steps. These
convergence properties improve drastically if agents have random memory.

Friendship and other-regarding preferences in stable matching games have
been addressed by [3] in a model with pairwise externalities. They study existence
of friendship matchings and bound prices of anarchy and stability in correlated
games as well as games with unequal sharing of matching benefits. In friendship
matching, agents strive to maximize a weighted linear combination of all agent
benefits. In addition, we here propose and study considerate matching based on
a friendship graph, where no agent accepts a deviation that deteriorates a friend.
Such ordinal externalities have been considered before in the context of resource
selection games [17].

Our general model of coalition formation games with constraints is related
to hedonic coalition formation games [11, 12, 14]. A prominent question in the
literature is the existence and computational complexity of stable states (for
details and references see, e.g., a recent survey [29]).

1.1 Preliminaries

A matching game consists of a graph G = (V,E) where V is a set of vertices
representing agents and E ⊆ {{u, v} | u, v ∈ V, u �= v} defines the potential
matching edges. A state is a matching M ⊆ E such that for each v ∈ V we
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have |{e | e ∈ M, v ∈ e}| ≤ 1. An edge e = {u, v} ∈ M provides utilities
bu(e), bv(e) > 0 for u and v, respectively. If for every e ∈ E we have some
bu(e) = bv(e) = b(e) > 0, we speak of correlated preferences. If no explicit
values are given, we will assume that each agent has an order " over its possible
matching partners, and for every agent the utility of matching edges is given
according to this ranking. In this case we speak of general preferences. Note that
in general, the ranking is allowed to be an incomplete list or to have ties. We
define B(M,u) to be bu(e) if u ∈ e ∈ M and 0 otherwise. A blocking pair for
matching M is a pair of agents {u, v} �∈M such that each agent u and v is either
unmatched or strictly prefers the other over its current partner (if any). A stable
matching M is a matching without blocking pair.

Unless otherwise stated, we consider the roommates case without assumptions
on the topology of G. In contrast, the two-sided or bipartite case is often referred
to as the stable marriage problem. Here V is divided into two disjoint sets U and
W such that E ⊆ {{u,w}| u ∈ U,w ∈ W}. Further we will consider matchings
when each agent can match with up to k different agents at the same time.

In this paper, we consider broad classes of matching games, in which additional
constraints restrict the set of available blocking pairs. Let us outline a number
of examples that fall into this class and will be of special interest.

Socially Stable Matching. In addition to the graph G, there is a (social)
network of links (V, L) which models static visibility. A state M has a social
blocking pair e = {u, v} ∈ E if e is blocking pair and e ∈ L. Thus, in a social
blocking pair both agents can strictly increase their utility by generating e (and
possibly dismissing some other edge thereby). A state M that has no social
blocking pair is a socially stable matching. A social improvement step is the
resolution of such a social blocking pair, that is, the blocking pair is added to
M and all conflicting edges are removed.

Locally Stable Matching. In addition to G, there is a network (V, L) that
models dynamic visibility by taking the current matching into account. To de-
scribe stability, we assume the pair {u, v} is accessible in state M if u and v
have hop-distance at most 2 in the graph (V, L ∪M), that is, the shortest path
between u and v in (V, L∪M) is of length at most 2 (where we define the shortest
path to be of length∞, if u and v are not in the same connected component). A
state M has a local blocking pair e = {u, v} ∈ E if e is blocking pair and u and
v are accessible. Consequently, a locally stable matching is a matching without
local blocking pair. A local improvement step is the resolution of such a local
blocking pair, that is, the blocking pair is added to M and all conflicting edges
are removed.

Considerate Matching. In this case, the (social) network (V, L) symbolizes
friendships and consideration. We assume the pair {u, v′} is not accessible in
state M if there is agent v such that {u, v} ∈ M , and (a) {u, v} ∈ L or (b)
{v, v′} ∈ L. Otherwise, the pair is called accessible in M . Intuitively, this implies
a form of consideration – formation of {u, v′} would leave a friend v unmatched,
so (a) u will not propose to v′ or (b) v′ will not accept u’s proposal. A state
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M has a considerate blocking pair e = {u, v} ∈ E if e is blocking pair and it is
accessible. A state M that has no considerate blocking pair is a considerate stable
matching. A considerate improvement step is the resolution of such a considerate
blocking pair.

Friendship Matching. In this scenario, there are numerical values αu,v ≥ 0
for every unordered pair u, v ∈ V , u �= v, representing how much u and v care
for each other’s well-being. Thus, instead of the utility gain through its direct
matching partner, u now receives a perceived utility Bp(M,u) = B(M,u) +∑

v∈V \{u} αu,vB(M, v). In contrast to all other examples listed above, this def-
inition requires cardinal matching utilities and cannot be applied directly on
ordinal preferences. A state M has a perceived blocking pair e = {u, v} ∈ E if
Bp(M,u) < Bp((M \ {e′ | e ∩ e′ �= ∅}) ∪ {e}, u) and Bp(M, v) < Bp((M \ {e′ |
e∩e′ �= ∅})∪{e}, v). A state M that has no perceived blocking pair is a perceived
or friendship stable matching. A perceived improvement step is the resolution of
such a perceived blocking pair.

2 Correlated Preferences

2.1 Coalition Formation Games with Constraints

In this section, we consider correlated matching where agent preferences are
correlated via edge benefits b(e). In fact, we will prove our results for a straight-
forward generalization of correlated matching – in correlated coalition formation
games that involve coalitions of size larger than 2. In such a coalition formation
game there is a set N of agents, and a set C ⊆ 2N of hyper-edges, the possible
coalitions. We denote n = |N | and m = |C|. A state is a coalition structure
S ⊆ C such that for each v ∈ N we have |{C | C ∈ S, v ∈ C}| ≤ 1. That is,
each agent is involved in at most one coalition. Each coalition C has a weight or
benefit w(C) > 0, which is the profit given to each agent v ∈ C. For a coalition
structure S, a blocking coalition is a coalition C ∈ C \ S with w(C) > w(Cv)
where v ∈ Cv ∈ S for every v ∈ C which is part of a coalition in S. Again, the
resolution of such a blocking coalition is called an improvement step. A stable
state or stable coalition structure S does not have any blocking coalitions. Cor-
related matching games are a special case of coalition formation games where C
is restricted to pairs of agents and thereby defines the edge set E.

To embed the classes of matching games detailed above into a more general
framework, we define coalition formation games with constraints. For each state
S we consider two sets of rules – generation rules that determine candidate
coalitions, and domination rules that forbid some of the candidate coalitions. The
set of undominated candidate coalitions then forms the blocking coalitions for
state S. Using suitable generation and domination rules, this allows to describe
socially, locally, considerate and friendship matching in this scenario.

More formally, there is a set T ⊆ {(T , C) | T ⊂ C, C ∈ C} of generation rules.
If in the current state S we have T ⊆ S and C �∈ S, then C becomes a candidate
coalition. For convenience, we exclude generation rules of the form (∅, C) from T
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and capture these rules by a set Cg ⊆ C of self-generating coalitions. A coalition
C ∈ Cg is a candidate coalition for all states S with C �∈ S. In addition, there
is a set D ⊆ {(T , C) | T ⊂ C, C ∈ C} of domination rules. If T ⊆ S for
the current state S, then C must not be inserted. To capture the underlying
preferences of the agents, we assume that D always includes at least the set
Dw = {({C1}, C2) | w(C1) ≥ w(C2), C1 ∩ C2 �= ∅, C1 �= C2} of all weight
domination rules.

The undominated candidate coalitions represent the blocking coalitions for
S. In particular, the latter assumption on D implies that a blocking coalition
must at least yield strictly better profit for every involved agent. Note that in
an improvement step, one of these coalitions is inserted, and every coalition that
is dominated in the resulting state is removed. By assumption on D, we remove
at least every overlapping coalition with smaller weight. A coalition structure is
stable if the set of blocking coalitions is empty.

Note that we could also define coalition formation games with constraints for
general preferences. Then Dw = {({C1}, C2) | C1 ∩ C2 �= ∅, C1 �= C2, ∃v ∈ C1 :
wv(C1) ≥ wv(C2)}. However, a crucial point in our proofs is that in a chain
of succeeding deletions no coalition can appear twice. This is guaranteed for
correlated preferences as coalitions can only be deleted by more worthy ones.
For general preferences on the other hand there is no such argument.

In the following we define consistency for generation and for domination rules.
This encompasses many classes of matching cases described above and is key for
reaching stable states (quickly).

Definition 1. The generation rules of a coalition formation game with con-
straints are called consistent if T ⊆ {({C1}, C2) | C1 ∩ C2 �= ∅}, that is, all
generation rules have only a single coalition in their precondition and the candi-
date coalition shares at least one agent.

Definition 2. The domination rules of a coalition formation game with con-
straints are called consistent if D ⊆ {(S, C) | S ⊂ C, C ∈ C, C /∈ S, ∃S ∈ S :
S∩C �= ∅}, that is, at least one of the coalitions in S overlaps with the dominated
coalition. Note that weight domination rules are always consistent.

Theorem 1. In every correlated coalition formation game with constraints and
consistent generation and domination rules, for every initial structure S there
is a sequence of polynomially many improvement steps that results in a stable
coalition structure. The sequence can be computed in polynomial time.

Proof. At first we analyze the consequences of consistency in generation and
domination rules. For generation rules we demand that there is only a single pre-
condition coalition and that this coalition overlaps with the candidate coalition.
Thus if we apply such a generation rule we essentially replace the precondition
with the candidate. The agents in the intersection of the two coalitions would
not approve such a resolution if they would not improve. Therefore, the only
applicable generation rules are those where the precondition is of smaller value
than the candidate.



168 M. Hoefer and L. Wagner

Now for domination rules we allow an arbitrary number of coalitions in the
precondition, but at least one of them has to overlap with the dominated coali-
tion. In consequence a larger set of coalitions might dominate a non-existing
coalition, but to remove a coalition they can only use the rules in Dw. That is
due to the fact that when a coalition C already exists, the overlapping coalition
of the precondition cannot exist at the same time. But this coalition can only
be created if C does not dominate it. Especially C has to be less worthy than
the precondition. Thus the overlapping precondition alone can dominate C via
weight.

The proof is inspired by the idea of the edge movement graph [15]. Given a
coalition formation game with consistent constraints and some initial coalition
structure S0, we define an object movement hypergraph

Gmov = (V, Vg , Tmov, Dmov).

A coalition structure corresponds to a marking of the vertices in Gmov. The
vertex set is V = {vC | C ∈ C}, and Vg = {vC | C ∈ Cg} the set of vertices
which can generate a marking by themselves. The directed exchange edges are
Tmov = {(vC1 , vC2) | ({C1}, C2) ∈ E,w(C1) < w(C2)}. The directed domination
hyperedges are given by Dmov = D1 ∪ Dw, where D1 = {({vS | S ∈ S}, vC) |
(S, C) ∈ D}. This covers the rule that a newly inserted coalition must represent
a strict improvement for all involved agents. The initial structure is represented
by a marking of the vertices V0 = {vC | C ∈ S0}.

We represent improvement steps by adding, deleting, and moving markings
over exchange edges to undominated vertices of the object movement graph.
Suppose we are given a state S and assume we have a marking at every vC
with C ∈ S. We call a vertex v in Gmov currently undominated if for every
hyperedge (U, v) ∈ Dmov at least one vertex in U is currently unmarked. An
improvement step that inserts coalition C is represented by marking vC . For
this vC must be unmarked and undominated. We can create a new marking
if vC ∈ Vg. Otherwise, we must move a marking along an exchange edge to
vC . Note that this maps the generation rules correctly as we have seen, that we
exchange the precondition for the candidate. To implement the resulting deletion
of conflicting coalitions from the current state, we delete markings at all vertices
which are now dominated through a rule in Dmov. That is, we delete markings
at all vertices v with (U, v) ∈ D and every vertex in U marked.

Observe that Tmov forms a DAG as the generation of the candidate coalition
deletes its overlapping precondition coalition and thus the rule will only be ap-
plied if the candidate coalition yields strictly more profit for every agent in the
coalition.

Lemma 1. The transformation of markings in the object movement graph cor-
rectly mirrors the improvement dynamics in the coalition formation game with
constraints.

Proof. Let S be a state of the coalition formation game and let C be a blocking
coalition for S. Then C can be generated either by itself (that is, C ∈ Cg) or
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through some generation rule with fulfilled precondition C′ ∈ S, and is not
dominated by any subset of S via D. Hence, for the set of marked vertices
VS = {vC | C ∈ S} it holds that vC can be generated either because vC ∈
Vg or because there is a marking on some vC′ with (vC′ , vC) ∈ Tmov, and is
further not dominated via D. Hence, we can generate a marking on vC . It is
straightforward to verify that if vC gets marked, then in the resulting deletion
step only domination rules of the form {({vS}, vT ) | S, T ∈ C, S ∩ T �= ∅ and
w(S) ≥ w(T )} are relevant. Thus, deletion of markings is based only on overlap
with the newly inserted coalition C. These are exactly the coalitions we lose
when inserting C in S.

Conversely, let VS be a set of marked vertices of Gmov such that S = {C |
vC ∈ VS} does not violate any domination rule (i.e., for every (U , C) ∈ D,
we have U �⊆ S or C �∈ S). Then S is a feasible coalition structure. Now if
vC is an unmarked vertex in Gmov, then C /∈ S. Furthermore, assume vC is
undominated and can be marked, because vC ∈ Vg or because some marking
can be moved to vC via an edge in Tmov. Thus for every {SC , C} ∈ D vC being
undominated implies SC �⊂ S. The property that vC can be marked implies that
C is self-generating or can be formed from S using a generation rule. Hence C
is a blocking coalition in S. The insertion C again causes the deletion of exactly
the coalitions whose markings get deleted when vC is marked. ��

To show the existence of a short sequence of improvement steps we consider
two phases.

Phase 1. In each round we check whether there is an exchange edge from a
marked vertex to an undominated one. If this is the case, we move the
marking along the exchange edge and start the next round. Otherwise for
each unmarked, undominated v ∈ Vg we compute the set of reachable posi-
tions. This can be done by doing a forward search along the exchange edges
that lead to an unmarked undominated vertex. Note that the vertex has to
remain undominated when there are the existing markings and a marking on
the source of the exchange edge. If we find a reachable position that domi-
nates an existing marking, we create a marking at the associated v ∈ Vg and
move it along the exchange edges to the dominating position. Then we start
the next round. If we cannot find a reachable position which dominates an
existing marking, we switch to Phase 2.

Phase 2. Again we compute all reachable positions from v ∈ Vg. We iteratively
find a reachable vertex vC with highest weight w(C), generate a marking at
the corresponding v ∈ Vg and move it along the path of exchange edges to
vC . We repeat this phase until no reachable vertex remains.

To prove termination and bound the length, we consider each phase separately.
In Phase 1 in each round we replace an existing marking by a marking of higher
value either by using an exchange edge or by deleting it through domination by
weight. Further the remaining markings either stay untouched or get deleted.
Now the number of improvements that can be made per marking is limited by
m and the number of markings is limited by n. Hence, there can be at most
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mn rounds in Phase 1. Additionally, the number of steps we need per round is
limited m again, as we move the marking along the DAG structure of exchange
edges. Thus, phase 1 generates a total of O(n ·m2) steps.

If in Phase 1 we cannot come up with an improvement, there is no way
to (re)move the existing markings, no matter which other steps are made in
subsequent iterations. This relies on the fact that the presence of additional
markings can only restrict the subgraph of reachable positions. For the same
reason, iteratively generating the reachable marking of highest weight results
in markings that cannot be deleted in subsequent steps. Thus, at the end of
every iteration in Phase 3, the number of markings is increased by one, and all
markings are un(re)movable. Consequently, in Phase 2 there are O(m · n) steps.

For computation of the sequence, the relevant tasks are constructing the graph
Gmov, checking edges in Tmov for possible improvement of markings, or con-
structing subgraphs and checking connectivity of single vertices to Vg. Obviously,
all these tasks can be executed in time polynomial in n, m, |T | and |D| using
standard algorithmic techniques. ��

Next, we want to analyze whether consistency of generation and domination
rules is necessary for the existence of short sequences or can be further relaxed.

Proposition 1. If the generation rules contain more than one coalition in the
precondition-set, there are instances and initial states such that every sequence
to a stable state requires an exponential number of improvement steps.

The proof uses a coalition formation game with constraints and inconsistent
generation rules obtained from locally stable matching, when agents are allowed
to match with partners at a hop distance of at most � = 3 in (V, L∪M). For this
setting in [16, Theorem 3] we have given an instance such that every sequence to
a stable state requires an exponential number of improvement steps. Note that
the example is minimal in the sense that now we have at most 2 coalitions in
the precondition-set. The detailed proof can be found in the full version.

Proposition 2. If the generation rules have non-overlapping precondition- and
target-coalitions, there are instances and initial states such that every sequence
to a stable state requires an exponential number of improvement steps.

The construction used for the proof exploits the fact that if precondition- and
target-coalition do not overlap the precondition can remain when the target-
coalition is formed. Then the dynamics require additional steps to clean up the
leftover precondition-coalitions which results in an exponential blow-up. The
entire proof as well as a sketch of the resulting movement graph can be found in
the full version.

Proposition 3. If the domination rules include target-coalitions that do not
overlap with any coalition in the precondition, there are instances and starting
states such that every sequence cycles.

Consistent generation and domination rules arise in a large variety of settings,
not only in basic matching games but also in some interesting extensions.
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Corollary 1. Consistent generation and domination rules are present in

– locally stable matching if agents can create k = 1 matching edges and have
lookahead � = 2 in G = (V,M ∪ L).

– socially stable matching, even if agents can create k ≥ 1 matching edges.
– considerate matching, even if agents can create k ≥ 1 matching edges.
– friendship matching, even if agents can create k ≥ 1 matching edges.

Due to space restrictions we cannot give a detailed description of the embed-
ding into coalition formation games with constraints. In most cases the embedding
is quite straightforward. Agents and edge set are kept as well as the benefits. The
generation and domination rules often follow directly from the definitions. The ex-
act embedding for every type of game can be found in the full version. Additionally
an exemplar proof for correctness is stated.

Unlike for the other cases, for locally stable matching we cannot guarantee
consistent generation rules if we increase the number of matching edges. The
same holds for lookahead > 2. In both cases the accessibility of an edge might
depend on more than one matching edge. There are exponential lower bounds
in [16, 19] for those extensions which proves that it is impossible to find an
embedding with consistent rules even with the help of auxiliary constructions.

2.2 Reaching a Given Matching

In this section we consider the problem of deciding reachability of a given stable
matching from a given initial state. We first show that for correlated coalition
formation games with constraints and consistent rules, this problem is in NP. If
we can reach it and there exists a sequence, then there always exists a polynomial-
size certificate due to the following result.

Theorem 2. In a correlated coalition formation game with constraints and con-
sistent generation and domination rules, for every coalition structure S∗ that is
reachable from an initial state S0 through a sequence of improvement steps, there
is also a sequence of polynomially many improvement steps from S0 to S∗.

For the proof we analyze an arbitrary sequence of improvement steps from S0
to S∗ and show that, if the sequence is too long, there are unnecessary steps, that
is, coalitions are created and deleted without making a difference for the final
outcome. By identifying and removing those superfluous steps we can reduce
every sequence to one of polynomial length. The detailed proof can be found in
the full version.

For locally stable matching, the problem of reaching a given locally stable
matching from a given initial matching is known to be NP-complete [19]. Here
we provide a generic reduction that shows NP-completeness for socially, locally,
considerate, and friendship matching, even in the two-sided case. Surprisingly,
it also applies to ordinary two-sided stable matching games that have either
correlated preferences with ties, or non-correlated strict preferences. Observe
that the problem is trivially solvable for ordinary stable matching and correlated
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preferences without ties, as in this case there is a unique stable matching that
can always be reached using the greedy construction algorithm [2].

Theorem 3. It is NP-complete to decide if for a given matching game, initial
matching M0 and stable matching M∗, there is a sequence of improvement steps
leading form M0 to M∗. This holds even for bipartite games with strict correlated
preferences in the case of

1. socially stable matching and locally stable matching,
2. considerate matching, and
3. friendship matching for symmetric α-values in [0, 1].

In addition, it holds for ordinary bipartite stable matching in the case of

4. correlated preferences with ties,
5. strict preferences.

3 General Preferences

In this section we consider convergence to stable matchings in the two-sided
case with general preferences that may be incomplete and have ties. For locally
stable matching it is known that in this case there are instances and initial
states such that no locally stable matching can be reached using local blocking
pair resolutions. Moreover, deciding the existence of a converging sequence of
resolutions is NP-hard [19].

We here study the problem for socially, considerate, and friendship matching.
Our positive results are based on the following procedure from [2] that is known
to construct a sequence of polynomial length for unconstrained stable matching.
The only modification of the algorithm for the respective scenarios is to resolve
“social”, “considerate” or “perceived blocking pairs” in both phases.

Phase 1. Iteratively resolve only blocking pairs involving a matched vertex
w ∈ W . Phase 1 ends when for all blocking pairs {u,w} we have w ∈ W
unmatched.

Phase 2. Choose an unmatched w ∈ W that is involved in a blocking pair.
Resolve one of the blocking pairs {u,w} that is most preferred by w. Repeat
until there are no blocking pairs.

It is rather straightforward to see that the algorithm can be applied directly
to build a sequence for socially stable matching.

Theorem 4. In every bipartite instance of socially stable matching G = (V =
U ∪̇W,E) with general preference lists and social network L, for every initial
matching M0 there is a sequence of polynomially many improvement steps that
results in a socially stable matching. The sequence can be computed in polynomial
time.
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For extended settings the algorithm still works for somewhat restricted social
networks. For considerate matching we assume that the link set is only within
L ⊆ (U × U) ∪ (U ×W ), i.e., no links within partition W .

Theorem 5. In every bipartite instance of considerate matching G = (V =
U ∪̇W,E) with general preference lists and social network L such that {w,w′} /∈ L
for all w,w′ ∈ W , for every initial matching M0 there is a sequence of poly-
nomially many improvement steps that results in a considerate matching. The
sequence can be computed in polynomial time.

We also apply the algorithm to friendship matching in case there can be
arbitrary friendship relations αu,u′ , αu′,u ≥ 0 for each pair u, u′ ∈ U . Here we
allow asymmetry with αu,u′ �= αu′,u. Otherwise, for all u ∈ U,w,w′ ∈ W we
assume that αu,w = αw,u = αw,w′ = 0, i.e., friendship only exists within U .

Theorem 6. In every bipartite instance of friendship matching G = (V =
U ∪̇W,E) with benefits b and friendship values α such that αu,u′ > 0 only for
u, u′ ∈ U , for every initial matching M0 there is a sequence of polynomially
many improvement steps that results in a friendship matching. The sequence
can be computed in polynomial time.

The algorithm works fine with links between partitions U and W for the
considerate setting, but it fails for positive α between partitions in the friendship
case. We defer a discussion to the full version of the paper.
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librium. In: Proc. 22nd Intl. Joint Conf. Artif. Intell. (IJCAI), pp. 234–239 (2011)

18. Hoefer, M., Wagner, L.: Designing profit shares in matching and coalition formation
games. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 249–
262. Springer, Heidelberg (2013)

19. Hoefer, M., Wagner, L.: Locally stable marriage with strict preferences. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS,
vol. 7966, pp. 620–631. Springer, Heidelberg (2013)

20. Hoffman, M., Moeller, D., Paturi, R.: Jealousy graphs: Structure and complexity
of decentralized stable matching. In: Chen, Y., Immorlica, N. (eds.) WINE 2013.
LNCS, vol. 8289, pp. 263–276. Springer, Heidelberg (2013)

21. Inarra, E., Larrea, C., Moris, E.: Random paths to P -stability in the roommates
problem. Int. J. Game Theory 36(3-4), 461–471 (2008)

22. Inarra, E., Larrea, C., Moris, E.: The stability of the roommate problem revisited.
Core Discussion Paper 2010/7 (2010)

23. Irving, R.: An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms 6(4), 577–595 (1985)

24. Klaus, B., Klijn, F., Walzl, M.: Stochastic stability for roommate markets. J.
Econom. Theory 145, 2218–2240 (2010)

25. Knuth, D.: Marriages stables et leurs relations avec d’autres problemes combina-
toires. Les Presses de l’Université de Montréal (1976)
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Abstract. We consider the fundamental mechanism design problem of
approximate social welfaremaximizationunder general cardinal preferences
on afinite number of alternatives andwithoutmoney. Thewell-known range
voting scheme can be thought of as a non-truthful mechanism for exact
social welfare maximization in this setting.Withm being the number of al-
ternatives, we exhibit a randomized truthful-in-expectation ordinal mech-
anism with approximation ratio Ω(m−3/4). On the other hand, we show
that for sufficiently many agents, the approximation ratio of any truthful-
in-expectation ordinalmechanism isO(m−2/3).We supplement our results
with an upper bound for any truthful-in-expectation mechanism. We get
tighter bounds for the natural special case of m = 3, and in that case fur-
thermore obtain separation results concerning the approximation ratios
achievable by natural restricted classes of truthful-in-expectation mecha-
nisms. In particular, we show that the best cardinal truthful mechanism
strictly outperforms all ordinal ones.

1 Introduction

We consider the fundamental mechanism design problem of approximate social
welfare maximization under general cardinal preferences and without money. In
this setting, there is a finite set of agents (or voters) N = {1, . . . , n} and a
finite set of alternatives (or candidates) M = {1, . . . ,m}. Each voter i has a
private valuation function ui : M → R that can be arbitrary, except that it is
injective, i.e., it induces a total order on candidates. Standardly, the function
ui is considered well-defined only up to positive affine transformations. That is,
x→ aui(x)+b, for a > 0 and any b, is considered to be a different representation
of ui. Given this, we fix a canonical representation of ui. The two most widely
used cannonical representations in literature are unit-range (i.e. ∀j, ui(j) ∈ [0, 1]
and maxj ui(j) = 1, minj ui(j) = 0) [1–4, 6, 8, 9] and unit-sum (i.e. ∀j, ui(j) ∈
[0, 1] and

∑
j ui(j) = 1) [7, 8, 13]. In this paper we will assume that all ui are
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canonically represented using the unit-sum representation, because it is arguably
more suited for social welfare maximization. Intuitively, agents should not be
“punished” for liking a lot of different outcomes. We shall let Vm denote the set
of all unit-range canonically represented valuation functions.

We shall be interested in direct revelation mechanisms without money that
elicit the valuation profile u = (u1, u2, . . . , un) from the voters and based on
this elect a candidate J(u) ∈ M . We shall allow mechanisms to be random-
ized and J(u) is therefore in general a random map. In fact, we shall define a
mechanism simply to be a random map J : Vm

n → M . We prefer mechanisms
that are truthful-in-expectation, by which we mean that the following condition
is satisfied: For each voter i, and all u = (ui, u−i) ∈ Vm

n and ũi ∈ Vm, we have
E[ui(J(ui, u−i)] ≥ E[ui(J(ũi, u−i)]. That is, if voters are assumed to be ex-
pected utility maximizers, the optimal behavior of each voter is always to reveal
their true valuation function to the mechanism. As truthfulness-in-expectation
is the only notion of truthfulness of interest to us in this paper, we shall use
“truthful” as a synonym for “truthful-in-expectation” from now on. Further-
more, we are interested in mechanisms for which the expected social welfare,
i.e., E[

∑n
i=1 ui(J(u))], is as high as possible, and we shall in particular be inter-

ested in the approximation ratio of the mechanism, trying to achieve mechanisms
with as high an approximation ratio as possible. Note that for m = 2, the prob-
lem is easy; a majority vote is a truthful mechanism that achieves optimal social
welfare, i.e., it has approximation ratio 1, so we only consider the problem for
m ≥ 3.

A mechanism without money for general cardinal preferences can be naturally
interpreted as a cardinal voting scheme in which each voter provides a ballot
giving each candidate j ∈ M a numerical score between 0 and 1. A winning
candidate is then determined based on the set of ballots. With this interpretation,
the well-known range voting scheme is simply the determinstic mechanism that
elects the socially optimal candidate argmaxj∈M

∑n
i=1 ui(j), or, more precisely,

elects this candidate if ballots are reflecting the true valuation functions ui.
In particular, range voting has by construction an approximation ratio of 1.
However, range voting is not a truthful mechanism.

As our first main result, we exhibit a randomized truthful mechanism with
an approximation ratio of 0.37m−3/4. The mechanism is ordinal: Its behavior
depends only on the rankings of the candidates on the ballots, not on their nu-
merical scores. We also show a negative result: For sufficiently many voters and
any truthful ordinal mechanism, there is a valuation profile where the mech-
anism achieves at most an O(m−2/3) fraction of the optimal social welfare in
expectation. The negative result also holds for non-ordinal mechanisms that are
mixed-unilateral, by which we mean mechanisms that elect a candidate based on
the ballot of a single randomly chosen voter. Finally, we prove that no truthful
mechanism can achieve an approximation ratio of 0.94.

We get tighter bounds for the natural case of m = 3 candidates and for
this case, we also obtain separation results concerning the approximation ratios
achievable by natural restricted classes of truthful mechanisms. In particular, the
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best mixed-unilateral mechanism strictly outperforms all ordinal ones, even the
non-unilateral ordinal ones. The mixed-unilateral mechanism that establishes
this is a convex combination of quadratic-lottery, a mechanism presented by
Freixas [9] and Feige and Tennenholtz [6] and random-favorite, the mechanism
that picks a voter uniformly at random and elects his favorite candidate.

1.1 Background, Related Research and Discussion

Characterizing strategy-proof social choice functions (a.k.a., truthful direct rev-
elation mechanisms without money) under general preferences is a classical topic
of mechanism design and social choice theory. The class of truthful deterministic
mechanisms is limited to dictatorships, as proven by the celebrated Gibbard-
Satterthwaite theorem [10, 20]. On the other hand, the class of randomized
truthful mechanisms is much richer [2], as suggested by the following character-
ization for randomized ordinal mechanisms:

Theorem 1. [11] The ordinal mechanisms without money that are truthful un-
der general cardinal preferences1 are exactly the convex combinations of truthful
unilateral ordinal mechanisms and truthful duple mechanisms.

Here, a unilateral mechanism is a randomized mechanism whose output depends
on the ballot of a single distinguished voter i∗ only. A duple mechanism is an
ordinal mechanism for which there are two distinguished candidates so that all
other candidates are elected with probability 0, for all valuation profiles.

One of the main conceptual contributions from computer science to mecha-
nism design is the suggestion of a measure for comparing mechanisms and finding
the best one, namely the notion of worst case approximation ratio [16, 18] relative
to some objective function. Following this research program, and using Gibbard’s
characterization, Procaccia [17] gave in a paper conceptually very closely related
to the present one but he only considered objective functions that can be de-
fined ordinally (such as, e.g., Borda count), and did in particular not consider
approximating the optimal social welfare, as we do in the present paper.

Social welfare maximization is indeed a very standard objective in mechanism
design. In particular, it is very widespread in quasi-linear settings (where valu-
ations are measured in monetary terms)(see [15, 19]). On the other hand, in the
setting of social choice theory, the valuation functions are to be interpreted as
von Neumann-Morgenstern utilities (i.e, they are meant to encode orderings on
lotteries), and in particular are only well-defined up to affine transformations.
In this setting, the social welfare has to be defined as above, as the result of
adding up the valuations of all players, after these are normalized by scaling
to, say, the interval [0,1]. A significant amount of work considers social welfare
maximization in the von Neumann-Morgenstern setting. [5, 7, 8, 13].

1 without ties, i.e., valuation functions must be injective, as we require throughout
this paper, except in Theorem 6. If ties were allowed, the characterization would be
much more complicated.
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It is often argued that while an underlying cardinal utility structure exists, it
is more reasonable to only ask individuals to only provide a ranking of the candi-
dates, rather than exact numerical values. This makes ordinal mechanisms par-
ticularly appealing. The limitations of this class of mechanisms were considered
recently by Boutilier et al. [5] in a very interesting paper closely related to the
present one, but crucially, they did not require truthfulness of the mechanisms
in their investigations. On the other hand, truthfulness is the pivotal property in
our approach. Perhaps the most interesting question to ask is whether truthful
cardinal mechanisms [4, 9, 22], can outperform truthful ordinal ones, in terms
of social welfare. We answer this in the positive for the case of three alterna-
tives. Exploring the limitations of truthful cardinal mechanisms is impaired by
the lack of a characterization similar to the one of Theorem 1 for the general
case. Obtaining such a characterization is a major open problem in social choice
theory and several attempts have been made throughout the years [3, 4, 9, 12].
Our results imply that one could be able to sidestep the need for such a charac-
terization and use direct manipulation arguments to obtain upper bounds and
at the same time highlight what to look for and what to avoid, when trying to
come up with “good” cardinal truthful mechanisms.

Our investigations are very much helped by the work of Feige and Tennen-
holtz [6] and Freixas [9]. In particular, our construction establishing the gap
between the approximation ratios for cardinal and ordinal mechanisms for three
candidates is based on the quadratic lottery, first presented in [9] and later in
[6]. Most of the proofs are omitted due to lack of space but appear in the full
version.

2 Preliminaries

We let Vm denote the set of canonically represented valuation functions on M =
{1, 2, . . . ,m}. That is, Vm is the set of injective functions u : M → [0, 1] with
the property that 0 as well as 1 are contained in the image of u.

We let Mechm,n denote the set of truthful mechanisms for n voters and m
candidates. That is, Mechm,n is the set of random maps J : Vm

n →M with the
property that for voter i ∈ {1, . . . , n}, and all u = (ui, u−i) ∈ Vm

n and ũi ∈ Vm,
we have E[ui(J(ui, u−i)] ≥ E[ui(J(ũi, u−i)]. Alternatively, instead of viewing a
mechanism as a random map, we can view it as a map from Vm

n to Δm, the
set of probability density functions on {1, . . . ,m}. With this interpretation, note
that Mechm,n is a convex subset of the vector space of all maps from Vm

n to Rm.
We shall be interested in certain special classes of mechanisms. In the following
definitions, we throughout view a mechanism J as a map from Vm

n to Δm.
An ordinal mechanism J is a mechanism with the property: J(ui, u−i) =

J(u′
i, u−i), for any voter i, any preference profile u = (ui, u−i), and any valuation

function u′
i with the property that for all pairs of candidates j, j′, it is the case

that ui(j) < ui(j
′) if and only if u′

i(j) < u′
i(j

′). Informally, the behavior of an
ordinal mechanism only depends on the ranking of candidates on each ballot;
not on the numerical valuations. We let MechO

m,n denote those mechanisms in
Mechm,n that are ordinal.
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Following Barbera [2], we define an anonymous mechanism J as one that
does not depend on the names of voters. Formally, given any permutation π
on N , and any u ∈ (Vm)n, we have J(u) = J(π · u), where π · u denotes the
vector (uπ(i))

n
i=1. Similarly following Barbera [2], we define a neutral mechanism

J as one that does not depend on the names of candidates. Formally, given any
permutation σ on M , any u ∈ (Vm)n, and any candidate j, we have J(u)σ(j) =
J(u1 ◦ σ, u2 ◦ σ, . . . , un ◦ σ)j .

Following [4, 11], a unilateral mechanism is a mechanism for which there
exists a single voter i∗ so that for all valuation profiles (ui∗ , u−i∗) and any al-
ternative valuation profile u′

−i∗ for the voters except i∗, we have J(ui∗ , u−i∗) =
J(ui∗ , u

′
−i∗). Note that i∗ is not allowed to be chosen at random in the defini-

tion of a unilateral mechanism. In this paper, we shall say that a mechanism is
mixed-unilateral if it is a convex combination of unilateral truthful mechanisms.
Mixed-unilateral mechanisms are quite attractive seen through the “computer
science lens”: They are mechanisms of low query complexity; consulting only
a single randomly chosen voter, and therefore deserve special attention in their
own right. We let MechU

m,n denote those mechanisms in Mechm,n that are mixed-
unilateral. Also, we let MechOU

m,n denote those mechanisms in Mechm,n that are
ordinal as well as mixed-unilateral.

Following Gibbard [11], a duple mechanism J is an ordinal2 mechanism for
which there exist two candidates j∗1 and j∗2 so that for all valuation profiles, J
elects all other candidates with probability 0.

We next give names to some specific important mechanisms. We let U q
m,n ∈

MechOU

m,n be the mechanism for m candidates and n voters that picks a voter
uniformly at random, and elects uniformly at random a candidate among his
q most preferred candidates. We let random-favorite be a nickname for U1

m,n

and random-candidate be a nickname for Um
m,n. We let Dq

m,n ∈ MechO

m,n, for
�n/2�+ 1 ≤ q ≤ n + 1, be the mechanism for m candidates and n voters that
picks two candidates uniformly at random and eliminates all other candidates. It
then checks for each voter which of the two candidates he prefers and gives that
candidate a “vote”. If a candidate gets at least q votes, she is elected. Otherwise,
a coin is flipped to decide which of the two candidates is elected. We let random-

majority be a nickname for D
�n/2�+1
m,n . Note also that Dn+1

m,n is just another name
for random-candidate. Finally, we shall be interested in the following mechanism
Qn for three candidates shown to be in MechU

3,n by Feige and Tennenholtz [6]:
Select a voter uniformly at random, and let α be the valuation of his second
most preferred candidate. Elect his most preferred candidate with probability
(4−α2)/6, his second most preferred candidate with probability (1+2α)/6 and
his least preferred candidate with probability (1− 2α+α2)/6. We let quadratic-
lottery be a nickname for Qn. Note that quadratic-lottery is not ordinal. Feige
and Tennenholtz [6] in fact presented several explicitly given non-ordinal one-
voter truthful mechanisms, but quadratic-lottery is particularly amenable to an

2 Barbera et al. [4] gave a much more general definition of duple mechanism; their
duple mechanisms are not restricted to be ordinal. In this paper, “duple” refers
exclusively to Gibbard’s original notion.
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approximation ratio analysis due to the fact that the election probabilities are
quadratic polynomials.

We let ratio(J) denote the approximation ratio of a mechanism J ∈Mechm,n,
when the objective is social welfare. That is,

ratio(J) = inf
u∈Vm

n

E[
∑n

i=1 ui(J(u))]

maxj∈M

∑n
i=1 ui(j)

.

We let rm,n denote the best possible approximation ratio when there are n
voters and m candidates. That is, rm,n = supJ∈Mechm,n

ratio(J). Similarly, we

let rC
m,n = sup

J∈MechC
m,n

ratio(J), for C being either O, U or OU. We let rm

denote the asymptotically best possible approximation ratio when the number
of voters approaches infinity. That is, rm = lim infn→∞ rm,n, and we also extend
this notation to the restricted classes of mechanisms with the obvious notation
rO
m, rU

m and rOU
m .

The importance of neutral and anonymous mechanisms is apparent from the
following simple lemma:

Lemma 1. For all J ∈ Mechm,n, there is a J ′ ∈ Mechm,n such that J ′ is
anonymous and neutral and so that ratio(J ′) ≥ ratio(J). Similarly, for all J ∈
MechC

m,n, there is J ′ ∈ MechC

m,n so that J ′ is anonymous and neutral and so
that ratio(J ′) ≥ ratio(J), for C being either O, U or OU.

Lemma 1 makes the characterizations of the following theorem very useful.

Theorem 2. The set of anonymous and neutral mechanisms in MechOU

m,n is
equal to the set of convex combinations of mechanisms U q

m,n, for q ∈ {1, . . . ,m}.
Also, the set of anonymous and neutral mechanisms in Mechm,n that can be
obtained as convex combinations of duple mechanisms is equal to the set of convex
combinations of the mechanisms Dq

m,n, for q ∈ {�n/2�+1, �n/2�+2, . . . , n, n+1}.

The following corollary is immediate from Theorem 1 and Theorem 2.

Corollary 1. The ordinal, anonymous and neutral mechanisms in Mechm,n are
exactly the convex combinations of the mechanisms U q

m,n, for q ∈ {1, . . . ,m} and
Dq

m,n, for q ∈ {�n/2�+ 1, �n/2�+ 2, . . . , n}.

We next present some lemmas that allow us to understand the asymptotic
behavior of rm,n and rC

m,n for fixed m and large n, for C being either O, U or
OU.

Lemma 2. For any positive integers n,m, k, we have rm,kn ≤ rm,n and rC

m,kn ≤
rC
m,n, for C being either O, U or OU.

Lemma 3. For any m,n ≥ 2, ε > 0 and all n′ ≥ (n− 1)m/ε, we have rm,n′ ≤
rm,n + ε and rC

m,n′ ≤ rC
m,n + ε, for C being either O, U, or OU.

In particular, Lemma 3 implies that rm,n converges to a limit as n→∞.
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2.1 Quasi-Combinatorial Valuation Profiles

It will sometimes be useful to restrict the set of valuation functions to a certain
finite domain Rm,k for an integer parameter k ≥ m. Specifically, we define:

Rm,k =

{
u ∈ Vm|u(M) ⊆ {0, 1

k
,
2

k
, . . . ,

k − 1

k
, 1}

}
where u(M) denotes the image of u. Given a valuation function u ∈ Rm,k, we
define its alternation number a(u) as

a(u) = #{j ∈ {0, . . . , k − 1}|[ j
k
∈ u(M)]⊕ [

j + 1

k
∈ u(M)]},

where ⊕ denotes exclusive-or. That is, the alternation number of u is the number
of indices j for which exactly one of j/k and (j+1)/k is in the image of u. Since
k ≥ m and {0, 1} ⊆ u(M), we have that the alternation number of u is at least
2. We shall be interested in the class of valuation functions Cm,k with minimal
alternation number. Specifically, we define:

Cm,k = {u ∈ Rm,k|a(u) = 2}

and shall refer to such valuation functions as quasi-combinatorial valuation func-
tions. Informally, the quasi-combinatorial valuation functions with sufficiently
small k, have all valuations as close to 0 or 1 as possible.

The following lemma will be very useful in later sections. It formalizes the
intuition that for ordinal mechanisms, the worst approximation ratio is achieved
in extreme profiles, when all valuations are either very close to 1 or very close
to 0.

Lemma 4. Let J ∈Mechm,n be ordinal and neutral. Then

ratio(J) = lim inf
k→∞

min
u∈(Cm,k)n

E[
∑n

i=1 ui(J(u))]∑n
i=1 ui(1)

.

The idea of the proof is that starting from a valuation profile, we can iductively
“shift” blocks of valuations towards 0 or 1, without increasing the approximation
ratio and this way transform the profile into a quasi-combinatorial profile. This is
possible because since the mechanism is ordinal, this “shift” leaves the outcome
unchanged. See the full version for the full proof.

3 Mechanisms and Negative Results for the Case of
Many Candidates

We can now analyze the approximation ratio of the mechanism J ∈ MechOU

m,n

that with probability 3/4 elects a uniformly random candidate and with prob-
ability 1/4 uniformly at random picks a voter and elects a candidate uniformly
at random from the set of his �m1/2� most preferred candidates.
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Theorem 3. Let n ≥ 2,m ≥ 3. Let J = 3
4U

m
m,n + 1

4U
�m1/2�
m,n . Then, ratio(J) ≥

0.37m−3/4.

Proof. For a valuation profile u = (ui), we define g(u) =
E[

∑n
i=1 ui(J(u))]∑
n
i=1 ui(1)

. By

Lemma 4, since J is ordinal, it is enough to bound from below g(u) for all
u ∈ (Cm,k)

n with k ≥ 1000(nm)2. Let ε = 1/k. Let δ = mε. Note that all
functions of u map each alternative either to a valuation smaller than δ or a
valuation larger than 1− δ.

Since each voter assigns valuation 1 to at least one candidate, and since J
with probability 3/4 picks a candidate uniformly at random from the set of
all candidates, we have E[

∑n
i=1 ui(J(u))] ≥ 3n/(4m). Suppose

∑n
i=1 ui(1) ≤

2m−1/4n. Then g(u) ≥ 3
8m

−3/4, and we are done. So we shall assume from now
on that

n∑
i=1

ui(1) > 2m−1/4n. (1)

Obviously,
∑n

i=1 ui(1) ≤ n. Since J with probability 3/4 picks a candidate
uniformly at random from the set of all candidates, we have E[

∑n
i=1 ui(J(u))] ≥

3
4m

∑
i,j ui(j). So if

∑
i,j ui(j) ≥ 1

2nm
1/4, we have g(u) ≥ 3

8m
−3/4, and we are

done. So we shall assume from now on that∑
i,j

ui(j) <
1

2
nm1/4. (2)

Still looking at the fixed quasi-combinatorial u, let a voter i be called generous
if his �m1/2� + 1 most preferred candidates are all assigned valuation greater
than 1 − δ. Also, let a voter i be called friendly if he has candidate 1 among
his �m1/2� most preferred candidates. Note that if a voter is neither generous
nor friendly, he assigns to candidate 1 valuation at most δ. This means that the
total contribution to

∑n
i=1 ui(1) from such voters is less than nδ < 0.001/m.

Therefore, by equation (1), the union of friendly and generous voters must be a
set of size at least 1.99m−1/4n.

If we let g denote the number of generous voters, we have
∑

i,j ui(j) ≥
gm1/2(1 − δ) ≥ 0.999gm1/2, so by equation (2), we have that 0.999gm1/2 <
1
2nm

1/4. In particular g < 0.51m−1/4n. So since the union of friendly and gen-

erous voters must be a set of size at least a 1.99m−1/4n voters, we conclude
that there are at least 1.48m−1/4n friendly voters, i.e. the friendly voters is at

least a 1.48m−1/4 fraction of the set of all voters. But this ensures that U
�m1/2�
m,n

elects candidate 1 with probability at least 1.48m−1/4/m1/2 ≥ 1.48m−3/4. Then,
J elects candidate 1 with probability at least 0.37m−3/4 which means that
g(u) ≥ 0.37m−3/4, as desired. This completes the proof. �

We next state our negative result. We show that any convex combination of
(not necessarily ordinal) unilateral and duple mechanisms performs poorly. The
proof is omitted due to lack of space, but can be found in the full version of the
paper.
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Theorem 4. Let m ≥ 20 and let n = m − 1 + g where g = �m2/3�. For any
mechanism J that is a convex combination of unilateral and duple mechanisms
in Mechm,n, we have ratio(J) ≤ 5m−2/3.

Corollary 2. For all m, and all sufficiently large n compared to m, any mech-
anism J in MechO

m,n ∪MechU

m,n has approximation ratio O(m−2/3).

Proof. Combine Theorem 1, Lemma 3 and Theorem 4. �

As followup work to the present paper, in a working manuscript, Lee [14]
states a lower bound of Ω(m−2/3) that closes the gap between our upper and
lower bounds. The mechanism achieving this bound is a convex combination of
random-favorite and the mixed unilateral mechanism that uniformly at random
elects one of the m1/3 most preferred candidates of a uniformly chosen voter.
The main question that we would like to answer is how well one can do with
(general) cardinal mechanisms. The next theorem provides a weak upper bound.

Theorem 5. All mechanisms J ∈Mechm,n with m,n ≥ 3 have ratio(J) < 0.94.

Recall that in the definition of valuation functions ui, we required ui to be
injective, i.e. no ties are not allowed. This requirement is made primarily for
convenience, and all results of this paper can also be proved for the setting with
ties. In contrast, allowing ties seems crucial for the proof of the follwing theorem,
yielding a much stronger upper bound on the approximation ratio of any truthful
mechanism than Theorem 5:

Theorem 6. Any voting mechanism in the settting with ties, for m alternatives
and n agents with m ≥ n�

√
n�+2, has approximation ratio O(log logm/ logm).

The proof uses a black-box reduction from the one-sided matchings problem
for which Filos-Ratsikas et al. [8] proved a O(1/

√
n) upper bound. Ideally, we

want all negative result to hold for the setting without ties and the positive ones
to hold for the setting with ties. We leave a ”no-ties” version of Theorem 6 for
future work.

4 Mechanisms and Negative Results for the Case of
Three Candidates

In this section, we consider the special case of three candidates m = 3. To
improve readability, we shall denote the three candidates by A,B and C, rather
than by 1,2 and 3. When the number of candidates m as well as the number of
voters n are small constants, the exact values of rO

m,n and rOU
m,n can be determined.

We describe a general method for how to exactly and mechanically compute rO
m,n

and rOU
m,n and the associated optimal mechanisms for small values ofm and n. The

key is to apply Yao’s principle [21] and view the construction of a randomized
mechanism as devising a strategy for Player I in a two-player zero-sum game G
played between Player I, the mechanism designer, who picks a mechanism J and
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Player II, the adversary, who picks an input profile u for the mechanism, i.e.,
an element of (Vm)n. The payoff to Player I is the approximation ratio of J on
u. Then, the value of G is exactly the approximation ratio of the best possible
randomized mechanism. In order to apply the principle, the computation of
the value of G has to be tractable. In our case, Theorem 2 allows us to reduce
the strategy set of Player I to be finite while Lemma 4 allows us to reduce the
strategy set of Player II to be finite. This makes the game into a matrix game,
which can be solved to optimality using linear programming. The details follow.

For fixedm,n and k > 2m, recall that the set of quasi-combinatorial valuation
functions Cm,k is the set of valuation functions u for which there is a j so that

%(u) = {0, 1
k ,

2
k , . . . ,

m−j−1
k } ∪ {k−j+1

k , k−j+2
k , . . . , k−1

k , 1}. Note that a quasi-
combinatorial valuation function u is fully described by the value of k, together
with a partition of M into two sets M0 and M1, with M0 being those candidates
close to 0 and M1 being those sets close to 1 together with a ranking of the
candidates (i.e., a total ordering < on M), so that all elements of M1 are greater
than all elements of M0 in this ordering. Let the type of a quasi-combinatorial
valuation function be the partition and the total ordering (M0,M1, <). Then,
a quasi-combinatorial valuation function is given by its type and the value of
k. For instance, if m = 3, one possible type is ({B}, {A,C}, {B < A < C}),
and the quasi-combinatorial valuation function u corresponding to this type for
k = 1000 is u(A) = 0.999, u(B) = 0, u(C) = 1. We see that for any fixed value
of m, there is a finite set Tm of possible types. In particular, we have |T3| = 12.
Let η : Tm × N→ Cm,k be the map that maps a type and an integer k into the
corresponding quasi-combinatorial valuation function.

For fixed m,n, consider the following matrices G and H . The matrix G has a
row for each of the mechanisms U q

m,n for q = 1, . . . ,m, while the matrix H has
a row for each of the mechanisms U q

m,n for q = 1, . . . ,m as well as for each of
the mechanisms Dq

m,n, for q = �n/2�+ 1, �n/2�+ 2, . . . , n. Both matrices have
a column for each element of (Tm)n. The entries of the matrices are as follows:
Each entry is indexed by a mechanism J ∈ Mechm,n (the row index) and by a
type profile t ∈ (Tm)n (the column index). We let that entry be

cJ,t = lim
k→∞

E[
∑n

i=1 ui(J(u
k))]

maxj∈M

∑n
i=1 u

k
i (j)

,

where uk
i = η(ti, k). Informally, we let the entry be the approximation ratio of

the mechanism on the quasi-combinatorial profile of the type profile indicated
in the column and with 1/k being “infinitisimally small”. Note that for the
mechanisms at hand, despite the fact that the entries are defined as a limit,
it is straightforward to compute the entries symbolically, and they are rational
numbers. We now have the following lemma.

Lemma 5. The value of G, viewed as a matrix game with the row player being
the maximizer, is equal to rOU

m,n. The value of H is equal to rO
m,n. Also, the optimal

strategies for the row players in the two matrices, viewed as convex combinations
of the mechanisms corresponding to the rows, achieve those ratios.
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When applying Lemma 5 for concrete values of m,n, one can take advantage
of the fact that all mechanisms corresponding to rows are anonymous and neu-
tral. This means that two different columns will have identical entries if they
correspond to two type profiles that can be obtained from one another by per-
muting voters and/or candidates. This makes it possible to reduce the number
of columns drastically. After such reduction, we have applied the theorem to
m = 3 and n = 2, 3, 4 and 5, computing the corresponding optimal approxima-
tion ratios and optimal mechanisms. We leave the details for the full version and
instead now turn our attention to the case of three candidates and arbitrarily
many voters. In particular, we shall be interested in rO

3 = lim infn→∞ rO
3,n and

rOU
3 = lim infn→∞ rOU

3,n . By Lemma 3, we in fact have rO
3 = limn→∞ rO

3,n and
rOU
3 = limn→∞ rOU

3,n. We present a family of ordinal and mixed-unilateral mech-
anisms Jn with ratio(Jn) > 0.610. In particular, rOU

3 > 0.610. The coefficents c1
and c2 were found by trial-and-error; we present more information about how in
the full version.

Theorem 7. Let c1 = 77066611
157737759 ≈ 0.489 and c2 = 80671148

157737759 ≈ 0.511. Let Jn =
c1 · U1

m,n + c2 · U2
m,n. For all n, we have ratio(Jn) > 0.610.

Proof. By Lemma 4, we have that

ratio(Jn) = lim inf
k→∞

min
u∈(C3,k)n

E[
∑n

i=1 ui(Jn(u))]∑n
i=1 ui(A)

.

Recall the definition of the set of types T3 of quasi-combinatorial valuation func-
tions on three candidates and the definintion of η preceding the proof of Lemma

5. From that discussion, we have lim infk→∞ minu∈(Cm,k)n
E[

∑n
i=1 ui(Jn(u))]∑
n
i=1 ui(A) =

mint∈(T3)n lim infk→∞
E[

∑n
i=1 ui(Jn(u))]∑n
i=1 ui(A) , where ui = η(ti, k). Recall that |T3| =

12. Since Jn is anonymous, to determine the approximation ratio of Jn on
u ∈ (Cm,k)

n, we observe that we only need to know the value of k and the
fraction of voters of each of the possible 12 types. In particular, fixing a type
profile t ∈ (Cm,k)

n, for each type k ∈ T3, let xk be the fraction of voters in u of
type k. For convenience of notation, we identify T3 with {1, 2, . . . , 12} using the
scheme depicted in Table 1. Let wj = limk→∞

∑n
i=1 ui(i), where ui = η(ti, k),

and let pj = limk→∞ Pr[Ej ], where Ej is the event that candidate j is elected
by Jn in an election with valuation profile u where ui = η(ti, k). We then have

lim infk→∞
E[

∑n
i=1 ui(Jn(u))]∑
n
i=1 ui(A) = (pA ·wA+pB ·wB+pC ·wC)/wA. Also, from Table

1 and the definition of Jn, we see:

wA = n(x1 + x2 + x3 + x4 + x5 + x9)

wB = n(x1 + x5 + x6 + x7 + x8 + x11)

wC = n(x4 + x7 + x9 + x10 + x11 + x12)

pA = (c1 + c2/2)(x1 + x2 + x3 + x4) + (c2/2)(x5 + x6 + x9 + x10)

pB = (c1 + c2/2)(x5 + x6 + x7 + x8) + (c2/2)(x1 + x2 + x11 + x12)

pC = (c1 + c2/2)(x9 + x10 + x11 + x12) + (c2/2)(x3 + x4 + x7 + x8)
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Table 1. Variables for types of quasi-combinatorial valuation functions with ε denoting
1/k

Candidate/Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

A 1 1 1 1 1− ε ε 0 0 1− ε ε 0 0
B 1− ε ε 0 0 1 1 1 1 0 0 1− ε ε
C 0 0 ε 1− ε 0 0 1− ε ε 1 1 1 1

Thus we can establish that ratio(Jn) > 0.610 for all n, by showing that the
quadratic program “Minimize (pA·wA+pB ·wB+pC ·wC)−0.610wA subject to x1+
x2 + · · ·+ x12 = 1, x1, x2, . . . , x12 ≥ 0”, where wA, wB, wC , pA, pB, pC have been
replaced with the above formulae using the variables xi, has a strictly positive
minimum (note that the parameter n appears as a multiplicative constant in the
objective function and can be removed, so there is only one program, not one for
each n). This was established rigorously by solving the program symbolically in
Maple by a facet enumeration approach (the program being non-convex), which
is easily feasible for quadratic programs of this relatively small size. �

We next present a family of ordinal mechanisms J ′
n with ratio(J ′

n) > 0.616. In
particular, rO

3 > 0.616. The proof idea is the same as in the proof of Theorem 7
althought the existence of duple mechanisms requires some additional care. The
details are left for the full version.

Theorem 8. Let c′1 = 0.476, c′2 = 0.467 and d = 0.057 and let Jn = c′1 · U1
3,n +

c′2U
2
3,n + d ·D�n/2�+1

m,n . Then ratio(Jn) > 0.616 for all n.

We next show that rOU
3 ≤ 0.611 and rO

4 ≤ 0.641. By Lemma 3, it is enough
to show that rOU

3,n∗ ≤ 0.611 and rO
3,n∗ ≤ 0.641 for some fixed n∗. Therefore, the

statements follow from the following theorem. We leave the proof for the full
version.

Theorem 9. rOU
3,23000 ≤ 32093343

52579253 < 0.611 and rO
3,23000 ≤ 41

64 < 0.641.

We finally show that rU
3 is between 0.660 and 0.750. The upper bound follows

from the following proposition and Lemma 3.

Proposition 1. rU
3,2 ≤ 0.75.

The lower bound follows from an analysis of the quadratic-lottery [6, 9]. The
main reason that we focus on this particular cardinal mechanism is given by the
following lemma. The proof is a simple modification of the proof of Lemma 4
and is omitted here.

Lemma 6. Let J ∈ Mech3,n be a convex combination of Qn and any ordinal
and neutral mechanism. Then

ratio(J) = lim inf
k→∞

min
u∈(Cm,k)n

E[
∑n

i=1 ui(J(u))]∑n
i=1 ui(1)

.
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Theorem 10. The limit of the approximation ratio of Qn as n approaches in-
finity, is exactly the golden ratio, i.e., (

√
5 − 1)/2 ≈ 0.618. Also, let Jn be the

mechanism for n voters that selects random-favorite with probability 29/100 and
quadratic-lottery with probability 71/100. Then, ratio(Jn) >

33
50 = 0.660.

Proof. (sketch) Lemma 6 allows us to proceed completely as in the proof of
Theorem 7, by constructing and solving appropriate quadratic programs. As the
proof is a straightforward adaptation, we leave out the details. �

Mechanism Jn of Theorem 10 achieves an approximation ratio strictly bet-
ter than 0.641. In other words, the best truthful cardinal mechanism for three
candidates strictly outperforms all ordinal ones.

5 Conclusion

By the statement of Lee [14], mixed-unilateral mechanisms are asymptotically
no better than ordinal mechanisms. Can a cardinal mechanism which is not
mixed-unilateral beat this approximation barrier? Getting upper bounds on the
performance of general cardinal mechanisms is impaired by the lack of a char-
acterization of cardinal mechanisms a la Gibbard’s. Can we adapt the proof of
Theorem 6 to work in the general setting without ties? For the case of m = 3,
can we close the gaps for ordinal mechanisms and for mixed-unilateral mecha-
nisms? How well can cardinal mechanisms do for m = 3? Theorem 5 holds for
m = 3 as well, but perhaps we could prove a tighter upper bound for cardinal
mechanisms in this case.
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Abstract. We study competitive resource allocation problems in which
players distribute their demands integrally over a set of resources subject
to player-specific submodular capacity constraints. Each player has to pay
for each unit of demand a cost that is a non-decreasing and convex function
of the total allocation of that resource. This general model of resource allo-
cation generalizes both singleton congestion games with integer-splittable
demands and matroid congestion games with player-specific costs. As our
main result, we show that in such general resource allocation problems a
pureNash equilibrium is guaranteed to exist by giving apseudo-polynomial
algorithm computing a pure Nash equilibrium.

1 Introduction

In an influential paper, Rosenthal [23] introduced congestion games, a class of
strategic games, where a finite set of players competes over a finite set of re-
sources. Each player is associated with a set of allowable subsets of resources
and a pure strategy of a player consists of an allowable subset. In the context
of network games, the resources may correspond to edges of a graph and the
allowable subsets correspond to the paths connecting a source and a sink. The
utility a player receives by using a resource depends only on the number of
players choosing the same resource and each player wants to maximize (min-
imize) the utility (cost) of the sum of the resources contained in the selected
subset. Rosenthal proved the existence of a pure Nash equilibrium. Up to day
congestion games have been used as reference models for describing decentral-
ized systems involving the selfish allocation of congestible resources (e.g., selfish
route choices in traffic networks [4,25,29] and flow control in telecommunication
networks [17,18,27]) and for decades they have been a focal point of research in
(algorithmic) game theory, operations research and theoretical computer science.
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In the past, the existence of pure Nash equilibria has been analyzed in
many variants of congestion games such as singleton congestion games with
player-specific cost functions (cf. [11,16,21,22]), congestion games with weighted
players (cf. [1,2,5,10,13]), nonatomic and atomic splittable congestion games
(cf. [4,14,18,29]) and congestion games with player- and resource-specific and
variable demands (cf. [12]).

Most of these previous works can be classified according to the following two
categories: (i) the demand of each player is unsplittable and must be completely
assigned to exactly one subset of the allowable subsets; (ii) the demand of a
player may be fractionally split over the set of allowable subsets. While these
assumptions and the resulting models are obviously important (and also realistic
for some applications), they do not allow for the requirement that only integral
fractions of the demand may be assigned to allowable subsets of resources. This
requirement is clearly important in many applications, where the demand repre-
sents a collection of indivisible items or tasks that need to be placed on subsets
of resources. Examples include the scheduling of integer-splittable tasks in the
context of load balancing on server farms (cf. [19]) or in logistics where a player
controls a fleet of vehicles and each must be assigned to a single route.

Although Rosenthal proposed congestion games with integer-splittable de-
mands as an important and meaningful model already back in 1973 – in his
first work on congestion games [24] even published prior to his more famous
work [23] – not much is known regarding existence and computability of pure
Nash equilibria. Rosenthal gave an example showing that in general, pure Nash
equilibria need not exist. Dunkel and Schulz [7] strengthened this result showing
that the existence of a pure Nash equilibrium in integer-splittable congestion
games is NP-complete to decide. Meyers [20] proved that in games with linear
cost functions, a pure Nash equilibrium is always guaranteed to exist. For sin-
gleton strategy spaces and non-negative and convex cost functions, Tran-Thanh
et al. [28] showed the existence of pure Nash equilibria. They also showed that
pure Nash equilibria need not exist (even for the restricted strategy spaces) if
cost functions are semi-convex.

Our Results. We introduce congestion games on integral polymatroids, where
each player may fractionally assign the demand in integral units among the
allowable subsets of resources subject to player-specific submodular capacity
constraints. This way, the resulting strategy space for each player forms an inte-
gral polymatroid base polyhedron (truncated at the player-specific demand). As
our main result, we devise an algorithm that computes a pure Nash equilibrium
for congestion games on integral polymatroids with player-specific non-negative,
non-decreasing and strongly semi-convex cost functions. The class of strongly
semi-convex functions strictly includes convex functions but is included in the
class of semi-convex functions (see Section 2.2 for a formal definition). The run-
time of our algorithm is bounded by nδ+1 · mδδδ+1, where n is the number of
players, m the number of resources, and δ is an upper bound on the maximum
demand. Thus, for constant δ, the algorithm is polynomial.
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Our existence result generalizes that of Tran-Thanh et al. [28] for singleton
congestion games with integer-splittable demands and convex cost functions and
that of Ackermann et al. [1] for matroid congestion games with unit demands and
player-specific non-decreasing costs. For the important class of network design
games, where players need to allocate bandwidth in integral units across multiple
spanning trees of a player-specific communication graph (cf. [3,6,9]), our result
shows for the first time the existence of pure Nash equilibria provided that the
cost on each edge is a strongly semi-convex function of total bandwidth allocated.

Techniques. Our algorithm for computing pure Nash equilibria maintains data
structures for preliminary demands, strategy spaces, and strategies of the players
that all are set to zero initially. Then, it iteratively increases the demand of a
player by one unit and recomputes a preliminary pure Nash equilibrium (with
respect to the current demands) by following a sequence of best response moves
of players. The key insight to prove the correctness of the algorithm is based
on two invariants that are fulfilled during the course of the algorithm. As a
first invariant, we show that, whenever the demand of a player is increased by
one unit, there is a best response that assigns the new unit to some resource
without changing the allocation of previously assigned demand units. As second
invariant, we obtain that, after assigning this new unit to some resource, only
those players that use this particular resource with increased load may have an
incentive to deviate. Moreover, there is a best response that has the property
that at most a single unit of demand is shifted to some other resource. Given
the above two invariants, we prove that during the sequence of best response
moves a carefully defined vector of marginal costs lexicographically decreases,
thus, ensuring that the sequence is finite.

The first invariant follows by reducing an integral polymatroid to an ordinary
matroid (cf. Helgason [15]) and the fact that for a matroid, a minimum inde-
pendent set Id with rank d can be extended to a minimum independent set Id+1

with rank d+1 by adding a single element to Id. The second invariant, however,
is significantly more complex since a change of the load of one resource results
(when using the matroid construction in the spirit of Helgason) in changed ele-
ment weights for several elements simultaneously. To prove the second invariant
we use several exchange and uncrossing arguments that make use of the submod-
ularity of the rank functions and the fact that a non-optimal basis of a matroid
can be improved locally. This is the technically most involved part of our paper.

We note that the above invariants have also been used by Tran-Thanh et
al. [28] for showing the existence of pure Nash equilibria in singleton integer-
splittable congestion games. For singleton games, however, these invariants follow
almost directly. The algorithmic idea to incrementally increase the total demand
by one unit is similar to the (inductive) existence proof of Milchtaich [21] for
singleton congestion games with player-specific cost functions (see also Ackerman
et al. [1] for a similar proof for matroid congestion games). The convergence proof
for our algorithm and the above mentioned invariants, however, are considerably
more involved for general integral polymatroids.
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Besides providing new existence results for an important and large class of
games, the main contribution of this paper is to propose a unified approach to
prove the existence of pure Nash equilibria that connects the seemingly unrelated
existence results of Milchtaich [21] and Ackerman et al. [1] on the one hand, and
Tran-Thanh et al. [28] on the other hand.

2 Preliminaries

In this section, we introduce polymatroids, strong semi-convexity, and congestion
games on integral polymatroids.

2.1 Polymatroids

Let N denote the set of non-negative integers and let R be a finite and non-empty
set of resources. We write NR shorthand for N|R|. Throughout this paper, vectors
x = (xr)r∈R will be denoted with bold face. An integral (set) function f : 2R → N

is submodular if f(U)+ f(V ) ≥ f(U ∪V )+ f(U ∩V ) for all U, V ∈ 2R. Function
f is monotone if U ⊆ V implies f(U) ≤ f(V ), and normalized if f(∅) = 0. An
integral submodular, monotone and normalized function f : 2R → N is called an
integral polymatroid rank function. The associated integral polyhedron is defined
as

Pf =
{
x ∈ NR :

∑
r∈U

xr ≤ f(U) for each U ⊆ R
}
.

Given the integral polyhedron Pf and some integer d ∈ N with d ≤ f(R), the
d-truncated integral polymatroid Pf (d) is defined as

Pf (d) =
{
x ∈ NR :

∑
r∈U

xr ≤ f(U) for each U ⊆ R,
∑
r∈R

xr ≤ d
}
.

The corresponding integral polymatroid base polyhedron is

Bf (d) =
{
x ∈ NR :

∑
r∈U

xr ≤ f(U) for each U ⊆ R,
∑
r∈R

xr = d
}
.

2.2 Strongly Semi-convex Functions

Recall that a function c : N→ N is convex if c(x+1)− c(x) ≤ c(x+2)− c(x+1)
for all x ∈ N. A function c is called semi-convex if the function x · c(x) is convex,
i.e.,

(x + 1)c(x+ 1)− xc(x) ≤ (x+ 2)c(x+ 2)− (x+ 1)c(x+ 1)

for all x ∈ N.
For the main existence result of this paper, we require a property of each

cost function that we call strong semi-convexity, which is weaker than convexity
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but stronger than semi-convexity. Roughly speaking, it states that the marginal
difference c(a + x)x − c(a+ x − 1)(x − 1) does not decrease as a or x increase.
We also introduce a slightly weaker notion, termed u-truncated strong semi-
convexity, where strong semi-convexity is only required for values of x not larger
than u.

Definition 1 (Strong Semi-Convexity). A function c : N → N is strongly
semi-convex if

c(a+ x)x − c(a+ x− 1)(x− 1) ≤ c(b+ y)y − c(b + y − 1)(y − 1) (1)

for all x, y ∈ N with 1 ≤ x ≤ y and all a, b ∈ N with a ≤ b. For an integer u ≥ 1,
c is u-truncated strongly semi-convex, if the above inequality is only required to
be satisfied for all x, y ∈ N with 1 ≤ x ≤ y ≤ u and all a, b ∈ N with a ≤ b.

We note that a similar definition is also given in Tran-Thanh et al. [28]. It is not
hard to show that strong semi-convexity is indeed strictly weaker than convexity.
In the interest of space, we defer a formal proof to the full version of the paper.

Proposition 1. Every convex and non-decreasing function c : N → N is also
strongly semi-convex, but not vice versa.

Finally, we remark that every non-decreasing function is 1-truncated strongly
semi-convex.

Remark 1. A function is 1-truncated strongly semi-convex if and only if it is
non-decreasing.

2.3 Congestion Games on Integral Polymatroids

In a congestion game on integral polymatroids, there is a non-empty and finite
set N of players and a non-empty and finite set R of resources. Each resource
is endowed with a player-specific cost function ci,r : N → N, r ∈ R, i ∈ N and
each player i is associated with a demand di ∈ N, di ≥ 1 and an integral poly-
matroid rank function f (i) : 2R → N that together define a di-truncated integral
polymatroid Pf(i)(di) with base polyhedron Bf(i)(di) on the set of resources. A
strategy of player i ∈ N is to choose a vector xi = (xi,r)r∈R ∈ Bf(i)(di), i.e.,
player i chooses an integral resource consumption xi,r ∈ N for each resource
r such that the demand di is exactly distributed among the resources and for
each U ⊆ R not more than f (i)(U) units of demand are distributed to the re-
sources contained in U . Using the notation xi = (xi,r)r∈R, the set Xi of feasible
strategies of player i is defined as

Xi = Bf(i)(di) =
{
xi ∈ NR :

∑
r∈U

xi,r ≤ f (i)(U) for each U ⊆ R,
∑
r∈R

xi,r = di

}
.

The Cartesian product X =×i∈N
Xi of the players’ sets of feasible strategies

is the joint strategy space. An element x = (xi)i∈N ∈ X is a strategy profile.
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For a resource r, and a strategy profile x ∈ X , we write xr =
∑

i∈N xi,r . The
private cost of player i under strategy profile x ∈ X is defined as πi(x) =∑

r∈R ci,r(xr)xi,r. In the remainder of the paper, we will compactly represent
the strategic game by the tuple G = (N,X, (di)i∈N , (ci,r)i∈N,r∈R).

We use standard game theory notation. For a player i ∈ N and a strategy
profile x ∈ X , we write x as (xi,x−i). A best response of player i to x−i is a
strategy xi ∈ Xi with πi(xi,x−i) ≤ πi(yi,x−i) for all yi ∈ Xi. A pure Nash
equilibrium is a strategy profile x ∈ X such that for each player i the strategy
xi is a best response to x−i.

Throughout this paper, we assume that the player-specific cost function ci,r
of each player i on each resource r is ui,r-truncated strongly semi-convex, where
ui,r = f (i)({r}). Note that ui,r is a natural upper bound on the units of demand
player i can allocate to resource r in any strategy xi ∈ Xi.

Assumption. For all i ∈ N, r ∈ R, the cost function ci,r : N→ N is non-negative,
non-decreasing and ui,r-truncated strongly semi-convex, where ui,r = f (i)({r}).

2.4 Examples

We proceed to illustrate that we obtain the well known classes of integer-splittable
singleton congestion games and matroid congestion games as special cases of con-
gestion games on integer polymatroids.

Example 1 (Singleton integer-splittable congestion games). For the special case
that, for each player i, there is a player-specific subset Ri ⊆ R of resources
such that f (i)({r}) = di, if r ∈ Ri, and f (i)({r}) = 0, otherwise, we obtain
integer-splittable singleton congestion games previously studied by Tran-Thanh
et al. [28]. While they consider the special case of convex and player-independent
cost functions, our general existence result implies existence of a pure Nash
equilibrium even for player-specific and strongly semi-convex cost functions.

Example 2 (Matroid congestion games with player-specific costs). For the special
case, that for each player i, f (i) is the rank function of a player-specific matroid
defined on R, and di = f (i)(R), we obtain ordinary matroid congestion games
with player-specific costs and unit demands studied by Ackermann et al. [1] as
a special case.

Note that the rank function rk : 2R → N of a matroid is always subcardinal,
i.e., rk(U) ≤ |U | for all U ⊆ R. Thus, we obtain in particular that rk({r}) ≤ 1
for all r ∈ R. This implies that our existence result continues to hold if we only
require that the player-specific cost functions are 1-truncated strongly semi-
convex, which is equivalent to requiring that cost functions are non-decreasing
as in [1]. Like this, we obtain the existence result of [1] as a special case of
our existence result for congestion games on integer polymatroids. As a strict
generalization, our model includes the case in which players have a demand
di ∈ N that can be distributed in integer units over bases (or even arbitrary
independent sets) of a given player-specific matroid. A prominent application
arises in network design (cf. [3,6,9]), where a player needs to allocate bandwidth
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along several spanning trees and the cost function for installing enough capacity
on an edge is a convex function of the total bandwidth allocated.

3 Equilibrium Existence

In this section, we give an algorithm that computes a pure Nash equilibrium
for congestion games on integral polymatroids. Our algorithm relies on two key
sensitivity properties of optimal solutions minimizing a linear function over an
integral polymatroid base polyhedron (see Lemma 1 and Lemma 2 below). Af-
ter reducing the usual reduction of integer polymatroids to ordinary matroids
(cf. [15]), Lemma 1 follows more or less directly from the respective property for
matroids. The proof of Lemma 2 is considerably more involved and relies heavily
on uncrossing arguments. The two lemmata will be proven formally in Section 4.

3.1 Key Sensitivity Results

For two vectors xi,yi ∈ NR, we denote their Hamming distance by H(xi,yi) =∑
r∈R |xi,r − yi,r|. Lemma 1 shows that, whenever a strategy xi minimizes the

cost of player i over the base polyhedron Bf(i)(di), then we only need to increase
xi,r for some r ∈ R by one unit to obtain a strategy yi minimizing the player’s
cost over the base polyhedron Bf(i)(di + 1).

Lemma 1 (Demand Increase). Let xi ∈ Bf(i)(di) be a best response of player i
to x−i ∈ X−i. Then there exists a best response yi ∈ Bf(i)(di + 1) to x−i such
that H(xi,yi) = 1.

The second result shows that, when some other player j �= i increases her
demand for some resource r that is also used by player i with at least one unit,
then player i can simply shift one unit from resource r to some resource s ∈ R
in order to retain minimal costs.

Lemma 2 (Load Increase). Let xi ∈ Bf(i)(di) be a best response of player i to
x−i ∈ X−i and for each resource r let ar =

∑
j �=i xj,r be the induced allocation.

If for a resource r, the value ar is increased by 1, then there exists a best response
yi ∈ Bf(i)(di) towards the new profile with H(xi,yi) ∈ {0, 2}.

3.2 The Algorithm

Both sensitivity results are used as the main building blocks for Algorithm 1
that computes a pure Nash equilibrium for congestion games on integral polyma-
troids. Algorithm 1 maintains preliminary demands, strategy spaces, and strate-
gies of the players denoted by d̄i ≤ di, X̄i = Xi(d̄i), and xi ∈ X̄i, respectively.
Initially, the preliminary demand d̄i of each player i is set to zero. Trivially, for
this game the strategy profile where the strategy of each player equals the zero
vector is a pure Nash equilibrium.
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Then, in each round, for some player i, the demand is increased from d̄i to
d̄i + 1, and a best response yi ∈ X(d̄i + 1) with H(xi,yi) = 1 is computed,
see Line 5 in Algorithm 1. By Lemma 1, such a best response always exists.
In effect, the load on exactly one resource r increases and only those players j
with xj,r > 0 on this resource can potentially decrease their private cost by
a unilateral deviation. By Lemma 2, it is without loss of generality to assume
that a best response of such players consists of moving a single unit from this
resource to another resource, see Line 8 of Algorithm 1. As a consequence, during
the while-loop (Lines 7-10), only one additional unit (compared to the previous
iteration) is moved preserving the invariant that only players using a resource
to which this additional unit is assigned may have an incentive to profitably
deviate. Thus, if the while-loop is left, the current strategy profile x is a pure
Nash equilibrium for the reduced game Ḡ = (N, X̄, d̄, (ci,r)i∈N,r∈R). Now we are
ready to prove the main existence result.

ALGORITHM 1. Compute PNE

Input: G = (N,X, (di)i∈N , (ci,r)i∈N,r∈R)
Output: pure Nash equilibrium x
1 d̄i ← 0, X̄i ← Xi(0) and xi ← 0 for all i ∈ N ;
2 for k = 1, . . . ,

∑
i∈N di do

3 Choose i ∈ N with d̄i < di;
4 d̄i ← d̄i + 1; X̄i ← Xi(d̄i);
5 Choose a best response yi ∈ X̄i with H(yi, xi) = 1;
6 xi ← yi;
7 while ∃i ∈ N who can improve in Ḡ = (N, X̄, d̄, (ci,r)i∈N,r∈R) do
8 Compute a best response yi ∈ X̄i with H(yi,xi) = 2;
9 xi ← yi;

10 end

11 end
12 Return x;

Theorem 1. Congestion games on integral polymatroids with player-specific
non-negative, non-decreasing, and strongly semi-convex cost functions possess
a pure Nash equilibrium.

Proof. We prove by induction on the total demand d =
∑

i∈N di of the input
game G = (N,X, (di)i∈N , (ci,r)i∈N,r∈R) that Algorithm 1 computes a pure Nash
equilibrium of G.

For d = 0, this is trivial. Suppose that the algorithm works correctly for
games with total demand d−1 for some d ≥ 1 and consider a game G with total
demand d. Let us assume that in Line 3, the algorithm always chooses a player
with minimum index. Consider the game G′ = (N,X, (d′i)i∈N , (ci,r)i∈N,r∈R) that
differs from G only in the fact that the demand of the last player n is reduced
by one, i.e. d′i = di for all i < n and d′n = dn − 1. Then, when running the
algorithm with G′ as input, the d− 1 iterations (of the for-loop) are equal to the
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first d − 1 iterations when running the algorithm with G as input. Thus, with
G as input, we may assume that after the first d− 1 iterations, the preliminary
strategy profile that we denote by x′ is a pure Nash equilibrium of G′.

We analyze the final iteration k = d of the algorithm in which the demand
of player n is increased by 1 (see Line 4). In Line 5, a best reply yn with
H(xn,yn) = 1 is computed which exists by Lemma 1. Then, as long as there
is a player i that can improve unilaterally, in Line 8, a best response yi with
H(yi,xi) = 2 is computed which exists by Lemma 2.

It remains to show that the while-loop in Lines 7–10 terminates. To prove
this, we give each unit of demand of each player i ∈ N an identity denoted by
ij, j = 1, . . . , di. For a strategy profile x, we define r(ij ,x) ∈ R to be the resource
to which unit ij is assigned in strategy profile x. Let xl be the strategy profile
after Line 8 of the algorithm has been executed the l-th time, where we use the
convention that x0 denotes the preliminary strategy profile when entering the
while-loop. As we chose in Line 5 a strategy of player n with Hamming distance
one, there is a unique resource r0 such that x0

r0 = x′
r0 + 1 and x0

r = x′
r for all

r ∈ R \ {r0}. Furthermore, because we choose in Line 8 a best response with
Hamming distance two, a simple inductive claim shows that after each iteration l
of the while-loop, there is a unique resource rl ∈ R such that xl

rl = x′
rl + 1 and

xl
r = x′

r for all r ∈ R \ {rl}.
For any xl during the course of the algorithm, we define the marginal cost of

unit ij under strategy profile xl as

Δij (x
l) =

{
ci,r(x

l
r)x

l
i,r − ci,r(x

l
r − 1) (xl

i,r − 1), if r = r(ij ,x) = rl

ci,r(x
l
r + 1)xl

i,r − ci,r(x
l
r) (x

l
i,r − 1), if r = r(ij ,x) �= rl.

(2)

Intuitively, if r(ij ,x) = rl, the value Δij (x) measures the cost saving on resource
r(ij ,x) if ij (or any other unit of player i on resource r(ij ,x)) is removed from
r(ij ,x). If r(ij ,x) �= rl, the valueΔij (x) measures the cost saving if ij is removed
from r(ij ,x) after the total allocation has been increased by one unit by some
other player. For a strategy profile x we define Δ(x) = (Δij (x))i=1,...,n,j=1,...,di

to be the vector of marginal costs and let Δ̄(x) be the vector of marginal costs
sorted in non-increasing order. We claim that Δ̄(x) decreases lexicographically
during the while-loop. To see this, consider an iteration l in which some unit ij
of player i is moved from resource rl−1 to resource rl.

For proving Δ̄(xl) <lex Δ̄(xl−1), we first observe that we only have to care
for Δ-values that correspond to units ij of the deviating player i, because for
all players h �= i we obtain Δhj (x

l−1) = Δhj (x
l) for all j = 1, . . . , dh. This

follows immediately if hj is neither assigned to rl−1 nor to rl. If hj is assigned
to rl−1 or rl, then we switch the case in (2), and the claimed equality still holds.
It remains to consider the Δ-values corresponding to the units of the deviating
player i. Recall that the deviation of player i consists of moving unit ij from
resource rl−1 to resource rl. We obtain

Δij (x
l−1) = ci,rl−1

(xl
rl−1

)xl
i,rl−1

− ci,rl−1
(xl

rl−1
− 1) (xl

i,rl−1
− 1)

> ci,rl(x
l
rl + 1) (xl

i,rl + 1)− ci,rl(x
l
rl)x

l
i,rl = Δij (x

l),
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where the inequality follows since player i strictly improves. For every unit im
of player i that is assigned to resource rl as well, i.e, r(im,xl) = r(ij ,x

l) = rl,
we have Δij (x

l) = Δim(xl) since the Δ-value is the same for all units of a single
player assigned to the same resource. The Δ-values of such units im might have
increased, but only to the Δ-value of unit ij .

Next, consider the Δ-values of a unit im assigned to resource rl−1, i.e.,
r(im,xl) = r(ij ,x

l) = rl−1. We obtain

Δim(xl) = ci,rl(x
l
rl−1

) (xl
i,rl−1

− 1)− ci,rl−1
(xl

rl−1
− 1) (xl

i,rl−1
− 2)

≤ ci,rl−1
(xl

rl−1
)xl

i,rl−1
− ci,rl−1

(xl
rl−1

− 1) (xl
i,rl−1

− 1) = Δim(xl−1),

where for the inequality we used that ci,r(xrl−1
) ≥ ci,r(xrl−1

− 1) as ci,r is non-
decreasing.

Altogether, the Δ-values of all units of all players h �= i have not changed,
for player i, the Δ-values of remaining units assigned to resource rl−1 decreased,
and the Δ-values assigned to resource rl increased exactly to Δij (x

l) which is
strictly smaller than Δij (x

l−1). Thus, Δ̄(xl) <lex Δ̄(xl−1) follows. ��

The following corollary states an upper bound on the number of iterations of
the algorithm in terms of δ = maxi∈N di.

Corollary 1. The number of iterations is at most nδ+1mδδδ+1, which yields a
polynomial algorithm computing a pure Nash equilibrium for constant δ.

Proof. We analyze the worst-case runtime of Algorithm 1. To this end, let us fix
an iteration of the for-loop. In the proof of Theorem 1, we showed that during
this iteratioe, for each player, the sorted vector of marginal costs as defined
in (2) decreases lexicographically during the while-loop. Moreover, the marginal
cost of a particular unit of demand ij of player i assigned to a resource r does
not depend on the aggregated demand

∑
j∈N xj,r of all players for resource r,

but only on the number of units of demand xi,r assigned to r by player i. We
derive that for each player i and each resource r at most di different marginal
cost values can occur. This observation bounds the number of different marginal
cost vectors of player i by (m · di)di , where m = |R|. Since the marginal cost
vectors lexicographically decrease, the total number of iterations of the while-
loop for each iteration of the for-loop is bounded by

∑
i∈N (m · di)di . Setting

δ = maxi∈N di, this expression is bounded by (n ·m · δ)δ, where n = |N |. Using
that there are

∑
i∈N di ≤ n · δ iterations of the for-loop, one for each unit of

demand in the game, we obtain the following corollary. ��

4 Sensitivity Analysis for Integral Polymatroids

It remains to show the key sensitivity results of Lemma 1 and Lemma 2. For
ease of notation, let us drop the index i form the statements of the lemmata and
let us consider a fixed integral polymatroid base polyhedron

Bf (d) =
{
x ∈ NR :

∑
r∈U

xr ≤ f(U) for each U ⊆ R,
∑
r∈R

xr = d
}
.



Resource Competition on Integral Polymatroids 199

w.r.t. some submodular, monotone, and normalized function f : 2R → N, and
some demand value d ∈ N .

We identify the points in Bf (d) with a set family F(d) on a largely extended
ground set E as follows: For each resource r ∈ R, let ur = f({r}) and let
Kr = {r1 ≺ . . . ≺ rur} be a totally ordered set (chain) with |ur| distinct elements
r1, . . . , rur . Let further E =

⋃
r∈R Kr be the disjoint union of these chains.

Then, P = (E,') is a partially ordered set (poset) where two elements e, e′

are comparable if and only if they are contained in the same chain Kr for some
r ∈ R. Furthermore, let D(P ) denote the set of ideals of P , i.e., D(P ) consists
of all subsets I ⊆ E such that for each e ∈ I all elements g ≺ e also belong
to I. Note that there is a one-to-one correspondence between the sets in D(P )
and the integral points in {x ∈ NR : xr ≤ f({r}) ∀r ∈ R}. As a consequence,
the feasible points in the integral polymatroid Pf can be identified with the set
family

F =
{
F ∈ D(P ) :

∣∣∣ ⋃
r∈U

Kr ∩ F
∣∣∣ ≤ f(U) for each U ⊆ R

}
. (3)

Accordingly, the vectors contained in the polymatroid base polyhedron Bf (d)
for d ∈ N can be identified with the set family

F(d) =
{
F ∈ F : |F | = d

}
. (4)

In fact, it is known (see, e.g., [26] and [15]) that any integral polymatroid Pf

can be reduced to an ordinary matroid M = (E, r) on ground set E with rank
function r : 2E → N defined via

r(U) = min
T⊆R

(∣∣∣U \ ⋃
r∈T

Kr

∣∣∣+ f(T )
)

for all U ⊆ E. It turns out that the independent sets in M of cardinality d are
exactly the ideals in F(d) as defined above. Applying this kind of transformation
for each player i, we can identify the strategy set Bf(i)(di) of each player i with
the set family Fi(di), and this set family, in turn, with the matroidMi = (Ei, ri).

With this notation, let us now return to the problem of finding a best re-
sponse xi of player i towards a strategy profile a = x−i ∈ NR of the remaining
players. Note that, for a ∈ NR, the player-specific strongly semi-convex cost
functions ci,r : N→ N induce weight functions wa

i : E → N on the ground set E
constructed above via

wa
i (rt) = tci,r(ar + t)− (t− 1)ci,r(ar + t− 1) for all r ∈ R, t ∈ {1, . . . , di}.

Hence, finding a best response xi ∈ Bf(i)(di) reduces to the problem of minimiz-
ing a linear function over the independent sets of cardinality di of the matroid
Mi = (Ei, ri) associated with the submodular function f (i).

However, the ground set Ei can be of exponential size, so that it is not a priori
clear whether the matroid greedy algorithm minimizes a linear weight function
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over the base polyhedron Bf(i)(di) in strongly polynomial time. Still, since we
assume that the cost functions ci,r : N→ N are strongly semi-convex, it follows
that the induced weight functions wa

i : E → N are admissible in the sense that
e ≺ g implies wi(e) ≤ wi(g).

Given an ideal F ∈ D(P ), we denote by F+ the set of '-maximal elements in
F , and by (E \F )− the set of '-minimal elements in E \F . For F(d) as defined
in (4), and any admissible weight functions w : E → N, Faigle [8] showed that
the following ordered greedy algorithm determines an ideal of minimal weight in
F(d) (provided F(d) �= ∅):

ALGORITHM 2. Ordered Greedy Algorithm

1 F ← ∅;
2 for k = 1, . . . , d do
3 Let ek ← argmin{w(e) : e ∈ (E \ F )− and F + e ∈ F};
4 F ← F + ek;

5 end
6 Return F ;

In fact, the greedy algorithm determines in each iteration k ≤ d an ideal of
minimal weight in F(k). The following proposition arises as a consequence of
the discussion above and implies Lemma 1.

Proposition 2. Let F ⊆ D(P ) as defined in (3), k ∈ N, and w : E → R

admissible. Suppose F is of minimal w-weight in F(k). Then there exists e ∈
E \ F such that F + e is of minimal w-weight in F(k + 1)

Due to the reduction of integral polymatroids to ordinary matroids, most of
the structural properties of matroids carry over to integral polymatroids. For
example, the following proposition follows as a consequence of the well-known
fact, that for any basis B of an ordinary matroid M which is not of minimal
weight, there exists a local improvement step towards a basis B−e+f of smaller
weight.

Proposition 3. Suppose F ∈ F(k) is not of minimal w-weight for some ad-
missible function w : E → R. Then there exists some local improvement step
F → F − e+ g ∈ F(k) such that w(e) > w(g).

The possibility to improve a non-optimal basis by local steps, as well as the
possibility to uncross tight constraints due to the submodularity of the rank
functions, are the main ingredients of the proof of the following theorem, which
implies Lemma 2. We defer the proof to the full version of the paper.

Theorem 2. Let F ∈ F(k) be of minimal weight w.r.t. the admissible weight
function w. If the weight function w̄ differs from w only on chain Kr∗ such that

w̄(rk) =

{
w(rk), if r �= r∗,

w(rk+1), else,

then there exists F ′ = F − e+ g ∈ F(k) of minimal weight w.r.t. w̄.
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(2003)

28. Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.R.: On the
existence of pure strategy Nash equilibria in integer–splittable weighted congestion
games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 236–253. Springer,
Heidelberg (2011)

29. Wardrop, J.: Some theoretical aspects of road traffic research. Proc. Inst. Civil
Engineers 1(Part II), 325–378 (1952)



PTAS for Minimax Approval Voting
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Abstract. We consider Approval Voting systems where each voter de-
cides on a subset of candidates he/she approves. We focus on the opti-
mization problem of finding the committee of fixed size k, minimizing the
maximal Hamming distance from a vote. In this paper we give a PTAS
for this problem and hence resolve the open question raised by Carragia-
nis et al. [AAAI’10]. The result is obtained by adapting the techniques
developed by Li et al. [JACM’02] originally used for the less constrained
Closest String problem. The technique relies on extracting information
and structural properties of constant size subsets of votes.

1 Introduction

Approval Voting systems are widely considered [2] as an alternative to traditional
elections, where each voter may select and support at most some small number of
candidates. In Approval Voting each voter decides about every single candidate
if he approves the candidate or does not approve him/her. A result is obtained
by applying a predefined election rule to the set of collected votes.

In this paper we study the problem of implementing an appropriate election
rule and focus on the Minimax objective [3]: we minimize the biggest dissatis-
faction over voters. The resulting optimization problem is denoted MAV , and it
is to select a committee composed of exactly k candidates, and minimizing the
maximal symmetric difference between the committee and the set of approved
candidates by a single voter.

Using the string terminology, votes are encoded as strings, and the goal is to
find a string encoding a committee minimizing the maximal Hamming distance
to an input string. Unlike in the related Closest String problem, in MAV there
is also a constraint: the selected committee must be of fixed size k, and hence in
the string terminology there must be exactly k ones in the string.

1.1 Related Work and Our Results

Many different objective functions have been proposed and studied in the context
of selecting the committee based on the set of votes collected in an Approval Vot-
ing system [1,2]. Clearly, optimizing the sum of Hamming distances to all votes
is an easy task and can be done by simply selecting the k candidates approved by

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 203–217, 2014.
c© Springer International Publishing Switzerland 2014
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the largest number of voters. By contrast, Minimax Approval Voting was shown
by LeGrand [6] to be NP-hard. LeGrand et al. [7] obtained 3-approximation by
a very simple k-completion algorithm. Next, Carragianis et al. [5] gave the cur-
rently best 2-approximation algorithm. The algorithm was obtained by rounding
a fractional solution to the natural LP relaxation of the problem, and obtained
approximation ratio essentially matches the integrality gap of the LP.

In this paper we give a PTAS for the Minimax Approval Voting problem. Our
work is based on the PTAS for Closest String [8], which is a similar problem
to MAV but there we do not have the restriction on the number of 1’s in the
result. Technically, our contribution is the method of handling the number of 1’s
in the output. We also believe that our presentation is somewhat more intuitive.

Approval Voting systems are also analyzed in respect of manipulability, see
e.g., [1] or [5]. In particular, [5] proved that each strategy-proof algorithm for
MAV must have approximation ratio at least 2 − 2

k+1 , which implies that our
PTAS cannot be strategy-proof.

1.2 Definitions

We will use the following notation:
n – number of voters,
m – number of candidates,
si ∈ {0, 1}m – a vote of voter i,
si[j] = 1 if voter i approves candidate j,
si[j] = 0 if voter i does not approve candidate j,
S = {s1, s2, . . . , sn} – the set of collected votes,
s(1) =

∣∣{j : s[j] = 1}
∣∣ – the number of 1’s in s.

For x, y ∈ [ 0, 1]m we define a distance d(x, y) =
∑m

j=1

∣∣x[j]− y[j]
∣∣ = ‖x− y‖1.

For x, y ∈ {0, 1}m, d(x, y) is called the Hamming distance.

Definition 1
OPT = min

x∈{0,1}m

x(1)=k

max
i∈{1,2,...,n}

d(x, si)

Let sOPT be an optimal solution, i.e., maxi∈{1,2,...,n} d(sOPT , si) = OPT .

WLOG we assume that n > k. If not, we copy the first string k − n+ 1 times.

1.3 The Main Idea Behind Our Algorithm

The general idea behind our PTAS is to find a small enough subset X of votes
that is a “good representation” of the whole set of votes S. Then the candidates
are partitioned into those for which voters in X agree and the rest of candidates.
For the “consensus candidates” we fix our decision to the decision induced by
votes in X (additionally correcting the number of selected candidates in the
“consensus” set). Next, we consider the optimization problem of finding a proper
subset of the remaining candidates to join the committee. The key insight is
that there exists a small enough subset X such that the induced decision for the
“consensus candidates” will not be a big mistake.
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1.4 Organization of the Paper

First, in Section 2 we formalize the information we may extract from subset of
votes, and introduce a measure of inaccuracy of such a subset. Next, in Section 3
we prove the existence of a small subset of votes with stable inaccuracy. In
Section 4 we show that the optimization problem of deciding the part of the
committee not induced by the subset of votes can be approximated with only a
small additional loss in the objective function. Finally, in Section 5 we give an
algorithm considering all subsets of a fixed size and show that, in the iteration
when the algorithm happens to consider a subset with stable inaccuracy, it will
produce a (1 + ε)-approximate solution to MAV .

2 Extracting Information from Subsets

We consider subsets of votes and analyze the information they carry. We measure
the inaccuracy of this information with respect to the set of all votes. We show
that there exists a small subset with stable inaccuracy, i.e., the drop of inaccuracy
after including one more vote is small.

Let us define an inaccuracy function ina : 2S 	→ R�0 that measures the
inaccuracy if we will consider subset Y ⊆ S instead of S. The smaller the ina(Y )
is the better the common parts of strings in Y represent sOPT .

Definition 2. For all Y ⊆ S, Y �= ∅ we define functions t(Y ) ∈ {0, 1}m and
ina(Y ) ∈ R�0 as follows:

(
t(Y )

)
[j] =

⎧⎪⎨⎪⎩
0 if ∀y∈Y y[j] = 0

1 if ∀y∈Y y[j] = 1

sOPT [j] otherwise,

ina(Y ) = d(t(Y ), sOPT ).

Intuitively t(Y ) is the optimal solution sOPT changed at positions where all
strings from Y agree. Also we define the pattern of a subset of votes.

Definition 3. For all Y ⊆ S, Y �= ∅ we define pattern p(Y ) ∈ {0, 1, ∗}m as:

(
p(Y )

)
[j] =

⎧⎪⎨⎪⎩
0 if ∀y∈Y y[j] = 0

1 if ∀y∈Y y[j] = 1

∗ otherwise.

It represents positions that all strings in Y agree. “∗” encodes a mismatch.
Note that (from Definitions 2 and 3) t(Y ) is an optimal solution sOPT over-

written by a pattern pr on no-star positions:

(
t(Y )

)
[j] =

{
sOPT [j] if

(
p(Y )

)
[j] = ∗(

p(Y )
)
[j] otherwise.

The inaccuracy function has the following properties:
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Lemma 1. ∀si1∈S, for all sequences {si1} = Y1 ⊆ Y2 ⊆ · · · ⊆ Yn = S we have

OPT � ina(Y1) � ina(Y2) � · · · � ina(Yn) = 0

Proof. It is easy to see that

ina(Y1)
def.
= d

(
t(Y1), sOPT

)
= d

(
t({si1}), sOPT

)
= d

(
si1 , sOPT

)
� OPT,

ina(Yn) = ina(S) = d(sOPT , sOPT ) = 0.

Still we need to prove ina(Yi) � ina(Yi+1). Pattern p(Yi+1) is built on strings
from Yi ⊆ Yi+1 and strings from Yi+1 \ Yi. So p(Yi+1) has at least as many ∗
as p(Yi) has. Therefore t(Yi+1) has at least as many positions as t(Yi) has that
agree with optimal solution sOPT , so d

(
t(Yi), sOPT

)
� d

(
t(Yi+1), sOPT

)
. Using

definition of the inaccuracy function (Definition 2) we prove the lemma. �

Intuitively ina(Y )−ina(Y ∪{y}) is the decrease of the inaccuracy from adding
element y to set Y . We will show that, when adding one more element y to sets
Y, Z such that Y ⊆ Z, the inaccuracy decrease more in a case of adding y to the
smaller set Y than adding y to the bigger set Z.

Lemma 2. If we artificially extend the ina(·) function for the empty set:
ina(∅) = 2 ·OPT , then function ina(·) is supermodular1, i.e.,

∀Y ⊆Z⊆S ∀s∈S ina(Z)− ina(Z ∪ {s}) � ina(Y )− ina(Y ∪ {s}) (1)

Proof. Let fix Y, Z and s such that Y ⊆ Z ⊆ S and s ∈ S.

Case 1: Z = ∅:
Then also Y = ∅, and inequality (1) holds obviously.

Case 2: Z �= ∅, Y = ∅:
We have:

ina(Z)− ina(Z ∪ {s}) � OPT =

= 2 ·OPT −OPT � ina(∅)− ina({s}) = ina(Y )− ina(Y ∪ {s}), (2)

because we use respectively: Lemma 1 and the fact that Z has at least one
element; definition of ina(·) for empty set and upperbound for ina(·) function;
assumption that Y = ∅.

1 According to [11], f : 2S �→ R is supermodular iff
∀Y,Z⊆S f(Y ) + f(Z) � f(Y ∪ Z) + f(Y ∩ Z) which is equivalent with
∀Y ⊆Z⊆S ∀s∈S f(Z)− f(Z ∪ {s}) � f(Y )− f(Y ∪ {s}).
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Case 3: Z �= ∅, Y �= ∅:
From definition of ina(·) we have:

ina(Z)− ina(Z ∪ {s}) = d
(
t(Z), sOPT

)
− d

(
t(Z ∪ {s}), sOPT

)
=

counting a difference by considering two cases for value of sOPT we obtain

=
∣∣∣{j : sOPT [j] = 1 ∧ t(Z ∪ {s})[j] = 1 ∧ t(Z)[j] = 0

}∣∣∣+
+

∣∣∣{j : sOPT [j] = 0 ∧ t(Z ∪ {s})[j] = 0 ∧ t(Z)[j] = 1
}∣∣∣ =

using definition of function t(·):

=
∣∣∣{j : sOPT [j] = 1 ∧ s[j] = 1 ∧ ∀z∈Z z[j] = 0

}∣∣∣+
+

∣∣∣{j : sOPT [j] = 0 ∧ s[j] = 0 ∧ ∀z∈Z z[j] = 1
}∣∣∣ �

taking an universal quantifier over a smaller subset we obtain:

�
∣∣∣{j : sOPT [j] = 1 ∧ s[j] = 1 ∧ ∀y∈Y y[j] = 0

}∣∣∣+
+

∣∣∣{j : sOPT [j] = 0 ∧ s[j] = 0 ∧ ∀y∈Y y[j] = 1
}∣∣∣ =

reversing all previous transformations finally we obtain:

= ina(Y )− ina(Y ∪ {s}).

�

3 Existence of a Stable Subset

Lemma 3. For any fixed R ∈ N�1 there exists a subset X ⊆ S, |X | = R such
that

∀s∈S\X ina(X)− ina(X ∪ {s}) � OPT

R
. (3)

We say such X is OPT
R -stable.

It means that there exists such a subset of votes X that adding one more vote
into X the inaccuracy decreases by at most OPT

R .

Proof. First, we construct Sr satisfying (3) with at most R elements.
Let us construct a sequence of subsets S1 ⊂ S2 ⊂ . . . ⊂ Sn = S, |Si| = i. We

take S1 = {si1}, where si1 is any element of S and for r ∈ {2, 3, . . . , n} we take
Sr = Sr−1 ∪ {sir} where sir is such a vote that after adding it the inaccuracy
function decreases the most, i.e.,

sir = argmax
s∈S\Sr−1

(
ina(Sr−1)− ina(Sr−1 ∪ {s})

)
. (4)
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r0 r R m

OPT

ina(Sr)

� OPT
R

� OPT
R

� OPT
R

� OPT
R

Fig. 1. The ina(·) function for the sequence of subsets S1 ⊂ S2 ⊂ . . . ⊂ Sn = S

We have

min
r∈{1,2,...,R}

ina(Sr)− ina(Sr+1) �
1

R

(
R∑

r=1

ina(Sr)− ina(Sr+1)

)
=

=
1

R

(
ina(S1)− ina(SR+1)

)
� OPT

R
, (5)

because (from Lemma 1) we know that ina(S1) � OPT and ina(SR+1) � 0. Let
r be a minimizer for the left-hand side of (5), then (by the choice of sir in (4))
we have:

max
s∈S\Sr

(
ina(Sr)− ina(Sr ∪ {s})

)
� OPT

R
, (6)

thus Sr satisfies (3), see Figure 1. If Sr has less elements than R we can extend
Sr to an R-elements subset X by adding any elements of S. It follows from the
supermodularity of ina(·). From Lemma 2 we have:

∀s∈S\Sr
ina(X)− ina(X ∪ {s}) � ina(Sr)− ina(Sr ∪ {s}),

and hence also:

max
s∈S\Sr

(
ina(X)− ina(X ∪ {s})

)
� max

s∈S\Sr

(
ina(Sr)− ina(Sr ∪ {s})

)
. (7)
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Finally, taking (6) and (7) we obtain:

max
s∈S\X

(
ina(X)− ina(X ∪ {s})

)
� OPT

R
.

�

Of course we cannot construct such a subset efficiently if we do not know sOPT .
How to find a proper subset X? For constructing our PTAS we will fix R ∈ N�1

and consider all subsets Y ⊆ S with cardinality R. There is less than nR ∈
Poly(n) such subsets. For clarity, we will use Y ⊆ S in arguments valid for all
subsets considered by the algorithm, and X ⊆ S for a OPT

R -stable subset of
votes.

For a fixed Y ⊆ S, Y �= ∅, WLOG we reorder candidates in such a way that
p(Y ) is a lexicographically smallest permutation:

p(Y ) = ∗ ∗ . . . ∗ 00 . . .011 . . .1.

The first part (from the left) is called “star positions” or “star part”. The re-
maining part is called “no-star part”. We define p(∗)(Y ) as the number of ∗ in
p(Y ) and we denote it β:

β = p(∗)(Y ) =
∣∣∣ {j : (p(Y )

)
[j] = ∗

} ∣∣∣.
In our PTAS we essentially fix the “no-star part” of the answer to the pat-

tern p(Y ) and optimize over the choices for the “star part” of the outcome. If
the number of stars or number of 1’s on star positions of sOPT is small enough,
then there is only Poly(m,n) possible solutions and we can consider all of them.
Let us analyze the size of the “star part”.

Lemma 4. For all Y ⊆ S we have

β = p(∗)(Y ) � |Y | · OPT

The proof is easy and you can find it in arXiv version of the paper [4].
Note that for X from Lemma 3 we have

p(∗)(X) � |X | · OPT = R · OPT. (8)

Let us now introduce some more notation. Assuming Y ⊆ S and hence also
β = p(∗)(Y ) are fixed, we will use the following notation to denote the “star
part” and the “no-star part” of a string x ∈ {0, 1}m:

x′ = x[1] · x[2] · . . . · x[β],

x′′ = x[β + 1] · x[β + 2] · . . . · x[m],

where“·” is a concatenation of strings (letters). So we divide x into two parts:
x = x′ · x′′.
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Let us now define a k-completion of x ∈ {0, 1}m (definition from [7]) to be a
y ∈ {0, 1}m such that y(1) = k and d(y, x) is the minimum possible Hamming
distance between x and any vector with k of 1’s. To obtain a k-completion we
only add or only delete a proper number of 1’s. To be more specific in this paper
we assume the k-completion is always obtained by changing bits at positions
with the smallest possible index2.

In the following lemma we will show that for the pattern from a stable subset
X we can change the number of 1’s in the “no-star part” to the properly guessed
number of 1’s loosing only twice the stability constant.

Lemma 5. If X ⊆ S is (ε1 · OPT )-stable, z′′ is a k′′-completion of
(
p(X)

)′′
,

where k′′ = (s′′OPT )
(1), then

∀i∈{1,2,··· ,n} d(s′OPT · z′′, si) � (1 + 2ε1) ·OPT (9)

Proof. WLOG there is insufficient number of 1’s in no-star part of pattern p(X),

i.e., k′′ �
(
(p(X))′′

)(1)
. The other case is symmetric.

Let us fix si ∈ S and consider all combinations of values in strings
(
p(X)

)′′
,

z′′, s′′i , s
′′
OPT at the same position j. αa ∈ N, for a ∈ {1, 2, · · · , 12}, counts the

number of positions j with combination a, see Table 1:

Table 1. Combinations of values in strings (p(X))′′, z′′, s′′i , s
′′
OPT . There is only 12

combinations (no 24 = 16), because by the assumption k′′ � ((p(X))′′)(1) we never
change from 1 in ((p(X))′′)(1) to 0 in z′′.

combinations

index of a combination 1 2 3 4 5 6 7 8 9 10 11 12

(p(X))′′[j] 0 0 0 0 0 0 0 0 1 1 1 1
z′′[j] 0 0 0 0 1 1 1 1 1 1 1 1
s′′i [j] 0 1 0 1 0 1 0 1 0 1 0 1

s′′OPT [j] 0 0 1 1 0 0 1 1 0 0 1 1

number of occurrences α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

d(z′′[j], s′′i [j]) 0 1 0 1 1 0 1 0 1 0 1 0

d(s′′OPT [j], s
′′
i [j]) 0 1 1 0 0 1 1 0 0 1 1 0

We have:
d(z′′, s′′i ) =

∣∣{j : z′′[j] �= s′′i [j]}
∣∣ =

we consider two cases for value of sOPT at position j:

=
∣∣{j : z′′[j] �= s′′i [j] ∧ (z′′[j] = sOPT ∨ z′′[j] �= sOPT )}

∣∣ =
we divide it into two components:

=
∣∣{j : sOPT = z′′[j] �= s′′i [j] }

∣∣+
+
∣∣{j : z′′[j] �= s′′i [j] = sOPT )}

∣∣ =
2 Any other deterministic rule would work for us just as well.
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we use case counts from Table 1 to count positions in both components:

= (α2 + α7 + α11︸ ︷︷ ︸
first component

+α3 + α6 + α10 − α3 − α6 − α10︸ ︷︷ ︸
=0

) + (α4 + α5 + α9)︸ ︷︷ ︸
second component

=

and we use the definition of the Hamming distance:

=
(
d(s′′OPT , s

′′
i )− α3 − α6 − α10

)
+ (α4 + α5 + α9). (10)

Since (z′′)(1) = k′′ =
(
s′′OPT

)(1)
,

12∑
k=5

αk = α3 + α4 + α7 + α8 + α11 + α12

α5 = α3 + α4 − α6 − α9 − α10. (11)

Also

α4 + α8 + α9 � ε1 ·OPT, (12)

because X is ε1 ·OPT -stable. Now we are ready to prove equation (9).

d(s′OPT · z′′, si)
def.
= d(s′OPT , s

′
i) + d(z′′, s′′i )

(10)
=

(10)
= d(s′OPT , s

′
i) + d(s′′OPT , s

′′
i )− α3 − α6 − α10 + α4 + α5 + α9

(11)
=

(11)
= d(sOPT , si)︸ ︷︷ ︸

�OPT

+2( α4︸︷︷︸
(12)

� ε1·OPT

−α6 − α10)
(12)
� (1 + 2ε1) · OPT.

�

4 An Auxiliary Optimization Problem

In this section we will consider the optimization problem obtained after guessing
the number of 1’s in the two parts and fixing the “no-star part” of the outcome.
It has variables for all the positions of the “star part” and constraints for all the
original votes si ∈ S.

Let us define the optimization problem in terms of the integer program
IP(13)−(17)(Y, k

′) by (13)-(17):

min q (13)

(s′)(1) = k′ (14)

∀i∈{1,2,...,n} d(s′, s′i) � q − d(s′′ALG, s
′′
i ) (15)
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q � 0 (16)

∀j∈{1,2,...,β} s′[j] ∈ {0, 1} (17)

where Y ⊆ S, k = k′+k′′, and s′′ALG is the k′′-completion of (p(Y ))′′. Recall that
β = p(∗)(Y ) and (p(Y ))′′ is the “no-star part” of the pattern p(Y ).

In the LP relaxation (17) is replaced with:

∀j∈{1,2,...,β} s′[j] ∈ [0, 1] (18)

Lemma 6. ∀R∈N�1,Y⊆S,|Y |�R,k′∈N,ε2>0 we can find (1+ 2ε2)-approximation so-
lution for IP(13)−(17)(Y, k

′) by solving the LP and considering at most

(3n)
3R ln(2)

(ε2)2 +m
3R2 ln(6)

(ε2)2 cases.

Proof. Let us fix constants ε2 ∈ (0, 1
2 ) (for ε2 � 1

2 we could use 2-approximation
from [5]). Consider three cases:

Case 1: β � 3R ln(3n)
(ε2)2

There is 2β possibilities for s′.

2β � 2
3R ln(3n)

(ε2)2 = e
ln(3n) 3R ln(2)

(ε2)2 = (3n)
3R ln(2)

(ε2)2 ∈ Poly(n),

because ε2 and R are fixed constants. So we will check (in polynomial time) all
possibilities for s′ and we will find optimal solution for the integer program.

Case 2: k′ � 3R2 ln(6)
(ε2)2

There is Poly(m) possibilities for s′ because we can upperbound the number of
possibilities of setting 1’s into β positions by:(

β

k′

)
� βk′ � β

3R2 ln(6)

(ε2)2 � m
3R2 ln(6)

(ε2)2 ∈ Poly(m),

because ε2 and R are fixed constants.

Case 3: β > 3R ln(3n)
(ε2)2

∧ k′ > 3R2 ln(6)
(ε2)2

We denote an optimal solution of the IP(13)−(17)(Y, k
′) by

(
(s′)IP , qIP

)
. Let us

use LP relaxation and denote an optimal solution of the LP by
(
(s′)LP , qLP

)
.

Obviously we have qLP � qIP . We can solve the LP in polynomial time but
we may obtain a fractional solution. We want to round it independently. We
will use a randomized rounding defined by distributions on each position j ∈
{1, 2, . . . , β}:

P
(
s′[j] = 1

)
= (s′)LP [j], P

(
s′[j] = 0

)
= 1− (s′)LP [j]. (19)
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We can estimate the expected value of a distance to such a random solution s′:

∀i∈{1,2,··· ,n} E
[
d(s′, s′i)

] def.
= E

⎡⎣ β∑
j=1

∣∣∣s′[j]− s′i[j]
∣∣∣
⎤⎦ =

= E

[
β∑

j=1

(
χ(s′i[j] = 0) · s′[j] + χ(s′i[j] = 1) · (1 − s′[j])

)]
lin. of E
=

lin. of E
=

β∑
j=1

(
χ(s′i[j] = 0) · E

[
s′[j]

]
+ χ(s′i[j] = 1) · E

[
1− s′[j]

] )
(19)
=

(19)
=

β∑
j=1

(
χ(s′i[j] = 0) · (s′)LP [j] + χ(s′i[j] = 1) ·

(
1− (s′)LP [j]

)) def.
=

def.
= d

(
(s′)LP , s′i

) (15)
� qLP − d(s′′ALG, s

′′
i ). (20)

d(s′, s′i) is a sum of β independent 0-1 variables. For ε′ ∈ (0, 1) using Chernoff’s
bound [9] we have:

P
(
d(s′, s′i) � (1 + ε′) · E

[
d(s′, s′i)

])
� exp

(
−1

3
(ε′)2 · E

[
d(s′, s′i)

])
.

If we take ε′ = ε2·qIP
E[d(s′,s′i)]

then we obtain:

exp

(
−1

3
· (ε2)

2 · (qIP )2
E
[
d(s′, s′i)

] )
� P

(
d(s′, s′i) � E

[
d(s′, s′i)

]
+ ε2 · qIP

) (20)
�

(20)
� P

(
d(s′, s′i) � qLP − d(s′′ALG, s

′′
i ) + ε2 · qIP

)
. (21)

We want to know an upperbound for the probability that we make an error
greater than ε2 · qIP for at least one vote:

P
(
∃i∈{1,2,...,n} : d(s′, s′i) � qLP − d(s′′ALG, s

′′
i ) + ε2 · qIP

) (21)
�

(21)
� n · exp

(
−1

3
· (ε2)

2 · (qIP )2
E
[
d(s′, s′i)

] )
� n · exp

(
−1

3
(ε2)

2 · qIP
)
, (22)

where the last inequality is because of:

E
[
d(s′, s′i)

] (20)
� qLP − d(s′′ALG, s

′′
i ) � qIP .
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We want to further upperbound the probability in (22). From the assumption
about β and from Lemma 4 we have:

3R ln(3n)

(ε2)2
< β

Lem.4
� |Y | ·OPT � R ·OPT � R · qIP , equivalently

1

3
> n · exp

(
−1

3
(ε2)

2 · qIP
)
. (23)

So, finally we have:

P
(
∃i∈{1,2,...,n} : d(s′, s′i) � qLP − d(s′′ALG, s

′′
i ) + ε2 · qIP

) (22),(23)
<

1

3
. (24)

So with probability at least 2
3 we obtain:

∀i∈{1,2,...,n} d(s′ · s′′ALG, si) = d(s′, s′i) + d(s′′ALG, s
′′
i )

(24)
<

(24)
< qLP − d(s′′ALG, s

′′
i ) + ε2 · qIP + d(s′′ALG, s

′′
i ) � (1 + ε2) · qIP . (25)

We can also obtain a wrong number o 1’s. The solution s′ALG for that is to take
the k′-completion of s′. We will show that the additional error for such operation
is not so big. Expected number of 1’s in s′ is equal k′:

E
[
(s′)(1)

] def.
= E

⎡⎣ β∑
j=1

s′[j]

⎤⎦ lin. of E
=

β∑
j=1

(s′)LP [j]
def.
=

(
(s′)LP

)(1) (14)
= k′.

We want to know how much we lose taking the k′-completion. Similar as before,
(s′)(1) =

∑β
j=1 s

′[j] is a sum of β independent 0-1 variables. For ε′′ ∈ (0, 1) using
Chernoff’s bound [9] we have:

P
(
(s′)(1) � (1 + ε′′) · k′

)
� exp

(
−1

3
(ε′′)2 · k′

)
,

P
(
(s′)(1) � (1 − ε′′) · k′

)
� exp

(
−1

2
(ε′′)2 · k′

)
.

Taking both inequalities together, ε′′ = ε2
R and using assumption k′ > 3R2 ln(6)

(ε2)2

we have:

P
(∣∣∣(s′)(1) − k′

∣∣∣ � ε′′ · k′
)
� 2 · exp

(
−1

3
(ε′′)2 · k′

)
�

� 2 · exp
(
−1

3

(ε2)
2

R2
· k′

)
<

1

3
.

So with probability at least 2
3 the error from taking the k′-completion is not

greater than ε′′ · k′ = ε2
R · k′ �

ε2
R · β

Lem.4
� ε2

R · |Y | · OPT � ε2 · OPT � ε2 · qIP .
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Combining the above with (25) we obtain a (1 + 2ε2)-approximate solution
with probability at least 1

3 . We may derandomize the algorithm analogously to
how it was done in the PTAS for the Closest String problem [8]. For more on
derandomization techniques see [10]. �

5 Algorithm and Its Complexity Analysis

Now we are ready to combine the ideas into a single algorithm.

Algorithm. ALG(R)

Input: S = {s1, s2, . . . , sn} ∈ ({0, 1}m)n, 0 � k � m,R ∈ N�1

Output: sALG ∈ {0, 1}m
1: for each R-element subset Y = {si1 , si2 , . . . , siR} ⊆ S do
2: for each division k into two parts k = k′ + k′′ do
3: s′′ALG ← k′′-completion of (p(Y ))′′

(if not possible, then skip this inner iteration)
4: s′ALG ← approximation solution of IP(13)−(17)(Y, k

′) using Lemma 6

(if LP(13)−(16),(18)(Y, k
′) infeasible, then skip this inner iteration)

5: evaluate s′ALG · s′′ALG by computing maxi∈{1,2,...,n} d(si, s
′
ALG · s′′ALG)

6: end for
7: end for
8: sALG ← the best solution from a loop in lines 1-7

It remains to argue that for a large enough parameter R the above algorithm
will at some point consider a subset of votes X that leads to an accurate enough
approximation of the Minimax objective function of our problem.

Theorem 1. ∀ε∈(0,1) we may compute a (1 + ε)-approximate solution to Mini-

max Approval Voting in O
(
Poly(n,m)

)
time.

Proof. Let ε0 = ε
3 < 1

3 .

By Lemma 3, there exists an ε0·OPT
2 -stable set of votes X ⊆ S of cardinality

|X | = R = � 2
ε0
�.

Consider algorithm ALG(R). In one iteration it will considerX and k′, k′′ such

that (s′OPT )
(1) = k′. Recall that s′′ALG is the specific k′′-completion of

(
p(X)

)′′
.

By Lemma 5 we have:

d(s′OPT · s′′ALG, si) � (1 + ε0) · OPT,

hence
(
s′ = s′OPT , q = (1 + ε0) ·OPT

)
is a feasible solution to IP(13−17)(X, k′)

and the optimal value of IP(13−17)(X, k′) is at most (1 + ε0) · OPT .

By Lemma 6 with ε2 = ε0
2 we find a (1+ε0)-approximate solution

(
s′ALG, qALG

)
to IP(13−17)(X, k′). So we have:

qALG � (1 + ε0) · (1 + ε0) ·OPT
ε0<1
� (1 + 3ε0) · OPT = (1 + ε) ·OPT.
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It remains to observe, that sALG = s′ALG · s′′ALG is a solution to MAV of cost
qALG � (1 + ε) ·OPT .

The algorithm examined O(nR) = O
(
n� 6

ε �
)
∈ O(Poly(n)) subsets Y , O(m)

choices of k′ and each time considered

O

(
(3n)

108·� 6
ε
�·ln(2)

ε2 +m
108·� 6

ε
�2·ln(6)
ε2

)
∈ O(Poly(n,m)) cases.

�

6 Concluding Remarks

We showed the existence of a PTAS for Minimax Approval Voting by considering
all subsets of a fixed size R. If not the discovered supermodularity for the in-
accuracy function ina(·), we would simply consider all subsets of size at most
R. Although the supermodularity was not essential for our result, it shows that
larger subsets of votes are generally more stable (in the sense of definition in
Lemma 3). It seems to suggest that an algorithm considering a smaller number
of larger subsets of votes would potentially be more efficient in practice. Perhaps
the most interesting open question is whether by randomly sampling a number
of subsets of votes to examine, one could obtain a more practical FPRAS for
the problem.

Another interesting direction is the optimization of the Minimax objective
function subject to a restriction that the voting system must be incentive com-
patible. According to [5] the best possible approximation ratio in this setting is
between 2− 2

k+1 and 3− 2
k+1 , and a natural challenge is to narrow this gap.

Finally, we know the complexity of the two extreme objectives, i.e., Minimax
and Minisum. The latter is easily optimized by selecting the k most often ap-
proved candidates. The optimization problem for intermediate objectives such
as optimizing the sum of squares of the Hamming distances remains unexplored,
and it would be interesting to learn which objective functions are more difficult
to approximate than Minimax in the context of Approval Voting systems.
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Abstract. Online Matching has been a problem of considerable interest
recently, particularly due to its applicability in Online Ad Allocation. In
practice, there are usually multiple objectives which need to be simulta-
neously optimized, e.g., revenue and quality. We capture this motivation
by introducing the problem of Biobjective Online Bipartite Matching.
This is a strict generalization of the standard setting. In our problem,
the graph has edges of two colors, Red and Blue. The goal is to find a
single matching that contains a large number of edges of each color.

We first show how this problem is a departure from previous settings:
In all previous problems, the Greedy algorithm gives a non-trivial ratio,
typically 1/2. In the biobjective problem, we show that the competitive
ratio of Greedy is 0, and in fact, any reasonable algorithm would have
to skip vertices, i.e., not match some incoming vertices even though they
have an edge available.

As our main result, we introduce an algorithm which randomly dis-
cards some edges of the graph in a particular manner – thus enabling
the necessary skipping of vertices – and simultaneously runs the color-
oblivious algorithm Ranking. We prove that this algorithm achieves a
competitive ratio of 3 − 4/

√
e � 0.573 for graphs which have a perfect

matching of each color. This beats the upper bound of 1/2 for determin-
istic algorithms, and comes close to the upper bound of 1−1/e � 0.63 for
randomized algorithms, both of which we prove carry over to the bicri-
teria setting, even with the perfect matching restriction. The technical
difficulty lies in analyzing the expected minimum number of blue and
red edges in the matching (rather than the minimum of the two expec-
tations). To achieve this, we introduce a charging technique which has a
new locality property, i.e., misses are charged to nearby hits, according
to a certain metric.

Along the way we develop and analyze simpler algorithms for the
problem: a deterministic algorithm which achieves a ratio of 0.343, and
a simpler randomized algorithm, which achieves, intriguingly, precisely
the same ratio.
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1 Introduction

Online Matching and Allocation is a topic that has received considerable interest
in the recent past, both due to its practical importance in Internet Ad allocation,
and also due to purely theoretical interest and advances that it has generated.
The classic problem was introduced in [10]: There is a graph G(U, V,E), with
only U known in advance, and vertices from V arriving online in an adversarial
order. As a vertex v ∈ V arrives, its incident edges are revealed. The online algo-
rithm can match v to some neighbor u ∈ U which has not yet been matched (if
any such exist), or choose to leave v unmatched. Each match made is irrevocable,
and the goal is to maximize the size of the matching obtained.

Several simple ideas, such as an arbitrary choice of available neighbor (Greedy)
or a random choice (Random) provide a competitive ratio of 1/2, but no greater.
The algorithm provided in [10], called Ranking, first permutes the vertices of
U in a random permutation, and then matches each arriving vertex to that
available neighbor which is highest according to the permutation. This algorithm
is optimal, providing a ratio of 1− 1/e.

Motivated by applications in Internet advertising – in which U corresponds to
advertisers, and V to arriving ad slots – many different variations of this problem
have been studied recently, which includes different matching constraints, as well
as different input models (we describe some of this related work in Section 2).

In this paper, we introduce a new direction in this literature. In all the variants
studied so far, the constraints of the problem vary, but there is one objective
function, namely the weight of the matching. However, in practice, there are
typically multiple objective functions which an algorithm designer needs to con-
sider, e.g. quality, ROI, revenue, efficiency, etc. These objective functions may
not always be well-aligned, and the designer needs to achieve a good balance
among them as prescribed by business needs. Sometimes, the different objective
functions correspond to the value provided to different agents; in which case, fair-
ness motivates balancing of the different objectives. In this paper, we introduce
a new problem which captures this motivation.

1.1 Model and Problem Definition

We consider the basic setting of online bipartite matching, to which we introduce
the most natural notion of multiple objectives, as follows: There is a bipartite
graph G(U, V,E) with |U | = |V | = n, where each edge is colored either Red
or Blue. As before, U is known in advance, and the vertices of V arrive online
together with their incident edges. The goal is to find a large matching that
“balances” the two colors, as described next.

Given a matching in G, let RIM be the number of Red edges in the matching
and let BIM be the number of Blue edges in the matching. Also let R be the
size of the maximum matching in the graph G restricted to its Red edges and
let B be the size of the maximum matching on the Blue edges of G. Then, we
define the objective function value for this matching as
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min

{
BIM

B ,
RIM

R

}
The competitive ratio of an online algorithm is defined as the minimum over
all inputs, of the ratio of the objective value of the matching generated by the
algorithm to the optimal offline objective value (i.e., of the best matching for
this objective function).

For randomized algorithms, the objective function is an expectation-over-
min formulation, where the expectation is over the internal randomness of the
algorithm:

Exp

[
min

{
BIM

B ,
RIM

R

}]
(1)

Note that we do not define it as the minimum of the two expectations: This is
an easier objective, and is not appropriate for our motivation. Indeed, to opti-
mize the Min-of-Exps objective, one could simply flip a coin in the beginning to
choose one of the two colors to optimize, and run the single-color algorithm for
edges of that color. This would give a Min-of-Exps ratio of (1− 1/e)/2. Clearly,
the Exp-of-Mins objective is 0 for this algorithm.

The Perfect-Matching Restriction. We next describe a restriction on prob-
lem instances, which we call the perfect-matching restriction. In this, input in-
stances contain a perfect matching on Red edges as well as a perfect matching
on Blue edges, i.e. B = R = n. With this assumption, optimizing the objective
function reduces to optimizing

Exp [min{BIM,RIM}]

Also, with this assumption, it is not hard to show that there exists a matching
with n/2 − o(n) Red as well Blue edges, giving us the following Proposition
(proof can be found in the full paper).

Proposition 1. When R = B = n, the optimal offline value of min{BIM,RIM}
is between n/2−O(

√
n) and n/2.

Note: We will work with this restriction in this paper1. When working under
the restriction, for the given instance, we pick a perfect matching on Red edges,
and a perfect matching on Blue edges, which we will refer to as the (canonical)
Red and Blue perfect matchings in the graph. For w ∈ U ∪ V we define Nb(w)
as the match of w in the Blue perfect matching, and Nr(w) as the match of w
in the Red perfect matching.

A General Open Problem: The above formulation is the simplest one that
captures the essence of the bi-objective motivation. The following weighted gen-
eralization, called online bi-weighted bipartite matching problem, captures the

1 In the full paper, we describe the results without the restriction.
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full extent of the motivation. Each edge e has two weights: w1(e) and w2(e). A
matching M also has two weights: w1(M) and w2(M), which are the sums of
the respective edge weights in the matching. The goal is to output a matching
M which maximizes min{w1(M), w2(M)}. This problem immediately inherits
the impossibility results for the classic edge-weighted matching problem in the
adversarial arrival model, in which deterministic hardness follows from instances
where a large weight edge may or may not arrive at the end (for randomized
hardness, see [1]). In fact, the general problem has to be considered either in
the random arrival [13] or the free-disposal model [7], and we leave this as an
interesting future direction.

1.2 Results and Key Ideas

Our main result is a randomized algorithm that achieves a factor of 3− 4/
√
e )

0.573 under the perfect-matching restriction (we show a hardness of 1 − 1/e )
0.63). This algorithm, called LeftSubgraphRanking randomly drops some
arriving edges, and runs Ranking ([10], defined in Section 3) on the remaining
graph in a color-oblivious manner.

Algorithm. LeftSubgraphRanking

1. Each vertex in U picks a color uar, and throws away incident edges of that color.
2. Run Ranking on the resulting subgraph.

This artificial dropping of edges is essential – simply running Ranking gives
a ratio of 0. The particular manner in which the edges are dropped is also
important, and not all natural methods perform well. We also describe two
other algorithms, c-Balance and p-ProbGreedy (these are defined formally
in the later sections). The former is deterministic, and aims explicitly to balance
the colors. It achieves a ratio of 0.343, under the perfect-matching restriction
(against a hardness result of 0.5). The latter is a simple randomized algorithm
which, intriguingly, achieves the same ratio.

We also study the problem without the perfect-matching restriction. We
show in the full paper that no randomized algorithm can do better than 0.43,
and describe an algorithm, called DisjointRanking, which achieves a ratio

of (1−1/e)
4 ) 0.158. No determimistic algorithm can achieve a non-trivial ratio

(better than 0).
We highlight a few key ideas behind the algorithm design and analysis:

1. Need to Skip: The biobjective problem is a departure from previous ver-
sions of online matching in the following way: In all previous problems, the
Greedy algorithm gives a non-trivial ratio, typically 1/2 (due to some sort
of a maximal matching argument). In the biobjective problem, we show that
the competitive ratio of Greedy is 0. In fact, for an algorithm to do better
than 0, it has to sometimes artificially skip vertices, i.e., not match an in-
coming vertex even though it has an edge available. This is true even under
the perfect-matching restriction for deterministic algorithms (proof in Sec-
tion 3.1). Under the restriction, a randomized algorithm which does not skip
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can do no better than 1/2. This is therefore a new constraint on algorithm
design, which leads us to understand the question of when and how should
the algorithm skip vertices.

2. Locality of Charging: For the analysis of our main algorithm (in Sec-
tion 4), we use a charging argument (similar to the analysis in [10]). With 2
colors, we are able to charge each miss to 2n hits, instead of just n, giving a
factor of 3− 4/

√
e for the minimum of the expectations of the two colors.

However, when we try to bound the expectation of the minimum color, even
with this augmented charging map, some of the hits get charged twice (once
each from misses of Red and Blue). This will lead to a factor of 1−2/e ) 0.26.
To overcome this problem, we introduce the notion of locality of charging,
whereby misses in a given event map to hits in “nearby” events (according to
an appropriately-defined metric). This lets us show that the number of hits
that get double-charged are small, giving us a nearly identical competitive
ratio of 3− 4/

√
e− o(1) for the expectation of the minimum.

3. Unchargeable Hits: We analyze c-Balance (can be found in the full pa-
per) using a charging argument that starts off as usual – for every miss, we
can point to a hit, namely its perfect matching neighbor (of the appropri-
ate color) that must have been matched. This, by itself, gives a very weak
bound; the new idea is that, instead of allowing every hit to be charged by a
miss, we identify a set of unchargeable hits that cannot be charged by misses.
Thus the misses are upper bounded by a subset of hits, leading to a better
bound on the competitive ratio.

Figure 1 summarizes our results.

With perfect-matching restriction Without perfect-matching restriction
Lower Bound Upper Bound Lower Bound Upper Bound

Det. w/o Skips 0 0 0 0
Deterministic 0.343 0.5 0 0

Rand. w/o Skips ? 0.5 0 0

Randomized 3 − 4/
√
e � 0.573 1 − 1/e � 0.63 (1−1/e)

4 � 0.158 0.43

Fig. 1. Table of Results

2 Related Work

Motivated by applications in Internet advertising, several variants and general-
izations of Online Matching have been studied recently, starting with the “Ad-
words” problem ([15], [4]), which generalized the setting to that with bids and
budgets. Further generalizations included the Weighted-Vertex Matching prob-
lem [1], weighted edges with free-disposal (“Display Ads”) [7], among many
others. There have also been variants which study stochastic inputs for all these
settings, as well as stochastic rewards (we do not mention all the references,
since this literature is quite extensive by now, see [14] for a survey). Ours is an
orthogonal direction, in introducing multiple objectives to this set of problems.
We have started with the basic matching problem, but the question extends to
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the entire set of variants. In a recent paper, [12] also studied a bi-objective ver-
sion of online (weighted) matching. In that paper, the goal is to maximize the
cardinality of the matching along with its weight. Similar to ours, their model is
also motivated by internet advertising, but besides the motivation, the two pa-
pers have pursued two drastically different directions and have used orthogonal
techniques. One major difference from our setting is that their two objectives
are in alignment, rather than in conflict, since adding an edge to the matching
contributes both to the cardinality and the weight objective.

In another thread of work, there is a long research tradition of studying com-
binatorial optimization problems with multiple objectives, initiated by the paper
of Papadimitriou and Yannakakis [17], which identifies a relaxed notion of Pareto
set (the set of all solutions that are not dominated by any other in all objectives).
Our problem fits only loosely in this literature: being an online problem, we are
interested in implementing one balanced solution as the vertices arrive, not the
entire Pareto set of trade-offs.

A similar motivation to ours can be found in a series of papers [5,6,2], which
study the problem of designing an auction to balance revenue and efficiency.
From a practical view, the importance of multiple objectives like quality, ROI
and revenue in budgeted ad allocation, were described in [9].

An unrelated set of online problems with two objectives were studied in [8]. A
related offline problem of exact matchings, i.e. finding a matching with exactly k
Red edges was studied in [16,11,18], and the problem of approximately sampling
and counting exact matchings was studied in [3].

3 Algorithm Evolution

In this section, we present a natural progression of algorithms, leading up to our
main randomized algorithm. This sequence is ordered in increasing complexity of
ideas employed by the algorithms, and is intended to provide intuition building
towards the final algorithm.We start by showing that the simplest idea of Greedy
does not give any non-trivial ratio.

3.1 Greedy Does Not Work, and the Need to Skip

As for any matching problem, we start by trying a greedy algorithm. However,
we quickly note that any algorithm that always matches an incoming vertex if
at least one incident edge is available (i.e., its other end point in U is not yet
matched), has a competitive ratio no better than 0.

Similarly, one can prove that a randomized algorithm which does not skip will
achieve a ratio no more than 1/2.

Thus our first important observation is that any online algorithm has to some-
times skip, i.e., keep the arriving vertex unmatched even though it has an avail-
able neighbor. Note that this is very different from all previous settings in online
matching and allocation problems, where greedy algorithms (which do not skip)
achieve a competitive ratio of 1/2.
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Consider the instance on the left. Any algorithm, deterministic orrandomized, which
never skips matching an incoming vertex, is forced to pick all the Blue edges, and
no Red edges. The instance on the right has one extra edge and satisfies the perfect-
matching restriction. Note that any deterministic algorithm which does not skip will
again pick only blue edges (wlog assume it picks the blue edge for the first arriving
vertex).

Proposition 2. An algorithm that always matches an arriving vertex with an
available edge cannot achieve a competitive ratio better than 0. This also holds
for deterministic algorithms under the perfect-matching restriction, while a ran-
domized algorithm that always matches an arriving vertex with an available edge
cannot achieve a competitive ratio better than 1/2 under the restriction.

3.2 Algorithm c-Balance

The observation that we need to skip leads us to our first algorithm, called c-
Balance, which skips in order to keep the two colors nearly balanced at all
times.

We define CurrentBlue (resp. CurrentRed) as the number of Blue (resp. Red)
edges in the current matching produced during the algorithm. We also define
the following operations:

– NoPreference: Match the arriving vertex to any available neighbor (irre-
spective of color).

– OnlyBlue (resp. OnlyRed): Match the arriving vertex via an available Blue
(resp. Red) edge. If only Red (resp. Blue) edges are available then leave the
vertex unmatched.

A natural approach is to do OnlyRed when the current matching has more
blue edges than red, do OnlyBlue when it has more red edges and NoPreference

otherwise. We will show that this achieves a competitive ratio of 1/3.
We observe that this algorithm attempts to keep the two colors perfectly bal-

anced, and skips an arriving vertex whenever the colors are unbalanced and no
edge of the lagging color is available. We next try to give the algorithm some
leeway in how balanced the two colors need to be during its run. To do that we
introduce two new operations:

– PreferBlue (resp. PreferRed): If a Blue (resp. Red) edge is available, match
the arriving vertex via one of them. Else match it via a Red (resp. Blue) edge,
if one is available.
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We are now ready to describe c-Balance
2.

Algorithm. c-Balance

For each arriving vertex v, switch case:
1. CurrentBlue = CurrentRed: NoPreference
2. CurrentBlue > c · CurrentRed: OnlyRed

3. CurrentRed > c · CurrentBlue: OnlyBlue
4. CurrentRed < CurrentBlue ≤ c · CurrentRed: PreferRed
5. CurrentBlue < CurrentRed ≤ c · CurrentBlue: PreferBlue

This algorithm tries to pick up some extra edges of the leading color (in case
the arrival of edges of the leading colors slows down in the future), but not too
many (as picking edges now reduces available vertices on the left, reducing the
opportunity to pick lagging-color edges in the future). We present the result
here, but postpone the full analysis to the full paper.

Proposition 3. c-Balance achieves a competitive ratio of 2c
(1+c)(2+c) , for 1 ≤

c ≤ 2, and this analysis is tight.

The competitive ratio is maximized at c =
√
2, giving the algorithm a compet-

itive ratio of 0.343. We note that while c-Balance seems more flexible than
simple balancing (and its analysis is much more difficult), it does not perform
significantly better.

We note the following hardness result here, discussed in greater detail in the
full paper.

Proposition 4. Even under the perfect-matching restriction, no deterministic
algorithm can achieve a competitive ratio better than 1/2.

It seems hard to reduce the performance gap for deterministic algorithms, and
we shift our attention to randomized algorithms.

3.3 A Simple Randomized Algorithm

A natural first attempt to balance the two colors using randomness is the fol-
lowing: for each arriving vertex, match via a Red edge w.p. 1/2 and match via a
Blue edge w.p. 1/2. Note that this algorithm skips a vertex when it has available
edges of a single color, but it chooses the other color. This achieves a competitive
ratio of 1/3, with probability almost 1. Next, we consider a generalization of the
above algorithm:

This algorithm sometimes skips vertices even when edges of both colors are
available. Surprisingly, it does better for some values of p.

2 Note that in the existing literature, balance typically refers to balancing the spend
or the load on different vertices – here it refers to balancing the two colors in the
current matching.
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Algorithm. p-ProbGreedy

For each arriving vertex v:
w.p. p, match v via an available Red edge, if any.
w.p. p, match v via an available Blue edge, if any.
w.p. 1− 2p, leave v unmatched.

Proposition 5. p-ProbGreedy has a competitive ratio of 2p(1−p)
1+p with prob-

ability almost 1. This is maximized at p =
√
2 − 1, giving p-ProbGreedy a

competitive ratio of 0.343.

We postpone the proof to the full paper. Amazingly, this is the same bound
as that achieved by c-Balance for p = 1

1+c . We do not know if there is a
deeper connection between the two algorithms, and we leave this possibility
as an intriguing open question. Although p-ProbGreedy did not achieve a
better competitive ratio than c-Balance, it is simpler in that is does not need
to keep any state. Also, the analysis for p-ProbGreedyis significantly simpler
than that of c-Balance. The next question to ask is whether there is another
randomized algorithm that actually improves the competitive ratio.

3.4 Our Final Algorithm

We recall the classic randomized algorithm for online bipartite matching (with-
out colors), namely Ranking [10], defined below. This algorithm by itself has

Algorithm. Ranking

1. Pick a permutation σ of the vertices in U uniformly at random.
2. For each arriving vertex:

Match it to the highest available neighbor (according to σ).

a competitive ratio of 0, which can be seen again from the instance in the figure
in Section 3.1. With probability almost 1, one of the first few arriving vertices
will pick its Blue neighbor, and after that, every vertex is forced to pick its Blue
neighbor. Is there a way to extend Ranking for our biobjective problem?

In our first attempt, DisjointRanking, we do precisely this, by removing
edges from the graph in order to break up the biobjective instance into two
disjoint instances, one of each color, and then use Ranking on each instance
independently. It is easy to see that this algorithm can be run online.

Algorithm. DisjointRanking

1. Each vertex in U ∪V picks a color uar, and throws away incident edges of that color.
Note that only those edges that are not thrown away by either endpoint survive.
2. Run Algorithm Ranking on the resulting subgraph.
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Proposition 6. DisjointRanking achieves a competitive ratio of 1−1/e
2 )

0.316.

To see this, observe that the first step creates a subgraph with two vertex
partitions, such that no edges go from one part to the other, the edges within
one part are all Blue, while the edges within the other part are all Red. Since
each edge survives with probability 1/4, the Blue (resp. Red) part will contain
a Blue (resp. Red) matching of size n/4 − O(

√
n). Also, running Ranking on

the subgraph is equivalent to running it on each part separately. Hence, we will
obtain a matching with ≈ (1 − 1/e)n4 Blue edges and Red edges each, giving a

competitive ratio of 1−1/e
2 ) 0.316.

Thus DisjointRanking is even worse than our previous algorithms, and this
is because it throws away 3/4 of the edges and loses a factor of 1/2 immediately
(since the size of the guaranteed matching drops to n/4 and OPT is n/2). So one
can try and throw away fewer edges. One way to do this is to let vertices of only
one side (either U or V ) pick a color at random and throw away incident edges of
that color. This gives us two algorithms, namely LeftSubgraphRanking and
RightSubgraphRanking, defined below:

Algorithm. LeftSubgraphRanking (resp. RightSubgraphRanking)

1. Each vertex in U (resp. V ) picks a color uar, and throws away incident edges of that
color.
2. Run Algorithm Ranking on the resulting subgraph.

These algorithms throw away fewer edges than DisjointRanking, thereby
ensuring a matching having ≈ n/2 edges of each color in the resulting subgraph.
So we can hope for an online algorithm that gets a matching with ≈ (1−1/e)n/2
edges of each color, achieving a ratio of 1−1/e. However, we have lost the parti-
tion into a Red and a Blue instance and the analysis needs to take into account
the interaction between edges of different colors in the resulting subgraph. This
interaction results in some loss. We prove the following in Section 4.

Proposition 7. The competitive ratio of LeftSubgraphRanking is 3 − 4/√
e ) 0.573, and this analysis is tight.

Although RightSubgraphRanking is very similar, our analysis does not
carry over immediately. The reason is that the analysis of LeftSubgraphRank-

ing (just like the analysis of Ranking) maps a miss of vertex u on the permuted
side to the hit of Nr(u) or Nb(u). Since in RightSubgraphRanking, the non-
permuted side picks the colors to throw away, this charging does not work any
more – a vertex u on the permuted side might have a miss even when neither
of Nr(u) or Nb(u) was a hit, if Nr(u) chooses to throw away its Red edges and
Nb(u) chooses to throw away its Blue edges. We leave the analysis of Right-

SubgraphRanking as an interesting open question, as also the analysis of
these algorithms without the perfect-matching restriction.

We show the following hardness bound in the full paper.
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Proposition 8. Even under the perfect-matching restriction, no randomized al-
gorithm can achieve a competitive ratio greater than 1− 1/e.

So an obvious open question is to close the gap for randomized algorithms. If
there is a better algorithm, is it a different generalization of Ranking? Another
open question is how do the algorithms extend to k > 2 colors? We believe
that the ratio of LeftSubgraphRanking only improves as k increases; we can
prove that the Min-of-Exps objective improves, but it remains open to analyze
the Exp-of-Mins objective.

4 Analysis of LeftSubgraphRanking

In this section we prove the main result of this paper on the performance of
LeftSubgraphRanking.

Theorem 1. For any constant ε > 0, and sufficiently large n, the competitive
ratio of LeftSubgraphRanking is at least 3− 4√

e
− 4ε− 10√

n
.

We will begin by showing that for each color, the expected number of edges
of that color in the matching produced by the algorithm is at least (3 − 4√

e
)n2 .

Note that this, by itself, does not imply a competitive ratio of 3− 4√
e
, as we need

to bound the expectation of the minimum color’s edges. However, this is clearly
necessary. We will later show (in Section 4.2) how to use locality of charging to
prove an almost identical ratio for the expectation of the minimum color’s edges,
giving Theorem 1.

4.1 Bounding the Minimum of the two Expectations

To prove a bound on the expected number of edges of a given color, we use
a charging argument, which builds upon the charging argument for Rank-

ing (see [1] for one such proof). We consider the (offline) misses of a particular
color, say Red, and charge them to hits of both colors. First we try to use the
same charging map as for Ranking – charge each miss to n hits in permuta-
tions obtained by moving the (perfect-matching) neighbor of the neighbor of the
missed vertex. This does not quite work: Note that each vertex throws away its
Red edges with probability 1/2, so only n/2 vertices are trying to pick up a Red
edge. Since there could be as many as as n/2 Blue hits, we do not get anything
non-trivial from this argument. In order to make it work, we map each miss to
2n hits in permutations obtained not only by moving the vertex but also by
changing its color preference. For this map, a given hit might get charged by two
misses, but it gets charged only once by the misses of a given color.

We now dive into the proof. The probability space of the algorithm consists
of all tuples (σ, λ), where σ is a permutation of U and λ ∈ {r, b}n is the vector
of colors chosen by vertices in U (in this section, we will use r and b to denote
color Red and Blue respectively). In order to describe the charging argument,
we make the following definitions.
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Definition 1. For any permutation σ, u ∈ U and i ∈ [n], let σi
u be the permu-

tation obtained by removing u from σ and inserting it back into σ at position i.
Likewise, for any λ, u ∈ U and d ∈ {r, b}, let λd

u be such that λd
u(u) = d and

λd
u(v) = λ(v) for all v �= u.

Definition 2 (Set of Misses and Hits). Define Qd
t (resp. Rd

t ) as the set of
all event–position triples (σ, λ, t), s.t. the vertex in position t in σ (say u) has
λ(u) = d, and was matched (resp. unmatched) under (σ, λ). Formally:

Qd
t = {(σ, λ, t) : σ(u) = t, λ(u) = d and u is matched in the event (σ, λ)}

Rd
t = {(σ, λ, t) : σ(u) = t, λ(u) = d and u is unmatched in the event (σ, λ)}

Recall that Nd(u) denotes the partner of u in the perfect matching of color
d. We are now ready to define the main charging map ψ from a miss to a set of
hits.

Consider a triple (σ, λ, t) s.t. that vertex u at position t in σ is unmatched
and let d = λ(u). Then, we define the d-ChargingMap of the triple (σ, λ, t) as
the set of all triples (σ′, λ′, s), such that σ′ = σi

u for some i ∈ [n] and λ′ = λd′
u

for some d′ ∈ {r, b}, and s is the rank of the vertex to which Nd(u) is matched
in the event (σ′, λ′).

Definition 3 (Charging Map). For every (σ, λ, t) ∈ Rd
t , define the map

ψd(σ, λ, t) = {(σi
u, λ

d′
u , s) : 1 ≤ i ≤ n, d′ ∈ {r, b}, σ(u) = t,

and Nd(u) is matched to u′ with σi
u(u

′) = s in the event (σi
u, λ

d′
u )}

The following lemma proves that the above charging maps are well-defined
(i.e. s always exists) and that s ≤ t for all such mappings. This essentially follows
the standard alternating path argument for Ranking (see e.g. [1]), except that
we also need to argue that the same holds even when u flips its color and throws
away a different set of edges. The proof can be found in the full paper.

Lemma 1. For any permutation σ and coloring λ, if vertex u has rank t in
σ and is left unmatched in the event (σ, λ), then Nλ(u)(u) is matched to some

node u′ in the event (σi
u, λ

b
u) and some node u′′ in the event (σi

u, λ
r
u), for any

1 ≤ i ≤ n. Moreover, σi
u(u

′) ≤ t and σi
u(u

′′) ≤ t.

We next show that for a fixed t, the set-values ψd(σ, λ, t) are disjoint for
different σ or λ. The proof is in the full paper.

Lemma 2. If (σ, λ, s) ∈ ψd(σ
′, λ′, t) and (σ, λ, s) ∈ ψd(σ

′′, λ′′, t), then σ′ = σ′′

and λ′ = λ′′.

With Lemma 1 and 2, we are now ready to prove the bound on the expectation
of each color. The full proof is postpone to the full paper.

Lemma 3. Both the number of red matches and the number of blue matches are
at least (32 −

2√
e
)n.
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4.2 Bounding the Expectation of the Minimum Color

In order to bound the expectation of the number of matches of the minimum color,
we need to consider two parts of the probability space – the events for which Red
is the trailing color (where we need to count the number of Red matches) and the
events for which Blue is the trailing color (where we need to count the number
of Blue matches), breaking ties arbitrarily. However in doing so, a new difficulty
arises – when we were bounding the expected number of matches of one color, we
were guaranteed that the charging maps for all misses of that color are disjoint.
However, this is no longer true when we look at the charging maps for Red misses
for some of the events and the charging map for Blue misses for the remaining
events – the same hit might appear in the charging map for some Blue miss and
for some Red miss. Simply allowing hits to be double-charged will lead to a large
loss in competitive ratio, giving a ratio of 1− 2/e ) 0.26.

The key insight that helps us overcome this problem and show essentially the
same bound for expectation of the minimum color, with a loss of only lower
order terms, is that our charging map has the property of locality, i.e. misses in
a given event map to hits in “nearby” events.

To be more concrete, let Δ(σ, λ) be the difference between the number of Red
matches and Blue matches in the matching produced by the algorithm for the
event (σ, λ). We observe that our charging map is local w.r.t. Δ, i.e. misses in
an event (σ, λ) map to hits in events whose Δ value is within 2 of Δ(σ, λ), as
shown in a lemma in the full paper. If we partition the events by their Δ value,
we want to count the number of Blue misses for events whose Δ value is positive
and the number of Red misses for the rest. By the lemma, we know that Blue
misses of interest charge to events whose Δ value is at least -1, while the Red
misses of interest charge to events whose Δ value is at most 2. So the only events
whose hits get double-charged are those whose Δ value is in {−1, 0, 1, 2}. If we
could show that the number of hits in such events is small, we will be done.

Unfortunately, we do not know how to show this. What we can show, instead,
is that there is some k ∈ [1, 4

√
n] s.t. the probability mass of hits in events with

Δ value in {k, k+1, k+2, k+3} is no more than 1√
n
, as shown in the full paper.

So if we look at the charges from Blue misses in events with Δ value greater

Tight example: Interestingly, our analysis is tight. Consider the following family of
graphs. Let the upper triangular entries (without the diagonal) and the bottom left entry
of the adjacency matrix filled with Red edges, and the rest filled with Blue edges. This
guarantees two perfect matchings. But running LeftSubgraphRanking on this graph
gives no more than ( 3

2
− 2√

e
)n red matches; details can be found in the full paper).
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than k+1, and the charges from Red misses from the remaining events, we will
double charge only a small number of the hits, thereby giving us the required
bound. The full proof can be found in the full paper.
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A large fraction of online advertisement is sold via repeated second price auc-
tions. In these auctions, the reserve price is the main tool for the auctioneer to
boost revenues. In this work, we investigate the following question: Can chang-
ing the reserve prices based on the previous bids improve the revenue of the
auction, taking into account the long-term incentives and strategic behavior of
the bidders?

In order to set the reserve price effectively, the auctioneer requires informa-
tion about distribution of the valuations of the bidders. A natural idea, which
is widely used in practice, is to construct these distributions using the history
of the bids. This approach, though intuitive, raises a major concern with re-
gards to long-term (dynamic) incentives of the advertisers. Because the bid of
an advertiser may determine the price he or she pays in future auctions, this
approach may result in the advertisers shading their bids and ultimately in a
loss of revenue for the auctioneer.

To understand the effects of changing reserve prices based on the previous
bids, we study a setting where the auctioneer sells impressions (advertisements
space) via repeated second price auctions. We demonstrate that the long-term
incentives of advertisers plays an important role in the performance of these
repeated auctions by showing that under standard symmetry and regularity as-
sumptions (i.e., when the valuations of advertisers are independently and iden-
tically distributed according to a regular distribution), the optimal mechanism
is running a second price auction with a constant reserve and changing the re-
serve prices over time is not beneficial. However, when there is uncertainty in
the distribution of the valuations and competition among the bidders, we show
that there can be substantial benefit in learning the reserve prices using the pre-
vious bids. To this end, we propose a simple dynamic reserve mechanism called
the threshold mechanism that achieves near optimal revenue, while retaining
(approximate) incentive compatibility.
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Abstract. Traditional incentive-compatible auctions [6,16] for selling
multiple goods to unconstrained and budgeted bidders can discriminate
between bidders by selling identical goods at different prices. For this
reason, Feldman et al. [7] dropped incentive compatibility and turned
the attention to revenue maximizing envy-free item-pricing allocations
for budgeted bidders. Envy-free allocations were suggested by classical
papers [9,15]. The key property of such allocations is that no one en-
vies the allocation and the price charged to anyone else. In this paper
we consider this classical notion of envy-freeness and study fixed-price
mechanisms which use nondiscriminatory uniform prices for all goods.
Feldman et al. [7] gave an item-pricing mechanism that obtains 1/2 of
the revenue obtained from any envy-free fixed-price mechanism for iden-
tical goods. We improve over this result by presenting an FPTAS for
the problem that returns an (1 − ε)-approximation of the revenue ob-
tained by any envy-free fixed-price mechanism for any ε > 0 and runs in
polynomial time in the number of bidders n and 1/ε even for exponen-
tial supply of goods m. Next, we consider the case of budgeted bidders
with matching-type preferences on the set of goods, i.e., the valuation of
each bidder for each item is either vi or 0. In this more general case, we
prove that it is impossible to approximate the optimum revenue within
O(min(n,m)1/2−ε) for any ε > 0 unless P = NP . On the positive side,
we are able to extend the FPTAS for identical goods to budgeted bidders
in the case of constant number of different types of goods. Our FPTAS
gives also a constant approximation with respect to the general envy-free
auction.

1 Introduction

In this paper we address the problem of selling m identical goods to a set of n
bidders. Bidder i ∈ {1, . . . , n} has his own valuation per good vi and a total bud-
get bi that he can spent. This setting was introduced in the context of designing
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truthful auctions to sell multiple ad slots [6]. In a later paper [7] a serious short-
coming of previous mechanisms was observed. Many of the auctions, e.g., the
VCG mechanism [5,11,16] (for bidders with unlimited budgets) or the ascending
auction [6,14] (for bidders with budgets), sell the same product at different prices.
Moreover, this is strictly needed if we insist on incentive-compatible auctions as
shown in [6]. Usage of nonuniform prices is called price discrimination [3]. Price
discrimination is problematic as pointed out by economic literature [1,2], and in
some cases also forbidden by international commerce law [10].

The approach suggested in [7] was to turn the attention to revenue maxi-
mizing auctions that are envy-free rather than incentive compatible. Here, we
take a next step in this direction. We consider auctions that are as nondiscrim-
inatory as possible by being envy-free and by using uniform prices. We note
that in recent studies (e.g., [12] and much subsequent work) envy-freeness has
been defined in a much more restrictive manner than the classical notion from
economic theory [9,15]. It requires that goods are given prices, and that the al-
location to a bidder is a set of goods that maximizes the bidder’s utility, subject
to these good prices. The reason why the classical notion of envy-freeness was
abandoned is probably due to its immanent hardness. For example, if we need to
maximize bidders’ utilities then given the prices of goods finding envy-free allo-
cation becomes a maximum matching problem. On the other hand, without this
restriction, we prove that it is impossible to get a Ω(min(n,m)1/2−ε)-fraction of
the optimum revenue, for any ε > 0 unless P=NP.

Envy-free allocations are defined in the most intuitive way as suggested by
classical papers [9,15]. The key property of such allocations is that no one en-
vies anyone else. Bidder i is allocated a set of goods Xi and is asked to pay
some amount pi, with the restriction that pi ≤ bi. Bidder i utility is defined as
ui(Xi, pi) = vi|Xi| − pi. This is called multi-unit auction, whereas we assume
that |Xi| ≤ 1 when bidders have unit demands. We say that bidder i envies
bidder i′ if pi′ ≤ bi and ui(Xi′ , pi′) > ui(Xi, pi), i.e., bidder i could be allocated
bundle of i′ and in such a case the utility of bidder i would increase.

The results of [7] when casted to our setting imply that it is possible to con-
struct an efficient envy-free fixed-price auction that approximates maximum rev-
enue of general envy-free auction. The fixed-price auction assumes that pi = p|Xi|
for some fixed p. Quite surprisingly, such a restricted auction, can extract 1/2 of
the revenue of the optimum envy-free auction. These results rise an interesting
question whether such efficient, and nondiscriminatory auctions, can actually
be constructed in an optimal or nearly optimal way? We answer this question
affirmatively and present an FPTAS for multi-unit auctions, i.e., we compute
price p and allocation Xi for each bidder so that selling at a fixed-price p gives
revenue no less than an (1−ε)-fraction of the revenue of any envy-free fixed-price
outcome. The running time of the algorithm is polynomial in both n and 1/ε
and it does not depend on the total supply of goods on sale.

We extend the basic setting also to the case of non-identical goods, thus ad-
dressing one limitation of previous works [6,7,14] which considered only identical
goods. In our generalized multi-good setting, we consider the case that there are
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c types of goods and the supply of good i is mi. Here, we use m =
∑

i mi.
Denote by Si the types of goods of interest for bidder i, i.e., his valuation for
items of types Si is vi, whereas other items have value 0 for him. Such valuations
are called matching-type preferences and were for example considered in [8]. Let
us denote by Xi a multiset of Si that is allocated to bidder i. We say that an
allocation Xi is rational at price p for bidder i if Xi only contains goods that
are in the preference set of bidder i, and utility of bidder i is nonnegative. The
notion of envy-freeness is extended to the multi-good case by defining that bid-
der i envies bidder i′ if allocating Xi′ to i is rational and increases the utility
of bidder i. In the unit demand case, we present the following results for the
revenue maximizing envy-free fixed-price outcomes in the multi-good setting:

1. We prove that the problem can be solved optimally in polynomial time.
2. We observe that our solution gives O(log n)-approximation with respect to

the optimum envy-free allocation, and this essentially is the best possible.

In the non-unit-demand case, we prove the following:

1. For a non-constant number of different types of goods, we prove that it is
NP-hard to approximate the optimum revenue with a factor better than
Ω(min(n,m)1/2−ε). This statement holds even for general non-fixed-price
envy-free auctions.

2. We extend the FPTAS for identical goods to the case of a constant number
of different types of goods. This holds even when the supply of goods of each
type is exponential.

3. We observe that the FPTAS gives Θ(c)-approximation with respect to the
optimum envy-free revenue where there are c different types of goods.

While we present the first positive results for the multi-good setting with a
constant number of goods, it is quite interesting to observe that our hardness
result is not restricted to fixed-price auctions. Hence, even in this restricted
case we are coping with the hard core of the problem, what means that even
without this assumption it is impossible to obtain qualitatively better results. On
the positive side our O(c)-approximation algorithm for c types of goods works
independently from the number of bidders and goods.

2 Preliminaries

An auction with budgets is denoted by A =< n, c,M,S,v,b >. There are n
bidders and c different goods. Throughout the paper, we use the notation [n] and
[c] to denote the sets {1, . . . , n} and {1, . . . , c} respectively. M =< m1, . . . ,mc >
indicates the amount of supply of each good. For every j ∈ [c], there aremj copies
of good j. The total supply of all goods is denoted by m =

∑
j∈[c] mj . S =<

S1, . . . , Sn > indicates the preference set of each bidder. For every i ∈ [n], Si is
the subset of goods in which bidder i is interested. Finally, v =< v1, . . . , vn >
indicates the valuation and b =< b1, . . . , bn > indicates the budget of each
bidder. For every i ∈ [n], bidder i has a valuation of vi for each copy of goods in
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his preference set Si and a budget bi. Given price p, the demand of a bidder i is
defined as:

Di(p) =

{
min(� bip �,

∑
j∈Si

mj), if vi ≥ p

0, if vi < p

When there is no ambiguity on the price, we simply use Di instead of Di(p).
A mechanism maps every auction A to an outcome < X, p >, where X =<

X1, . . . ,Xn > is an allocation mapping goods to bidders and p ∈ R is a fixed
price for every goods. Note that for every i ∈ [n], Xi =< x1

i , . . . , x
c
i > where

bidder i gets xj
i copies of good j. Let Xi be the set of goods allocated to bidder

i, i.e., Xi = {j ∈ [c]|xj
i > 0}. An outcome < X, p > must satisfy all the following

conditions:

1. limited supply: for every j ∈ [c], it holds
∑

i∈[n] x
j
i ≤ mj ;

2. bidder rationality: for every i ∈ [n], and every j ∈ [c], if xj
i > 0 then j ∈ Si

and vi ≥ p;
3. budget constraint: for every i ∈ [n], it holds p ·

∑
j∈[c] x

j
i ≤ bi.

Given outcome < X, p >, the utility of bidder i is defined as: ui(Xi, p) =
(vi − p)

∑
j∈Si

xj
i . The revenue r(X, p) of the auction is the sum of payments of

all the bidders, i.e., r(X, p) = p
∑

i∈[n]

∑
j∈Si

xj
i . When the price and allocation

are clear from the context, the revenue is simply denoted by r.
Given price p, we partition bidders as follows. Bidders with vi = p are called

value-limited bidders, and are denoted by V Lp = {i ∈ [n]|vi = p}. Similarly,
bidders with vi > p are called non-value-limited bidders, and are denoted by
NV Lp = {i ∈ [n]|vi > p}. Finally, bidders with vi < p are called exited bidders,
and are denoted by Ep = {i ∈ [n]|vi < p}. When there is no ambiguity on the
price, we will remove the subscript from the sets.

We consider the following notion of envy-freeness. Given an outcome< X, p >,
we say bidder i envies bidder i′ if all following conditions hold: i) Xi′ is a rational
allocation to bidder i , i.e.,Xi′ ⊆ Si; ii) bidder i has enough budget for the bundle
Xi′ , i.e., bi ≥ p

∑
j∈Si′

xj
i′ ; iii) ui(Xi′ , p) > ui(Xi, p).

An outcome is envy-free if for every pair of bidders i, i′ ∈ [n], bidder i does
not envy bidder i′.

Definition 1. The revenue maximizing envy-free fixed-price auction with bud-
gets: given < n, c,M,S,v,b >, design an algorithm to compute an envy-free
outcome < X, p > that maximizes auctioneer’s revenue r(X, p).

3 Envy-Free Revenue Maximizing Fixed-Price
Multi-good Auctions for Unit-Demand Bidders

In this section, we consider envy-free fixed-price auction with budgets when all
bidders have unit demands, that is, bidders are only interested in obtaining at
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most one copy of a good in their preference sets. Here, envy-freeness implies that
bidder i will be allocated one good if another bidder i′ gets some good j ∈ Si

and the price is not higher than min{vi, bi}. We present an algorithm optimizing
the revenue among all fixed-price outcomes. Despite the fact that our auction is
fixed-price, we prove that it is able to extract O(log n) of the optimum envy-free
revenue. We assume in this section for all i ∈ [c] we have mi ≤ n, as higher
supply of goods is not needed in the unit demand case.

We model auctions for the unit-demand case as bipartite graphs. Specifically,
given a price p, the demand graph Gp is a bipartite graph (V = {1, . . . , n}, U =
{1, . . . ,m}, E), where {1, . . . ,m} contains mj identical vertices for good j and
E contains an edge (i, j) if and only if j ∈ Si and min{vi, bi} ≥ p. We identify
vertices in V with bidders. We define non-value-limited subgraph G′

p of Gp to
contain only bidders that are non-value-limited.

Denote for a set S ⊆ V (G), νG(S) = {v : (u, v) ∈ E(G) and u ∈ S}. A set of
vertices S ⊆ V is said to be tight in G if and only if |νG(S)| ≥ |S|. We observe
that we cannot sell goods to all bidders in S if S is not tight in G′

p, because we
will not be able to satisfy the demand of everybody in S. On the other hand,
it is not necessarily true that we can satisfy all bidders in a given tight set S,
because S can contain subsets that are not tight. Using the tools from matching
theory we will prove the existence of canonical tight sets in G′

p, that can be
fully satisfied. We define surplus of S ⊆ V ∪ U in G as minT⊆S |νG(T )| − |T |.
By Hall’s marriage theorem a set S ⊆ V that has positive surplus in G has a
perfect matching onto νG(S). The following is a consequence of Gallai-Edmonds
decomposition theorem in the case of bipartite graphs.

Theorem 1 (Theorem 3.2.4 from [13]). Let G = (V, U,E) be a bipartite
graph. V can be partitioned into three subsets CV , AV , DV and U can be parti-
tioned into three subsets CU , AU , DU such that:

– νG(DV ) = AU and νG(DU ) = AV ,
– surplus of CV in G[CV ∪ CU ] is 0,
– surplus of AV in G[AV ∪DU ] is positive,
– surplus of AU in G[AU ∪DV ] is positive.

We observe the following. Due to lack of space, We defer the proofs of some
theorems, lemmas or corollaries to the full version of the paper.

Corollary 1. Let AU be given by Theorem 1 for G′
p. No good from AU can be

sold in any envy-free allocation at price p.

By Hall’s marriage theorem we know that the matching M that is needed in
the following observation always exists.

Corollary 2. Let CV and AV be given by Theorem 1 for G′
p. Let M be a match-

ing in G′
p that matches CV with CU and AV with DU then M induces an envy-

free allocation at price p.

In other words M is the maximum size matching in G′
p \AU . So far we have

considered only non-value-limited bidders in G′
p. Adding value-limited bidders
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can increase the number of goods we can sell and can lead to higher revenue.
Still no good in AU can be sold. Potentially, in Gp \AU there can be a maximum
size matching such that it does not induce an envy-free allocation. However, this
can be countered using the following well known fact.

Corollary 3 (Corollary 3.1.6 from [13]). If a set of vertices is covered by
some matching then it is also covered by some maximum matching.

By applying this corollary to M in Gp, we know that there exits a maximum
size matching M ′ in G′

p \ AU that matches all vertices in CV and AV . Hence,
M ′ induces the maximum revenue envy-free allocation at price p. We note that
the constructions of Theorem 1 and Corollary 3 can be executed in polynomial
time. Now, we can observe that the set of candidate fixed-prices is small.

Lemma 1. The set of candidate fixed-prices for the unit-demand case is given
by ∪i∈[n] min(vi, bi).

Algorithm 1. Optimal Revenue Maximizing Envy-free Fixed-price for
Unit-Demanded Bidders
Input: < n, c,M,S,v,b >.
Output: a price p, an allocation X =< X1, . . . ,Xn >, the optimum revenue r.

1 Let p be the set containing {min(vi, bi)}, r = 0 ;
2 while p �= ∅ do
3 Choose some y ∈ p, p = p \ {y};
4 Construct the demand graphs Gy and G′

y with respect to y;
5 Use Theorem 1 to find AU in G′

y;
6 Find maximum size matching M of G′

y \ AU ;
7 Extend M to maximum matching M ′ in Gy \ AU using Corollary 3;
8 if y|M ′| > r then
9 Set p = y, r = y|M ′| ;

10 for i ∈ {1, . . . , n} do
11 if j ∈ M′ then
12 Set xj

i = 1 if (i, j) ∈ M ′ ;

The main result in this section is the following theorem, which directly follows
lemmas and corollaries above.

Theorem 2. Algorithm 1 outputs, in polynomial time, an envy-free outcome
which optimizes auctioneer’s revenue among all envy-free fixed-price outcomes.

Next theorem shows that our auction is O(log n)-approximate with respect to
the general envy-free auction. This is essentially best possible by the log1−ε(n+
m)-inapproximability [4].

Theorem 3. Algorithm 1 outputs, in polynomial time, an envy-free outcome
which is O(log n)-approximate with respect to the optimum envy-free revenue.
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Proof. Consider the optimal allocation X̄i and optimal pricing p̄i. Assume that
in this allocation bidders are sorted in descending order by p̄i. Consider a random
number l that is selected uniformly at random form the set [1, . . . , 2 log(n)], and
consider price pl =

p̄1

2l
. Let us denote by n̄(p) the number of bidders who pay in

optimum allocation no less then p. We observe that

OPT =

n∑
i=1

n̄(p̄i)(p̄i−p̄i+1) ≤ 2

2 log(n)∑
l=1

n̄(pl)pl+n
pl

22 log(n)
< 2

2 log(n)∑
l=1

n̄(pl)pl+
OPT

n

Additionally note that for each pl selling goods to bidders with pi ≥ pl at
fixed price pl is envy-free. Hence, choosing random pl gives fixed-price O(log n)-
approximation in expectation with respect to the optimal envy-free pricing. By
the optimality of our algorithm this bound in expectation is turned into worst-
case bound. ��

4 Envy-Free Fixed-Price Multi-unit Auctions with
Budgets

We now turn to envy-free fixed-price auction with budgets when bidders are not
unit-demand, that is, bidders are interested in obtaining goods in their preference
sets as much as possible within their budgets. In this section, we present a Fully
Polynomial Time Approximation Scheme (FPTAS) for the case when only single
type of good is available in a limited supply of m copies. This setting is often
referred to as multi-unit auction. Note that in the indivisible environment the
easier approaches that are usually used for divisible goods do not work any
more. The presence of discontinuity points that produce discrete jumps in the
demand functions force us to carefully analyze the prices. In particular, when the
number of goods is small a rough analysis can blemish the approximation ratio.
We denote by < XOPT, pOPT > the revenue maximizing envy-free outcome.
In this section the allocation is described by a vector of natural numbers that
represents how many copies each bidder gets, i.e.,XOPT =< xOPT

1 , . . . , xOPT
n >.

Bidder i gets xOPT
i copies of the good and pays pOPTxOPT

i . For the optimum
revenue we have rOPT = pOPT

∑n
i=1 x

OPT
i . The proposed FPTAS considers the

following two cases with regard to XOPT : i) more than n2

ε goods are allocated

in the revenue maximizing envy-free outcome, that is m ≥
∑n

i=1 x
OPT
i > n2

ε ; ii)

at most n2

ε copies are allocated in the revenue maximizing envy-free outcome,

that is
∑n

i=1 x
OPT
i ≤ n2

ε . The distinction between these two cases is important.
In the first case, when the number of copies is not polynomial in n, the proposed
FPTAS achieves a revenue at least (1 − ε)rOPT by restricting attention to a
polynomial number of prices. On the other hand, in the second case, a dynamic
programming is used to extract a revenue of rOPT through the enumeration of
all possible outcomes.
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4.1 The Case of m ≥ ∑n
i=1 x

OPT
i > n2

ε

In this case, the number of copies sold can be non-polynomial.. Hence, we cannot
enumerate all possible sensible prices, i.e., prices that match a discontinuity
point in a demand function. The proposed algorithm overcomes this problem by
finding a polynomial number of prices that could extract an (1−ε) fraction of the
optimum revenue. We assume for convenience 0 ≤ v1 ≤ v2 ≤ . . . ≤ vn. It is easy
to see that pOPT ∈ [0, vn]. Set v0 = 0, and let us define Πi = (vi−1, vi]. There
exists exactly one Πi such that pOPT ∈ Πi. Denote by Ai = {i′ ∈ [n]|vi′ > vi−1}
the set of bidders with valuations higher than vi−1.

Furthermore, for each interval Πi, we define a price

p̄i =

{
min{vi,

ε·
∑

j∈Ai
bj

n2 }, if
ε·
∑

j∈Ai
bj

n2 > vi−1

vi, if
ε·
∑

j∈Ai
bj

n2 ≤ vi−1

Note that price p̄i ∈ Πi and p̄i = vi if vi−1 = vi. Algorithm 2 computes the
revenue obtained for each price in {p̄i}ni=1. Given a price in {p̄i}ni=1 the Algorithm
2 checks if the cumulative demand of the bidders is greater than the available
supply or not. If the cumulative demand is less than the available supply (lines
6-7), all the bidders receive their demands. If the cumulative demand is greater
than the available supply (lines 8-10), the algorithm computes an upper bound on
the number of goods that each bidder can obtain in order to keep the allocation
envy-free. Then a bidder receives number of items equal to the minimum between
his demand and the computed upper bound. Algorithm 2 computes the revenue
obtained this way for all candidate prices, and the maximum revenue is returned
as output.

We show that the revenue r produced by Algorithm 2 is an (1 − ε) approx-
imation to the optimum revenue rOPT . The proof is split into two parts: i) we

first consider the case of pOPT ∈ Πi and p̄i =
ε·
∑

j∈Ai
bj

n2 ; ii) we later address the
case of pOPT ∈ Πi and p̄i = vi.

We use the following lemma as a tool to prove the first case.

Lemma 2. If p̄i =
ε·
∑

j∈Ai
bj

n2 and pOPT ∈ Πi, then rOPT ≥
∑

j∈Ai
bj

n .

Proof. If p̄i =
ε·
∑

j∈Ai
bj

n2 then there is enough copies to satisfy the demands of
all bidders in Ai, those with vi′ > p̄i :∑

i∈Ai

Di(p̄i) =
∑
i∈Ai

� bi
p̄i
� ≤

∑
i∈Ai

bi
p̄i

=
n2

ε
.

Note that essentially those bidders are the ones in Ai. Thus, we have rOPT ≥∑
j∈Ai

� bjp̄i
� · p̄i ≥

∑
j∈Ai

(
bj
p̄i
−1) · p̄i ≥

∑
j∈Ai

bj−n · p̄i =
∑

j∈Ai
bj−

ε·
∑

j∈Ai
bj

n =∑
j∈Ai

bj
n (n− ε). From n ≥ 2 we have n− ε > 1 and the lemma follows. ��

Lemma 3. If pOPT ∈ Πi and p̄i =
ε·
∑

j∈Ai
bj

n2 , then rALG ≥ (1− ε)rOPT .
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Algorithm 2. Envy-free Fixed-price Multi-unit Auction with Budgets

(
∑n

i=1 x
OPT
i > n2

ε )

Input: < n, c = 1,M =< m1 = m >,S =< S1 = . . . = Sn = {1} >,v,b >.
Output: a price pALG, an allocation XALG =< xALG

1 , . . . , xALG
n >, the revenue

rALG.
1 Set pALG = 0, XALG =< 0, . . . , 0 > and rALG = 0;
2 Let p̄ = {p̄1, . . . , p̄n} be the set of candidate prices;
3 while p̄ �= ∅ do
4 Pick a price p ∈ p̄;
5 Set X =< x1 = 0, . . . , xn = 0 >, r = 0;
6 if

∑
i∈A Di(p) ≤ m then

7 For each i ∈ A, set xi = Di(p), and set r = p
∑

i∈A Di(p);

8 else
9 For any k ∈ {1, . . . ,m}, let tpk = {i ∈ A|Di(p) ≥ k};

10 Let l = max{z|∑z
j=1 |tpj | ≤ m and |tpz| > 0};

11 For each j ∈ A, set xj = min{l, Dj(p)}, and set r = p
∑

j∈A xj ;

12 if r > rALG then

13 Set < pALG,XALG, rALG >=< p,X, r >;

14 Set p̄ = p̄ \ p;

Proof. rOPT ≤
∑

j∈Ai
bj =

∑
j∈Ai

bj
p̄i
· p̄i ≤

∑
j∈Ai

(� bjp̄i
�+1) · p̄i ≤

∑
j∈Ai

xALG
j ·

p̄i +
∑

j∈Ai
p̄i = rALG +

∑
j∈Ai

p̄i ≤ rALG + n · ε·
∑

j∈Ai
bj

n2 ≤ rALG + ε · rOPT .

The first inequality comes from the assumption that pOPT ∈ Πi, and the last
inequality is implied by Lemma 2. Hence, we have rALG ≥ (1− ε)rOPT . ��

Now we move to the second part of the proof. This is the case that pOPT ∈ Πi

and p̄i = vi. We first observe the following:

Lemma 4. The optimal price pOPT /∈ Πi if
ε·
∑

j∈Ai
bj

n2 < vi−1.

Proof. Assume that
ε·
∑

j∈Ai
bj

n2 < vi−1 < pOPT , it implies that there is less than
n2

ε copies sold in the optimal allocation. It contradicts the assumption that

at least n2

ε goods are allocated in the optimal revenue maximizing envy-free
outcome. ��

Lemma 4 allows us to only prove the revenue guarantee of Algorithm 2 in

the case when pOPT ∈ Πi, p̄i = vi and
ε·
∑

j∈Ai
bj

n2 ≥ vi. In this case, it could
be that the total demand of bidders in Ai exceeds the number of copies, that is∑

j∈Ai
Dj(p̄i) ≥ n2

ε > m. Denote by tp̄k = {i ∈ {1, . . . , n}|Di(p̄) ≥ k} the set of

bidders with demand at least k and l = max{z|
∑z

j=1 |t
p̄
j | ≤ m and |tp̄z| > 0, }.

Algorithm 2 allocates to each bidder i ∈ Ai a supply of min{l, Di(p̄)} copies at
price p̄.
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Lemma 5. If pOPT ∈ Πi and p̄i = vi, r
ALG > (1− ε)rOPT .

Proof. Consider the following cases:

–
∑

i∈N Di(vi) > m. In this case, the Algorithm 2 sells at least m − n items
at price p̄i. The revenue from Algorithm 2 is given by

rALG ≥ (m−n) · p̄i ≥ (m−n) · pOPT = m · pOPT −n · pOPT ≥ (1− ε) · rOPT

Recall that the revenue maximizing outcome allocates at least n2

ε items.
Hence, the last inequality follows from rOPT < m · pOPT and n · pOPT ≤
ε · n2

ε · pOPT ≤ ε · rOPT .
–
∑

i∈N Di(vi) ≤ m. In this case, we have enough copies to satisfy the demand

of all bidders at price vi. Algorithm 2 sells at least n2

ε −n copies at price vi.
Now, we can bound the rOPT as follows:
rOPT ≤

∑
j∈Ai

bj =
∑

j∈Ai

bj
p̄i
· p̄i ≤

∑
j∈Ai

(� bjp̄i
� + 1) · p̄i ≤

∑
j∈Ai

xALG
j ·

p̄i +
∑

j∈Ai
p̄i = rALG +

∑
j∈Ai

vi ≤ rALG + n · vi ≤ rALG + ε · rOPT . The

first inequality comes from the assumption that pOPT ∈ Πi, and the last
inequality is implied by rOPT ≥ n

ε · vi.

Above two cases conclude that setting p̄i = vi when
ε·
∑

j∈Ai
bj

n2 ≥ vi could
achieves a (1− ε)-approximation to the optimal revenue. ��

Lemma 6. < XALG, pALG > is envy-free.

Proof. When price p̄i produces a total demand less than the number of available
items, i.e.,

∑
i∈Ai

Di(p̄i) ≤ m, we satisfy all the demands. Hence, no bidder
envies anyone. When

∑
i∈Ai

Di(p̄i) > m, for every i ∈ Ai, it holds that either
bidder i obtains Di(p̄i) items or bidder i receives the maximum number of items
among all bidders. It concludes that allocation < XALG, pALG > is envy-free.

��

Now we present the main theorem that follows from previous lemmas.

Theorem 4. When there are more than n2

ε copies sold in the revenue maximiz-
ing envy-free outcome in multi-unit auctions, Algorithm 2 outputs, in polynomial
time, an envy-free outcome that achieves an (1 − ε)-approximation to the opti-
mum envy-free fixed-price revenue.

4.2 The Case of
∑n

i=1 x
OPT
i ≤ n2

ε

Now we consider the other case when at most n2

ε copies of the good are allocated
in < XOPT, pOPT >. We first present a dynamic programming that maximizes
the revenue when a price is given. Since there is only a polynomial number of

possible prices for pOPT , i.e., pOPT ∈
⋃n

i=1({ bij }
n2

ε
j=1 ∪ {vi}), one can simply run

the dynamic programming for every possible price and output the optimum rev-
enue. Now let us concentrate on the problem of computing the maximum revenue
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when a price is given. We first sort bidders by their demands. Without loss of
generality, we assume D1(p) ≤ . . . ≤ Dn(p). Recall that V L is the set of value-
limited bidders, and NV L is the set of non-value-limited bidders. Both sets V L
and NV L are also sorted by non-decreasing demand at price p. Let V L(i) be
the ith value-limited bidder, and NV L(i) be the ith non-value-limited bidder.
The dynamic programming fills a 4-dimensional table t[i][j][k][h] of boolean val-
ues representing the existence of an envy-free allocation where exactly h copies
are allocated among the first i value-limited bidders plus the first j non-value-
limited bidders, and the maximum number of copies allocated to a bidder is k.
The correctness of the dynamic programming relies on the following claim.

Claim 1. There exits a revenue maximizing envy-free allocation XOPT such
that the following conditions hold: i) xOPT

1 ≤ xOPT
2 ≤ . . . ≤ xOPT

n ; ii) xOPT
V L(1) ≤

xOPT
V L(2) ≤ . . . ≤ xOPT

V L(|V L|); iii) xOPT
NV L(1) ≤ xOPT

NV L(2) ≤ . . . ≤ xOPT
NV L(|NVL|).

The dynamic programming proceeds in rounds. In the current round either
the next value-limited or the next non-value-limited bidder is considered:

– The bidder considered in the current round is value-limited. If the maximum
number of copies already allocated to value limited bidders [1, . . . , i− 1] and
non-value-limited bidders [1, . . . , j] is k and t[i−1][j][k][h−k] is true, then we
can allocate k copies to value-limited bidder j. The resulting allocation is still
envy-free. On the other hand, if the maximum number of copies allocated
is less than k then we must ensure that giving k copies to value-limited
bidder j does not violate envy-freeness. That implies that all non-value-
limited bidders [1, . . . , j] have budgets less than kp.

– The bidder considered in the current round is non-value-limited. Similar to
the previous case, if the maximum number of copies already allocated to a
bidder is k and t[i][j − i][k][h − k] is true, then we can allocate k copies to
this bidder. The resulting allocation is still envy-free. On the other hand,
if the maximum number of copies already allocated to a bidder is less than
k, we must ensure that giving k copies to this value-limited bidder does
not affect envy-freeness. This essentially means that the already allocated
non-value-limited bidders have budgets less than kp.

The recursive formula is given as follows.

t[i][j][k][h] =
[
(i > 0) ∧ (k ≤ DV L(i)) ∧ (h > k)∧(

t[i− 1][j][k][h− k] ∨
( ∨
k′<k

t[i− 1][j][k′][h− k] ∧ (k > DNV L(j)

))]
∨[

(j > 0) ∧ (k ≤ DNV L(j)) ∧ (h > k)∧(
t[i][j − 1][k][h− k] ∨

( ∨
k′<k

t[i][j − 1][k′][h− k] ∧ (k > DNV L(j−1)

))]
Finally, the revenue maximizing envy-free allocation on the given price is the

entry of the table with TRUE value in t[|V L|][|NV L|][·][h] that maximizes the
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total number of allocated copies of the good h ≤ m. By using this dynamic
programing, one could achieve the optimum envy-free fixed-price revenue.

Theorem 5. When there are at most n2

ε copies sold in the revenue maximiz-
ing envy-free outcome in multi-unit auctions, running dynamic programming on

prices in
⋃n

i=1({ bij }
n2

ε

j=1 ∪ {vi}) and outputting the maximum revenue, achieves
the optimum envy-free fixed-price revenue, in polynomial time in terms of n
and ε.

5 Envy-Free Revenue Maximizing Fixed-Price Multi-good
Auctions with Budgets and Matching Preferences

In previous section we presented encouraging results for the case when there is
only a single type of good in the auction. Here, we extend these results to the
setting when there are different types of goods and bidders have matching-type
preferences, i.e., the valuation of bidder i for all copies of goods in Si ⊆ [c] is vi
and 0 for goods not in Si. We start with the hardness result for this case.

Theorem 6. When there are non-constant number of types of goods, the opti-
mum revenue in any envy-free multi-good auctions with budgets cannot be ap-
proximated within O(min(n,m)1/2−ε) for any ε > 0 unless P = NP .

5.1 An FPTAS for a Constant Number of Types of Goods

The main result in this section is the following theorem.

Theorem 7. When the number of types of goods is a constant, there exists an
algorithm outputs, in polynomial time in terms of n and ε, an envy-free fixed-
price outcome that achieves an (1 − ε)-approximation to the optimum envy-free
fixed-price revenue.

The algorithm could be seen as a generalization of the results in Section 4.
Due to the space limit, we only discuss the ideas of how to extend our techniques
in Section 4 to obtain an FPTAS in this setting. As before, the proposed FPTAS
considers two cases regarding XOPT.

OPT Allocates More Than n2

ε
Copies of Goods. An important difference

with respect to the multi-unit case is the following. When p̄i equals to
ε·
∑

j∈Ai
bj

n2 ,

it is possible that there is no feasible allocation that sells n2

ε copies of goods at
price p̄i. This is because the cumulative demand for a subset of goods could be
greater than the number of copies of the goods. Hence, in order to find a price at

which n2

ε can be sold and to keep the envy-freeness of the allocation, we transfer
the problem to a min-cost max-flow problem. When the maximum flow is not

equal to n2

ε , the solution of min-cost max-flow identifies the subset of bidders

who do not obtain bi′
p̄i

copies of goods. Then, the algorithm iteratively updates

p̄i by decreasing a particular amount until p̄i is out of the range of Πi or n2

ε
copies of goods can be sold.
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OPT Allocates at Most n2

ε
Copies of Goods In order to cope with this

setting, the dynamic programming needs to ensure envy-freeness between differ-
ent types of bidders. Bidders belongs to the same type if their preference sets
are the same. Envy-freeness implies that, when bidder i is allocated to a copy
of good j ∈ Si, bidder i′ must also be allocated a copies of j′ ∈ Si′ if j ∈ Si′ .
To achieve it, the dynamic programming considers different type bidders whose
preference sets intersect. To be more specific, to guarantee that the allocation
is envy-free, when bidder i is assigned a bundle of goods, the dynamic program-
ming checks envy-freeness in the way that all those bidders with preference sets
including the bundle, i.e., preference sets are the supersets of the bundle, prefer
their bundles to the bundle assigned to bidder i or they cannot afford to buy
bidder i’s bundle. Therefore, the dynamic programming has 2c − 1 parameters
to indicate the largest bundles assigned to each type of bidders.

5.2 A c-Approximation for a Constant Number of Types of Goods

Finally, by the results in [7], we complement our study with the following
corollary.

Corollary 4. The optimal envy-free fixed price auction is Θ(c)-approximate
with respect to the optimal envy-free auction.

6 Open Problems

Here, we rise several interesting open problems for further investigation:

– First of all, we have not yet been able to prove NP-hardness of revenue
maximizing fixed-price envy-free auctions with budgets in the multi-unit
case.

– Second, it is left open to find any approximation for the case of a non-
constant number of types of goods.

– Third, we do not know the ratio between the revenue that is extracted from
a fixed-price and a non-fixed price auction for the case of a non-constant
number of types of goods. Despite the inapproximability result, the ratio
might even be O(log n) as in the unit-demand case, since even for fixed-price
it can be NP -hard to decide whether there exists an envy-free allocation.
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Abstract. We propose a truthful-in-expectation, (1− 1
e
)-approximation

mechanism for the generalized assignment auction. In such an auction,
each bidder has a knapsack valuation function and bidders’ values for
items are private. We present a novel convex optimization program for
the auction which results in a maximal-in-distributional-range (MIDR)
allocation rule. The presented program contains at least a (1− 1

e
) ratio

of the optimal social welfare. We show how to implement the convex
program in polynomial time using a fractional local search algorithm
which approximates the optimal solution within an arbitrarily small er-
ror. This leads to an approximately MIDR allocation rule which in turn
can be transformed to an approximately truthful-in-expectation mecha-
nism. Our contribution has algorithmic importance, as well; it simplifies
the existing optimization algorithms for the GAP while the approxima-
tion ratio is comparable to the best given approximation.1

Keywords: Generalized assignment problem, Truthful-in-expectation,
Mechanism design, Convex optimization.

In algorithmic mechanism design, a mechanism designer wishes to solve an op-
timization problem, but the inputs to this problem are the private information
of self-interested players. The mechanism designer must thus design a mecha-
nism that solves the optimization problem while encouraging the agents to reveal
their information truthfully. The game-theoretic solution concept of truthfulness
guarantees that an agent is better off truthfully interacting with the mechanism
regardless of what the other agents do.

We consider the generalized assignment problem as a combinatorial auction.
In the generalized assignment problem (GAP), a set of items should be assigned
to a set of bidders in order to maximize total valuation. Each bidder associates a
different value and weight to each item and has a limited capacity. We can assign
each bidder any subset of items that does not exceed the bidder’s capacity. For
every such subset, the bidder’s valuation is additive in the values of items in the
subset. We assume bidders’ valuations for items to be private while weights and
capacities are publicly known. Our goal is to find an allocation and payment rule
which constitute a truthful-in-expectation mechanism for the GAP.

1 A full version at
http://dss.in.tum.de/files/bichler-research/wine-gaptie.pdf.
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The well-known Vickrey-Clarke-Groves (VCG) technique provides truthful-
ness as well as social welfare maximization in every combinatorial auction. The
VCG technique, however, is applicable only when the optimal social welfare can
be computed efficiently. Yet, in many cases, including our problem, optimizing
social welfare is computationally intractable which makes the VCG technique
inapplicable.

From an algorithmic point of view, the generalized assignment problem has
been studied extensively in the literature. An approximation factor of (1− 1

e )+ρ
with ρ > 0, is the best given approximation ratio for the GAP. The presented
algorithms, however, are not directly applicable for mechanism design as they
rely on non-monotone rounding procedures.

MIDR or maximal-in-distributional-range is the only known general approach
for designing randomized truthful mechanisms. An MIDR algorithm fixes a set
of distributions over feasible solutions (the distributional range) independently
of the valuations reported by the self-interested players, and outputs a random
sample from the distribution that maximizes expected (reported) welfare.

In order to achieve a MIDR, we directly optimize over the outcome of the
rounding procedure, rather than over the outcome of the relaxation algorithm.
To this end, we formulate the GAP as a convex optimization problem where the
objective function equals the expected value of the rounding procedure. This is
similar to the technique used in [1] for finding a truthful-in-expectation mecha-
nism for players whose valuations are of a special type of submodular functions.
We notice that our technique allows to guarantee non-negativity of payments
and individual rationality, ex post, while in [1], these important properties are
provided only ex ante.

We are able to approximate the proposed convex optimization problem within
an arbitrarily small error, in the sense of an FPTAS. This in fact leads to an
approximate MIDR. Taking into account the black box transformation of an
approximately MIDR allocation rule to an approximately truthful-in-expectation
mechanism known in the literature, we immediately achieve a (1 − ε)-truthful-
in-expectation mechanism for the GAP.

We also emphasize the algorithmic importance of our result. Our algorithm
has advantages over the existing optimization algorithms in terms of runtime
and simplicity. It does not employ the ellipsoid method or any other LP solving
algorithms. Additionally, the exact specification of the proposed objective func-
tion enables to calculate the gradient of the objective function explicitly which
helps in designing a simpler algorithm for the problem.
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Deutsche Forschungsgemeinschaft (DFG) (BI 1057/7-1).
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Abstract. We study the problem of finding a subgame-perfect equilibrium in re-
peated games. In earlier work [Halpern, Pass and Seeman 2014], we showed how
to efficiently find an (approximate) Nash equilibrium if assuming that players are
computationally bounded (and making standard cryptographic hardness assump-
tions); in contrast, as demonstrated in the work of Borgs et al. [2010], unless
we restrict to computationally bounded players, the problem is PPAD-hard. But
it is well-known that for extensive-form games (such as repeated games), Nash
equilibrium is a weak solution concept. In this work, we define and study an ap-
propriate notion of a subgame-perfect equilibrium for computationally bounded
players, and show how to efficiently find such an equilibrium in repeated games
(again, making standard cryptographic hardness assumptions). As we show in
the full paper, our algorithm works not only for games with a finite number of
players, but also for constant-degree graphical games.

1 Introduction

Computing a Nash equilibrium (NE) (or even an ε-NE) in a (one-shot) game with only
two players is believed to be computationally intractable (formally, it is PPAD-Hard) [3,
4]. However, in real life, games are often played repeatedly. In infinitely repeated games,
the Folk Theorem (see [12] for a review), which shows that the set of NE is large, gives
hopes that it might be easier to find one. In two-player repeated games, Littman and
Stone [11] show that this is indeed the case, and describe an efficient algorithm for
finding a NE, which uses the ideas of the folk theorem. Unfortunately, Borgs et al. [2]
show that if the game has three or more players, then even in the infinitely repeated
version it is PPAD-Hard to find even an ε-NE for an inverse-polynomial ε.
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If we take seriously the importance of being able to find an ε-NE efficiently, it is
partly because we have computationally bounded players in mind. But then it seems
reasonable to see what happens if we assume that the players in the game are them-
selves computationally bounded. As we show in a recent paper [8], this makes a big
difference. Specifically, we show that if we assume that players are resource bounded,
which we model as probabilistic polynomial-time Turing machines (PPT TMs) with
memory, and restrict the equilibrium deviations strategies to those that can be imple-
mented by such players, then there exist an efficient algorithm for computing an ε-NE
in an infinitely repeated game. Our equilibrium strategy uses threats and punishment
much in the same way that they are used in the Folk Theorem. However, since the play-
ers are computationally bounded we can use cryptography (we assume the existence of
a secure public key encryption scheme) to secretly correlate the punishing players. This
allows us to overcome the difficulties raised by Borgs et al. [2].

While NE has some attractive features, it allows some unreasonable solutions. In
particular, the equilibrium might be obtained by what are arguably empty threats. This
actually happens in our solution (and in the basic version of the folk theorem). Specif-
ically, players are required to punish a deviating player, even though that might hurt
their payoff. Thus, if a deviation occurs, it might not be the best response of the players
to follow their strategy and punish; thus, such a punishment is actually an empty threat.

To deal with this (well known) problem, a number of refinements of NE have
been considered. The one typically used in dynamic games of perfect information is
subgame-perfect equilibrium, suggested by Selten [14]. A strategy profile is a subgame-
perfect equilibrium if it is a NE at every subgame of the original game. Informally, this
means that at any history of the game (even those that are not on any equilibrium path),
if all the players follow their strategy from that point on, then no player has an incen-
tive to deviate. In the context of repeated games where players’ moves are observed (so
that it is a game of perfect information), the folk theorem continues to hold even if the
solution concept used is subgame-perfect equilibrium [1, 5, 13].

In this paper, we show that we can efficiently compute a computational subgame-
perfect ε-equilibrium. (The “computational” here means that we restrict deviating play-
ers to using polynomial-time strategies.) There are a number of subtleties that arise in
making this precise. While we assume that all actions in the underlying repeated game
are observable, we allow our TMs to also have memory, which means their action does
not depend only on the public history. Like subgame-perfect equilibrium, we would
like our solution concept to capture the intuition that the strategies are in equilibrium
after any possible deviation. This means that in a computational subgame-perfect equi-
librium, at each history for player i, player i must make a (possibly approximate) best
response, no matter what his and the other players’ memory states are.

Another point of view is to say that the players do not in fact have perfect informa-
tion in our setting, since we allow the TMs to have memory that is not observed by the
other players, and thus the game should be understood as a game of imperfect informa-
tion. Subgame perfection is still defined in games of imperfect information, but in many
cases does not have much bite (see [10] for a discussion on this point). For the games
that we consider, subgame-perfect equilibrium typically reduces to NE. An arguably
more natural generalization of subgame-perfect equilibrium in imperfect-information
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games would require that if an information set for player i off the equilibrium path is
reached, then player i’s strategy is a best response to the other players’ strategies no
matter how that information set is reached. This is quite a strong requirement. (see
[12][pp. 219–221] for a discussion of this issue); such equilibria do not in general exist
in games of imperfect information.1 In our setting, a “situation” includes the players’
state of memory; after a deviation, players have no idea how the state of memory of
other players may have changed. Thus, the nodes in a player’s information set are char-
acterized by the possible memory states of the other players. Since in a computational
subgame-perfect equilibrium, at each history for player i, player i must make a best
response no matter what the memory states of the other players are, it captures the
strong requirement mentioned above. Despite this, we show that in a repeated game, a
computational subgame-perfect ε-eqilibrium exists and can be found efficiently.

To achieve this we use the same basic strategy as in [8], but, as often done to get
a subgame-perfect equilibrium (for example see [5]), we limit the punishment phase
length, so that the players are not incentivized not to punish deviations. However, to
prove our result, we need to overcome a significant hurdle. When using cryptographic
protocols, it is often the case (and, specifically is the case in the protocol used in [8])
that player i chooses a secret (e.g., a secret key for a public-key encryption scheme)
as the result of some randomization, and then releases some public information which
is a function of it (e.g., a public key). After that public information has been released,
another party j typically has a profitable deviation by switching to the TM M that can
break the protocol—for every valid public information, there always exists some TM
M that has the secret “hardwired” into it (although there may not be an efficient way
of finding M given the information). We deal with this problem by doing what is often
done in practice: we do not use any key for too long, so that j cannot gain too much by
knowing any one key.

A second challenge we face is that in order to prove that our proposed strategies are
even an ε-NE, we need to show that the payoff of the best response to this strategy is not
much greater than that of playing the strategy. However, since for any polynomial-time
TM there is always a better polynomial-time TM that has just a slightly longer running
time, this natural approach fails. This instead leads us to characterize a class of TMs we
can analyze, and show that any other TM can be converted to a TM in this class that has
at least the same payoff. While such an argument might seem simple in the traditional
setting, since we only allow for polynomial time TMs, in our setting this turns out to
require a surprisingly delicate construction and analysis to make sure this converted TM
does indeed has the correct size and running time.

There are a few recent papers that investigate solution concepts for extensive-form
games involving computationally bounded player [9, 6, 7]; some of these focus on cryp-
tographic protocols [9, 6]. Kol and Naor [9] discuss refinements of NE in the context
of cryptographic protocols, but their solution concept requires only that on each history
on the equilibrium path, the strategies from that point on form a NE. Our requirement
is much stronger. Gradwohl, Livne and Rosen [6] also consider this scenario and offer
a solution concept different from ours; they try to define when an empty threat occurs,

1 Indeed, that is part of why notions like sequential equilibrium [10] are typically considered in
games of imperfect information.
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and look for strategy profiles where no empty threats are made. Again, our solution
concept is much stronger.

2 Preliminaries

We briefly review some relevant material regarding games and subgame-perfect equilib-
rium. This material largely repeats definitions from [8]. For a more detailed description
and for the definition of the cryptographic primitives we use, see the full paper.

2.1 One-Shot games

We define a game G to be a triple ([c], A, �u), where [c] = {1, . . . , c} is the set of players,
Ai is the set of possible actions for player i, A = A1 × . . . × Ac is the set of action
profiles, and �u : A → Rc is the utility function (�ui(�a) is the utility of player i). A
(mixed) strategy σi for player i is a probability distribution over Ai, that is, an element
of Δ(Ai) (where, as usual, we denote by Δ(X) the set of probability distributions over
the set X). We use the standard notation �x−i to denote vector �x with its ith element
removed, and (x′, �x−i) to denote �x with its ith element replaced by x′.

Definition 1. (Nash Equilibrium) σ = (σ1, ..., σc) is an ε-NE of G if, for all players
i ∈ [c] and all actions a′i ∈ Ai, Eσ−i [ui(a

′
i,�a−i)] ≤ Eσ[ui(�a)] + ε.

A correlated strategy of a game G is an element σ ∈ Δ(A). It is a correlated equi-
librium if, for all players i, they have no temptation to play a different action, given that
the action profile was chosen according to σ. That is, for all players i for all ai ∈ Ai

such that σi(ai) > 0, Eσ|ai
ui(ai,�a−i) ≥ Eσ|ai

ui(a
′
i,�a−i).

Player i’s minimax value in a game G is the highest payoff i can guarantee himself
if the other players are trying to push his payoff as low as possible. We call the strategy
i plays in this case a minimax strategy for i; the strategy that the other players use is
i’s (correlated) punishment strategy. (Of course, there could be more than one minimax
strategy or punishment strategy for player i.) Note that a correlated punishment strategy
can be computed using linear programming.

Definition 2. Given a game G = ([c], A, �u), the strategies �σ−i ∈ Δ(A−i)
that minimize maxσ′∈Δ(Ai) E(σ′,�σ−i)[ui(�a)] are the punishment strategies against
player i in G. If �σ−i is a punishment strategy against player i, then mmi(G) =
maxa∈Ai E�σ−i

[ui(a, a−i)] is player i’s minimax value in G

To simplify the presentation, we assume all payoffs are normalized so that each
player’s minimax value is 0. Since, in an equilibrium, all players get at least their mini-
max value, this guarantees that all players get at least 0 in a NE.

2.2 Infinitely Repeated Games

Given a normal-form game G, we define the repeated game Gt(δ) as the game in which
G is played repeatedly t times (in this context, G is called the stage game) and 1− δ
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is the discount factor (see below). Let G∞(δ) be the game where G is played infinitely
many times. An infinite history h in this game is an infinite sequence 〈�a0,�a1, . . .〉 of
action profiles. Intuitively, we can think of �at as the action profile played in the tth

stage game. We often omit the δ in G∞(δ) if it is not relevant to the discussion. Let
HG∞ be the set of all possible histories of G∞. For a history h ∈ HG∞ let G∞(h) the
subgame that starts at history h (after |h| one-shot games have been played where all
players played according to h). We assume that G∞ is fully observable, in the sense
that, after each stage game, the players observe exactly what actions the other players
played.

A (behavioral) strategy for player i in a repeated game is a function σ from histories
of the games to Δ(Ai). Note that a profile �σ induces a distribution ρ�σ on infinite histo-
ries of play. Let ρt�σ denote the induced distribution on Ht, the set of histories of length
t. (If t = 0, we take H0 to consist of the unique history of length 0, namely 〈 〉.) Player
i’s utility if �σ is played, denoted pi(�σ), is defined as follows:

pi(�σ) = δ

∞∑
t=0

(1− δ)t
∑

h∈Ht,�a∈A

ρt+1
�σ (h · �a)[ui(�a)].

Thus, the discount factor is 1 − δ. Note that the initial δ is a normalization factor. It
guarantees that if ui(�a) ∈ [b1, b2] for all joint actions �a in G, then i’s utility is in
[b1, b2], no matter which strategy profile �σ is played.

In these game, a more robust solution concept is subgame-perfect equilibrium [14],
which requires that the strategies form an ε-NE at every history of the game.

Definition 3. A strategy profile �σ = (σ1, ..., σc), is a subgame-perfect ε-equilibrium of
a repeated game G∞, if, for all players i ∈ [c], all histories h ∈ HG∞ where player i
moves, and all strategies σ′ for player i, phi ((σ

′)h, �σh
−i) ≤ phi (�σ

h)+ ε, where phi is the
utility function for player i in game G∞(h), and σh is the restriction of σ to G∞(h).

3 Computational Subgame-Perfect Equilibrium

In this section we define our solution concept, and show that it can be computed effi-
ciently in a repeated game. We capture computational boundedness by considering only
(possibly probabilistic) polynomial time TMs, which at round t use only polynomial in
nt many steps to compute the next action, where n is the size of G (the max of the
number of actions and the number of players in G). The TM gets as input the history
of play so far and can also use internal memory that persists from round to round. A
strategy for player i is then a TM Mi. Given a strategy profile �M , as above, we can
define the induced distribution ρ �M and player i’s payoff pi( �M).

We would like to define a notion similar to subgame-perfect equilibrium, where for
all histories h in the game tree (even ones not on the equilibrium path), playing �σ
restricted to the subtree starting at h forms a NE. This means that a player does not
have any incentive to deviate, no matter where he finds himself in the game tree.

As we suggested in the introduction, there are a number of issues that need to be
addressed in formalizing this intuition in our computational setting. First, since we con-
sider stateful TMs, there is more to a description of a situation than just the history;
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we need to know the memory state of the TM. That is, if we take a history to be just a
sequence of actions, then the analogue of history for us is really a pair (h, �m) consisting
of a sequence h of actions, and a profile of memory states, one for each player. Thus, to
be a computational subgame-perfect equilibrium the strategies should be a NE at every
history and no matter what the memory states are.

Since a player’s TM cannot observe the memory state of the other players’ TMs, the
computational game is best thought of as a game of imperfect information, where, in
a given history h where i moves, i’s information set consists of all situations where
the history is h and the states of memory of the other players are arbitrary. While
subgame-perfect equilibrium extends to imperfect information games it usually doesn’t
have much bite. In our setting it reduces to just a NE.

Instead, in games of imperfect information, the solution concept most commonly
used is sequential equilibrium [10]. A sequential equilibrium is a pair (�σ, μ) consisting
of a strategy profile �σ and a belief system μ, where μ associates with each information
set I a probability μ(I) on the nodes in I . Intuitively, if I is an information set for
player i, μ(I) describes i’s beliefs about the likelihood of being in each of the nodes in
I . Then (�σ, μ) is a sequential equilibrium if, for each player i and each information set I
for player i, σi is a best response to �σ−i given i’s beliefs μ(I). However, a common crit-
icism of this solution concept is that it is unclear what these beliefs should be and how
players create these beliefs. Instead, our notion of computational subgame-perfection
can be viewed as a strong version of a sequential equilibrium, where, for each player i
and each information set I for i, σi is a best response to �σ−i conditional on reaching I
(up to ε) no matter what i’s beliefs are at I .

As a deviating TM can change its memory state in arbitrary ways, when we argue that
a strategy profile is an ε-NE at a history, we must also consider all possible states that
the TM might start with at that history. Since there exists a deviation that just rewrites
the memory in the round just before the history we are considering, any memory state
(of polynomial length) is possible. Thus, in the computational setting, we require that
the TM’s strategies are an ε-NE at every history, no matter what the states of the TMs
are at that history. This solution concept is in the spirit of subgame-perfect equilibrium,
as we require that the strategies are a NE after every possible deviation, although the
player might not have complete information as to what the deviation is.

Intuitively, a profile �M of TMs is a computational subgame-perfect equilibrium if for
all players i, all histories h where i moves, and all memory profiles �m of the players,
there is no polynomial-time TM M̄ such that player i can gain more than ε by switching
from Mi to M̄ . Unfortunately, what we have just said is meaningless if we consider only
a single game. The notion of “polynomial-time TM” does not make sense for a single
game. To make it precise, we must consider an infinite sequence of games of increasing
size (just as was done in [8], although our current definition is more complicated since
we must consider memory states).

For a memory state m and a TM M let M(m), stand for running M with initial
memory state m. We use �M(�m) to denote (M1(m1), . . . ,Mc(mc)). Let pG,δ

i ( �M) de-
note player i’s payoff in G∞(δ) when �M is played.

Definition 4. An infinite sequence of strategy profiles �M1, �M2, . . ., where
�Mk = (Mk

1 , ...,M
k
c ), is a computational subgame-perfect ε-equilibrium of an
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infinite sequence G∞
1 , G∞

2 , . . . of repeated games where the size of Gk is k, if, for all
players i ∈ [c], all sequences h1 ∈ HG∞

1
, h2 ∈ HG∞

2
, . . . of histories, all sequences

�m1, �m2, . . . of polynomial-length memory-state profiles, where �mk = (mk
1 , . . . ,m

k
c ),

and all non-uniform PPT adversaries M̄ (polynomial in k and t, as discussed above),
there exists k0 such that, for all k ≥ k0,

p
G∞

k (hk),δ
i (M̄(mk

i ), �Mk
−i(�m

k
−i)) ≤ p

G∞
k (hk),δ

i ( �Mk(�mk)) + ε(k).

We stress that our equilibrium notion considers only deviations that can be imple-
mented by polynomial-time TMs. This differs from the standard definition of NE (and
from the definition considered in [2]). But this difference is exactly what allows us to
use cryptographic techniques. It is also the reason that we need to consider a sequence
of games of growing sizes instead of a single game. We allow the deviation to be a
non-uniform PPT, which can be viewed as a sequence of TMs whose running time is
bounded by some common polynomial (see the full paper for a formal definition).

3.1 Computing a Subgame-Perfect ε-NE

Let A0
i ⊂ Ai be a non-empty set and let A1

i = Ai \A0
i .2 A player can broadcast an m-

bit string by using his actions for m rounds, by treating actions from A0
i as 0 and actions

from A1
i as 1. Given a polynomial φ (with natural coefficients), let (Gen,Enc,Dec) be

a multi-message multi-key secure φ-bit (see the full paper for the definition), if the
security parameter is k, the length of an encrypted message is z(k) for some polynomial
z. Let sq = (s1, s2 . . . , sm) be a fixed sequence of action profiles. Fix a polynomial-
time pseudorandom function ensemble {PSs : s ∈ {0, 1}∗} (again, see the full paper
for the definition).

For a game G such that |G| = n, and a polynomial �, consider the following strategy
σNE ,	, and let �MσNE,�

be the TM that implements this strategy. This strategy is simi-
lar in spirit to that proposed in [8]; indeed, the first two phases are identical. Phase 1
explains what to do if no deviation occurs: play sq . Phase 2 gives the preliminaries of
what to do if a deviation does occur: roughly, compute a random seed that is shared with
all the non-deviating players. Phase 3 explains how to use the random seed to produce
a correlated punishment strategy that punishes the deviating player. The key difference
between the strategy here and that in [8] is that this punishment phase is played for only
�(n) rounds. After that, players return to phase 1. As we show, this limited punishment
is effective since it is not played long enough to make it an empty threat (if � is chosen
appropriately). Phase 4 takes care of one minor issue: The fact that we can start in any
memory state means that a player might be called on to do something that, in fact, he
cannot do (because he doesn’t have the information required to do it). For example, he
might be called upon to play the correlated punishment strategy in a state where he has
forgotten the random seed, so he cannot play it. In this case, a default action is played.

1. Play according to sq (with wraparound) as long as all players played according to
sq in the previous round.

2 We assume that each player has at least two actions in G. This assumption is without loss of
generality—we can essentially ignore players for whom it does not hold.
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2. After detecting a deviation by player j �= i in round t0:3

(a) Generate a pair (pki, ski) using Gen(1n). Store ski in memory and use the
next l(n) rounds to broadcast pki, as discussed above.

(b) If i = j + 1 (with wraparound), player i does the following:
– i records pkj′ for all players j′ /∈ {i, j};
– i generates a random n-bit seed seed ;
– for each player j′ /∈ {i, j}, i computes m = Encpkj′ (seed), and uses the

next (c− 2)z(n) rounds to communicate these strings to the players other
than i and j (in some predefined order).

(c) If i �= j + 1, player i does the following:
– i records the actions played by j+1 at time slots designated for i to retrieve

EncPki(seed);
– i decrypts to obtain seed , using Dec and ski.

3. Phase 2 ends after φ(n)+(c−2)z(n) rounds. The players other than j then compute
PS seed(t) and use it to determine which action profile to play according to the
distribution defined by a fixed (correlated) punishment strategy against j. Player j
plays his best response to the correlated punishment strategy throughout this phase.
After �(n) rounds, they return to phase 1, playing the sequence sq from the point
at which the deviation occurred (which can easily be inferred from the history).

4. If at any point less than or equal to φ(n) + (c − 2)z(n) time steps from the last
deviation from phase 1 the situation is incompatible with phase 2 as described
above (perhaps because further deviations have occurred), or at any point between
φ(n) + (c − 2)z(n) and φ(n) + (c − 2)z(n) + �(n) steps since the last deviation
from phase 1 the situation is incompatible with phase 3 as described above, play a
fixed action for the number of rounds left to complete phases 2 and 3 (i.e., up to
φ(n)+ (c− 2)z(n)+ �(n) steps from the last deviation from phase 1). Then return
to phase 1.

Note that with this strategy a deviation made during the punishment phase is not pun-
ished. Phase 2 and 3 are always played to their full length (which is fixed and predefined
by � and z). We say that a history h is a phase 1 history if it is a history where an honest
player should play according to sq . History h is a phase 2 history if it is a history where
at most φ(n)+(c−2)z(n) rounds have passed since the last deviation from phase 1; h is
a phase 3 history if more than φ(n)+(c−2)z(n) but at most φ(n)+(c−2)z(n)+�(n)
rounds have passed since the last deviation from phase 1. No matter what happens in
phase 2 and 3, a history in which exactly φ(n) + (c− 2)z(n)+ �(n) round have passed
since the last deviation from phase 1 is also a phase 1 history (even if the players deviate
from phase 2 and 3 in arbitrary ways). Thus, no matter how many deviations occur, we
can uniquely identify the phase of each round.

We next show that by selecting the right parameters, these strategies are easy to
compute and are a subgame-perfect ε-equilibrium for all inverse polynomials ε.

3 If more than one player deviates while playing sq , the players punish the one with the smaller
index. The punished player plays his best response to what the other players are doing in this
phase.
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Definition 5. Let Ga,b,c,n be the set of all games with c players, at most n actions per
player, integral payoffs,4 maximum payoff a, and minimum payoff b.5

Our proof uses the following three lemmas proved in [8]. The first lemma shows
that, given a correlated strategy σ in a game G, players can get an average payoff that
is arbitrarily close to their payoff in σ by playing a fixed sequence of action profiles
repeatedly.

Lemma 1. For all a, b, c, all polynomials q, all n, all games G ∈ Ga,b,c,n, and all
correlated strategies σ in G, if the expected payoff vector of playing σ is ξ, then there
exists a sequence sq of action profiles of length w(n) = 2((a−b)q(n)+1)nc, such that
for all δ ≤ 1/f(n), where f(n) = 2(a − b)w(n)q(n), if sq is played infinitely often,
then player i’s payoff in G∞(δ) is at least ξi − 1/q(n), no matter at which point of the
sequence play is started.

To explain what we mean by the phrase “no matter at which point of the sequence
play is started”, suppose that the sequence sq has the form (�a1, . . . ,�a5). Then the result
holds if we start by playing �a1 or if we start by playing �a4 (and then continue with �a5,
�a1, �a2, and so on).

The next lemma shows that, for every inverse polynomial, if we “cut off” the game
after some appropriately large polynomial p number of rounds (and compute the dis-
counted utility for the finitely repeated game considering only p(n) repetitions), the
difference between a player’s utility in the infinitely repeated and the finitely repeated
game is negligible; that is, the finitely repeated game is a “good” approximation of the
infinitely repeated game.

Lemma 2. For all a, b, c, all polynomials q, all n, all games G ∈ Ga,b,c,n, all 0 < δ <

1, all strategy profiles �M , and all players i, the difference between i’s expected utility
pi[ �M ] in game G�n/δ�(δ) and pi[ �M ] in game G∞(δ) is at most a/2n.

The last lemma shows that the punished player’s expected payoff is negligible.

Lemma 3. For all a, b, c, all polynomials t and f , all sequences of games G1, G2, . . .

such that Gn ∈ Ga,b,c,n, and all players i, if the players other than i play �MσNE,�

−i , then
for all non-uniform polynomial time TMs M , there exists a negligible function ε such
that if i uses M and M deviates from the phase 1 sequence before round t(n), then i’s
expected payoff during phase 3 is less then ε(n).

We first show that for any strategy that deviates while phase 1 is played, there is a
strategy whose payoff is at least as good and either does not deviate in the first polyno-
mially many rounds, or after its first deviation, deviates every time phase 1 is played.
(Recall that after every deviation in phase 1, the other players play the punishment phase
for �(n) rounds and then play phase 1 again.)

4 Our result also hold for rational payoffs, except then the size of the game needs to take into
account the bits needed to represent the payoffs.

5 By our assumption that the minimax payoff is 0 for all players, we can assume a ≥ 0, b ≤ 0,
and a− b > 0 (otherwise a = b = 0, which makes the game uninteresting).
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We do this by showing that if player i has a profitable deviation at some round t of
phase 1, then it must be the case that every time this round of phase 1 is played, i has
a profitable deviation there. (That is, the strategy of deviating every time this round of
phase 1 is played is at least as good as a strategy where player i correlates his plays
in different instantiations of phase 1.) While this is trivial in traditional game-theoretic
analyses, naively applying it in the computational setting does not necessarily work. It
requires us to formally show how we reduce a polynomial time TM M to a different
TM M ’ of the desired form without blowing up the running time and size of the TM.

For a game G, let H1,n,f
G∞ be the set of histories h of G∞ of length at most nf(n)

such that at (the last node of) h, σNE ,	 is in phase 1. Let R(M) be the polynomial that
bounds the running time of TM M .

Definition 6. Given a game G, a deterministic TM M is said to be (G, f, n)-well-
behaved if, when (M,σNE ,	

−i ) is played, then either M does not deviate for the first
nf(n) rounds or, after M first deviates, M continues to deviate from sq every time
phase 1 is played in the next nf(n) rounds.

Lemma 4. For all a, b, c, and all polynomials f , there exists a polynomial g such
that for all n, all games G ∈ Ga,b,c,n, all h ∈ H1,n,f

G∞ , all players i, and all TMs M ,

there exists a (G(h), f, n)-well-behaved TM M’ such that pG
h,1/f(n)

i (M ′, �MσNE,�

−i ) ≥
p
Gh,1/f(n)
i (M, �MσNE,�

−i ), and R(M ′), |M ′| ≤ g(R(M)).

Proof. Suppose that we are given G ∈ Ga,b,c,n, h ∈ H1,n,f
G∞ , and a TM M . We can

assume without loss of generality that M is deterministic (we can always just use the
best random tape). If M does not deviate in the first nf(n) rounds of G(h)∞ then M ′

is just M , and we are done. Otherwise, we construct a sequence of TMs starting with
M that are, in a precise sense, more and more well behaved, until eventually we get the
desired TM M ′.

For t1 < t2, say that M is (t1, t2)-(G, f, n)-well-behaved if M does not deviate
from sq until round t1, and then deviates from sq every time phase 1 is played up to
(but not including) round t2 (by which we mean there exists some history in which
M does not deviate at round t2 and this is the shortest such history over all possible
random tapes of �MσNE,�

−i ). We construct a sequence M1,M2, . . . of TMs such that (a)
M1 = M , (b) Mi is (ti1, t

i
2)-(G, f, n)-well-behaved, (c) either ti+1

1 > ti or ti+1
1 = ti1

and ti+1
2 > ti2, and (d) p

Gh,1/f(n)
i (Mi+1, �MσNE,�

−i ) ≥ p
Gh,1/f(n)
i (Mi, �MσNE,�

−i ). Note
that if t1 ≥ nf(n) or t2 ≥ t1 + nf(n), then a (t1, t2)-(G, f, n)-well-behaved TM is
(G, f, n)-well-behaved.

Let t < nf(n) be the first round at which M deviates. (This is well defined since
the play up to t is deterministic.) Let the history up to time t be ht. If M deviates every
time that phase 1 is played for the nf(n) rounds after round t, then again we can take
M ′ = M , and we are done. If not, let t′ be the first round after t at which phase 1
is played and there exists some history of length t′ at which M does not deviate. By
definition, M is (t, t′)-(G, f, n)-well behaved. We take M1 = M and (t11, t

1
2) = (t, t′).

(Note that since �MσNE,�

−i are randomized during phase 2, the first time after t at which
M returns to playing phase 1 and does not deviate may depend on the results of their
coin tosses. We take t′ to be the first time this happens with positive probability.)
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Let sh
∗

be M ’s memory state at a history h∗. We assume for ease of exposition that
M encodes the history in its memory state. (This can be done, since the memory state
at time t is of size polynomial in t.) Consider the TM M ′′ that acts like M up to round
t, and copies M ’s memory state at that round (i.e., sh

t

). M ′′ continues to plays like M
up to the first round t′ with t < t′ < t + nf(n) at which σNE,	 would be about to
return to phase 1 and M does not deviate (which means that M plays an action in the
sequence sq at round t′). At round t′, M ′′ sets its state to sh

t

and simulates M from
history ht with states sh(t); so, in particular, M ′′ does deviate at time t′. (Again, the
time t′ may depend on random choices made by �MσNE,�

−i . We assume that M ′′ deviates
the first time M is about to play phase 1 after round t and does not deviate, no matter
what the outcome of the coin tosses.) This means, in particular, that M ′′ deviates at any
such t′. We call M ′′ a type 1 deviation from M .

If p
Ght

,1/f(n)
i (M ′′, �MσNE,�

−i ) > p
Ght

,1/f(n)
i (M, �MσNE,�

−i ), then we take M2 =
M ′′. Note that t21 = t11 = t, while t22 > t12 = t′, since M ′′ deviates at t′. If

p
Ght

,1/f(n)
i (M ′′, �MσNE,�

−i ) < p
Ght

,1/f(n)
i (M, �MσNE,�

−i ), then there exists some history
h∗ of both M and M ′′ such that t < |h∗| < t + nf(n), M ′′ deviates at h∗, M does
not, and M has a better expected payoff than M ′′ at h∗. (This is a history where the
type 1 deviation failed to improve the payoff.) Take M2 to be the TM that plays like
�MσNE,�

i up to time t, then sets its state to sh
∗
, and then plays like M with state sh

∗

in history h∗. We call M2 a type 2 deviation from M . Note that M2 does not devi-
ate at ht (since M did not deviate at history h∗). Let δ′ = (1 − δ)|h

∗|−|ht|. Clearly

δ′p
Ght

,1/f(n)
i (M2, �MσNE,�

−i ) = p
Gh∗

,1/f(n)
i (M, �MσNE,�

−i ), since �MσNE,�

−i acts the same

in Ght

and Gh∗
. Since M ′′ plays like M(sht) at h∗, p

Gh∗
,1/f(n)

i (M ′′, �MσNE,�

−i ) =

δ′p
Ght

,1/f(n)
i (M, �MσNE,�

−i ). Combining this with the previous observations, we get that

p
Ght

,1/f(n)
i (M2, �MσNE,�

−i ) ≥ p
Ght

,1/f(n)
i (M, �MσNE,�

−i ). Also note that t21 > t11. This
completes the construction of M2. We inductively construct Mi+1, i = 2, 3, . . ., just as
we did M2, letting Mi play the role of M .

Next observe that, without loss of generality, we can assume that this sequence arises
from a sequnce of type 2 deviations, followed by a sequence of type 1 deviations: For
let j1 be the first point in the sequence at which a type 1 deviation is made. We claim
that we can assume without loss of generality that all further deviations are type 1
deviations. By assumption, since Mj1 gives i higher utility than Mj1−1, it is better to
deviate the first time Mj1−1 wants to play phase 1 again after an initial deviation. This
means that when Mj1 wants to play phase 1 again after an initial deviation it must

be better to deviate again, since the future play of the �MσNE,�

−i is the same in both of
these situations. This means that once a type 1 deviation occurs, we can assume that all
further deviations are type 1 deviations.

Let Mj be the first TM in the sequence that is well behaved. (As we observed earlier,
there must be such a TM.) Using the fact that the sequence consists of a sequence of
type 2 deviations followed by a sequence of type 1 deviations, it is not hard to show
that Mj can be implemented efficiently. First notice that Mj1 is a TM that plays like
�MσNE,�

i until some round, and then plays M starting with its state at a history which
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is at most (nf(n))2 longer than the real history at this point. This is because its initial
history becomes longer by at most nf(n) at each round and we iterate this construction
at most nf(n) times. This means that its running time is obviously polynomially related
to the running time of the original M . The same is true of the size of Mj1 , since we
need to encode only the state at this initial history and the history at which we switch,
which is polynomially related to R(M)(n).

To construct Mj , we need to modify Mj1 only slightly, since only type 1 deviations
occur. Specifically, we need to know only t1j1 and to encode its state at this round.
At every history after that, we run MJ1 (which is essentially running M on a longer
history) on a fixed history, with a potential additional step of copying the state. It is
easy to see that the resulting TM has running time and size at most O(R(M)). ��

We now state and prove our theorem, which shows that there exists a polynomial-
time algorithm for computing a subgame-perfect ε-equilibrium by showing that, for all
inverse polynomials ε, there exists a polynomial function � of ε such that σNE∗,	 is a
subgame-perfect ε-equilibrium of the game. The main idea of the proof is to show that
the players can’t gain much from deviating while the sequence is being played, and also
that, since the punishment is relatively short, deviating while a player is being punished
is also not very profitable.

Theorem 1. For all a, b, c, and all polynomials q, there is a polynomial f and a
polynomial-time algorithm F such that, for all sequences G1, G2, . . . of games with
Gj ∈ Ga,b,c,j and for all inverse polynomials δ ≤ 1/f , the sequence of outputs of
F given the sequence G1, G2, . . . of inputs is a subgame-perfect 1

q -equilibrium for
G∞

1 (δ1), G
∞
2 (δ2), . . ..

Proof. Given a game Gn ∈ G(a, b, c, n), the algorithm finds a correlated equilibrium σ
of Gn, which can be done in polynomial time using linear programming. Each player’s
expected payoff is at least 0 when playing σ, since we assumed that the minimax value
of the game is 0. Let r = a− b. By Lemma 1, we can construct a sequence sq of length
w(n) = 4(rnq(n) + 1)nc and set f ′(n) = 4rw(n)q(n), so that if the players play
sq infinitely often and δ < 1/f ′(n), then all the players get at least −1/2q(n). The
correlated punishment strategy against each player can also be found in polynomial
time using linear programming.

Let m(n) be the length of phase 2, including the round where the deviation oc-
curred. (Note that m(n) is a polynomial that depends only on the choice of en-
cryption scheme—that is, it depends on φ, where a φ-bit public-key encryption
scheme is used, and on z, where z(k) is the length of encrypted messages.) Let
�(n) = nq(n)(m(n)a + 1), let σ∗

n be the strategy �MσNE,�

described above, and let
f(n) = max(3rq(n)(�(n) +m(n)), f ′(n)).

We now show that σ∗
1 , σ

∗
2 , . . . is a subgame-perfect (1/q)-equilibrium for every in-

verse polynomial discount factor δ ≤ 1/f . We focus on deviations at histories of length
< n

δ(n) , since, by Lemma 2, the sum of payoffs received after that is negligible. Thus,
there exists some n0 such that, for all n > n0, the payoff achieved after that history is
less than 1/q(n), which does not justify deviating.

We first show that no player has an incentive to deviate in subgames starting from
phase 1 histories. By Lemma 4, it suffices to consider only a deviating strategy that after
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its first deviation deviates every time phase 1 is played; for every deviating strategy,
either not deviating does at least as well or there is a deviating strategy of this form that
does at least as well. Let h1 be the history in which the deviation occurs and let M be
the deviating strategy. Notice that �MσNE,�

can always act as intended at such histories;
it can detect it is in such a history and can use the history to compute the next move
(i.e., it does not need to maintain memory to figure out what to do next).

The player’s payoff from (M, �MσNE,�

−i ) during one cycle of deviation and punishment
can be at most a at each round of phase 2 and, by Lemma 3, is negligible throughout
phase 3. (We use εneg to denote the negligible payoff to a deviator in phase 3.) Thus, the

payoff of the deviating player from (M, �MσNE,�

−i ) from the point of deviation onwards
is at most

((1− δ(n)|h1|)
(
δ(n)(m(n)a+ εneg)

�nf(n)−|h1 |
m(n)+�(n)

�∑
t=0

(1− δ(n))(m(n)+	(n))t + ε′neg
)

≤ ((1− δ(n)|h1|)
(
δ(n)(m(n)a+ εneg)

∞∑
t=0

(1− δ(n))(m(n)+	(n))t + ε′neg
)
,

where ε′neg is the expected payoff after round nf(n). By Lemma 1, no matter where in
the sequence the players are, the average discounted payoff at that point from playing
honestly is at least −1/2q(n). Thus, the payoff from playing ( �MσNE,�

) from this point
onwards is at least −(1 − δ(n))|h1|)1/2q(n). We can ignore any payoff before the
deviation since it is the same whether or not the player deviates. and also divide both
sides by (1 − δ(n))|h1|); thus, it suffices to prove that

δ(n)(m(n)a + εneg)

∞∑
t=0

(1− δ(n))(m(n)+	(n))t + ε′neg ≤
1

2q(n)
.

The term on the left side is bounded by O
( m(n)a+εneg

nq(n)(m(n)a+1)

)
, and thus there exists n1

such that, for all n > n1, the term on the left side is smaller than 1
2q(n) (In fact, for all

constants c, there exists nc such that the left-hand side is at most 1
cq(n) for any n > nc.)

We next show that no player wants to deviate in phase 2 or 3 histories. Notice that
since these phases are carried out to completion even if the players deviate while in
these phases (we do not punish them for that), and the honest strategy can easily detect
whether it is in such a phase by looking at when the last deviation from phase 1 oc-
curred. First consider a punishing player. By not following the strategy, he can gain at
most r for at most �(n)+m(n) rounds over the payoff he gets with the original strategy
(this is true even if his memory state is such that he just plays a fixed action, or even if
another player deviates while the phase is played). Once the players start playing phase
1 again, our previous claim shows that no matter what the actual history is at that point,
a strategy that does not follow the sequence does not gain much. It is easy to verify
that, given the discount factor, a deviation can increase his discounted payoff by at most
1

q(n) in this case. (Notice that the previous claim works for any constant fraction of
1/q(n), which is what we are using here since the deviation in the punishment phase
gains 1/cq(n) for some c.)
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The punished player can deviate to a TM that correctly guessed the keys chosen (or
the current TM’s memory state might contain the actual keys and he defects to a TM
that uses these keys) , in which case he would know exactly what the players are going
to do while they are punishing him. Such a deviation exists once the keys have been
played and are part of the history. Another deviation might be a result of the other TMs
being in an inconsistent memory state, so that they play a fixed action, one which the
deviating player might be able to take advantage of. However, these deviations work (or
any other possible deviation) only for the current punishment phase. Once the players go
back to playing phase 1, this player can not gain much by deviating from the sequence
again. For if he deviates again, the other players will choose new random keys and a
new random seed (and will have a consistent memory state); from our previous claims,
this means that no strategy can gain much over a strategy that follows the sequence.
Moreover, he can also gain at most r for at most �(n)+m(n) rounds which, as claimed
before, means that his discounted payoff difference is less than 1

q(n) in this case.
This shows that, for n sufficiently large, no player can gain more than 1/q(n) from

deviating at any history. Thus, this strategy is a subgame-perfect 1/q-equilibrium. ��
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Abstract. A major challenge faced by the marketers attempting to optimize their
advertising campaigns is to deal with budget constraints. The problem is even
harder in the face of multidimensional budget constraints, particularly in the pres-
ence of many decision variables involved, and the interplay among the decision
variables through these such constraints. Concise bidding strategies help adver-
tisers deal with this challenge by introducing fewer variables to act on.

In this paper, we study the problem of finding optimal concise bidding strate-
gies for advertising campaigns with multiple budget constraints. Given bid
landscapes—i.e., predicted value (e.g., number of clicks) and cost per click for
any bid—that are typically provided by ad-serving systems, we optimize the value
given budget constraints. In particular, we consider bidding strategies that consist
of no more than k different bids for all keywords. For constant k, we provide
a PTAS to optimize the profit, whereas for arbitrary k we show how constant-
factor approximation can be obtained via a combination of solution enumeration
and dependent LP-rounding techniques.

Finally, we evaluate the performance of our algorithms on real datasets in two
regimes with 1- and 3-dimensional budget constraint. In the former case where
uniform bidding has provable performance guarantee, our algorithm beats the
state of the art by an increase of 1% to 6% in the expected number of clicks.
This is achieved by only two or three clusters—contrast with the single cluster
permitted in uniform bidding. With only three dimensions in the budget constraint
(one for total consumption, and another two for enforcing minimal diversity),
the gap between the performance of our algorithm and an enhanced version of
uniform bidding grows to an average of 5% to 6% (sometimes as high as 9%).
Although the details of experiments for the multidimensional budget constraint
to the full version of the paper are deferred to the full version of the paper, we
report some highlights from the results.

1 Introduction

The Internet has become a major advertising medium, with billions of dollars at stake;
according to the recent IAB report [18], Internet advertising revenues in the United
States totaled $31.7 billion in 2011 with sponsored search accounting for 46.5% of this
revenue. Search engines provide simple ways to quickly set up an advertising campaign,
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track expenses, monitor effectiveness of the campaigns, and tinker with campaign pa-
rameters, and this has made it relatively easy even for small advertisers to enter online
advertising market. Even with all available tools to monitor and optimize ad campaigns,
proper allocation of the marketing budget is far from trivial. A major challenge faced
by the marketers attempting to optimize their campaigns is in the sheer number of vari-
ables they can possibly change. The problem is even more challenging in the presence
of multiple budget constraints; i.e., in setting up a campaign that aims to target vari-
ous categories of users or queries, or target a diverse set of demographics, the goal of
an advertiser may be to allocate at least a fraction of its budget to each category, and
therefore it may be facing several budget constraints at the same time. Even within a
single advertising channel on a particular search engine, the advertiser can optimize by
reallocating the budget across different keywords, choosing a particular bidding strat-
egy to use within a single ad auction, deciding on the daily advertising budget or what
demographics of users to target. This is in particular challenging in the presence of
many decision variables involved and an interplay among these variables. To deal with
the challenge, we propose concise bidding strategies to help advertisers by introducing
fewer variables to act on. The idea is to consider the set of keywords that an advertiser
may be interested in bidding on, and partition them into a small number of clusters
such that the advertiser is going to have the same bid on each cluster. Such concise
bidding strategies are inspired by uniform bidding strategies that have been shown to
achieve relatively good results [11]. In this paper, we develop near-optimal concise bid-
ding strategies for allocating advertising budgets across different keywords in a general
setting in the presence of multiple budget constraints. In the following, we first motivate
the problem and give an overview of our contributions, before elaborating on our model
and our results in the following sections.

Setting. Any online advertising market such as sponsored search consists of three main
players: Users, Advertisers, and Publishers (or search engines). In sponsored search,
users pose queries on a search engine like Bing or Google, declaring their intention and
interests. Advertisers seek to place ads and target them to users’ intentions as expressed
by their queries, and finally publishers (or search engines in the case of sponsored
search), provide a suitable mechanism for showing ads to users, through an ad-serving
system. A common mechanism for allocating ads to users is based on having advertis-
ers bid on the search query issued by the user, and the search engine run an auction at
the time the user poses the query to determine the advertisements that will be shown
to the user. A lot of research has focused on the algorithmic and game-theoretic prob-
lems behind such advertising markets, both from the publisher/search engine’s point of
view [1, 22, 7, 19, 5, 6, 12], and advertiser’s point of view [4, 11, 21, 23, 20, 8, 2]. In
this paper, we focus on optimization problems faced by advertisers.

More specifically, when a user submits a search query to a search engine, she receives
next to the search results a number of ads. If the user finds any of the ads interesting
and relevant, she may click on the ad. Advertisers interested in a search query submit
their bids and the auction determines (1) which ads “win” to be displayed to the user,
and (2) how much each is charged. Charging can be based on “impressions” (each
time the ad being displayed to the user), “clicks” (only if the the user clicks on the
ad), or “conversions” (only if the user purchases the product or installs the software).
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In sponsored search, advertisers mainly pay if the user clicks on their ad (the “pay-per-
click” model), and the amount they pay is determined by the auction mechanism, but
will be no larger than their bid.

While the impact of a bidding strategy is a complicated phenomenon based on com-
plex dynamics among other advertisers’ bidding strategies and the arrival pattern of user
queries, search engines help advertisers optimize their campaigns by providing general
statistics about the final predicted cost and value (e.g., number of clicks) of a bidding
strategy. In particular, they provide for each advertiser a set of bid landscapes1 [11] for
keywords; i.e., for each keyword w, advertisers get bid landscape functions valuew and−−→
costw corresponding to different bids on keyword w.

For ease of presentation, here we mostly focus on the most common case of cost-
per-click (CPC) charging and consider the bid landscapes for cost and number of clicks,
however, unlike most previous work [11, 20], our results directly apply to more general
pay-per-impression or pay-per-conversion models along with other value functions, and
even to settings with nonconcave value or cost functions.

To set up an advertising campaign, advertisers specify a set of user queries (or key-
words), determine a bid for each type of query/keyword, and declare an upper bound
on their advertising budget for the campaign. Next, we discuss these constraints.

Multidimensional Budget Constraints. Budget constraints play a major role in setting
up an online advertising campaign, both from the auctioneer point of view and from
advertiser’s marketing strategy. It gives advertisers a robust knob to hedge against the
uncertainty in the cost and benefits of the advertising campaign. In fact, some automated
tools provided by search engines ask for a budget as part of the input, e.g., [13, 14].
While setting up an advertising campaign, marketers often aim to target a diverse set
of demographics, and therefore need to spread their budget spent on various keywords.
One way to enforce a diversified spent is to set an upper bound on the budget spent on
a subset of keywords corresponding to a subcategory of users targeted in the campaign
or a particular category of keywords.

As an example, consider an advertising campaign by a real-estate agency website to
generate customers (or leads) for rentals in three of the boroughs in New York City,
namely, Manhattan, Brooklyn, and Queens. Given a $1000 daily budget for the whole
campaign, the advertiser might want to diversify the campaign throughout different bor-
oughs, and therefore, spend at most $500 of the budget for the keywords related to Man-
hattan, at most $400 for those related to Brooklyn, and at most $250 for those related
to Queens. Moreover, the advertiser might want to diversify among the different rental
types as well, and to spend at most $700 on the keywords relevant to condominiums
and/or apartments and at most $600 on those searches relevant to townhouses and/or
houses. By this example, we would like to emphasize that even very natural preferences
such as the above (and consequently, their relevant budget constraints) could have very
complicated structures. In particular, the budget constraints are not limited to the special
multidimensional case in which the constraints are only defined over disjoint subsets of
keywords. As a result, different budget constraints interact with each other and their
corresponding decisions would affect one another. We want our model to be able to

1 Also referred to as “bid simulator” or “traffic estimator” [15, 16].
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capture such general multidimensional budget constraints. We describe the details of
these budget constraints in Section 2.

Concise Bidding Strategies. Advertisers usually need to submit their bidding strategy
to the search engine ahead of time, so that whenever a relevant query enters the system,
the auction can run in real time. Advertisers can optimize their campaigns by reallo-
cating their budget across different keywords, choosing a particular bidding strategy to
use, or deciding on what demographics of users to target. This optimization is partic-
ularly challenging when facing many decision variables or the interplay among them
through the multidimensional budget constraints. To deal with this challenge, we pro-
pose concise bidding strategies by introducing fewer variables to act on. The idea is
to represent the bidding strategy by a small number of bids with each bid acting on a
cluster of keywords, i.e., partitioning the target set of keywords into a small number of
clusters so that the advertiser is going to have the same bid on each cluster.

Such concise bidding strategies are already studied in the context of uniform bidding
strategies, introduced by the seminal paper of Feldman et al. [11]. In uniform bidding
strategies, the advertiser bids uniformly on all keywords. Uniform bidding, although
naı̈ve at first glance, has been shown to achieve relatively good results, both in theory
and practice [11, 20]. In fact, the simplicity of uniform bidding along with its reasonable
performance make it a desirable solution in practice which is robust and less reliant on
the uncertain information provided by the advertising tool. Using such strategies, ad-
vertisers understand what their campaign is doing and where it is spending the budget.
Although effective in simplistic setting, uniform bidding mainly applies to a specific
setting with a single budget constraint and concave cost and value functions. Search
engines do give advertisers the ability to bid differently on each keyword. Employing
more complicated bidding strategies—in particular, using this ability to bid differently
on different keywords—may benefit the advertiser, search engine users, and the search
engine company. However, finding a different bid value for each keyword will result in
information overload for the advertiser. It may make the campaign management over-
whelming and impossible. Therefore, we take a middle-ground approach, and instead
of declaring only one bid for all keywords, we cluster the keywords into a small number
of subsets and apply a uniform bidding strategy on each subset, i.e., we use k distinct
bids and let each bid act on an appropriate subset of keywords.

Goal. Given all the above, our goal is to help advertisers find optimal concise bidding
strategies respecting multiple budget constraints. Given a number k, a set of keywords
relevant to an ad campaign, a value bid landscape and multiple budget landscapes for
each keyword, the advertiser’s goal is to find k clusters of keywords, and a bid for each
cluster so as to maximize the value the advertiser receives from this bidding strategy
(e.g., the expected number of clicks) subject to its budget constraints.

Our Results and Techniques. In this paper, we propose concise bidding strategies,
and develop an algorithm to find optimal concise bidding strategies for allocating ad-
vertising budgets across different keywords in a general setting in the presence of
multiple budget constraints. We formalize the concise bid optimization problem with
multiple budget constraints as motivated and sketched above, and formally defined in
Section 2, and present approximation algorithms for this problem. The problem with
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super-constant number of budget constraints r does not admit a reasonable approxi-
mation algorithm as it is harder than set packing. The latter is known not to have any
ω(r1−ε) approximation unless NP ⊆ ZPP [17]. In this paper, we focus on the problem
with a constant number of budget constraints r.

Our main theoretical contribution in this paper is a constant-factor approximation
for arbitrary number of clusters k. This constant-factor approximation algorithm is ob-
tained using a dependent LP-rounding technique (performed in three phases) combined
with solution enumeration. The linear-programming (LP) formulation of this problem
and the dependent-rounding approach used to obtain an integral solution are of indepen-
dent interest. The rounding algorithm is very simple to implement and is linear-time,
however, its analysis uses a new technique to bound the loss incurred.

For the case of constant number of clusters k, we provide a polynomial-time approx-
imation scheme (PTAS) to optimize the value. This PTAS is based on a careful dynamic
program that enumerates various ways to satisfy the budge constraints. If a factor 1 + ε
violation of budget constraints is permitted, it is relatively easy to extend the standard
PTAS for the knapsack problem to solve our problem with multiple budget constraints.
However, to eliminate the budget violations completely is pretty involved and requires
careful enumeration and modification of the residual instance.

Finally, we evaluate our algorithms on real data sets and compare their performance
with the uniform bidding strategy. Even in a simple setting of maximizing the expected
number of clicks subject to one budget constraint (for which uniform bidding is prov-
ably good), we show that using a small number of clusters can improve the expected
number of clicks by 1% to 4%. We see more improvement with increasing number of
clusters when the budget constraint is more tight. We also evaluate our algorithm in data
sets with more budget constraints, and notice significant improvement (as high as 20%)
compared to uniform bidding. Moreover, we observe that we lose less than 1% when
we round the solution from fractional LP solution to a feasible integral solution. In the
interest of space, some of the proofs will be deferred to the full version of the paper.

1.1 Related Work

As a central issue in online advertising, optimizing under budget constraints have been
studied extensively both from publishers’ (or search engines’) point of view [19, 5,
6, 12], and from advertisers’ point of view [4, 11, 21, 23, 20, 8, 2]. One well-studied
problem from publisher’s perspective is to deal with online allocation of ads in the
presence of budget constraints [19, 5, 10, 9], and another line of research is dedicated
to designing efficient mechanisms addressing incentive issues, and respecting budget
constraints [6, 12]. More relevant to this paper, the bid optimization with budget con-
straints has also been studied from advertisers’ perspective: either in a repeated auction
setting [4], or in the context of broad-match ad auctions [8], or the case of long-term
carryover effects [2].

This work is most related to the seminal paper of Feldman et al. [11] in which the au-
thors propose uniform bidding as a means for bid optimization in the presence of budget
constraints in sponsored-search ad auctions. Our results differ from those of Feldman
et al. [11] and Muthukrishnan et al. [20] in several aspects: The uniform bidding result
and its guaranteed approximation ratio of 1 − 1/e applies to CPC settings where the
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goal is to maximize the expected number of clicks and the cost and click landscapes
follow a specific structure. Besides, those results apply only in the case of one budget
constraint and (the proofs) do not easily generalize to settings with multiple budget con-
straints. Our results however apply to any set of monotone cost and value bid landscape
functions (e.g., for the case of maximizing conversions), and more importantly handles
multiple budget constraints. In addition, we compare our solution to the best solution
with the same number of clusters, however, Feldman et al. compare their solution to
the optimum of the knapsack problem with arbitrarily number of clusters and also in
a more general query language model. As a result, we can get a PTAS for the case of
constant number of clusters, but Feldman et al. can only get a 1 − 1/e approximation
ratio. In fact, generalizing the results of Feldman et al. to multiple budget constraints is
not possible, and we needed a new solution concept and a set of tools and techniques
for this problem.

2 Preliminaries

Let [k] for an integer k denote the set {1, 2, . . . , k}. We denote a vector v by v to
emphasize its multidimensionality. The length of the vector is omitted and understood
from the context; it is r, unless otherwise specified, since our vectors are mostly used for
capturing the multidimensional resource constraints. To denote different components of
a vector v of length r, we use the notation v(q) for q ∈ [r]. For any real number z, the
vector z is one all whose components are z. The length of these vectors is understood
from the context. We say v ≤ w if they have the same length and every component of
v is at most the corresponding component of w. Otherwise, we can write v �≤ w.

2.1 Formal Problem Definition

In order to optimize their campaigns, we assume that advertisers get “bid land-
scapes” [11] as an input: For each keyword w, they get (i) a monotone nonnegative
function valuew that maps any bid value to the expected value (e.g., number of clicks),
and (ii) a nonnegative function

−−→
costw mapping any bid value to an r-dimensional cost

vector incurred by the advertiser. These functions are left-continuous, but they do not
necessarily satisfy Lipschitz smoothness conditions. (See [11] for an example of how
these are derived.)

In addition, we have an r-dimensional budget limit vector (or resource usage vector),
and a number k indicating the number of clusters we can produce in our suggested
bidding strategy. The bid clustering problem is formally the following:

Problem 1. Given are an integer k, a number r of budget constraints (resources), a real
vector L ∈ Rr, a set K of keywords as well as value and cost landscape functions
valuew : bids 	→ R and

−−→
costw : bids 	→ Rr for each keyword w ∈ K. Find a partition

of K into k clusters K1,K2, . . . ,Kk, and a set of bids bi for i ∈ [k] such that the
expected resource consumption of the advertiser is no more than his budget vector L,
i.e.,

∑
i∈[k]

∑
w∈Ki

−−→
costw(bi) ≤ L, and the advertiser’s value (e.g., expected number

of clicks), i.e.,
∑

i∈[k]

∑
w∈Ki

valuew(bi) is (approximately) maximized. We can also
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consider a weighted objective where clicks coming from different keywords may be of
varying degrees of importance.

For ease of exposition, we use the shorthands cqib =
−−→
cost

(q)
i (b) to refer to each budget

constraint limit and pib = valuei(b) for values. We also refer to each of the r budget
constraints as a resource constraint, i.e., the qth resource (or budget) constraint is the
following:

∑
i∈[k]

∑
w∈Ki

−−→
cost

(q)
i (b) ≤ Lq. Finally, throughout this paper, we use n =

|K| to denote the number of keywords, k for the number of clusters, and r for the
number of budget (or resource) constraints.2

2.2 Approach

As discussed earlier, we know that if r, the number of different budget constraints (or re-
source constraints) is not a constant, the bid-clustering problem even with no restriction
on the number of clusters is inapproximable. This is due to the fact that this problem
is harder than the set packing or the independent set problem which is known to be
inapproximable within a factor better than n1−ε unless NP ⊂ ZPP [17]. As a result,
henceforth we assume that r is a small constant. In fact, the running times of our algo-
rithms depend exponentially on this parameter. We note that all the previous work in
advertising bid optimization only consider the case of r = 1 [11, 20, 8, 2].

Uniform resource limits. First note that we can assume without loss of generality that
the resource usage limit vector L = 1. To see this, note that we consider each resource
separately. Therefore, if a resource limit q in L is positive, we can scale it to 1 while
modifying cost(q)w appropriately for all w ∈ K. On the other hand, a limit of zero in L for
some resource q implies that we cannot place a bid b on a keyword w if cost(q)w (b) > 0.

Hence, by setting such values of cost(q)w (b) to∞ we can change the limit of q in L to 1.

Small set of potential bids. We next show that, although the cost and value landscapes
have a continuous nature (provided to us, perhaps, by oracle access), we can settle with
a polynomial-size description thereof while incurring a small loss in the guarantees. In
particular, we show that there are only a polynomial number of different bid values that
matter. The proof of the following lemma can be found in the full version of the paper.

Lemma 1. Given any δ > 0, we can find (in polynomial time) a set B of size poly(n, 1
δ )

such that there exists a (1 − δ)-approximate solution (to the problem) all whose bids
fall in B.

In what follows, we consider two input regimes and present algorithms for each. For
the general case, we present a constant factor approximation algorithm. If k, the number

2 Note that different resource constraints are not for disjoint sets of keywords; had this been the
case, the problem would have been decomposed into separate single-resource special cases. We
emphasize, however, that in the example provided, different resource constraints correspond
to different markets, each drawing from all keywords, albeit with different coefficients. These
techniques can be potentially used to obtain lower bounds on each resource consumption, in
effect, capturing diversification objectives better.
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of permissible clusters, is a constant, the following theorem guarantees the existence of
a polynomial-time approximation scheme (PTAS) based on dynamic programming for
the problem. The proof is deferred to the full version of the paper.

Theorem 1. There is a polynomial-time approximation scheme for the bid-clustering
problem if k is a constant.

3 Approximation Algorithm

In the following, we approach to the bid-clustering problem by solving a very simple
linear-programming relaxation and then applying a three-stage dependent randomized
rounding scheme. Even though the analysis is not straightforward, the algorithm is very
simple to implement and use in practice.

3.1 Linear Programming Relaxation

Here we introduce a linear-programming relaxation for the problem. We will argue that
we only need to round this LP for the case that each bid has a small contribution to
the solution, otherwise, a PTAS from Theorem 1 suffices to find a good solution for
keywords with big contributions in the solution.

max
∑

i,b pibxib (1)

s.t.
∑

i,b c
q
ibxib ≤ L(q) ∀q ∈ [r]∑
b yb ≤ k ∀i
xib ≤ yb ∀i, b
yb ≤ 1 ∀b∑

b xib ≤ 1 ∀i (2)

xib, yb ≥ 0 ∀i, b. (3)

Consider a variable xib for each keyword i ∈ K
and each relevant bid b ∈ B. In the integer linear
program,xib denotes whether the advertiser should
place a bid b on keyword i and in the LP relax-
ation, we relax it to a positive real variable. In ad-
dition, there is a variable yb for each relevant bid b,
denoting whether there is a cluster with bid b. To
make the LP more concise and readable, we use the
shorthands pib = valuei(b) and cqib =

−−→
cost

(q)
i (b).

For the case when all cqib ≤ εL, this LP has a small integrality gap, and the LP can
be rounded to obtain an approximation ratio of 0.54 − ε. In fact, this can be done if

cqb =
∑

i c
q
ib
xib

yb
≤ εL(q) for all b and q; see Section 3.2.

To solve the problem, we consider two cases. First, if there is a solution of value at
least βopt (β to be determined later) for which the above condition holds, we can add
cqb ≤ εL(q) conditions to the LP as follows.∑

i c
q
ibxib ≤ εL(q)yb ∀b, q. (4)

and then solve and round the LP to get a guarantee of β(0.54− ε).
Second case happens when there is a solution of value at least (1 − β)opt that uses

only large-cost clusters, i.e., each cluster of the solution has cost at least εL(q) for some
q. In this case, there will be at most rε−1 clusters in the solution, therefore, we can use
Theorem 1 to get an approximation ratio of 1− β − ε. Letting β = 1

1.54 , and outputing
the best solution of the two methods yields an approximation ratio of 1 − β ≈ 0.3506
for the general case of the problem.
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3.2 Rounding the LP

The above LP is rounded in three stages. In the first stage, we modify the fractional
solution so that only k nonzero yb variables remain. This is done carefully without
losing more than 1 − ε factor in the objective value. At this point, we have an LP
solution that is almost feasible—some constraints (2) may be violated. The second stage
addresses this issue by modifying xib variables so that, at the end, all LP constraints are
satisfied. The third stage, which we may even skip depending on the type of solution we
need, is a standard randomized assignment of each keyword to one bid, and may lose
up to a factor 1− ε.

Stage 1: Rounding yb Variables. Variables yb are considered one by one, and are
rounded to either zero or one, and the value of the remaining (i.e., as of now uncon-
sidered) variables yb are adjusted accordingly. In particular, each variable yb, when
considered, is rounded up to one with probability yb and is rounded down to zero with
probability 1 − yb. The remaining yb variables are scaled such that their sum stays the
same. During the process, xib variables are also scaled such that each xib/yb remains a
constant throughout. This process is a martingale, hence we have concentration bounds
for

∑
b c

q
byb (if all individual contributions are small). We scale down all xib variables

by a factor 1 + ε, so that the cost constraints are satisfied.
Let LP be the objective value of the linear program. Further, denote by LP(l) the

objective values for the LP solutions after stage l ∈ [3]. Notice that, although LP itself

is a certain value, each LP(l) is a random variable. We have E
[
LP(1)

]
≥ 1

1+εLP.

Stage 2: Modifying xib Variables to Get a Feasible Solution. Note that after round-
ing the yb variables and scaling the xib variables appropriately, some constraints (2) may
be violated. In particular, for certain keywords i, we may have

∑
b xib > 1. For each

such keyword, we scale down all xib variables at the same rate to obtain
∑

b xib = 1.
Clearly, these operations do not violate any new constraints, and fix all the violated ones,
hence the result is a feasible solution. It only remains to show the loss in the objective
due to these operations is not too much. More specifically, we prove the following.

Lemma 2. We have E
[
LP(2)

]
≥ λE

[
LP(1)

]
for a positive constant value of λ =

0.539968.

Here, we provide a weaker proof of the above lemma for λ = 1
4 . At the end of the

proof we discuss the ideas to strengthen our analysis to λ = 0.539968. The complete
proof is deferred to the full version of the paper.

Define random variable Xib to be xib/yb with probability yb and zero otherwise.
Let random variable Xi denote

∑
b Xib. Furthermore, define random variable Pi =∑

b pibXib, which is the contribution of keyword i to the objective value after Stage 1.

Note that E [Xib] = xib, E [Pi] =
∑

b pibxib, and E
[
LP(1)

]
=
∑

iE [Pi].

Consider the contribution of all keywords i with Xi > 2 to the value of LP(1). Let
random variable P̂i denote this contribution. By the following inequalities, we show
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that E[P̂i] ≤ E[Pi]/2, which means that in expectation at least half of the value of
LP(1) comes from keywords i with Xi ≤ 2.

E
[
P̂i

]
= E

[
Pi

∣∣Xi > 2
]
·Pr [Xi > 2] = E

[∑
b

pibXib

∣∣∣Xi > 2

]
·Pr [Xi > 2]

=
∑
b

E
[
pibXib

∣∣Xi > 2
]
·Pr [Xi > 2] (5)

=
∑
b

E
[
pibXib

∣∣Xi > 2 ∧Xib > 0
]
·Pr [Xib > 0] ·Pr

[
Xi > 2

∣∣Xib > 0
]

=
∑
b

E

[
pibXib

∣∣∣Xi > 2 ∧Xib =
xib

yb

]
·Pr

[
Xib =

xib

yb

]
·Pr

[
Xi > 2

∣∣∣Xib =
xib

yb

]
=
∑
b

pib
xib

yb
· yb ·Pr

[
Xi > 2

∣∣∣Xib =
xib

yb

]

=
∑
b

pibxib ·Pr

[
X−b

i > 2− xib

yb

∣∣∣Xib =
xib

yb

]
≤
∑
b

pibxib ·
E
[
X−b

i

∣∣Xib =
xib

yb

]
2− xib

yb

≤
∑
b

pibxib ·
1− xib

yb

2− xib

yb

≤
∑
b

pibxib ·
1

2
=

1

2
E [Pi] . (6)

Now, note that in Stage 2, for each keyword i with Xi > 1 we scale down all Xib

variables by Xi. Hence, for each keyword i with Xi ≤ 2, we lose at most a factor of
2 in the scaling process of Stage 2. However, Inequality (6) shows that at least half of
the value of E[LP(1)] is coming from such keywords. Hence, a quarter of E[LP(1)] is
preserved after Stage 2, or, λ ≥ 1

4 .
The above analysis is suboptimal for two reasons. First, it ignores the contribution

of pibxib to the objective if Xi happens to be greater than two. Second, it treats all key-
words i for which Xi ≤ 2 similarly, and divides all of them by two although some may
only require a small scaling factor (or none at all). The deferred analysis takes advantage
of these observations and some concentration bounds to achieve λ = 0.539968.

Stage 3: Rounding xib Variables. We can simply pick one bid b for each keyword
i with probability proportional to xib. This independent rounding enjoys concentration
properties (via Chernoff bounds) for total value as well as the cost vector. This follows
from the assumption that no cqib or pib is larger than ε or εopt, respectively, otherwise
we would use the PTAS in Theorem 1. Therefore, we argue that, with high probability,
both are within a factor 1 ± ε of the semi-integral LP solution. Then, since individual
contributions to cost are small, we can remove, and throw away a small portion of the
cost with a loss in value that is no more than a 1− ε factor.

The discussions in this section so far can be summarized in the following theorem.

Theorem 2. The above algorithm provides a 0.54-approximate integral solution to the
LP (1)-(3) with additional constraints (4). This, combined with Theorem 1, can be used
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to obtain a 0.35-approximate solution for the general concise bidding problem, i.e.,
LP (1)-(3).

In the full version of the paper, we provide an instance of the aforementioned LP
with an integrality gap of 0.63.

4 Experimental Study

In order to evaluate the practical performance of our algorithms, we apply our algo-
rithms to real datasets collected from a sponsored search advertising system, and com-
pare our results with a baseline method, i.e., uniform bidding. For a set of (randomly
selected, anonymous) advertisers, we consider a set of queries on which they might
wish to advertise. We use a traffic estimator tool to estimate the number of clicks the
advertiser will get and the cost he will have to pay when he bids a bid b. Such tools are
provided for major sponsored search advertising systems [3, 15].

The datasets contain varying number of queries (from tens to tens of thousands). For
each query we obtain estimates of clicks and cost for bids in the range [$0.10, $2].

We then run our algorithms, an appropriate version of the uniform bidding algo-
rithm and an algorithm that computes the optimal bid for each query against each of
the datasets. We apply these algorithms at different budget values to see the impact of
changing the budget in the relative performance of different algorithms.

4.1 A One-Dimensional Budget Constraint

Our initial experiments involve only one budget constraint. Note that this is the setting
in which the uniform-bidding algorithm was proposed and analyzed [11].

We first see how the total amount of clicks that can be obtained grows as the number
of permitted bids increases.

Fig. 1. Comparison of performance by number of
clusters for all datasets

Figure 1 plots the performance of
the bid allocation we find for different
number of bids. It shows how the ob-
jective value of the fractional LP for
each dataset grows with the number of
clusters. This interesting point confirms
the intuition that additional clusters al-
low for more refined bidding on various
queries, hence better performance. We
also note that, conveniently, with a few
clusters, we can achieve the almost op-
timal solution, and there is no need for
a complicated strategy.

Next we consider the deterministic solutions constructed by our algorithm for each
of these datasets. The values in the figures are normalized with respect to the optimal
solution that chooses an individual bid for each query. We report performance of our
algorithm for number of clusters k = 1, 2, 3, 4. We also report the performance of our
implementation of uniform bidding that chooses an optimal set of two bids, with some
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Fig. 2. Plots comparing performance of various algorithms on the three datasets. The x axis has
budget in dollars, whereas the y axis shows the percentage of the (unrestricted) optimal solution.

probability chooses the first bid for all queries and otherwise chooses the other bid for
all queries. This algorithm was described and analyzed in [11].

Plots in Figure 2 compare the performance of integer solutions produced by LP
rounding with the uniform bidding benchmark.

We see that all algorithms perform equally well at high budgets or when the instance
is fairly small, where even the optimal fractional solution is almost integral. On the other
hand at lower values of budget and specially in the larger instances, we see superiority
of our algorithms as the number of clusters grows. In particular, for the large dataset
L, we see improvements of 4% to 6% in the expected number of clicks compared to
the uniform bidding strategy when we increase the number of clusters to four. For other
datasets which are smaller the average improvement in number of clicks is about 1%.

4.2 A Multidimensional Budget Constraint

A virtue of our algorithm is that it is naturally taking care of the setting where multiple
budget constraints are present. These additional budget constraints may arise when an
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advertiser, considering the semantic meaning of different queries, wishes to restrict how
much of her budget is spent on specific queries or domains. In the full version of this
paper we report detailed results of evaluating our algorithms on experimental data in
the presence of multidimensional budget constraint.

5 Conclusion and Future Directions

We formulate the problem of finding the concise bidding strategy for advertisers in order
to obtain the maximum number of clicks (or maximize other monotone profit function)
subject to a multidimensional budget constraint.

When the budget constraint has constant dimension, we propose a polynomial-time
approximation scheme. Otherwise, we present an LP-rounding algorithm that is both
fast and simple to implement. While the approximation guarantee for this algorithm
is ≈ 0.54, it performs much better in practice. In particular, even for the case of a
one-dimensional budget constraint, our algorithm beats the state of the art algorithm
(uniform bidding) by 1% to 6%. Conveniently this is achieved by very concise bidding
strategies that use only two or three different bids (where uniform bidding uses one).
The gap between the performance of our algorithm and the enhanced uniform bidding
widens in the case of having a small number (e.g., two) extra dimensions in the budget
constraint to guarantee diversity for advertisement targeting. In this case, our algorithms
outperforms the state of the art by an average of 5% to 6% (and sometimes up to 9%).

One obvious future direction would be to improve the analysis of our LP rounding.
We conjecture that the integrality gap is 1 − 1

e and that our current rounding approach
indeed achieves this approximation factor.

Another possible research direction is to investigate the effect of k (the maximum
number of possible bids provided to the advertiser) on the optimum solution of the prob-
lem. Currently, we assume that the value of k is given, and based on that we provide a
set of—at most—k bids to the advertiser to choose the bid from. However, it is not clear
how the value of k itself should be determined. The trade-off here is between simplicity
(i.e., lower values k that lead to a more concise set of possible bids) and performance
(higher values of k which lead to a broader set of feasible solutions and consequently,
improve the optimum solution). One approach to this question would be to examine the
value of the optimum solutions for different values of k. A preliminary study of this
question for one-dimensional budget constraints (as reported in Figure 1) suggests that
the expected marginal gain from allowing one more possible bid (i.e., adding one unit to
k) is diminishing. In other words, the expected profit is a concave function of k. Also,
the reported result suggests that the marginal gains rapidly diminish and most of the
gain is captured by going from k = 1 to k = 2, where we go from “forcing the solution
to use the single bid available” to “allowing the solution to optimize over two available
bids”. Formalizing these observations would be very helpful in providing better insight
about the nature of the problem and the challenges we face.
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Abstract. We consider (approximate) revenue maximization in mechanisms
where the distribution on input valuations is given via “black box” access to sam-
ples from the distribution. We analyze the following model: a single agent, m
outcomes, and valuations represented as m-dimensional vectors indexed by the
outcomes and drawn from an arbitrary distribution presented as a black box. We
observe that the number of samples required – the sample complexity – is tightly
related to the representation complexity of an approximately revenue-maximizing
auction. Our main results are upper bounds and an exponential lower bound on
these complexities. We also observe that the computational task of “learning” a
good mechanism from a sample is nontrivial, requiring careful use of regular-
ization in order to avoid over-fitting the mechanism to the sample. We establish
preliminary positive and negative results pertaining to the computational com-
plexity of learning a good mechanism for the original distribution by operating
on a sample from said distribution.

1 Introduction

In the general (quasi-linear, independent-private-value, Bayesian) mechanism design
setting, a principal must choose from one from a set A of outcomes, and there are n
bidders each of whom has a valuation vi : A → * mapping outcomes to real val-
ues. These valuations are private, and the mechanism designer only knows that each
vi is drawn from a prior distribution Di on valuations. Based on these distributions,
the mechanism designer must design a mechanism that determines, for each profile of
bidder valuations, an outcome which may be probabilistic – a lottery – and a payment
from each player. The rational behavior of the bidders is captured by two sets of con-
straints: Incentive constraints require that no bidder can improve his expected utility
by behaving according to – i.e. “reporting to the mechanism” – another valuation v′i.
Individual Rationality constraints require that bidders never lose from participating in
the mechanism. Under these two sets of constraints the mechanism designer’s goal is to
maximize his expected revenue.

Myerson’s classical work [18] completely solves the problem for the special case of
single parameter valuations, where each vi is effectively captured by a scalar. In this
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case, the optimal mechanism has a very simple form and is deterministic. It turns out
that this completely breaks down once we leave the single-parameter settings and it is
known that deterministic mechanisms can be significantly inferior to general ones that
are allowed to allocate lotteries [4, 11, 16, 17, 19], and that good revenue may require
complex mechanisms [14]. Moreover, this is so even in very simple settings such as
auctions with a single bidder and two items.

It is well known that even in the general multi-parameter case, the revenue maximiz-
ing mechanism is obtained using linear optimization [4]. While this may seem encour-
aging for both characterization and computation of the optimal mechanism, there is a
rub: this LP formulation hides several exponential blowups in the natural parameters in
most settings. Two types of such blowups, and how to overcome them, have received
considerable attention recently: an exponential blowup in n, the number of bidders, that
is a result of the fact that we have variables for each profile of valuations (e.g. [1,2,6,8]),
and the fact that, in the case of various multi-item auctions, m, the size of the outcome
space, is naturally exponential in the number of items (e.g. [7, 10, 12]).

In this paper we study a third type of exponential blowup who’s consequences are
not yet fully understood: the size of the support of each Di – the size of the valuation
space – is naturally exponential in the number of outcomes m. Formally, it is often a
continuum since a valuation assigns a real value to each alternative, but even once we
discretize (as we certainly will have to do for any computational purpose), the valuation
space is still exponential in m. Does this exponential blowup necessarily translate to the
computational task, or can revenue be maximized in time polynomial in m?

For most bite of our main result, which is negative, we focus on the simplest scenario
of this type, one that exhibits only this exponential blowup in the size of the valuation
space, and no others. Specifically, we have a single bidder bidding for m abstract al-
ternatives in A. For a single bidder, this setting is essentially equivalent1 to an auction
setting studied e.g. in [4, 11] in which A is a set of items for sale, a “unit demand” bid-
der is interested in acquiring at most a single item and has a potentially different value
v(j) for each item j ∈ A. Furthermore, for a single bidder, an auction is just a pricing
scheme, giving a menu that assigns a price for each possible lottery (x1...xm) where
xj ≥ 0 is the probability of getting item j and

∑
j∈A xj ≤ 1.

As observed in [4], if D (the prior distribution over v) happens to have a “small”
support then the linear program is small and we are done. However, this is typically
not the case: even if we restrict all item values to be 0 or 1 there are 2m possible
valuations and the linear program is exponential. This raises the question of how D is
represented. Sometimes D admits some special structure — e.g. it may be a product
distribution over item values — permitting a succinct representation. In other cases
it may come from “nature” and we will, in some sense, have to “learn” D in order
to construct our mechanism. Both of these scenarios can be captured by a black box
sampling model in which our access to D is by means of a sequence of samples v, each
drawn independently at random from D. Can we design an (approximately) revenue-
maximizing auction for D using a reasonable number of samples?

1 The formal distinction is that in the unit-demand setting, there is special outcome ∗ with fixed
value v(∗) = 0, denoting not allocating any item.
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The focus of this paper is the general case in which D is not necessarily a product
distribution. Revenue maximization for product distributions was previously studied
by [9, 11] who together achieve a polynomial-time constant-factor approximation, and
by [5] who design a quasi-polynomial-time (1 + ε) approximation to the revenue of
deterministic auctions. It is known, however, that the general case of correlated distri-
butions is harder, e.g. deterministic prices can not provide a constant approximation [4].

The most natural approach for maximizing revenue for a distribution D given as a
black box would be to sample some polynomial number of valuations from it, construct
a revenue maximizing auction for this sample, and hope that the constructed auction
also has good revenue on the original distribution D. This, however, may fail terribly
even for symmetric product distributions as shown in Proposition 3.

The astute reader will recognize this failure as a classic case of over-fitting: the opti-
mal mechanism for the sample is so specifically targeted to the sample that it loses any
optimality for the real distribution D. The remedy for such over-fitting is well known:
we need to “discourage” such tailoring and encourage “simple” auctions. At this point
we need to specify what “simple” auctions are, a question closely related to how auc-
tions are represented. The simplest answer is the “menu-complexity” suggested in [14]:
we measure the complexity as the number of possible allocations of the auction, i.e. as
the number of entries in the menu specifying the auction. More complex representations
that may be more succinct for some auctions are also possible. Our lower bounds will
apply to any auction representation language. Formally, an auction representation lan-
guage is an arbitrary function that maps binary strings to auctions. The complexity of an
auction in a given language is just the length of the smallest binary string that is mapped
to this auction. Thus for example the menu-size of an auction corresponds to complex-
ity in the representation language where the menu-entries are explicitly represented by
listing the probabilities and price for each entry separately.2

Our Results

Fixing an auction representation language, we consider the following sample-and-
optimize template for revenue maximization that takes into account the complexity
of the output auction (in said representation language). The same idea is used in the
context of prior-free mechanism design by [3]. In our setting, beyond the dependence
on complexity of the auction, the number of samples needs to depend (polynomially)
on three other parameters: the number of items m, the required precision ε, and the
range of the values. Specifically, assume that all valuations in the support ofD lie in the
bounded range 1 ≤ v(j) ≤ H for all j. Since most of the expected value of a valuation
may come from events whose probability is O(1/H), it is clear that we will need Ω(H)
samples to even notice these events.3

2 Counting bits, we are off from just counting the number of menu entries by a factor of
O(m log ε) where ε is the precision in which real numbers are represented. We will focus
on exponential versus polynomial complexities, so do not assign much importance to this gap.

3 This also explains why bounding the range of valuations, as we do, is required for the sampling
question to make any sense. Equivalently, we could have instead bounded the variance of D
without significantly changing any of our results.
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Sample-and-Optimize Algorithm Template

1. Sample t = poly(C,m, ε−1, H) samples from D.
2. Find an auction of complexity at most C that maximizes (as much as possible) the

revenue for the uniform distribution over the sample and output it.

To convert this template to an algorithm, one must specify C and show how to compute
an auction of complexity C which achieves high revenue on the sample. (Note that with-
out the complexity bound, even fully maximizing revenue is efficiently done using the
basic linear program, but this does not carry-over to complexity-bounded maximiza-
tion.) Once the complexity is bounded, at least information-theoretically, the “usual”
learning-like uniform convergence bounds indeed apply and we have:

Proposition 1. Fix any auction representation language, and take an algorithm that
follows this template and always produces an auction that approximates to within an α
factor the optimal revenue from the sample over all auctions of complexity C. Then the
produced auction also approximates to within a factor of (1− ε)α the revenue from the
real prior distribution D over all auctions of complexity C. (see full version)

Thus we get approximate revenue maximization over all complexity-C auctions.
However, if this limited class is inferior to general auctions, this does not yield ap-
proximate revenue maximization over all auctions, which is our goal. The following
questions thus remain:

1. What is the complexity C required of an auction in order to obtain good revenue?
What approximation can we get when we require C to be polynomial in H and m?

2. What is the computational complexity of step 2 of the algorithm template, i.e. of
constructively finding a mechanism that maximizes revenue over mechanisms of
bounded complexity C?

We provide definitive answers to the first question and preliminary answers to the sec-
ond. Apriori, it is not even clear that any finite complexity C suffices for getting good
revenue (for fixed H and m). Previous work ( [12]) implies that arbitrarily good ap-
proximations are possible using menu-size complexity that is polynomial in H and
exponential in m and for the special case m = 2 even poly-logarithmic size in H , [14].
This is done by taking the optimal auction and “rounding” its entries. This is trick-
ier than it may seem since a slight change of probabilities may cause a great change
in revenue, so such proofs need to carefully adjust the rounding of probabilities and
prices making sure that significant revenue is never lost.4 We describe a general way to
perform this adjustment, allowing us to tighten these results: we get poly-logarithmic
dependence in H for general m, stronger bounds for “monotone” valuations, and do
it all effectively in a computational sense. Monotone valuations are restricted to have
v(1) ≤ v(2) ≤ ... ≤ v(m), and naturally model cases such as values for a sequence of
ad-slots or for increasing numbers of items in a multi-unit auction.

4 Technically, there is no countable ε-net of auctions in the sense of approximating the revenue
for every distribution. Instead, one needs to construct a “one-sided” net.
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Theorem 1. For every distribution D and every ε > 0 there exists an auction with

menu-size complexity at most C =
(

logH+logm+log ε−1

ε

)O(m)

whose revenue is at least

(1− ε) fraction of the optimal revenue for D. For the special case of distributions over
“monotone” valuations, menu-size complexity of at most C = mO((log3 H+log2 ε)/ε2)

suffices. Furthermore, in both cases these auctions can be computed in
poly(C,H, ε−1,m) time by sampling poly(C,H, ε−1,m) valuations from D.

So in general a menu of complexity exponential in m suffices. A basic question is
whether complexity polynomial in m suffices (in terms of menu-size or perhaps other
stronger representation languages). The “usual tricks” suffice to show that an O(logH)-
approximation of the revenue is possible with small menus.

Proposition 2. For every distribution D there exists an auction with m menu-entries
(and with all numbers represented in O(logH) bits) that extracts Ω(1/ logH) fraction
of the optimal revenue from D. Furthermore, this auction can be computed in polyno-
mial time from poly(H) samples. (see full version)

Can this be improved? Can we get a constant factor approximation with polynomial-
size complexity? Our main result is negative. Previous techniques that separate the rev-
enue of simple auctions from that of general auctions do not suffice for proving an
impossibility here for two reasons. First, these bounds only apply to menu-size com-
plexity and not to general auction representations; this is explicit in [14] and implicit
in [4].5 Second, these bounds proceed by giving an upper bound to the revenue that
a single menu-entry can extract. Since small menus can extract an O(1/ logH) frac-
tion of the optimum revenue, such techniques can have no implications for sampling
complexity since, as mentioned above, Ω(H) is a trivial lower bound on the sampling
complexity. Our main result shows that even for a small range of values H , auctions

may need to be exponentially complex in m in order to break the O
(

1
logH

)
barrier.

Theorem 2. For every auction representation language and every 1 < H < 2m/400

there exists a distributionD on [1..H ]m such that every auction with complexity at most

2m/400 has revenue that is at most an O
(

1
logH

)
fraction of the optimal revenue for D.

Notice that this immediately implies a similar exponential lower bound on the num-
ber of samples needed: since we allow any auction description language, simply listing
the sample is one such language for which the lower bound holds.

Next, we examine our second question, regarding the computational complexity of
“fitting” an auction of low complexity to sampled data. We show that it is NP -hard to
compute an approximately optimal auction of a specified menu size.6

Theorem 3. Given as input a sample of valuations and a menu-size C, it is NP-hard to
approximate the optimal menu with size C to within any factor better than 1− 1

e
H−1
H .

5 Since these papers exhibit an explicit distribution providing the separation, the optimal auction
can always be specified in some language by just listing the few parameters of said distribution.

6 Here, we expect stronger auction representation languages to only be harder to deal with.



282 S. Dughmi, L. Han, and N. Nisan

This hardness result does not preclude a satisfactory answer to our original goal
of effectively finding an auction that approximates the revenue also on the original
distribution D since for that it suffices to find a “small” auction with good revenue on
the sample, rather than the “smallest” one. Thus a bi-criteria approximation to step 2
suffices, and may be algorithmically easier: find a menu of size poly(C,m,H) which
approximates the revenue of the best menu of size C over a given sample. Whether this
bi-criteria problem can be solved in polynomial time is left as our first open problem.

Our second open problem concerns the question of structured distributions, specifi-
cally product distributions over item values studied in [5, 9, 11]. Proposition 1 implies
that, as these distributions can be succinctly represented, polynomially many samples
suffice for finding a nearly optimal auction for product distributions.7 It is not clear,
however, how this can be done algorithmically and whether the simple menu-size auc-
tion description language suffices for succinctly representing the (approximately) opti-
mal auction. Constant factor approximation with small menu-size (even deterministic
menus) follow from [9, 11], but a (1 + ε)-approximation is still open.

2 Preliminaries

2.1 The Model

In the single-buyer unit-demand mechanism design problem, or the pricing problem for
short, we assume that there are m “items” or “outcomes” [m] = {1, . . . ,m}, and a sin-
gle risk-neutral buyer equipped with a valuation v ∈ Rm

+ . Additionally, we assume the
existence of an additional outcome ∗ for which a buyer has value 0 – e.g. the outcome
in which the player receives no item. We assume that v is drawn from a distribution D
supported on some family of valuations V ⊆ Rm

+ .
We adopt the perspective of an auctioneer looking to sell the items in order to max-

imize his revenue. After soliciting a bid b ∈ V , the auctioneer chooses an allocation,
namely a (partial) lottery x ∈ Δm =

{
x ∈ Rm

+ :
∑

i xi ≤ 1
}

over the items, and a pay-
ment p ∈ R+. Formally, the auctioneer’s task is to design a mechanism, equivalently,
an auction, (x, p), where x : V → Δm maps a player’s reported valuation to a lottery
on the m items, and p : V → R+ maps the same report to a payment. When each
allocation in the range of x is a deterministic choice of an item, we say the mechanism
(or auction) is deterministic, otherwise it is randomized.

To simplify our results, we usually assume that players’ valuations lie in a bounded
range. Specifically, we require that the support V of our distribution is contained in
[1, H ]m, for some finite upper-bound H which may depend on the number of items
being sold. Given this assumption, we restrict our attention without loss of generality
to mechanisms with payment rules constrained to prices in [1, H ] ∪ {0}. Moreover, we
assume without loss of generality that p(v) = 0 only if x(p) = 0.8

7 This is directly implied when the item values have finite (polynomial) support; the techniques
used in section 4.1 suffice for showing it in general.

8 An optimal mechanism satisfying these two properties always exists for all the problems we
consider.
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Whereas our complexity results are independent of the representation of D, our al-
gorithmic results hold in the black-box model, in which the auctioneer is given sample
access to D, and otherwise knows nothing aboutD besides its support V .

2.2 Truthfulness and Menus

We constrain our mechanism (x, p) to be truthful: i.e. bidding b = v maximizes the
buyer’s utility v ·x(b)−p(b). The well known characterization below reduces the design
of such a mechanism to the design of a pricing menu.

Fact 1. A mechanism (x, p) is truthful if and only if there is a menu M ⊆ Δm × R of
allocation/price pairs such that (x(v), p(v)) ∈ argmax(x,p)∈M{v · x− p}.
We adopt the menu perspective through much of this paper, interchangeably referring to
a mechanism (aka auction) and its corresponding menu M . When interpreting a menu
M as a mechanism, we break ties in v · x − p in favor higher prices. When every
allocation in the menu is a deterministic choice of an item, we call M an item-pricing
menu, otherwise we call it a lottery-pricing menu.

We also require our mechanisms to be individually rational. To enforce this, we
assume that (0, 0) is in every menu. As described in Section 2.1, we usually restrict
valuations to [1, H ]m and payments for non-zero lotteries to [1, H ]. Therefore, we think
of a menu as a subset of Δm × [1, H ], and include (0, 0) implicitly.

2.3 Auction Complexity and Benchmarks

Given a mechanism M and valuation v, we use Rev(M, v) to denote the payment of
a buyer with valuation v when participating in the mechanism. Given a distribution
D over valuations, we use Rev(M,D) = Ev∼D Rev(M, v) to denote the expected
revenue generated by the mechanism when a player is drawn from distribution D. We
use Rev(D) to denote the supremum, over all mechanisms M , of Rev(M,D). When
M is a family of mechanisms, we use Rev(M,D) to denote supM∈M Rev(M,D).

Recall that a auction description language is just a mapping from binary strings to
mechanisms. I.e. it is simply a way of encoding menus in binary strings. The represen-
tation complexity of an auction in such a language is simply the length of the shortest
string that is mapped to it. For this paper, the only important property of auction de-
scription languages is that there are at most 2C auctions of complexity C. (Of course,
in applications we will also worry about its expressive power, its computational diffi-
culty, etc.) The simplest auction description language allows describing an auction by
directly listing its menu entries one by one. Each menu entry is composed of m + 1
numbers, and if all the numbers can be presented using O(r) bits of precision, then the
total complexity of a k-entry auction in this format is O(kmr). In this paper we never
need more than r = O(logm+ logH + log ε−1) bits of precision, so the gap between
menu-size (the number of menu entries) and complexity using this language (the total
number of bits used in such a description) is not significant.

We use Revk(D) to denote the maximum revenue of a mechanism with complexity
at most k. When using menu-size complexity, we say M is a k-menu if |M | ≤ k, and
useMk to denote the set of all k-menus, andM∞ to denote the set of all menus.
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3 Sampling vs. Auction Complexity

3.1 Over Fitting with Complex Auctions

In this subsection we will consider the basic sampling algorithm that makes a small
number of samples and optimizes the auction for this sample.

Naive Sample-and-Optimize Algorithm

1. Sample t = poly(m) samples from D.
2. Find an auction that maximizes revenue for the uniform distribution over samples.

We will show that this does not work even for symmetric product distributions. Let
δ > 0 be some small constant and let D be the distribution on valuations where item
values are chosen identically and independently at random as follows: with probability
δ: v(j) = 1; with probability δ/m: v(j) = 2; and otherwise: v(j) = 0. We will show
that optimizing for a sample may give very low revenue on D itself:

Proposition 3. Take a polynomial-size sample, with high probability, there is an auc-
tion that is optimal for the sample and yet its revenue from D is O(δ). (see full version)

3.2 Uniform Convergence over Simple Auctions

When we limit the “complexity” of the auction that our algorithm is allowed to produce
to be significantly smaller than the sample size, we can guarantee that the produced
auction approximately maximizes revenue for the original distribution D. Since there
can not be too many auctions of low complexity, this follows by a standard application
of tail bounds and the union bound as in [3].

Sample-and-Optimize Algorithm Template

1. Sample t = poly(C,m, ε−1, H) samples from D.
2. Output an auction of complexity at most C that approximately maximizes the rev-

enue for the uniform distribution over the sample.

Proposition 1. Fix any auction representation language, and take an algorithm that
follows this template and always produces an auction that approximates to within an α
factor the optimal revenue from the sample over all auctions of complexity C. Then the
produced auction also approximates to within a factor of (1− ε)α the revenue from the
real prior distribution D over all auctions of complexity C. (see full version)

4 Constructions of Simple Approximating Auctions

4.1 From Rounding Lotteries to “Rounding” Auctions

When trying to approximate a given auction, it is natural to simply round all entries in
the menu and hope that this does not hurt the revenue significantly. As mentioned in the
introduction, this is not trivial since tiny decreases in probabilities or tiny increases in
price may be the “last straw” chasing away bidders that made knife’s-edge choice of the
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entry. This subsection shows that, never the less, this may be done with a little further
tweaking: once we have a good way to round lotteries we can “round” entire menus,
losing an approximation factor that is polynomially related to the rounding error.

Several previous works (e.g. [3,15]) have considered discretization of pricing mech-
anisms, most of which operate on item prices and therefore admit simpler “covers” of
the space of mecanisms. Recently, [8] applied some of these ideas to lottery pricing,
though their lemma is not at the level of generality required for our purposes. In par-
ticular, if we use their lemma directly, the additive loss in revenue due to discretization
could be εH , which cannot guarantee any multiplicative approximation ratio.

Definition 1. Let V be a set of valuations, and L be a set of lotteries. We say that L
ε-covers V if for every lottery x ∈ Δm there exists a lottery x̃ ∈ L such that for every
v ∈ V we have that x · v ≥ x̃ · v ≥ (1 − ε)x · v − ε.

Lemma 1. Let L be a set of lotteries that ε-covers a set of valuations V , for every
menu M there exists a menu M̃ all of whose entries have lotteries in L and have prices
represented in O(log ε−1+logH+logm) bits such that for every v ∈ V Rev(M̃, v) ≥
(1−ε′)Rev(M, v)−ε′, where ε′ = O(logH

√
ε). Moreover, if the calculation of x̃ from

x is efficient then so is the calculation of M̃ from M . (see full version)

4.2 Approximations for General Valuations

So at this point we know that we just need to worry about rounding lotteries. Once we
round all values to a small number of discrete values, we will get a small number of lot-
teries. Unfortunately, we need to use both an additive and multiplicative approximation
error: the multiplicative approximation error allows a large additive error when values
are close to H ; and the additive error saves us from having to approximate multiplica-
tively very small probabilities. Combining these two notions of error allows us to make
do with O(logH/ε) discrete levels of approximation.

Proposition 4. Let Rε be the set of real numbers containing zero and all integer powers
of (1− ε) in the range [ε/(Hm), 1], and let Lε be the set of lotteries all of whose entries
are in Rε. Then Lε ε-covers the set of all valuations v ∈ [1, H ]m. Moreover, calculating
x̃ from x can be done efficiently. (see full version).

Corollary 1. There exists an ε-cover of the set of all valuations v : {1...m} → [1, H ]
whose size is ((logm+ logH + log ε−1)/ε)m.

Corollary 2. (Part I of theorem 1 from the introduction) For every distribution D on
[1, H ]m and every ε > 0 there exists an auction with menu-size complexity at most

C =
(

logH+logm+log ε−1

ε

)O(m)

whose revenue is at least (1−ε) fraction of the optimal

revenue for D. Furthermore, this auction can be computed effectively (in polynomial
time in its size) from a sample of size poly(C,m,H, ε−1) .

Proof. Combining corollary 1 using O((ε/ logH)2) in place of ε with lemma 1 we get
the existence of mechanism with menu-size complexity of ((logm + logH)/ε)O(m)
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whose approximation error (both additive and multiplicative) is ε. The additive approx-
imation error of the whole mechanism is subsumed by the multiplicative one since
optimal revenue is at least 1. We now plug this family of low complexity mechanisms
into proposition 1, and obtain the required result, in the information-theoretic sense.

To compute the actual menu, we solve the linear program on the sample (that is of
size polynomial in C, thus exponential in m), obtain the optimal mechanism M for the
sample, and then round it to a mechanism M̃ that provides the required approximation
for the sample and – since it is of the right complexity – also for the distribution.

4.3 Approximations for Monotone Valuations

In this section, we consider a limited class of valuations and show that for distributions
over this class a much smaller complexity is needed. The class we consider fixes an
order on items, without loss of generality, the order 1, . . . ,m. A valuation v ∈ [1, H ]m

is monotone if vi ≤ vi+1 for i ∈ {1, . . . ,m− 1}. Monotone valuations are natural in
contexts such as multi-unit auctions, where m identical goods are being sold, and an
outcome corresponds to the number of goods allocated to the buyer. In this setting, vi is
the player’s value for i goods. Monotone valuations then correspond to a free disposal
assumption in multi-unit auctions.

Next we show that for monotone valuations, we can find a small ε-cover of all lot-
teries, which implies, using our “Rounding Lotteries to Rounding Auctions” paradigm,
small complexity auctions that approximate revenue well for all monotone valuations.
This family of auctions has menu-size complexity polynomial in m when ε and H are
constant, and quasi-polynomial when H is polynomial in m (and ε poly-logarithmic).

Theorem 4. (Part II of theorem 1 from the introduction) IfD is supported on monotone

valuations then for every ε > 0 there exists a menu M with C = mO( log3 H+log2 ε−1

ε2
)

entries (and with all numbers with O(logm+ logH + log ε−1) bits of precision) such
that Rev(M,D) ≥ (1 − ε)Rev(D). Furthermore, this auction can be computed in
poly(C,H, ε−1,m) time by sampling poly(C,H, ε−1,m) valuations from D.

As in the proof of corollary 2, using lemma 1 and proposition 1, this theorem follows
from the following lemma (proof in full version):

Lemma 2. For every ε, there is a set of lotteries L whose size is mO((logH+log ε−1)/ε),
that ε-covers the set of all monotone valuations with v : {1...m} → [1, H ]. Moreover,
calculating x̃ from x can be done efficiently.

5 Lower Bound for Auction Complexity

Before we embark on our lower bound, we note the matching upper bound.

Proposition 2. For every distribution D there exists an auction with m menu-entries
(and with all numbers represented in O(logH) bits) that extracts Ω(1/ logH) fraction
of the optimal revenue from D. Furthermore, this auction can be computed in polyno-
mial time from poly(H) samples. (see full version)
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Theorem 2. For every auction representation language and every 1 < H < 2m/400

there exists a distributionD on [1..H ]m such that every auction with complexity at most

2m/400 has revenue that is at most an O
(

1
logH

)
fraction of the optimal revenue for D.

Proof. We will construct the distributionD probabilistically. Our starting point will be a
fixed baseline distribution B that takes an “equal revenue” one-dimensional distribution
and spreads it symmetrically over a random subset of the items. Each valuation in the
support of B is specified by a set S ⊂ {1..m} of size exactly k = m/3 and an integer
scale value 1 ≤ z ≤ logH . The valuation will give value 2z for every item in S
and value 1 for every other item. The probability distribution over these is induced by
choosing S uniformly at random among sets of size k and choosing z as to obtain an
“equal revenue distribution” Pr[z = x] = 2−x. We can view this distribution over
the v’s as choosing uniformly at random from a multi-set V of exactly

(
m
k

)
(H − 1)

valuations (for every set S of size k we have H/2 copies of a valuation with value
2, H/4 copies of a valuation with value 4 ... and a single copy of a valuation with
value H). The point is that due to symmetry, it can be shown that, just like in the
corresponding single dimensional case, Rev(B) is constant (despite the expected value
being O(logH)). This is proven formally in lemma 3 below.

Taking the point of view of B being a random choice of a valuation from the multi-set
V , we will now construct our distribution D as being a uniform choice over a random
subset V ′ of V , where V ′ is of size |V ′| = K = 2m/100. We will now be able to
provide two estimates. On one hand, since V ′ is a random sample from V , we expect
that every fixed mechanism will extract approximately the same revenue from D as
from B. This can be shown to hold, w.h.p., simultaneously for all mechanisms in a
small enough family and thus all mechanisms with sub-exponential complexity can only
extract constant revenue. On the other hand, as V ′ is sparse, w.h.p. it does not contain
two valuations whose subsets have a large intersection. This will suffice for extracting at
east half of the expected value as revenue, an expected value that is O(logH). Lemma
4 below proves the former fact and lemma 6 below proves the latter.

Lemma 3. Let B denote the distribution above then Rev(B) ≤ 2.

Proof. We will prove this by reduction the the single dimensional case where Myerson’s
theorem can be used. Let us define the single dimensional distribution G that gives value
2x with probability 2−x for x ∈ {1... logH}. The claim is that Rev(B) ≤ Rev(G) ≤ 2.
Since G is single dimensional, the second inequality follows from Myerson’s result
stating that a single price mechanism maximizes revenue, as it is easy to verify that
every possible single price gives revenue of at most 2.

To prove the first claim we build a single-parameter mechanism for G with the same
revenue as a given multidimensional one for B. Given a value 2x distributed as in G, our
mechanism chooses a random subset S of size k and constructs a valuation v by com-
bining the given single-parameter value with this set, so now v is distributed according
to B. We run the mechanism that was given to us for B and when it returns an lottery
a = a(v), we sell the item in the single parameter auction with probability

∑
j∈S aj ,

asking for the same payment as asked for the lottery a in the B-auction. Now notice
that the same outcome that maximizes utility for v also maximizes utility for the single
parameter buyer.
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Lemma 4. LetM be the set of mechanisms with complexity at most 2m/400 and choose
the distribution D as described above then, w.h.p., Rev(M,D) ≤ 3.

Proof. As |M | ≤ 22
m/400

, it follows from the following lemma and union bound.

Lemma 5. Fix some mechanism M and choose the distribution D as described above
then Pr[Rev(M,D) > 3] ≤ exp(−K/H2) ≤ 2−2m/300

.

Proof. Let rM (v) be the revenue that M extracts on valuation v. By definition
Rev(M,B) = Ev∈V rM (v) while Rev(M,D) = Ev∈V ′rM (v) (where the distribution
is uniform over the multi-sets V and V ′ respectively). Lemma 3 bounded the former:
Rev(M,B) ≤ 2. Since we are choosing V ′ to be a random multi-set of size K and since
for all v we have 0 ≤ rM (v) ≤ H then we can use Chernoff bounds to bound the prob-
ability that the expectation of rM (v) over the sample V ′ is larger than its expectation
over the population V to be Pr[|Ev∈V ′rM (v)− Ev∈V rM (v)| > 1] ≤ exp(−K/H2).

Lemma 6. Choose the distribution D as described above then, w.h.p, Rev(D) ≥
logH/2.

Proof. We will use the following property that holds, w.h.p., for V ′: for every two
different valuations in V ′ the sets of items S and T associated with them satisfy |S ∩
T | < m/6. The reason that this property holds is that for any fixed T , since S is a
random set of size m/3 the probability that |S∩T |/|T | ≥ 1/2 is exp(−|T |) ≤ 2−m/40.
Now we can take a union bound over all K2 = 2m/50 possible pairs of S and T .

Using this property of D here is a mechanism that extracts as revenue at least half of
the expected value of v, i.e. at least (logH)/2 revenue: we have a menu entry for each
element v ∈ V ′. For v that gives value 2z to the set S, this entry will offer every item
in S with probability 1/|S| = 3/m, and will ask for payment of 2z−1 for this lottery.
Clearly if v chooses this entry it gets net utility of exactly 2z−1, we need to show that
the net utility from any other menu entry is less than this. Observe that v’s value from
a menu entry that corresponds to a set T is exactly 2z · |S ∩ T |/|T | which due to our
property is bounded from above by 2z−1.

6 Computational Complexity

In this section, we examine the computational complexity of the algorithmic task as-
sociated with Proposition 1 when valuations lie in [1, H ]m. We restrict our attention
to the menu-complexity model. The computational bottleneck is Step 2 of the algo-
rithm, which computes a C-menu maximizing revenue for the uniform distribution
over samples. Specifically, it requires the solution of the following optimization prob-
lem MAXREV . An instance of MAXREV is given by an integer C and a sample
X = {v1, . . . , vn} ⊆ [1, H ]m. Feasible solutions of MAXREV are menus with at
most C entries, and the objective is to maximize revenue for a buyer drawn uniformly
from X . We leave essentially open the exact computational complexity of approximat-
ing MAXREV , yet make some progress by showing the problem APX-hard.

Theorem 3. Given as input a sample of valuations and a menu-size C, it is NP-hard to
approximate the optimal menu with size C to within any factor better than 1− 1

e
H−1
H .
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Proof. We reduce from a promise problem of the NP-hard optimization problem max
cover. For convenience, we use the equivalent hitting set formulation of max cover. The
input is a family S = {S1, . . . , Sn} of subsets of [m], and an integer k, and the output
is a “hitting set” T ⊆ [m] of size at most k maximizing the number of sets S ∈ S with
which T has a non-empty intersection — we say those sets S are “hit” by T . We use
the fact that it is NP-hard to distinguish between instances of hitting set in which the
optimal solution hits all sets in S, and instances in which the optimal solution hits less
than a 1− 1

e + ε fraction of the sets in S, for any constant ε > 0 (see Feige [13]).
Given an instance (S, k) of hitting set, we produce an instance (X,C) of MAXREV

as follows. We let C = k, and for each Si ∈ S we include a valuation vi ∈ X
such that vi(j) = H for j ∈ Si, and vi(j) = 1 otherwise. If there is a hitting set
T of size k which hits every Si ∈ S, then the item-pricing C-menu {(ej , H) : j ∈ T },
which prices every item j ∈ T at H , generates a revenue of H from every valuation
vi ∈ X . On the other hand, we show that if there is a C-menu with average revenue
at least R = H − (1e − ε)(H − 1) over X , then there is a hitting set of size k hit-
ting at least a R−1

H−1 = 1 − 1
e + ε fraction of the sets in S. Consider such a C-menu

M = {(x1, p1), . . . , (xC , pC)}, and draw an item jt from each lottery xt in M .9 Let
T = {j1, . . . , jC} be the resulting random hitting set of size ≤ C = k. It suffices to
show that T hits at least an R−1

H−1 fraction of the sets in S in expectation.

R =
n

avg
i=1

Rev(M, vi) ≤
n

avg
i=1

C
max
t=1

vi · xt ( by individual rationality )

=
n

avg
i=1

C
max
t=1

[H · xt(Si) + 1 · xt([m] \ Si)] ( xt(S) denotes
∑

j∈S xt(j) )

≤ n
avg
i=1

C
max
t=1

[H · xt(Si) + 1− xt(Si)] ( because
∑

j xt(j) ≤ 1 )

= 1 + (H − 1)
n

avg
i=1

C
max
t=1

xt(Si)

= 1 + (H − 1)
n

avg
i=1

C
max
t=1

Pr[jt ∈ Si] ( because jt ∼ xt )

≤ 1 + (H − 1)
n

avg
i=1

Pr[T ∩ Si �= ∅]

The reader might have noticed that step 2 of the ‘Sample-and-Optimize’ algorithm
template, requiring the solution of an instance of MAXREV , is too restrictive as
stated. An auctioneer may constrain the complexity of his sought mechanism either
because it is believed that such a mechanism is approximately optimal10, or because
computational and/or practical considerations limit the auctioneer to only “simple”
mechanisms. In both cases, it is perhaps more natural to seek a bicriteria guarantee:
a mechanism of complexity polynomial in C, m, and logH which nevertheless ap-
proximates the revenue of the best mechanism of complexity C.

To illustrate this idea, consider the following variant of the ‘Sample-and-Optimize’
algorithm with step 2 replaced by its bicriteria version:

1. Sample t = poly1(C,m, ε−1, H) samples from D;

9 Since our lotteries are partial (i.e.
∑

j xt(j) ≤ 1) some of the items jt may be the “null” item.
10 For product distributions, such belief can be formally proved.
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2. Find an auction of complexity at most poly2(C,m, ε−1, logH) that approximates
the optimal auction of complexity C on the t samples;

Using the same idea in the proof of Prop 1, we can see that, in order to avoid over-
fitting for auctions of complexity at most poly2(C,m, ε−1, logH), a sample size of
poly1(C,m, ε−1, H) suffices, as long as poly1 is a larger polynomial than poly2. An
α-approximation for the bicriteria MAXREV problem implies one in the black-box
model. We leave the approximability of the bicriteria MAXREV as an open question.
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Abstract. A durable good is a long-lasting good that can be consumed
repeatedly over time, and a duropolist is a monopolist in the market of
a durable good. Theoretically, less is known about durable goods than
their more well-studied counterparts, consumable and perishable goods.
It was quite startling, therefore, when Ronald Coase (1972) conjectured
that a duropolist has no monopoly power at all! Specifically, a duropolist
who lacks commitment power cannot sell the good above the competitive
price if the time between periods approaches zero. The Coase conjecture
was first proved by Gul et al. (1986) under an infinite time horizon model
with non-atomic consumers. Remarkably, the situation changes dramat-
ically for atomic consumers and an infinite time horizon. Bagnoli et al.
(1989) showed the existence of a subgame perfect Nash equilibrium where
the duropolist extracts all the consumer surplus, provided the discount
factor is large enough. Thus, for atomic consumers, the duropolist may
have perfect price discriminatory power! Observe that, in these cases,
duropoly profits are either arbitrarily smaller or arbitrarily larger than
the corresponding static monopoly profits – the profit a monopolist for
an equivalent consumable good could generate. Neither situation accords
in practice with the profitability of durable good producers. Indeed we
show that the results of Gul et al. (1986) and Bagnoli et al. (1989) are
driven by the infinite time horizons. For finite time horizons, duropoly
profits for any equilibrium satisfying the standard skimming property
closely relate to static monopoly profits. In particular, for atomic agents,
we prove that duropoly profits are always at least as large as static
monopoly profits, but never exceed double the static monopoly profits.

1 Our Results

Bagnoli et al. (1989) studied very small examples of the durable good monopoly
problem with finite time horizon and atomic consumers. They showed that in
such games with two or three consumers, it is possible to obtain subgame perfect
equilibria where the duropolist extracts more revenue than the static price strat-
egy. Several questions arise immediately from their work. Does this phenomenon
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arise for more natural games where the number of consumers and the number of
time periods is much larger than three? If so, how would a duropolist actually
compute a profit maximizing strategy? Finally, from an optimization perspec-
tive, can we quantify exactly how much more profit a duropolist can obtain at
equilibria in comparison to a static monopolist?

Our main contributions is to answer those three questions. To achieve this, we
first characterize the class of subgame perfect equilibria that satisfy the standard
skimming property: high-value consumers buy before lower-valued consumers.
Our main result is then that, at equilibria, duropoly profits are at least static
monopoly profits but at most twice static monopoly profits, regardless of the
number of consumers, their values, and the number of time periods. We also prove
that this factor two bound is tight. To conclude the paper, we examine subgame
perfect equilibria in the absence of the skimming property. We provide the first
example of a subgame perfect equilibrium in which the skimming-property does
not hold. Furthermore, we conjecture that amongst all equilibria that maximize
duropoly profits at least one satisfies the skimming property. We prove this
conjecture is true for the case of two time periods.

We believe that our results shed light into this classical problem in at least
three ways. First, this is the first theoretical result that concurs with the prac-
tical experience that duropolists and static monopolists have comparable prof-
itability. Second, our result shows that a duropolist can obtain at least half the
optimum profit by mimicking a static monopolist via a price commitment strat-
egy. From a practical perspective this is important because a price commitment
strategy can generally be implemented by the duropolist very easily. Finally, the
standard view in the literature is that the surprising and well-known result of
Bagnoli et al. (1989), namely that the duropolist can extract all consumer sur-
plus, is due to the assumption of atomic consumers. Our results showed that their
result is, in fact, driven by the infinite time horizon. For finite time horizons, the
power of a duropolist is limited.

A full version of this paper is available at http://arxiv.org/abs/1409.7979
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Abstract. We examine the Fisher market model when buyers, as well as
sellers, have an intrinsic value for money. We show that when the buyers
have oligopsonistic power they are highly incentivized to act strategically
with their monetary reports, as their potential gains are unbounded. This
is in contrast to the bounded gains that have been shown when agents
strategically report utilities [5]. Our main focus is upon the consequences
for social welfare when the buyers act strategically. To this end, we define
the Price of Imperfect Competition (PoIC) as the worst case ratio of the
welfare at a Nash equilibrium in the induced game compared to the
welfare at a Walrasian equilibrium. We prove that the PoIC is at least 1

2

in markets with CES utilities with parameter 0 ≤ ρ ≤ 1 – this includes
the classes of Cobb-Douglas and linear utility functions. Furthermore, for
linear utility functions, we prove that the PoIC increases as the level of
competition in the market increases. Additionally, we prove that a Nash
equilibrium exists in the case of Cobb-Douglas utilities. In contrast, we
show that Nash equilibria need not exist for linear utilities. However, in
that case, good welfare guarantees are still obtained for the best response
dynamics of the game.

1 Introduction

General equilibrium is a fundamental concept in economics, tracing back to
1872 with the seminal work of Walras [20]. Traditionally, the focus has been
upon perfect competition, where the number of buyers and sellers in the market
are so huge that the contribution of any individual is infinitesimal. In particular,
the participants are price-takers.

In practice, however, this assumption is unrealistic. This observation has mo-
tivated researchers to study markets where the players have an incentive to act
strategically. A prominent example is the seminal work of Shapely and Shu-
bik [17]. They defined trading post games for exchange markets and examined
whether Nash equilibria there could implement competitive equilibrium prices
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and allocations. Another example, and a prime motivator of our research, is
the Cournot-Walras market model introduced by Codognato and Gabszewicz [6]
and Gabszewicz and Michel [10], which extends oligopolistic competition into
the Arrow-Debreu setting. The importance of this model was demonstrated by
Bonniseau and Florig [2] via a connection, in the limit, to traditional general equi-
libria models under the standard economic technique of agent replication. More
recently, in the computer science community, Babaioff et al [3] extended Hur-
wicz’s framework [12] to study the welfare of Walrasian markets acting through
an auction mechanism.

Our interest is in analyzing the robustness of the pricing mechanism against
strategic manipulation. Specifically, our primary goal is to quantify the loss in
social welfare due price-making rather than price-taking behaviour. To do this,
we define the Price of Imperfect Competition (PoIC) as the ratio of the social
welfare at the worst Nash equilibrium to the social welfare at the perfectly-
competitive Walrasian equilibrium.

Two remarks are pertinent here. First, we are interested in changes in the wel-
fare produced by the market mechanism under the two settings of price-takers
and price-makers. We are not interested in comparisons with the optimum social
welfare, which requires the mechanism to possess the unrealistic power to per-
form total welfare redistribution. In particular, we are not concerned here with
the Price of Anarchy or Price of Stability. Interestingly, though, the ground-
breaking Price of Anarchy results of Johari and Tzitsiklis [15] on the propor-
tional allocation mechanism for allocating one good (bandwidth) can be seen
as the first Price of Imperfect Competition results. This is because in their set-
ting the proportional allocation mechanism will produce optimal allocations in
non-stategic settings; in contrast, for our markets, Walrasian equilibrium can be
arbitrarily poor in comparison to optimal allocations.

Second, in some markets the Price of Imperfect Competition may actually
be larger than one. Thus, strategic manipulations by the agents can lead to
improvements in social welfare! Indeed, we will discuss examples where the social
welfare increases by an arbitrarily large factor when the agents act strategically.

In this paper, we analyze the Price of Imperfect Competition in Fisher markets
with strategic buyers, a special case of the Cournot-Walras model. This scenario
models the case of an oligopsonistic market, where the price-making power lies
with the buyers rather than the sellers (as in an oligopoly).1 Adsul et al. [1]
study Fisher markets where buyers can lie about their preferences. They gave
a complete characterization of its symmetric Nash equilibria (SNE) and showed
that market equilibrium prices can be implemented at one of the SNE. Later
Chen et. al. [5] studied incentive ratios in such markets to show that a buyer
can gain no more than twice by strategizing in markets with linear, Leontief and
Cobb-Douglas utility functions. In upcoming work, Branzei et al [4] study the
Price of Anarchy in the game of Adsul et al. and prove polynomial lower and

1 The importance of oligopsonies was recently highlighted by the price-fixing behaviour
of massive technology companies in San Francisco.
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upper bounds for it. Furthermore, they show Nash equilibria exist for linear,
Leontieff, and Cobb-Douglas utilities.

In the above games (and the Fisher model itself), only the sellers have an
intrinsic utility for money. In contrast, we postulate that buyers (and not just
sellers) have utility for money. Thus, buyers may also benefit by saving money for
later use. This incentivizes buyers to withhold money from the market. This de-
fines our Fisher Market Game, where agents strategize on the amount of money
they wish to spend, and obtain utility one from each unit of saved money. Con-
trary to the bound of two on gains when strategizing on utility functions [5],
we observe that strategizing on money may facilitate unbounded gains (see the
full paper). These incentives can induce large variations between the allocations
produced at a Market equilibrium and at a Nash equilibrium. Despite this, we
prove the Price of Imperfect Competition is at least 1

2 for Fisher markets when
the buyers’ utility functions belong to the utililty class of Constant Elasticity
of Substitution (CES) with the weak gross substitutability property – this class
includes linear and Cobb-Douglas functions.

1.1 Overview of Paper

In Section 2, we define the Fisher Game, give an overview of CES utility func-
tions, and present our welfare metrics. In Section 3, we prove that Price of
Imperfect Competition is at least 1

2 , for CES utilities which satisfy the weak
gross substitutability property. In Section 4, we apply the economic technique
of replication to demonstrate that, for linear utilities, the PoIC bound improves
as the level of competition in the market increases. In Section 5, we turn our
attention to the question of existence of Nash equilibria. We establish that Nash
equilibria exist for the subclass of Cobb-Douglas utilities. However, they need
not exist for all CES utilities. In particular, Nash equilibria need not exist for
linear utilities. To address this possibility of non-existence, in Section 6, we ex-
amine the dynamics of the linear Fisher Game and provide logarithmic welfare
guarantees.

2 Preliminaries

We now define the Fisher market model and the corresponding game where
agents strategize on how much money to spend. We require the following no-
tation. Vectors are shown in bold-face letters, and are considered as column
vectors. To denote a row vector we use xT . The ith coordinate of x is denoted
by xi, and x−i denotes the vector x with the ith coordinate removed.

2.1 The Fisher Market

A Fisher marketM, introduced by Irving Fisher in his 1891 PhD thesis, consists
of a set B of buyers and and a set G of divisible goods (owned by sellers). Let
n = |B| and g = |G|. Buyer i brings mi units of money to the market and wants
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to buy a bundle of goods that maximizes her utility. Here, a non-decreasing,
concave function Ui : R

g
+ → R+ measures the utility she obtains from a bundle

of goods. Without loss of generality, the aggregate quantity of each good is one.
Given prices p = (p1, . . . , pg), where pj is price of good j, each buyer demands

a utility maximizing (an optimal) bundle that she can afford. The prices p are
said to be a market equilibrium (ME) if agents can be assigned an optimal bundle
such that demand equals supply, i.e. the market clears. Formally, let xij be the
amount of good j assigned to buyer i. So xi = (xi1, . . . , xig) is her bundle. Then,

1. Supply = Demand: ∀j ∈ G,
∑

i xij = 1 whenever pj > 0.
2. Utility Maximization: xi is a solution of maxUi(z) s.t

∑
j pjzij ≤ mi.

We denote by yij the amount of money player i invests in item j after prices are
set. Thus yij = pjxij . Equivalently yij can be thought of as player i’s demand
for item j in monetary terms.

Utility Functions
An important sub-class of Fisher markets occurs when we restrict utility func-
tions to what are known as Constant Elasticity of Substitution (CES) utilities
[18]. These functions have the form:

Ui(xi) = (
∑
j

uijx
ρ
ij)

1
ρ

for some fixed ρ ≤ 1 and some coefficients uij ≥ 0. The elasticity of substitution
for these markets are 1

1−ρ . Hence, for ρ = 1, i.e. linear utilities, the goods are
perfect substitutes; for ρ→ −∞, the goods are perfect complements. As ρ→ 0,
we obtain the well-known Cobb-Douglas utility function:

Ui(xi) =
∏
j

x
uij

ij

where each uij ≥ 0 and
∑

j uij = 1. In this paper, we will focus on the cases of
0 < ρ ≤ 1 and the case ρ→ 0. These particular markets satisfy the property of
weak gross substitutability, meaning that increasing the price of one good cannot
decrease demand for other goods. It is also known that for these particular
markets, one can determine the market prices and allocations by solving the
Eisenberg-Gale convex program (see [8], [9], [14]):

max
(∑

i

mi logUi(xi) :
∑
i

xij ≤ 1, ∀j; xij ≥ 0, ∀i, j.
)

(1)

2.2 The Fisher Game

An implicit assumption within the Fisher market model is that money has an
intrinsic value to the sellers, stemming from its potential use outside of the
market or at a later date. Thus, money is not just a numéraire. We assume
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this intrinsic value applies to all market participants including the buyers. This
assumption induces a strategic game in which the buyers may have an incentive
to save some of their money.

This Fisher Game is a special case of the general Cournot-Walras game in-
troduced by Codognato, Gabszewicz, and Michel ([6], [10]). Here the buyers can
choose some strategic amount of money si < mi to bring to the market, which
will affect their budget constraint. They gain utility both from the resulting mar-
ket equilibria (with si substituted for mi) and from the money they withhold
from the market. Observe, in the Fisher market model, the sellers have no value
for the goods in the market. Thus, in the corresponding game, they will place
all their goods on sale as their only interest is in money. (Equivalently, we may
assume the sellers are non-strategic.)

Thus, we are in an oligopsonistic situation where buyers have indirect price-
making power. The set of strategies available to buyer i isMi = {s ≥ 0 | s ≤ mi}.
When each buyer decides to spend si ∈ Mi, then p(s) and x(s) are the prices
and allocations, respectively, produced by the Fisher market mechanism. These
can be determined from the Eisenberg-Gale program (1) by substituting si for
mi. Thus, total payoff to buyer i is

Ti(s) = Ui(xi(s)) + (mi − si) (2)

Our primary tool to analyze the Fisher Game is via the standard solution con-
cept of a Nash equilibrium. A strategy profile s is said to be a Nash equilib-
rium if no player gains by deviating unilaterally. Formally, ∀i ∈ B, Ti(s) ≥
Ti(s

′, s−i), ∀s′ ∈ Mi. For the market game defined on market M, let NE(M)
denote its set of NE strategy profiles.

The incentives in the Fisher Game can be high. In particular, in the full paper,
we show that for any L ≥ 0, there is a market with linear utility functions where
an agent improve his payoff by a multiplicative factor of L by acting strategically.

The Price of Imperfect Competition
The social welfare of a strategy is the aggregate payoff of both buyers and sellers.
At a state s, with prices p = p(s) and allocations x = x(s), the social welfare is:

W(s) =
∑
i∈B

(Ui(xi) +mi − si) +
∑
j∈G

pj =
∑
i∈B

Ui(xi) +
∑
i∈B

mi (3)

Note, here, that the cumulative payoff of sellers is
∑

j∈G pj =
∑

i∈B si.
The focus of this paper is how strategic manipulations of the market mecha-

nism affect the overall social welfare. Thus, we must compare the social welfare
of the strategic Nash equilibrium to that of the unstrategic market equilibrium
where all buyers simply put all of their money onto the market. This latter
equilibrium is the Walrasian equilibrium (WE). This comparison gives rise to
a welfare ratio, which we term the Price of Imperfect Competition (PoIC), the
ratio of the minimum welfare amongst strategic Nash equilibria in the market
game to the welfare of the unstrategic Walrasian equilibrium. Formally, for a
given marketM,
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PoIC(M) = min
s∈NE(M)

W(s)

W(m)

Thus the Price of Imperfect Competition is a measure of how robust, with re-
spect to social welfare, the market mechanism is against oligopsonist behaviour.
Observe that the Price of Imperfect Competition could be either greater or less
than 1. Indeed, in the full paper, we show that a Nash Equilibrium may produce
arbitrarily higher welfare than a Walrasian Equilibrium. Of course, one may
expect that welfare falls when the mechanism is gamed and we do present an
example in the full paper where the welfare at a Nash Equilibrium is slightly
lower than at the Walrasian Equilibrium. This leads to the question of whether
the welfare at a Nash can be much worse than at a market equilibrium. We will
show that the answer is no; a Nash always produces at least a constant factor
of the welfare of a market equilibrium.

3 Bounds on the Price of Imperfect Competition

In this section we establish bounds on the PoIC for the Fisher Game for CES
utilities with 0 < ρ ≤ 1 and for Cobb-Douglas utilities. The example discussed
above shows that there is no upper bound on PoIC for the Fisher Game. Thus,
counterintuitively, even for linear utilities, it may be extremely beneficial to
society if the players are strategic.

In the rest of this section, we demonstrate a lower bound of 1
2 on the PoIC.

Consider a market with Cobb-Douglas or CES utility functions (where 0 <
ρ ≤ 1). The key to proving the factor 1

2 lower bound on the PoIC is the following
lemma showing the monotonicity of prices.

Lemma 1. Given two strategic allocations of money s∗ ≤ s, then the corre-
sponding equilibrium prices satisfy p∗ ≤ p, where p∗ = p(s∗) and p = p(s).

Proof. We break the proof up into three classes of utility function.
(i) Cobb-Douglas Utilities

The case of Cobb-Douglas utility functions is simple. To see this, recall a result
of Eaves [7]. He showed that, when buyer i spends si, the prices and allocations
for the Fisher market are given by

pj =
∑
i

uijsi xij =
uijsi∑
k ukjsk

(4)

It follows that if strategic allocations of money increase, then so must prices.

(ii) CES Utilities with 0 < ρ < 1
Recall that market equilibria for CES Utilities can be calculated via the
Eisenberg-Gale convex program (1). From the KKT conditions of this program,
where pj is the dual variable of the budget constraint, we observe that:

∀j, pj > 0⇒
∑

i xij = 1
∀(i, j), siuij

Ui(x)ρx
1−ρ
ij

≤ pj and xij > 0⇒ siuij

Ui(x)ρx
1−ρ
ij

= pj
(5)
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Claim. If players have CES utilities with 0 < ρ < 1 and s ≥ 0, then xij >
0, ∀(i, j) with uij > 0.

Proof. Consider the derivative of Ui with respect to xij as xij → 0:

lim
xij→0

∂Ui(xi)

∂xij
= lim

xij→0

uijUi(xi)
1−ρ

x1−ρ
ij

= +∞ (6)

The claim follows since pj ≤
∑

i si and is, thus, finite. ��

We may now proceed by contradiction. Suppose ∃k s.t. pk < p∗k. Choose
a good j such that

pj

p∗
j
is minimal and therefore less than 1, by assumption.

Take any player i such that uij > 0. By the above claim, we have xij , x
∗
ij > 0.

Consequently, by the KKT conditions (5), we have:

uij

pjx
1−ρ
ij

=
Ui(xi)

ρ

si
and

uij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )

ρ

s∗i
(7)

Taking a ratio gives:

pjx
1−ρ
ij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )

ρsi
Ui(xi)ρs∗i

(8)

Indeed, this equation also holds for every good t ∈ G with uit > 0. Next consider
the following two cases:

Case 1: xij ≤ x∗
ij for some player i.

From (8) we must then have that Ui(xi) > Ui(x
∗
i ). However, by the minimality

of
pj

p∗
j
, and since (8) holds for every t ∈ G with uit > 0, we obtain xit ≤ x∗

it for

all such t. This implies Ui(xi) ≤ Ui(x
∗
i ), a contradiction.

Case 2: xij > x∗
ij for every player i.

Since p∗j > pj , we must have p∗j > 0. By (5) it follows that
∑

i x
∗
ij = 1. But

now we obtain the contradiction that demand must exceed supply as
∑

i xij >∑
i x

∗
ij = 1.

(iii) Linear Utilities

We begin with some notation. Let Si = {j ∈ G : xij > 0} be the set of goods
purchased by buyer i at strategy s. Let βij =

uij

pj
be the rate-of-return of good

j for buyer i at prices p. Let βi = maxj∈G βij be the bang-for-buck buyer i can
obtain at prices p. It can be seen from the KKT conditions of the Eisenberg-Gale
program (1) that at {p,x}, every good j ∈ Si will have a rate-of-return equal to
the bang-for-buck (see, for example, [19]). Similarly, let S∗

i , β
∗
i be correspondingly

defined for strategy s∗.
Note that, assuming for each good j, ∃i, uij > 0, we have that p,p∗ > 0. Thus,

we can partition the goods into groups based on the price ratios
p∗
j

pj
. Suppose

there are k distinct price ratios over all the goods (thus k ≤ g), then partition
the goods into k groups, say G1, . . . ,Gk such that all the goods in a group have
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the same ratio. Let the ratio in group j be λj and let λ1 < λ2 < · · · < λk. Thus
G1 are the goods whose prices have fallen the most (risen the least) and Gk are
the goods whose prices have fallen the least (risen the most).

Let Ik = {i : ∃j ∈ Gk, xij > 0} and I∗k = {i : ∃j ∈ Gk, x∗
ij > 0}. Thus Ik

and I∗k are the collections of buyers that purchase goods in Gk in each of the
allocations. Take any buyer i ∈ I∗k ; so there is some good j ∈ S∗

i ∩ Gk.
If Si ∩

⋃k−1
	=1 G	 �= ∅ then buyer i would not desire good j at prices p∗j . To see

this, take a good j′ ∈ Si ∩
⋃k−1

	=1 G	. Then βij′ = βi ≥ βij . Therefore

β∗
i ≥

uij′

p∗j′
≥ uij′

λk−1 · pj′
>

uij′

λk · pj′

=
1

λk
· uij′

pj′
≥ 1

λk
· uij

pj

=
uij

p∗j
= β∗

i

This contradiction tells us that Si ⊆ Gk and I∗k ⊆ Ik. It follows that ∪i∈I∗
k
Si ⊆

Gk. Putting this together, we obtain that∑
i∈I∗

k

si ≤
∑
i∈Ik

si ≤
∑
j∈Gk

pj (9)

Now recall that all goods must be sold by the market mechanism (as p,p∗ > 0).
Thus the buyers I∗k must be able to afford all of the goods in Gk. Thus∑

i∈I∗
k

s∗i ≥
∑
j∈Gk

p∗j = λk ·
∑
j∈Gk

pj (10)

But s∗i ≤ si for all i. Consequently, Inequalities (9) and (10) imply that λk ≤ 1.
Thus no price in p∗ can be higher than in p. ��

First we use Lemma 1 to provide lower bounds on the individual payoffs.

Lemma 2. Let si be a best response for agent i against the strategies s−i. Then
Ti(s) ≥ max(Ûi,mi), where Ûi is her utility at the Walrasian equilibrium.

Proof. Clearly Ti(s) ≥ mi, otherwise player i could save all her money and
achieve a payoff of mi. For Ti(s) ≥ Ûi, let p = p(m) and x = x(m) be the
prices and allocation at Walrasian equilibrium. If buyer i decides to spend all
his money when the others play s−i, the resulting equilibrium prices will be less
than p, by Lemma 1. Therefore, she can afford to buy bundle xi. Thus, her best
response payoff must be at least Ûi.

It is now easy to show the lower bound on the Price of Imperfect Competition.

Theorem 1. In the Fisher Game with Cobb-Douglas or CES utilities with 0 <
ρ ≤ 1, we have PoIC ≥ 1

2 . That is, W(s∗) ≥ 1
2W(m), for any Nash equilibrium

s∗.
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Proof. Let p∗ = p(s∗) and x∗ = x(s∗). Let p and x be the Walrasian equilibrium
prices and allocations, respectively. At the Nash equilibrium s∗ we have Ti(s

∗) ≥
max(mi, Ui(xi)) for each player i, by Lemma 2. Thus, we obtain:

2
∑
i

Ti(s
∗) ≥

∑
i

Ui(xi) +
∑
i

mi (11)

Therefore W(s∗) ≥ 1
2W(m), as desired. ��

4 Social Welfare and the Degree of Competition

In this section, we examine how the welfare guarantee improves with the degree
of competition in the market. To model the degree of competition, we apply
a common technique in the economics literature, namely replication [17]. In a
replica economy, we take each buyer type in the market and make N duplicates
(the budgets of each duplicate is a factor N smaller than that of the original
buyer). The degree of competition in the resultant market is N . We now consider
the Fisher Game with linear utility functions and show how the lower bound on
Price of Imperfect Competition improves with N .

Theorem 2. Let s∗ be a NE in a market with degree of competition N . Then

W(s∗) ≥ (1− 1

N + 1
) · W(m)

In order to prove Theorem 2, we need a better understanding of how prices
adjust to changes in strategy under different degrees of competition. Towards
this goal, we need the following two lemmas.

Lemma 3. Given an arbitrary strategic money allocation s. If player i increases
(resp. decreases) her spending from si to (1 + δ)si then the price of any good
increases (resp. decreases) by at most a factor of (1 + δ).

Proof. We focus on the case of increase; the argument for the decrease case
is analogous. Suppose all players increase their strategic allocation by a factor
of (1 + δ). Then the allocations to all players would remain the same by the
market mechanism and all prices would be scaled up by a factor of (1+ δ). Then
suppose each player k �= i subsequently lowers its money allocation back down
to the original amount sk. By Lemma 1, no price can now increase. The result
follows. ��

Lemma 4. Given an arbitrary strategic money allocation s in a market with
degree of competition N . Let buyer i be the duplicate player of her type with the
smallest money allocation si. If she increases her spending to (1 +N · δ)si then
the price of any good increases by at most a factor (1 + δ).
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Proof. We utilize the symmetry between the N identical players. Let players
i1 = i, i2, ..., iN be the replicas identical to player i. If each of these players
increased their spending by a factor of (1 + δ) then, by Lemma 3, prices would
go up by at most a factor (1 + δ). From the market mechanism’s perspective,
this is equivalent to player i increasing her strategic allocation to si+ δ ·

∑
k sik .

But this is greater than (1 + N · δ)si. Thus, by Lemma 1, the new prices are
larger by a factor of at most (1 + δ). ��

Now let x = x(m) and x∗ = x(s∗). Since we have rational inputs, x and x∗ must
be rational [14]. Therefore, by appropriately duplicating the goods and scaling
the utility coefficients, we may assume that there is exactly one unit of each good
and that both x and x∗ are {0, 1}-allocations. Recall from the proof of Lemma 1
our definition of Si, S

∗
i and βi, β

∗
i . Under this assumption, Si = {j ∈ G : xij = 1}

and similarly for S∗
i . We are now ready to prove the following welfare lemma.

Lemma 5. For any Nash equilibrium {s∗,p∗,x∗} and any Walrasian equilib-
rium {s = m,p,x}, we have

∑
i∈B

∑
j∈S∗

i

uij ≥
(
1− 1

N

)
·
∑
i∈B

∑
j∈Si

uij (12)

Proof. To prove the lemma we show that total utility produced by goods at NE,
after scaling by a factor N

N−1 , is at least as much as the utility they produce at
the Walrasian equilibrium. We do this by partitioning goods into the sets Si. We
then notice that for each good, the player who receives it at NE must receive
utility from it in excess of the price he paid for it. In many cases, this price is
more than the utility of the player who receives it in Walrasian equilibrium and
we are done. Otherwise we will set up a transfer system where players in NE
who receive more utility for the good than the price paid for it transfer some of
this excess utility to players who need it. This will ultimately allow us to reach
the desired inequality.

For the rest of this proof wlog we will restrict our attention to Nash equilibria
where each identical copy of a certain type of player has the same strategy. We are
able to do this as the market could treat the sum of these copies as a single player
and thus we are able to manipulate the allocations between these players without
changing market prices or the total utility derived from market allocations. Thus
if our argument holds for Nash equilibria where identical players have the same
strategy, it will also hold for heterogeneous Nash equilibria. Now take any player
i. There are two cases:
Case 1: s∗i = mi.
By Lemma 1, we know that

∑
j∈S∗

i ∩Si

p∗j ≤
∑

j∈S∗
i ∩Si

pj (13)
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Therefore, by the assumption that s∗i = mi, we have∑
j∈Si\S∗

i

pj = mi −
∑

j∈S∗
i ∩Si

pj = s∗i −
∑

j∈S∗
i ∩Si

pj ≤ s∗i −
∑

j∈S∗
i ∩Si

p∗j =
∑

j∈S∗
i \Si

p∗j

(14)
Thus buyer i spends more on S∗

i \Si than she did on Si \S∗
i . But, by Lemma 1,

she also receives a better bang-for-buck on S∗
i \ Si than on Si \ S∗

i , as β∗
i ≥ βi

(Lemma 1). Let β∗
i = 1+ ε∗i . Thus, at the Nash equilibrium, her total utility on

S∗
i \ Si is ∑

j∈S∗
i \Si

uij =
∑

j∈S∗
i \Si

β∗
i · p∗j = (1 + ε∗i ) ·

∑
j∈S∗

i \Si

p∗j

Of this utility, buyer i will allocate p∗j units of utility to each item j ∈ S∗
i \ Si.

The remaining ε∗i · p∗j units of utility derived from good j is reallocated to goods
in Si \ S∗

i .
Consider the goods in Si. Clearly goods in Si∩S∗

i contribute the same utility
to both the Walrasian equilibrium and the Nash equilibrium. So take the items
in Si \ S∗

i . The buyers of these items at NE have obtained at least
∑

j∈Si\S∗
i
p∗j

units of utility from them (as β∗
d ≥ 1, ∀d). In addition, buyer i has reallocated

ε∗i ·
∑

j∈S∗
i \Si

p∗j to goods in Si \ S∗
i . So the total utility allocated to goods in

Si \ S∗
i is∑

j∈Si\S∗
i

p∗j + ε∗i ·
∑

j∈S∗
i \Si

p∗j ≥
∑

j∈Si\S∗
i

p∗j + ε∗i ·
∑

j∈Si\S∗
i

p∗j = (1 + ε∗i ) ·
∑

j∈Si\S∗
i

p∗j

= β∗
i ·

∑
j∈Si\S∗

i

p∗j ≥
∑

j∈Si\S∗
i

uij

Here the first inequality follows by (14) and the final inequality follows as β∗
i ≥

uij

p∗
j
, for any good j /∈ S∗

i . Thus the reallocated utility on Si at NE is greater

than the utility it provides in the Walrasian equilibrium (even without scaling
by N

N−1 ).
Case 2: s∗i < mi.
Suppose buyer i increases her spending from s∗i to (1+N ·δ) ·s∗i . Then the prices
of the goods she buys increase by at most a factor (1 + δ) by Lemma 4. Thus
her utility changes by

(mi − (1 + δ ·N) · s∗i ) + s∗i · β∗
i ·

1 +N · δ
1 + δ

− (mi − s∗i )− s∗i · β∗
i ≤ 0

where the inequality follows as s∗ is a Nash equilibrium. This simplifies to

s∗i ·
(
−δ ·N + β∗

i · (
1 +N · δ
1 + δ

− 1)

)
≤ 0

Now suppose (i) s∗i = 0. In this case we must have uij/p
∗
j ≤ 1 for every good

j. To see this, we argue by contradiction. Suppose uij/p
∗
j = 1+ ε for some good
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j. Notice that if player i changes s∗i to γ the price of good j can go up by at
most γ as we know each price increases by Lemma 1 and the sum of all prices is
at most γ higher (by the market conditions). Thus, if player i puts γ < ε money
onto the market then good j will still have bang-for-buck greater than 1 and so
player i will gain more utility than the loss of savings. Thus, s∗i cannot be an
equilibrium, a contradiction.

Thus uij ≤ p∗j ≤ ui∗j where i∗ is the player who receives good j at NE.
Therefore this player obtains more utility from good j than player i did in the
Walrasian equilibrium, even without scaling or a utility transfer.

On the other hand, suppose (ii) s∗i > 0. This can only occur if we have both
β∗
i ≥ 1 and

β∗
i ·

(N − 1) · δ
1 + δ

≤ δ ·N (15)

Therefore 1 ≤ β∗
i ≤ (1 + δ) · (1 + 1

N−1 ). Since this holds for all δ, as we take

δ → 0 we must have β∗
i ≤ N

N−1 . Thus
uij

p∗
j
≤ N

N−1 for every good j. Thus if we

multiply the utility of the player receiving good j in the Nash equilibrium by
N

N−1 he will be getting more utility from it than player i did in the Walrasian
equilibrium. ��

Proof of Theorem 2. Given the other buyers strategies s∗−i suppose buyer i
sets si = mi. Then, by Lemma 1, prices cannot be higher for (mi, s

∗
−i) than at

the Walrasian equilibrium p(m). Therefore, by selecting si = mi, buyer i could
afford to buy the entire bundle Si at the resultant prices. Consequently, her best
response strategy s∗i must offer at least that much utility. This is true for each
buyer, so we have

∑
i∈B

⎛⎝(mi − s∗i ) +
∑
j∈G

uij · x∗
ij

⎞⎠ ≥∑
i∈B

∑
j∈G

uij · xij (16)

Thus

W(s∗) =
∑
i∈B

∑
j∈G

uij · x∗
ij +

∑
i∈B

mi =
∑
i∈B

⎛⎝(mi − s∗i ) +
∑
j∈G

uij · x∗
ij

⎞⎠+
∑
i∈B

s∗i

≥
∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

s∗i (17)

On the other hand, Lemma 5 implies that

W(s∗) =
∑
i∈B

∑
j∈G

uij ·x∗
ij +

∑
i∈B

mi ≥
(
1− 1

N

)
·
∑
i∈B

∑
j∈G

uij ·xij +
∑
i∈B

mi (18)

Taking a convex combination of Inequalities (17) and (18) gives

W(s∗) ≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi + (1− α) ·
∑
i∈B

s∗i



306 R Mehta et al.

≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi

=
(
1− α

N

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi (19)

Thus plugging α = N
N+1 in (19) gives

W(s∗) ≥
(
1− 1

N + 1

)
·

⎛⎝∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

mi

⎞⎠ =

(
1− 1

N + 1

)
·W(m)

(20)
This completes the proof. ��

5 Existence of Nash Equilibria

We have demonstrated bounds for the Price of Imperfect Competition in the
Fisher Game under both CES and Cobb-Douglas utilities. However, these welfare
results only apply to strategies that are Nash equilibria. In the full paper, we
prove that Nash equilibria exist for the Cobb-Douglas case, but need not exist
for linear utilities. For games without Nash equilibria, we may still recover some
welfare guarantees; we discuss this in Section 6, by examining the dynamics of
the Fisher Game with linear utilities.

6 Social Welfare under Best Response Dynamics

Whilst Nash equilibria need not exist in the Fisher Game with linear utilities,
we can still obtain a good welfare guarantee in the dynamic setting. Specifically,
in the dynamic setting we assume that in every round (time period), each player
simultaneously plays a best response to what they observed in the previous
round. Dynamics are a natural way to view how a game is played and a well-
studied question is whether or not the game dynamics converge to an equilibrium.
Regardless of the answer, it is possible to quantify the average social welfare over
time of the dynamic process. This method was introduced by Goemans et al in
[11] and we show how it can be applied here to bound the Dynamic Price of
Imperfect Competition - the worst case ratio of the average welfare of states in
the dynamic process to the welfare of the Walrasian equilibrium.

For best responses to be well defined in the dynamic Fisher Game, we need
the concept of a minimum monetary allocation si. Thus we discretize the game
by allowing players to submit strategies which are rational numbers of precision
up to Φ. This has the added benefit of making the game finite. In the full paper,
we prove the following bound on the Dynamic Price of Imperfect Competition.

Theorem 3. In the dynamic Fisher Game with linear utilities, the Dynamic
Price of Imperfect Competition is lower bounded by Ω(1/ log(Mφ )) where M =
maxi mi.
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Coalitional Games on Sparse Social Networks

Edith Elkind

University of Oxford, UK

Abstract. We consider coalitional games played on social networks (graphs),
where feasible coalitions are associated with connected subsets of agents. We
characterize families of graphs that have polynomially many feasible coalitions,
and show that the complexity of computing common solution concepts and pa-
rameters of coalitional games on social networks is polynomial in the number of
feasible coalitions. Also, we establish a connection between coalitional games on
social networks and the synergy coalition group representation [5], and provide
new complexity results for this representation. In particular, we identify a vari-
ant of this representation where computing the cost of stability [2] is easy, but
computing the value of the least core [12] is hard.

1 Introduction

Coalitional game theory models many aspects of collaboration among self-interested
agents. In the most basic model of a coalitional game, an arbitrary subset of players can
form a coalition in order to make a profit or share costs; the benefits from forming the
coalition are then split among the players. However, in practice not all subsets of players
can collaborate in a productive manner; e.g., it may be infeasible to form a coalition
where some of the agents do not get along with each other or lack communication
channels. For instance, in a parliamentary democracy we are unlikely to see a governing
coalition that includes an extreme right-wing party (R) and an extreme left-wing party
(L), but no centrist parties, even if R and L together have a majority of seats.

Such settings can often be described succinctly by explicitly specifying the social
network that governs the interaction among the agents: the agents are viewed as vertices
of a graph, an edge between two vertices indicates that the respective agents know each
other, and feasible coalitions are associated with connected subgraphs of this graph.
This graph is usually called the interaction graph. This model was proposed by My-
erson [14], and has received a lot of attention since then. It has been shown that the
structure of the interaction graph provides useful information about the game: for in-
stance, if this graph is a tree, the game is guaranteed to admit stable outcomes (i.e., has
non-empty core) [6], and, more generally, if it is close to being a tree (as measured by
its treewidth of pathwidth), it is inexpensive to stabilize by external subsidies [13].

One can also expect that the complexity of computing various solution concepts for
a given game (such as the core or the Shapley value) can be bounded in terms of natural
parameters of the interaction graph. Variants of the latter question were explored by a
number of authors in recent years, for various algorithmic problems, such as optimal
coalition structure generation [21] and computation of stable or fair outcomes [8,4,19].
While some of these papers deal with designing practical algorithms for reasonably

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 308–321, 2014.
c© Springer International Publishing Switzerland 2014
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large games, others focus on formulating conditions on the interaction graph that guar-
antee polynomial-time solvability of the problems they consider. In particular, Malizia
et al. [8] show that many natural core-related questions are ΔP

2 -hard (ΔP
2 is a com-

plexity class that subsumes NP and coNP) even if the treewidth of the interaction graph
is 2. In contrast, Chalkiadakis et al. [4] observe that these questions become easy if the
interaction graph is a line or a cycle. They use a simple, but important observation that
in such games the number of feasible coalitions is polynomial (in fact, quadratic) in the
number of players, and combine it with the fact that many stability-related questions
can be captured by a linear program with one constraint for each feasible coalition (and
a small number of additional constraints).

Motivated by the observation of Chalkiadakis et al. [4], in this paper we explore the
following questions: (1) under which conditions on the interaction graph is the number
of feasible coalitions at most polynomial in the number of players? (2) which coali-
tional game theory concepts for games on social networks can be computed in time
polynomial in the number of feasible coalitions?

For the first question, we identify a number of simple checks that allow us to answer
it (either in the positive or in the negative) for many classes of graphs. For cases that
are not captured by these checks, we describe a procedure that is based on enumerating
polynomially many subsets of vertices and, for each subset, comparing two easy-to-
compute quantities. We believe that this analysis provides useful intuition about the
families of graphs with few connected coalitions.

For the second question, we consider both the setting where the value of each discon-
nected coalition is assumed to be 0 (we refer to such games as Demange games, as they
are considered in the seminal work of Demange [6]), and the setting where the value
of each disconnected coalition is computed as the sum of the values of its connected
components (we call such games Myerson games, as they are based on the same intu-
ition as the Myerson value [14]). For both settings, we consider a number of standard
computational tasks (finding an optimal coalition structure, checking if an outcome is
in the core, determining whether the core is non-empty, computing the value of the least
core, the cost of stability, the nucleolus, or players’ Shapley values), and show that they
admit algorithms whose running time is polynomial in the number of connected coali-
tions. While some of these algorithms have been suggested in prior work, others are
new, and for known algorithms we are sometimes able to provide simplified proofs of
correctness and/or better bounds on the running time.

Some of the results presented in this paper do not use the graph structure at all,
i.e., they hold for any family of coalitional games that can be described by a small
number of “base” coalitions (in the sense that the values of all other coalitions are
0, as in Demange games, or are set to the value of their best partition into base coalitions,
as in Myerson games). We classify our algorithmic results according to this criterion,
and, for those that rely on the graph structure, show that this reliance is necessary. To
this end, we prove hardness results for the respective computational problems under
the representation where the “base” coalitions are listed explicitly. The variant of this
model where the value of each coalition is computed as the value of its best partition
into base coalitions (i.e., the analogue of Myerson games) is exactly the well-known
synergy coalition group representation of Conitzer and Sandholm [5], and we obtain
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new computational complexity results for this representation. In particular, we identify
a variant of the synergy coalition group representation for which computing the cost of
stability is in P, whereas computing the value of the least core is NP-hard, thus obtaining
the first complexity-theoretic separation result between these two notions.

2 Preliminaries and Notation

We start by reviewing basic definitions of graph theory and coalitional game theory that
will be used in this paper.

Graph Theory. A graph is a pair Γ = (N,E), where N = {1, . . . , n} is a finite set of
vertices and E = {e1, . . . , em} is a list of edges. Each edge is labeled with an element
of N × N ; if e is labeled with (a, b), then a and b are said to be the endpoints of e.
An edge e is a loop if it is labeled with (a, a) for some a ∈ N . The degree of a vertex
a ∈ N is the number of non-loop edges in E that have a as one of their endpoints plus
twice the number of loop edges in E that are labeled with (a, a). Two edges e1, e2 ∈ E
are said to be parallel if they are labeled with the same pair (a, b) ∈ N ×N . A graph
is said to be simple if it has no loops and no parallel edges; in a simple graph, we
associate each edge with its label, i.e., we write e = (a, b). A path in a graph is a
sequence of edges e1, . . . , ek with the following property: there exists a set of vertices
{a0, a1, . . . , ak} such that for each i = 1, . . . , k the edge ei is labeled with (ai−1, ai);
the length of a path is the number of edges in it. A subset of vertices S ⊆ N is said
to be connected if for every pair of vertices a, b ∈ S the graph G contains a path
between a and b. Given a set of vertices S ⊆ N of a simple graph (N,E), we let
N (S) = {a ∈ N | a ∈ S or (a, b) ∈ E for some b ∈ S}; we refer to the set N (S) as
the neighborhood of S.

Coalitional Game Theory. A coalitional game is a pair G = (N, v), where N =
{1, . . . , n} is a finite set of players, and v : 2N → R is a characteristic function, which
associates every subset, or a coalition, of players S ⊆ N with its worth, or value, v(S).
The set N is called the grand coalition. In what follows, we assume that v(S) ≥ 0 for all
S ⊆ N , and v(∅) = 0. A coalition structure for G is a partition of players into disjoint
coalitions, i.e., a collection of subsets π = {S1, . . . , Sk} such that Si ∩ Sj = ∅ for all
1 ≤ i, j ≤ k, i �= j, and ∪k

i=1Si = N . We denote the set of all coalition structures over
N by Π(N), and extend this notation to subsets of N . The value of a coalition structure
π = {S1, . . . , Sk} is the sum of values of the coalitions in π: v(π) =

∑k
i=1 v(Si).

A game G = (N, v) is said to be superadditive if v(S ∪T ) ≥ v(S)+ v(T ) for every
pair of disjoint coalitions S, T ⊆ N ; it is said to be cohesive if v(N) ≥ v(π) for every
π ∈ Π(N). A superadditive game is necessarily cohesive, but the converse is not true.
A related notion is that of an essential coalition: a coalition S is said to be essential
if v(S) > v(π) for all π ∈ Π(S). In a cohesive game, it is reasonable to assume
that the grand coalition forms. A payoff vector for a cohesive game G = (N, v) with
N = {1, . . . , n} is a vector p = (p1, . . . , pn) ∈ Rn such that p1 + · · ·+ pn = v(N); a
payoff vector p is an imputation if pi ≥ v({i}) for each i ∈ N . We denote the set of all
payoff vectors for a game G by I(G). We associate outcomes of cohesive games with
payoff vectors, i.e., we assume that players form the grand coalition and share its payoff
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according to a payoff vector. In what follows, given a vector x = (x1, . . . , xn) ∈ Rn

and a set S ⊆ N , we write x(S) to denote
∑

i∈S xi.
Given a cohesive game G, the set I(G) describes all possible outcomes of G. There

are several approaches to defining the most desirable among these outcomes; these are
known as solution concepts. In this paper, we consider several solution concepts for (co-
hesive) coalitional games, including the core, the least core, the nucleolus, the Shapley
value, and a related notion of the cost of stability.

The core is the set of all payoff vectors that are stable, in the sense that no coalition
has a profitable deviation: formally, a payoff vector p ∈ I(G) is in the core of G if
p(S) ≥ v(S) for all S ⊆ N . The core of a game G is captured by the following linear
feasibility program with variables p1, . . . , pn.∑

i∈N
pi = v(N), pi ≥ 0 for all i ∈ N∑

i∈S
pi ≥ v(S) for all S ⊆ N (1)

As the core of a game may be empty, it is often useful to consider relaxations of this
concept. In particular, for each ε ∈ R we define the ε-core of G as the set of all vectors
in Rn that satisfy a modification of the LP (1) where for each S ⊆ N the constraint∑

i∈S pi ≥ v(S) is relaxed to
∑

i∈S pi ≥ v(S) − ε. The smallest value of ε for which
the ε-core is non-empty is known as the value of the least core [12], and is denoted by
ε(G). It equals to the value of the following LP with variables p1, . . . , pn, ε.

min ε∑
i∈N

pi = v(N), pi ≥ 0 for all i ∈ N∑
i∈S

pi ≥ v(S)− ε for all S ⊆ N (2)

The set of all vectors p ∈ Rn such that (p1, . . . , pn, ε(G)) is a feasible solution of
LP (2) is known as the least core of G. Intuitively, this is the set of all payoff divisions
that are stable when a coalitional deviation carries a cost of ε(G).

The notion of the least core is based on the idea of punishing the agents for deviating;
alternatively, we can offer them an incentive to stay together, by providing a subsidy to
the grand coalition. This is captured by the notion of the cost of stability [2], which can
be defined as the value of the following linear program with variables p1, . . . , pn, Δ:

minΔ∑
i∈N

pi = v(N) +Δ, pi ≥ 0 for all i ∈ N∑
i∈S

pi ≥ v(S) for all S ⊆ N (3)

We denote the cost of stability of a game G by Δ(G).
The nucleolus [16] is a single-point solution concept that refines the least core. It

is based on lexicographic minimization of coalitional deficits, i.e., the differences be-
tween the value of a coalition and the payoff it receives. Instead of providing a formal
definition, we describe a procedure for computing the nucleolus that was proposed by
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Kopelowitz [11] (see also [12]). Given a game G = (N, v), we construct a sequence
of linear programs LPN0, . . . ,LPNk, a sequence of values ε0, . . . , εk, and a sequence
of sets of coalitions Q0, . . . ,Qk for some k ≥ 1 so that LPNk has a unique feasible
solution (p, ε); the resulting vector p (which is a payoff vector for G) is called the
nucleolus of G.

We define LPN0 to coincide with LP (2), and set Q0 = ∅, ε0 = −∞. For j ≥ 1,
LPNj is constructed from LPNj−1 by replacing each constraint of the form p(S) ≥
v(S)− ε, S ∈ Qj−1, with p(S) ≥ v(S) = εj−1; note that LPN1 = LPN0. Further, εj
is defined to be the value of LPNj . It remains to describe how to construct Qj . Given
an optimal solution (p, εj) to LPNj , let Q(p) be the set of coalitions such that the
respective constraint of LPNj is tight, i.e., p(S) = v(S) − εj . Let pj be an interior
optimizer for LPNj , i.e., Q(pj) ⊆ Q(p) for every p such that (p, εj) is an optimal
solution to LPNj , and set Qj = Q(pj). It can be shown that Qj is well-defined (see,
e.g., [7]). Moreover, finding an interior optimizer for a given LP is as easy as finding an
arbitrary optimal solution to it; in particular, this can be done in polynomial time if this
LP admits a polynomial-time separation oracle [17].

We continue this procedure until each inequality of the form p(S) ≥ v(S) − ε is
replaced with an equality; clearly, this happens after at most 2n steps. It can be shown
that the last LP has a unique solution (p, ε); the payoff vector p is the nucleolus.1 In
what follows, it will be convenient to modify LPNj , j > 0, by adding the constraint
ε ≥ εj−1; this constraint may change the set of feasible solutions to LPNj , but does
not affect the set of optimal solutions. The advantage of adding this constraint is that
for the modified sequence of LPs it holds that the set of feasible solutions to LPNj is
exactly the set of optimal solutions to LPNj−1.

Besides stability, another important consideration in the analysis of coalitional games
is fairness, usually captured by the notion of the Shapley value [18]. Formally, the
Shapley value of a player i in a coalitional game G = (N, v) is given by

φi(G) =
∑

S⊆N :i∈S

|S − 1|!(|N | − |S|)!
|N |! (v(S)− v(S \ {i})) . (4)

The Shapley value of a player i can be interpreted as his average marginal contribution,
where the average is taken over all permutations of players in N ; we refer the reader to
[3] for a discussion.

If a game is not cohesive, it may be suboptimal for the players to form the grand
coalition, as they can work more productively in smaller teams. For such games, a fun-
damental task is coalition structure generation, i.e., partitioning players into teams so
as to maximize the social welfare. Formally, the optimal coalition structure genera-
tion problem asks for a coalition structure π ∈ argmaxπ∈Π(N) v(π). Various stability-
related solution concepts can be extended to non-cohesive games by allowing the
players to form coalition structures [1]; however, we do not consider the associated
computational problems in this work due to space constraints.

1 More precisely, this procedure computes the pre-nucleolus of the game. However, the two
notions often coincide, so in what follows we refer to the output of our sequence of LPs as the
nucleolus.
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When investigating the complexity of algorithmic problems associated with a coali-
tional game G = (N, v), we assume that v takes values in the set of non-negative ratio-
nal numbers, and its values are represented in binary; also, we set V = maxS⊆N v(S).

3 The Model

We will now formally define the two types of coalitional games on social networks that
will be studied in this paper. While both of them can be traced back to the seminal work
of Myerson [14], we refer to games of the first type as Demange games, to acknowledge
the fact that Demange [6] proved important results about the core of such games, and to
games of the second type as Myerson games, since they are based on the same intuition
as the classic Myerson value [14]. In both types of games, we are given a (simple,
connected) graph Γ that has the set of players N as its vertex set; the edges of Γ
are interpreted as communication links between the players. Also, for both types of
games, the characteristic function v : 2N → R+ ∪ {0} is fully described by its values
on coalitions that are connected in Γ . However, Demange games and Myerson games
differ in their treatment of coalitions that are not connected: the former assign a value
of 0 to every such coalition, whereas the latter compute the value of such coalition as
the sum of the values of its connected components.

Formally, given a simple, connected graph Γ = (N,E), letK(Γ ) be the collection of
all subsets of N that are connected in Γ , and let K(Γ ) = |K(Γ )|; we omit Γ from the
notation when it is clear from the context. A base game on Γ is a triple G = (N, v, Γ ),
where v : K(Γ ) → R+ ∪ {0} is a partial characteristic function. The Demange game
associated with a base game G = (N, v, Γ ) is the triple G0 = (N, v0, Γ ), where
v0 : 2N → R+ ∪ {0} is a characteristic function given by v0(S) = v(S) if S ∈
K(Γ ) and v0(S) = 0 otherwise. The Myerson game associated with a base game G =
(N, v, Γ ) is the triple G+ = (N, v+, Γ ), where v+ : 2N → R+∪{0} is a characteristic
function given by v+(S) =

∑k
i=1 v(Si), where S1, . . . , Sk is the list of the connected

components of S (in particular, v+(S) = v(S) for all S ∈ K(Γ )). We refer to both
Demange games and Myerson games as graph-restricted games. The graph Γ is called
the interaction graph for G, G0, and G+.

Both Demange games and Myerson games aim to capture the intuition that, to col-
laborate, agents should be able to communicate. However, in Demange games we make
the rather strong assumption that a disconnected coalition can earn no profit whatsoever,
whereas in Myerson games we allow the players in each connected component to work
on their own. The graph-restricted games studied by Greco et al. [8], Chalkiadakis et
al. [4] and Voice et al. [21] are Demange games (though, as we will see, for the optimal
coalition structure generation problem the two types of games are equivalent), whereas
Skibski et al. [19] consider both types of games.

Note that a Demange game is typically not superadditive, but it may still be cohesive.
When analyzing the complexity of computing solution concepts for graph-restricted
games, we assume that the input games are cohesive; however, we do not make this
assumption when we consider the optimal coalition structure generation problem, as
this problem is trivially solvable for cohesive games.
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4 Interaction Graphs with a Few Connected Subgraphs

In this section we present a characterization of graph-restricted games that have at most
polynomially many connected coalitions. This question is essentially graph-theoretic in
nature, as it does not refer to the properties of the characteristic function. As we are
interested in asymptotic results, we will consider families of simple connected graphs
(Γn)n>0, where Γn has n vertices, and try to identify sufficient and necessary condi-
tions on such families for K(Γn) to be at most polynomial in n.

Chalkiadakis et al. [4] observe that, if the degree of each vertex in Γn is at most 2,
then K(Γn) is polynomial in n. This suggests that vertices of degree 2 do not contribute
much to K(Γn), and motivates the following definition.

Definition 1. Given a simple graph Γ = (N,E), its condensed graph Γ ∗ = (N∗, E∗)
is a weighted graph (N∗, E∗, ν) that is defined as follows. Let N(2) = {a ∈ N |
deg(a) = 2}. We set N∗ = N \ N(2). Further, for each pair of vertices a, b ∈ N∗

(where a and b may be equal) and each path in Γ of the form (a, c1, . . . , ck, b), where
k ≥ 0, a, b ∈ N∗ and c1, . . . , ck ∈ N(2), we include in E∗ an edge e between a and
b with weight ν(e) = log(k + 1). We denote the set of positive-weight edges of Γ ∗

by E+; note that E+ = E∗ \ E. Given an edge e ∈ E+ that corresponds to a path
π = (a, c1, . . . , ck, b) in Γ , we set P (e) = {c1, . . . , ck}, and let π(e) = π.

Our first observation is that, if the number of vertices in Γ ∗
n is superlogarithmic, then

K(Γn) is superpolynomial.

Theorem 1. For every family of graphs (Γn)n>0 where the respective family of con-
densed graphs (Γ ∗

n )n>0, Γ ∗
n = (N∗

n, E
∗
n, νn), satisfies |N∗

n| = ω(logn), it holds that
K(Γn) is superpolynomial in n.

Proof. Karpov [10] shows that every simple connected graph with s vertices of degree 1
and 3 and t vertices of degree 4 or more has a spanning tree with at least s/4+t/3+3/2
leaves. This implies that for every n > 0 the graph Γn has a spanning tree with at least
|N∗

n|/4 leaves. Deleting any subset of these leaves results in a connected subgraph of
Γn; as the number of such subsets is at least 2|N

∗
n|/4 = 2ω(logn), our claim follows. ��

Theorem 1 is tight, as illustrated by the following example.

Fig. 1. Γ kite
n for n = 64

Example 1. Consider the family of graphs (Γ kite
n )n>0 (Fig-

ure 1). The n-th graph in this family consists of a clique of
size logn with a “tail” of length n− logn attached to one
of the vertices of the clique. A connected subgraph of Γ kite

n

consists of a (possibly empty) subset of the clique and a
contiguous segment of the tail, and therefore its size is at
most 2logn · n2 = poly(n).

It is natural to conjecture that the converse of Theorem 1 is also true, i.e., if |N∗
n| =

O(log n), then K(Γn) is polynomial in n. However, this is not the case: in fact, we can
construct a family of graphs (Γn)n>0 with |N∗

n| = 1 such that K(Γn) grows super-
polynomially.
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Example 2. Consider the family of graphs (Γ flower
n )n>0 (Figure 2). The n-th graph in

this family has a central node a, and, for each i = 1, . . . , k (where the value of k will
be specified later), there is a path Pi consisting of �i ∈ {�nk �, �

n
k �} vertices of degree 2

such that the first and the last vertex on this path are connected to a; the values �1, . . . , �k
are chosen so that the total number of vertices is n. �
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Fig. 2. Γ flower
n for

n = 49, k = 8

Observe that Γ ∗
n has a single vertex and k loop edges that start

and end at this vertex. Further, each list of numbers (s1, . . . , sk)
with 0 ≤ si ≤ �i for i = 1, . . . , k defines a distinct subgraph of
Γ , namely, the graph that contains a, and, for each i = 1, . . . , k,
the path of length si that starts at a and goes along Pi. For k <
logn there are at least ( n

logn )
k ≥ nk/2 such sequences. If k is not

bounded by a constant, this quantity is superpolynomial.

Thus, if |N∗
n| = ω(logn), then K(Γn) is superpolynomial, but for smaller values of

|N∗
n| no conclusion can be derived. Therefore, for |N∗

n| = O(log n), we have to look
at other parameters of Γn (or Γ ∗

n ). A natural next step is to consider the total weight
of edges in Γ ∗

n , i.e., ν(Γ ∗
n) =

∑
e∈E∗

n
ν(e). We will now show that ν(Γ ∗

n ) is indeed a
very useful measure: if |N∗| = O(log n), then ν(Γ ∗

n ) = O(log n) implies that K(Γn)
grows at most polynomially, whereas ν(Γ ∗

n) = ω(log2 n) implies that K(Γn) grows
superpolynomially.

We first prove the upper bound.

Proposition 1. For every family of graphs (Γn)n>0 with |N∗
n| = O(log n), ν(Γ ∗

n ) =
O(log n) it holds that K(Γn) is at most polynomial in n.

Proof. Note first that, since the weight of each positive-weight edge is at least 1, Γ ∗
n

contains at most O(log n) positive-weight edges.
Now, consider a connected subgraph Γ ′ of Γn and an edge e with ν(e) > 0 in Γ ∗

n ; let
u and v be the endpoints of this edge. It could the the case that Γ ′ is contained in π(e);
there are O(22ν(e)) such subgraphs. Now, suppose that this is not the case. If u, v ∈ Γ ′,
then either Γ ′∩π(e) = π(e) or Γ ′∩π(e) consists of two contiguous segments of π(e):
one containing u and one containing v. If only one of u, v appears in Γ ′, then Γ ′∩π(e)
consists of a single contiguous segment of π(e), and if none of them appears in Γ ′, then
Γ ′ ∩ π(e) is empty.

This argument shows that the number of connected subgraphs that are fully con-
tained in some path corresponding to a positive-weight edge of Γn can be bounded
by

∑
e∈E∗

n
O(22ν(e)) = O(log n) · O(22ν(Γ

∗
n )) = poly(n). On the other hand, each

connected subgraph Γ ′ of Γn such that Γ ′ �⊆ π(e) for every e ∈ E∗
n can be uniquely

identified by specifying (a) the vertices of N∗
n that appear in Γ ′, and (b) for each edge e

of Γ ∗
n that has weight ν(e) > 0 and endpoints u, v, the lengths of the segments (u, u′)

and (v′, v) formed by the intersection of Γ ′ and π(e), i.e., two numbers between 0 and
2ν(e). Therefore, the total number of such subgraphs is at most

2|N
∗
n| ·

∏
e∈E∗

n

(2ν(e) + 1)2 = poly(n) ·O(22ν(Γ
∗)) = poly(n). ��

To prove the lower bound, we first consider graphs with many “heavy” edges.
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Proposition 2. For every family of graphs (Γn)n>0 with |N∗
n| = O(log n), |E+

n | =
ω(logn) it holds that K(Γn) is superpolynomial in n.

Proof. Construct a spanning tree for Γ ∗
n . It has |N∗

n| − 1 = O(log n) vertices, and
hence O(log n) edges. Therefore, there are ω(logn) positive-weight edges not used by
the spanning tree. For every such edge e, pick a vertex on π(e) that is adjacent to one
of the endpoints of e. Denote the set of all such vertices by Mn. Now, we can obtain a
connected subgraph of Γn by taking all vertices in N∗

n and an arbitrary subset of Mn;
as |Mn| = ω(logn), the number of distinct connected subgraphs that can be obtained
in this way is superpolynomial in n. ��

Corollary 1. For every family of graphs (Γn)n>0 with |N∗
n| = O(log n), ν(Γ ∗

n ) =
ω(log2 n) it holds that K(Γn) is superpolynomial in n.

Proof. The proof follows immediately from Proposition 2 by observing that the weight
of each edge is at most logn and therefore ν(Γ ∗

n) = ω(log2 n) implies that Γ ∗
n has

ω(logn) edges with positive weight. ��

The proof of Corollary 1 uses a fairly crude argument. Nevertheless, the following
example shows that the bound of ω(log2 n) is tight.

(a) The graph Γ cat-1
n (b) The graph Γ cat-2

n

Fig. 3. Two families of caterpillars

Example 3. A caterpillar of length k > 0 is a graph with the set of vertices A ∪ B,
where A = {a1, . . . , ak}, B = {b1, . . . , bk}, and the set of edges {(ai, bi)}ki=1 ∪
{(ai, ai+1)}k−1

i=1 . The edges of the form (ai, bi) are the legs of the caterpillar, and edges
of the form (ai, ai+1) form its spine. Consider two families of graphs, (Γ cat-1

n )n>0 and
(Γ cat-2

n )n>0, illustrated in Figure 3. The n-th graph in the first family is obtained by
taking a caterpillar of length k = �logn� and subdividing its i-th leg into a path of
length �i ∈ {�n−2k

k �, �n−2k
k �}, whereas the n-th graph in the second family is ob-

tained by applying the same procedure to the edges in the caterpillar’s spine; �1, . . . , �k
are chosen so that the total number of vertices is n. It is easy to see that K(Γ cat-1

n ) is
superpolynomial, but K(Γ cat-2

n ) is polynomial in n.

Example 3 illustrates that simply considering the topology of the condensed graph or
its total weight is not sufficient: the two families of graphs in this example are indistin-
guishable according to these criteria. However, Example 3, together with the proof of
Proposition 2, indicates that it may be useful to look at spanning trees of vertex subsets.
To pursue this approach, we need the following additional notation.

Given a graph Γ and its respective condensed graph Γ ∗ = (N∗, E∗, ν), for every
connected subset S ⊆ N∗ we let ν+(S) be the total weight of edges in E∗ with at least
one endpoint in S and we let ν−(S) be the weight of a minimum-weight spanning tree
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of S. The following theorem only considers graphs with |N∗| = O(log n), |E+| =
O(log n), as we have argued that in all other cases the number of connected subgraphs
grows superpolynomially (Theorem 1 and Proposition 2). The proof (omitted) combines
ideas from the proofs of Propositions 1 and 2.

Theorem 2. Consider a family of graphs (Γn)n>0 with |N∗
n| = O(log n), |E+

n | =
O(log n). It holds that K(Γn) is polynomial in n if and only if there exists an α > 0
such that for every subset S ⊆ N∗

n it holds that ν+(S)− ν−(S) ≤ α logn.

5 Demange Games

In this section, we show that, given a Demange game G0 = (N, v0, Γ ) with |N | = n,
K(Γ ) = K , we can solve computational problems associated with the notions defined
in Section 2 in time polynomial in K , n, and logV , assuming that we can compute the
value of every coalition in K(Γ ) in unit time. We remark that it is possible to list all
connected subgraphs of a given graph Γ = (N,E) in time O(K · |E|) (see, e.g., [19]),
so we will assume that we are explicitly given the list of all coalitions in K, together
with their values.

Shapley Value. When computing the Shapley value of player i in a Demange game
G0 = (N, v0, Γ ) via formula (4), we can ignore all terms in the summation such that
neither S nor S \ {i} are connected. Thus, we need to consider at most 2K terms, and,
for each term, perform poly(n, logV ) computational steps. This implies the following
simple (folklore) result (see also [19] for a more practical algorithm).

Proposition 3. Given a Demange game G0 = (N, v0, Γ ), we can compute the Shapley
value of an arbitrary player in time K · poly(n, logV ).

Optimal Coalition Structure Generation. Voice et al. [21] show how to adapt the stan-
dard dynamic programming algorithm for computing the value of an optimal coalition
structure to Demange games. The following result is implicit in their work.

Proposition 4. Given a Demange gameG0 = (N, v0, Γ ), we can find an optimal coali-
tion structure for G0 in time K2 · poly(n, logV ).

Core, Least Core, and Cost of Stability. We have seen that checking non-emptiness of
the core, finding an imputation in the core, and computing the value of the least core or
the cost of stability reduces to solving LPs (1), (2), and (3), respectively. For a Demange
game (N, v0, Γ ), we can simplify these LPs by removing constraints associated with
disconnected coalitions. Indeed, if S �∈ K (and hence v0(S) = 0), then in LP (1) and
LP (3) the constraint p(S) ≥ v0(S) is implied by the constraints pi ≥ 0, i ∈ S, and in
LP (2) the constraint p(S) ≥ v0(S) − ε is implied by the constraints pi ≥ 0, i ∈ S,
when ε ≥ 0 and by the constraints pi ≥ v0({i}) − ε, i ∈ S, when ε < 0. Thus, we
can assume that our LPs have at most K + n + 1 constraints and n variables, and are
therefore polynomial-time solvable (see, e.g., [17]). Moreover, as the coefficients in the
right-hand side of each constraint are in {0, 1}, these LPs admit a strongly polynomial-
time algorithm [20]. A similar argument shows that, to check if a given payoff vector
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p is in the core, it suffices to verify that pi ≥ 0 for all i ∈ N and p(S) ≥ v(S) for
all S ∈ K; the constraints associated with coalitions in 2N \ K are implied by the non-
negativity constraints. These (folklore) observations imply the following proposition.

Proposition 5. Given a Demange game G0 = (N, v0, Γ ), we can check non-emptiness
of the core, find an imputation in the core (if one exists), check if a given imputation
is in the core, and compute the value of the least core and the cost of stability in time
poly(K,n, logV ).

Nucleolus. We can try to compute the nucleolus of a Demange game (N, v0, Γ ) using
the same approach as for the least core, i.e., ignore the constraints associated with coali-
tions in 2N \ K(Γ ). That is, all such constraints are dropped from LPN0 and are not
taken into account when computing interior optimizers for each LP. As we start with K
inequality constraints for coalitions, we have to solve at most K LPs. Each of these LPs
has at most K + n+ 2 constraints, so the running time of this procedure is polynomial
in K , n and logV . It remains to argue that the last LP is this sequence has a unique
solution, and that this solution coincides with the nucleolus.

This approach was first proposed by Huberman [9], who showed that, when the core
is non-empty, removing constraints associated with non-essential coalitions from LPN0

does not affect the final outcome. Disconnected coalitions in Demange games are non-
essential, so his result applies in our case, too. However, in our setting we can prove
a stronger claim: our sequence of reduced LPs computes the nucleolus correctly even
when the core is empty. The proof of the following theorem (omitted) is similar to the
one given by Huberman.

Theorem 3. Given a Demange game G0 = (N, v0, Γ ), we can compute its nucleolus
in time poly(K,n, logV ).

6 Myerson Games

Recall that in Myerson games the value of each disconnected coalition is defined as the
sum of the values of its connected components. Thus, even if K(Γ ) is small, there can
be many coalitions with non-zero value. We will now argue that, nevertheless, most of
the algorithms described in Section 5 extend to Myerson games.

Shapley Value. The Shapley value of a player in a Myerson game G+ = (N, v+, Γ )
is exactly her Myerson value in the associated base game G = (N, v, Γ ), and Skibski
et al. [19] provide an algorithm for computing the Myerson value of each player in G,
which runs in time polynomial in K(Γ ) and logV . We complement their results by
giving a closed-form expression for the Shapley value of player i in G+.

Proposition 6. Given a Myerson game G+ = (N, v+, Γ )with |N | = n, let S1, . . . , SK

be the list of connected coalitions in G, and for each j = 1, . . . ,K let sj = |Sj |,
nj = n− |N (Sj)|, where N (S) in the neighborhood of the coalition S in Γ . Then the
Shapley value of player i in G+ is given by

φi(G
+) =

∑
j:i∈Sj

nj∑
	=0

(
n

�

)
(�+ sj − 1)!(n− �− sj)!

n!

(
v+(Sj)− v+(Sj \ {i})

)
,
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and therefore can be computed in time K · poly(n, logV ).

Optimal Coalition Structure Generation. Consider a Myerson game G+=(N, v+, Γ )
and the Demange game G0 = (N, v0, Γ ) with the same base game (N, v, Γ ). It is easy
to see that G+ admits an optimal coalition structure in which all coalitions are con-
nected, as any disconnected coalition can be replaced with its connected components
without changing the value of the coalition structure. Therefore, a coalition structure
that is optimal for G0 is also optimal for G+, and we can use the optimal coalition
structure generation algorithm from Section 5 without any changes.

Core, Least Core, Cost of Stability, and Nucleolus. It is not hard to give a direct proof
that Myerson games admit efficient algorithms for computational problems related to
the core. However, for expositional purposes we make use of the synergy coalition
group (SCG) representation for superadditive games that was introduced by Conitzer
and Sandholm [5]. Under this representation, a coalitional game is described by its
set of players N , a set of coalitions C = {C1, . . . , Cs}, which contains all singleton
coalitions, and a partial characteristic function v : C → Q+ ∪ {0}, which is described
by explicitly listing its values on the coalitions from C. The function v is extended
to 2N by setting v(S) = maxπ∈Π(S) v(π) for all S ∈ 2N \ C. That is, if the value
of a coalition is not listed explicitly, it is computed as the value of its best partition.
While this representation is intended for superadditive games, it can be used for non-
superadditive games as long as all coalitions that “violate” superadditivity (i.e., all S
such that v(S) < v(π) for some π ∈ Π(S)) are included in C [15].

Now, if G+ = (N, v+, Γ ) is a Myerson game, we can obtain its SCG representation
by simply listing the values of all coalitions in K. Note that the resulting representation
(N, C, v) satisfies N ∈ C. This is important since, in general, core-related problems
are computationally hard for coalitional games in SCG representation, but they become
polynomial-time solvable if N ∈ C [5]. This easiness result is based on the observation
that constraints corresponding to coalitions in 2N \ C can be removed from LP (1).
Indeed, if S �∈ C, then v(S) =

∑k
i=1 v(Si) for some S1, . . . , Sk ∈ C, so if a payoff

vector p satisfies p(Si) ≥ v(Si) for i = 1, . . . , k, we also have p(S) =
∑k

j=1 p(Sj) ≥∑k
j=1 v(Sj) = v(S). In fact, this argument also applies to LP (3). We summarize these

observations as follows.

Proposition 7. Given a Myerson game G+ = (N, v+, Γ ), we can check non-emptiness
of the core, find an imputation in the core (if one exists), check if a given imputation is
in the core, and compute the cost of stability in time poly(K,n, logV ).

We can also develop an efficient algorithm for the value of the least core, by reducing
this problem to that of optimal coalition structure generation. The algorithm described
in the proof of Proposition 8 (omitted) works for superadditive games, but it can be
extended to arbitrary cohesive games.

Proposition 8. Given a superadditive Myerson game G+ = (N, v+, Γ ), we can com-
pute the value of the least core in time poly(K,n, logV ).

It is not clear if the algorithm for computing the nucleolus of Demange games (Sec-
tion 5) extends to Myerson games. However, we can use the fact that disconnected
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coalitions in a Myerson game are not essential, and apply the result of Huberman [9].
We obtain the following proposition.

Proposition 9. Given a Myerson game G+ = (N, v+, Γ ), with a non-empty core, we
can compute its nucleolus in time poly(K,n, logV ).

7 The Role of the Interaction Graph

The reader may have observed that some of our results do not rely on the graph struc-
ture at all, and only use the fact that the number of coalitions with non-zero value (in
Demange games) or the number of essential coalitions (in Myerson games) is bounded
by K . In particular, this applies to all algorithms in Section 5 except for the one for
optimal coalition structure generation, and to algorithms related to the core and the cost
of stability in Section 6. However, the rest of our algorithms make active use of the fact
that the coalitions inK correspond to connected subsets of vertices of a given graph. We
will now argue that this is necessary, by showing that the associated problems become
computationally hard if the set of “base” coalitions has no special structure.

Optimal Coalition Structure Generation. It is immediate that the optimal coalition
structure generation problem is NP-hard for coalitional games represented by the list of
coalitions with non-zero values, even if the size of this list is polynomial in the number
of players and the value of each coalition is 0 or 1; this can be shown by a straightfoward
reduction from EXACT COVER BY 3-SETS. Similarly, while this problem is easy for
Myerson games, it is NP-hard for the SCG representation (see [15]).

Shapley Value under SCG Representation. To compute the Shapley value in Myer-
son games, we use the graph-theoretic notion of a neighborhood. There is no obvious
analogue of this notion for the SCG representation, and, indeed, computing the Shapley
value under this representation turns out to be NP-hard. Interestingly, despite a consid-
erable number of papers on the SCG representation, this result appears to be new.

Theorem 4. Let (N, C, v) be an SCG representation of a coalitional game G, and let i
be an agent in N . Then deciding whether φi(G) = 0 is NP-hard even if G is superad-
ditive, N ∈ C, and for each C ∈ C the value v(C) is either 1 or 0.

Least Core under SCG Representation. To compute the value of the least core in
a Myerson game, we use the algorithm for optimal coalition structure generation as
a subroutine, so it is natural to expect that our approach does not extend to arbitrary
coalitional games under SCG representation. Indeed, we can show that computing the
value of the least core under SCG representation is NP-hard, even if N ∈ C. Observe
that, in contrast, as argued in Section 6, when given an SCG representation (N, C, v)
with N ∈ C, we can compute the cost of stability in polynomial time. To the best of our
knowledge, this is the first example of a formalism for coalitional games under which
the computational complexity of the cost of stability differs from that of the least core,
and, as such, may be of independent interest.

Theorem 5. Let (N, C, v) be an SCG representation of a coalitional game G, and let ε
be a positive rational number. Then deciding whether ε(G) ≤ ε is coNP-hard, even if
G is superadditive, N ∈ C, and v(C) is an integer between 0 and 3|N | for each C ∈ C.
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Consumers adopting a new product; an epidemic spreading across a population;
a sovereign debt crisis hitting several countries; a cellular process during which
the expression of a gene affects the expression of other genes; an article trending
in the blogosphere, a topic trending on an online social network, computer mal-
ware spreading across a network; all of these are temporal processes governed by
local interactions of networked entities, which influence one another. Due to the
increasing capability of data acquisition technologies, rich data on the outcomes
of such processes are oftentimes available (possibly with time stamps), yet the
underlying network of local interactions is hidden. In this work, we infer who
influences whom in a network of interacting entities based on data of their ac-
tions/decisions, and quantify the gain of learning based on sequences of actions
versus sets of actions. We answer the following question: how much faster can
we learn influences with access to increasingly informative temporal data (sets
versus sequences)?

Clearly, having access to richer temporal information allows, in general, for
faster and more accurate learning. Nevertheless, in some contexts, the tempo-
rally poor data mode of sets could provide almost all the information needed
for learning, or at least suffice to learn key network relations. In addition, col-
lecting, organizing, storing, and processing temporally richer data may require
more effort and more cost. In some contexts, data on times of actions, or even
sequences of actions, is noisy and unreliable; for example, the time marking of
epilepsy seizure events is done by physicians on an empirical basis and is not
exact. In some other contexts, having access to time stamps or sequences of ac-
tions is almost impossible. For example, in the context of retailing, data exist on
sets of purchased items per customer (and are easily obtained by scanning the
barcodes at checkout); however, no data exist on the order in which the items
a customer checked out were picked up from the shelf (and obtaining such data
would be practically hard). In this light, the question of quantifying the gain
of learning with increasingly informative temporal data, and understanding in
what scenarios learning with temporally poor data modes is good enough, is
highly relevant in various contexts.

The overarching theme of our work is to quantify the gain in speed of learning
of parametric models of influence, due to having access to richer temporal infor-
mation. We seek to compare the speed of learning under three different cases of
available data: (i) the data provides merely the set of agents/entities who took

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 322–323, 2014.
c© Springer International Publishing Switzerland 2014
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an action; (ii) the data provides the (ordered) sequence of agents/entities who
took an action, but not the times; and (iii) the data provides the times of the
actions. It is clear that learning is no slower with times than it is with sequences,
and no slower with sequences than with sets; yet, what can we say about how
much faster learning is with times than with sequences, and with sequences than
with sets? This is, to the best of our knowledge, a comparison that has not been
studied systematically before. In this paper, we focus on the comparison between
learning with sets and learning with sequences.

We propose a parametric model of influence which captures directed pair-
wise interactions and provide theoretical guarantees on the sample complexity
for correct learning with sets and sequences. Our results characterize the suffi-
cient and necessary scaling of the number of i.i.d. samples required for correct
learning. The asymptotic gain of having access to richer temporal data à propos
of the speed of learning is thus quantified in terms of the gap between the de-
rived asymptotic requirements under different data modes. We first assume prior
knowledge of a “super graph” that includes all the candidate edges, and we infer
which edges of the super graph truly exist; restricting to each edge having either
very large or no influence, we provide sufficient and necessary conditions on the
graph topology for learnability, and we come up with upper and lower bounds for
the minimum number of i.i.d. samples required to learn the correct hypothesis
for the star topology, for different variations of the learning problem: learning
one edge or learning all the edges, under different prior knowledge over the hy-
potheses, under different scaling of the horizon rate, and learning with sets or
with sequences. We then study more general networks and relax the assumption
that each edge carries an influence rate that is either very large or zero; we pro-
vide a learning algorithm and theoretical guarantees on the sample complexity
for correct learning in the hard problem of telling between the complete graph
and the complete graph that is missing one edge.

We also evaluate learning with sets and sequences experimentally. Given real
data on outcomes, we learn the parametric influence model by maximum like-
lihood estimation. The value of learning with data of richer temporal detail is
quantified, and our methodology is shown to recover the underlying network
structure well. The real data come from observations of mobile app installations
of users, along with data on their communications and social relations.

Link to full paper: http://web.mit.edu/ szoumpou/Public/learning

WINE2014 working paper.pdf

http://web.mit.edu/~szoumpou/Public/learning_WINE2014_working_paper.pdf
http://web.mit.edu/~szoumpou/Public/learning_WINE2014_working_paper.pdf
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Abstract. Online advertising is the main source of revenue for many
Internet firms; thus designing effective mechanisms for selecting and pric-
ing ads become an important research question. In this paper, we seek to
design truthful mechanisms for online advertising that satisfy Revenue
Monotonicity (RM) - a natural property which states that the revenue
of a mechanism should not decrease if the number of participants in-
crease or if a participant increases her bid. In a recent work Goel and
Khani [5], it was argued that RM is a desired goal for proper func-
tioning of an online advertising business. Since popular mechanisms like
VCG are not revenue-monotone, they introduced the notion of Price of
Revenue Monotonicity (PoRM) to capture the loss in social welfare of
a revenue-monotone mechanism. Goel and Khani [5] then studied the
price of revenue-monotonicity of Combinatorial Auction with Identical
Items(CAII). In CAII, there are k identical items to be sold to a group
of bidders, where bidder i wants either exactly di ∈ {1, . . . , k} number of
items or nothing. CAII generalizes important online advertising scenarios
such as image-text and video-pod auctions. In an image-text auction we
want to fill an advertising slot with either k text-ads or a single image-ad.
In video-pod auction we want to fill a video advertising break of k sec-
onds with video-ads of possibly different durations. Goel and Khani [5]
showed that no deterministic RM mechanism can attain PoRM of less
than ln(k) for CAII, i.e., no deterministic mechanism can attain more
than 1

ln(k)
fraction of the maximum social welfare. Goel and Khani [5]

also design a mechanism with PoRM of O(ln2(k)) for CAII.
In this paper, first we overcome the impossibility result of Goel and

Khani [5] for deterministic mechanisms by using the power of random-
ization. We show that by using randomization, one can attain a con-
stant PoRM; in particular, we design a randomized RM mechanism with
PoRM of 3 for CAII. Then, we study a more general Multi-group Combi-
natorial Auction with Identical Items (MCAII). In MCAII, the bidders
are partitioned into multiple groups, and the set of winners are con-
strainted to be from a single group. The motivation for MCAII is from
scenarios where the set of selected ads may be required to have the same
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research award.
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format. We give a randomized mechanism which satisfies RM and IC
and has PoRM of O(ln k). This is in contrast to log2(k) deterministic
mechanism that follows from [5].

1 Introduction

Many Internet firms including search engines, social networks, and online pub-
lishers rely on online advertising revenue for their business; thus, making online
advertising an essential part of the Internet. Online advertising consists of show-
ing a few ads to a user when she accesses a web-page from a publisher’s domain.
The advertising can happen in different formats such as text-ads, image-ads,
video-ads, or a hybrid of them.

A key component in online advertising is a mechanism which selects and
prices the set of winning ads. In this paper we study the design of mechanisms
for Combinatorial Auction with Identical Items (CAII). In CAII we want to sell
k identical items to a group of bidders; each demand a number of items from
{1, . . . , k} and has a single-parameter valuation for obtaining them. Although
CAII is a well-motivated model on its own, we note that a few important adver-
tising scenarios such as image-text and video-pod auctions can be modeled by
CAII. In image-text auction we want to fill an advertising box on a publisher’s
web-page with either one image-ad or k text-ads. We note that a large portion
of Google AdSense’s revenue is from this auction. Image-text auction is a spe-
cial case of CAII where participants either demand only one item (text-ads) or
all k items (image-ads). In video-pod auction there is an advertising break of
k seconds which should be filled with video-ads each with certain duration and
valuation.

When designing a mechanism, typically one focusses on attaining incentive-
compatibility, and maximizing social welfare and/or revenue. In a recent work,
Goel and Khani [5] argue that the mechanisms for online advertising should
satisfy an additional property of revenue-monotonicity. Revenue-monotonicity
is a natural property which states that the revenue of a mechanism should not
decrease as the number of bidders increase or if the bidders increase their bids.
The motivation is that any online firm typically has a large sales team to attract
more bidders on their inventory or they invest in new technologies to make bids
more attractive. The typical reasoning is that more bidders (or higher bids)
lead to more competition which should lead to higher prices. However, lack
of revenue-monotonicity of a mechanism is conflicting with this intuitive and
natural reasoning process, and can create significant confusion from a strategic
decision-making point of view.

Even though Revenue Monotonicity (RM) seems very natural, we note that
majority of the well-known mechanisms do not satisfy this property [11, 12, 5].
For example the famous Vickrey-Clarke-Groves (VCG) mechanism fails to satisfy
RM as adding one more bidder might decreases the revenue to zero. To see this,
consider two identical items to be sold to two bidders. One wants one item with
a bid 2, and the other one wants both items with a bid 2. In this case the
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revenue of VCG mechanism is 2 (for a proof, see for instance [10, Chapter 9]).
Now suppose we add one more bidder who wants one item with a bid of 2. In
this case the revenue of VCG goes down to 0!

It is known that if we require mechanisms to satisfy both RM and IC, not
only the mechanism cannot get the maximum social welfare but it can also not
achieve Pareto-optimality in social welfare [12]. In light of this, [5] introduced
the notion of Price of Revenue Monotonicity (PoRM) to capture the loss in
social welfare for RM mechanisms. Here a mechanism has PoRM of α if its
social welfare is at least 1

α fraction of the maximum social welfare in any type
profile of participants. It is shown that, under a mild condition, the PoRM of
any deterministic mechanism for the CAII problem is at least ln(k), i.e., no
deterministic mechanism can obtain more than 1

ln(k) fraction of the maximum

social welfare [5]. In fact this impossibility result holds even for the case when
participants demand either all the items or only one item. On the positive side,
[5] give a deterministic mechanism with PoRM of O(ln2(k)) for CAII. We note
that satisfying RM is hard especially since it is an across instance constraint.

This work is motivated by the desire to design better mechanisms for CAII.
However, the above impossibility result of [5] is a bottleneck towards this goal.
To overcome this, in this paper, we resort to randomized mechanisms. We say a
randomized mechanism satisfies RM if it satisfies RM in expectation1. Similarly,
a randomized mechanism has PoRM of α if its expected social welfare is not
less than 1

α fraction of the maximum social welfare. We significantly improve the
performance by designing a randomized mechanism with a constant PoRM. In
particular, our randomized mechanism achieves a PoRM of 3.

Finally, we study Multi-group Combinatorial Auction with Identical Items
(MCAII) that generalizes CAII. In MCAII bidders are partitioned into multiple
groups and the set of winners has to be only from one group. The motivation
is that the publisher sometimes require the ads to be of same format or size for
a given ad slot. We design a randomized mechanism for MCAII that satisfies
IC and RM with PoRM O(log k). An easy corollary of [5] gives a deterministic
mechanism with a PoRM O(log2 k). We give evidence that this factor for ran-
domized mechanisms cannot be improved. The study of MCAII appears in the
full version of the paper.

2 Related Works

Goel and Khani [5] show that RM is a desirable property for web-centeric com-
panies and consider designing mechanisms which satisfy both RM and IC. They
introduced the notion of PoRM and study CAII and a special case of it - namely,
image-text auction. They [5] give a deterministic mechanism with PoRM of ln(k)
and prove that no mechanism which satisfies RM and IC can obtain PoRM of
better than ln(k) under the following two mild conditions. The first condition
is anonymity which states that the outcome shouldn’t depend on the identities

1 Since in a typical online advertising setting, there is a large number of auctions being
run everyday, we get sharp concentration bounds.
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of the bidders but their type profile. The second condition is independence of
irrelevant alternatives which states that decreasing the bid of any losing par-
ticipant should not hurt a winning participant. Goel and Khani [5] also give a
deterministic mechanism for CAII with PoRM of O(ln2(k)) that satisfies IC
and RM.

Rastegari et al. [12] show that for combinatorial auctions, no deterministic
mechanism that satisfies RM and IC can get weak maximality. A mechanism is
Weakly Maximal (WM) if it chooses an allocation which cannot be augmented
to make a losing participant a winner without hurting a winning participant.
Rastegari et al. [11] study randomized mechanisms for combinatorial auctions
which satisfy RM and IC. Note that a simple mechanism which chooses a max-
imal allocation uniformly at random ignoring the valuations of bidders satisfies
RM, IC, and WM. Rastegari et al. [11] add another constraint that a mechanism
has to also satisfy Consumer Sovereignty (CS) which means that if a bidder in-
creases her bid high enough, she can win her desired items. Now a new issue is
that there is no randomized mechanism which satisfies RM, IC, WM, and CS
[11]. In order to avoid this issue they relax CS constraint as follows. For each
participant i there has to be λ different valuations v1 > v2 > ... > vλ such that
for j ∈ {1, . . . , λ}, we have wi(vj) > wi(vj+1) + σ where wi is the probability
of winning for participant i and σ > 0. Roughly speaking relaxed CS constraint
means that if participant i increases her bid from zero to infinity she sees at least
λ jumps of length σ in her winning probability. The idea of their mechanism is
that for each participant i they find λ constant values ci,1 > ci,2 > ... > ci,λ
such that regardless of valuations of the other bidders; if the bid of bidder i is
between ci,j and ci,j+1 then her winning probability is at least j ∗ σ. In order to
find the constants for each participant they solve a LP whose constraints force
RM, IC, Relaxed CS, and WM. As you may notice although this mechanism
achieves WM, RM and relaxed CM, but can do very poorly in terms of PoRM.
For example suppose you have n participants and each of them wants all items.
The valuation of each participant i is bigger than its highest constant ci,1. In this
case all the participants can win with probability at most 1/n. Now suppose that
the valuation of one of the participants is infinity. She still wins with probability
1/n which shows that the PoRM of their mechanism is at least n.

Dughmi et al. [4] show that VCG is revenue monotone if and only if the
feasible subsets of winners form a matroid. Ausubel and Milgrom [1] show that
if valuations of bidders satisfy bidder-submodularity then VCG satisfies RM. Here
valuations satisfy bidders submodularity if and only if for any bidder i and any
two sets of bidders S, S′ with S ⊆ S′ we havewelfare(S∪{i})−welfare(S) ≥
welfare(S′ ∪ {i})−welfare(S′), where welfare(S) is the maximum social
welfare achievable using only bidders in S. Note that we can restrict the set of
possible allocations in a way such that bidder-submodularity holds. Then we can
use VCG on this restricted set of allocations and hence achieve RM. However
we can show that it is not possible to get a mechanism with PoRM better than
Ω(k) by restricting the set of allocations in order to get bidder-submodularity.
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Ausubel and Milgrom [1] design a mechanism which is in the core of the ex-
change economy for combinatorial auctions. A mechanism is in the core if there is
no subset of participants including the seller which can collude and trade among
each other such that all of them benefit more than the result of the mecha-
nism. Day and Milgrom [3] show that a core-selecting mechanism which selects
an allocation that minimizes the seller’s revenue satisfies RM given bidders fol-
low so called best-response truncation strategy. Therefore, the mechanism of [1]
satisfies RM if it selects an allocation that minimizes the seller’s revenue and
the participants follow best-response strategy, however, this mechanism does not
satisfy IC.

Another line of related works is around characterizing incentive compatible
mechanisms. The classic result of Roberts [13] tells that affine maximizers are the
only social choice functions which can be implemented using mechanisms that
satisfy IC when bidders have unrestricted quasi-linear valuations. Subsequent
works study some restricted cases, see e.g. [14, 8, 2, 15].

There is also a large body of research around designing mechanisms with
good bounds on the revenue. In the single parameter Bayesian setting Myerson
[9] designs a mechanism which achieves the optimal expected revenue. [6, 7]
consider optimizing revenue in prior-free settings (see e.g. [10] for a survey on
this).

3 Our Results and Overview of Techniques

To give intuition about our approach, we first start with ideas that will not work
but are potentially good candidates. To keep the explanation easier let us focus
on deterministic mechanisms. Note that the payment of each participant in a
deterministic mechanism which satisfies IC is her critical value, i.e., the minimum
valuation for which she still remains a winner. Assume that all participants
demand only one item. In this case we can simply give all the items to the
highest k bidders, which sets the critical value (the payment) of each winner to
the valuation of the (k + 1)th highest bidder. If we add one more participant
the valuation of the (k + 1)th highest bidder increases, therefore, the payment
of each winner increases and hence the mechanism satisfies RM.

Now assume we have two types of bidders: A bidder of type A who demand
all k items, and a bidder of type B who demands a single item. This scenario is
equivalent to the image-text auction for which there is a lower-bound of ln(k)
for the PoRM of deterministic mechanisms [5]. However using randomization
we can simply get a PoRM of 2. Flip a coin and with probability half give all
items to the highest type A bidder and with probability half give k items to the
k highest bidders of type B. Here, the expected social welfare is at least half
of the maximum social welfare. Note that when the coin flip selects bidders of
type A the auction simply transforms to the second price auction of selling one
package of items which has RM. When it selects bidders of type B the auction
transforms to the case when all bidders demand one item which we explained
earlier and has RM. Therefore, the expected revenue is monotone and hence the
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mechanism satisfies RM. Expanding the above idea we can partition the bidders
into log(k) groups such that the bidders of each group i ∈ log(k) has demand in
[2i, 2i+1). Then, we randomly select one group and choose the winners from the
selected group. However, this partitioning approach does not lead to a PoRM

better than log(k).
As a second approach instead of partitioning the bidders and sort them by

their valuation, we can sort them according to their Price Per Item (ppi) which is
the valuation of a participant divided by the number of items she demands. Now
consider a simple greedy algorithm as follows. Start from the top of the sorted
list of bidders and at each step do the following. If the number of remaining
items is enough to serve the current bidder give the items to the bidder and
proceed; otherwise stop. Let us call the bidder at which the greedy algorithm
stops the runner-up bidder. Note that the runner-up bidder has the largest ppi
among the loser bidders and let p be her ppi. If each of the winner participant
had ppi less than p then she could not win. Therefore, the critical value of each
winner participant is her demand multiplied by p. Although value p increases
if we add more bidders, the number of items sold might decrease. For example
consider the case when the bidder with the highest ppi demands all k items. In
this scenario she wins all items and pays k multiplied by the ppi of the runner-
up bidder. Now if we add one more bidder whose ppi is more than the highest
bidder but demands only one item; the new bidder wins and we sell only one
item. This potentially decreases the revenue of the greedy mechanism.

For our mechanism we use a combination of the above ideas and an extra
interesting technique. We partition the bidders into two groups: high-demand
bidders who demand more than k/2 items, and low-demand bidders who demand
less than or equal to k/2 items. With probability 1/3 the winner is a high-demand
bidder with the largest valuation. Similar to the partitioning approach the critical
value of the winner is the second largest valuation of the high-demand bidders
which can only increase if we add more bidders. With probability 2/3 we do
the following with the low-demand bidders. First we run the greedy algorithm
over the low-demand bidders and find the runner-up bidder. The important
observation here is that because there is no high-demand bidder, the sum of
winners’ demands (A) is larger than k/2. Therefore we are sure that we sell
at least k/2 items where the price of each item is the ppi of the runner-up

bidder. Now we select each winner of the greedy algorithm with probability k/2
A

as the true winner of our mechanism. This random selection makes sure that the
expected number of sold items is exactly k/2. The exact number k/2 is important
since the expected revenue of the mechanism is k/2 multiplied by the ppi of the
runner-up bidder. Therefore as the ppi of the runner-up bidder increases if we
add more bidders the expected revenue is monotone.

Now we explain ideas used to design our mechanism for MCAII. We first note
that as a corollary of the result of [5], we get a deterministic mechanism with a
PoRM of log2(n). In our mechanism, we assign a value to each group and use
it as the criterion in order to select the winner group. Note that a simple value
that can be assigned to each group is the maximum social welfare obtainable
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by the group. However, this way we cannot guarantee RM. Because suppose
participant i(g) of group G(g) increases her bid high enough which guarantees
that G(g) wins against all other groups no matter what are the valuations of the
other participants of G(g). Therefore, the critical values of the other members
of G(g) decreases as i(g) increases her bid and hence can decrease the revenue of
the mechanism.

We refer to our assigned value to each group as the Maximum Possible Rev-
enue of the Group (mprg). As name mprg suggests, it shows the maximum
revenue we can obtain from each group without the fear of violating RM. For

each j ∈ {1, . . . , k} and group G(g), let u
(g)
j be the maximum price can be set for

a single item so that we can sell at least j items to low-demand bidders of group

G(g). More formally, u
(g)
j is the maximum value where the sum of demands of

low-demand bidders whose ppi is larger than u
(g)
j in group G(g) is at least j.

The mprg of group G(g) is max(V (g),maxj∈{1,...,k/2} j · u(g)
j ) where V (g) is the

highest valuation of high-demand bidders. Intuitively, mprg either sells items to
high-demand bidders and obtains revenue of at most V (g) or sells items to low-
demand bidders in which we can sell a number of items between 1 and k/2. We
select a group with the highest mprg and choose the winners from this group.
We are able to show that we can obtain a revenue of at least the second highest
mprg. We prove that our mechanism satisfies RM by showing that the second
highest mprg increases if we add more bidders.

We show that the mprg of each group is at least 1/ ln(k) fraction of the
maximum social welfare obtainable by the group. Therefore, as we select the
winning group using the mprgs of groups, the PoRM of our mechanism is
O(ln(k)). We provide evidence that indeed the mprg of each group is the closest
value to its social welfare that can be safely used for selecting the winning group
without violating RM. Moreover, any randomization over the groups for selecting
the winning one according to mprg cannot improve the PoRM factor.

4 Preliminary

Let assume we have a set of n bidders {1, . . . , n} and a set of k identical items.
Let type profile θ be a vector containing the type of each bidder i which we show
by θi. Here θi is pair (di, vi) ∈ [k] × R+ where di is the number of items she
demands and vi shows her valuation for getting di items. Here we assume the
demands are publicly known because in our scenario they represent the length
of video-ads stored in database while the valuations are private to bidders.

Note that having higher valuation does not necessarily mean that the bidder
is more desirable to the seller as she might have a large demand. We define Price
Per Item (ppi) of bidder i to be vi

di
which we use in our mechanism to compare

bidders.
We show a randomized mechanism (M) by pair (w, p) where wi(θ) shows

the winning probability of bidder i in type profile θ and pi(θ) is her expected
payment.
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We use the following Theorem in this paper frequently which is a well-known
characteristic of the truthful randomized mechanisms in the single parameter
model (see e.g.[10]).

Theorem 1. Randomized mechanism M = (w, p) is truthful if and only if for
any type profile θ and any bidder i with type (di, vi) the followings hold.

1. Function wi ((di, vi), θ−i) is weakly monotone in vi.
2. pi(θ) = vi · wi(θ)−

∫ vi
0 wi ((di, t), θ−i) dt

5 Combinatorial Auction with Identical Items

We build a randomized mechanism (M = (w, p)) satisfying revenue monotonicity
and incentive compatibility such that PoRM(M) is equal to 3.

We call a bidder high-demand bidder if her demand is greater than �k/2�
otherwise we refer it as low-demand bidder. MechanismM partitions the bidders
into two groups of low-demand and high-demand bidders and with probability
1/3 selects the winning set from the high-demand bidders and with probability
2/3 from the low-demand bidders.

We will see that mechanism M favors high-demand bidders with larger val-
uations and favors low-demand-bidders with larger ppis while breaking the ties
by the index number of the bidders.

Definition 1. We say low-demand bidder l1 is more valuable than low-demand
bidder l2 and show it by (l1 , l2) if ppil1 > ppil2 ∨ (ppil1 = ppil2 ∧ l1 < l2).
Similarly we call high-demand bidder h1 is more valuable than high-demand
bidder h2 and show it by (h1 , h2) if vh1 > vh2 ∨ (vh1 = vh2 ∧ h1 < h2).

Let’s assume that there are � low-demand bidders and h high-demand bid-
ders. By adding some dummy bidders with demand 1 and valuation zero we
assume that the sum of demands of low-demand bidders is always greater than
k. Without loss of generality we assume that the first � bidders are low-demand
bidders and i , i + 1 for any i ∈ [� − 1] (the ppis of the low-demand bidders
decreases by their index) and the remaining h bidders are high-demand-bidders
while i , i+ 1 for any i ∈ {�+ 1, . . . n− 1} (the valuations of the high-demand
bidders decreases by their index).

Definition 2. We call low-demand bidder r the runner-up bidder if r is the
smallest value in set [�] for which

∑r
i=1 di ≥ k.

Later we will see that the runner-up bidder is the bidder with the largest ppi
and smallest index number who has zero probability of winning. We simply refer
to the runner-up bidder as r.

We define A to be
∑r−1

i=1 di which is the sum of demands of low-demand bidders
that have ppis greater than or equal to that of r and have positive probability
of winning (see Fig 1).

Observation 1 We have �k/2� ≤ A < k.
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k

runner-up bidder
v1

A

v2 . . . vr−1

Fig. 1. Each rectangle corresponds to a bidder where the height, width, and area
represent ppi, demand, and valuation of the bidder respectively. The dark rectangle
corresponds to the runner-up bidder whose demand crosses the value k.

Proof. Inequality A < k is the direct result of the way we select runner-up bidder
r. Inequality �k2 � ≤ A follows from the fact that

∑r
i di ≥ k and the demand of

the runner-up bidder is less than or equal to �k2 � by definition of low-demand
bidders. ��

Now we are ready to precisely define how M selects and charges the set of
winners. With probability 1/3M selects the most valuable high-demand bidder
(which is the high-demand bidder with largest valuation breaking the ties by
index). Therefore, the winning bidder in this case is � + 1 and she pays v	+2

which is the second highest valuation among high-demand bidders. Therefore
her expected payment is pM	+1(θ) =

v�+2

3 .
If we did not select the largest high-demand bidder then mechanismM uni-

formly at random selects the winner set from the first r− 1 low-demand bidders

where the probability of selecting each bidder i ∈ [r − 1] is �k/2�
A . In this case if

bidder i gets selected she has to pay di · ppir. Therefore, her expected payment

is pMi (θ) = 2�k/2�
3A · di · ppir since with probability 2/3 we select low-demand-

bidders and with probability �k/2�
A bidder i gets selected. The probability �k/2�

A is
selected in a way such that if the low-demand bidders win, the expected number
of allocated items is �k/2� since the sum of demands of the first r−1 low-demand

bidders is A and each of them gets selected with probability �k/2�
A .

In summary the expected payments of the bidders in mechanism M is the
following.

pMi (θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 �+ 1 < i
v�+2

3 i = �+ 1

0 r ≤ i ≤ �
2�k/2�
3A · di · ppir 1 ≤ i < r

(1)

In the following first we prove that the allocation function ofM is monotone
and then we show that the unique expected payments of the winners calculated
using Theorem 1 is equal to the expected payment of mechanismM which proves
that M truthful.
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Observation 2 wi ((di, vi), θ−i) is monotone in vi.

Proof. If bidder i is a high-demand bidder then clearly increasing her bid just
increases her chance to be the high-demand bidder with the largest valuation
and hence win with probability 1/3. If bidder i is a low-demand bidder then
increasing her bid just increases her ppi and hence can help her to go over the

ppi of the runner-up bidder and win with probability
2� k

2 �
3·A . ��

The following lemma shows the expected payment of each winner.

Lemma 1. The truthful expected payment of bidder i (pi(θ)) calculated by Con-
dition 2 of Theorem 1 is the following.

pi(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 �+ 1 < i
v�+2

3 i = �+ 1

0 r ≤ i ≤ �
2�k/2�
3A · di · ppir 1 ≤ i < r

(2)

Proof. Remember that the first � bidders are low-demand bidders which have
non-decreasing ppis, r is the low-demand runner-up bidder, and finally among
high-demand bidders, bidder �+1 has the largest valuation and bidder �+2 has
the second largest valuation.

The probability of winning for bidder i when � + 1 < i is zero since she is
a high-demand bidder who either does not have the highest valuation or has
the highest valuation but has larger index number (see Definition 1). Because
function wi is monotone we conclude that wi ((di, t), θ−i) is equal to zero for any
t ≤ vi. Hence by calculating the formula in Condition 2 of Theorem 1 we get
pi(θ) = 0.

We calculate the truthful expected payment of bidder � + 1 by using the
formula in Condition 2 of Theorem 1.

p�+1(θ) = v�+1 · w�+1(θ)−
∫ v�+1

0

w�+1 ((d�+1, t), θ−�+1) dt

=
1

3
v�+1 −

∫ v�+1

0

w�+1 ((d�+1, t), θ−�+1) dt

=
1

3
v�+1 −

∫ v�+2

0

w�+1 ((d�+1, t), θ−�+1) dt−
∫ v�+1

v�+2

w�+1 ((d�+1, t), θ−�+1) dt

=
1

3
v�+1 −

∫ v�+1

v�+2

w�+1 ((d�+1, t), θ−�+1) dt

=
1

3
v�+1 − 1

3
(v�+1 − v�+2)

=
v�+2

3

The first equality is Condition 2 of Theorem 1, the second equality follows from
the fact that probability of winning for bidder �+1 (w	+1(θ)) is 1/3, the third one
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is breaking the domain of integration, the forth and fifth equalities are followed
by noting that probability of winning for bidder � + 1 is zero if his valuation is
less than v	+2 and is 1/3 if his valuation is greater than or equal to v	+2.

The probability of winning for bidder i when r ≤ i ≤ � is zero since she is a
low-demand bidder which has ppi less than or equal to ppir. Because function
wi is monotone we conclude that wi ((di, t), θ−i) is equal to zero for any t ≤ vi.
Hence by calculating the formula in Condition 2 of Theorem 1 we get pi(θ) = 0.

The only part remaining is to show that pi(θ) =
2�k/2�
3A · di · ppir for 1 ≤ i < r

using Condition 2 of Theorem 1. In order to calculate
∫ vi
0

wi ((di, t), θ−i) dt we
consider the curve of allocation function wi ((di, t), θ−i) when t increases from
zero to vi (see Fig 2).

ppir · di vi

2�k/2�
3A

Probability of winning

bid t

Fig. 2. The horizontal axis represents the bid of bidder i and the vertical axis shows
the probability of bidder i winning. As bidder i increases her bid; at the point when
her ppi is equal to the ppi of the runner-up bidder she gets allocated with probability
2�k/2�

3A
.

Observation 3 For any bidder 1 ≤ i < r allocation function wi ((di, t), θ−i) is

equal to zero when t < di · ppir and is equal to 2�k/2�
3A when t ≥ di · ppir.

Proof. Remember the runner-up bidder r has the smallest index for which∑r
j=1 dj ≥ k. Mechanism M allocates all the low-demand bidders which have

index less than r (have ppis greater than or equal to the runner-up bidder) with

probability 2�k/2�
3A . Therefore as far as t ≥ di ·ppir bidder i is more valuable than

the runner-up bidder (see Definition 1) and wins with probability 2�k/2�
3A in type

profile ((di, t), θ−i).
Now assume that t < di · ppir and θ′ = ((di, t), θ−i). Our objective is to show

that the probability of bidder i winning is zero for type profile θ′ and hence
finish the proof of the observation. Note that

∑r
j=1 dj ≥ k and in the new type

profile θ′ bidder i has ppi less than the ppis of all bidders j ∈ [r] where j �= i
since t < di · ppir. In other words, bidder i is the least valuable bidder in [r]
(see Definition 1) while

∑r
j=1 dj ≥ k. Therefore, bidder i is either the runner-up

bidder in θ′ or has ppi less than the runner-up bidder (see Definition 2). Hence
has zero probability of winning. ��
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The following equalities shows the expected payment of bidder i for 1 ≤ i < r.

pi(θ) = vi · wi(θ)−
∫ vi

0

wi ((di, t), θ−i) dt

=
2�k/2�
3A

vi −
∫ vi

0

wi ((di, t), θ−i) dt

=
2�k/2�
3A

vi −
∫ di·ppir

0

wi ((di, t), θ−i) dt−
∫ vi

di·ppir
wi ((di, t), θ−i) dt

=
2�k/2�
3A

vi −
∫ vi

di·ppir
wi ((di, t), θ−i) dt

=
2�k/2�
3A

vi −
2�k/2�
3A

(vi − di · ppir)

=
2�k/2�
3A

(di · ppir)

The first equality is Condition 2 of Theorem 1, the second equality follows from

the fact that probability of winning for bidder i (wi(θ)) is
2�k/2�
3A , the third one

is breaking the domain of integration, the forth and fifth equalities are followed
from Observation 3. ��

Let revenue(M, θ) denotes the expected revenue of mechanism M in type
profile θ. We prove the following.

revenue(M, θ) =
n∑

i=1

pi(θ) definiton of revenue

=
r−1∑
i=1

pi(θ) +
�∑

i=r

pi(θ) + p�+1(θ) +
n∑

i=�+2

pi(θ)

=

r−1∑
i=1

2�k/2�
3A

(di · ppir) + v�+2

3
Lemma 1

=
2�k/2�
3A

· ppir ·
r−1∑
i=1

di +
v�+2

3

=
2�k/2�

3
· ppir + v�+2

3
as A =

r−1∑
i=1

di

(3)

The following lemma proves that M is revenue monotone.

Lemma 2. The expected revenue of mechanism M does not decrease if we add
one more bidder or a bidder increases her bid.

Proof. The expected revenue of mechanism M is 2�k/2�
3 · ppir + v�+2

3 by Equa-
tion (3). Remember that v	+2 is the high-demand bidder with the second highest
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valuation, therefore, if we add one more bidder or a bidder increases her bid this
value does not decrease. On the other hand ppir is the ppi of the runner-up
bidder (see Definition 2) which is the ppi of the first low-demand bidder that
crosses value k (see Fig 1) where the bidders are sorted according to their ppis.
The proof of the lemma follows by the fact that ppir also does not decrease as
we add one more bidder or a bidder increases her bid. ��

Finally, the following lemma (included in the full version of the paper) shows
that Price of Revenue Monotoncity (PoRM) ofM is 3 and finishes this section.

Lemma 3. PoRM(M) = 3.

6 Discussion and Future Works

Note that our mechanism satisfies the desired IC property and gets a good
portion of the maximum social welfare. However, one may worry that by enforc-
ing revenue monotonicity we may lose in total revenue since it is an additional
constraint. To address this issue, firstly, we emphasize that lack of revenue-
monotonicity can lead to loss of revenue and efficiency from second-order effects
that could be much higher than leaving some revenue to attain this property.
Most teams in a technology firm treat auction as a black box without knowledge
of its internal procedures. For example, assume a team designs a new innovative
ad format that increases the click-through-rate of certain ads. Without revenue-
monotonicity, such changes can actually lower the revenue. The problem now is
that this can result in this innovative change not getting into production system
as it might be seen as a bad change. This can be a real problem in practice, and as
auction designers, we need to address this problem. Secondly, our ultimate goal
is indeed to design auctions that satisfy good properties in different dimensions
including total revenue. However, one must realize that almost nothing is known
theoretically about this important property of revenue-monotonicity. Therefore,
to fully understand it formally, in our model, we isolate and just focus on RM
property while maximizing social welfare. This work can be a starting point for
the community to build more results around RM property, and hopefully a gen-
eral framework to design RM mechanisms emerges. Once we have the state of
the art understanding of RM, the next goal is to understand more objectives
simultaneously.
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Abstract. A recent line of work, starting with Beigman and Vohra [4]
and Zadimoghaddam and Roth [30], has addressed the problem of learn-
ing a utility function from revealed preference data. The goal here is to
make use of past data describing the purchases of a utility maximizing
agent when faced with certain prices and budget constraints in order
to produce a hypothesis function that can accurately forecast the future
behavior of the agent.

In this work we advance this line of work by providing sample com-
plexity guarantees and efficient algorithms for a number of important
classes. By drawing a connection to recent advances in multi-class learn-
ing, we provide a computationally efficient algorithm with tight sample
complexity guarantees (Θ̃(d/ε) for the case of d goods) for learning linear
utility functions under a linear price model. This solves an open ques-
tion in Zadimoghaddam and Roth [30]. Our technique yields numerous
generalizations including the ability to learn other well-studied classes of
utility functions, to deal with a misspecified model, and with non-linear
prices.

Keywords: revealed preference, statistical learning, query learning,
efficient algorithms, Linear, SPLC and Leontief utility functions.

1 Introduction

A common assumption in Economics is that agents are utility maximizers, mean-
ing that the agent, facing prices, will choose to buy the bundle of goods that she
most prefers among all bundles that she can afford, according to some concave,
non-decreasing utility function [21]. In the classical “revealed preference” anal-
ysis [29], the goal is to produce a model of the agent’s utility function that can
explain her behavior based on past data. Work on this topic has a long history
in economics [26,19,20,14,23,1,28,10,15,11], beginning with the seminal work by
Samuelson (1948) [24]. Traditionally, this work has focused on the “rationaliza-
tion” or “fitting the sample” problem, in which explanatory utility functions are
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constructively generated from finitely many agent price/purchase observations.
For example, the seminal work of Afriat [1] showed (via an algorithmic construc-
tion) that any finite sequence of observations is rationalizable if and only if it
is rationalizable by a piecewise linear, monotone, concave utility function. Note,
however, that just because a function agrees with a set of data does not imply
that it will necessarily predict future purchases well.

A recent exciting line of work, starting with Beigman and Vohra [4], intro-
duced a statistical learning analysis of the problem of learning the utility function
from past data with the explicit formal goal of having predictive or forecasting
properties. The goal here is to make use of the observed data describing the be-
havior of the agent (i.e., the bundles the agent bought when faced with certain
prices and budget constraints) in order to produce a hypothesis function that
can accurately predict or forecast the future purchases of a utility maximizing
agent. [4] show that without any other assumptions on the utility besides mono-
tonicity and concavity, the sample complexity of learning (in a statistical or
probably approximately correct sense [27]) a demand and hence utility function
is infinite. This shows the importance of focusing on important sub-classes since
fitting just any monotone, concave function to the data will not be predictive
for future events.

Motivated by this, Zadimoghaddam and Roth [30] considered specific classes
of utility functions including the commonly used class of linear utilities. In this
work, we advance this line of work by providing sample complexity guarantees
and efficient algorithms for a number of important classical classes (including lin-
ear, separable piecewise-linear concave (SPLC), and Leontief [21]), significantly
expanding the cases where we have strong learnability results. At a technical
level, our work establishes connections between learning from revealed prefer-
ences and problems of multi-class learning, combining recent advances on intrin-
sic sample complexity of multi-class learning based on compression schemes [9]
with a new algorithmic analysis yielding time- and sample-efficient procedures.
We believe that this technique may apply to a variety of learning problems in
economic and game theoretic contexts.

1.1 Our Results

For the case of linear utility functions, we establish a connection to the so-called
structured prediction problem of D-dimensional linear classes in theoretical ma-
chine learning (see e.g., [6,7,16]). By using and improving very recent results of
[9], we provide a computationally efficient algorithm with tight sample complex-
ity guarantees for learning linear utility functions under a linear price model (i.e.,
additive over goods) for the statistical revealed preference setting. This improves
over the bound in Zadimoghaddam and Roth [30] by a factor of d and resolves
their open question concerning the right sample complexity of this problem.
In addition to noting that we can actually fit the types of problems stemming
from revealed preference in the structured prediction framework of Daniely and
Shalev-Shwartz [9], we also provide a much more efficient and practical algo-
rithm for this learning problem. We specifically show that we can reduce their
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compression based technique to a classic SVM problem which can be solved via
convex programming 1. This latter result could be of independent interest to
Learning Theory.

The connection to the structured prediction problem with D-dimensional
linear classes is quite powerful and it yields numerous generalizations. It im-
mediately implies strong sample complexity guarantees (though not necessarily
efficient algorithms) for other important revealed preference settings. For linear
utility functions we can deal with non-linear prices (studied for example in [17]),
as well as with a misspecified model — in learning theoretic terms this means
the agnostic setting where the target function is consistent with a linear utility
function on a 1− η fraction of bundles; furthermore, we can also accommodate
non-divisible goods. Other classes of utility functions including SPLC can be
readily analyzed in this framework as well.

We additionally study exact learning via revealed preference queries: here the
goal of the learner is to determine the underlying utility function exactly, but
it has more power since it can choose instances (i.e., prices and budgets) of its
own choice and obtain the labels (i.e., the bundles the buyer buys). We carefully
exploit the structure of the optimal solution (which can be determined based on
the KKT conditions) in order to design query efficient algorithms. This could be
relevant for scenarios where sellers/manufacturers with many different products
have the ability to explicitly set desired prices for exploratory purposes (e.g.,
with the goal to be able to predict how demands change with change in prices
of different goods, so that they can price their goods optimally).

As a point of comparison, for both statistical and the query setting, we also
analyze learning classes of utility functions directly (from utility values instead
of from revealed preferences). Table 1 summarizes our sample complexity bounds
for learning from revealed preferences (RP) and from utility values (Value) as
well as our corresponding bounds on the query complexity (in the table we omit
log-factors). Previously known results are indicated with a ∗.

Table 1. Markets with d goods, and parameters of (bit-length) size n

RP, Statistical RP, Query Value, Statistical Value, Query

Linear Θ(d/ε) O(nd) O(d/ε)∗ O(d)∗

SPLC (at most κ O(κd/ε) (known
O(nκd)

O(κd/ε) (known
O(nκd)

segments per good) segment lengths) segment lengths)

Leontief O(1) O(1) O(d/ε) O(d)

2 Preliminaries

Following the framework of [30], we consider a market that consists of a set of
agents (buyers), and a set G of d goods of unit amount each. The prices of the

1 Such an algorithm has been used in the context of revealed preferences in a more
applied work of [17]; but we prove correctness and tight sample complexity.
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goods are indicated by a price vector p = (p1, . . . , pd). A buyer comes with a
budget of money, say B, and intrinsic preferences over bundles of goods. For
most of the paper we focus on divisible goods. A bundle of goods is represented
by a vector x = (x1, . . . , xd) ∈ [0, 1]d, where the i-th component xi denotes the
amount of the i-th good in the bundle. The price of a bundle is computed as the
inner product 〈p,x〉. Then the preference over bundles of an agent is defined by
a non-decreasing, non-negative and concave utility function U : [0, 1]d → R+.
The buyer uses her budget to buy a bundle of goods that maximizes her utility.

In the revealed preference model, when the buyer is provided with (p, B), we
observe the optimal bundle that she buys. Let this optimal bundle be denoted
by BU (p, B), which is an optimal solution of the following optimization problem:

argmaxx∈[0, 1]d : U(x)

s.t. 〈p,x〉 ≤ B
(1)

We assume that if there are multiple optimal bundles, then the buyer will
choose a cheapest one, i.e., let S = argmaxx∈[0, 1]d U(x) at (p, B), then BU (p, B)
∈ argminx∈S〈x,p〉. Furthermore, if there are multiple optimal bundles of the
same price, ties are broken according to some rule (e.g. , the buyer prefers lexi-
cographically earlier bundles).

Demand functions While a utility function U , by definition, maps bundles to
values, it also defines a mapping from pairs (p, B) of price vectors and budgets to

optimal bundles under U . We denote this function by Û and call it the demand
function corresponding to the utility function U . That is, we have Û : Rd

+×R+ →
[0, 1]d, and Û(p, B) = BU (p, B). For a class of utility function H we denote the

corresponding class of demand functions by Ĥ.

2.1 Classes of Utility Functions

Next we discuss three different types of utility functions that we analyze in
this paper, namely linear, SPLC and Leontief [21], and define their correspond-
ing classes formally. Note that at given prices p and budget B, BU (p, B) =
BαU (p, B), for all α > 0, i.e., positive scaling of a utility function does not af-
fect optimal bundles. Since we are interested in learning U by asking queries to
BU we will make some normalizing assumptions in the following definitions. We
start with linear utilities, the simplest and the most studied class of functions.

Definition 1 (Linear Hlin). A utility function U is called linear if the utility
from a bundle x is linear in each good. Formally, for some a ∈ Rd

+, we have
U(x) = Ua(x) =

∑
j∈G ajxj. It is wlog to assume that

∑
j aj = 1. We let Hlin

denote the class of linear utility functions.

Next, is a generalization of linear functions that captures decreasing marginal
utility, called separable piecewise-linear concave.
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Definition 2. [Separable Piecewise-Linear Concave (SPLC) Hsplc] A utility
function function U is called SPLC if, U(x) =

∑
j∈G Uj(xj) where each Uj :

R+ → R+ is non-decreasing piecewise-linear concave function. The number of
(pieces) segments in Uj is denoted by |Uj | and the kth segment of Uj denoted
by (j, k). The slope of a segment specifies the rate at which the agent derives
utility per unit of additional good received. Suppose segment (j, k) has domain
[a, b] ⊆ R+, and slope c. Then, we define ajk = c and ljk = b − a; lj|Uj | = ∞.
Since Uj is concave, we have aj(k−1) > ajk, ∀k ≥ 2. We can view an SPLC

function, with |Uj| ≤ κ for all j, as defined by to matrices A,L ∈ Rd×κ
+ and we

denote it by UAL. We let Hsplc denote the class of all SPLC functions.

Linear and SPLC functions are applicable when goods are substitutes, i.e., one
good can be replaced by another to maintain a utility value. The other extreme
is when goods are complementary, i.e., all goods are needed in some proportions
to obtain non-zero utility. Next, we describe a class of functions, used extensively
in economic literature, that captures complementarity.

Definition 3 (Leontief Hleon). A utility function U is called a Leontief func-
tion if U(x) = minj∈G xj/aj, where a ≥ 0 and (wlog)

∑
j aj = 1. Let Hleon be

the set of all Leontief functions on d goods.

In order to work with finite precision, in all the above definitions we assume
that the parameters are rational numbers of size (bit-length) at most n.

2.2 Learning Models: Statistical and Query

We now introduce the formal models under which we analyze the learnability
of utility functions. We start by reviewing the general model from statistical
learning theory for multi-class classification. We then explain the more specific
model for learning from revealed preferences as introduced in [30]. Finally, we
also consider a non-statistical model of exact learning from queries, which is
explained last in this section.

General Model for Statistical Multi-class Learning. Let X denote a do-
main set and let Y denote a label set. A hypothesis (or label predictor or classi-
fier), is a function h : X → Y, and a hypothesis class H is a set of hypotheses.
We assume that data is generated by some (unknown) probability distribution
P over X . This data is labeled by some (unknown) labeling function l : X → Y.
The quality of a hypothesis h is measured by its error with respect to P and l:
errlP (h) = Prx∼P [l(x) �= h(x)]. A learning algorithm (or learner) gets as input a
sequence S = ((x1, y1), . . . , (xm, ym)) and outputs a hypothesis.

Definition 4 (Multi-class learnability (realizable case)). We say that an
algorithm A learns some hypothesis class H ⊆ YX , if there exists a function
m : (0, 1)× (0, 1)→ N such that, for all distributions P over X , and for all ε > 0
and δ > 0, when given a sample S = ((x1, y1), . . . , (xm, ym)) of size at least
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m = m(ε, δ) with the xi generated i.i.d. from P and yi = h(x) for some h ∈ H,
then, with probability at least 1 − δ over the sample, A outputs a hypothesis
A(S) : X → Y with errhP (A(S)) ≤ ε.

The complexity of a learning task is measured by its sample complexity, that
is, informally, the amount of data with which an optimal learner can achieve
low error. We call the (point-wise) smallest function m : (0, 1)× (0, 1)→ N that
satisfies the condition of Definition 4 the sample complexity of the algorithm
A for learning H. We denote this function by m[A,H]. We call the smallest
function m : (0, 1) × (0, 1) → N such that there exists a learning algorithm A
with m[A,H] ≤ m the sample complexity of learning H and denote it by m[H].

Statistical Learning from Revealed Preferences. As in [30], we consider a
statistical learning setup where data is generated by a distribution P over pairs
of price vectors and budgets (that is, P is a distribution over Rd

+ ×R+). In this
model, a learning algorithmA gets as input a sample S = (((p1, B1),BU (p1, B1)),
. . . , ((pm, Bm),BU (pm, Bm))), where the (pi, Bi) are generated i.i.d. from the
distribution P and are labeled by the optimal bundles under some utility func-
tion U . It outputs some function A(S) : Rd

+ × R+ → [0, 1]d that maps pairs
of price vectors and budgets to bundles. A learner is considered successful if it
learns to predict a bundle of value that is the optimal bundles’ value.

Definition 5 (Learning from revealed preferences [30]). An algorithm A
is said to learn a class of utility functions H from revealed preferences, if for all
ε, δ > 0, there exists a sample size m = m(ε, δ) ∈ N, such that, for any distribu-
tion P over Rd

+ ×R+ (pairs of price vectors and budgets) and any target utility
function U ∈ H, if S = (((p1, B1),BU (p1, B1)), . . . , ((pm, Bm),BU (pm, Bm))) is
a sequence of i.i.d. samples generated by P with U , then, with probability at least
1− δ over the sample S, the output utility function A(S) satisfies

Pr
(p,B)∼P

[
U(BU (p, B)) �= U(BA(S)(p, B))

]
≤ ε.

Note that the above learning requirement is satisfied if the learner “learns
to output the correct optimal bundles”. That is, to learn a class H of utility
functions from revealed preferences, in the sense of Definition 5, it suffices to
learn the corresponding class of demand functions Ĥ in the standard sense of
Definition 4 (with X = Rd

+ × R+ and Y = [0, 1]d). This is what the algorithm
in [30] and our learning algorithms for this setting actually do. The notion of
sample complexity in this setting can be defined analogously to the above.

Model for Exact Learning from Queries. In the query learning model,
the goal of the learner is to determine the underlying utility function exactly.
The learner can choose instances and obtain the labels of these instances from
some oracle. A revealed preference query learning algorithm has access to an
oracle that, upon given the input (query) of a price vector and a budget (p, B),
outputs the corresponding optimal bundle BU (p, B) under some utility function
U . Slightly abusing notation, we also denote this oracle by BU .
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Definition 6 (Learning from revealed preference queries). A learning
algorithm learns a classH from m revealed preference queries, if for any function
U ∈ H, if the learning algorithm is given responses from oracle BU , then after
at most m queries the algorithm outputs the function U .

Both in the statistical and the query setting, we analyze a revealed preference
learning model as well as a model of learning classes of utility function “directly”
from utility values. Due to limited space, for these latter definition and results
refer to the full-version at [2].

3 Efficiently Learning Linear Multi-class Hypothesis
Classes

We start by showing that certain classes of multi-class predictors, so-called D-
dimensional linear classes (see Definition 7 below), can be learnt efficiently both
in terms of their sample complexity and in terms of computation. For this, we
make use of a very recent upper bound on their sample complexity by Daniely
and Shalev-Shwartz [9]. At a high level, their result obtains strong bounds on
the sample complexity of D-dimensional linear classes (roughly D/ε) by using
an algorithm and sample complexity analysis based on a compression scheme —
which roughly means that the hypothesis produced can be uniquely described
by a small subset of D of the training examples. We show that their algorithm
is actually equivalent to a multi class SVM formulation, and thereby obtain a
computationally efficient algorithm with optimal sample complexity. In the next
sections we then show how learning classes of utility functions from revealed
preferences can be cast in this framework.

Definition 7. A hypothesis class H ⊆ YX is a D-dimensional linear class, if
there exists a function Ψ : X × Y → RD such that for every h ∈ H, there exists
a vector w ∈ RD such that h(x) ∈ argmaxy∈Y〈w, Ψ(x, y)〉 for all x ∈ X . We
then also denote the class by HΨ and its members by hw.

For now, we assume that (the data generating distribution is so that) the set
argmaxy∈Y〈w, Ψ(x, y)〉 contains only one element, that is, there are no ties2.
The following version of the multi-class support vector machine (SVM) has been
introduced by Crammer and Singer [8].

Algorithm 1. Multi-class (hard) SVM [8]

Input: Sample (x1, y1), . . . , (xm, ym) ∈ X × Y
Solve: w = argminw∈Rd ‖w‖
such that 〈w, Ψ(xi, yi)− Ψ(xi, y)〉 ≥ 1 ∀i ∈ [m], y �= yi
Return: vector w

2 The work of [9] handled ties using a “don’t know” label; to remove technicalities, we
make this distributional assumption in this version of our work.
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Remark 1. Suppose that given w ∈ Rd and x ∈ X , it is possible to efficiently
compute some y′ ∈ argmaxy/∈argmaxy′′ 〈w,Ψ(x,y′′)〉〈w, Ψ(x, y)〉. That is, it is pos-

sible to compute a label y in the set of “second best” labels. In that case, it
is not hard to see that SVM can be solved efficiently, since this gives a sep-
aration oracle. SVM minimizes a convex objective subject to, possibly expo-
nentially many, linear constraints. For a given w, a violated constraint can
be efficiently detected (by one scan over the input sample) by observing that
〈w, Ψ(xi, yi)− Ψ(xi, y

′)〉 < 1.

The following theorem on the sample complexity of the above SVM formula-
tion, is based on the new analysis of linear classes by [9]. We show that the two
algorithms (the SVM and the one in [9]) are actually the same.

Theorem 1. For a D-dimensional linear class HΨ , with Ψ having finite range,

the sample complexity of SVM is m[SVM,HΨ ](ε, δ) = O
(

D log(1/ε)+log(1/δ)
ε

)
.

Proof. Let S = (x1, y1), . . . , (xm, ym) be a sample that is realized by HΨ . That
is, there exists a vector w ∈ Rd with 〈w, Ψ(xi, yi)〉 > 〈w, Ψ(xi, y)〉 for all y �= yi.
Consider the set Z = {Ψ(xi, yi) − Ψ(xi, y) | i ∈ [m], y �= yi}. The learning
algorithm for HΨ of [9] outputs the minimal norm vector w′ ∈ conv(Z). Accord-
ing to Theorem 5 in [9] this algorithm successfully learns HΨ and has sample

complexity O
(

D log(1/ε)+log(1/δ)
ε

)
. We will show that the hypothesis returned by

that algorithm is the same hypothesis as the one returned by SVM. Indeed, let
w be the vector that solves the SVM program and let w′ be the vector found

by the algorithm of [9]. We will show that w = ‖w‖
‖w′‖ ·w′. This is enough since

in that case hw = hw′ .
We note thatw is the same vector that solves the binary SVM problem defined

by the sample {(z, 1)}z∈Z. It is well known (see, e.g. , [25], Lemma 15.2) that the
hyperplane defined by w has maximal margin. That is, the unit vector e = w

‖w‖
maximizes the quantity mar(e′′) := min{〈e′′, z〉 | z ∈ Z} over all unit vectors
e′′. The proof of the theorem now follows from the following claim:

Claim. Over all unit vectors, e′ = w′
‖w′‖ maximizes the margin.

Proof. Let e′′ �= e′ be a unit vector.Wemust show thatmargin(e′′) < margin(e′).
Note that margin(e′) > 0, since w′ is shown in [9] to realize the sample S (that
is 〈w′, z〉 > 0 for all z ∈ Z and thus also for all z ∈ convZ). Therefore, we
can assume w.l.o.g. that margin(e′′) > 0. In particular, since margin(−e′) =
−margin(e′) < 0, we have that e′′ �= −e′.

Since, margin(e′′) > 0, we have that margin(e′′) is the distance between the
hyperplane H ′′ = {x | 〈e′′,x〉 = 0} and conv(Z). Since e′′ /∈ {e′,−e′}, there is
a vector in v ∈ H ′′ with 〈e′,v〉 �= 0. Now, consider the function

t 	→ ‖t · v −w′‖2 = t2 · ‖v‖2 + ‖w′‖2 − 2t〈v,w′〉.

Since the derivative of this function at 0 is not 0, for some value of t we have
dist(t · v,w′) < dist(0,w′). Therefore, margin(e′′) = dist(H ′′, Z) ≤ dist(t ·
v,w′) < dist(0,w′) = margin(e′).
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4 Statistical Learning from Revealed Preferences

In the next section, we show that learning utility functions from revealed pref-
erences can in many cases be cast as learning a D-dimensional linear class HΨ

for a suitable encoding function Ψ and D. Throughout this section, we assume
that the data generating distribution is so that there are no ties for the optimal
bundle with respect to the agents’ utility function (with probability 1). This is,
for example, the case if the data-generating distribution has a density function.

4.1 Linear

Learnability of Hlin from revealed preferences is analyzed in [30]. They obtain a
bound of (roughly) d2/ε on the sample complexity. We show that the quadratic
dependence on the number of goods is not needed. The sample complexity of this
problem is (roughly) d/ε. We will show that the corresponding class of demand

functions Ĥlin is actually a d-dimensional linear class. Since learnability of a
class of utility functions in the revealed preference model (Definition 5) is implied
by learnability of the corresponding class of demand functions (in the sense of
Definition 4), Theorem 1 then implies the upper bound in the following result:

Theorem 2. The class Hlin of linear utility functions is efficiently learnable

in the revealed preference model with sample complexity O
(

d log(1/ε)+log(1/δ)
ε

)
.

Moreover, the sample complexity is lower bounded by Ω
(

d+log(1/δ)
ε

)
.

Proof. Let Ua be a linear utility function. By definition, the optimal bundle
given a price vector p and a budget B is argmaxx∈[0,1]n,〈p,x〉≤B〈a,x〉. Note
that, for a linear utility function, there is always an optimal bundle x where all
(except at most one) of the xi are in {0, 1} (this was also observed in [30]; see
also Section 5.1). Essentially, given a price vector p, in an optimal bundle, the
goods are bought greedily in decreasing order of ai/pi (value per price).

Thus, given a pair of price vector and budget (p, B), we call a bundle x
admissible, if |{i : xi /∈ {0, 1}}| ≤ 1 and 〈p,x〉 = B. In case 〈p,1d〉 =

∑
i∈G pi ≤

B, we also call the all 1-bundle 1d admissible (and in this case, it is the only
admissible bundle). We now define the function Ψ as follows:

Ψ((p, B),x) =

{
x if x admissible
0d otherwise

where 0d denotes the all-0 vector in Rd. With this, we have HΨ = Ĥlin.
We defer the proof of the lower bound to the full version [2]. To outline the

argument, we prove that the Natarajan dimension of Ĥlin is at least d− 1. This
implies a lower bound for learning Ĥlin. It is not hard to see that the construction
also implies a lower bound for learning Hlin in the revealed preference model.

To prove computational efficiency, according to Remark 1, we need to show
that for a linear utility function Ua, we can efficiently compute some

y′ ∈ argmaxy/∈argmaxy′′ 〈a,Ψ(x,y′′)〉〈a, Ψ(x, y)〉;
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that is a second best bundle with respect to the mapping Ψ . This will be shown
in Theorem 3 of the next subsection.

Efficiently Computing the Second Best Bundle under Linear Utilities.
In this section show how to compute a second best admissible bundle (with
respect to the mapping Ψ) efficiently. Recall that admissible bundles at prices p
and budget B are defined (in the proof of the above theorem) to be the bundles
that cost exactly B with at most one partially allocated good (or the all-1 bundle
1d, in case it is affordable). Note that, in case 〈p,1d〉 ≤ B, any other bundle is
second best with respect to Ψ , since all other bundles are mapped to 0d. For the
rest of this section, we assume that 〈p,1d〉 > B. At any given (p, B) the optimal
bundle is always admissible. We now design an O(d)-time algorithm to compute
the second best admissible bundle, i.e., y ∈ argmaxx admissible ,x�=x∗〈a,x〉,
where x∗ is the optimal bundle. At prices p, let a1

p1
≥ a2

p2
≥ · · · ≥ ad

pd
, and let

the first k goods be bought at the optimal bundle, i.e., k = maxj: x∗
j>0 j. Then,

clearly ∀j < k, x∗
j = 1 and ∀j > k, x∗

j = 0 as x∗ is admissible.
Note that, to obtain the second best admissible bundle y from x∗, amounts

of only the first k goods can be lowered and amounts of only the last k to d
goods can be increased. Next we show that the number of goods whose amounts
are lowered and increased at exactly one each. In all the proofs we crucially use
the fact that if

aj

pj
> ak

pk
, then transferring money from good k to good j gives a

better bundle, i.e., aj
m
pj
− ak

m
pk

> 0.

Lemma 1. There exists exactly one j ≥ k, such that yj > x∗
j .

Proof. To the contrary suppose there are more than one goods with yj > x∗
j .

Consider the last such good, let it be l. Clearly l > k, because the first good
that can be increased is k. If yl < 1 then there exists j < l with yj = 0, else if
yl = 1 then there exists j < l with yj < 1. In either case transfer money from
good l to good j such that the resulting bundle is admissible. Since,

aj

pj
> al

pl
it

is a better bundle different from x∗. The latter holds since there is another good
whose amount still remains increased. A contradiction to y being second best.

Lemma 2. There exists exactly one j ≤ k, such that yj < x∗
j .

Proof. To the contrary suppose there are more than one goods with yj < x∗
j . Let

l be the good with yl > x∗
l ; there is exactly one such good due to Lemma 1. Let

i be the first good with yi < x∗
i and let p be the good that is partially allocated

in y. If p is undefined or p ∈ {i, l}, then transfer money from l to i to get a
better bundle. Otherwise, p < l so transfer money from l to p. In either case we
can do the transfer so that the resulting bundle is admissible and is better than
y but different from x∗. A contradiction.

Lemmas 1 and 2 gives an O(d2) algorithm to compute the second best admis-
sible bundle, where we can check all possible ways of transferring money from a
good in {1, . . . , k} to a good in {k, . . . , d}. The next lemma leads to time O(d).
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Lemma 3. If x∗
k < 1, and for j > k we have yj > x∗

j , then yk < x∗
k. Further, if

x∗
k = 1 and yj > x∗

j then j = k + 1.

Proof. To the contrary suppose, yk = x∗
k < 1 and for a unique i < k, yi < x∗

i

(Lemma 2). Clearly, yi = 0 and yj = 1 because 0 < yk < 1. Thus, transferring
money from j to k until either yj = 0 or yk = 1 gives a better bundle different
from x∗, a contradiction. For the second part, note that there are no partially
bought good in x∗ and yk+1 = 0. To the contrary suppose j > k + 1, then
transferring money from good j to good k + 1 until either yj = 0 or yk+1 = 1
gives a better bundle other than x∗, a contradiction.

The algorithm to compute second best bundle has two cases. First is when
x∗
k < 1, then from Lemma 3 it is clear that if an amount of a good in {k+1, . . . , d}

is increased then the money has to come from good k. This leaves exactly d− 1
bundles to be checked, namely when money is transferred from good k to one
of {k + 1, . . . , d}, and when it is transferred from one of {1, . . . , k − 1} good k.
The second case is when x∗

k = 1, then we only need to check k bundles namely,
when money is transferred from one of {1, . . . , k} to good k + 1. Thus we get:

Theorem 3. Given prices p and budget B, the second best bundle with respect
to the mapping Ψ for U ∈ Hlin at (p, B) can be computed in O(d) time.

4.2 Other Classes of Utility Functions

By designing appropriate mappings Ψ as above, we also obtain bounds on the
sample complexity of learning other classes of utility functions from revealed
preferences. In particular, we can employ the same technique for the class of
SPLC functions with known segment lengths. See Table 1 for an overview on
the results and the full version [2] for for the technical details.

4.3 Extensions

Modeling learning tasks as learning aD-dimensional linear class is quite a general
technique. We now discuss how it allows for a variety of interesting extensions.

Agnostic setting In this work, we mostly assume that the data was generated
by an agent that has a utility function that is a member of some specific class
(for example, the class of linear utilities). However, this may not always be a
realistic assumption. For example, an agent may sometimes behave irrationally
and deviate from his actual preferences. In learning theory, such situations are
modeled in the agnostic learning model. Here, we do not make any assumption
about membership of the agents’ utility function in some fixed class. The goal
then is, to output a function from some class, say the class of linear utility
functions, that predicts the agents’ behavior with error that is at most ε worse
than the best linear function would.

Formally, the requirement on the output classifier AS in Definition 4 then
becomes errlP (AS) ≤ η + ε (instead of errlP (AS) ≤ ε), where η is the error of
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the best classifier in the class. Since our sample complexity bounds are based on
a compression scheme, and compression schemes also imply learnability in the
agnostic learning model (also see the full version [2]) we get that the classes of
utility functions with D-dimensional linear classes as demand functions that we
have analyzed are also learnable in the agnostic model. That is, we can replace
the assumption that the data was generated exactly according to a linear (or
SPLC) function with an assumption that the agent behaves according to such a
function at least a 1− η fraction of the time.

Non-linear prices, indivisible goods, quasi-linear utilities So far, we looked at a
market where pricing is always linear and goods are divisible (see Section 2). We
note that the sample complexity results for Hlin and Hsplc that we presented
here actually apply in a broader context. Prices per unit could vary with the
amount of a good in a bundle (e.g. [17]). For example, there may be discounts
for larger volumes and prices could be SPLC . Also, goods may not be arbitrarily
divisible (e.g. [12]). Instead of one unit amount of each good in the market, there
may then be a number of non-divisible items of each good on offer. Note that
we can still define the functions Ψ to obtain a D-dimensional linear demand
function class and the classes of utility functions discussed above are learnable
with the same sample complexity.

In another common model the agent chooses a bundle to maximize U(x) −
〈p,x〉 (with or without a budget constraint). Note that for linear utility func-
tions, the optimal bundles under this model are also well structured. Without a
budget constraint, the agent buys a good only if ai−pi > 0. With a budget con-
straint, goods are bought greedily in decreasing order of (ai − pi)/pi. This gives
us a means to define admissible bundles for these scenarios and we can employ
the mapping Ψ (written for the case without budget) Ψ(p,x) = (x, 〈p,x〉), if x
is admissible and 0d+1 otherwise. This shows that learning to predict a buyers
behavior in this model can be cast as learning a (d+1)-dimensional linear class.

Learning preference orderings Consider the situation where we would like to not
only learn the preferred choice (over a number d of options) of an agent, but the
complete ordering of preferences given some prices over the options.

We can model this seemingly more complex task as a learning problem as
follows: Let X = Rd

+ be our instance space of price vectors. Denote by Y = Sd the
group of permutations on d elements. Let a vectorw ∈ Rd represent the unknown
valuation of the agent, that is wi indicates how much the agent values option
i. Consider the functions hw : Rd

+ → Sd such that hw(p) is the permutation
corresponding to the ordering over the values wi/pi (i.e. π(1) is the index with
the largest value per money wi/pi and so on).

Finally, consider the hypothesis class Hπ = {hw : w ∈ Rd
+}. We show below

that Hπ is a d-dimensional linear class. Therefore, this class can also be learned

with sample complexity O
(

d log(1/ε)+log(1/δ)
ε

)
. With the same construction as

for linear demand functions (see the full version [2] for details), we can also show
that the Natarajan dimension of Hπ is lower bounded by d − 1, which implies
that this bound on the sample complexity is essentially optimal.
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To see thatHπ is d-dimensional linear class, consider the map Ψ : X×Sd → Rd

defined by Ψ(p, π) =
∑

1≤i<j≤d πij · ((1/pj)ej − (1/pi)ei), where, πij is 1 if

π(i) < π(j) and else −1; e1, . . . , ed is the standard basis of Rd

5 Learning via Revealed Preference Queries

In this section we design algorithms to learn classes Hlin, Hsplc, or Hleon using
poly(n, d) revealed preference queries.3 Recall that we have assumed all defining
parameters of a function to be rationals of size (bit length) at most n. In what
follows we discuss the case of linear functions (Hlin), for SPLC (Hsplc) and
Leontief (Hleon) refer to the full-version [2].

5.1 Characterization of Optimal Bundles

In this section we characterize optimal bundles for linear utility functions. In
other words, given (p, B) we characterize BU (p, B) when U is in Hlin. Since
function U is concave, formulation (1) is a convex formulation, and therefore the
Karush-Kuhn-Tucker (KKT) conditions characterize its optimal solution [5,3].
For a general formulation min{f(x) | gi(x) ≤ 0, ∀i ≤ n}, the KKT conditions
are as follows, where μi is the dual variable for constraint gi(x) ≤ 0.

L(x,μ) = f(x) +
∑

i≤n μigi(x);
dL
dxi

= 0, ∀i ≤ n

∀i ≤ n : μigi(x) = 0, gi(x) ≤ 0, μi ≥ 0

In (1), let μ, μj and μ′
j be dual variables for constraints 〈p,x〉 ≤ B, xj ≤ 1

and −xj ≤ 0 respectively. Then its optimal solution x∗ = BU (p, B) satisfies the
KKT conditions: dL/dxj|x∗ = −dU/dxj|x∗ + μpj + μj − μ′

j = 0, μ′
jx

∗
j = 0, and

μj(x
∗
j − 1) = 0. Simplifying these gives us:

∀j �= k, x∗
j > 0, x∗

k = 0 ⇒ dU/dxj|x∗
pj

≥ dU/dxk|x∗
pk

∀j �= k, x∗
j = 1, 0 ≤ x∗

k < 1⇒ dU/dxj|x∗
pj

≥ dU/dxk|x∗
pk

∀j �= k, 0 < x∗
j , x

∗
k < 1 ⇒ dU/dxj|x∗

pj
=

dU/dxk|x∗
pk

(2)

Linear functions: Given prices p, an agent derives aj/pj utility per unit money
spent on good j (bang-per-buck). Thus, she prefers the goods where this ratio
is maximum. The characterization of optimal bundle exactly reflects this,

∀j �= k, x∗
j > 0, x∗

k = 0 ⇒ aj

pj
≥ ak

pk

∀j �= k, x∗
j = 1, 0 ≤ x∗

k < 1⇒ aj

pj
≥ ak

pk

∀j �= k, 0 < x∗
j , x

∗
k < 1 ⇒ aj

pj
= ak

pk

(3)

The next theorem follows using the KKT conditions (2).

3 Learning budget, when it is private to the buyer, requires only one extra query: For
prices pj = 22n,∀j, the amount of money spent by the buyer is her budget. This is
because B ≤ 2n if size(B) ≤ n. Further, the algorithms designed in this section can
be easily modified to handle this fixed-budget case.
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Theorem 4. Given prices p and budget B, conditions of (3) together with the
feasibility constraints of (1) exactly characterizes x∗ = BU (p, B) for U ∈ Hlin.

5.2 An Algorithm for Linear Functions

Recall that, if U ∈ Hlin then U(x) =
∑

j ajxj , where
∑

aj = 1. First we need
to figure out which ajs are non-zero.

Lemma 4. For pj = 1, ∀j and B = n, if x = BU (p, B), then xj = 0⇒ aj = 0.

Proof. Since B =
∑

j pj , the agent has enough money to buy all the good
completely, and the lemma follows as the agent buys cheapest optimal bundle.

Lemma 4 implies that one query is enough to find the set {j | aj > 0}.
Therefore, wlog we now assume that ∀j ∈ G, aj > 0.

Note that, it suffices to learn the ratios
aj

a1
, ∀j �= 1 exactly in order to learn

U , as
∑

j aj = 1. Since the bit length of the numerator and the denominator

of each aj is at most n, we have that 1/22n ≤ aj/a1 ≤ 22n. Using this fact, next
we show how to calculate each of these ratios using O(n) revealed preference
queries, and in turn the entire function using O(dn) queries.

Recall the optimality conditions (3) for linear functions. Algorithm 2 deter-
mines aj/a1 when called with H = 22n, q = 1 and xe

j = 0.4 The basic idea is
to always set budget B so low that the agent can buy only the most preferred
good, and then do binary search by varying pj appropriately. Correctness of the
algorithm follows using (3) and the fact that bit length of aj/a1 is at most 2n.

Algorithm 2. Learning Linear Functions: Compute aj/a1

Input: Good j, upper bound H , quantity q of goods, extra amount xe
j .

Initialize: L ← 0; p1 ← 1; pk ← 210n, ∀k ∈ G \ {j, 1}; i ← 0; flag ← nil
while i <= 4n do

i ← i+ 1; pj ← H+L
2

; B ← xe
j ∗ pj + min{p1,pj}

q
; x ← BU (p, B)

if xj > 0 & x1 > 0 then Return pj ;
if xj > 0 then L ← pj ; flag ← 1; else H ← pj ; flag ← 0;

if flag = 1 then Round up pj to nearest rational with denominator at most 2n

else Round down pj to nearest rational with denominator at most 2n

Return pj .

Theorem 5. The class Hlin is learnable from O(nd) revealed preference queries.

Acknowledgments. This work was supported in part by AFOSR grant FA9550-
09-1-0538, ONR grant N00014-09-1-0751, NSF grants CCF-0953192 and CCF-
1101283, a Microsoft Faculty Fellowship, and a Google Research Award.

4 Last two inputs are irrelevant for learning linear functions, however they are used
to learn SPLC functions in full-version [2].
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General Truthfulness Characterizations

via Convex Analysis

Rafael Frongillo and Ian Kash

Microsoft Research

Abstract. We present a model of truthful elicitation which generalizes
and extends mechanisms, scoring rules, and a number of related settings
that do not quite qualify as one or the other. Our main result is a char-
acterization theorem, yielding characterizations for all of these settings,
including a new characterization of scoring rules for non-convex sets of
distributions. We generalize this model to eliciting some property of the
agent’s private information, and provide the first general characteriza-
tion for this setting. We also show how this yields a new proof of a result
in mechanism design due to Saks and Yu.

1 Introduction

We examine a general model of information elicitation where a single agent is
endowed with some type t that is private information and is asked to reveal it.
After doing so, he receives a score A(t′, t) that depends on both his report t′ and
his true type t. We allow A to be quite general, with the main requirement being
that A(t′, ·) is an affine1 function of the true type t, and seek to understand when
it is optimal for the agent to truthfully report his type. Given this truthfulness
condition, it is immediately clear why convexity plays a central role—when an
agent’s type is t, the score for telling the truth is A(t, t) = supt′ A(t

′, t), which is
a convex function of t as the pointwise supremum of affine functions.

One special case of our model is mechanism design with a single agent2, where
the designer wishes to select an outcome based on the agent’s type. In this set-
ting, A(t′, ·) can be thought of as the allocation and payment given a report of t′,
which combine to determine the utility of the agent as a function of his type. In
this context, A(t, t) is the consumer surplus function (or indirect utility function),
and Myerson’s well-known characterization [50] states that, in single-parameter
settings, a mechanism is truthful if and only if the consumer surplus function is
convex and its derivative (or subgradient at points of non-differentiability) is the
allocation rule. More generally, this remains true in higher dimensions (see [4]).3

1 A mapping between two vector spaces is affine if it consists of a linear transformation
followed by a translation.

2 This is not a real restriction because notions of truthfulness are phrased in terms of
holding the behavior of other agents constant. See [4,23] for additional discussion.

3 Note that here the restriction that A(t′, ·) be affine is without loss of generality, be-
cause we view types as functions and function application is a linear operation. (See
Section 2.2 for more details.)

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 354–370, 2014.
c© Springer International Publishing Switzerland 2014
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Another special case is a scoring rule, also called a proper loss in the ma-
chine learning literature, where an agent is asked to predict the distribution of
a random variable and given a score based on the observed realization of that
variable. In this setting, types are distributions over outcomes, and A(t′, t) is the
agent’s subjective expected score for a report that the distribution is t′ when
he believes the distribution is t. As an expectation, this score is linear in the
agent’s type. Gneiting and Raftery [33] unified and generalized existing results
in the scoring rules literature by characterizing proper scoring rules in terms of
convex functions and their subgradients.

Further, the generality of our model allows it to include settings that do not
quite fit into the standard formulations of mechanisms or scoring rules. These
include counterfactual scoring rules for decision-making [20,21,56], proper losses
for machine learning with partial labels [24], mechanism design with partial
allocations [17], and responsive lotteries [27].

In many settings, it is difficult, or even impossible, to have agents report an
entire type t ∈ T . For example, when allocating a divisible good (e.g. water), a
mechanism that needs to know how much an agent would value each possible
allocation requires him to submit an infinite-dimensional type. Even type spaces
which are exponential in size, such as those that arise in combinatorial auctions,
can be problematic from an algorithmic perspective. Moreover, in many situa-
tions, the principal is uninterested in all but some small aspect of an agent’s
private type. For example, the information is often to be used to eventually
make a specific decision, and hence only the information directly pertaining to
the decision is actually needed—why ask for the agent’s entire probability distri-
bution of rainfall tomorrow if a principal wanting to choose between {umbrella,
no umbrella} would be content with its expected value, or even just whether she
should carry an umbrella or not?

It is therefore natural to consider an indirect elicitation model where agents
provide some sort of summary information about their type. Such a model has
been studied in the scoring rules literature, where one wishes to elicit some
statistic, or property, of a distribution, such as the mean or quantile [32,47,54,61].
We follow this line of research, and extend the affine score framework to accept
reports from a different (intuitively, much smaller) space than T .

1.1 Our Contribution

Our main theorem (Section 2) is a general characterization theorem that gen-
eralizes and extends known characterization theorems for proper scoring rules
(substantially) and truthful mechanisms (slightly, by removing a technical as-
sumption). For scoring rules, this provides the first characterization of proper
scoring rules with non-convex sets of distributions, an idea that has proved use-
ful as a way of separating informed and uninformed experts [9,26], but for which
no characterization was known. We also survey applications to related settings
and show our theorem can be used to provide characterizations for them as
well, including new results about mechanism design with partial allocation and
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responsive lotteries. Thus, our theorem eliminates the need to independently
derive characterizations for such settings.

This unified characterization of mechanisms and scoring rules also clarifies
their relationship: both are derived from convex functions in the exact same
manner, with mechanisms merely facing additional constraints on the choice of
convex function so that it yields a valid allocation rule. This aids in understand-
ing when results or techniques from one setting can be applied in the other.
Indeed, the proof of our characterization begins with Gneiting and Raftery’s
scoring rule construction [33] and adapts it with a variant of a technique from
Archer and Kleinberg [4] for handling mechanisms with non-convex type spaces
(see their Theorem 6.1). As an example of the new insights this can provide,
results from mechanism design show that a scoring rule is proper if and only if it
is locally proper (see Section C.2 and Corollary 3). More broadly, we show how
results from mechanism design about implementability and revenue equivalence
generalize to our framework.

We then move on to two general results for eliciting a particular property of
the agent’s private information. The first is essentially a direct generalization of
Theorem 1, which keeps the same general structure but adds the constraint that
the convex function must be flat on sets of types which share an optimal report.
This is the first general result for arbitrary properties; in addition to serving
as our main tool to derive the remainder of our results, this theorem provides
several ways to show that a property is not elicitable (by showing that no such
convex function can exist). The second result is a transformation of this theorem
using duality, which shows that there is a strong sense in which properties are
subgradients of convex functions. We use this result to introduce notions of dual
properties and scores, which gives a new construction to convert between scoring
rules and randomized mechanisms (see Corollary 9).

We conclude by examining properties that take on a finite number of val-
ues, which Lambert and Shoham [48] showed correspond to power diagrams. We
extend their result to settings where the private information need not be a prob-
ability distribution, and give a tight characterization for a particular restricted
“simple” case. We also give an explicit construction for generating power dia-
grams from other measures of distances via a connection to Bregman Voronoi
diagrams [15]. Finally, we show how these results imply a new proof of an im-
plementability theorem from mechanism design due to Saks and Yu [60].

1.2 Relation to Prior Work

The similarities between mechanisms and scoring rules were noted by (among
others) Fiat et al. [29], who gave a construction to convert mechanisms into scor-
ing rules and vice versa, and Feige and Tennenholtz [27], who gave techniques to
convert both to “responsive lotteries.” Further, techniques from convex analysis
have a long history in the analysis of both models (see [33,65]). However, we be-
lieve that our results use the “right” representation and techniques, which leads
to more elegant characterizations and arguments. For example, the construction
used by Fiat et al. has the somewhat awkward property that the scoring rule
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corresponding to a mechanism has one more outcome than the mechanism did, a
complication absent from our results. Similarly, the constructions used by Feige
and Tennenholtz only handle special cases and they claim “there is no immediate
equivalence between lottery rules and scoring rules,” while we can give such an
equivalence. So while prior work has understood that there is a connection, the
nature of that connection has been far from clear.

A large literature in mechanism design has explored characterizations of when
allocation rules can be truthfully implemented; see e.g. [4,5,14,19,40–42,49,51,
60]. Similarly, work on revenue equivalence can be cast in our framework as
well [18, 37, 44, 50]. For scoring rules, our work connects to a literature that has
used non-convex sets of probability distributions to separate (usefully) informed
exports from uninformed experts [9, 26].

Indirect elicitation has a long history in the scoring rules literature, starting
with Savage [61]. While the bulk of the literature focuses on specific statistics,
such as means and quantiles [32, 33, 35, 54], Osband [55] and Lambert, Pen-
nock, and Shoham [47] first considered the problem of eliciting a more general
property Γ . Several authors have made significant contributions toward the gen-
eral problem for the case where Γ is real-valued [32, 34, 46, 47, 62] and vector-
valued [30, 47, 55], but our results are the first for arbitrary multivalued maps.
Mechanisms that elicit a ranking over outcomes rather than a utility for each
outcome (common in, e.g., matching contexts) are a form of property elicitation,
and our results are related to characterizations due to Carroll [19].

Notation. We define R = R∪{−∞,∞} to be the extended real numbers. Given a set

of measures M on X, a function f : X → R is M -quasi-integrable if
∫
X
f(x)dμ(x) ∈ R

for all μ ∈ M . Let Δ(X) be the set of all probability measures on X. We denote by

Aff(X → Y ) and Lin(X → Y ) the set of functions from X to Y which are affine and

linear, respectively. We write Conv(X) to denote the convex hull of a set of vectors X,

the set of all (finite) convex combinations of elements of X. Some useful facts from

convex analysis are collected in §A of the full version [31].

2 Affine Scores

We consider a very general model with an agent who has a given type t ∈ T and
reports some possibly distinct type t′ ∈ T , at which point the agent is rewarded
according to some score A(t′, t) which is affine in the true type t. This reward
we call an affine score. We wish to characterize all truthful affine scores, those
which incentivize the agent to report her true type t.

Definition 1. Any function A : T ×T → R, where T ⊆ V for some vector space
V over R and A .

= {A(t, ·) | t ∈ T } ⊆ Aff(T → R), is a affine score with score
set A. We say A is truthful if for all t, t′ ∈ T ,

A(t′, t) ≤ A(t, t). (1)

If this inequality is strict for all t �= t′, then A is strictly truthful.
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Our characterization uses convex analysis, a central concept of which is the
subgradient of a function, which is a generalization of the gradient yielding a
linear approximation that is always below the function.

Definition 2. Given some function G : T → R, a function d ∈ Lin(V → R) is
a subgradient to G at t if for all t′ ∈ T ,

G(t′) ≥ G(t) + d(t′ − t). (2)

We denote by ∂G : T ⇒ Lin(V → R) the multivalued map such that ∂G(t) is the
set of subgradients to G at t. We say a parameterized family of linear functions
{dt ∈ Lin(V → R)}t∈T ′ for T ′ ⊆ T is a selection of subgradients if dt ∈ ∂G(t)
for all t ∈ T ′; we denote this succinctly by {dt}t∈T ′ ∈ ∂G.

For mechanism design, it is typical to assume that utilities are always real-
valued. However, the log scoring rule (one of the most popular scoring rules) has
the property that if an agent reports that an event has probability 0, and then
that event does occur, the agent receives a score of −∞. Essentially solely to
accommodate this, we allow affine scores and subgradients to take on values from
the extended reals. In the next paragraph we provide the relevant definitions,
but for most purposes it suffices to ignore these and simply assume that all affine
scores are real-valued.

It is standard (cf. [33]) to restrict consideration to the “regular” case, where
intuitively only things like the log score are permitted to be infinite. In particular,
an affine score A is regular if A(t, t) ∈ R for all t ∈ T , and A(t′, t) ∈ R∪{−∞} for
t′ �= t. Similarly, a parameterized family of linear functions (e.g. subgradients)
{dt ∈ Lin(V → R)}t∈T is T -regular if dt(t) ∈ R for all t ∈ T , and dt′(t) ∈
R∪ {−∞} for t′ �= t.4 Likewise, T -regular affine functions have T -regular linear
parts with finite constants (i.e. we exclude the constant functions ±∞). For the
remainder of the paper we assume all affine scores and parameterized families of
linear or affine functions are T -regular, where T will be clear from context.

We now state our characterization theorem. The proof takes Gneiting and
Raftery’s [33] proof for the case of scoring rules on convex domains and extends
it to the non-convex case using a variant of a technique Archer and Kleinberg [4]
introduced for mechanisms with non-convex type spaces. This technique is es-
sentially that used in prior work on extensions of convex functions [57, 66].

Theorem 1. Let an affine score A : T × T → R with score set A be given. A is
truthful if and only if there exists some convex G : Conv(T )→ R with G(T ) ⊆ R,
and some selection of subgradients {dt}t∈T ∈ ∂G, such that

A(t′, t) = G(t′) + dt′(t− t′). (3)

In the remainder of this section, we show how scoring rules, mechanisms, and
other related models fit comfortably within our framework.

4 To define linear functions to R, we adopt the convention 0 ·∞ = 0 · (−∞) = 0. Thus,
any � ∈ Lin(V → R) can be written as �1 +∞ · �2 for some �1, �2 ∈ Lin(V → R).
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2.1 Scoring Rules for Non-convex P
In this section, we show that the Gneiting and Raftery characterization is a
simple special case of Theorem 1, and moreover that we generalize their result
to the case where the set of distributions P may be non-convex. We also give a
result about local properness derived using tools from mechanism design in the
full version [31, §C.2]. To begin, we formally introduce scoring rules and show
that they fit into our framework. The goal of a scoring rule is to incentivize an
expert who knows a probability distribution to reveal it to a principal who can
only observe a single sample from that distribution.

Definition 3. Given outcome space O and set of probability measures P ⊆
Δ(O), a scoring rule is a function S : P × O → R. We say S is proper if
for all p, q ∈ P,

Eo∼p[S(q, o)] ≤ Eo∼p[S(p, o)]. (4)

If the inequality in (4) is strict for all q �= p, then S is strictly proper.

To incorporate this into our framework, take the type space T = P . Thus, we
need only construct the correct score set A of affine functions available to the
scoring rule as payoff functions. Intuitively, these are the functions that describe
what payment the expert receives given each outcome, but we have a technical
requirement that the expert’s expected utility be well defined. Thus, following
Gneiting and Raftery, we take F to be the set of P-quasi-integrable5 functions
f : O → R, and the score set A = {p 	→

∫
O f(o) dp(o) | f ∈ F}.

We now apply Theorem 1 for our choice of T and A, which yields the following
generalization of Gneiting and Raftery [33].

Corollary 1. For an arbitrary set P ⊆ Δ(O) of probability measures, a regular6

scoring rule S : P×O → R is proper if and only if there exists a convex function
G : Conv(P)→ R with functions Gp ∈ F such that

S(p, o) = G(p) +Gp(o) −
∫
O
Gp(o) dp(o), (5)

where Gp : q 	→
∫
O Gp(o) dq(o) is a subgradient of G for all p ∈ P.

Importantly, Corollary 1 immediately generalizes [33] to the case where P is
not convex, which is new to the scoring rules literature. One direction of this
extension is obvious (if S is truthful on the convex hull of a set then it is truthful
on that set). The other is not, however, and is an important negative result,
ruling out the possibility of new scoring rules arising by restricting the set of
distributions (provided the restriction does not alter the convex hull).

In the absence of a characterization, several authors have worked in the non-
convex P case. For example, Babaioff et al. [9] examine when proper scoring

5 We say that f : O → R is P-quasi-integrable if
∫
O f(o)dp(o) ∈ R for all p ∈ P .

6 This is the same concept as with affine scores: scores cannot be ∞ and only incorrect
reports can yield −∞.
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rules can have the additional property that uninformed experts do not wish to
make a report (have a negative expected utility), while informed experts do wish
to make one. They show that this is possible in some settings where the space
of reports is not convex. Our characterization shows that, despite not needing
to ensure properness on reports outside P , essentially the only possible scoring
rules are still those that are proper on all of Δ(O). We state the simplest version
of such a characterization, for perfectly informed experts, here.

Corollary 2. Let a non-convex set P ⊆ Δ(O) and p̄ ∈ Δ(O) − P be given. A
scoring rule S is proper and guarantees that experts with a belief in P receive a
score of at least δA while experts with a belief of p̄ receive a score of at most δR
if and only if S is of the form (5) with G(p) ≥ δA∀p ∈ P and G(p̄) ≤ δR.

With a similar goal to Babaioff et al., Fang et al. [26] find conditions on P for
which every continuous “value function” G : p 	→ S(p, p) on P can be attained
by some S with the motivation of eliciting the expert’s information when it is
known to come from some family of distributions (which in general will not be a
convex set). As such, they provide sufficient conditions on particular non-convex
sets, as opposed to our result which provides necessary and sufficient conditions
for all non-convex sets. Beyond these specific applications, our characterization
is useful for answering practical questions about scoring rules. For example,
suppose we assume that people have beliefs about probabilities in increments of
0.01. Does that change the set of possible scoring rules? No. What happens if
they have finer-grained beliefs but we restrict them to such reports? They will
end up picking a “nearby” report (see the discussion of convexity in Section 3.2).

In the full version [31, §C.2], we show how local truthfulness conditions from
mechanism design, where one verifies that an affine score is truthful by checking
that it is truthful in a small neighborhood around every point, generalize to our
framework. In particular, Corollary 11 shows that local properness (i.e. proper-
ness for distributions in a neighborhood) is equivalent to global properness for
scoring rules on convex P , an observation that is also new to the scoring rules
literature. See [31, §C.2] for the precise meaning of (weak) local properness.

Corollary 3. For a convex set P ⊆ Δ(O) of probability measures, a scoring
rule S : P ×O → R is proper if and only if it is (weakly) locally proper.

2.2 Mechanism Design

We now show how to view a mechanism as an affine score. First, we formally
introduce mechanisms in the single agent case (see below for remarks about
multiple agents). Then we show how known characterizations of truthful mech-
anisms follow easily from our main theorem. This allows us to relax a minor
technical assumption from the most general such theorem.

Definition 4. Given outcome space O and a type space T ⊆ (O → R), consist-
ing of functions mapping outcomes to reals, a (direct) mechanism is a pair (f, p)
where f : T → O is an allocation rule and p : T → R is a payment. The utility of
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the agent with type t and report t′ to the mechanism is U(t′, t) = t(f(t′))− p(t′);
we say the mechanism (f, p) is truthful if U(t′, t) ≤ U(t, t) for all t, t′ ∈ T .

Here we suppose that the mechanism can choose an allocation from some setO
of outcomes, and there is a single agent whose type t ∈ T is itself the valuation
function. That is, the agent’s net utility upon allocation o and payment p is
t(o) − p. Thus, following Archer and Kleinberg [4], we view the type space T
as lying in the vector space V = RO. The advantage of this representation is
that while agent valuations in mechanism design can generally be complicated
functions, viewed this way they are all linear: for any v1, v2 ∈ V , we have (v1 +
αv2)(o) = v1(o) + αv2(o). Thus, we have an affine score A(t′, t)

.
= U(t′, t), with

score set A = {t 	→ t(o)+c | o ∈ O, c ∈ R}, so that every combination of outcome
and payment a mechanism could choose is an element of A.

As an illustration of our theorem, consider the following characterization, due
to Myerson [50], for a single parameter setting (i.e. when the agent’s type can
be described by a single real number). The result states that an allocation rule
is implementable, meaning there is some payment rule making it truthful, if and
only if it is monotone in the agent’s type.

Corollary 4 (Myerson [50]). Let T = R+, O ⊆ R, so that the agent’s valua-
tion is t · o. Then a mechanism f, p is truthful if and only if: (i) f is monotone

non-decreasing in t, and (ii) p(t) = tf(t)−
∫ t

0
f(t′)dt′ + p0.

More generally, applying our theorem gives the following characterization.
It is essentially equivalent to that of Archer and Kleinberg [4] (their Theorem
6.1), although our approach allows the relaxation of a technical assumption their
version requires when the set of types is non-convex.

Corollary 5. A mechanism f, p is truthful if and only if there exists a convex
function G : Conv(T ) → R and some selection of subgradients {dGt}t∈T , such
that for all t ∈ T , f(t) = dGt and G(t) = t(f(t))− p(t)

Of course, mechanism design asks many questions beyond whether a partic-
ular mechanism is truthful, and some of these can be reframed as questions in
convex analysis. The study of implementability focuses on the question of when
there exist payments that make a given allocation rule truthful, whereas revenue
equivalence asks when all mechanisms with a given allocation rule charge the
same prices (up to a constant). By focusing on the subgradient, we recover and
extend previous results for both, which we detail in the full version [31, §C,§D].

2.3 Other Applications

There are a number of other application domains that are not quite mechanisms
or scoring rules, yet for which our main theorem yields characterization theorems.
In the full version [31], we survey four such domains where our theorem could
have directly provided the characterization ultimately used rather than requiring
effort to conceptualize and prove it. We summarize two of the four below; the
others are decision rules [20,21,56] and machine learning with partial labels [24]).
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Mechanism design with partial allocation. Cai, Mahdian, Mehta, and Wag-
goner [17], consider a setting where the mechanism designer wants to elicit two
pieces of information: the agent’s (expected) value for an item in an auction
and the probability distribution of a random variable conditional on that agent
winning, with the goal of understanding how the organizer of a daily deal site
can take into account the value that will be created for users (as opposed to
just the advertiser) when a particular deal is chosen to be advertised (e.g. the
site operator may prefer deals that sell to many users over equally profitable
deals that sell only to a few because this keeps users interested for future days).
Our approach allows us to provide a characterization (given in [31, §E.3]), of a
more general setting where a mechanism designer wishes to elicit two pieces of
information, but the second need not be restricted to probability distributions.
For example the mechanism designer could have two distinct sets of goods to
allocate and want to design a truthful mechanism that is consistent with a par-
tial allocation rule that determines how the primary goods should be allocated
given the agent’s preferences over both types of goods.

Responsive lotteries. Feige and Tennenholtz [27] study the problem of how an
agent can be incentivized to indirectly reveal his utility function over outcomes
by being given a choice of lotteries over those outcomes, an approach with appli-
cations to experimental psychology, market research, and multiagent mechanism
design. They give a geometric description of how such lotteries can be created
with a finite set of outcomes. Our approach allows us to give a complete char-
acterization, which highlights the relationship between natural desiderata and
underlying geometric properties of the set of possible lotteries: strict truthfulness
and continuity of the lottery rule jointly correspond to strict convexity of the
lottery set, and uniqueness of the utility given the optimal lottery corresponds
to smoothness of the boundary.

3 Property Elicitation

We wish to generalize the notion of truthful elicitation from eliciting private
information from some set T to accept reports from a space R which is different
from T . To even discuss truthfulness in this setting, we need a notion of a truthful
report r for a given type t. We encapsulate this notion by a general multivalued
map which specifies all (and only) the correct values for t.

3.1 Affine Scores for Properties

Definition 5. Let T be a give type space, where T ⊆ V for some vector space
V over R, and R be some given report space. A property is a multivalued map
Γ : T ⇒ R which associates a nonempty set of correct report values to each
type. We let Γr

.
= {t ∈ T | r ∈ Γ (t)} denote the set of types t corresponding to

report value r.
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One can think of Γr as the “level set” of Γ corresponding to value r. This concept
will be especially useful when we consider finite-valued properties in Section 5. A
natural bookkeeping constraint to impose on these level sets is non-redundancy,
meaning no property value r has a level set entirely contained in another.

We extend the notion of an affine score to this setting, where the report space
is R instead of T itself. Note that the score set A = {A(r, ·) | r ∈ R} is still a
subset of Aff(V → R).

Definition 6. An affine score A : R × T → R elicits a property Γ : T ⇒ R if
for all t,

Γ (t) = argsup
r∈R

A(r, t). (6)

If we merely have Γ (t) ⊆ argsupr∈R A(r, t), we say A weakly elicits Γ . Property
Γ : T ⇒ R is elicitable if some affine score A : R× T → R elicits Γ .

Note that it is certainly possible to write down A such the argsup in (6) is not
well defined. This corresponds to some types not having an optimal report, which
we view as violating a minimal requirement for a sensible affine score. Thus, in
order for A to be an affine score, we require (6) to be well defined for all t ∈ T .

We now state our property characterization theorem, proved in the full ver-
sion [31, §E], which in essence says that eliciting a property Γ is equivalent to
eliciting subgradients of a convex function G. Intuitively, by truthfulness the
linear part of A(r, ·) must be a subgradient of G at all t ∈ Γr. We show that
this is equivalent to G being flat along Γr, meaning we can calculate G on Γr

by picking any tr ∈ Γr and following the subgradient. Since all choices of tr lead
to the same value, we could just as easily ask for this subgradient ϕ(r) to be
reported directly. As subgradients are functions (in this case from T to R), we
use the curried notation ϕ(r)(t) for the application of this function.

Theorem 2. Let non-redundant property Γ : T ⇒ R and Γ -regular7 affine
score A : R× T → R be given. Then A elicits Γ if and only if there exists some
convex G : Conv(T ) → R with G(T ) ⊆ R, some D ⊆ ∂G, and some bijection
ϕ : R → D with Γ (t) = ϕ−1(D ∩ ∂Gt), such that for all r ∈ R and t ∈ T ,

A(r, t) = G(tr) + ϕ(r)(t − tr), (7)

where {tr}r∈R ⊆ T satisfies r′ ∈ Γ (tr′) for all r′.

3.2 What Properties Are Not Elicitable?

In the remainder of this section, we examine three features that subgradient
mappings of convex functions possess and thus that the level sets of elicitable
properties must possess.

7 This is defined similarly to regularity; see [31, §E].
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Convexity. A well-known property of subgradient mappings is that their level
sets are convex (for completeness, we provide a proof in the full version [31, §A]).
In light of our characterizations, this fact about convex functions immediately
applies to elicitable properties:

Corollary 6. If Γ : T ⇒ R is elicitable, then Γr is convex for all r.

To see this, just note that ϕ(r) ∈ ∂Gt ∩ ∂Gt′ implies that ϕ(r) ∈ ∂Gt̂ for all
t̂ = αt + (1 − α)t′. Corollary 6 was previously known for special cases [47, 48],
where it was used to show variance, skewness, and kurtosis are not elicitable,
and was also known in mechanism design (i.e. the set of types for which a given
(allocation, payment) pair is optimal is convex).

Cardinality. Combining Theorem 2 with the fact that finite-dimensional con-
vex functions are differentiable almost everywhere (cf. [3, Thm 7.26]) yields the
following corollary, which shows that elicitable properties have unique values
almost everywhere.

Corollary 7. Let Γ : T ⇒ R be an elicitable property with T ⊆ V = Rn. If
T is of positive measure in Conv(T ), and Γ is non-redundant, then |Γ (t)| = 1
almost everywhere.

Using an appropriate notion of “almost everywhere”, in some cases this holds in
infinite-dimensional vector spaces as well (see e.g. [16, p. 195] and [3, p. 274]).

One can use this fact to show that Γ (p) = {(a, b) :
∫ b

a
p(x)dx = 0.9}, the set of

90% confidence intervals for a distribution p, is not an elicitable property. This
was previously only known for the case where p has finite support [47].

Topology. Combining Theorem 2 with a closure property of convex functions [59,
Thm 24.4] yields the following.

Corollary 8. Let Γ : T ⇒ R be an elicitable property with T ⊆ V = Rn convex
that can be elicited by a closed, convex G. Then Γr is closed for all r.

Requiring G to be closed is a technical issue regarding the boundary of of T ,
and is irrelevant for level sets in the relative interior. While [48] showed this for
finite report spaces R, this more general statement shows, for example, that if
T = R the property Γ (t) = floor(t) = max{z ∈ Z | z ≤ t} is not elicitable. More
generally, this often provides a tool for showing that we cannot get around issues
of cardinality by finding a tie-breaking rule to make the value unique.

Closure appears is a more delicate property to work with in infinite dimen-
sions, but intuitive violations of it can still be used to show that properties are
not elicitable. As an illustration, we provide a direct proof that a property is not
elicitable. We already saw that confidence intervals are not elicitable due to their
cardinality, but a natural practical request would be for this “smallest” such in-
terval. Can we elicit this, or even just the length of this interval? The following
sketch shows we cannot. For probability distribution F represented by a CDF,
let Γ (F ) = inf{b−a | F (b)−F (a) = 1} be the property that is the length of the
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smallest interval of probability 18. Consider the family of distributions defined
by their pdfs as fc(x) = 1 − c for 0 ≤ x ≤ 1 and fc(x) = c for 1 < x ≤ 2 with
corresponding CDFs Fc. Note that for 0 < c < 1, Γ (Fc) = {2} but Γ (F0) = {1}.
Suppose we could elicit this with a scoring rule S. Let X(F ) = S(2, F )−S(1, F ).
By elicitability X(Fc) > 0 for 0 < c < 1 but X(F0) < 0, which violates the
continuity of X .

4 Duality in Property Elicitation

In the full version [31, §G], we inspect Theorem 2 further and apply convex
duality to reveal two notions of duality between affine scores: report duality,
which asks the agent to report his desired allocation instead of his type, and
type duality, which swaps the roles of the type and the allocation. Table 1 gives
a particular instantiation of our duality notions, with T = Δ(O) and T ∗ =
(O → R); that is, we construct our affine scores and their duals upon the classic
duality between integrable functions and probability measures. Note that G∗ is
the convex conjugate of G; see Definition 17.

Table 1. The duality quadrangle for the duality between distributions and functionals

Type

Primal Dual

R
ep

o
rt P
ri
m
a
l

A(p′, p)
Scoring rule

A∗(p′, q)
Menu auction

D
u
a
l

A(q′, p)
Prediction market

A∗(q′, q)
Randomized mechanism

sup A(·, p) = G(p) sup A∗(·, q) = G∗(q)

As discussed in Section G.2, the columns of Table 1 are well-understood al-
ready; the first gives prediction market duality, the well-known fact that market
scoring rules are dual to prediction markets, and the second gives the taxation
principle, which says that without loss of generality one could think of a mech-
anism as assigning prices to probability distributions over outcomes o.

The rows of this table, however, are new: in essence, scoring rules are dual
mechanisms. In the scoring rule or prediction market setting, an agent has a
private distribution (their belief) and the principal gives the agent a utility
vector (the score or the bundle of securities), which assigns the agent a real-
valued payoff for each possible state of the world. Dually, in a mechanisms, the
agent possesses a private type encoding their utility for each state of the world,
and the principal assigns a distribution over these states. This observation allows
us to give a very simple and natural construction to convert between scoring rules

8 Essentially the same construction can be applied for an α < 1 confidence interval.
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and mechanisms. Unlike previous constructions (e.g., [29]) we do not require any
normalization, or even that the set of outcomes be finite.

Corollary 9. Let S(p, o) = G(p) +Gp(o) −
∫
O Gp(o) dp(o) be a proper scoring

rule. Then f(t) = dG∗(t) and p(t) = G∗(t) − t(dG∗(t)) is a truthful random-
ized mechanism. Conversely, let (f, p) be a truthful randomized mechanism and
G(t) = t(f(t))−p(t). Then S(p, o) = G∗(p)+G∗

p(o)−
∫
O G∗

p(o) dp(o) is a proper
scoring rule.

The connections go much deeper than swapping types, however. To illustrate
this with a somewhat whimsical example, suppose a gambler in a casino examines
the rules of a dice-based game of chance and forms belief p about the probabilities
of possible outcomes, assuming the dice are fair. The gambler then participates
in a prediction market A to predict the outcome of the game, and purchases a
bundle q. Before the game is played however, the casino informs the gambler
that the dice used need not be fair, and offers the gambler the opportunity to
select from among different choices of dice using a truthful mechanism where
the gambler’s private information is q. If the mechanism used is A∗, then the
outcome of the mechanism will be using fair dice. The power of duality is that
this holds regardless of our choice of A.

5 Finite-Valued Properties

We now examine the special case where R is a finite set of reports, using the
additional structure to provide stronger characterizations. In the scoring rules
literature, Lambert and Shoham [48] view this as eliciting answers to multiple-
choice questions. There are also applications to mechanism design, discussed in
Section 5.1. Assume throughout that R is finite and that T is a convex subset
of a vector space V endowed with an inner product, so that we may write 〈t, t′〉
and in particular ‖t‖2 = 〈t, t〉. In this setting, we will use the concept of a power
diagram from computational geometry.

Definition 7. Given a set of points P = {pi}mi=1 ⊂ V, called sites, and weights
w ∈ Rm, a power diagram D(P,w) is a collection of cells cell(pi) ⊆ T defined
by

cellP,w(pi) =
{
t ∈ T

∣∣ i ∈ argminj
{
‖pj − t‖2 − wj

}}
. (8)

The following result is a straightforward generalization of Theorem 4.1 of
Lambert and Shoham [48], and is essentially a restatement of results due to
Aurenhammer [6,8]. See the full version [31, §H] for a discussion about Bregman
Voronoi digrams and the role of ‖ · ‖2 in Theorem 3.

Theorem 3. A property Γ : T ⇒ R for finite R is elicitable if and only if the
level sets {Γr}r∈R form a power diagram D(P,w).

We have now seen what kinds of finite-valued properties are elicitable, but how
can we elicit them? More precisely, as the proof above gives sufficient conditions,
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what are all ways of eliciting a given power-diagram? In general, it is difficult
to provide a “closed form” answer, so we restrict to the simple case, where
essentially the cells of a power diagram are as constrained as possible.

Definition 8 ( [7]). A j-polyhedron is the intersection of dimension j of a
finite number of closed halfspaces of V, where 0 ≤ j ≤ dim(V) < ∞. A cell
complex C in V is a covering of V by finitely many j-polyhedra, called j-faces
of C, whose (relative) interiors are disjoint and whose non-empty intersections
are faces of C. C is called simple if each of its j-faces is in the closure of exactly
(d− j + 1) d-faces (cells).

Theorem 4. Let finite-valued, elicitable, simple property Γ : T ⇒ R be given.
Then there exist points {pr}R ⊆ V such that an affine score A : R × T → R

elicits Γ if and only if there exist α > 0, and p0 ∈ V such that

A(r, t) = 2 〈αpr + p0, t〉 − ‖αpr + p0‖2 + wr, (9)

where the choice w ∈ RR is determined by α and p0.

5.1 Finite Properties in Mechanism Design

Mechanisms with a finite set of allocations are common. Carroll [19] examines
them and observes they give rise to polyhedral typespaces. Theorem 3 strength-
ens this characterization to power diagrams, which rules out polyhedral examples
such as the one shown in Figure 2. Suppose we have are in a such a mechanism
design setting with a finite set of allocations X and we have picked an allocation
rule a. Under what circumstances is a implementable (i.e. having a payment rule
that makes the resulting mechanism truthful)? If the set of types is convex, Saks
and Yu [60] showed that the following condition is necessary and sufficient.

Definition 9. Allocation rule a satisfies weak monotonicity (WMON) if a(t) ·
(t′ − t) ≤ a(t′) · (t′ − t) for all t, t′ ∈ T .
From Theorem 1, we know that a being implementable means that there exists
a G such that a is a selection of its subgradients. But this is equivalent to saying
that the property Γ (t) = X ∩ dGt is directly elicitable! Leveraging results from
computational geometry, this gives us a new proof of this theorem by showing
that WMON characterizes power diagrams.

Theorem 5. A cell complex C is a power diagram with sites {p1, . . . , pn} iff for
all t ∈ Zi and t′ ∈ Zj we have pi · (t′− t) ≤ pj · (t′ − t) (i.e. C satisfies WMON)

Corollary 10 (Saks and Yu). If X is finite, T is convex, and a satisfies
WMON, then a is implementable.
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63. Urruty, J.B.H., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer (2001)
64. Van Manen, M., Siersma, D.: Power diagrams and their applications. arXiv preprint

math/0508037 (2005)
65. Vohra, R.V.: Mechanism design: a linear programming approach. Cambridge Uni-

versity Press, Cambridge (2011)
66. Yan, M.: Extension of convex functions. arXiv preprint arXiv:1207.0944 (2012)



Privacy Games

Yiling Chen�, Or Sheffet��, and Salil Vadhan���

Center for Research on Computation and Society
School of Engineering and Applied Sciences

Harvard University
{yiling,osheffet,salil}@seas.harvard.edu

Abstract. The problem of analyzing the effect of privacy concerns on
the behavior of selfish utility-maximizing agents has received much at-
tention lately. Privacy concerns are often modeled by altering the utility
functions of agents to consider also their privacy loss [24,13,19,4]. Such
privacy aware agents prefer to take a randomized strategy even in very
simple games in which non-privacy aware agents play pure strategies.
In some cases, the behavior of privacy aware agents follows the frame-
work of Randomized Response, a well-known mechanism that preserves
differential privacy.

Our work is aimed at better understanding the behavior of agents in
settings where their privacy concerns are explicitly given. We consider a
toy setting where agent A, in an attempt to discover the secret type of
agent B, offers B a gift that one type of B agent likes and the other type
dislikes. As opposed to previous works, B’s incentive to keep her type
a secret isn’t the result of “hardwiring” B’s utility function to consider
privacy, but rather takes the form of a payment between B and A. We
investigate three different types of payment functions and analyze B’s
behavior in each of the resulting games. As we show, under some pay-
ments, B’s behavior is very different than the behavior of agents with
hardwired privacy concerns and might even be deterministic. Under a
different payment we show that B’s BNE strategy does fall into the
framework of Randomized Response.

1 Introduction

In recent years, as the subject of privacy becomes an increasing concern, many
works have discussed the potential privacy concerns of economic utility-
maximizing agents. Obviously, utility-maximizing agents are worried about the
effect of revealing personal information in the current game on future transac-
tions, and wish to minimize potential future losses. In addition, some agents
may simply care about what some outside observer, who takes no part in the
current game, believes about them. Such agents would like to optimize the effect
of their behavior in the current game on the beliefs of that outside observer. Yet
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specifying the exact way in which information might affect the agents’ future
payment or an outside observer’s beliefs is a complicated and intricate task.

Differential privacy (DP), a mathematical model for privacy, developed for
statistical data analysis [9,8], avoids the need for such intricate modeling by
providing a worst-case bound on an agents’ exposure to privacy-loss. Specifically,
by using a ε-differentially private mechanism, agents can guarantee that the
belief of any observer about them changes by no more than a multiplicative
factor of eε ≈ 1 + ε once this observer sees the outcome of the mechanism [7] .
Furthermore, as pointed out in [13,19], using a ε-differentially private mechanism
the agents guarantee that, in expectation, any future loss increases by no more
than a factor of eε− 1 ≈ ε. A recent line of work [24,13,19,4] has used ideas from
differential privacy to model and analyze the behavior of privacy-awareness in
game-theoretic settings. The aforementioned features of DP allow these works
to bypass the need to model future transactions. Instead, they model privacy
aware agents as selfish agents with utility functions that are “hardwired” to
trade off between two components: a (positive) reward from the outcome of the
mechanism vs a (negative) loss from their non-private exposure. This loss can be
upper-bounded using DP, and hence in some cases can be shown to be dominated
by the reward (of carefully designed mechanisms), showing that privacy concerns
don’t affect an agent’s behavior.

However, in other cases, the behavior of privacy-aware agents may differ dras-
tically from the behavior of classical, non-privacy aware agents. For example,
consider a toy-game in which B tells A which of the two free gifts that A offers
(or coupons as we call it, for reasons to be explained later) B would like to re-
ceive. We characterize B using one of two types, 0 or 1; where type 0 prefers the
first gift and type 1 prefers the second one. (This is a rephrasing of the “Rye or
Wholewheat” game discussed in [19].) Therefore it is simple to see that a non-
privacy-aware agent always (deterministically) asks for the gift that matches her
type. In contrast, if we model the privacy loss of a privacy-aware agent using
DP as in the work of Ghosh and Roth [13] (and the value of the coupon is large
enough), a privacy-aware agent takes a randomized strategy. (See Section 2.2.)
Specifically, the agent plays Randomized Response, a standard differentially pri-
vate mechanism that outputs a random choice slightly biased towards the agent’s
favorable action.

However, it was argued [19,4] that it is not realistic to use the worst-case
model of DP to quantify the agent’s privacy loss and predict her behavior. Dif-
ferential privacy should only serve as an upper bound on the privacy loss, whereas
the agent’s expected privacy loss can (and should in fact) be much smaller —
depending on the agent’s predictions regarding future events, adversary’s prior
belief about her, the types and strategies of other agents, and the random choices
of the mechanism and of other agents. As discussed above, these can be hard to
model, so it is tempting to use a worst-case model like differential privacy.

But what happens if we can formulate the agent’s future transactions? What
if we know that the agent is concerned with the belief of a specific adversary, and
we can quantify the effects of changes to that belief? Is the behavior of a classical
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selfish agent in that case well-modeled by such a “DP-hardwired” privacy-aware
agent? Will she even randomize her strategy? In other words, we ask:

What is the behavior of a selfish utility-maximizing agent in a setting
with clear privacy costs?

More specifically, we ask whether we can take the above-mentioned toy-game
and alter it by introducing payments between A and B such that the behav-
ior of a privacy-aware agent in the toy-game matches the behavior of classical
(non-privacy aware) agent in the altered game. In particular, in case B takes a
randomized strategy — does her behavior preserve ε-differential privacy, and for
what value of ε? The study of these questions may also provide insights relevant
for traditional, non-game-theoretic uses of differential privacy — helping us un-
derstand how tightly differential privacy addresses the concerns of data subjects,
and thus providing guidance in the setting of the privacy parameter ε or the use
of alternative, non-worst-case variants of differential privacy (such as [1]).

Our model. In this work we consider multiple games that model an interaction
between an agent which has a secret type and an adversary whose goal is to
discover this type. Though the games vary in the resulting behavior of the agents,
they all follow a common outline which is similar to the toy game mentioned
above. Agent A offers B a free coupon, that comes in one of two types {0, 1}.
Agent B has a secret type t ∈ {0, 1} chosen from a known prior (D0, D1), such
that a type-t agent has positive utility ρt for type-t coupon and zero utility for
a type-(1 − t) coupon. And so the game starts with B sending A a signal t̂
indicating the requested type of coupon. (Formally, B’s utility for the coupon
is ρt1[t̂=t] for some parameters ρ0, ρ1.) Following this interaction, agent C, who

viewed the signal t̂ that B sent, challenges B into a game — with C taking action
t̃ and incurring a payment from B of P (t̃, t). To avoid the need to introduce a
third party into the game, we identify C with A.1 Figure 1 gives a schematic
representation of the game’s outline.

We make a few observations of the above interaction. We aim to model a
scenario where B has the most incentive to hide her true type whereas A has the
most incentive to discover B’s type. Therefore, all of the payments we consider
have the property that if B’s type is t∗ then t∗ = argmaxt̃ P (t̃, t∗). Furthermore,
the game is modeled so that the payments are transferred from B to A, which
makes A’s and B’s goals as opposite as possible. (In fact, past the stage where
B sends a signal t̂, we have that A and B plays a zero-sum game.) We also note
that A and B play a Bayesian game (in extensive form) as A doesn’t know the
private type of B, only its prior distribution. We characterize Bayesian Nash
Equilibria (BNE) in this paper and will show that in each game, the BNE is
unique except when parameters of the game satisfy certain equality constraints.
It is not difficult to show that the strategies at every BNE of our games are part

1 Hence the reason for the name “The Coupon Game”. We think of A as G – an “evil”
car-insurance company that offers its client a coupon either for an eyewear store or
for a car race; thereby increasing the client’s insurance premium based on either the
client’s bad eyesight or the client’s fondness for speedy and reckless driving.
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Fig. 1. A schematic view of the privacy game we model

of a Perfect Bayesian Equilibrium (PBE), i.e. a subgame-perfect refinement of
the BNE. However, we focus on BNE in this paper as the equilibrium refinement
doesn’t bring any additional insight to our problem.

Our results and paper organization. First, in Section 2, following preliminar-
ies we discuss the DP-hardwired privacy-aware agent as defined by Ghosh and
Roth [13] and analyze her behavior in our toy game. Our analysis shows that
given sufficiently large coupon valuations ρt, both types of B agent indeed play
Randomized Response. We also discuss conditions under which other models of
DP-hardwired privacy-aware agents play a randomized strategy.

Following preliminaries, we consider three different games. These games fol-
low the general coupon-game outline, yet they vary in their payment function.
The discussion for each of the games follows a similar outline. We introduce the
game, then analyze the two agents’ BNE strategies and see if the strategy of the
B agent is indeed randomized or pure (and in case it is randomized — whether
or not it follows Randomized Response for some value of ε). We also compare the
coupon game to a “benchmark game” where B takes no action and A guesses
B’s type without any signal from B. Investigating whether it is even worth while
for A to offer such a coupon, we compare A’s profit between the two games.2

The payment functions we consider are the following.

1. In Section 3 we consider the case where the payment function is given by
a proper scoring rule. Proper scoring rules allows us to quantify the B’s
cost to any change in A’s belief about her type. We show that in the case
of symmetric scoring rules (scoring rules that are invariant to relabeling of
event outcomes) both types of B agent follow a randomized strategy that
causes A’s posterior belief on the types to resemble Randomized Response.
That is, initially A’s belief on B being of type-0 (resp. type-1) is D0 (resp.
D1); but B plays in a way such that after viewing the t̂ = 0 signal, A’s belief
that B is of type-0 (resp. type-1) is 1+ε

2 (resp. 1−ε
2 ) for some value of ε (and

vice-versa in the case of the t̂ = 1 signal with the same ε).
2. In Section 4 we consider the case where the payments between A and B

are the result of A guessing correctly B’s type. A views the signal t̂ and
then guesses a type t̃ ∈ {0, 1} and receives a payment of 1[t̃=t] from B.
This payment models the following viewpoint of B’s future losses: there is a
constant gap (of one “unit of utility”) between interacting with an agent that

2 The benchmark game is not to be confused with the toy-game we discussed earlier
in this introduction. In the toy game, A takes no action and B decides on a signal.
In the benchmark game, B takes no action and A decides which action to take based
on the specific payment function we consider in each game.



Privacy Games 375

knowsB’s type to an agent that does not know her type. We show that in this
case, if the coupon valuations are fixed as ρ0 and ρ1, then at least one type of
B agent plays deterministically. However, if B’s valuation for the coupon is
sampled from a continuous distribution, then A’s strategy effectively dictates
a threshold with the following property: any B agent whose valuation for the
coupon is below the threshold lies and signals t̂ = 1− t, and any agent whose
valuation is above the threshold signals truthfully t̂ = t. Hence, an A agent
who does not know B’s valuation thinks of B as following a randomized
strategy.

3. In Section 5 we consider a variation of the previous game whereA also has the
option to opt out and not challenge B into a payment game — to report ⊥
and in return get no payment (i.e., P (⊥, t) = 0). We show that in such
a game, under a very specific setting of parameters, the only BNE is such
where both types of B agent take a randomized strategy. Under alternative
settings of the game’s parameters, the strategy of B is such that at least one
of the two types plays deterministically.

Future directions are deferred to the full version of the paper, due to space lim-
itation. We find it surprising to see how minor changes to the privacy payments
lead to diametrically different behaviors. In particular, we see the existence of a
threshold phenomena. Under certain parameter settings in the game we consider
in item 3 above, we have that if the value of the coupon is above a certain thresh-
old then at least one of the two types of B agent plays deterministically; and if
the value of the coupon is below this threshold, B randomizes her behavior s.t.
t̂ = t w.p. close to 1

2 .

1.1 Related Work

The study of the intersection between mechanism design and differential privacy
began with the seminal work of McSherry and Talwar [18], who showed that an
ε-differentially private mechanism is also ε-truthful. The first attempt at defining
a privacy-aware agent was of Ghosh and Roth [13] who quantified the privacy
loss using a linear approximation vi · ε where vi is an individual parameter and ε
is the level of differential privacy that a mechanism preserves. Other applications
of differentially privacy mechanisms in game theoretic settings were studied by
Nissim et al [20]. The work of Xiao [24] initiated the study of mechanisms that
are truthful even when you incorporate the privacy loss into the agents’ util-
ity functions. Xiao’s original privacy loss measure was the mutual information
between the mechanism’s output and the agent’s type. Nissim et al [19] (who
effectively proposed a preliminary version of our coupon game called “Rye or
Wholewheat”) generalized the models of privacy loss to only assume that it is
upper bounded by vi · ε. Chen et al [4] proposed a refinement where the pri-
vacy loss is measured with respect to the given input and output. Fleischer and
Lyu [11] considered the original model of agents as in Ghosh and Roth [13] but
under the assumption that vi, the value of the privacy parameter of each agent,
is sampled from a known distribution.



376 Y. Chen, O. Sheffet, and S. Vadhan

Several papers in economics look at the potential loss of agents from hav-
ing their personal data revealed. In fact, one folklore objection to the Vickrey
auction is that in a repeated setting, by providing the sellers with the bidders’
true valuations for the item, the bidders subject themselves to future loss should
the seller prefer to run a reserved-price mechanism in the future. In the con-
text of repeated interaction between an agent and a company, there have been
works [6,2] studying the effect of price differentiation based on an agent allowing
the company to remember whether she purchased the same item in the past.
Interestingly, strategic agents realize this effect and so they might “haggle” —
reject a price below their valuation for the item in round 1 so that they’d be
able to get even lower price in round 2. In that sense, the fact that the agents
publish their past interaction with the company actually helps the agents. Other
work [3] discusses a setting where a buyer sequentially interacts with two differ-
ent sellers, and characterizes the conditions under which the first seller prefers
not to give the buyer’s information to the second seller. Concurrently with our
work, Gradwohl and Smorodinsky [15], whose motivation is to analyze the effect
of privacy concerns, introduce a framework of games in which an agent’s utility
is affected by both her actions and how her actions are perceived by a third
party.

The privacy games that we propose and analyze in this paper fall into the
class of signaling games [17], where a sender (B in our game) with a private
type sends a message (i.e. a signal) to a receiver (A in our game) who then
takes an action. The payoffs of both players depend on the sender’s message,
the receiver’s action, and the sender’s type. Signaling games have been widely
used in modeling behavior in economics and biology. The focus is typically on
understanding when signaling is informative, i.e. when the message of the sender
allows the receiver to infer the sender’s private type with certainty, especially in
settings when signaling is costly (e.g. Spence’s job market signaling game [21]).
In our setting, however, informative signaling violates privacy. We are interested
in characterizing when the sender plays in a way such that the receiver cannot
infer her type deterministically.

2 Preliminaries

2.1 Equilibrium Concept

We model the games between A and B as Bayesian extensive-form games. How-
ever, instead of using the standard Perfect Bayesian Equilibrium (PBE), which
is a refinement of Bayesian Nash Equilibrium (BNE) for extensive-form games,
as our solution concept, we analyze BNE for our games. It can be shown that all
of the BNEs considered in our paper can be “extended” to PBEs (by appropri-
ately defining the beliefs of agent A about agent B at all points in the game). We
thus avoid defining the more subtle concept of PBE as the refinement doesn’t
provide additional insights for our problem. Below we define BNE.

A Bayesian game between two agents A and B is specified by their type
spaces (ΓA, ΓB), a prior distribution Π over the type spaces (according to which
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nature draws the private types of the agents), sets of available actions (CA, CB),
and utility functions, ui : ΓA × ΓB × CA × CB → R, i ∈ {A,B}. A mixed or
randomized strategy of agent i maps a type of agent i to a distribution over her
available actions, i.e. σi : Γi → Δ(Ci), where Δ(Ci) is the probability simplex
over Ci.

Definition 1. A strategy profile (σA, σB) is a Bayesian Nash Equilibrium if

E[ui(Ti, T−i, σi(Ti), σ−i(T−i))|Ti = ti] ≥ E[ui(Ti, T−i, σ
′
i(Ti), σ−i(T−i))|Ti = ti]

for all i ∈ {A,B}, all types ti ∈ Γi occurring with positive probability, and all
strategies σ′

i, where σ−i and T−i denote the strategy and type of the other agent
respectively and the expectation is taken over the randomness of agent type T−i

and the randomness of the strategies, σi, σ−i and σ′
i.

2.2 Differential Privacy

In order to define differential privacy, we first need to define the notion of
neighboring inputs. Inputs are elements in Xn for some set X , and two in-
puts I, I ′ ∈ Xn are called neighbors if the two are identical on the details of all
individuals (all coordinates) except for at most one.

Definition 2 ([9]). An algorithm ALG which maps inputs into some range R
satisfies ε-differential privacy if for all pairs of neighboring inputs I, I ′ and for
all subsets S ⊂ R it holds that Pr[ALG(I) ∈ S] ≤ eεPr[ALG(I ′) ∈ S].

One of the simplest algorithms that achieve ε-differential privacy is called Ran-
domized Response [16,10], which dates back to the 60s [22]. This algorithm is
best illustrated over a binary input, where each individual is represented by a
single binary bit (therefore a neighboring instance is a neighbor in which one
individual is represented by a different bit), Randomized Response works by
perturbing the input. For each individual i represented by the bit bi, the al-
gorithm randomly and independently picks a bit b̂i s.t. Pr[b̂i = bi] =

1+ε
2 for

some ε ∈ [0, 1). It follows from the definition of the algorithm that it satisfies
ln(1+ε

1−ε ) ≈ 2ε-differential privacy. Randomized Response is sometimes presented

as a distributed algorithm, where each individual randomly picks b̂i locally, and
reports b̂i publicly. Therefore, it is possible to view this work as an investigation
of the type of games in which selfish utility-maximizing agents truthfully follow
Randomized Response, rather than sending some arbitrary bit as b̂i.

In this work, we define certain games and analyze the behavior of the two
types of B agent in the BNE of these games. And so, denoting B’s strategy
as σB, we consider the implicit algorithm σB(t) that tells a type-t agent what
probability mass to put on the 0-signal and on the 1-signal. Knowing B’s strategy
σB, we say that B satisfies ln(Xgame)-differential privacy where3

Xgame
def
= Xgame(σB) = max

t,t̂∈{0,1}

(
Pr[σB(t) = t̂]

Pr[σB(1 − t) = t̂]

)
3 We use the convention 0

0
= 1.
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We are interested in finding settings where Xgame(σ
∗
B) is finite, where σ∗

B denotes
B’s BNE strategy. We say B plays a Randomized Response strategy in a game
whenever her BNE strategy σ∗

B satisfies Pr[σ∗
B(0) = 0] = Pr[σ∗

B(1) = 1] = p for
some p ∈ [1/2, 1).

Privacy-Aware Agents. The notion of privacy-aware agents has been devel-
oped through a series of works [24,13,19,4]. The utility function of our privacy-
aware agent B is of the form uB = uout

B − upriv
B . The first term, uout

B is the

utility of agent B from the mechanism. The second term, upriv
B , represents the

agent’s privacy loss. The exact definition of upriv
B (and even the variables upriv

B

depends on) varies between the different works mentioned above, but all works
bound the privacy-loss of an agent that interacts with a mechanism that satisfies
ε-differential privacy by upriv

B ≤ v · ε for some v > 0. Here we argue about the
behavior of a privacy-aware agent with the maximal privacy loss function, which
is the type of agent considered by Ghosh and Roth [13] (i.e., the agent’s privacy
loss when interacting with a mechanism that satisfies ε-differential privacy is
exactly v · ε for some v > 0).

Recall our toy game: B sends a signal t̂ and gets a coupon of type t̂. Therefore,
the outcome of this simple game is t̂, precisely the action that B takes. B’s type
is picked randomly to be 0 w.p. D0 and 1 w.p. D1, and a B agent of type t has
valuation of ρt for a coupon of type t. Therefore, in this game uout

B = ρt1[t̂=t].
The mechanism we consider is σ∗

B , B’s utlity-maximizing strategy, which we
think of as the implicit algorithm that tells a type-t agents what probability
mass to put on sending the t̂ = 0 signal and what mass to put on the t̂ = 1
signal. As noted above, this strategy satisfies ln(Xgame)-differential privacy, and

so upriv
B (σ∗

B) = v · ln(Xgame) for some parameter v > 0. Assuming D0ρ0 �=
D1ρ1, our proof shows that this privacy-aware agent chooses essentially between
two alternatives in our toy game: either both types take the same deterministic
strategy and send the same signal (Pr[σ∗

B(0) = b] = Pr[σ∗
B(1) = b] = 1 for some

b ∈ {0, 1}); or the agent randomizes her behavior and plays using Randomized
Response: Pr[σ∗

B(0) = 0] = Pr[σ∗
B(1) = 1] ∈ [ 12 , 1). We show that for sufficiently

large values of the coupon the latter alternative is better than the first.

Theorem 3. Let B be a privacy-aware agent, whose privacy loss is given by
v ln(Xgame) for some v > 0. Assume that there exists an α > 0 s.t. for sufficiently
large values of ρ0, ρ1 it holds that min{ρ0, ρ1} ≥ α · (ρ0 + ρ1). Then, the unique
strategy σ∗

B that maximizes B’s utility is randomized and satisfies: Pr[σ∗
B(0) =

0] = Pr[σ∗
B(1) = 1] = p∗ for some p∗ ∈ [ 12 , 1).

The proof is deferred to the full version of the paper. The proof of Theorem 3
also applies to some alternative models of a privacy-aware agent. In addition
to Theorem 3, we also analyze, for completeness, an alternative scenario where
type 0 and type 1 are two competing agents. Observe that this is no longer a
Bayesian game with a single player but rather a standard complete-information
game with two players. We show that this game also has NEs where both types
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play randomized strategies that follow Randomized Response (i.e.,Pr[σ∗
B(0) =

0] = Pr[σ∗
B(1) = 1]) > 1

2 ).

3 The Coupon Game with Scoring Rules Payments

In this section, we model the payments between A and B using a proper scoring
rule (see below). This model is a good “first-attempt” model for the following two
reasons. (i) Proper scoring rules assign profit to A based on the accuracy of her
belief, so A has incentives to improve her prior belief onB’s type. (ii) As we show,
in this model it is possible to quantify the B’s trade-off between an ε-change in
the belief and the cost that B pays A. In that aspect, this model gives a clear
quantifiable trade-off that explains what each additional unit of ε-differential
privacy buys B. Interestingly, proper scoring rules were recently applied in the
context of differential privacy [12] (yet in a very different capacity).

Proper scoring rules (see surveys [23,14]) were devised as a method to elicit
experts to report their true prediction about some random variable. For a {0, 1}-
valued random variable X , an expert is asked to report a prediction x ∈ [0, 1]
about the probability that X = 1. We pay her f1(x) if indeed X = 1 and
f0(x) otherwise. A proper scoring rule is a pair of functions (f0, f1) such that
argmaxx Et←X [ft(x)] = Pr[X = 1]. Hence a risk-neutral agent’s best strategy
is to report x = Pr[X = 1]. Most frequently used proper scoring rules are
symmetric (or label-invariant) rules, where ∀x, f1(x) = f0(1 − x) (also referred
to as neutral scoring rules in [5]). With symmetric proper scoring rules, the
payment to an expert reporting x as the probability of a random variable X to
be 1, is identical to the payment of an expert reporting (1−x) as the probability
of the random variable (1−X) to be 1. Additional background regarding proper
scoring rules is deferred to the full version of this paper.

3.1 The Game with Scoring Rule Payments

We now describe the game, and analyze its BNE. In this game A interacts with
a random B from a population that has D0 fraction of type 0 agents and D1

fraction of type 1 agents. Wlog we assume throughout Sections 3, 4 and 5 that
D0 ≥ D1. A aims to discover B’s secret type. She has utility that is directly
linked to her posterior belief on B’s type and A reports her belief that B is
of type 1. A’s payments are given by a proper scoring rule, composed of two
functions (f0, f1), so that after reporting a belief of x, a B agent of type t pays
ft(x) to A.

A benchmark game. First consider the following straight forward (and more
boring) game where B does nothing, A merely reports x – her belief that B is
of type 1. In this game A gets paid according to a proper scoring rule — i.e., A

gets a payment of FD1(x)
def
= D0f0(x)+D1f1(x) in expectation. Since (f0, f1) is

a proper scoring rule, A maximizes her expected payment by reporting x = D1.

So, in this game A gets paid g(D1)
def
= fD1(D1) in expectation, whereas B’s
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expected cost is g(D1). (Alternatively, a B agent of type 0 pays f0(D1) and a B
agent of type 1 pays f1(D1).)

The full game. We now turn our attention to a more involved game. Here A,
aiming to have a more accurate posterior belief on B’s type, offers B a coupon.
Agents of type t prefer a coupon of type t. And so, B chooses what type to report
A, who then gives B the coupon and afterwards makes a prediction about B’s
probability of being of type 1. The formal stages of the game are as follows.

0. B’s type, t, is drawn randomly with Pr[t = 0] = D0 and Pr[t = 1] = D1.
1. B reports to A a type t̂ = σB(t) and receives utility of ρt if indeed t̂ = t. We

assume throughout this section that ρ0 = ρ1 = ρ.
2. A reports a prediction x, representing Pr[t = 1 | σB(t) = t̂], and receives a

payment from B of ft(x).

Theorem 4. Consider the coupon game with payments in the form of a sym-
metric proper scoring rule and with the following added assumption about the
value of the coupon: f1(D0) − f1(D1) < ρ < f1(1) − f1(0) = f0(0) − f0(1).
The unique BNE strategy of B in this game, denoted σ∗

B, satisfies that Pr[t =
0 | σ∗

B(t) = 0] = Pr[t = 1 | σ∗
B(t) = 1].

Note that a Randomized Response strategy σB for B would instead have
Pr[σB(0) = 0] = Pr[σB(1) = 1]. This condition is different from the condi-
tion in Theorem 4 when Pr[t = 0] �= Pr[t = 1] (i.e., D0 �= D1). The proof of
Theorem 4 is in the full version of this paper, where we also compare A’s profit
in the benchmark game to her profit from her BNE strategy in the full game.

4 The Coupon Game with the Identity Payments

In this section, we examine a different variation of our initial game. As always,
we assume that B has a type sampled randomly from {0, 1} w.p. D0 and D1

respectively, and wlog D0 ≥ D1. Yet this time, the payments between A and B
are given in the form of a 2 × 2 matrix we denote as M . This payment matrix
specifies the payment from B to A in case A “accuses” B of being of type
t̃ ∈ {0, 1} and B is of type t. In general we assume that A strictly gains from
finding out B’s true type and potentially loses otherwise (or conversely, that a
B agent of type t strictly loses utility if A accuses B of being of type t̃ = t and
potentially gains money if A accuses B of being of type t̃ = 1− t). In this section
specifically, we consider one simple matrix M – the identity matrix I2×2. Thus,
A gets utility of 1 from correctly guessing B’s type (the same utility regardless
of B’s type being 0 or 1) and 0 utility if she errs.

4.1 The Game and Its Analysis

The benchmark game. The benchmark for this work is therefore a very simple
“game” where B does nothing, A guesses a type and B pays A according to M .
It is clear that A maximizes utility by guessing t̃ = 0 (since D0 ≥ D1) and so



Privacy Games 381

A gains in expectation D0; where an agent B of type t = 0 pays 1 to A, and an
agent B of type t = 1 pays 0 to A.

The full game. Aiming to get a better guess for the actual type of B, we now
assume A first offers B a coupon. As before, B gets a utility of ρt from a coupon
of the right type and 0 utility from a coupon of the wrong type. And so, the
game takes the following form now.

0. B’s type, denoted t, is chosen randomly, with Pr[t = 0] = D0 and Pr[t =
1] = D1.

1. B reports a type t̂ = σB(t) to A. A in return gives B a coupon of type t̂.

2. A accuses B of being of type t̃ = σA(t̂) and B pays 1 to A if indeed t̃ = t.

And so, the utility of agent A is uA = 1[t̃=t]. The utility of agent B is a
summation of two factors – reporting the true type to get the right coupon and
the loss of paying A for finding B’s true type. So uB = ρt1[t̂=t] − 1[t̃=t].

Theorem 5. In the coupon game with payments given by the identity matrix
with ρ0 �= ρ1, any BNE strategy of B is pure for at least one of the two types of B
agent. Formally, for any BNE strategy of B, denoted σ∗

B , there exist t, t̂ ∈ {0, 1}
s.t. Pr[σ∗

B(t) = t̂] = 1.

In the case where ρ0 = ρ1 thenB has infinitely many randomized BNE strategies,
including a BNE strategy σ∗

B s.t. 1
2 ≤ Pr[σ∗

B(0) = 0] = Pr[σ∗
B(1) = 1] < 1

(Randomized response).

4.2 Continuous Coupon Valuations

We now consider the same game with the same payments, but under a different
setting. Whereas before we assumed the valuations that the two types of B
agents have for the coupon are fixed (and known in advance), we now assume
they are not fixed. In this section we assume the existence of a continuous prior

over ρ, where each type t ∈ {0, 1} has its own prior, so CDF0(x)
def
= Pr[ρ <

x | t = 0] with an analogous definition of CDF1(x). We use CDFB to denote the
cumulative distribution function of the prior over ρ (i.e., CDFB(x) = Pr[ρ < x] =
D0CDF0(x)+D1CDF1(x)). We assume the CDF is continuous and so Pr[ρ = y] =
0 for any y. Given any z ≥ 0 we denote CDF−1

B (z) the set {y : CDFB(y) = z}.

Theorem 6. In every BNE (σ∗
A, σ∗

B) of the coupon game with identity pay-
ments, where D0 �= D1 and the valuations of the B agents for the coupon are
taken from a continuous distribution over [0,∞), the BNE-strategies are as fol-
lows.

– Agent A always plays t̃ = 0 after viewing the t̂ = 0 signal (i.e., Pr[σ∗
A(0) =

0] = 1); and plays t̃ = 1 after viewing the t̂ = 1 signal with probability
y∗ (i.e., Pr[σ∗

A(1) = 1] = y∗), where y∗ is any value in CDF−1
B (D1) when

Pr[ρ < 1] ≥ D1 and y∗ = 1 when Pr[ρ < 1] < D1.
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– Agent B reports truthfully (sends the signal t̂ = t) whenever her valuation for
the coupon is greater than y∗, and lies (sends the signal t̂ = 1− t) otherwise.
That is, for every t ∈ {0, 1} and ρ ∈ [0,∞), we have that if ρ > y∗ then
Pr[σ∗

B(t) = t] = 1 and if ρ < y∗ then Pr[σ∗
B(t) = t] = 0.

Due to space constraints, this analysis is deferred to the full version of the paper.

5 The Coupon Game with an Opt Out Strategy

In this section, we consider a version of the game considered in Section 4. The
revised version of the game we consider here is very similar to the original game,
except for A’s ability to “opt out” and not guess B’s type.

In this section, we consider the most general form of matrix payments. We
replace the identity-matrix payments with general payment matrix M of the

form M =

[
M0,0 −M0,1

−M1,0 M1,1

]
with the (i, j) entry in M means A guessed t̃ = i

and B’s true type is t = j, and so B pays A the amount detailed in the (i, j)-
entry. We assume M0,0,M0,1,M1,0,M1,1 are all non-negative.

Indeed, when previously considering the identity matrix payments, we as-
sumed the for A, realizing that B has type t = 0 is worth just as much as finding
B has type t = 1. But it might be the case that finding a person of t = 1 should
be more worthwhile for A. For example, type t = 1 (the minority, since we always
assume D0 ≥ D1) may represent having some embarrassing medical condition
while type t = 0 representing not having it. Therefore, M1,1 can be much larger
than M0,0, but similarly M1,0 is probably larger than M0,1. (Falsely accusing B
of being of the embarrassing type is costlier than falsely accusing a B of type 1
of belonging to the non-embarrassing majority.) Our new payment matrix still
motivates A to find out B’s true type — A gains utility by correctly guessing
B’s type, and loses utility by accusing B of being of the wrong type.

The “strawman” game. First, consider a simple game where B makes no move (A
offers no coupon) and A tries to guessB’s type without getting any signal fromB.
Then A has three possible pure strategies: (i) guess that B is of type 0; (ii) guess
that B is of type 1; and (iii) guess nothing. In expectation, the outcome of option
(i) is D0M0,0−D1M0,1 and the outcome of option (ii) is D1M1,1−D0M1,0. If the
parameters of M are set such that both options are negative then A’s preferred
strategy is to opt out and gain 0. We assume throughout this section that indeed
the above holds. (Intuitively, this assumption reflects the fact that we don’t make
assumptions about people’s type without first getting any information about
them.) So we have

M0,0

M0,1
<

D1

D0
, and

M1,1

M1,0
<

D0

D1
(1)

A direct (and repeatedly used) corollary of Equation (1) is that
M0,0

M0,1
<

M1,0

M1,1
.

The full game. We now give the formal description of the game.
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0. B’s type, denoted t, is chosen randomly, with Pr[t = 0] = D0 and Pr[t =
1] = D1.

1. B reports a type t̂ to A. A in return gives B a coupon of type t̂.
2. A chooses whether to accuse B of being of a certain type, or opting out.

– If A opts out (denoted as t̃ = ⊥), then B pays A nothing.
– If A accuses B of being of type t̃ then: if t̃ = t then B pays Mt,t to A,

and if t̃ = 1− t then B pays −M1−t,t to A (or A pays M1−t,t to B).

Introducing the option to opt out indeed changes significantly the BNE strategies
of A and B.

Theorem 7. If we have that D2
0M0,0M1,0 = D2

1M0,1M1,1 and the parameters
of the game satisfy the following condition:

0 < ρ1M1,0 − ρ0M1,1 < M0,1M1,0 −M0,0M1,1

0 < ρ0M0,1 − ρ1M0,0 < M0,1M1,0 −M0,0M1,1 (2)

then the unique BNE strategy of B, denote σ∗
B, is such that B plays Randomized

Response: 1
2 ≤ Pr[σ∗

B(0) = 0] = Pr[σ∗
B(1) = 1] < 1.

Proving Theorem 7 is the goal of this section. The proof itself is deferred to the
full version of this paper, where we also give a complete summary of the various
BNEs of this game. We detail 6 different cases that cover all possible settings
of the game. Each of these 6 cases is defined by a different feasibility condition.
These conditions guarantee that A is able to find a strategy that cause at least
one of the two types of B agent to be indifferent as to the signal she sends.

The feasibility condition detailed in Equation (2) can be realized starting with
any matrix M satisfying M0,0M1,1 < M0,1M1,0 (which is a necessary condition
derived from Equation (1)), which intuitively can be interpreted as having a
wrong “accusation” being costlier than the gain from a correct “accusation”
(on average and in absolute terms). Given such M , one can set D0 and D1

s.t. D0

D1
=

√
M0,1

M0,0
· M1,1

M1,0
as to satisfy Equation (1). This can be interpreted as

balancing the “significance” of type 0 (i.e. M0,0M0,1) with the “significance” of
type 1 (i.e. M1,0M1,1), setting the more significant type as the less probable (i.e.
if type 1 is more significant than type 0, than D1 < D0). We then pick ρ0, ρ1 that

satisfy
M1,1

M1,0
< ρ1

ρ0
<

M0,1

M0,0
and scale both by the sufficiently small multiplicative

factor so we satisfy the other inequality in Equation (2). (In particular, setting
ρ1

ρ0
= D0

D1
is a feasible solution.) Here, ρ0 and ρ1 are set such that the ratio ρ1

ρ0

balances the significance ratio w.r.t type 1 accusation (i.e. ρ1

ρ0
>

M1,1

M0,0
) and the

ratio ρ0

ρ1
balances the significance ratio w.r.t to type 0 accusation (i.e. ρ0

ρ1
>

M0,0

M1,0
).

More concretely, for any matrix M =

(
1 c
c d

)
with parameters c, d satisfying

d < c2, we can set D0

D1
=
√
d and any sufficiently small ρ0, ρ1 satisfying

ρ1

ρ0
∈ (dc , c)

and satisfy the requirements of Theorem 7.
Recall, in addition to the conditions specifically stated in Equation (2), we

also require that D2
0M0,0M1,0 = D2

1M0,1M1,1 in order for the two types of agent
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B to play Randomized Response. In other words, the feasibility condition in
Equation (2) implies that B’s BNE strategy, denoted by p∗ = Pr[σ∗

B(0) = 0]
and q∗ = Pr[σ∗

B(1) = 1], is given by

(p∗, q∗) =
( D0D1M0,1M1,0 −D2

1M0,1M1,1

D0D1M0,1M1,0 −D0D1M0,0M1,1
,

D0D1M0,1M1,0 −D2
0M0,0M1,0

D0D1M0,1M1,0 −D0D1M0,0M1,1

)
The additional condition of D2

0M0,0M1,0 = D2
1M0,1M1,1 implies therefore that

p∗ = q∗. And so, in this case the B agent plays a Randomized Response strategy

that preserves ε-differential privacy for ε = ln( p∗

1−q∗ ) = ln
(

D1M0,1

D0M0,0

)
. Observe

that this value of ε is independent from the value of the coupon (i.e., from ρ0
and ρ1). This is due to the nature of BNE in which an agent plays her Nash-
strategy in order to make her opponent indifferent between various strategies
rather than maximizing her own utility. Therefore, the coordinates (p∗, q∗) are
such that they make agent A indifferent between several pure strategies. And
since the utility function of A is independent of ρ0, ρ1, we have that perturbing
the values of ρ0, ρ1 does not affect the coordinates (p∗, q∗). (Yet, perturbing the
values of ρ0, ρ1 does affect the various relations between the parameters of the
game, and so it may determine which of the 6 feasibility conditions does in fact
hold.)
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Abstract. A prevalent market structure in the Internet economy con-
sists of buyers and sellers connected by a platform (such as Amazon or
eBay) that acts as an intermediary and keeps a share of the revenue
of each transaction. While the optimal mechanism that maximizes the
intermediary’s profit in such a setting may be quite complicated, the
mechanisms observed in reality are generally much simpler, e.g., apply-
ing an affine function to the price of the transaction as the intermedi-
ary’s fee. Loertscher and Niedermayer [7, 8] initiated the study of such
fee-setting mechanisms in two-sided markets, and we continue this in-
vestigation by addressing the question of when an affine fee schedule is
approximately optimal for worst-case seller distribution. On one hand
our work supplies non-trivial sufficient conditions on the buyer side (i.e.
linearity of marginal revenue function, or MHR property of value and
value minus cost distributions) under which an affine fee schedule can
obtain a constant fraction of the intermediary’s optimal profit for all
seller distributions. On the other hand we complement our result by
showing that proper affine fee-setting mechanisms (e.g. those used in
eBay and Amazon selling plans) are unable to extract a constant frac-
tion of optimal profit in the worst-case seller distribution. As subsidiary
results we also show there exists a constant gap between maximum sur-
plus and maximum revenue under the aforementioned conditions. Most
of the mechanisms that we propose are also prior-independent with re-
spect to the seller, which signifies the practical implications of our result.

1 Introduction

A prevalent market structure in the Internet economy consists of buyers and
sellers connected by a platform (such as Amazon or eBay) that acts as an inter-
mediary and keeps a share of the revenue each time a buyer makes a purchase
from a seller. What mechanism should the intermediary use to maximize its
profit? In cases the optimal mechanism is unacceptably complicated, can sim-
pler mechanisms closely approximate the profit of the optimal mechanism? We
approach these questions using the framework of Bayesian mechanism design
and worst-case approximation guarantees.
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To motivate our investigation it is instructive to consider the transaction fees
that are commonly used by intermediaries in reality. For example, when an item
is sold on eBay using a fixed price listing (as opposed to an auction), the seller is
charged a fee of 0.3 + 0.1P , where P is the total amount of the sale in dollars1.
Amazon uses a similar pricing rule for individual sellers, which is 0.99 + αP ,
where α is a real number determined by the category of the product, typically
ranging from 8% to 15% 2. Generalizing these examples, we say that a fee-setting
mechanism is one in which the intermediary names a function w(·), the seller
names a price P , and the buyer chooses whether or not to take the item at price
P . If the transaction takes place, then the intermediary keeps w(P ) and pays
P −w(P ) to the seller. Otherwise, no money changes hands. We refer to w as the
fee schedule of the mechanism. We say that w is affine if it can be represented
in the form w = (1−α)P + β for some constants α, β, and we say that an affine
schedule w(P ) = (1 − α)P + β is proper if α ∈ [0, 1], β ≥ 0. Note that the fee
schedule used by eBay and Amazon (and many other intermediaries, for example
real estate brokers) are affine and proper.

Loertscher and Niedermayer [7, 8] initiated the study of fee-setting
mechanisms in two-sided markets. They showed that if it is possible for the
intermediary to choose a mechanism that implements a given allocation rule in
Bayes-Nash equilibrium, then there is a fee-setting mechanism that does so. They
also provided necessary and sufficient conditions for the intermediary’s optimal
mechanism to be implemented by an affine fee-setting mechanism. The neces-
sary and sufficient condition discovered by Loertscher and Niedermayer [7, 8]
requires the seller’s cost to be drawn from a generalized Pareto distribution (see
Definition 1 below). Using results from extreme value theory, they show that in
the limit as only the sellers with lowest cost and the buyers with highest value
enter the market, the conditional distribution of the seller’s cost (conditional on
entering the market) approaches a generalized Pareto distribution, thus provid-
ing a partial justification for the prevalence of affine fee-setting mechanisms in
two-sided markets.

Our work draws inspiration from the aforementioned work of Loertscher and
Niedermayer [7, 8] and seeks a different type of justification for affine fee-setting
mechanisms by asking the question, “When are affine fee-setting mechanisms ap-
proximately optimal?” Our results pertain to the case when the buyer’s virtual
valuation function is affine, which is the characterization of generalized Pareto
distributions, in ex-post IR setting. We first show that a specific choice of seller
prior-independent affine fee schedule w(P ) = P − φB(P ) is ex-post IR for every
possible seller’s distribution, where prior-independent means the fee schedule
only depends on the buyer’s value distribution but not on the seller’s cost distri-
bution. Moreover, this affine fee schedule also achieves a constant-approximation
to the maximum surplus — and hence, also, a constant-approximation to the op-
timal revenue. The approximation factor depends on the exponent of the buyer’s
generalized power distribution but it is no more than 4 comparing to optimal

1 See http://pages.ebay.com/help/sell/fees.html
2 See http://services.amazon.com/selling/pricing.htm
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intermediary’s profit when the buyer’s PDF is monotone. Our results comple-
ment the results of Loertscher and Niedermayer [7, 8] in the sense that combined
with their results, we show that if either of the buyer side or the seller side has
affine virtual valuation function, and the other side follows regular distributions,
then the best affine fee schedule guarantees either optimal or near optimal rev-
enue, which provides explanation for the phenomenon that affine fee schedule is
widely used in the daily life.

Our second main result explores the setting that the difference between the
values of the seller and the buyer follows MHR distribution, which indicates that
the surplus and revenue are constant approximation to each other. Under this
assumption, we may further extend the buyer’s distribution to MHR distribu-
tions, and still get constant approximation ratio with constant (and hence affine)
fee schedule.

Intriguingly, without proper MHR assumptions the ex-post IR affine fee sched-
ule in the aforementioned approximation result is not proper; in contrast to
intermediaries in typical two-sided markets in practice, the intermediary in our
approximation result may charge a transaction fee which is a decreasing function
of the seller’s price. Our third main result shows that this reliance on improper
affine fee schedules is unavoidable: even when the buyer’s value is assumed to
be uniformly distributed on [0, 1], there exist seller cost distributions for which
no proper affine fee-setting mechanism can achieve a constant-approximation to
the optimal revenue.

In the special case that the buyer’s distribution is uniform [0, 1], we propose
an improved mechanism, which gives 3-approximation fee-setting mechanism to
the optimal revenue. We also prove that if one needs a prior independent affine
fee schedule when the buyer’s distribution is uniform [0, 1], then α − β = 1 is
necessary. Moreover, among all the prior independent affine fee schedule, w(P ) =
1−P gets the best approximation ratio 8 comparing to maximum surplus. From
this perspective, our proposed affine fee schedule is optimal. Finally, our proof
techniques reveal the fact that there exists a constant gap between optimal
revenue and maximum surplus when buyer’s distribution is generalized Pareto
distribution as a side dish.

The primary source of difficulty in proving these results is that fee-setting
mechanisms are not Bayes-Nash incentive compatible (BNIC). Thus, deriving
a revenue guarantee for the intermediary requires first solving for the Bayes-
Nash equilibrium of the mechanism. Our paper adopts the approach introduced
by Loertscher and Niedermayer [7, 8] for deriving the Bayes-Nash equilibrium.
The technical heart of our paper lies in some surprising connections between the
affine fee schedule, Bayes-Nash equilibrium payment function, and the cumu-
lative hazard rate function. These connections are non-trivial, which make the
proof succinct while the results are still general. Starting from that, we got ex-
pressions of the three quantities of interest — the maximum surplus, the optimal
revenue, and the affine fee-setting mechanism’s revenue — in a closely related
form. Then, leveraging our assumption that the buyer’s virtual value function is
affine, we are able to choose an affine fee schedule to approximate the optimal
revenue.
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1.1 Related Work

Myerson and Satterthwaite [10] showed that for one seller one buyer setting, if
there is no intermediary between them, then no incentive-compatible individu-
ally rational mechanism can produce post efficient outcome, where post efficient
outcome means the trade should take place whenever the buyer’s value is larger
than the seller’s cost. Based on this impossibility result, they also considered the
case that intermediary is allowed, and both the seller and the buyer can trade
with the intermediary only.

Deng et al. [3] studied the double auction, in which the intermediary de-
signs mechanism for the buyers and the sellers to extract maximum revenue.
In the paper, they provided optimal or near-optimal mechanisms for both sin-
gle dimensional and multi-dimensional environments with continuous or discrete
distributions. Jain and Wilkens [6] studied the same problem with single unit-
demand buyer and multiple sellers, and gave a characterization for the optimal
solution in this setting. Since the optimal mechanism is generally hard to imple-
ment, they also proposed several approximation mechanisms, including picking
the best item and sell, or using anonymous virtual reserve price combined with
greedy algorithm.

Contract problem has a similar setting as the intermediary problem: the prin-
ciple (intermediary) proposed a contract (w(·) function) to the agent (the seller),
and the agent will choose his action and get a output (P payment), and then give
the principle w(P ), keep P − c as its utility. Previously, researchers have found
evidence showing that linear contract is powerful in this setting. Pal et al. [11]
studied linear contract problem, and found that linear contracts are common in
practice not only because the simplicity, but also due to the fact that the opti-
mal linear contract guarantees at least 90% of the fully optimal contract in the
canonical moral hazard setting. Carroll [2] proved that under mild assumptions,
the optimal contract is actually linear.

Simple mechanisms and their approximation ratios to the corresponding op-
timal mechanisms have been an important research topic in the literature. For
example, Bulow and Klemperer [1] showed that in the i.i.d., regular, single dimen-
sional setting, second price auction with n+1 bidder will give more revenue than
the optimal auction with n bidders. Hartline and Roughgarden [5] investigated
the single dimensional setting where bidders have independent valuations, and
showed that VCG with anonymous reserve price can achieve 4-approximation to
the optimal revenue. Dhangwatnotai et al. [4] considered the auctions that are
prior-independent, in the sense that the auction will achieve good approximation
to the optimal revenue while the specific value distributions of the bidders are
not used in the auction.

2 Preliminaries

In this paper we consider the problem of single-item trade, in which a profit-
maximizing broker mediates the exchange between a buyer and a seller. In par-
ticular, we follow the Bayesian mechanism design approach wherein a Bayesian
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designer looks to find the trade mechanism with the maximum possible revenue
in expectation over the distributions from which the preferences of the buyer
and seller are drawn. We assume the preferences of buyer and seller are private
values drawn from product distributions, which are common knowledge.

2.1 Setting, Notations, Solution Concepts, and Basics

We assume the reader is familiar with the general model of single dimensional
mechanism design for risk neutral agents, including the definitions of incentive
compatibility and individual rationality, basics of Bayesian mechanism design,
and adapting these concepts to the exchange setting (see Appendix in the on-
line full-version of our paper). Still, it is worth identifying a few aspects of our
notations and terminology.

Suppose the seller S has a private cost c and the buyer B has a private value
v for the item. We use F (and f) to denote the CDF(and PDF) of v, and G
(and g) to denote the CDF (and PDF) of c. Unless stated otherwise, we assume
the support of f is [0, v] and the support of g is [0, c]. We define the marginal
revenue functions (a.k.a. virtual preferences) of seller and buyer as follows. Let

φS(c) � c+G(c)
g(c) be defined as the virtual cost of the seller and φB(v) � v− 1−F (v)

f(v)

be defined as the virtual value of the buyer. We also define buyer’s hazard rate,

hB(v) � f(v)
1−F (v) , and cumulative hazard rate, HB(v) �

∫ v

0
hB(z)dz. It can be

easily shown that 1−F (v) = e−HB(v), which is a famous property of cumulative
hazard rate.

We say a buyer (or a seller) is buyer-regular (or seller-regular) if φB(v) (or
φS(c)) is monotone non-decreasing. A buyer’s distribution is said to be MHR
(monotone hazard rate) if hB(v) is monotone non-decreasing (or equivalently
HB(v) is convex). For a regular buyer v, monopoly price is defined to be ηv =
φ−1
B (0) (i.e. if v ≥ ηv virtual value is non-negative). Moreover, monopoly revenue

Rv
η � ηv(1 − F (ηv)) is the expected revenue one gets by posting ηv to a buyer

with value v.

2.2 Characterization of Distributions with Affine Virtual
Value/Cost

A critical constraint throughout this paper, which is appearing in different forms
in many of our results and background results on this subject, is when the buyer
or seller has an affine virtual preference, i.e. when φS(c) = xc + y or when
φB(v) = xv − y for x, y ∈ R. We now characterize the buyer distributions and
seller distributions with the above property as follows.

Definition 1. A generalized Pareto distribution F with parameters μ, λ, and ξ,
where μ, λ, ξ ∈ R, λ > 0 and ξ ≥ 0, is defined by the following cumulative density
function.

F (x) =

{
1− (1− ξλ(x− μ))

1
ξ if ξ > 0

1− eλ(x−μ) if ξ = 0
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and the support is bounded and equal to [μ, μ+ 1
ξλ ] if ξ > 0, and is unbounded and

equal to [μ,+∞) if ξ = 0. When ξ > 0 we refer to the distribution as generalized
power distribution and when ξ = 0 we refer to it as generalized exponential
distribution.

It is worth mentioning that the family of Pareto distributions are skewed, heavy-
tailed distributions that are sometimes used to model the distributions of in-
comes and other financial variables. For the cost of the seller, we define a similar
distribution as follows.

Definition 2. The seller with cost c has a reverse-generalized Pareto distri-
bution with parameters μ, λ, and ξ if −c is a random variable drawn from a
generalized Pareto distribution with parameters μ, λ and ξ.

For generalized Pareto distribution family, one can easily prove the following
corollary by definition.

Corollary 1. If v is drawn from a generalized Pareto distribution with param-
eters μ, λ, and ξ, then φB(v) = (1 + ξ)v − ( 1λ − ξμ). If c is drawn from a
reverse-generalized Pareto distribution with parameters μ, λ, and ξ, then φS(c) =
(1 + ξ)c+ ( 1λ + ξμ).

We can also prove that the inverse is true, i.e. affine virtual preferences im-
plies the generalized Pareto distribution (To prove this, solve the corresponding
differential equations coming from the definitions, which we omit here)

Lemma 1. A buyer (or seller) has affine virtual value (or cost) only if its value
(or cost) is drawn from a generalized Pareto distribution (or reverse-generalized
Pareto distribution).

3 Background Results

In this section, we investigate a class of mechanisms known as fee-setting, intro-
duced first by Loertscher and Niedermayer [7]. In these mechanisms, the inter-
mediary asks the seller to bid her preferred price. If a buyer is willing to buy
the item with this price, the intermediary takes a share of the trade money and
gives the rest to the seller. Fee-setting mechanisms are simple, intuitive, easy to
implement and more robust compared with Myerson’s optimal mechanism.

3.1 Fee-Setting Exchange Mechanisms

We first define a fee-setting mechanism as follows.

Definition 3. A a fee-setting mechanism with common knowledge fee schedule
w(.) : R → R is an indirect mechanism for single buyer single seller exchange
that runs the following steps subsequently:

– Trader asks the seller to bid its desired price P ,
– Trader then posts the price P for the buyer,
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– If v < P then the trade doesn’t happen and all the payments will be zero.
– If v ≥ P then the item will be traded, trader charges the buyer P , keeps its

share of the trade w(P ), and pays P − w(P ) to the seller.

We now define affine fee setting exchange mechanisms formally below.

Definition 4. An affine fee setting exchange mechanism with parameters α and
β is a fee-setting mechanism with affine fee schedule w(P ) � (1 − α)P + β,
α, β ∈ R.

In this paper, we refer to an affine exchange fee mechanism with parameters
α and β as APX(α, β). We also define Rev-APX(α, β) to be the revenue of
APX(α, β) when strategy profile of agents is a BNE (As we will discuss below,
for affine exchange mechanisms there is a unique BNE under the regularity as-
sumption). Moreover, OPT-Rev is defined to be the revenue of optimal Myerson
mechanism, and OPT-Surplus to be the surplus of VCG mechanism.

3.2 Characterization of BNE Strategy of the Seller

By a standard argument similar to those used in the Bayes-Nash equilibrium
characterization of single dimension mechanism [9] one can characterize the BNE
of the fee-setting mechanism. More formally, we have the following theorem,
proved in [7], that characterizes the BNE of the fee-setting mechanisms.

Theorem 1. [7] Consider a fee-setting mechanism with differentiable fee-setting
w(.), then P : [0, c]→ R+ is a BNE strategy of the seller if and only if:

– P (c) is monotone non-decreasing with respect to c.

– P (c) satisfies φB(P (c)) = P (c)− P (c)−w(P (c))−c

1− ∂w
∂p (P (c))

.

Although the characterization in Theorem 1 is indirect, it has many nice im-
plications in the special case of fee-settings mechanisms with affine fee schedule.

Corollary 2. Suppose in an exchange setting seller is regular. Then for an
affine fee-setting mechanism with fee schedule w(P ) = (1 − α)P + β, P (c) =
φ−1
B ( c+β

α ) is the unique BNE strategy of seller.

Proof. From Theorem 1 we know in any BNE, we have

φB(P (c)) = P (c)− P (c)− w(P (c)) − c

1− ∂w
∂p (P (c))

= P (c)− αP (c) + β + c

1− (1− α)
=

c+ β

α

and as buyer is regular, φB is invertible, so in any BNE P (c) = φ−1
B ( c+β

α ).

3.3 Optimality of Affine and Non-affine Fee-Setting Mechanisms

Considering the class of fee-setting mechanisms, one important question is how
well these mechanisms can perform comparing to Myerson’s optimal mecha-
nism. Loertscher and Niedermayer [7, 8] showed that with a proper choice of



Simple and Near-Optimal Mechanisms for Market Intermediation 393

function w(P ) (not necessarily affine) one can design a fee-setting mechanism
that extracts the same revenue in expectation as in Myerson’s optimal mecha-
nism. While this result is surprising by itself, they also could show that optimal
fee-setting mechanism will be affine when seller’s cost is drawn form a reverse-
generalized Pareto distribution as in Definition 2 (in other words, when the
seller’s virtual cost is affine). For more details on this result and a simple proof
using revenue equivalence theorem [9], see the online full-version of our paper.

4 Main Results

As can be seen from the discussion in the last section, Loertscher and Nie-
dermayer [7] initiated the study of affine fee-setting mechanisms in two-sided
markets and identified necessary and sufficient conditions for the intermediary’s
optimal fee schedule to be affine for worst-case buyer distribution. In this section,
we continue this investigation by addressing the question of when an affine fee
schedule is optimal or approximately optimal for worst-case seller distribution.
By simulation, one can show that there exists a pair of seller and buyer distri-
butions for which the best affine mechanism is not optimal (for example see [7]).
However, in those cases, we may still be able to get constant approximations
to maximum intermediary profit with affine fee-settings. We have three main
results following this line of thought.

As our first result, intuitively when at least one side of the bilateral market has
some linear behaviors it might be possible for the mechanism designer to extract
optimal or approximately optimal revenue from the buyer and seller using affine
fee-settings. Under this condition, we propose improper fee-setting mechanisms
that can extract constant approximations to optimal revenue. More formally:

Main Result 1. If the buyer has affine virtual value, under some mild
assumptions, the affine fee-setting mechanism w(P ) = P − φB(P ) ex-
tracts a constant approximation of optimal intermediary’s revenue in
expectation for any seller-regular distributions. Moreover, optimal inter-
mediary’s revenue and maximum surplus are in constant approximation
of each other in expectation.

As the second result, when surplus and revenue are in constant approximation
of each other (for example when the distributions involved in the trade are not
heavy-tailed) posting a proper price for the buyer can always extract constant
approximations to optimal surplus, and hence optimal revenue, and seller’s cost
will not be an important issue. More formally:

Main Result 2. If the random variables v (buyer’s value) and v − c
(difference of buyer’s value and seller’s cost) are MHR, the constant
fee-setting mechanism w(P ) = ηv−c extracts constant approximations
to optimal intermediary’s revenue in expectation for any seller distribu-
tions, in which ηv−c is the monopoly price for the random variable v− c
(ηv−c = φ−1

v−c(0)). Moreover, optimal intermediary’s revenue and maxi-
mum surplus are in constant approximation of each other in expectation.
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As the final result, we show that a mechanism designer who tries to get con-
stant approximation to optimal revenue for all seller’s distribution (especially for
heavy-tailed distributions), cannot avoid using the improper fee-setting mecha-
nisms. Formally:

Main Result 3. Even when the buyer’s value is drawn from unif [0, 1],
there exists seller cost distributions for which no proper affine fee-setting
mechanism can achieve a constant-approximation to the optimal inter-
mediary’s revenue.

In the next Section, we first provide a proof sketch for our first main result, and
then for the special case when buyer’s value is uniform we propose an improved
fee-setting mechanism accompanied by a refined analysis, which gives us a better
approximation ratio. Then in Section 4.3 we sketch the proof of second main
result. Finally in Section 5 we elaborate on our third result.

4.1 Approximations for Affine Buyer’s Virtual Value

Suppose buyer’s virtual value is affine, i.e. φB(v) = αv−β,3 and now look at the
affine fee-setting mechanism w(P ) = P −φB = (1−α)P+β. We start by proving
some properties of this mechanism, which also show the mechanism is ex-post
IR for seller, buyer and trader (hence no party regrets attending the trade).

Lemma 2. If φB(v) = αv−β and P (c) is the BNE strategy of seller, then affine
fee-setting mechanism w(P ) = P − φB(P ) = (1 − α)P + β has the following
properties:

(a) ∀c : w(φB(P )) = αw(P ) and φB(φB(P )) = c.
(b) Ex-post utilities of seller and trader are always non-negative.

(c) ∀v : e−HB(v) = (w(v)
β )

1
α−1 , when α �= 1.

Proof. To prove (a) we have w(φB(P )) = (1−α)(αP−β)+β = α((1−α)P+β) =
αw(P ). Moreover, due to Corollary 2, φB(P ) = c+β

α and hence c = αφB(P )−β =
φB(φB(P )). To prove (b), note that utility of trader is equal to w(P ) = P −
φB(P ) ≥ 0, due to properties of virtual value. Also, seller’s ex-post utility when
trade happens is equal to P − w(P )− c = φB(P )− c ≥ φB(φB(P ))− c = 0, due
to property (a). To prove (c) we have hB(v) = (v − φB(v))

−1 = (w(v))−1. Now,
the following calculation finds cumulative hazard rate HB(v) which completes
the proof of (c).

HB(v) =

∫ v

0

hB(z)dz =
ln(w(v))

1− α
− ln(w(0))

1− α
=

ln(w(v)
β )

1− α
��

Now, using the above properties we prove one can extract a constant portion
of optimal revenue and optimal surplus by the above mechanism. The intuition

3 Note that due to Corollary 1 and Lemma 1, v is drawn from a generalized Pareto
distribution, and hence α should be in [1,∞).
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behind the proof is as follows. Look at the special case when the buyer’s distribu-
tion is uniform on [0, 1]. Then the fee schedule that we propose is w(P ) = 1−P .
At the first glance this appears counterintuitive: as a seller, if you ask for a higher
price then the broker gets less money from you. But the seller needs to take a
trade-off when setting the price: if the seller picks P = 1, which minimizes the
broker’s fee as w(1) = 0, then the chance of finding a buyer with this price will
be zero, which produces zero utility to the seller. So the seller needs to find a
balanced price, at which the chance of finding a buyer is large, and the fee paid
to the broker is reasonable as well. In other words, the seller is buying “chance
of trade” from the broker by paying 1− P to it. We formalize this argument by
the following theorem. (Figure 1 presents a geometric proof sketch.)

P0 1

w(P )

1

w(P ) = 1 − P

P (c)

w(P (c))

φ(P (c))

2w(P (c))

φ(φ(P (c)))

4w(P (c))

FDB H

A

C

E G

SEFGH = APX
SCDH ≥ OPT

2

SABH = Surplus

APX

Fig. 1. In this figure, buyer value is unif [0, 1] and w(P ) = 1 − P . This fee-setting
mechanism (APX) extracts 1

4
fraction of optimal revenue (OPT) and 1

8
fraction of

optimal surplus (Surplus) in expectation, which can be seen by comparing the area of
corresponding regions.

Theorem 2. Suppose buyer’s virtual value is affine: φB(v) = αv − β for some
α ≥ 1. Then the revenue of affine fee-setting mechanism w(P ) = P − φB(P ) is

α
1

α−1−approximation to optimal revenue and α
α+1
α−1−approximation to optimal

surplus in expectation.

Due to space constraint, we put the proof in the online version of this paper.
We are now ready to obtain approximation ratios for different cases of gener-

alized Pareto distributions, namely general power distributions and exponential
distributions. This is exactly the same class of distributions that Loertscher and
Niedermayer [7, 8] investigated.

Corollary 3 (Exponential distribution). Suppose F (v) = 1 − e−λv over
[0,∞) for λ > 0. Then revenue of APX(1, 1

λ) (i.e. fee-setting with w(P ) = 1
λ )

is e2-approximation to maximum surplus, and e-approximation to the optimal
revenue in expectation.
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Proof. This is the special case of Theorem 2 when φB(v) = v − 1−F (v)
f(v) = v − 1

λ .

That gives us α = 1, β = 1
λ . Following the fact that limα→1 α

1
α−1 = e and

limα→1 α
α+1
α−1 = e2, we prove the desired approximation factors. ��

Corollary 4 (Power distributions). Suppose F (v) = 1 − (1 − v
v̄ )

a over the
support [0, v̄] for some a ≥ 1. Then the revenue of APX(a+1

a , v̄
a ) (i.e. fee-

setting with w(P ) = −1
a P + v̄

a) is 8−approximation to the maximum surplus,
and 4−approximation to the maximum revenue.

Proof. This is the special case of Theorem 2 when φB(v) = v− 1−F (v)
f(v) = a+1

a v− v̄
a .

So α = a+1
a , β = v̄

a . Note that as a ≥ 1, we have α ≤ 2. Following the fact that

for α ≤ 2, we have α
1

α−1 ≤ 4 and α
α+1
α−1 ≤ 8, which completes the proof. ��

4.2 Approximations for the Uniform Distribution

Uniform distribution on [0, 1] is a special case of power distributions, so based
on the results of the last section we can get approximation factors 4 and 8
with respect to optimal revenue and surplus respectively. However, we propose a
different fee-setting mechanism that is 3−approximation with respect to optimal
revenue in expectation. Our technique is based on the “best of two” technique
for designing approximation algorithms, which picks the best of two mechanisms
each performs well on some class of input seller’s distribution. For the proof, see
the online full-version of our paper.

Theorem 3. Suppose F = unif [0, 1]. Let y � min{φ−1
S (1), c}4. Then the mech-

anism which is best of APX(2, 1) and APX(1, 1−y
2 ) in terms of revenue is 3-

approximation to optimal revenue in expectation.

Corollary 5. The best affine fee-setting mechanism is at least a 3-approximation
to optimal revenue expectation when F = unif [0, 1].

Proof. The best affine fee-setting mechanism has expected revenue at least as
large as both APX(2, 1) and APX(1, 1−y

2 ), and hence is a 3−approximation to
the maximum intermediary’s revenue.

4.3 Approximations for MHR Distributions

In this section, we investigate the question of approximating surplus and revenue
when neither buyer’s virtual value nor seller’s virtual cost is affine, but instead
we have some proper distributional assumptions on the buyer and seller distri-
butions. We look at the setting that the difference between the values of the
seller and the buyer follows MHR distribution, which indicates that the surplus
and revenue of an imaginary bidder with value v− c are in constant approxima-
tion to each other. Moreover, we assume v is coming from a MHR distribution
and hence surplus approximation and revenue approximation are equivalent for

4 We set φ−1
S (1) = +∞ when φS(1) = 1 doesn’t have a solution.
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this bidder. It is important to mention that many distributions in real economic
exchange settings satisfy the following properties under independence assump-
tion of seller and buyer (like uniform, normal, exponential, and etc.). Now, under
these assumptions we get constant approximation ratio to both surplus and rev-
enue in expectation with a constant fee schedule. Formally we have this theorem
(for the proof, see the online full-version of our paper).

Theorem 4. Suppose buyer’s value v is MHR, and random variable v − c is also
MHR. Then a constant fee-schedule mechanismw(P ) = ηv−c is e

2−approximation
to optimal surplus, and hence e2−approximation to optimal revenue in expectation,
where ηv−c is monopoly price of random variable v − c.

5 Inapproximability Results

In this section, we give two inapproximability results. The first one shows that
the proper fee schedules eBay and Amazon are currently using are not revenue-
efficient, in the sense that for unif[0, 1] buyer distribution no proper fee schedule
can get constant approximation to the optimal revenue for the worst case seller
distribution. Meanwhile, as we showed before, there is an improper fee-setting
mechanism that always gets 4-approximation to the optimal revenue. The second
result shows that for unif[0, 1] buyer distribution, APX(α, β) gives seller prior
independent constant approximation to the maximum surplus for worst-case
seller distribution if and only if α− β = 1 and α �= 1.

5.1 Inapproximability Result for Proper Fee Schedule

First we investigate the question of how good proper fee schedule works. We
define a proper fee schedule as the following.

Definition 5. A proper fee schedule is an affine fee schedule with parameters α
and β such that 0 ≤ α ≤ 1 and β ≥ 0.

Then we give definitions on the approximability of proper fee schedule.

Definition 6. Proper fee schedule revenue gap RGF,G under buyer distribution
F , and seller distribution G is the ratio of the optimal revenue to the approxi-
mation revenue using the best proper fee schedule.

Definition 7. Proper fee schedule surplus gap SGF,G under buyer distribution
F , and seller distribution G is the ratio of the maximum surplus to the approx-
imation revenue using the best proper fee schedule.

As a direct consequence of Corollary 4, we can say optimal revenue is 8−
approximation to optimal surplus in expectation. Hence, for the special case of
unif[0,1] we have,

Corollary 6. If F is uniform distribution on [0, 1], then for any seller distribu-
tion G, RGF,G ≥ 1

8SGF,G.
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We now show the following theorem (for the proof, see the online full-version
of our paper), which shows that RGF,G could be arbitrarily large even if the
buyer distribution is as simple as the uniform [0, 1] distribution. At the same
time, APX(2, 1) is 4-approximation to the optimal revenue, which means proper
fee schedule can be arbitrarily worse than APX(2, 1).

Theorem 5. When F is uniform distribution on [0, 1], for every constant d,
there exists a regular seller distribution G with RGF,G ≥ d.

Proof Sketch. Based on Corollary 6, it suffices to show that for every constant
d, there exists a regular seller distribution G with SGF,G ≥ d. Assume F is
uniform distribution on [0, 1]. Consider the following family of distributions with

parameter δ, defined on the interval
[
0, 1−

√
δ
]
,

gδ(x) =
2δ

(1− δ)(1− x)3
, Gδ(x) =

δ

1− δ

(
1

(1− x)2
− 1

)
, x ∈

[
0, 1−

√
δ
]
.

the rest of the proof shows that for any d > 0, ∃δ such that RGF,G ≥ d ��

5.2 Inapproximability Result for Prior-Independent Approximation

For the setting of seller prior-independent, one might still expect the existence
of other constant approximations. However, we show our mechanism is the
unique fee-setting mechanism that can get constant seller prior-independent
approximations to surplus. More formally, we show that in the seller prior-
independent setting when buyer’s value is drawn from uniform [0, 1] distribution,
w(P ) = (1− α)P + β gives constant approximation to the surplus if and only if
α− β = 1. The proof is provided in the online full-version of our paper.

Theorem 6. If the buyer’s distribution is uniform [0, 1], w(x) = (1− α)x + β,
where α and β are parameters independent form the seller distribution, then the
revenue obtained using w is a constant approximation to the surplus for every
possible seller’s distribution if and only if α− β = 1 and α �= 1. Moreover, when
α = 2, β = 1, it achieves the best approximation ratio 8.

6 Extension to Multi-buyers Case

Some of our results can extend to multi-buyers case, when the buyers are regular
and i.i.d. In fact, if there are n buyers with regular i.i.d. values v1, v2, . . . , vn
drawn from distribution F , one can replace the pool of buyers with one effective
buyer v = max

i
vi and still get the same revenue in expectation for any fee-

setting mechanisms and optimal Myerson mechanism (because all buyers have
the same non-decreasing virtual value function), and also the same surplus in
expectation for VCG mechanism. Now, using the following lemma and the above
reduction we can extend Theorem 4 to multi-buyers case, whose proof is found
in the online full-version of our paper.



Simple and Near-Optimal Mechanisms for Market Intermediation 399

Lemma 3. Suppose v1, v2, . . . , vn are i.i.d. random variables drawn from MHR
distribution F . Then v = max

i
vi is also MHR.

By combining Lemma 3 and Theorem 4 we have the following direct corollary.

Corollary 7 (Multi-buyers setting). Suppose F is a MHR distribution and
there are n i.i.d. buyers whose values are drawn from F . Seller’s cost c is drawn
from G and is independent from all buyers. Moreover, assume the random vari-
able max

i
vi − c is MHR. Then the revenue of constant fee-setting mechanism

w(P ) = ηmax
i

vi−c, where ηmax
i

vi−c is the monopoly price for the distribution of

max
i

vi − c, is e2−approximation to optimal surplus and revenue in expectation.
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Abstract. The popular generalized second price (GSP) auction for
sponsored search is built upon a separable model of click-through-rates
that decomposes the likelihood of a click into the product of a “slot effect”
and an “advertiser effect”—if the first slot is twice as good as the second
for some bidder, then it is twice as good for everyone. Though appealing
in its simplicity, this model is quite suspect in practice. A wide variety
of factors including externalities and budgets have been studied that can
and do cause it to be violated. In this paper we adopt a view of GSP as an
iterated second price auction (see, e.g., Milgrom [2010]) and study how
the most basic violation of separability—position dependent, arbitrary
public click-through-rates that do not decompose—affects results from
the foundational analysis of GSP [Varian, 2007; Edelman et al., 2007].
For the two-slot setting we prove that for arbitrary click-through-rates,
for arbitrary bidder values, an efficient pure-strategy equilibrium always
exists; however, without separability there always exist values such that
the VCG outcome and payments cannot be realized by any bids, in equi-
librium or otherwise. The separability assumption is therefore necessary
in the two-slot case to match the payments of VCG but not for efficiency.
We moreover show that without separability, generic existence of efficient
equilibria is sensitive to the choice of tie-breaking rule, and when there
are more than two slots, no (bid-independent) tie-breaking rule yields
the positive result. In light of this we suggest alternative mechanisms
that trade the simplicity of GSP for better equilibrium properties when
there are three or more slots.

1 Introduction

The generalized second price (GSP) auction is the predominant auction for spon-
sored search advertising today. The auction takes per-click bids and proceeds as
follows: a score is computed independently for each advertiser, reflecting its bid
and propensity to be clicked; ads are ranked according to these scores, matched
to slots accordingly, and finally charged the minimum bid required to maintain
their allocated slot (i.e., to stay above the winner of the slot below). Fundamen-
tal to this procedure is the fact that the optimal assignment can be computed
based on a ranking of independently-computed scores, which requires that: (a)

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 400–416, 2014.
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the differences between slots affect all ads equally, and (b) an ad’s propensity to
be clicked is unaffected by the other ads shown around it. Formally, this amounts
to separability of click-through-rates: any given ad i’s probability of being clicked
when shown in slot j decomposes into two factors, μj (a “slot-effect”) and βi

(an “advertiser effect”). The GSP auction, as well as the theory underlying it
(Varian [2007]; Edelman et al. [2007]), all critically rely on this model.

Unfortunately, separability generally does not hold in practice (one recent
work challenging the model is Jeziorski and Segal [forthcoming]). Moreover, the
inadequacy of the model is becoming more acute as online advertising evolves to
incorporate more heterogeneous bidders and slots. Instead of a uniform column
of vanilla text ads, it is now common for different ad formats (images, text
with sitelinks, etc.) to appear together on the same search results page. New
ad marketplaces with richer formats, such as Yahoo’s “native” stream, have
emerged. For advertisers that are seeking clicks, click-through-rate is the relevant
metric, but for brand advertisers the “view rate” of a slot is more relevant (see,
e.g., Hummel and McAfee [2014]).

In this paper we examine what happens if we move beyond the separable
model: besides assuming—as in the standard model—that click-through-rates
can be determined independent of context (i.e., surrounding ads), we make virtu-
ally no structural assumptions and determine to what extent the most important
classical findings hold up.

Our main results in the two-slot setting show that efficiency is achievable
but revenue may suffer. For arbitrary click-through-rates and values, there exist
efficient equilibria. However, for arbitrary click-through-rates, there exist values
such that the VCG outcome and payments are not achievable (in equilibrium or
otherwise). Put another way: all click-through-rate profiles ensure existence of
efficient equilibria, but no non-separable click-through-rate profiles ensure the
feasibility of VCG payments. We also show that the price of anarchy in a two-
slot setting without the separability assumption is 2 (Caragiannis et al. [2014]
showed that it is at most 1.282 with separability).

When there are three or more slots, we show that efficient equilibria do not
always exist if the tie-breaking rule cannot be chosen dynamically in response
to bids. We present an alternate mechanism that restores efficient equilibria by
expanding the bid space so that agents can specify a bid for every slot, with
items left unallocated if there is not sufficient competition. Several proofs are
sketched or wholly omitted due to space constraints; the interested reader can
find the complete proofs in a longer version of the paper available online.

1.1 Related Work

Besides providing one of the earliest models of the sponsored search setting,
Edelman et al. [2007] proved that—in the complete-information model with sep-
arable click-through-rates—GSP has an equilibrium that realizes the VCG result,
i.e., an efficient allocation with each winner paying a price equal to the nega-
tive externality his presence exerts on the other advertisers. In another impor-
tant early paper, Lahaie [2006] provides equilibrium analysis for GSP (including
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for the version where advertiser effects are ignored) and first-price variants, in
both the complete and incomplete information settings. A good early survey is
Lahaie et al. [2007].

In a recent paper, Caragiannis et al. [2014] examine the space of equilibria
that may exist under GSP with separable click-through-rates, and bound the
efficiency loss that can result in any of the sub-optimal equilibria. Part of this
work involves a straightforward price of anarchy analysis for the complete in-
formation setting, to which we provide a counterpoint without separability in
Section 3.4.

The prior literature contains some empirical evidence against the separability
assumption. For instance, Craswell et al. [2008] demonstrate clear violations of
separability for organic search results. Gomes et al. [2009] take three prominent
keywords and show that the separable model is a poorer fit to observed clicks
than an alternate “ordered search” model of click-through-rates. Most of the
work that steps outside of the classic separable model is motivated by external-
ities between advertisements [Kempe and Mahdian, 2008; Ghosh and Mahdian,
2008; Giotis and Karlin, 2008; Athey and Ellison, 2011; Aggarwal et al., 2008;
Gomes et al., 2009; Ghosh and Sayedi, 2010]. The context in which an ad is
shown may matter: for instance, an ad may yield more clicks if shown below
poor ads than it would if shown below very compelling competitors. Our model
in the current paper removes the separability assumption but does not capture
externalities, as it assumes click-through-rates are context-independent.

Aggarwal et al. [2006] show that in the absence of the separability assumption,
there are cases where truthful bidding under GSP will not lead to an efficient
allocation. The authors go on to design a truthful mechanism that implements
the allocation that would result under GSP (which is not truthful) with truthful
bidding. Gonen and Vassilvitskii [2008] extend this analysis in a setting with
reserve prices.

Finally, without separability a set of agents could have arbitrary “expected
values” for each slot—no common structure is assumed. Though types in our
model are single-dimensional since click-through-rates are not private knowledge,
there is a connection to work that shows existence of efficient equilibria when
agents have a private value for each slot [Leonard, 1983; Abrams et al., 2007].

2 Preliminaries

The basic sponsored search model can be described as follows: a set of m slots are
to be allocated among n ≥ m advertisers. When ad i is shown in slot j, regardless
of what is shown in other slots, a user clicks on ad i with probability (“click-
through-rate”) αi,j , generating value vi for the advertiser. We let I denote the
set of advertisers, and assume throughout that lower slots yield weakly lower
click-through-rates, i.e., ∀i ∈ I, ∀k ∈ {1, . . . ,m − 1}, αi,k ≥ αi,k+1, and that
∀i ∈ I, ∀k ∈ {1, . . . ,m}, αi,k > 0. Our model places no further assumptions on
click-through-rates.

In the separable refinement of this model, click-through-rates αi,j can be
decomposed multiplicatively into αi,j = μjβi, where μj is the slot effect that
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depends only on the position and βi is the ad effect that depends only on the
bidder. Slots are ordered so that μ1 ≥ μ2 ≥ · · · ≥ μm. In that setting, the GSP
auction can be defined like such:

Definition 1 (GSP auction). The generalized second price (GSP) auction
proceeds as follows:

1. Each bidder i ∈ I submits a per-click bid bi.
2. Bidders are ranked by βibi and matched to slots according to their rank.
3. The bidder in position j pays “the ad-effect-adjusted bid of the bidder in

position j + 1” when her ad is clicked; specifically, she pays the minimum
amount required to be ranked in position j:

pj =
βj+1bj+1

βj

To move beyond separable click-through-rates, we must generalize the GSP
mechanism. We will work from a common observation (see, e.g., Milgrom
[2010]) that the GSP auction can be viewed as a special sequence of second-
price auctions—each slot is sold in order as if it were the only slot for sale. This
view allows us to naturally handle general click-through-rates.

Definition 2 (Iterated second price auction). An iterated second price
auction for sponsored search proceeds as follows:

1. Each bidder i ∈ I submits a per-click bid bi.
2. An order-of-sale σ is selected for the slots.
3. For j from 1 to m, with slots indexed according to σ:

(a) A second-price auction is used to sell slot j as follows: let i∗ be the
remaining bidder with the highest αi,jbi and let i+ be the bidder with the

second-highest αi,jbi. i∗ wins the auction and pays
αi+,jbi+

αi∗,j
per click or

αi+,jbi+ per impression.
(b) Bidder i∗ is removed from the auction and cannot win future slots.

This auction, with “best to worst” as the order of sale adopted in step 2, is
the implicit context for all results in this paper except where explicitly stated
otherwise.

Another important auction mechanism is the Vickrey-Clarke-Groves (VCG)
mechanism, which yields truthful bidding and an efficient allocation in dominant
strategies.

Definition 3 (VCG mechanism). In sponsored search, the Vickrey-Clarke-
Groves (VCG) mechanism proceeds as follows:

1. Each bidder i ∈ I submits a per-click bid bi to the auction.
2. Bids are interpreted as values per-click, and a matching of bidders to slots

i(j) is chosen that maximizes welfare, i.e that maximizes
∑

j∈I αi(j),jbi(j).
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3. Each bidder i ∈ I is charged an amount equal to the welfare other bidders
would gain, according to their reported bids, if i were removed from the auc-
tion.

In this paper we will compare the outcome of our GSP generalization (Definition
2) to that of VCG:

Definition 4 (VCG result). The VCG result refers to the allocation and pay-
ments realized by the VCG mechanism.

Given a set of advertiser bids, if we say that an auction has “realized the VCG
result” we are saying that its allocation and payments match those of the VCG
mechanism.

3 Two Slots

We focus much of our analysis on the two-slot case, for a few reasons. First,
this is the simplest case in which GSP deviates from a straightforward Vickrey
auction (which it reduces to in the case of a single slot); second, with two slots
“separability” is cleanly and simply defined, holding whenever the ratio of click-
through-rate for the first slot to the click-through-rate for the second (henceforth,
the click-ratio) is the same across all agents (i.e., ∀i, j ∈ I,

αi,1

αi,2
=

αj,1

αj,2
); and

finally, we will be able to show important positive results for the two-slot case
that do not extend to larger numbers of slots.

3.1 Efficient Equilibria

Among the first questions one might ask about an auction mechanism is: does
it yield efficient equilibria? The foundational work of Edelman et al. [2007] and
Varian [2007] demonstrated that efficient equilibria do exist under GSP in the
separable model, and we now ask whether the assumption of separability is
necessary. We resolve this in the negative.

To build intuition, we will start by considering an especially “problematic”
example for the non-separable setting that reveals some of the challenges that
can arise.

Table 1. A two-slot, three-bidder example in which two bidders are indifferent between
the two slots. There is no pure strategy equilibrium unless ties are broken in favor of
bidder 3.

bidder value αi,1 αi,2

1 1 1 1

2 1 1 1

3 2 0.4 0.2
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The first thing to notice about the example in Table 1 is that in any pure
strategy equilibrium bidders 1 and 2 win the slots and bidder 3 gets nothing.1

So now assume without loss of generality that bidder 1 wins slot 1 and bidder
2 wins slot 2. Bidder 2 has the better deal, since he’ll have to pay at most half
of what bidder 1 pays (since the bid of bidder 3 will set the price for slot 2 and
lower-bound the price for slot 1), and slot 2 is as good as slot 1 (in the eyes of
bidders 1 and 2). Thus, in order for bidder 1 to be best-responding, it must be
impossible for him to bid so as to win slot 2 (which would sell at a lower price)
instead of slot 1. In other words, if he were to underbid bidder 2, he must end
up with nothing. This can only be the case if 0.4b3 = b2 and a hypothetical tie
between bidders 2 and 3 for slot 1 is broken in favor of bidder 3.

Therefore, interestingly, in the above example there exists a pure strategy
equilibrium—efficient or otherwise—only if ties are broken in a specific way. This
would seem to bode very poorly for the prospects of a general result establishing
existence of efficient equilibria. However, we will see in this section that, at least
in the two-slot case, efficient equilibria do in fact always exist (given the right
tie-breaking rule).

Theorem 1 (Efficient equilibria exist). In a two-slot setting with any num-
ber of bidders, for arbitrary values and click-through-rates, if there is a unique
efficient allocation and ties are broken in favor of an agent with highest click-
ratio, then there is an efficient equilibrium without overbidding.

Proof sketch. Consider arbitrary click-through-rates α and values v. Let 1 and 2
denote the respective winners of slots 1 and 2 in the efficient allocation, and let 3
denote argmaxj∈I\{1,2} αj,2vj . We dichotomize the set of possible click-through-

rate profiles into those in which
α2,1

α2,2
≥ α3,1

α3,2
and those in which

α2,1

α2,2
<

α3,1

α3,2
.

In the former case, the following bid profile is an efficient equilibrium: b1 = v1,

b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
, b3 = v3, and bi = 0, ∀i ∈ I \ {1, 2, 3}. In the latter, the

following is: b1 = v1, b2 =
α3,2

α2,2
v3, b3 =

α2,1

α2,2

α3,2

α3,1
v3, and bi = 0, ∀i ∈ I \ {1, 2, 3}.

The proof verifies that an exhaustive set of sufficient equilibrium conditions holds
in each case. ��

It is interesting to see what the above tells us about the problematic example
of Table 1. To derive bids yielding an efficient equilibrium, we can note the
following about the example: an efficient allocation gives slots 1 and 2 to bidders
1 and 2, and thus the agents are labeled in a way consistent with the convention of
Theorem 1. Now, since

α2,1

α2,2
<

α3,1

α3,2
, the above proof indicates that the following

bids—combined with a tie-breaking rule that favors bidder 3 over bidder 2—
yields an efficient equilibrium: b1 = v1 = 1, b2 =

α3,2

α2,2
v3 = 0.4, b3 =

α2,1

α2,2

α3,2

α3,1
v3 =

1.
1 Assume otherwise. If bidder 3 were winning the first slot in equilibrium, he must be
paying less than his value in expectation (0.8), but in that case the loser amongst
bidders 1 and 2 could benefit by bidding between 0.8 and 1, winning a slot for at
most 0.8. Likewise, if bidder 3 were winning the second slot in equilibrium, he must
be paying less than his value in expectation (0.4), but in that case the loser amongst
bidders 1 and 2 could benefit by bidding between 0.4 and 1.
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3.2 Globally Envy-Free Equilibria

In the previous subsection we demonstrated that efficient equilibria always exist.
We proved this constructively, giving bid functions that yield efficiency for all
valuations. However, these bids do not generally lead to global envy-freeness:

Definition 5 (Globally envy-free outcome). Consider an arbitrary alloca-
tion and prices. Let k denote the winner of slot k and pk denote the price paid
by k, for k ∈ {1, . . . , n}; let n + 1 denote the agent that receives nothing; and
let pn+1 = 0. The allocation and prices constitute a globally envy-free outcome
if and only if, for all i, j ∈ {1, . . . , n+ 1},

αi,ivi − pi ≥ αi,jvi − pj

Envy-freeness is a major focus of the classic work on GSP [Edelman et al.,
2007; Varian, 2007], because of its relationship to VCG results, the salience
it arguably confers on equilibria, and perhaps most importantly, the fact that
envy-freeness implies that an equilibrium generates at least as much revenue as
VCG. Unfortunately, we will now see that this guarantee does not extend to our
setting, and an envy-free equilibrium is not guaranteed to exist.

We will give a necessary condition for global envy-freeness (Proposition 1),
which will not always be satisfied. We will then show that whenever the condition
is satisfied, global envy-freeness can be achieved, and moreover done so in the
context of an efficient equilibrium (Theorem 2).

Proposition 1. In a two-slot, three-bidder setting, for arbitrary values v and
click-through-rates α, there exist no bids yielding a globally envy-free outcome
unless, letting 1 and 2 denote the respective winners of slots 1 and 2 in the
efficient allocation:

(α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1

Proof. Take arbitrary values v, click-through-rates α, and bids b. First assume
b2 ≥ α3,1

α2,1
b3 (i.e., 2 sets the price for 1). For 1 to not be envious of 2, it must be

the case that b2 ≤ α3,2b3+(α1,1−α1,2)v1
α2,1

. The combination of these two constraints

yields (α3,1−α3,2)b3 ≤ (α1,1−α1,2)v1. Now instead assume b2 ≤ α3,1

α2,1
b3 (i.e, 3 sets

the price for 1). 1 is not envious of 2 if and only if α1,1v1−α3,1b3 ≥ α1,2v1−α3,2b3,
i.e., (α3,1−α3,2)b3 ≤ (α1,1−α1,2)v1, again. Finally, noting that envy-freeness for
3 requires that b3 ≥ v3 (otherwise 3 would envy 2), global envy-freeness requires:

(α3,1 − α3,2)v3 ≤ (α3,1 − α3,2)b3 ≤ (α1,1 − α1,2)v1

If (α3,1 − α3,2)v3 > (α1,1 − α1,2)v1, this cannot be satisfied. ��

Theorem 2 (GEF and efficient equilibria condition). In a two-slot, three-
bidder setting, for arbitrary click-through-rates α and values v, there exist bids
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yielding a globally envy-free and efficient equilibrium if and only if, letting 1 and
2 denote the respective winners of slots 1 and 2 in the efficient allocation:

(α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1

If a globally envy-free and efficient equilibrium exists, one exists that yields the
VCG result and does not require overbidding.

Proof sketch. The full proof follows similar lines to that of Theorem 1, and
considers three cases: (i) (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2; (ii) (α3,1 − α3,2)v3 >
(α2,1 − α2,2)v2 and

α3,1

α2,1
v3 ≤ v2; and (iii) (α3,1 − α3,2)v3 > (α2,1 − α2,2)v2 and

α3,1

α2,1
v3 > v2. In each case it is assumed that (α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1.

We specify bids yielding efficient and globally envy-free equilibria: in case (i)

b1 = v1, b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
, and b3 = v3; in case (ii), b1 = v1, b2 =

α3,1

α2,1
v3,

and b3 = v3; and in case (iii), b1 = v1, b2 = v2, and b3 = v3. ��

For instance, consider a 3-agent example with v1 = v2 = v3 = 1, α1,1 = 0.9,
α1,2 = 0.5, α2,1 = 0.5, α2,2 = 0.4, α3,1 = 0.6, and α3,2 = 0.1. The unique
efficient allocation gives slots 1 and 2 to bidders 1 and 2, respectively. But we
have: 0.5 = (α3,1−α3,2)v3 > (α1,1−α1,2)v1 = 0.4. Thus Theorem 2 implies that
there can be no globally envy-free and efficient equilibrium.

A characterization for more than three bidders is harder to state in a concise
form, but the following theorem gives sufficient conditions for efficiency and
global envy-freeness.

Theorem 3. For arbitrary click-through-rates and values, letting 1 and 2 denote
the respective winners of slots 1 and 2 in the efficient allocation, if

α2,1

α2,2
≥ αi,1

αi,2
,

∀i ∈ I \{1, 2}, there exists an efficient and globally envy-free equilibrium without
overbidding.

3.3 VCG Results Cannot Always Be Achieved

In the results of Edelman et al. [2007], existence of an efficient equilibrium in
the separable setting is demonstrated via proof that an equilibrium realizing
the VCG result always exists. In some sense the VCG result is the most salient
kind of efficient equilibrium, and it would be surprising if efficient equilibria
exist generically but VCG equilibria do not. But that is exactly what we now
demonstrate. Whenever a set of click-through-rates violates separability,2 one
can never be assured that a VCG result is feasible, in equilibrium or otherwise.
That is, there always exist values that make it impossible for the agents to bid
in a way that yields an efficient allocation and VCG prices.

2 Interestingly, there is one very minor exception to this “whenever”: if there is exactly
one agent whose click-ratio is not equal to the maximum across all bidders—i.e.,
click-through-rates are separable except in the case of one bidder, and his click-ratio
is lower—then the VCG result will be supported.
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Theorem 4 (Always a bad value profile). Assume strictly decreasing click-
through-rates. In a two-slot setting with three bidders, one of whom has a strictly
higher click-ratio than the other two, there always exist values such that the VCG
result is not supported.

Proof. Consider three agents with strictly decreasing click-through-rates α such
that one agent’s click-ratio is strictly higher than that of the other two. Label
the three bidders in a non-decreasing order of αi,1/αi,2. Strictly decreasing click-
through-rates entails that α1,1/α1,2 > 1, and α1,1/α1,2 ≤ α2,1/α2,2 < α3,1/α3,2

by assumption. In other words, for some ε ≥ 0 and δ > 0,

1 <
α1,1

α1,2
=

α2,1

α2,2
− ε =

α3,1

α3,2
− ε− δ (1)

Fix arbitrary v3 > 0. Let λ1 =
(α3,1−α3,2

α1,1−α1,2
− α3,1

α1,1

)
v3. Note that:

α3,1 − α3,2

α1,1 − α1,2
>

α3,1

α1,1
⇔ 1− α3,2

α3,1
> 1− α1,2

α1,1

⇔ α1,1

α1,2
<

α3,1

α3,2

This holds by (1), and thus λ1 > 0. Now let λ2 =
(α3,1−α3,2

α2,1−α2,2
− α3,2

α2,2

)
v3. Note

that:

α3,1 − α3,2

α2,1 − α2,2
>

α3,2

α2,2
⇔ α3,1

α3,2
− 1 >

α2,1

α2,2
− 1

⇔ α2,1

α2,2
<

α3,1

α3,2

This also holds by (1), and thus λ2 > 0. Now let v1 =
α3,1−α3,2

α1,1−α1,2
v3− γ1, for some

γ1 ∈ (0, λ1). We have:

α3,1

α1,1
<

v1
v3

<
α3,1 − α3,2

α1,1 − α1,2
(2)

And let v2 =
α3,2

α2,2
v3 + γ2, for some γ2 ∈ (0, λ2). We have:

α3,2

α2,2
<

v2
v3

<
α3,1 − α3,2

α2,1 − α2,2
(3)

We refine our specification of γ1 and γ2 such that:

1

α3,2v3

[
(α1,1 − α1,2)γ1 + (α2,1 − α2,2)γ2

]
< δ,

γ2 >
α1,1 − α1,2

α2,2
γ1, and

α1,1 − α1,2

α1,1v3

(α1,1

α3,2
γ1 +

α2,1 − α2,2

α3,2
γ2

)
< δ +

α1,2

α1,1
ε
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Note that such values can be chosen consistent with everything specified above,
for arbitrary δ > 0.

Letting (i, j) denote the allocation in which agent i receives slot 1 and agent
j receives slot 2, if we can establish that (1,2) is an efficient allocation, then the
bidder labels here correspond to those used in Proposition 1. Letting w(i, j) de-
note αi,1vi+αj,2vj , i.e., the social value of allocation (i, j), this can be established
by demonstrating that: w(1, 2) > w(2, 1), w(1, 2) > w(1, 3), w(1, 2) > w(2, 3),
w(1, 2) > w(3, 2), and w(1, 2) > w(3, 1). Due to space constraints, we omit
demonstration of these inequalities, which are relatively straightforward.

Now, since a VCG result is always globally envy-free (see, e.g., Leonard
[1983]), in light of Proposition 1, to complete the proof it is sufficient to show
that (α3,1 − α3,2)v3 > (α1,1 − α1,2)v1. We have:

(α3,1 − α3,2)v3 − (α1,1 − α1,2)v1

= (α3,1 − α3,2)v3 − (α1,1 − α1,2)

(
α3,1 − α3,2

α1,1 − α1,2
v3 − γ1

)
= (α1,1 − α1,2)γ1

> 0

��

The result extends almost immediately to the n-bidder case if we forbid overbid-
ding (note that overbidding is weakly dominated in GSP). We can fix the values
of all but three agents to 0; then the problem is equivalent to one in which the
0-valued agents do not exist, since they can’t bid anything other than 0.

Corollary 1. Assume strictly decreasing click-through-rates. In a two-slot set-
ting with any number of bidders greater than two, if there exists a bidder with
click-ratio strictly greater than that of two other agents, there always exist values
such that the VCG result is not supported without overbidding.

In light of this negative result, one might ask whether the VCG result can be
recovered if we are willing to experiment with different orders of sale. It turns
out this can never help in the two-slot case.

Proposition 2. In settings with at most three bidders, if the VCG result is not
supported when selling slots in-order, it is not supported when selling slots in
reverse order.

Proof. Let 1 and 2 denote the bidders that receive items 1 and 2, respectively, in a
VCG result, and let p1 and p2 denote the respective (per-impression) VCG prices.
Suppose first that we sell the items in order to achieve the VCG result. Since
bidder 3 will be the only competition for bidder 2, it must be that α3,2b2 = p2.
Moreover, we can suppose that α2,1b2 = p1 (lowering b2 cannot help, bidding
higher will interfere with the auction for item 1 either by winning the item or
by raising the price). Thus, suppose bidders bid as follows:

b1 = v1 , b2 =
p1
α2,1

, and b3 =
p2
α3,2

.
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By construction, these bids will achieve the VCG result as long as two other
conditions are met: α2,2b2 ≥ p2 so bidder 2 still wins item 2, and α3,1b3 ≤ p1
so bidder 3 does not interfere in the sale of item 1. The first condition is always
true — envy-freeness of VCG prices implies α2,1v2 − p1 ≤ α2,2v2 − p2 and so

α2,2(v2 − b2) ≤ α2,1(v2 − b2) = α2,1v2 − p1 ≤ α2,2v2 − p2

α2,1b2 ≥ p2

as desired. The second condition may indeed be violated.
It remains to show that whenever α3,1b3 > p1, then selling items in reverse

order cannot achieve the VCG result. Suppose we find bids that support the
VCG result selling out of order. Then bidder 1 must choose a bid b1 that wins
item 1 without interfering in the auction for item 2, i.e., a bid b1 such that
α1,2b1 ≤ p2 and α1,1b1 ≥ p1. We thus get

α1,1v1 − p1 ≥ α1,1(v1 − b1) > α1,2(v1 − b1) ≥ α1,2v1 − p2

α1,1v1 − p1 > α1,2v1 − p2

Now, since VCG prices are the minimal envy-free prices (see Leonard [1983]),
some bidder’s envy constraint must be tight for item 2 (otherwise we could lower
the price of item 2 while preserving envy-freeness). It cannot be bidder 3 because,
when α3,1b3 > p1, bidder 3 strictly prefers item 1 at VCG prices:

α3,2v3 − p2 = α3,2(v3 − b3) ≤ α3,1(v3 − b3) < α3,1v3 − p1 .

The only remaining bidder who can be indifferent is 1, so we can conclude that
α1,1v1−p1 = α1,2v1−p2, which contradicts the prior statement that α1,1v1−p1 >
α1,2v1−p2. Thus, when α3,1b3 > p1, selling items in reverse order cannot support
the VCG result either. ��

3.4 Price of Anarchy

We established in Section 3.1 that our generalization of GSP will always have
an efficient equilibrium, but there may be many inefficient equilibria as well.
In this section we consider how much efficiency may be lost if one of those
other equilibria occurs. We will make the natural assumption that agents don’t
bid more than their value; this is standard in the literature—overbidding is a
weakly dominated strategy, and with overbidding very strange equilibria can be
constructed.

We find that the efficient equilibrium is never more than twice as good as
the worst equilibrium, and this bound is tight. This result stands in contrast to
the results of Caragiannis et al. [2014], who showed that in the separable setting
with two slots, the efficient equilibrium is never more than 28.2 percent better
than (i.e., yields no more than 1.282 times the social welfare of) the worst. One
could thus say there is a significant added “efficiency risk” in a setting without
separability.
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Definition 6 (Price of anarchy). Given click-through-rates α and values v,
the price of anarchy is the ratio of the social welfare in the efficient (best) equi-
librium to that in the worst equilibrium; i.e., letting 1 and 2 denote the respective
winners of slots 1 and 2 in the efficient allocation, letting A denote the set of
equilibrium allocations, and letting a1 and a2 denote the respective winners of
slots 1 and 2 in allocation a ∈ A,

α1,1v1 + α2,2v2

mina∈A

[
αa1,1va1 + αa2,2va2

]
The following lemma, and especially its corollary, will be critical for the proof

bounding price of anarchy in our setting.

Lemma 1. Let (i, j) denote an allocation in which i receives slot 1 and j receives
slot 2. For arbitrary click-through-rates α and values v, letting 1 and 2 denote the
respective winners of slots 1 and 2 in the efficient allocation, the only possible in-
efficient equilibria are: (argmaxi∈I\{1} αi,1vi, 1) and (2, argmaxi∈I\{2} αi,2vi).

Corollary 2. Given click-through-rates α and values v, letting 1 and 2 denote
the respective winners of slots 1 and 2 in the efficient allocation, letting j denote
argmaxi∈I\{1} αi,1vi and k denote argmaxi∈I\{2} αi,2vi, the price of anarchy is:

max
{
e(1, 2) · 1, e(j, 1) · α1,1v1 + α2,2v2

αj,1vj + α1,2v1
, e(2, k) · α1,1v1 + α2,2v2

α2,1v2 + αk,2vk

}
,

where e(i, j) = 1 if allocation (i, j) is attainable in equilibrium3 and 0 otherwise.

Proposition 3. For the two-slot, n-bidder setting, for any n ≥ 2, for arbitrary
click-through-rates and values, the price of anarchy is at most 2.

We now show that this bound is tight by way of an example.

Proposition 4. For the two-slot, n-bidder setting, for any n ≥ 2, for arbitrary
ε > 0, there exist click-through-rates and values such that the price of anarchy is
at least 2− ε.

Proof. Consider a setting with n bidders, for arbitrary n ≥ 2. Consider the case
where two bidders, which we’ll call 1 and 2, have value 1 and all other bidders
(if there are any) have value 0. Take α1,1 = 1 − δ, α1,2 = δ, α2,1 = 1, and
α2,2 = 1− δ, for arbitrary δ ∈ (0, 1

3 ). The efficient allocation is (1, 2), and this is
supported, e.g., by equilibrium bids b1 = 1 and b2 = δ. But allocation (2, 1) is
also supported as an equilibrium, e.g., by bids b1 = 0 and b2 = 1. The price of
anarchy is thus:

α1,1v1 + α2,2v2
α2,1v2 + α1,2v1

=
(1− δ) + (1− δ)

1 + δ
=

2− 2δ

1 + δ

For any ε > 0, if δ < ε
4−ε then 2−2δ

1+δ > 2 − ε. Therefore, for any ε > 0, we can

choose δ ∈ (0,min{ 13 ,
ε

4−ε}), in which case the price of anarchy will exceed 2− ε.
��

3 Note that Theorem 1 entails that e(1, 2) = 1 in all cases.
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This also shows that equilibrium revenue, as a fraction of the VCG revenue,
may be arbitrarily bad. In the example above, the b1 = 0, b2 = 1 equilibrium
yields 0 revenue, while the b1 = 1, b2 = δ equilibrium yields the VCG outcome,
with revenue δ.

4 Three or More Slots

So far, we have seen that many of the important properties of the GSP auction
break in a two-slot setting. In this section, we will explore additional complexities
that arise with more than two slots. Notably, we will see that the order in which
slots are sold becomes critical — it will no-longer be sufficient to sell slots from
“best to worst” as in a standard GSP auction.

4.1 Absence of Equilibrium

First, we show that even the existence of equilibrium is in doubt. The follow-
ing example with 4 bidders and 3 slots illustrates that no bid-independent tie-
breaking rule can guarantee the existence of an equilibrium for every set of
valuations:

Table 2. An example in which no pure-strategy equilibrium exists for all v with a
fixed, bid-independent tie-breaking rule

bidder value αi,1 αi,2 αi,3

1 v1 1 1 0

2 v2 1 1 0

3 v3 1 0.5 0.5

4 v4 1 0.5 0.5

The example in Table 2 uses similar techniques to the simpler one in Sec-
tion 3.1, so we will only sketch the reasoning here. It is straightforward to argue
that any equilibrium must achieve the efficient allocation, otherwise some bidder
could deviate and benefit. In Section 3, we saw that it was important to break
ties in favor of the bidder who had a greater incremental value for slot 1 over
slot 2. In this example, if the efficient allocation chooses bidders 1 and 2 (as well
as either bidder 3 or 4), then we see the same structure replicated here — it will
be important to break ties in favor of bidder 3 and/or 4. On the other hand, if
the efficient allocation chooses bidders 3 and 4, with one of bidder 1 or 2, then
the same structure arises across slots 1 and 3. However, bidders 1 and 2 have a
greater incremental value for slot 1 over slot 3 and therefore it is important to
break ties in their favor. Thus, any tie-breaking rule that does not depend on
bids will necessarily fail for at least one of these scenarios.
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4.2 The Importance of the Order of Sale

We just saw that selling slots in a different order can be beneficial, but is it ever
necessary? In fact, we show that it is.

Observation 1. With four bidders and three slots, there exist values and click-
through-rates such that the VCG result can be achieved, but not by selling slots
in order.

Table 3. A four-bidder, three-slot example demonstrating that selling items out of
order may facilitate VCG results

bidder value αi,1 αi,2 αi,3

1 10 1 0.4 0.4

2 8 1 0.75 1
7

3 8 1 0.5 0.5

4 5 1 1 0

Proof. Consider the four-bidder, three-slot example depicted in Table 3. One
can check that the optimal assignment is (1,2,3) and VCG prices for the slots
are p = [7, 5, 1]. If slots are sold in order, then bidder 4 must set p3. Thus, bidder
4 must be bidding such that α4,3b4 = p3, which implies 0× b4 = 1. Clearly, this
is not possible, and there will be similar problems even if we require that α4,3 is
strictly positive.

However, VCG prices can be achieved by selling slots in the order 1,3,2. One
can check that the bids b = [10, 7, 7, 5] achieve VCG prices. ��

4.3 An Auction with Expressive Bidding

Finally, we show how we can build an auction that always yields the VCG result
as an equilibrium by selling slots in a different order. For this mechanism, we
will need bidders to place a distinct bid bi,j for each slot (WLOG we ignore α
values here). First, we need to argue that an appropriate ordering exists, then
we will construct a mechanism that exploits this ordering.

Price Support Orderings and Forests We first establish that the VCG
result is a feasible outcome of an iterated auction with expressive bidding. If i
is paying price pi, then some other bidder who has not already been allocated
is bidding pi for the slot i wins. It is not a priori clear that this is possible
without requiring some bidder to overbid her true value. We call an ordering
that achieves this a price support ordering (PSO).

Our first lemma shows that a price support ordering always exists for VCG
prices More specifically, we show that a price support forest (PSF) exists — a
price support forest is a directed forest that captures the ability of bidders to
support prices:

Definition 7. A price support forest (PSF) for prices pj with n slots and bid-
ders is a graph F on n nodes with the following properties:
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– F is a directed forest with edges pointing away from the roots.
– Root nodes (nodes with no incoming edges) have price pj = 0.
– Edge (i, j) in F implies that bidder i can set the price for slot j without

overbidding.

We will formalize “i can set the price for slot j” below.
Assume that the VCG mechanism assigns bidder i to slot i, and let pj de-

note the minimum Walrasian equilibrium price for slot j (the VCG price of
bidder j). The following lemma says that VCG prices always admit a PSF
in which edges capture indifferences. A precisely equivalent lemma appears
in Mehta and Vazirani [2013], so we omit the proof.

Lemma 2 (VCG Price Support Lemma). There exists a directed forest F
with the following property: for any slot j, either pj = 0, or there is an edge
(i, j) corresponding to a bidder who is indifferent between getting slot i at price
pi and getting slot j at price pj, ergo i is happy to bid bi,j = pj for slot j and
thereby set its price. Thus, F is a price support forest.

Corollary 3. There exists an ordering σ of slots with the following property: for
any slot j, either pj = 0, or there is some bidder with i > j who is indifferent
between getting slot i at price pi and getting slot j at price pj, ergo i is happy to
bid bi,j = pj for slot j and thereby set its price.

Proof. By Lemma 2, we know that a price support forest F exists. Compute
an ordering σ such that any parent in F comes after all its children (e.g.) by a
breadth-first traversal of F . ��

Auctions Leveraging Price Support. Finally, we show how the existence of
a PSF can be used to construct an auction that supports the VCG result as an
equilibrium:

Definition 8 (Auction with a Price Support Order). An iterated second-
price auction can be implemented leveraging a price support order as follows:

1. Choose an order of sale σ and tie-breaking rules that maximize seller revenue
given bids. If a slot has only one nonzero bid, it does not get sold.

2. Run an iterated second-price auction according to the order σ and rules se-
lected in (1).

Theorem 5 (Equilibrium). The iterated second-price auction with unit-
demand bidders and expressive bids has an efficient equilibrium in which bidders
pay VCG prices.

Proof. Choose an arbitrary PSF and define bids as follows:

bi,j =

⎧⎪⎨⎪⎩
vi,j i = j

pj i supports the price of j in the PSF, or

0 otherwise.
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Consider deviations by a particular bidder k. Notice that no slot j can have
a bid less than pj unless it was placed by bidder k. We can thus conclude that
if k wins any slot for less than the VCG price through this defection (which
is necessary for it to be profitable), then k must have won the slot for free.
However, our auction rules stipulate that slots will not be sold if they only have
one nonzero bid, so this is impossible. ��

5 Conclusion

The primary theoretical justification for GSP builds on the analyses of Varian
[2007] and Edelman et al. [2007] to argue that GSP will perform at least as
well as VCG. Unfortunately, our results demonstrate that this is a very fragile
phenomenon—when GSP is naturally generalized as an iterated second price auc-
tion, these performance guarantees fall apart even with small deviations from
GSP’s separable model. Our work suggests a few techniques for recovering desir-
able performance guarantees, such as varying the order of sale and allowing ex-
pressive bidding, but perhaps even more importantly it points to significant open
questions that might suggest new mechanisms and principles for implementing
auctions:

– Is there a better way to generalize GSP that would preserve the performance
guarantees of Varian [2007] and Edelman et al. [2007]?

– What are the key principles that define GSP in theory?
– What are the properties that capture GSP’s practical popularity?

That said, our results also include a surprising positive result: all click-through-
rate profiles ensure existence of efficient equilibria in the two-slot setting, given
a specific bid-independent tie-breaking rule. We proved that this result does not
generalize to the case with more slots, but whether bid-dependent tie-breaking
rules could yield generic existence of efficient equilibria remains an open question.
And even if no meaningful extension beyond the two-slot setting is possible, the
positive result we havemay turn out to be specifically relevant for aworld ofmobile
devices where only a small number of slots can be shown per page.
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Abstract. This paper presents models for predicted click-through rates
in position auctions that take into account the externalities ads shown in
other positions may impose on the probability that an ad in a particular
position receives a click. We present a general axiomatic methodology for
how click probabilities are affected by the qualities of the ads in the other
positions, and illustrate that using these axioms will increase revenue as
long as higher quality ads tend to be ranked ahead of lower quality
ads. We also present appropriate algorithms for selecting the optimal
allocation of ads when predicted click-through rates are governed by a
natural special case of this axiomatic model of externalities.

1 Introduction

In sponsored search auctions, advertisements appear alongside search results in
a variety of positions on the page, some of which are more prominent and thus
more likely to be clicked than others. In both academic work and practice, it
is standard to model each position as having some quality score that reflects
the relative probability that an ad will receive a click in that position and then
ranking the ads by a product of their bid, the maximum amount the advertisers
will pay per click, and a quality score, which reflects the probability an ad will
receive a click if the advertiser is shown in the top position.

Although it is almost universal to assume that an ad’s click probability is a
product of the ad’s quality score and a quality score of a position, this formulation
may be suboptimal. The formulation implicitly assumes that the probability an
ad receives a click in a given position is independent of the identities of the
other ads on the page. However, this assumption is unlikely to hold in practice.
[3] notes empirically that many consumers are likely to search for what they are
looking for by beginning their search at the top and ceasing to search after they
have found what they are looking for, and [11] presents evidence that ads impose
large negative externalities on other ads by virtue of the fact that the ads can
be substitutes for one another. Consequently, placing higher quality ads at the
top of the page decreases the probability that a user clicks on other ads.

How then, might one incorporate this possibility into sponsored search auc-
tions to choose a more efficient allocation of ads? This paper presents methods
for achieving this goal. We begin by presenting a general axiomatic model of
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predicted click-through rates when the probability an ad receives a click may
depend not only on the quality score of the ad and the position in question, but
also on the quality scores of the other ads that are shown in the other positions.
We analyze the properties of this axiomatic formulation, and illustrate that as
long as higher quality ads are typically ranked ahead of lower ads, then moving
towards this new axiomatic model will increase revenue in expectation.

A drawback of the most general possible formulation is that computing the
optimal allocation of ads is unlikely to be computationally feasible because one
would likely need to try each possible configuration of ads in order to choose the
optimal configuration, and this is likely to be too slow to be useful in practice.
For this reason, we also develop a second formulation that is a special case of
our most general methodology that has the advantage of admitting a rapidly
converging algorithm for computing the optimal allocation of ads.

While a few papers have presented theoretical analyses of circumstances where
the click-through rates are not equal to a product of the quality score of an ad
and the quality score of a position, these papers differ significantly from our
paper. [1] and [12] consider models in which users search from the top to the
bottom that lead to non-separable click probabilities and tractable algorithms
for choosing the allocation of ads, but do not consider more general models, as
we do in this paper. [7] and [8] further analyze the equilibrium and efficiency
properties of such a model, but [11] finds empirical evidence that models in which
users search from the top of the page to the bottom do not fully match the data.
Other papers that consider different models of externalities (e.g. [2], [5], [6], and
[10]) also do not present algorithms for choosing the allocation of ads.

2 Model of Externalities

There is an auction for s advertising positions on a page. Each advertising po-
sition k has a quality score nk, where we assume without loss of generality that
nk is non-increasing in k. There are also m advertisers. Each advertiser i has a
quality score qi reflecting the relative clickability of the ad and makes a bid bi
reflecting the maximum amount that this advertiser will pay per click.

In this setting, a standard model of position auctions such as [4] or [13] would
assume that the probability advertiser i receives a click in position k is nkqi. We
instead allow the probability an advertiser receives a click to depend on these
quality scores in a more nuanced way. Let p(j) = fj(q(1), . . . , q(s);n1, . . . , ns)

denote the probability that the advertiser in the jth position receives a click
as a function of the quality scores of the ads in the first s positions as well as
quality scores of the s positions. In addition to requiring this probability to be
increasing in the underlying quality scores of the ad and the position, q(j) and
nj , we stipulate that this probability should satisfy these axioms:

(A) fj(q(1), . . . , q(s);n1, . . . , ns) is non-increasing in q(k) for all k �= j.
(B) Increasing the quality score of an ad in a higher quality position decreases

the click-through rates of ads in other positions by more than increasing the
quality score of an ad in a lower quality position. Formally, let q ≡ (q(1), . . . , q(s))
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denote a vector of qualities for which q(i) = q(k) = q∗ for some particular i and k
satisfying ni > nk. Also let q(i) denote the vector of qualities that would result
from replacing q(i) = q∗ with q(i) = q̂ for some q̂ �= q∗, and let q(k) denote the
vector of qualities that would result from replacing q(k) = q∗ with q(k) = q̂ for
the same q̂. Then |fj(q(i);n1, . . . , ns)−fj(q;n1, . . . , ns)| ≥ |fj(q(k);n1, . . . , ns)−
fj(q;n1, . . . , ns)| for all j /∈ {i, k}.

Axiom (A) simply reflects the possibility that when a higher quality ad as-
sumes a particular position, the ad is likely to decrease the probability that ads
in other positions receive a click. This axiom is plausible because if the quality of
an ad in a particular position increases, users are relatively more likely to click
on this ad, which in turn draws their attention from the other ads.

Similarly, axiom (B) reflects the fact that increasing the quality of an ad in
a higher quality position does more to increase the probability that users will
click on that ad, so increasing the quality of an ad in a higher quality position
also draws more user attention from other ads than increasing the quality of an
ad in a lower quality position. Thus both axioms (A) and (B) reflect sensible
properties on how changing the qualities of ads in other positions is likely to
affect the probabilities that other ads receive a click.

Throughout our analysis, we focus on mechanisms in which the auctioneer
seeks to maximize total expected welfare with respect to the bids of the adver-
tisers. That is, the auctioneer maximizes

∑s
j=1 b(j)p(j), where b(j) denotes the

cost per click bid of the advertiser in the jth position and p(j) denotes the prob-

ability that the advertiser in the jth position receives a click. We also focus on a
generalization of the generalized second price auction in which the advertiser in
the jth position is charged a cost per click c(j) that represents the smallest bid

that this advertiser could make while still maintaining the jth position when the
allocation of ads is chosen using the above algorithm.

3 General Results

We first derive some general results on how using an alternative model of pre-
dicted click-through rates meeting the axioms given in the previous section would
affect revenue from online auctions. To do this, we compare two otherwise iden-
tical methods for predicting the click-through rates of ads in position auctions.
The first method is one in which the predicted click-through rates of the ads in
slots j /∈ {k, k + 1} are independent of the quality scores of the ads in positions
k and k + 1, as in a standard model. The other method we consider is one in
which the predicted click-through rates of the ads in positions j /∈ {k, k + 1}
may depend on the quality scores of the ads in positions k and k+1 in a manner
that satisfies the axioms (A) and (B) presented in the previous section.

There are two different ways that incorporating the possibility that the quality
scores of ads may affect the click-through rates of ads in other positions could
affect revenue. First there is the possibility that this could affect the allocation of
ads that is shown in the auction. In this case, if the revised model of predicted
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click-through rates is more accurate, then one would choose a more efficient
allocation of ads, and thereby typically achieve higher revenue.

However, in a substantial percentage of auctions, allowing for the possibility
that an ad’s predicted click-through rate may depend on the quality scores of
the other ads will not change the allocation of ads but will affect the pricing.
It is thus important to assess how the prices that the advertisers pay would be
affected by the changed model of predicted click-through rates even if this does
not affect the allocation of ads. This is addressed in the following theorem:

Theorem 1. Consider two different models of predicted click-through rates for
position auctions that are identical except for the following:

(1) For the first model, the predicted click-through rates of ads in slots j /∈
{k, k + 1} are independent of the quality scores of the ads in slots k and k + 1.

(2) For the second model, the predicted click-through rates of ads in slots
j /∈ {k, k + 1} depend on the quality scores of the ads in slots k and k + 1 in a
manner that satisfies axioms (A) and (B).

Then if the allocation of ads that is selected by the two models of predicted
click-through rates is identical, the advertiser in position k pays more per click
under the second model if and only if q(k) > q(k+1).

All proofs are in the appendix of the full paper [9]. Theorem 1 indicates that
if we take into account the externalities that the ads in positions k and k + 1
impose on the other ads, then the advertiser in position k will pay more per click
if and only if this advertiser has a higher quality ad. Since Theorem 1 applies
to all slots k, repeatedly applying Theorem 1 to every slot suggests that if a
model with externalities has no effect on the allocation of ads, then this model
will typically increase the cost per click paid by an advertiser if and only if this
advertiser’s quality score exceeds that of the advertiser just below him.

The results of this section suggest that if one can more accurately describe
click probabilities by using a model of the form in Section 2, then one should be
able to increase revenue. Typically higher quality ads will be ranked higher than
lower quality ads, so the result in Theorem 1 suggests that even if this model
does not change the allocation of ads, revenue should still increase. And if one
is able to choose a more efficient allocation, then one would also expect revenue
to increase. Thus revenue is likely to increase from using predicted click-through
rates of the form in Section 2 as long as such a model is more accurate.

4 Practical Formulation

For general models of the form in Section 2, it may be difficult to select the
efficiency-maximizing configuration because there are an exponentially large
number of feasible configurations and it is not obvious how one can rule out
different configurations as dominated by others. Thus it is important to use a
model where one can select the efficiency-maximizing configuration in a compu-
tationally tractable way. In this section we present a specific formulation of the
model in Section 2 that permits such a practical implementation.
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In particular, in this section we consider a model in which the predicted click-
through rates for the ads in position i are of the form

pi =
νniqi

1 + λ
∑s

j=1 njqj

where λ and ν are positive constants, ni denotes the quality score of the ith

position, and qi denotes the quality score of the ad in the ith position. This
formulation is sensible because one would expect the percentage decrease in an
ad’s click-through rate due to the negative externalities imposed by the other
ads to be proportional to the total click-through rates of these ads, meaning
an ad’s click-through rate is likely to be decreased by a factor proportional to
1 + λ

∑s
j=1 njqj . Also note that in this formulation, setting λ = 0 and ν =

1 would recover the standard formulation of predicted click-through rates, so
optimally choosing these parameters can never result in less accurate predicted
click-through rates than the standard formulation. Further note that changing
the value of ν would never change the optimal allocation of ads. Here ν is a term
that only serves to make the predicted click-through rates unbiased on average.

Now define S to be the expected social welfare from a given ranking of ads
when ν = 1. We first begin our analysis of this formulation by noting when using
a non-zero value of λ would result in changing the allocation of ads:

Theorem 2. Welfare is enhanced by switching the order of the ads in positions
k and m where k < m if and only if bmqm − λqmS > bkqk − λqkS.

Theorem 2 suggests that if one can obtain a good estimate of the social welfare
S that will result in the efficiency-maximizing configuration, then it may be
feasible to rank the ads on the basis of scores of the form bmqm − λqmS to
achieve the efficiency maximizing allocation.We now exploit this insight to derive
a computationally efficient way of selecting the optimal ordering of ads.

The algorithm proceeds by selecting a value SL that is lower than the social
welfare S that will result in the efficiency-maximizing configuration and another
value SH that is higher than this social welfare S. The algorithm then repeatedly
replaces either SL or SH with Ŝ ≡ 1

2 (SL+SH) until it finds some such value of Ŝ
that is guaranteed to result in the efficiency-maximizing allocation when ranking
ads by the scores bmqm − λqmS when S = Ŝ. Such an algorithm will typically
require very few steps in practice because after n passes, Ŝ will be within a factor
of 2−n of the true social welfare S corresponding to the efficiency-maximizing
configuration. The detailed steps for the algorithm are as follows:

(1) Define SL to be the expected social welfare that would result if the ads
were ranked by the scores bmqm.

(2) Define SH ≡
∑s

m=1 nmbmqm when the ads are ranked by the scores bmqm.
(3) Calculate the rankings of the ads when the ads are ranked by the scores

bmqm − λqmS for S = SL and S = SH .
(4) If the rankings of the ads in step (3) are the same for both S = SL and

S = SH , then choose this ranking of the ads.
(5) If these rankings are different, let Ŝ ≡ 1

2 (SL + SH) and calculate the

ranking of the ads when the ads are ranked by the scores bmqm − λqmŜ.
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(6) Let φ(Ŝ) ≡
∑s

m=1 nm(bmqm − λqmŜ) when the ads are ranked by the

scores bmqm − λqmŜ. If φ(Ŝ) < Ŝ, then let SH = Ŝ. Otherwise let SL = Ŝ.
(7) Repeat steps (3)-(6) until the rankings in step (4) are the same for both

S = SL and S = SH , and choose the resulting ranking of ads.
This algorithm indeed results in the efficiency-maximizing allocation:

Theorem 3. The ranking of ads that results from the algorithm considered above
is the efficiency-maximization allocation.

This completes our results for the model of position auctions with external-
ities. In the full version of the paper [9], we also present an additional model
of position auctions that takes into account the fact that ads from well-known
brands are less adversely affected by being shown in a lower position than ads
from better-known brands [10]. In this model of brand effects, we again present
appropriate algorithms for selecting the optimal allocation of ads and show that
a purely greedy approach of ranking the ads will potentially cost as much as half
of the total possible social welfare. We refer the reader to [9] for more details.
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Abstract Network creation games model the creation and usage costs of
networks formed by n selfish nodes. Each node v can buy a set of edges,
each for a fixed price α > 0. Its goal is to minimize its private costs,
i.e., the sum (SUM-game, Fabrikant et al., PODC 2003) or maximum
(MAX-game, Demaine et al., PODC 2007) of distances from v to all
other nodes plus the prices of the bought edges. The above papers show
the existence of Nash equilibria as well as upper and lower bounds for
the prices of anarchy and stability. In several subsequent papers, these
bounds were improved for a wide range of prices α. In this paper, we
extend these models by incorporating quality-of-service aspects: Each
edge cannot only be bought at a fixed quality (edge length one) for a
fixed price α. Instead, we assume that quality levels (i.e., edge lengths)
are varying in a fixed interval [β̌, β̂], 0 < β̌ ≤ β̂. A node now cannot only
choose which edge to buy, but can also choose its quality x, for the price
p(x), for a given price function p. For both games and all price functions,
we show that Nash equilibria exist and that the price of stability is either
constant or depends only on the interval size of available edge lengths.
Our main results are bounds for the price of anarchy. In case of the SUM-
game, we show that they are tight if price functions decrease sufficiently
fast.

1 Introduction

Network creation games (NCG) aim to model the evolution and outcome of
networks created by selfish nodes. In these games, nodes can decide individually
which edges they want to buy in order to minimize their private costs, i.e., the
costs of the bought edges plus costs for communicating with other nodes. Each
node v can buy a set of edges, each for a price α > 0. Its goal is to minimize
its private costs, i.e., the sum (SUM-game) or maximum (MAX-game) of the
distances from v to all other nodes in the network plus the costs of the bought
edges. Since all decisions are taken individually and only with respect to optimize
their private costs, analyzing the resulting network by comparing it to an overall
good structure constitutes the central aspect in the study of NCGs. This task
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was formalized as analyzing the price of anarchy and was first discussed by [8]
for the SUM-game and by [7] for the MAX-game. These papers inspired a series
of subsequent works.

In this paper, we incorporate a kind of quality-of-service into the classical
network creation games model: An edge can be bought for different prices, with
different latencies. This is a well-established method, e.g., for internet service
providers who offer different bandwidths of connection for different prices. We
formalize this game on individual connection qualities and prove the existence
of equilibria and present bounds for the prices of stability and anarchy.

For the omitted proofs please refer to the full version of this paper [6].

1.1 Model and Notations

An instance of our NCG is given by a set V of n nodes and a price function
p : [β̌, β̂] → R+ on an interval of possible edge weights [β̌, β̂] ⊆ R+. A price
function is assumed to be monotonically decreasing and the interval to fulfill
0 < β̌ ≤ β̂. Each v ∈ V aims to minimize its private costs by selfishly selecting
a strategy sv ⊂ V × [β̌, β̂] such that each (u, x) ∈ sv represents an undirected
weighted edge ({v, u}, x) from v to u of weight x, which is created by v and has
price p(x). For a strategy profile S = (s1, . . . , sn), the resulting weighted graph
G[S] consists of vertices V and the weighted edges

⋃
v∈V {({v, u}, x)|(u, x) ∈ sv}.

The costs of a node in the SUM-game are given by cv(S) =
∑

(u,x)∈sv
p(x) +∑

u∈V dG[S](v, u). Here, dG[S](v, u) denotes the shortest weighted path distance
from v to u in the weighted graph G[S]. For the MAX-game, the private cost
function is given by cv(S) =

∑
(u,x)∈sv

p(x) + maxu∈V dG[S](v, u).

The social costs in both games are c(S) =
∑

v∈V cv(S). We refer to the edge
cost term of the cost function as edge costs and to the distance term as distance
costs. A strategy profile S = (s1, . . . , sn) is called a Nash equilibrium (NE) if for
every node i and every strategy s′i it holds: Let s′i �= si be a strategy change,
then S′ := (s1, . . . , si−1, s

′
i, si+1, . . . , sn) does not have lower costs for i, i.e,

ci(S) ≤ ci(S
′). Depending on the game, we call such an equilibrium a SUM-NE

or a MAX-NE. If a strategy profile is not a NE, then there exists at least one
node that can perform an improving response (IR), i.e., it can decrease its costs
by changing its strategy. An improving response is called a best response (BR) if
this strategy change is optimal regarding the maximum private costs decrease.

A main objective of the research on NCGs is the analysis of the price of
anarchy (PoA), introduced in [10]. The PoA is defined as the ratio of a largest
social cost of any Nash equilibrium and the optimal social cost. The minimal
loss by selfish behavior is given by the price of stability, see for example [3, 4],
and it is defined as the ratio of the smallest social cost of any Nash equilibrium
and the optimal social cost.

1.2 Related Work

In the original SUM- and MAX-games by [8] and [7], nodes can only buy edges
of fixed length one for a fixed price α > 0. In [8], the authors introduced the
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SUM-game and proved (among other things) an upper bound of O (
√
α) on the

price of anarchy (PoA) in the case of α < n2, and a constant PoA otherwise.
Later, [1] proved a constant PoA for α = O (

√
n) and the first sublinear worst

case bound of O
(
n1/3

)
for general α. [7] proved an O (nε) bound for α in the

range of Ω (n) and o (n lgn). Recently, by [13] and improved by [12], it was shown
that for α ≥ 65n all equilibria are trees (and thus the PoA is constant).

For the MAX-game, [7] showed that the PoA is at most 2 for α ≥ n,

O
(
min{4

√
lgn, (n/α)1/3}

)
for 2

√
lgn ≤ α ≤ n, and O

(
n2/α

)
for α < 2

√
lg n.

For α > 129, [13] showed, like in the SUM version, that all equilibria are trees
and the PoA is constant.

In [2], a simpler model, the basic network creation game (BNCG), was intro-
duced. Here, the operation of a node consists of swapping some of its incident
edges, i.e., redirecting them to other nodes. There are no costs associated with
such operations. Restricting the initial network to trees, the only equilibrium in
the SUM-game is a star graph. Without restrictions, all (swap) equilibria are

proven to have a diameter of 2O(
√
logn), which is also the PoA. For the MAX-

version, the authors provide an equilibrium network with diameter Θ (
√
n). In

[11], it is shown for the SUM-game that this model is fundamentally different to
the original network creation game in the following sense: There are equilibria
for the BNCG that are not equilibria for NCG for any α, and vice versa.

An interesting extension of the SUM-game was introduced and investigated
by [1]. They weight each pair (u, v) of nodes, indicating the importance of the
connection to v for u. The special case of 0-1-weights, defining a friendship graph
between the nodes, was examined by [9] and [5].

1.3 Our Results

We show that equilibria exist for both games, for every monotonically decreasing
price function p : [β̌, β̂] → R+. For the SUM-game with n nodes, the price of

stability is at most O(1 + β̂/β̌). For the MAX-game, it is always constant.
For the price of anarchy for the SUM-game, we provide an upper bound

of O
(
min{n, (p(x∗) + x∗)/β̌}

)
, with x∗ ∈ [β̌, β̂] being the edge quality that

minimizes p(x) + x. This value can be understood to be the edge weight with
optimal price-weight trade-off for an edge, if used for exactly one shortest path.
For example, for p : [β̌, β̂] → R+ with p(x) = α/x and α > 0, the price of
anarchy is O

(√
α/β̌

)
.

If x∗ = β̂, p(β̂) ≤ β̌, and p(β̌) ≤ β̂ hold, then this upper bound is tight
up to constant factors. Examples for such price functions are linear functions
p : [1, α − 2ε] → R+ with p(x) = α − (1 + ε)x, for α > 0 and 0 < ε < 1/2. For
these functions the price of anarchy is Θ (α− ε).

For the MAX-game we provide a price of anarchy upper bound of O (1 + 3
√
n).



426 A. Cord-Landwehr, A. Mäcker, and F. Meyer auf der Heide

2 The Sum-Game

Lemma 1. Let S be a strategy profile such that G[S] is connected and no edge
can be removed without increasing the social cost. Denote by x̌ the minimal weight
of any edge in G[S] and by m the number of all edges. Then, for x∗ ∈ [β̌, β̂] being
the value minimizing p(x) + x, it holds c(S) ≥ 2x̌n(n− 1)+m(p(x∗)+ x∗− 4x̌).

Lemma 2. Let p : [β̌, β̂]→ R+ be a price function. Define χ∗ ∈ [β̌, β̂] to be the

value minimizing p(x)+2x and χ̄ ∈ [β̌, β̂] the value minimizing p(x)+2(n−1)x.
Then, the optimal social cost is given by a star with all edges having weight χ̄ or
by a complete graph with all edges having weight χ∗.

Theorem 1. For every price function p : [β̌, β̂] → R+ a SUM-NE exists. Let

x∗ ∈ [β̌, β̂] be the value minimizing p(x) + x and x̄ ∈ [β̌, β̂] the value minimizing
p(x) + (n− 1)x, then either a star with all edges having weight x̄ or a complete
graph with all edges having weight x∗ forms a SUM-NE graph.

Corollary 1. Let x∗ ∈ [β̌, β̂] be the value minimizing p(x)+x and x̄ ∈ [β̌, β̂] the
value minimizing p(x) + (n− 1)x. Then, the price of stability in the SUM-game
is constant if p(x∗) > x̄ or x∗ > p(x̄) and otherwise O (1 + x∗/x̄).

Similar to [1], we start our analysis for the price of anarchy by bounding the
social cost of a SUM-NE graph essentially by the diameter of the graph. Using
arguments about the maximum weights and prices in SUM-NE graphs, we can
further bound this diameter and get a PoA upper bound only depending on the
price function and its domain.

Lemma 3. Let p : [β̌, β̂] → R+ be a price function and S a SUM-NE strategy
profile. Then c(S) ≤ nδG(v) + x∗(n − 1)2 + 2(p(x∗) + x∗)n(n − 1) with G :=
G[S], δG(v) :=

∑
u∈V dG(v, u) being the distance costs of an arbitrary node in

the equilibrium graph, and x∗ ∈ [β̌, β̂] chosen such that it minimizes p(x) + x.

Lemma 4. Let p : [β̌, β̂] → R+ be a price function and S a strategy profile
forming a SUM-NE graph G. Then, the diameter of G is at most O (p(x∗) + x∗),

with x∗ ∈ [β̌, β̂] minimizing p(x) + x.

Theorem 2. Let p : [β̌, β̂] → R+ be a price function and x∗ ∈ [β̌, β̂] the value
minimizing p(x)+x, then in the SUM-game PoA = O

(
min{n, (p(x∗) + x∗)/β̌}

)
.

Applying the price and weight value ranges, we can deduce a price of anarchy
upper bound that is independent of the price function.

Corollary 2. For every price function p : [β̌, β̂] → R+, in the SUM-game it

holds PoA = O
(
min{1 + p(β̌)/β̌, (p(β̂) + β̂)/β̌, n}

)
.

The price of anarchy upper bound is even tight for a broad class of price
functions. In particular, for all price functions x 	→ p(x) that decrease faster
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than the linear function x 	→ −x and where both p(β̂) ≤ β̌ and p(β̌) ≤ β̂ hold, it

is PoA = Ω(min{1 + p(β̌)/β̌, (p(β̂) + β̂)/β̌, n}). Yet, the bound cannot be tight
for every function as can be seen when considering p : [1, 1] → [α, α], which
constitutes the original game by [8], for which it is known that for most ranges
of α the price of anarchy is constant (cf. related work).

Theorem 3. Let p : [β̌, β̂] → R+ be a price function with p(β̂) ≤ β̌, p(β̌) ≤ β̂,

and β̂ = argminx∈[β̌,β̂] p(x) + x, then PoA = Ω
(
min{n, (p(x∗) + x∗)/β̌}

)
.

Concluding the analysis, we apply our results to explicit price functions.

Corollary 3. For the price function p : [β̌, β̂] → R+, x 	→ α/x with α > 0 the
bounds PoS = O (1) and PoA = O

(√
α/β̌

)
hold.

Corollary 4. For the price function p : [1, α− 2ε]→ R+, x 	→ α− (1+ ε)x with
α > 0, ε ∈ (0, 1/n−1) the bounds PoS = O (1) and PoA = Θ (α− ε) hold. The
optimal solution is given by a star with all edges having weight of 1.

3 The Max-Game

Lemma 5. Let p : [β̌, β̂] → R+ be a price function, x∗ ∈ [β̌, β̂] the value mini-
mizing x+ p(x)/2, and S a strategy profile. Then, c(S) ≥ (x∗ + p(x∗)/2)n.

Theorem 4. For any price function p : [β̌, β̂] → R+, equilibrium graphs exist
and the price of stability is constant.

Lemma 6. Let p : [β̌, β̂] → R+ be a price function with x∗ ∈ [β̌, β̂] minimizing
x+ p(x)/2 and S a MAX-NE strategy profile. Then, c(S) ≤ nδG[S](v) + x∗(n−
1)+ 2(p(x∗) +x∗)(n− 1), with δG[S](v) the distance costs of an arbitrary v ∈ V .

Using a similar approach like [7], we derive a bound for the diameter and
hence for the social cost of every MAX-NE graph.

Lemma 7. Let p : [β̌, β̂] → R+ be a price function and S a strategy profile
forming a MAX-NE. Then, the diameter of G[S] is at most O( 3

√
p(x)2xn+ x),

for x ∈ [β̌, β̂] arbitrary.

Theorem 5. Let p : [β̌, β̂]→ R+ be a price function. Then, the price of anarchy
in the MAX-game is bounded by O (1 + 3

√
n).

4 Conclusion

Our model extension captures the effects of quality of service agreements in au-
tonomous distributed networks and provides theoretical results regarding the
stable states of these networks. Interestingly, despite of the considerably in-
creased freedom in the strategic decisions of the nodes (e.g., for a continuous
price function the strategy set is unbounded), equilibria always exist. In the
SUM-game for a given price function p, we discovered the value that minimizes
the term p(x) + x to characterize the worst case loss by selfish behavior. This
value can be understood as the optimal trade-off for using one edge for exactly
one shortest path and effectively bounds the maximal investment into any edge.
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Abstract. In situations without central coordination, the price of anar-
chy relates the quality of any Nash equilibrium to the quality of a global
optimum. Instead of assuming that all players choose their actions simul-
taneously, we consider games where players choose their actions sequen-
tially. The sequential price of anarchy, recently introduced by Paes Leme,
Syrgkanis, and Tardos [13], relates the quality of any subgame perfect
equilibrium to the quality of a global optimum. The effect of sequen-
tial decision making on the quality of equilibria, depends on the specific
game under consideration. We analyze the sequential price of anarchy
for atomic congestion games with affine cost functions. We derive several
lower and upper bounds, showing that sequential decisions mitigate the
worst case outcomes known for the classical price of anarchy [2,5]. Next
to tight bounds on the sequential price of anarchy, a methodological con-
tribution of our work is, among other things, a “factor revealing” linear
programming approach we use to solve the case of three players.

1 Model and Notation

We consider atomic congestion games with affine cost functions. The input of
an instance I ∈ I consists of a finite set of resources R, a finite set of players
N = {1, . . . , n}, and for each player i ∈ N a collection Ai of possible actions
Ai ⊆ R. We say a resource r ∈ R is chosen by player i if r ∈ Ai, where Ai is the
action chosen by player i. By A = (Ai)i∈N we denote a possible outcome, that
is, a complete profile of actions chosen by all players i ∈ N .

Each resource r ∈ R has a constant activation cost dr ≥ 0 and a variable cost
or weight wr ≥ 0 that expresses the fact that the resource gets more congested
the more players choose it. The total cost of resource r ∈ R, for outcome A, is
then fr(A) = dr+wr ·nr(A), where nr(A) denotes the number of players choosing
resource r in A. Given outcome A, the total cost of all resources chosen by player
i is costi(A) =

∑
r∈Ai

fr(A). Players aim to minimize their costs. The total cost
over all players of an outcome A is denoted by cost(A) =

∑
i∈N costi(A).

Note that this class of problems includes as a special case the celebrated
network routing games as studied e.g. in [2,15]. Another special case is singleton

� Research supported by CTIT (www.ctit.nl) and 3TU.AMI (www.3tu.nl), project
“Mechanisms for Decentralized Service Systems”.
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congestion games, where actions Ai are all singletons, |Ai| = 1. This model, and
variants thereof, are also known as load balancing games and, with respect to
the quality of equilibria, have a vast literature, e.g. [4,11].

Pure Nash equilibria are outcomes (Ai)i∈N in which no player can decrease his
costs by unilaterally deviating from choosing Ai. The price of anarchy PoA [9],
measures the quality of any Nash equilibrium relative to the quality of a globally
optimal allocation,OPT . HereOPT is an outcome minimizing the total costs over
all players1. Our goal is to compare the quality of Nash equilibria to the quality
of subgame perfect equilibria of an extensive form game as introduced in [10,16].
We assume that the players choose their actions in an arbitrary, predefined
order 1, 2, . . . , n, so that the i-th player must choose his action Ai, observing
the actions of players preceding i, but not knowing the actions of the players
succeeding him. A strategy Si then specifies for player i the actions he chooses,
one for each potential profile of actions chosen by his predecessors 1, . . . , i − 1.
We denote by S a strategy profile (Si)i∈N . The outcome A(S) = (A(S)i)i∈N of
a game is then the set of actions chosen by each player resulting from a given
strategy profile S. We denote by cost(S) the cost in the outcome A(S).

Extensive form games can be represented in a game tree, with the nodes on
one level representing the possible situations that a single player can encounter,
and the edges emanating from any node representing the possible actions of
that player in the given situation. The nodes of the game tree are also called
information sets2. Subgame perfect equilibria are defined by Selten [16] as strat-
egy profiles that induce Nash equilibria in any subgame of the game tree. The
sequential price of anarchy of an instance I is defined by

SPoA(I) = max
S∈SPE(I)

cost(S)

cost(OPT (I))
, (1)

where SPE(I) denotes the set of subgame perfect equilibria of instance I in
extensive game form, and OPT (I) denotes a social optimum outcome of I. The
sequential price of anarchy of a class of instances I is defined as in [13] by
SPoA(I) = supI∈I SPoA(I). Throughout the paper, when the class of instances
is clear from the context, we write PoA and SPoA. Also, we use OPT and SPE
to denote optimal and subgame perfect equilibrium outcomes respectively.

2 Related Work and Contribution

Recently, the sequential price of anarchy was introduced by Paes Leme et al.
[13] as an alternative way to measure the costs of decentralization. Compared
to the classical price of anarchy of Papadimitriou and Koutsoupias [9], it avoids

1 Note that we consider a utilitarian global objective, that is, the global objective is
to minimize the sum of the costs of all players. This is one of the standard models,
yet different than the egalitarian makespan objective as studied, e.g., in [9].

2 We deal with a game with perfect information, so all information sets are trivial,
and subgame perfect equilibria can be computed by backward induction.
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the “curse of simultaneity” inherent in certain games [13]. More specifically, for
machine cost sharing games, generic unrelated machine scheduling games and
generic consensus games, the SPoA is smaller than the PoA [13]. However, for
the latter two games, the ‘generic’ condition is indeed necessary [3]. Also, Bilò
et al. [3] show that for many games myopic behaviour leads to better equilibria
than the farsighted behaviour of subgame perfect equilibria. For throughput
scheduling games, or more generally, set packing games, the SPoA is lower than
the PoA [6]. For isolation games, however, the PoA is not worse than the SPoA
in general [1]. These results leave a mixed impression, and lead to the natural
question which classes of games possess an SPoA which is lower than the PoA.
We address this question for atomic congestion games with affine cost functions.
Congestion games were introduced by Rosenthal [14]. A special case is linear
atomic congestion games, for which the price of anarchy is known to equal 2 in
the case of two players, and 2.5 in the case of three or more players [2,5].

Our contributions are both lower and upper bounds on the sequential price of
anarchy for atomic congestion games with affine cost functions. For two and three
players, we prove tight bounds of 1.5. and 2 63

488 ≈ 2.13, respectively. For n = 4
players, we derive a lower bound ≈ 2.46, yet we have not been able to derive
a nontrivial constant upper bound (yet). In that respect note that, trivially,
SPoA ≤ n. We also consider the special case of singleton congestion games for
which the PoA is 2.5 [4]. Here we give a parametric family of instances that
yields a lower bound of 2+1/e ≈ 2.37, and we give an upper bound of n−1. We
substantially improve on these results for symmetric singleton congestion games,
where we show that the SPoA equals 4/3, which matches the bound known for
the PoA [8]. For each of the theorems in this paper we only give an outline of the
proof. For full proofs and lower bound examples, we refer to our full paper[7].

3 General Linear Atomic Congestion Games

Theorem 1. SPoA = 1.5 for atomic congestion games with two players and
affine cost functions.

We prove the theorem by considering only the relevant part of the game tree. For
player 1, we only need to consider two actions; the action he chooses in a social
optimum, and the action he chooses in a subgame perfect equilibrium. For player
2 we only need to consider 3 actions; the action he chooses in a social optimum,
and his subgame perfect responses to both of player 1’s actions. Therefore we
only need to consider 6 outcomes. The general situation is shown in Figure 1.
We lower bound the total cost in the subgame perfect equilibrium in terms of
the total cost in the social optimum. The tight lower bound example uses only
2 actions per player and 3 resources in total.

Considering the simplicity of the lower bound example for 2 players, one
might wonder whether it is possible to prove upper bounds in a more elegant
fashion, for instance using smoothness or potential arguments. But, contrary to
what one might expect, not every outcome of a subgame perfect equilibrium
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A11

A21

A12

player 1

player 2

A22 A23 A21 A22 A23

Fig. 1. All relevant actions in the game tree for 2 players. Fat lines correspond to
subgame perfect actions.

is a Nash equilibrium of the corresponding strategic form game.3 In fact, we
have constructed examples where it is subgame perfect for a player to choose an
action that is strictly dominated in the corresponding strategic game. Therefore
it is not easy to derive useful properties of SPE outcomes. Instead, for 3 players
we use a linear programming (LP) approach.

Theorem 2. SPoA = 2 63
488 ≈ 2.13 for atomic congestion games with three play-

ers and affine cost functions.

We first use simple combinatorial arguments to argue that a worst case instance
is moderate in size. Specifically, we show that for any instance I, we can construct
an instance I ′ with the same SPoA using only 2,3 and 7 actions for players 1,2
and 3 respectively. Moreover, I ′ has at most 4096 resources, one for every subset
of all actions. Intuitively, the LP works as follows: It maximizes the SPoA over
all instances with the properties described above. The only decision variables are
the weights and constant costs of each of the 4096 resources. This completely
determines the costs in all outcomes. We prespecify all subgame perfect actions
in the game tree and normalize the costs in the social optimum to 1. Our only
set of constraints enforces that in each node of the game tree, each subgame
perfect action has a lower cost than any other action. Our objective is simply to
maximize the total cost in the SPE outcome.

We have implemented this using the AIMMS modeling framework, and using
CPLEX 12.5 we obtain an optimal solution with value 2 63

488 . Given the techniques
used so far, problems with n > 3 players become increasingly difficult. Extending
the LP straightforwardly to the case with 4 players is problematic; using the same
reasoning as in the thee player case, we would need to consider 43 actions for

3 Note that both games have different strategy spaces: In the strategic form game both
players have as strategy space their feasible actions, Ai. In the extensive form game,
however, the strategy space for the second player is more complex, as it specifies an
action A2 ∈ A2 for all information sets (= possible actions of player 1).
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congestion game # players PoA SPoA

general n = 2 2[5,2] 1.5

general n = 3 2.5[5,2] 2 63
488

general n = 4 2.5[5,2] > 2.46

singleton n ≥ 3 2.5[4] ≤ n− 1

singleton n → ∞ 2.5[4] ≥ 2 1
e

singleton & symmetric n ≥ 2 4/3 [8] 4/3

Fig. 2. Results for the SPoA in comparison to the PoA

player 4, and 255 resources. However, using ILP techniques, we have been able
to construct lower bound examples for more than 3 players.

Theorem 3. SPoA ≥ 2.46 for atomic congestion games with four players and
affine cost functions.

4 Singleton Linear Atomic Congestion Games

Next, we present results for the special case of singleton congestion games.

Theorem 4. Asymptotically for n → ∞, SPoA ≥ 2 + 1
e ≈ 2.37 for singleton

atomic congestion games with linear cost functions.

The proof is by a parametric set of lower bound instances.

Theorem 5. For singleton atomic congestion games with affine cost functions,
SPoA ≤ n− 1.

The proof is by contradiction. Suppose the theorem does not hold, then for
some instance I, SPoA(I) > n − 1. Therefore there exists at least one player
i for whom costi(SPE) ≥ (n − 1) costi(OPT ). With this, we can construct a
contradiction. However, note that this bound is close to the trivial upper bound
n that holds for general congestion games.

Theorem 6. For symmetric singleton atomic congestion games with affine cost
functions, SPoA = 4/3.

To prove the theorem, we first prove that any SPE outcome of a sequential game
is also an NE outcome of the corresponding strategic game. Note that this is
not trivial or even true in a more general setting as mentioned in Section 2. Also
note that the theorem is not implied by results in [12]; for the non-generic case,
Milchtaich proves only the existence of an SPE outcome that is an NE outcome.
Intuitively our proof is as follows: we show that for any player i for whom there
exists a resource r′ in an SPE outcome that is less costly than the resource r
he chose, we can find a successor j for whom there exists a less costly resource
in the SPE outcome in the subgame where player i chooses r′. With this, we
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construct a contradiction. The theorem follows from the fact that PoA = 4/3, as
shown in [8], and a matching lower bound example. Figure 2 gives an overview.

Acknowledgements. Thanks to Sebastian Stiller and Christoph Hansknecht
for helpful discussions. Special thanks to our summer intern Yuzixuan Zhu from
USTC for careful proofreading, and for carrying out the experiments that lead
to the 2.46 lower bound for the case of four players.
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Abstract We consider a multilevel network game, where nodes can im-
prove their communication costs by connecting to a high-speed network.
The n nodes are connected by a static network and each node can decide
individually to become a gateway to the high-speed network. The goal
of a node v is to minimize its private costs, i.e., the sum (SUM-game) or
maximum (MAX-game) of communication distances from v to all other
nodes plus a fixed price α > 0 if it decides to be a gateway. Between gate-
ways the communication distance is 0, and gateways also improve other
nodes’ distances by behaving as shortcuts. For the SUM-game, we show
that for α ≤ n − 1, the price of anarchy is Θ (n/

√
α) and in this range

equilibria always exist. In range α ∈ (n−1, n(n−1)) the price of anarchy
is Θ (

√
α), and for α ≥ n(n − 1) it is constant. For the MAX-game, we

show that the price of anarchy is either Θ (1 + n/
√
α), for α ≥ 1, or

else 1. Given a graph with girth of at least 4α, equilibria always exist.
Concerning the dynamics, both games are not potential games. For the
SUM-game, we even show that it is not weakly acyclic.

1 Introduction

Today’s networks, like the Internet, do not consist of one but a mixture of several
interconnected networks. Every network has individual qualities and hence the
total performance of the network becomes a mixture of these individual prop-
erties. Typically, one can categorize those different networks into high-speed
backbone networks and low-speed general purpose networks. Given the fact that
nodes in Internet-like networks establish their connections in an uncoordinated
and selfish way, it becomes a challenging question to understand the evolution
and outcome of those networks.

We model and analyze the interaction of two networks: a low speed general
purpose network and a high-speed backbone network. Every node can decide
individually if it wants to connect to the high-speed network for a fixed price
α in order to minimize its private costs, i.e., the costs of connecting to the

� This work was partially supported by the German Research Foundation (DFG)
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high-speed network plus the costs for communicating with other nodes. The
communication costs of a node are given by the sum or maximum distance to all
other nodes in the network, possibly improved by shortcuts through the high-
speed network. Having two nodes that are both connected to the high-speed
network, they provide a shortcut of a fixed (very small) edge length. In our
model, we assume the shortcut edge length to be less than 1 divided by the
number of nodes and normalize it to be 0.

For the omitted proofs please refer to the full version of this paper [1].

Model and Notations. We consider a set V of n nodes forming an undirected
connected graph G := (V,E). Each node of this graph can connect to a high-
speed network by paying a fixed price α > 0. A node connected to the high-speed
network is called a gateway and we assume communication distances between
each pair of gateway nodes to be 0. The shortest path distance between two
nodes u, v in G is given by d(u, v), whereas we consider d(u, v) to be the hop
distance. Having a set of gateways S, we define the communication distance
δ(u, v) := min{d(u, v), d(u, S) + d(S, v)}. Each node v ∈ V aims to minimize its
private costs by selfishly deciding whether to connect to the high-speed network.
We identify the set of gateways S with the current strategy profile, i.e., nodes
in S are gateways and nodes in V \ S are non-gateways.

The private costs of a node in the SUM-game are cv(S) := |S ∩ {v}|α +∑
u∈V δ(v, u). For the MAX-game, the private cost function is cv(S) := |S ∩

{v}|α+maxu∈V δ(v, u). For both games, the social costs are c(S) :=
∑

v∈V cv(S).
If a node improves its private costs by changing its strategy from non-gateway

to gateway or vice versa, we call this an improving response (IR). For an IR where
a node v changes its strategy to be a gateway, we say that v opens. Analogously,
we say v closes if it changes its strategy from gateway to non-gateway. We call
a strategy profile S a (pure) Nash equilibrium (NE) if no node can perform an
IR. We require that there is always at least one gateway in the graph, i.e., the
last gateway is not allowed to close even if that strategy change is an IR.

Our Questions. A main objective of the research on network games is the anal-
ysis of the price of anarchy. The price of anarchy (PoA), introduced in [7],
measures the quality of equilibria by computing the ratio of the biggest social
costs of any Nash equilibrium and the optimal social costs. We further question
if our games provide the finite improvement property or (lesser) whether they are
weakly acyclic. A game with the finite improvement property (FIPG) guarantees
that, when starting from any initial state, every sequence of IRs eventually con-
verges to a NE state, i.e., every sequence of IRs is finite. Monderer and Shapley
[11] showed that a game is a FIPG if and only if there exists a generalized ordinal
potential function Φ : V → R that maps strategy profiles to real numbers such
that if a node performs an IR the potential value decreases. A game is called
weakly acyclic (WAG) [12] if, starting from any initial strategy profile, there
exists some finite sequence of IRs that eventually converges to a NE state.

Related Work. Network creation games (NCG) are an established model to
study the evolution and quality of networks established by selfishly acting nodes.
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In these games, nodes can decide individually which edges they want to buy
(each for a fixed price α > 0) in order to minimize their private costs. For a
node, the private costs are either the sum (SUM-game, Fabrikant et al. [5]) or
maximum (MAX-game, Demaine et al. [4]) of the distances to all other nodes in
the network plus the costs of the bought edges.

The task of describing the maximal possible loss by selfish behavior was for-
malized as the price of anarchy and first discussed by Fabrikant et al. [5] for
the SUM-game. The authors proved an upper bound of O (

√
α) on the price

of anarchy (PoA) in the case of α < n2, and a constant PoA otherwise. Later,
Albers et al. [2] proved a constant PoA for α = O (

√
n) and the first sublinear

worst case bound of O
(
n1/3

)
for general α. Demaine et al. [4] were the first to

prove an O (nε) bound for α in the range of Ω (n) and o (n lgn). Recently, by
Mihalák and Schlegel [10] and improved by [9], it was shown that for α ≥ 65n
all equilibria are trees (and thus the PoA is constant).

For the MAX-game, Demaine et al. [4] showed that the PoA is at most 2

for α ≥ n, O
(
min{4

√
lg n, (n/α)1/3}

)
for 2

√
lgn ≤ α ≤ n, and O

(
n2/α

)
for

α < 2
√
lgn. For α > 129, Mihalák and Schlegel [10] showed, like in the average

distance version, that all equilibria are trees and the PoA is constant.
In several subsequent papers, different approaches were done to simplify the

games and also to enable nodes to compute their best responses in polynomial
time (which is not possible in the original games). Alon et al. [3] introduced
the basic network creation game, where the operation of a node only consists
of swapping some of its incident edges, i.e., redirecting them to other nodes.
Restricting the initial network to trees, the only equilibrium in the SUM-game
is a star graph. Without restrictions, all (swap) equilibria are proven to have a

diameter of 2O(
√
log n), which is also the PoA. For the MAX-version, the authors

provide an equilibrium network with diameter Θ (
√
n).

In [8], Lenzner introduced a different approach by taking the original NCGs
from [5], but restricting the operation of a node to single edge changes. This
model allows for polynomial time computable best responses, but at the same
time its equilibria give a 3-approximation to the equilibria of the original game.

For a variety of these games, Kawald and Lenzner [6] studied the convergence.
For all researched games, with the only exception of basic network creation games
on initial tree networks, they provided negative convergence results.

Our Results. We introduce a new network game that focuses on dynamics in
multilevel networks. In particular, we study how nodes of a general purpose
network interact with a high-speed network when deciding selfishly whether to
connect to the high-speed network. For both the SUM- and the MAX-game it
is NP-hard to find an optimal placement of gateways (Theorem 1 and 5).

For the SUM-game, we show that for α ≤ n− 1 and α > n(n− 1) equilibria
always exist and that the PoA is Θ (1 + n/

√
α) (Theorem 4). For the range

α ∈ (n − 1, n(n − 1)) we upper bound the PoA by O (
√
α). Concerning the

dynamics, the SUM-game is no FIPG for wide ranges of parameter values α
(Theorem 2). And we further show that it is not even a WAG (3).
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For the MAX-game, equilibria always exist if the girth is at least 4α (which is
always true for trees). Like in the SUM-game, the PoA is Θ (1 + n/

√
α) for α ≥ 1

(Theorem 7), and otherwise 1. The MAX-game is also not a FIPG (Theorem 6).

2 The SUM-Game

Theorem 1. Given a graph G = (V,E) it is NP-hard to compute an optimal
set of gateways S ⊆ V that minimizes the social costs in the SUM-game.

Sketch. For n,m > 4, let X := {x1, . . . , xm} be elements and S1, . . . , Sn ⊆ X
sets that form an instance of the NP-complete Set-Cover problem. Given the
Set-Cover instance, we construct an instance of the SUM-game as follows: First,
we create a clique C of k nodes and mark one of its nodes as c. For every set
Si, we create a corresponding node Si and connect each set node to c. For every
element xi ∈ X , we create w-many nodes x1

i , . . . , x
w
i and connect all xj

i , i =
1, . . . ,m, j = 1, . . . , w to the set nodes Sl with xi ∈ Sl. The parameters are
w := n, k := m− 1, and α := 4n(m− 1).

We can now show the NP-hardness by proving that the socially optimal SUM-
game solution is given by a gateway node c and a minimal number of set node
gateways such that all element nodes are covered.

Proposition 1. Given a network G = (V,E) and α ≤ n−1 or α > n ·diam(G),
then a Nash equilibrium always exists.

Lemma 1. Given a network G = (V,E), n := |V |, and α ≤ n− 1, then S = V
minimizes the social costs in the SUM-game.

2.1 Convergence Properties

Proposition 2. Let G = (V,E) be a graph and S ⊆ V an initial set of gateways,
then for α < 1 or α > n · diam(G) the SUM-game is a FIPG.

Proposition 3. Let G = (V,E) be a graph and S an initial set of gateways with
|S| = 1. If diam(G) > 2α + 1 and 4 ≤ α ≤ n − 1, then in the SUM-game there
exists a sequence of IRs such that the game converges to a NE.

Theorem 2. Given n ∈ N with either n > 16 and α ∈ ( 3
32n

2 + n, 5
32n

2), or
n > 7 and α ∈ (4, n− 1), the SUM-game is not a FIPG.

Theorem 3. The SUM-game is not a weakly acyclic game in general.

Proof. We consider α := 7 and a graph that consists of three nodes u, v, and w,
which are connected as a line, a clique X of �α/2� nodes, a clique Y of �α/2�
nodes, and a center node c. All nodes of X are connected to c and to u, all nodes
of Y are connected to c and to w, and, additionally, c is connected to v. Now, for
the initial strategy profile S = {w}, there exists a unique sequence of improving
responses, such that u and v change their strategy in turn. ��
Theorem 4. In the SUM-game, for 0 < α < 1, and n(n − 1) ≤ α, the PoA is
1, for α ∈ [1, n− 1], it is Θ (n/

√
α), and for α ∈ (n− 1, n(n− 1)) it is O (

√
α).
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3 The MAX-Game

Theorem 5. Given a graph G = (V,E), it is NP-hard to compute an optimal
set of gateways S ⊆ V that minimizes the social costs for the MAX-game.

For α < 1, the MAX-game is a FIPG with the only equilibrium of all nodes
being gateways. Similar for α > diam(G), for a gateway, it is always an IR to
close and a non-gateway will never open. Hence, in both cases equilibria exist.

Lemma 2. For each graph G = (V,E) with girth(G) ≥ 4α, for α ∈ [1, diam(G))
a MAX-game NE exists.

Proof. Let x1, x2 be two maximal distant nodes in G. If d(x1, x2) < 2α, we get
with girth(G) ≥ 4α that G is a tree and there exists a node v that has maximal
distance of less than α to every node. In this case, opening v gives a NE.

Otherwise, define R := �min{α− 1, (d(x1, x2) − α)/2}�. Since x1 and x2 are
at maximal distance, none of them can be connected to a leaf node. For both of
these nodes, we do the following: We consider the breadth-first-search trees T
up to level R, rooted in x1 and x2, respectively. From the nodes at level R, we
open a maximal set such that no two gateways are at distance less than R.

We now claim that for every node x in such a tree, there exists a gateway in
distance of at most R. For this, consider a shortest path to a node u at level R.
If u is not a gateway, there must be another node u′ also at level R that is a
gateway. Since the girth is at least 4α and R < α < diam(G), the shortest path
from u to u′ can only consist of nodes of the tree and hence d(x, u′) < R.

Next, iteratively open a maximal set of further nodes such that each new
node has minimal distance of exactly �α� to a gateway. By construction, since
every non-gateway has maximal distance of �α� to a gateway, a non-gateway can
improve its maximal distance by at most �α� and hence cannot perform any IR.
For every gateway v, it holds that its private costs are c(v) = α+R (with both
x1 and x2 at maximal distance, since otherwise we get a contradiction to the
maximal distance of x1 and x2.) Considering the private cost change of closing
v, its maximal distance increases by exactly �α� and hence is not an IR. ��

Theorem 6. For α > 1, in general the MAX-game is not a FIPG.

Theorem 7. In the MAX-game for α ≥ 1, the PoA is Θ (1 + n/
√
α).

4 Conclusion and Future Work

The PoA results emphasize that for very small or big α (i.e., when tending to the
number of nodes), equilibria are nearly optimal solutions despite of the selfish
behavior of the nodes. In comparison to NCGs, the existence of equilibria is much
harder to show. Here, the challenge is to combine the drastically reduced strategy
space with the global influences of single strategy changes. For the SUM-game,
with α ∈ (n − 1, n(n − 1)), and the MAX-game, with graphs of girth less than
4α, computing NEs seems to be an interesting problem.
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Regarding the convergence, both games do not provide the finite improve-
ment property and remarkably, the SUM-game is not even weakly acyclic. For
the MAX-game, due to the symmetry of the maximum, the equilibria and con-
vergence properties seem to be more stable than for the sum.
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Abstract. We introduce natural strategic games on graphs, which cap-
ture the idea of coordination in a local setting. We show that these games
have an exact potential and have strong equilibria when the graph is a
pseudoforest. We also exhibit some other classes of graphs for which a
strong equilibrium exists. However, in general strong equilibria do not
need to exist. Further, we study the (strong) price of stability and an-
archy. Finally, we consider the problems of computing strong equilibria
and of determining whether a joint strategy is a strong equilibrium.

1 Introduction

Motivation. In game theory coordination games are used to model situations in
which players are rewarded for agreeing on a common strategy, e.g., by deciding
on a common technological or societal standard. In this paper we propose and
study a very simple and natural class of coordination games, which we call
coordination games on graphs : We are given an undirected graph the nodes of
which correspond to the players of the game. Each player chooses a colour from a
set of colours available to her. The payoff of a player is the number of neighbours
who choose the same colour.

This model captures situations in which players have to choose between mul-
tiple competing providers offering the same service (or product), such as peer-to-
peer networks, social networks, photo sharing platforms, mobile phone providers,
etc. In these applications the benefit of a player subscribing to a specific provider
increases as certain other players (e.g., friends, relatives, etc.) opt for the same
provider. As a consequence, players have an interest to coordinate their choices
in order to maximize their benefit.

Our Contributions. The focus of our investigations is on coalitional equilibria in
coordination games on graphs. Recall that in a strong equilibrium (k-equilibrium)
no coalition of players (of size at most k) can deviate so that every player of the
coalition strictly improves her payoff. Our main contributions are as follows:

1. Existence. We show that k-equilibria for k ≥ 5 do not exist in general.
Further, we identify several graph structural properties that guarantee the
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existence of strong equilibria and also ensure that every sequence of profitable
joint deviations terminates. Further, we show that 2-equilibria (and hence
Nash equilibria) always exist.

2. Inefficiency. We derive almost matching lower and upper bounds of 2n−1
k−1 −1

and 2n−1
k−1 , respectively, on the k-price of anarchy. Further, the strong price of

anarchy is exactly 2. We also provide conditions on the graph guaranteeing
that the strong price of stability is 1.

3. Computability. We prove that the problem of deciding whether a given joint
strategy is a k-equilibrium is co-NP-complete. On the positive side, for cer-
tain graph classes the decision problem is in P and we can efficiently compute
a strong equilibrium.

Related Work. Given their simplicity, it is not surprising that coordination games
on graphs are related to various well-studied types of games. Due to lack of space,
we only mention the most relevant references below.

First, they are similar to additively separable hedonic games [6,4]. Here players
are nodes on a weighted graph and form coalitions. The payoff of a node is the
total weight of all incident edges to neighbours in the same coalition. These games
were originally introduced in a cooperative setting but have more recently also
been investigated in a strategic setting, with a particular focus on computational
issues (e.g., [8]); for a survey see [7]. Aziz and Brandl [3] study the existence of
strong equilibria in these games. Despite the similarity between these games and
our coordination games, in the former every player can choose to enter every
possible coalition and hence they do not generalize the games we study here.

Next, coordination games on graphs are polymatrix games (see [10]). Recall
that this is a finite strategic game in which the payoff for each player is the
sum of the payoffs obtained from the individual 2-player games she plays with
each other player separately. Hoefer [9] studied clustering games that are also
polymatrix games based on graphs. However, in his setup each player has the
same set of strategies, so the resulting games are not comparable to ours.

When the graph is complete, coordination games on graphs are special cases
of congestion games with monotone increasing utility functions. Rozenfeld and
Tennenholtz [12] give a characterization of the existence of strong equilibria for
these games. Bilò et al. [5] study congestion games in which the players form a
(possibly directed) influence graph, focusing on the existence of Nash equilibria.
However, because the latency functions are assumed to be increasing in the
number of players, these games do not cover the games we study here.

As for the solution concepts, strong equilibria were introduced in [2]; the
strong price of anarchy was defined in [1]; and finally, exact potentials were
introduced in [11].

2 Coordination Games on Graphs

We next introduce some standard notion and define our coordination games on
graphs.
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A strategic game G := (N, (Si)i∈N , (pi)i∈N ) consists of a setN := {1, . . . , n}
of n > 1 players and a non-empty set Si of strategies and a payoff function
pi : S1 × · · · × Sn→R for each player i ∈ N . We denote S1 × · · · × Sn by S and
call each element s ∈ S a joint strategy .

We call a non-empty subset K := {k1, . . . , km} of N a coalition . Given a
joint strategy s we abbreviate the sequence (sk1 , . . . , skm) of strategies to sK ;
we also write (sK , s−K) instead of s. Given two joint strategies s and s′ and a
coalition K, we say that the players in K can profitably deviate from s to s′ if
s′ = (s′K , s−K) and pi(s

′) > pi(s) for every player i ∈ K. A joint strategy s a k-
equilibrium (1 ≤ k ≤ n) if no coalition of at most k players that can profitably
deviate from s. Using this definition, a Nash equilibrium is a 1-equilibrium
and a strong equilibrium is an n-equilibrium.

Given a joint strategy s, its social welfare is defined as SW (s) =
∑

i∈N pi(s).
When the social welfare of s is maximal we call s a social optimum . Given a
finite game that has a k-equilibrium its k-price of anarchy (resp. stability)
is the ratio SW (s)/SW (s′), where s is a social optimum and s′ is a k-equilibrium
with the lowest (resp. highest) social welfare. In the case of division by zero, we
interpret the outcomes as ∞. The (strong) price of anarchy refers to the
k-price of anarchy with k = 1 (resp. k = n). The (strong) price of stability
is defined analogously.

A coalitional improvement path , in short a c-improvement path , is
a maximal sequence (s1, s2, . . .) of joint strategies such that for every k > 1
there is a coalition K such that sk is a profitable deviation of the players in K
from sk−1. Clearly, if a c-improvement path is finite, its last element is a strong
equilibrium. We say that G has the finite c-improvement property (c-FIP)
if every c-improvement path is finite.

Our coordination games on graphs are defined as follows: We are given a
finite set of colours M , an undirected graph G = (V,E) without self-loops, and
a colour assignment A. The latter is a function that assigns to each node i ∈ V
a non-empty set of colours Ai ⊆M . Let Ni denote the set of all neighbours of
node i, i.e., Ni = {j ∈ V | {i, j} ∈ E}. We define a strategic game G(G,A) as
follows:

– the players are identified with the nodes, i.e., N = V ,
– the set of strategies of player i is the set of colours Ai ⊆M ,
– the payoff function of player i is pi(s) = |{j ∈ Ni | si = sj}|.

So each node simultaneously chooses a colour and the payoff to the node is the
number of neighbours who chose the same colour. Subsequently, we refer to these
games simply as coordination games.

3 Existence

We identify several graph structural properties that guarantee the existence of
strong equilibria in coordinate games. Most of our existence results are based on
the following key lemma.
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Given a set of nodes K, we denote by G[K] the subgraph of G induced by K
and by E[K] the set of edges in E that have both endpoints in K. Recall that an
edge set F ⊆ E[K] is a feedback edge set of G[K] if the graph (K,E[K] \ F )
is acyclic. Given a joint strategy s we denote by E+

s the set of edges {i, j} ∈ E
such that si = sj .

Lemma 1 (Key lemma). Suppose a coalition K can profitably deviate from s
to s′. Let F be a feedback edge set of G[K]. Then

SW (s′)− SW (s) > 2|F ∩ E+
s | − 2|F ∩ E+

s′ |.

Using this key lemma, we can derive several existence results.

Theorem 1. Every c-improvement path in which deviations of coalitions of size
at most 2 are allowed is finite. In particular, 2-equilibria (and thus Nash equi-
libria) always exist.

Theorem 2. Every coordination game with at most 2 colours has the c-FIP.

For a colour x ∈ M let Vx = {i ∈ V | x ∈ Ai} be the set of nodes that can
choose x. We call G a colour forest (with respect to A) if G[Vx] is a forest for
all x ∈M .

Theorem 3. Every coordination game on a colour forest has the c-FIP.

Recall that a pseudoforest is a graph in which every connected component
contains at most one cycle.

Theorem 4. Every coordination game on a pseudoforest has the c-FIP.

Theorem 5. Let G be such that cycles are pairwise edge-disjoint. Let k be the
minimum length of a cycle in G. Then every coalitional improvement path of
coalitions of size at most k is finite. Hence a k-equilibrium exists.

We also establish the c-FIP property for some additional classes of coordina-
tion games. We call a coordination game on a graphG uniform if for every joint
strategy s and for every edge {i, j} ∈ E it holds: if si = sj then pi(s) = pj(s).

Theorem 6. Every uniform coordination game has the c-FIP.

A class of coordination games that we can capture by Theorem 6 is as follows.
We say that G is colour complete (with respect to A) if each component of
G[Vx] is complete for every x ∈M . In particular, every complete graph is colour
complete.

Corollary 1. Every coordination game on a colour complete graph has the c-
FIP.

Above we identified sufficient properties of graphs that ensure the existence of
strong equilibria. In general, coordination games may not admit strong equilibria.
To see this, consider the coordination game depicted in Figure 1. It is not hard
to verify that for every joint strategy there is an improving move by a coalition
of size at most 5. Thus, 5-equilibria (and hence strong equilibria) do not need
to exist.
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1

{a, c}
2

{a, b}

3

{a, b}

4

{b, c}

5

{b, c}

6

{c, a}

7

{c, a}

8

{b, a}

Fig. 1. A coordination game with three colours that does not admit a 5-equilibrium

4 Inefficiency

The next two theorems summarize our results on the inefficiency of k-equilibria.

Theorem 7. The price of anarchy of coordination games is ∞; the strong price
of anarchy is 2. Further, for all k ∈ {2, . . . , n − 1}, the k-price of anarchy for
coordination games is between 2n−1

k−1 − 1 and 2n−1
k−1 .

Theorem 8. The strong price of stability is 1 in each of the following cases: G
is a pseudoforest; G is a colour forest; there are only two colours.

5 Computation

In general it is hard to decide whether a given joint strategy is a k-equilibrium.

Theorem 9. Given a joint strategy s of a coordination game and k ∈ {1, . . . , n},
it is co-NP-complete to decide whether s is a k-equilibrium.

However, we can derive positive results for colour forests and pseudoforests.

Theorem 10. Let G be a colour forest. Then there exists an algorithm that
determines in polynomial time whether a given joint strategy is a k-equilibrium.
Further, a strong equilibrium can be computed in polynomial time.

Theorem 11. Let G be a pseudoforest. Then a strong equilibrium can be com-
puted in polynomial time.

6 Extensions and Future Work

A natural generalization of our games are coordination games on weighted
graphs. For these games, Theorem 7 continues to hold, while Theorem 1 does
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not. An interesting direction which we leave for future work is to derive a charac-
terization of graph classes that guarantee the existence of strong equilibria. Yet
another generalization is to allow players to choose multiple colours. Our results
on the existence and inefficiency of equilibria then continue to hold; details are
deferred to the full version of the paper.

An intriguing open question is whether k-equilibria exist for k = 3, 4. Recall
that they are guaranteed to exist for k ≤ 2 and may not exist for k ≥ 5. Also it
would be interesting to derive existence results for other graph classes.

Acknowledgements. Dariusz Leniowski first observed the fact that for the
case of a ring the coordination game has the c-FIP. We thank José Correa for
allowing us to use his lower bound in Theorem 7. It improves on our original
one by a factor of 2.
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Abstract. Nash equilibrium is used as a model to explain the observed
behavior of players in strategic settings. For example, in many empirical
applications we observe player behavior, and the problem is to determine
if there exist payoffs for the players for which the equilibrium corresponds
to observed player behavior. Computational complexity of Nash equilib-
ria is important in this framework. If the payoffs that explain observed
player behavior requires players to have solved a computationally hard
problem, then the explanation provided is questionable. In this paper
we provide conditions under which observed behavior of players can be
explained by games in which Nash equilibria are easy to compute. We
identify three structural conditions and show that if the data set of ob-
served behavior satisfies any of these conditions, then it can be explained
by payoff matrices for which Nash equilibria are efficiently computable.

Keywords: equilibrium computation, revealed preference, matrix rank.

1 Introduction

The computational complexity of equilibria in economic models is at the core
of recent research in algorithmic game theory. In general, the basic message of
this research is negative: Computing Nash equilibria is PPAD-complete even for
2-player games [7], and computing Walrasian equilibria is PPAD-hard [6, 20].
The fact that the standard notions of equilibrium used by economists are hard
to compute raises a concern that they are flawed models for economic behavior,
because they lack a plausible rationale for how one would arrive at equilibrium.

These hardness results have motivated the study of instances in which equi-
librium can be computed efficiently, e.g., [1, 8, 9]. These results — both positive
and negative — assume a fixed and literal interpretation of economic models.
For example, in two-player games the assumption is that payoff matrices are
explicitly specified, and agents seek to maximize their payoffs given the strategy
of the other player.

However, models are frequently used as explanations of behavior, rather than
literal descriptions. In empirical applications of game theory, for example, one
rarely observes payoffs of the players. Rather, what we observe is the behavior of
the players, and a first-order task is to determine if the model explains observed
behavior or not ([4, 5] are classical examples of this exercise). In particular, a

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 447–452, 2014.
c© Springer International Publishing Switzerland 2014



448 S. Barman et al.

good model instance (i.e., payoffs specification) is one where the observed be-
havior of the players is as if they were playing equilibrium. This is certainly how
economists use game theory: as a modeling tool to explain observed behavior.

This perspective however cannot ignore computational complexity. Even if a
model explains observed behavior, it is unreasonable if it requires players to solve
computationally hard problems. Thus, an important question that arises from
the perspective of models as explanations of observed behavior and the compu-
tational complexity of equilibrium is: when is an economic model a reasonable
explanation for observed behavior? We address this question in the context of
Nash equilibrium as a model for two-player games, and computational complex-
ity as a measure of reasonableness.

This framework of starting with observed behavior is consistent with much of
economics, and is formalized in revealed preference theory, which was pioneered
by Samuelson in 1938 [15] and has a long tradition in economics (e.g., [2, 16–
19]). Classical revealed preference theory asks, “Does there exist an instance
of the model that is consistent with the observed behavior?” If there is such
a model instance, then the observed behavior is said to be consistent with the
theory, and thus rationalizable. Our work augments the fundamental question
of rationalizability in revealed preference theory with complexity considerations.
The question we address is then, “Does there exist an instance of the model that
is consistent with the observed behavior and for which the observations could
have been computed efficiently?”

We focus on addressing this question in the context of bimatrix games. We
consider a setting where mixed strategy behavior (i.e., probability distributions
over the actions of the players) is observed. In particular, with multiple instances
of mixed strategy behavior as input, we want to know if there is some tractable
instance of the game such that the given observations correspond to Nash equi-
libria. We focus on low player rank — the minimum of the ranks of the payoff
matrices of the players — as our notion of tractability given recent algorithmic
results, e.g., [8].

Summary of results. Our results show that large and structurally complex data
sets of observations — including data sets with overlapping observed strategies,
each of which may be an arbitrary distribution — can be rationalized by games
that admit efficient computation of the observed Nash equilibria. Specifically,
we identify three measures of structural complexity in data sets, and show that
if a data set has a low value on any one of these measures for either player, or
can be partitioned in a manner such that each partition has a low value on any
one of these measures, then it has a rationalization with low player rank. The
three measures we study are (i) the dimensionality of the observed strategies
(Theorem 2), (ii) the support size of the observed strategies (Theorem 3), and
(iii) the chromatic number of the data set (Theorem 4). These are natural and
complementary measures to evaluate the structural complexity of a data set, and
our contribution is to show that each of these measures individually translates
to the existence of rationalizing games with low player rank.



On the Existence of Low-Rank Explanations for Mixed Strategy Behavior 449

Proofs of the mentioned results appear in the full version of the paper; see [3].
Also, in the full version [3] we show that the bounds we obtain on the player rank
for these measures are nearly tight. In addition, the extended version presents
a unifying result that combines the above mentioned results to provide a more
robust low-rank construction.

2 Preliminaries

Bimatrix Games. Bimatrix games are two player games in normal form. Such
games are specified by a pair of matrices (A,B) of size n×n, which are termed the
payoff matrices for the players. The first player, also called the row player, has
payoff matrix A, and the second player, or the column player, has payoff matrix
B. The strategy set for each player is [n] = {1, 2, . . . , n}, and, if the row player
plays strategy i and column player plays strategy j, then the payoffs of the two
players are Aij and Bij respectively. The player rank of game (A,B) is defined
to be min{rank(A), rank(B)}. Our focus on player rank stems from a number of
important properties. In particular, if a game has player rank k ∈ {1, 2, . . . , n},
then an equilibrium can be computed in time O(nO(k)) [8, 10].

Let Δn be the set of probability distributions over the set of pure strategies
[n]. For x ∈ Δn, we define Supp(x) := {i : xi > 0}. Further, ei ∈ Rn is
the vector with 1 in the ith coordinate and 0’s elsewhere, and uk ∈ Δn is
the uniform distribution over the set {1, 2, . . . , k}. The players can randomize
over their strategies by selecting any probability distribution in Δn, called a
mixed strategy. When the row and column players play mixed strategies x and
y respectively, the expected payoff of the row player is xTAy and the expected
payoff of the column player is xTBy.

Given a mixed strategy y ∈ Δn for the column player, the best-response set
of the row player, βr, is defined as βr(y) := {i ∈ [n] | eTi Ay ≥ eTk Ay ∀k ∈ [n]}.
Similarly, the best-response set, βc, of the column player (against mixed strategy
x ∈ Δn of the row player) is defined as βc(x) := {j ∈ [n] | xTBej ≥ xTBek ∀k ∈
[n]}. The best response sets βr and βc are defined with respect to the payoff
matrices A and B. When we want to emphasize this fact we use superscripts:
βA
r and βB

c .

Definition 1 (Nash Equilibrium). A pair of mixed strategies (x, y), x, y ∈
Δn, is a Nash equilibrium if and only if:

xTAy ≥ eTi Ay ∀i ∈ [n] , and xTBy ≥ xTBej ∀j ∈ [n].

The Nash equilibrium is strict if additionally the support and the best-response
sets are equal, i.e., Supp(x) = βr(y) and Supp(y) = βc(x).

Observed behavior. We consider settings in which the payoff matrices A
and B are not explicitly specified. Instead, we are given a collection of ob-
served mixed strategy pairs. Our framework of observing mixed strategies is
entirely analogous to the theory of individual stochastic choice: see for example
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[11–14]. The idea is that repeated observation of pure play allows one to infer a
probability distribution over pure strategies.

A data setD (of sizem) is a collection of mixed-strategy pairs,D = {(xk, yk) ∈
Δn ×Δn | k ∈ [m]}. We refer to mixed-strategy pairs (xk, yk) as observations.

We denote the set of observed mixed strategies of the row and column player
in a data set D by Or(D) and Oc(D) respectively: Or(D) := {x ∈ Δn | ∃y ∈
Δn such that (x, y) ∈ D} and Oc(D) := {y ∈ Δn | ∃x ∈ Δn such that (x, y) ∈
D}. When there is a single data set under consideration, for ease of notation, we
simply refer to these sets as Or and Oc.

Given observed behavior (data), the first-order goal of classical revealed pref-
erence theory is to understand whether the data is rationalizable.

Definition 2 (Rationalizable Data). A data set D = {(xk, yk)}k is rational-
izable if there exist payoff matrices A and B such that for all k, (xk, yk) is a
strict Nash equilibrium in the game (A,B).

Strictness is required in the above definition in order to avoid rationalization by
trivial games.

Proposition 1. The rationalizability of a given data set D = {(xk, yk) ∈ Δn ×
Δn | 1 ≤ k ≤ m} can be determined in polynomial time by solving a linear
program.

3 Rationalizations with Low Player Rank

This section identifies structural properties of data sets that guarantee the ex-
istence of rationalizations for which the observed Nash equilibria can be com-
puted efficiently. For efficient computation, we construct rationalizations with
low player rank and make use of the following result from [8].

Theorem 1 ([8]). If the player rank of a bimatrix game is k then all extreme
Nash equilibria can be computed in time O(nO(k)).

The algorithm implicit in this theorem computes all extreme equilibria, and
so it can be used to compute the observations in the data set rather than simply
some arbitrary equilibria. This fact is crucial to the exercise, and provides strong
motivation for a focus on player rank, since the goal is to explain the specific
observations in the data set.

Observations from a low-dimensional subspace Given a finite set S ⊂ Rn of m
vectors s1, . . . , sm, write dim(S) to denote the maximum number of linearly inde-
pendent vectors in S. Observed strategies that form a low dimensional subspace
are natural candidates for low player rank rationalizations and, the following
theorem shows that — independent of the size of the data set — if the observa-
tions form a low dimensional subspace then they can be rationalized by a game
of low player rank.

Theorem 2. If a data set D is rationalizable then it can be rationalized by a
game of player rank at most min{dim(Or), dim(Oc)}.
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Small support size. The second structural property of the data set we consider is
the support size of the observations. In spirit, the following theorem complements
the result of Lipton et al. [10] wherein they establish that if the rank of both
the payoff matrices is low then the game contains a small-support equilibrium.
The following result highlights that there is a connection in the other direction
as well.

Theorem 3. Let D = {(xk, yk) ∈ Δn×Δn | 1 ≤ k ≤ m} be a data set in which
|Supp(xk)| ≤ s for all k ∈ [m] or |Supp(yk)| ≤ s for all k ∈ [m]. If the observed
strategies Or(D) and Oc(D) are generic then D can be rationalized by a game
with player rank ≤ 2s+ 1.

Low chromatic number. Intuitively, the chromatic number quantifies the de-
gree of intersection between the observed mixed strategies, and hence it is a
relevant measure of the structural complexity of data. For a data set D, we de-
fine the row chromatic number κr(D) and the column chromatic number κc(D)
as the chromatic numbers of graphs Gr and Gc, defined as follows. For the
row chromatic number, κr(D), construct graph Gr with a vertex correspond-
ing to each observation in Or. For distinct observations (x, y) and (x′, y′) in
D, if Supp(x) ∩ Supp(x′) �= ∅ then the graph Gr has an edge between the cor-
responding vertices. Then set κr(D) = χ(Gr), i.e., the chromatic number of
graph Gr. The column chromatic number is defined similarly using intersections
Supp(y) ∩ Supp(y′). The chromatic number of the data set, κ(D), is defined to
be the minimum of κr(D) and κc(D).

Theorem 4. Let D be a data set with chromatic number equal to κ(D). If the
observed mixed-strategy sets Or(D) and Oc(D) are generic then D can be ratio-
nalized by a game of player rank at most 2κ(D).

Of course, in general the chromatic number of a graph is hard to com-
pute. However, an easy upper bound is the maximum degree of any vertex
in Gr and Gc plus one, which then can be interpreted as follows: κr(D) ≤
max(x,y)∈D |{(x′, y′) ∈ D : Supp(x) ∩ Supp(x′) �= φ}| and κc(D) ≤ max(x,y)∈D
|{(x′, y′) ∈ D : Supp(y) ∩ Supp(y′) �= φ}|. Though these bounds provide intu-
ition, it is obvious the chromatic numbers can be much less than these upper
bounds, e.g., if the graph Gr is a star.
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Abstract. We introduce a generalization of weighted congestion games
in which players are associated with k-dimensional demand vectors and
resource costs are k-dimensional functions c : Rk

≥0 → R of the aggregated
demand vector of the players using the resource. Such a cost structure
is natural when the cost of a resource depends on different properties of
the players’ demands, e.g., total weight, total volume, and total num-
ber of items. A complete characterization of the existence of pure Nash
equilibria in terms of the resource cost functions for all k ∈ N is given.

1 Introduction

The study of selfish resource allocation problems is one of the core topics of the
algorithmic game theory and operations research literature and has proven to
be an important source for innovations in the field. E.g., central notions like the
price of anarchy or the price of stability have been defined and studied first for
such games, see Koutsoupias and Papadimitriou [11] and Anshelevich et al. [3].

In a congestion game, as introduced by Rosenthal [15], we are given a set of
resources and players choose subsets of this set. Each player strives to minimize
her private cost which is defined as the sum of the costs of the chosen resources,
where the cost of each resource is a function of the number of players using
it. Congestion games model a wide range of applications including road traffic,
animal behavior, and telecommunication networks. In most cases, the resources
correspond to the edges of a graph and each player aims to establish a path
connecting her source and target vertex. In practical applications it is desirable
that the system converges to a stable point because unstable behavior often leads
to inefficiency. This can be observed, e.g., in telecommunication networks with
distance vector routing protocols where route flapping is a major issue.

The most important stability concept is that of a pure Nash equilibrium, a
deterministic state from which no user of the system can improve. Rosenthal
showed that unweighted congestion games, in which each user controls one unit
of demand, always admit a pure Nash equilibrium. A natural extension of con-
gestion games are weighted congestion games, in which an unsplittable demand
di > 0 is assigned to each player i and the cost function cr : R≥0 → R of a
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resource r depends on the cumulated demands of all players sharing r rather
than the number of players. In contrast to the original unweighted model stud-
ied by Rosenthal, weighted congestion games do not always possess a pure Nash
equilibrium [6–8, 13]. Consequently, one line of research focused on finding (max-
imal) subclasses of weighted congestion games for which the existence of a pure
Nash equilibrium can be guaranteed.

In a singleton game, each strategy of each player consists of a single resource
only. Fabrikant et al. [5] remarked that every singleton weighted congestion game
with non-decreasing costs admits a pure Nash equilibrium. This existence result
can be strengthened towards the existence of a strong equilibrium – a strength-
ening of the Nash equilibrium concept due to Aumann [4] – see Kukushkin [12]
and Andelman et al. [2], Harks et al. [10], and Rozenfeld and Tennenholz [16]
for subsequent work in this direction. Ackermann et al. [1] showed that weighted
congestion games with non-decreasing costs always admit a pure Nash equilib-
rium if all strategy spaces are equal to the set of bases of a matroid, and that
this is the maximal property defined on the strategy spaces ensuring the ex-
istence of a pure Nash equilibrium for arbitrary non-decreasing cost functions.
For arbitrary strategy spaces, Fotakis et al. [6] showed that every weighted con-
gestion game with affine cost functions always admits a pure Nash equilibrium.
Panagopoulou and Spirakis [14] proved the same result for exponential resource
costs cr(x) = ex. Harks et al. [9] additionally confirmed the existence of pure
Nash equilibria in weighted congestion games with exponential cost functions of
type ace

φx + bc, where ac, bc ∈ R may depend on c and φ ∈ R is independent of
c. There are no further sets of cost functions that guarantee the existence of a
pure Nash equilibrium in weighted congestion games [8].

All these games are single-dimensional in the sense that the cost of a resource
depends only on a single parameter – the aggregated demand of all players
using it. In many situations, however, the cost of a resource depends on different
parameters. E.g., in a transportation network, it is reasonable to assume that the
cost to ship the player’s aggregated goods depends both on the total volume and
the total weight of the goods; in a telecommunication network the delay of an arc
may depend both on the amount of data and the total number of files handled
through the corresponding arc, respectively. To capture such situations more
precisely, in this paper, we study congestion games with k-dimensional demands,
where for k ∈ N≥1 the demand of each player i is represented as a k-dimensional
vector di ∈ Rk

>0 and the cost of each resource r is given by a k-dimensional
function cr : Rk

≥0 → R. For k = 1, we obtain weighted congestion games for
which the existence of pure Nash equilibria is reasonably well understood. To
formally capture the dependence of the existence of pure Nash equilibria on the
underlying cost structure, Harks and Klimm [8] call a set C of cost functions
consistent, if all weighted congestion games with cost functions in C have a
pure Nash equilibrium. They also give a complete characterization of the set
of consistent cost functions. We extend this terminology to k-dimensional cost
functions. For k ≥ 1, we call a set C of cost functions c : Rk

≥0 → R k-consistent
if each congestion game with k-dimensional demand and cost functions in C has
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a pure Nash equilibrium. The main question of this paper is: How large are the
sets of k-consistent cost functions?

Our Results. We first give a complete characterization of 2-consistent sets of
cost functions. For a set C of continuous cost functions c : R2

≥0 → R, we show
that C is 2-consistent if and only if there are φ1, φ2 ≥ 0 or φ1, φ2 ≤ 0 such that
C only contains functions of type c(x1, x2) = ac(φ1x1 + φ2x2) + bc or C only
contains functions of type c(x1, x2) = ace

φ1x1+φ2x2 + bc, where ac, bc ∈ R may
depend on c.

We then extend this characterization to congestion games with k-dimensional
demands for any k ∈ N≥3. A set C of continuous cost functions c : Rk

≥0 → R

is k-consistent if and only if there is a vector Φ ∈ Rk
≥0 or Φ ∈ Rk

≤0 such that

C only contains functions of type c(x) = acΦ
�x + bc or C only contains func-

tions of type c(x) = ace
Φ
x + bc, where ac, bc ∈ R may depend on c. A set

C that contains only functions of one of these types is called degenerate. Pro-
vided that C is degenerate, our results imply that every congestion game with
k-dimensional demands and cost functions in C is isomorphic to a congestion
game with 1-dimensional demands and the same sets of players, resources, strate-
gies and private costs. Our contributions to k-consistency for k ∈ N≥1 generalize
the complete characterization of 1-consistent sets for weighted congestion games
due to Harks and Klimm [8].

All proofs missing in this extended abstract are deferred to the full version of
this paper.

2 Preliminaries

We consider strategic minimization games G = (N,S, π), where N = {1, . . . , n}
is the finite set of players, Si is the finite set of strategies available to player i,
S = S1×· · ·×Sn is the nonempty strategy space and π : S → Rn is the combined
private cost functions assigning a private cost vector π(s) = (πi(s))i∈N to each
strategy profile s ∈ S. For i ∈ N , we write S−i = S1× . . . Si−1×Si+1× · · · ×Sn

for the joint strategy set of all players except i. For s ∈ S, we write s = (si, s−i)
meaning that si ∈ Si and s−i ∈ S−i. A strategy profile is a pure Nash equilibrium,
if πi(s) ≤ πi(ti, s−i) for all i ∈ N and ti ∈ Si.

Let k ∈ N with k ≥ 1 be a demand dimension. We write [k] shorthand for
{1, . . . , k} and write vectors x ∈ Rk with bold face. We denote the subset of
k-dimensional non-negative vectors as Rk

≥0, i.e., R
k
≥0 = {x = (x1, . . . , xk) ∈ Rk :

xi ≥ 0 ∀i ∈ [k]}. When k is clear from the context, we use 0 to denote the
k-dimensional zero vector and we write Rk

>0 for Rk
≥0 \ {0}.

Let R be a finite set of resources, each endowed with a k-dimensional cost
function cr : R

k
≥0 → R. A k-dimensional congestion game is given by a set N

of players, where for each player i, her set of strategies Si ⊆ 2R \ {∅} is a
set of non-empty subsets of R, and her demand vector di ∈ Rk

>0 is a non-
negative k-dimensional vector. In the corresponding k-dimensional congestion
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game the private cost of player i is defined as πi(s) =
∑

r∈si
cr(xr(s)), where

xr(s) =
∑

j∈N :r∈sj
dj is the k-dimensional aggregated demand of resource r un-

der strategy profile s. For two vectors x,y ∈ Rk with x = (x1, . . . , xk) and
y = (y1, . . . , yk), we write x ≤ y if and only if xi ≤ yi for all i ∈ [k]. We call
a function c : Rk

≥0 → R non-decreasing if cr(x) ≤ cr(y) for all x,y ∈ Rk
≥0 with

x ≤ y. Non-increasing functions are defined analogously. Functions that are both
non-decreasing and non-increasing are called constant, functions that are either
non-decreasing or non-increasing are called monotonic. For a set C of cost func-
tions c : Rk

≥0 → R, we say that C is k-consistent if all k-dimensional congestion
games with cost functions contained in C have a pure Nash equilibrium. For
k = 1, we obtain the well known class of weighted congestion games for which
in previous work Harks and Klimm [8] obtained the following characterization
of 1-consistency.

Theorem 1 (Harks and Klimm [8]). A set C of continuous cost functions
c : R≥0→R is 1-consistent if and only if C only contains affine functions or C
only contains functions of type c(x) = ace

φx+bc where ac, bc∈R may depend on
c while φ∈R is independent of c.

3 Sufficient Conditions on k-Consistency

To obtain a full characterization of the sets of k-consistent cost functions, we
first give sufficient conditions for the consistency of k-dimensional cost functions.
We introduce the notion of degeneracy of sets of cost functions. In a sense, this
notion of degeneracy forecloses the characterization we are going to prove in the
remainder of this paper.

Definition 2 (Degeneracy). A set C of cost functions c : Rk
≥0 → R is Φ-

degenerate, or simply degenerate, if there is a vector Φ ∈ Rk
≥0 or Φ ∈ Rk

≤0

with one of the following properties:
1. For every c ∈ C there is a function fc : R→ R of type f(x) = acx+ bc such

that c(x) = f(Φ�x) for some ac, bc ∈ R and all x ∈ Rk
≥0.

2. For every c ∈ C there is a function fc : R→ R of type f(x) = ace
x+ bc such

that c(x) = f(Φ�x) for some ac, bc ∈ R and all x ∈ Rk
≥0.

In case (1) holds, we call C and every c ∈ C affinely Φ-degenerate, in case (2)
holds, we call C and every c ∈ C exponentially Φ-degenerate.

As our first result, we show that degeneracy is sufficient for k-consistency.
Specifically, we show that any congestion games with k-dimensional demands
G for which all cost functions are taken from a degenerate set C is isomorphic
to a congestion game with 1-dimensional demands G′ that admits a pure Nash
equilibrium.

Theorem 3. Let k ∈ N≥1 and let C be a set of cost functions c : Rk
≥0 → R. If

C is degenerate, then C is k-consistent.
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4 Necessary Conditions on Consistency

In order to show that degeneracy is necessary for the consistency of a set C of
continuous functions, we first derive three necessary conditions that are captured
in the Extended Monotonicity Lemma, the Hyperplane Restriction Lemma, and
the Line Restriction Lemma. In Sections 5 and 6, we then use these three key
lemmas to derive necessary conditions on 2-consistency and k-consistency for
k ≥ 3, respectively.

The Extended Monotonicity Lemma states that any integer linear combina-
tion of functions contained in a k-consistent set of cost functions C is monotonic.
A similar lemma has been given by Harks and Klimm [8] for the case k = 1.
However, the proof of the Extended Monotonicity Lemma turns out to be more
intricate as the ≤-relation does not give a complete order on Rk

≥0 which makes
the monotonicity of functions defined on Rk

≥0 somewhat harder to characterize.

Lemma 4 (Extended Monotonicity Lemma). Let C be a k-consistent set
of continuous cost functions c : Rk

≥0 → R and let

Lk(C) = {c : Rk
≥0 → R : c(x) = λ1c1(x) + λ2c2(x), c1, c2 ∈ C, λ1, λ2 ∈ Z}.

Then, every c ∈ Lk(C) is monotonic.

In order to state the Hyperplane Restriction Lemma, we need some addi-
tional notation. For an index i ∈ [k] and a scalar x̂i ≥ 0, the insertion func-
tion τ ix̂i

: Rk−1
≥0 → Rk

≥0 maps a (k − 1)-dimensional vector x−i ∈ Rk−1
≥0 to the

k-dimensional vector (x1, . . . , xi−1, x̂i, xi+1, . . . , xk)
�∈ Rk

≥0 by inserting x̂i at
position i. For a function c : Rk

≥0 → R the function composition c ◦ τ ix̂i
defines a

new function c ◦ τ ix̂i
: Rk−1

≥0 → R, which can be interpreted as the restriction of
c to the hyperplane Hi

x̂i
= {x ∈ Rk

≥0 : xi = x̂i} for which the ith component of
every vector x is fixed.

For k ≥ 2, the following Hyperplane Restriction Lemma establishes a link
between k-consistent cost functions and (k − 1)-consistent cost functions.

Lemma 5 (Hyperplane Restriction Lemma). Let C be a k-consistent set
of cost functions c : Rk

≥0 → R, k ≥ 2. Then, Ci = {c ◦ τ ix̂i
: c ∈ C, x̂i ≥ 0} is

(k − 1)-consistent for every i ∈ [k].

The next lemma establishes a similar connection between k-consistency and 1-
consistency. Specifically, we show that given a k-consistent set C of cost functions
c : Rk

≥0 → R and a vector v ∈ Rk
>0, the restrictions of functions c ∈ C to the line

Lv = {z ∈ Rk
≥0 : z = xv, x ≥ 0} constitutes a 1-consistent set of cost functions.

The proof uses similar ideas as the proof of the Hyperplane Restriction Lemma.

Lemma 6 (Line Restriction Lemma). Let C be a k-consistent set of cost
functions c : Rk

≥0 → R, k ≥ 1. Then, Cv = {cv : R≥0 → R, x 	→ c(xv) : c ∈ C} is
1-consistent for every v ∈ Rk

>0.
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5 A Characterization of 2-Consistency

Combining the the Extended Monotonicity Lemma (Lemma 4), the Hyperplane
Restriction Lemma (Lemma 5), the Line Restriction Lemma (Lemma 6) and
Theorem 1, we establish the following complete characterization of 2-consistent
sets of continuous cost functions.

Theorem 7. Let C be a set of continuous cost functions c : R2
≥0 → R. Then,

C is 2-consistent if and only if C is degenerate, i.e., there are φ1, φ2 ∈ R≥0 or
φ1, φ2 ∈ R≤0 such that one of the following two cases holds:
1. C only contains functions of type c(x1, x2)=ac(φ1x1+φ2x2)+bc with ac, bc∈R,
2. C only contains functions of type c(x1, x2)=ace

φ1x1+φ2x2+bc with ac, bc ∈ R.

6 A Characterization of k-Consistency

In this section, we generalize the characterization of 2-consistency discussed in
the previous section to arbitrary dimensions k ∈ N≥3. Specifically, we show that
a set C of continuous cost functions is k-consistent if and only if C is degenerate.

For the proof, we use that for k ≥ 3, the intersection of two (k−1)-dimensional
hyperplanes contains a line. This allows us to consider partial derivatives of the
cost functions along this intersection which enables us to establish a connection
between c ◦ τ ix̂i

and c ◦ τ jx̂j
. The following straightforward lemma takes a first

step in that direction.

Lemma 8. Let k ∈ N≥3 and c : Rk
≥0 → R and let x ∈ Hi

x̂i
∩Hj

x̂j
for i, j ∈ [k]

with i �= j and some x̂i, x̂j ≥ 0. If for z ∈ [k] \ {i, j} the partial derivatives
∂(c ◦ τ ix̂i

)/∂xz(x−i) and ∂(c ◦ τ jx̂j
)/∂xz(x−j) exist, then ∂c/∂xz(x) exists and

satisfies ∂c/∂xz(x) = ∂(c ◦ τ ix̂i
)/∂xz(x−i) = ∂(c ◦ τ jx̂j

)/∂xz(x−j).

Using Lemma 8, we can derive the following complete characterization of k-
consistency.

Theorem 9. Let C be a set of continuous cost functions c : Rk
≥0 → R, k ≥ 1.

Then, C is k-consistent if and only if C is degenerate, i.e., there is a vector
Φ ∈ Rk

≥0 or Φ ∈ Rk
≤0 such that one of the following statements holds:

1. C only contains functions of type c(x) = acΦ
�x+ bc for some ac, bc ∈ R.

2. C only contains functions of type c(x) = ace
Φ
x + bc for some ac, bc ∈ R.
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Abstract. Contents displayed on web portals (e.g., news articles at Yahoo.com)
are usually adaptively selected from a dynamic set of candidate items, and the at-
tractiveness of each item decays over time. The goal of those websites is to max-
imize the engagement of users (usually measured by their clicks) on the selected
items. We formulate this kind of applications as a new variant of bandit problems
where new arms are dynamically added into the candidate set and the expected
reward of each arm decays as the round proceeds. For this new problem, a direct
application of the algorithms designed for stochastic MAB (e.g., UCB) will lead
to over-estimation of the rewards of old arms, and thus cause a misidentification
of the optimal arm. To tackle this challenge, we propose a new algorithm that
can adaptively estimate the temporal dynamics in the rewards of the arms, and
effectively identify the best arm at a given time point on this basis. When the
temporal dynamics are represented by a set of features, the proposed algorithm is
able to enjoy a sub-linear regret. Our experiments verify the effectiveness of the
proposed algorithm.

1 Introduction
The multi-armed bandit (MAB) problem is a typical example of sequential decision-
making problems under uncertain environments and can model many real-world ap-
plications such as an adaptive routing, clinical trials, and a variety of recommendation
problems. Among those applications, the recommendation problems, such as news rec-
ommendation [10] and social bookmarks [12], are attracting more and more attention
from both the academia and the industry. Using the language of MABs, a recommen-
dation problem can be described as follows. Given a set of K arms (candidate items)
to select (display), in each round (user visit) the system selects one arm from the set
and show it to the user. The system then receives a reward (whether the user clicks on
the item or not) for the arm. The goal of MAB is to design an algorithm that optimizes
the cumulative reward (the total number of user clicks given a number of user vis-
its), which is achieved by accurately identifying the arm with the best expected reward
(click-through rate (CTR)).

A well studied MAB problem is the so-called stochastic MAB, in which it is assumed
that the rewards of each arm is i.i.d. drawn from a fixed but unknown distribution. The
upper confidence bound (UCB) algorithm [6] is the standard algorithm in this problem.

� This work was done while the author was visiting Microsoft Research Asia.
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Fig. 1. Comparison between stochastic bandits and
time-decaying bandits. The left figure shows a stochas-
tic bandit where CTRs of the arms do not change
over time. The right one shows a time-decaying bandit,
where CTRs decay over rounds.

While the stochastic MAB suc-
cessfully models many problems,
it does not match well with the rec-
ommendation problems under our
investigation, because it ignores an
important factor of recommender
systems: the attractiveness of an
item to users decays over time. For
example, it has been reported that
new items (e.g., news articles in
a web portals, and tweets in so-
cial networks) usually have larger

CTRs than old ones [12], and a specific content will lose its attractiveness after being
repeatedly displayed to the users [3]. In this situation, a simple application of the al-
gorithms designed for stochastic MAB (e.g., UCB) will lead to over-estimation of the
rewards of old arms, and thus cause a misidentification of the optimal arm.

Actually, the recommendation problems correspond to a new type of MAB prob-
lems, which we call the “time-decaying MAB”, where the expected reward of each
arm decays with respect to time (see Fig. 1). Before investigating such problems, the
very first step is to characterize the decay factor. A simple way is to adopt a constant
decay factor and integrate it into the stochastic MAB algorithms. However, in many
real applications, such a characterization is inaccurate. This is because the decay factor
(including magnitude and decreasing speed) varies largely among arms. Take news ar-
ticles as examples. A breaking news usually quickly attracts a lot of attention, but the
attention may drop significantly in just several hours. In contrast, news articles such as
an enforcement of some national law usually warm up relatively slowly, but may attract
a long-term attention like a week or so. In this case, it would be more appropriate to
assume that the decaying factors for individual arms differ from each other and to learn
them in an online manner. For this purpose, the learning algorithm needs to make ex-
ploration to simultaneously understand both the stochastic properties and the decaying
factors of the rewards.

In this work, to solve the time-decaying MAB problems, we generalize the UCB
algorithm by incorporating the information about the temporal dynamics into the com-
putation of the upper confidence bounds of the arms. In particular, we represent the
temporal dynamics by a set of basic time-dependent functions which consists of both
fast and slow decays. The weights of individual functions are optimized by an applica-
tion of the linear bandit technology. As a result, our algorithm is able to estimate the
decay factor of each arm, which leads to an accurate estimation of the expected reward.
Also, by choosing the arm of the largest index like the UCB algorithm, our algorithm
balances exploration (give more chances to less selected arms for best arm identifica-
tion) and exploitation (choosing the arm with the largest observed reward).

To summarize, the major contributions of our work lie in two aspects: (1) According
to our knowledge, this is the first work that embeds temporal decay of the rewards into
MAB problems. (2) We design an algorithm to solve the time-decaying MAB problems,
the effectiveness of which is verified both theoretically and empirically.
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Fig. 2. CTR of an arm

2 Problem Setup

Time-decaying MAB extends stochastic MAB from two aspects: (1) new arms are con-
tinuously added to the candidate set, and (2) the expected reward of each arm decays
in rounds. Let n be the total number of rounds, and Kt be the set of available arms in
round t ∈ [n]. Let ri,t be the reward of arm i if it is selected at round t. In this work we
take news recommendation as an example and exclusively consider the case of click-
through feedback. Thus, in this case, ri,t is either 0 or 1, and the CTR of a news article
corresponds to the expected reward of an arm. Henceforth, we use “news article” and
“arm” interchangeably.

A time-decaying MAB goes as follows. At each round t = 1, 2, ..., n, a system
selects one arm It from the candidate set Kt and receives a random reward rIt,t. Note
that the reward information of the other arms are not available. The reward of arm
i is drawn from a Bernoulli distribution parameterized by μi,t, which assumes to be
represented as the sum of a constant part μi and several basic decaying functions (see
Fig. 2). Let f1(t− ti), ..., fd(t− ti) be the set of basic decaying functions and t− ti be
the number of rounds since arm i appears for the first time. The expected reward of arm
i at round t can be modeled as μi,t = μi+

∑d
k=1 ai,kfk(t−ti), where ai,k is the weight

associated with the k-th decaying function for arm i. Equivalently, by defining xi,t =
(1, f1(t − ti), · · · , fd(t − ti)) ∈ Rd+1 and θi = (μi, ai,1, ai,2, · · · , ai,d) ∈ Rd+1, we
can write μi,t = x�

i,tθi. That is, μi,t can be represented as a linear combination of a
(d + 1)-dimensional “context” xi,t which consists of the constant 1 and the values of
functions f1(t − ti), ..., fd(t − ti). We assume that the contexts and the weights are
bounded as ||xi,t|| ≤ L (||x|| =

√
x�x) and ||θi|| ≤ S, respectively.

We define the optimal arm i∗(t) as the arm with the largest expected reward at round
t: i∗(t) = argmaxi∈Kt μi,t. Unlike the stochastic MAB, the optimal arm in our prob-
lem may vary in rounds, which is the essential difficulty in this problem. The perfor-
mance of an algorithm is measured by the (pseudo) regret R(n), which is defined as the
difference between the cumulative expected reward of the optimal pulling policy (which
knows the expected rewards of all arms at each round) and that of the arms selected by
the algorithm: R(n) =

∑n
t=1 μi∗(t),t −

∑n
t=1 μIt,t.

3 Algorithm

The key to solve the time-decaying MAB problem, where the reward of an arm can be
represented as a linear combination of decaying functions, is to effectively estimate θi,
the weights of individual decaying functions, for each arm. This falls into the framework
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Algorithm 1. Time-decaying UCB
1: Inputs: a(t), f1(t− ti), ..., fd(t− ti).
2: for t = 1, 2, 3, ..., n do
3: for i ∈ Kt do
4: if arm i is new then
5: ti = t, Ai,t ← Id+1 and bi,t ← 0(d+1)×1

6: end if
7: xi,t ← (1, f1(t− ti), ..., fd(t− ti))

T

8: ci,t ← a(t− ti + 1)||xi,t||A−1
i,t

, and μ̂i,t ← x�
i,tA

−1
i,t bi,t

9: gi,t ← μ̂i,t + ci,t
10: end for
11: Choose arm It = arg max

i∈Kt

gi,t, and receive reward rIt,t ∈ {0, 1}
12: AIt,t+1 ← AIt,t + xIt,tx

�
It,t and bIt,t+1 ← bIt,t + rIt,txIt,t

13: for i �= It ∈ Kt do
14: Ai,t+1 ← Ai,t and bi,t+1 ← bi,t
15: end for
16: end for

of linear bandits [2,5,9,1], which perform an online estimation of linear weights with
bandit feedback. The difference is that our problem contains multiple linear bandits:
each arm can be considered as an instance of a linear bandit problem, whose context
consists of a constant term and a series of temporal functions, while there is only one
linear bandit in classical linear bandit problems1. In this sense, our problem is a hybrid
of multi-armed bandits and linear bandits plus temporal decays.

Our proposed Algorithm 1 is shown as above, which we call time-decaying UCB.
As can be seen, at each round of the algorithm, for each arm it constructs a matrix Ai,t

and a vector bi,t, which are the sum of the covariance and the reward-weighted sum
of features, respectively. μ̂i,t, the least square estimation of the reward at round t, is
given as x�

i,tA
−1
i,t bi,t. To guarantee the sufficient amount of exploration, we additionally

introduce a confidence bound term ci,t = a(t)||xi,t||A−1
i,t

, where ||x||A is the matrix-

induced vector norm
√
x�Ax. For the choice of a(t), we show in the next section that

a O(
√
log t) function is appropriate to give a reliable confidence bound. Time-decaying

UCB chooses the arm with the maximum UCB index gi,t = μ̂i,t + ci,t.

4 Regret Bound

The following theorem shows that the proposed algorithm possesses a sublinear regret
bound. The proof of the theorem, which combines the multi-armed bandit and the linear
bandit techniques, is in the full version of this paper.

1 There are several papers that analyze the regret of a linear bandit problem with multiple re-
gressors (e.g., Cesa-Bianchi et al. [11], and Agrawal and Goyal [4]). However, The analysis in
these papers are limited to the case where the set of arms does not change over time.
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Theorem 1. Let C(t, δ′) = 1
2

√
(d+ 1) log

(
1+tL2

δ′
)
+ S. By setting α(t) = C(t,

δ/|Kt|), the regret of the proposed algorithm is upper-bounded as follows with proba-
bility at least 1− δ2

R(n) ≤ 2C(n, δ/|Kall|)

√
|Kall|n(d+ 1)(L2 + 1) log

(
1 +

nL2

d+ 1

)
= Õ(

√
|Kall|n),

(1)
where Õ hides a polylog factor, and Kall is the set of all the arms through the run.

5 Experiments

In this section, we report the results of our simulation. The goal here is to compare the
empirical performance of the proposed algorithm with that of existing ones.

We simulate a news recommender system, where the decay pattern of CTR of each
news article is different from the others and new articles are continuously added into
the system.

Rounds and Articles: We try different values: n = {105, 105 1
3 , 105

2
3 , ..., 107}. For

each n, all the algorithms are run for 20 times and the results are averaged over the
runs. At the beginning of each run, there are 20 articles in the candidate set. Then new
articles are continuously added into the set. At the end of each run, 100 articles are
involved.

CTRs and Decay Factor: We set the CTR of the i-th article as μi,t = miy(Δi(t)/th,i),
where mi is its initial CTR when it is added into the system and y(Δi(t)/th,i) is the
decay function. The initial CTRs of all the news articles are independently drawn from
a uniform distribution in [0, 0.15]. We adopt the square root decay function y(x) =
1/
√
x+ 1, which is reported and used in a contest of news article recommendation

for Yahoo! Homepage [8]. th,i defines how fast CTR decays, and is independently
drawn from an exponential distribution P (th,i) = −λ exp (−t/λ) with λ = 0.02n.
Δi(t) = t − ti was the number of the rounds after the article is added into the system.
In this setting, CTR of the optimal article averaged over time is around 0.1, which is
similar to the case of the Yahoo! news article dataset [13]. Note that the above param-
eters (including the number of rounds, decay function, etc.) are notified to none of the
algorithms. Fig. 3 displays a part of time series of CTRs of the articles in a run.

Compared Algorithms: We take RANDOM, Exp3.S [7] and UCB [6] as baselines
for comparison: RANDOM is the algorithm that uniformly samples an article from all
available ones; Exp3.S is a variant of the Exp3 algorithm for switching environment;
and UCB is a stochastic bandit algorithm that ignores temporal dynamics. For our
time-decaying UCB, we implement three variants with different sets of the temporal
feature: (1) Decaying-UCB-3 has three temporal components {f1(Δi(t)), f2(Δi(t)),
f3(Δi(t))}= {y(Δi(t)/λ), y(2

4Δi(t)/λ), y(2
8Δi(t)/λ)}, (2) Decaying-

UCB-5 has five temporal components {f1(Δi(t)), f2(Δi(t)), ..., f5(Δi(t))} =
{y(Δi(t)/λ), y(2

2Δi(t)/λ), ...,y(2
8Δi(t)/λ)}, and (3) Decaying-UCB-9 has nine

2 We can set δ = O(1/n).
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Fig. 3. CTRs (= expected rewards) of articles
in a single run with n = 106. Each curve rep-
resents a CTR of an article. Most articles have
low CTR, and the optimal article switches fre-
quently.

Fig. 4. The log-log plot of the regret of the al-
gorithms. The horizontal axis is the number of
total rounds (depend on the scale factor s) and
the vertical line is the regret.

temporal components {f1(Δi(t)), f2(Δi(t)), ..., f9(Δi(t))} = {y(Δi(t)/λ), y(2Δi(t)
/λ), ..., y(28Δi(t)/λ)}. The hyper-parameters of the algorithms are set as follows: K in
Exp3.S is set to 100, and S (switching number) is chosen best among {1, 2, 5, 10, 20, 50,
100}. a(t) in UCB and in our time-decaying UCB, which determine the magnitude of
the exploration, are chosen to be the best among {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}×√
log t.

Regret Comparison: Fig. 4 shows the regrets of all the algorithms. RANDOM and
Exp3.S are clearly worse than UCB and time-decaying UCB. The performances of the
three variants of time-decaying UCB are very close: our algorithm is not very sensitive
to the selection of the basic decaying functions. Further, UCB and time-decaying UCB
perform similarly when n is small, and the latter performs much better when n ≥ 106.
Considering that the number of daily visitors of a web portal spans from millions to
hundreds of millions, it is rather easy to obtain a large n, and therefore our algorithm is
expected to perform better than other algorithms in real-world recommender systems.

6 Conclusion

In this paper, we have proposed a new type of bandit problems in which new arms are
dynamically added into the candidate set and the expected reward of each arm decays as
the round proceeds. The performance of the proposed algorithm is verified both theoret-
ically and empirically. For future works, we will (1) design new algorithms with better
regret bounds and (2) consider more complicated dynamics in real-world applications
that go beyond simple time decay.
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Abstract. Leontief function is one of the most widely used function
in economic modeling, for both production and preferences. However it
lacks the desirable property of diminishing returns. In this paper, we
consider piecewise Leontief concave (p-Leontief) utility function which
consists of a set of Leontief-type segments with decreasing returns and
upper limits on the utility. Leontief is a special case when there is exactly
one segment with no upper limit.

We show that computing an equilibrium in a Fisher market with
p-Leontief utilities, even with two segments, is PPAD-hard via a reduc-
tion from Arrow-Debreu market with Leontief utilities. However, under a
special case when coefficients on segments are uniformly scaled versions
of each other, we show that all equilibria can be computed in polyno-
mial time. This also gives a non-trivial class of Arrow-Debreu Leontief
markets solvable in polynomial time.

Further, we extend the results of [13,2] for Leontief to p-Leontief
utilities. We show that equilibria in case of pairing economy with p-
Leontief utilities are rational and we give an algorithm to find one using
the Lemke-Howson scheme.

1 Introduction

Market equilibrium is a fundamental concept in mathematical economics and has
been studied extensively since the work of Walras [11]. The notion of equilibrium
is inherently algorithmic, with many applications in policy analysis and recently
in e-commerce [4,7,9]. The Arrow-Debreu (exchange) market model consists of
a set of agents and a set of goods, where each agent has an initial endowment of
goods and a utility (preference) function over bundle of goods. At equilibrium,
each agent buys a utility maximizing bundle from the money obtained by selling
its initial endowment and the market clears.

It is customary in economics to assume utility functions to be concave and sat-
isfying the law of diminishing returns. Leontief utility function is a well-studied
concave function, where goods are complementary and they are needed in a fixed

� Work done while at Georgia Tech, Atlanta, USA.
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proportion for deriving a positive utility, for e.g., bread and butter. It is a ho-
mogeneous function of degree one, where the utility is multiplied by α when the
amount of each good is multiplied by α, for any α > 0; hence it does not, as
such, model diminishing returns. Consider the following example.

Example. Suppose Alice wants to consume sandwiches and for making a sand-
wich, she needs two slices of bread and one slice of cheese. It seems her utility
function for bread and cheese can be modeled as a Leontief function, but it is
not appropriate because her utility for the second sandwich is less than the first
one due to satiation, and so on.

In this paper, we define piecewise Leontief concave (p-Leontief) utility function,
which not only generalizes Leontief but also captures diminishing returns to
scale and seems to be more relevant in economics. Further, we derive algorithmic
and hardness results for both Fisher1 and exchange market models under these
functions. A p-Leontief utility function consists of a set of segments, where utility
obtained on each segment is as per a Leontief function with a limit on the utility.
The extra bundle needed, to obtain another unit of utility on segment k, is
strictly more than that on segment k–12. This puts a natural ordering on the
segments, so that function remains concave and captures diminishing returns
(see Section 2 for the precise definition). Observe that a Leontief function is
simply a p-Leontief function with exactly one segment and no upper limit.

Recall the above example. Alice’s utility for bread and cheese can be modeled
as a p-Leontief function as follows: On the first segment, a unit of utility can be
derived by consuming 2 slices of bread and 1 slice of cheese, and the upper limit
is 1, i.e., at most 1 unit of utility can be derived on this segment. On the second
segment, a unit of utility can be derived by consuming 4 slices of bread and 2
slices of cheese, and the upper limit is 2, and so on.

Since Leontief function is a special case of p-Leontief function, all hardness
results for Leontief utilities [2] simply carry over to p-Leontief utilities and we
get the following theorem.

Theorem 1 (Hardness of Exchange p-Leontief). Computing an equilib-
rium in an exchange market with p-Leontief utilities is PPAD-hard, and all
equilibria can be irrational even if all input parameters are rational numbers.

There is a qualitative difference between the complexity of computing an
equilibrium in Fisher and Arrow-Debreu markets under Leontief utilities; while
polynomial time in the former case through Eisenberg’s convex program [6], it
is PPAD-hard in the latter case [2]. In contrast, we show that Fisher is no easier
than Arrow-Debreu under p-Leontief utilities and obtain the following theorem.

Theorem 2 (Hardness of Fisher p-Leontief). Computing an equilibrium in
Fisher market with p-Leontief utilities, even with two segments, is PPAD-hard.

1 A special case of exchange market model, defined in Section 2.
2 By strictly more than, we mean at least one good is needed in greater amount.
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For the above theorem, we essentially give a reduction from exchange p-
Leontief with k segments to Fisher p-Leontief with k + 1 segments. Further
we show that when coefficients on segments are uniformly scaled versions of
each other, then Fisher market equilibria can be computed in polynomial time.
This special case arises in many practical situations, like in the above example of
Alice’s utility function for bread and cheese. The proportion of bread and cheese
on each segment remains 2:1, however her utility per unit of sandwich decreases.

This also gives us a non-trivial class of tractable exchange Leontief markets,
where the sum of endowment matrix (W ) and Leontief utility coefficient matrix
(U) is a constant times all one matrix. We note that Fisher is a special case
of exchange market model for which W is very special, however an exchange
market satisfying our condition does not require W to be special and hence it
does not arise from a Fisher market. To the best of our knowledge, apart from
the Fisher markets, we are not aware of any other non-trivial tractable classes
of exchange Leontief markets.

Pairing economy is a special case of exchange markets, where each agent brings
a different good to the market (see Section 2 for precise definition). In case of
a pairing economy with Leontief utilities, [2] showed that equilibria are rational
and they are in one-to-one correspondence with the symmetric Nash equilibria
in a symmetric bimatrix game. We extend the results of [2,13] for Leontief to
p-Leontief and obtain the following (informal) theorem.

Theorem 3 (Pairing Economy: Rationality and Algorithm). In a pairing
economy with p-Leontief utilities, equilibrium prices are rational if all input pa-
rameters are rational. Further computing an equilibrium is PPAD-complete and
there is a finite time algorithm to find one using the Lemke-Howson scheme.

For this, we first characterize equilibrium conditions for exchange market with
p-Leontief utilities using the right set of variables: a variable to capture price for
each good and a variable to capture utility on each segment. In case of pairing
economy, these conditions can be divided into two parts. The first part captures
the utility on each segment, at equilibrium, as a linear complementarity problem
(LCP) formulation, where we use the power of complementarity to ensure that
segments are allocated in the correct order. The second part is a linear system of
equations of type Ap = p in prices given the utilities on each segment. Next we
show that the LCP of first part can be solved using the Lemke-Howson scheme
[8] and then we obtain the equilibrium prices by solving Ap = p. For this to
work, we need a positive solution of Ap = p, which is guaranteed by the Perron-
Frobenius theorem as A turns out to be a positive stochastic matrix.

Related Work. Since Leontief is a homogeneous function of degree one, equilib-
ria in a Fisher market with Leontief utilities are captured by Eisenberg’s convex
program [6] and hence it is computable in polynomial time. Mas-Colell (in [5] by
Eaves) gave an example of Leontief economy (both Fisher and exchange), where
all equilibria are irrational, even if the input parameters are rational numbers;
this discards the possibility of LCP based approach for Leontief economy.
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Pairing economy model is used by [2] to show that computing an equilibrium
in a Leontief exchange market is PPAD-hard and it has also been studied in
many other settings, for e.g., [13,12,3,14]. There are generalizations of Leontief
studied by [13,1]. [13] considered a class of piecewise linear concave (PLC) utility
functions and showed that equilibrium in pairing economy is equivalent to solv-
ing an LCP. [1] studied market equilibrium under hybrid linear-Leontief utility
function. Leontief is a special case in both of them, however these classes are
still homogeneous of degree one and do not model the diminishing returns to
scale. Hence they are quite different and not comparable with p-Leontief.

In this version of the paper, we only give an outline of the reduction from
exchange to Fisher market, and refer the reader to the full version for details.

2 Preliminaries

Exchange Market. An exchange market consists of a set of agents A and a

set of goods G. Let m
def
= |A| and n

def
= |G|. Each agent comes to the market with

an initial endowment of goods, where Wij is the amount of good j with agent i,
and a utility function ui : R

n
+ → R+ over bundle of goods. Given prices of goods

p = (p1, . . . , pn), where pj is the price of good j, each agent i earns
∑

j∈G Wijpj
by selling its initial endowment and buys a (optimal) bundle which maximizes
its utility function from the earned money. At equilibrium prices, market clears,
i.e., demand of each good matches with its supply.

Fisher Market. A Fisher market consists of a set of agents A and a set of goods
G. Each agent i has money Ei, and a utility function ui : R

n
+ → R+ over bundle

of goods. Let Qj denotes the quantity of good j in the market. Given prices of
goods, each agent i buys an optimal bundle subject to its budget constraints.
At equilibrium prices, market also clears.

Leontief Utility Function. The Leontief utility function of agent i from a
bundle xi = (xi1, . . . , xin) of goods is defined as ui(xi) = minj{ xij

Uij
}.

A way to represent Leontief utility func-
tion is by choosing x-axis to denote the
amount of a good whose coefficient is pos-
itive. The amount of the remaining goods
are just a fixed proportion of this amount.
Fig. 1 depicts a simple example of Leontief
utility function on two goods. The goods
are required in 2:1 ratio, i.e., one unit of
utility is obtained from consuming 2 units
of good 1 and 1 unit of good 2.

Amount of good 1

2:1

Utility

2

1

Fig. 1. Leontief utility function
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Here agent i derives one unit of utility when it gets Uij amount of each good
j. If the utility function of each agent is Leontief, then it can be represented as
a matrix U = [Uij ]i∈A,j∈G , whose ith row Ui = [Uij ]j∈G contains all the coeffi-
cients of agent i.

p-Leontief Utility Function. A piecewise Leontief concave (p-Leontief) utility
function consists of a set of segments (pieces), where the utility derived on each
segment is a Leontief function with an upper limit. Further, the coefficient of
segments are such that the function remains concave. Formally, let ui : R

n
+ →

R+ be the p-Leontief utility function of agent i with l segments. Since each
segment k represents a Leontief function with a limit, it can be represented as
(Uk

i = [Uk
ij ]j∈G , Lk

i ), where Uk
i stores the coefficients of Leontief function and

Lk
i stores the limit. The utility ui from a bundle xi = (xi1, . . . , xin) is defined as

ui(xi) = min
j

{
xij

U1
ij

, L1
i

}
+max

{
min
j

{
xij − L1

iU
1
ij

U2
ij

, L2
i

}
, 0

}
+ · · ·

· · ·+max

{
min
j

{
xij −

∑l−1
k=1 L

k
i U

k
ij

U l
ij

, Ll
i

}
, 0

}
.

A way to represent p-Leontief utility func-
tion is by choosing x-axis to denote the
amount of a good whose coefficient is pos-
itive. The amount of the remaining goods
can be easily obtained from this amount.
Fig. 2 depicts a simple example of p-Leontief
utility function from two goods. It has three
segments; on the first segment, one unit of
utility is obtained from 2 units of good 1 and
1 unit of good 2, and the maximum utility
that can be derived at this rate is L1. After
that the rate decreases to one unit of utility
from 4 units of good 1 and 2 units of good
2 on the second segment, and the maximum
utility at this rate is L2, and so on.

Amount of good 1

2:1

Utility

4:2

5:3
L2

L1

Fig. 2. p-Leontief utility function

Note that Lk
i U

k
ij is the amount of good j needed to utilize segment k com-

pletely; essentially segments are utilized in order from 1 to l. Further, there is
no upper limit on the last segment, i.e., Ll

i =∞. To ensure diminishing returns
and concavity, we enforce Uk+1

i ≥ Uk
i , ∀k ≥ 1.

3 Fisher Market with p-Leontief Utility Functions

In this section, we give a reduction from Leontief exchange market, where U > 0,
to Fisher market with p-Leontief utility function which has two segments.
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Theorem 4. A Leontief exchange marketM, where U > 0, can be reduced to a
Fisher market M′ with p-Leontief utility function such that equilibria of M are
in one-to-one correspondence with equilibria of M′ (up to scaling).

Proof. LetM is defined by (W,U) (see Section 2 for details), where W is initial
endowment matrix and U is Leontief utility function matrix, such that Uij >
0, ∀(i, j). Without loss of generality, we assume that the total quantity of each
good is unit, i.e.,

∑
i Wij = 1, ∀j. We will construct a Fisher marketM′ defined

by (E,Q, Ũ1, Ũ2, L1), where E is initial money vector, Q is the quantity vector,

Ũk is Leontief utility function matrix for segment k for k = 1, 2, and L1 =
[L1

i ]i∈A is the bound on maximum utility that can be obtained on the first
segment for each agent i. Note that there is no bound on the maximum utility
on the last segment.

The idea is to define the first segment, i.e., Ũ1, such that at any prices p,
each agent i buys it completely and the remaining money after that is equal to∑

j Wijpj . Further, we also make sure that exactly unit amount of each good
remains after consuming the first segment of each agent entirely. In that case, it
is clear that if we define Ũ2 = U , then on the second segment, Fisher becomes
exactly same as exchange, and any equilibrium of M′ will give an equilibrium
ofM and vice versa.

Let m
def
= |A|, Umax

def
= maxi,j Uij , and Δ

def
= mUmax. We set

Ei = 1, ∀i ∈ A
Qj = m+ 1, ∀j ∈ G

Ũ1
ij =

1

Δ
(
m+ 1

m
−Wij), ∀(i, j) ∈ (A,G)

L1
i = Δ, ∀i ∈ A

Ũ2 = U.

Note that Ũ1
ij > 0, ∀(i, j) as Wij ≤ 1, ∀(i, j), and Ũ1

ij ≤ Ũ2
ij , ∀(i, j) due to the

choice of Δ. Market clearing condition implies that (m+1)
∑

j pj =
∑

i Ei = m,
we have

∑
j pj = m

m+1 . The money spent on the first segment by agent i is

Δ
∑

j
1
Δ (m+1

m −Wij)pj = 1−
∑

j Wijpj. The remaining money left with agent i
is
∑

j Wijpj to spend on the second segment, which is exactly equal to the money
with agent i in M. Further, the total amount of good j needed to completely
buy the first segment of each agent is

∑
i(

m+1
m −Wij) = m, hence the remaining

amount is 1, ∀j. Since the utility on the second segment Ũ2 is same as U , hence
each market equilibrium of M′ will give a market equilibrium of M (up to
scaling) and vice versa. ��

Remark 5. The idea of designing the first segment so that it consumes extra
money was also used in [10] for proving that Fisher market with separable
piecewise-linear and concave utilities is PPAD-hard. However our reduction is
more general and does not require the instance of exchange market to be special
satisfying price regulation property as in [10].
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Abstract. In this paper, we study the algorithmic issues on the least-
core and nucleolus of threshold cardinality matching games (TCMG).
We first show that for a TCMG, the problems of computing least-core
value, finding and verifying least-core payoff are all polynomial time solv-
able. We also provide a general characterization of the least core for a
large class of TCMG. Next, based on Gallai-Edmonds Decomposition in
matching theory, we give a concise formulation of the nucleolus for a typ-
ical case of TCMG which the threshold T equals 1. When the threshold
T is relevant to the input size, we prove that the nucleolus can be ob-
tained in polynomial time in bipartite graphs and graphs with a perfect
matching.

1 Introduction

One of the important problems in cooperative games is how to distribute the total
profit generated by a group of agents to individual participants. The prerequisite
here is to make all the agents work together, i.e., form a grand coalition. To
achieve this goal, the collective profit should be distributed properly so as to
minimize the incentive of subgroups of agents to deviate and form coalitions of
their own. This intuition is formally captured by several solution concepts, such
as the core, the least-core, and the nucleolus, which will be the focus of this
paper.

The algorithmic issues in cooperative games are especially interesting since
the definitions of many solution concepts would involve in an exponential num-
ber of constraints [11]. Megiddo [9] suggested that finding a solution should be
done by an efficient algorithm, i.e., within time polynomial in the number of
agents. Deng and Papadimitriou [5] suggested the computational complexity be
taken into consideration as another measure of fairness for evaluating and com-
paring different solution concepts. Subsequently, various interesting complexity
and algorithmic results have been investigated [4, 6, 7].
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Matching game is one of the most important combinatorial cooperative games
which has attracted much attention [2,3,7]. Kern and Paulusma [7] presented an
efficient algorithm for computing the nucleolus for cardinality matching games.
Then Biró, Kern, and Paulusma [2] developed an efficient algorithm for com-
puting the nucleolus for matching games on weighted graphs when the core is
nonempty. Chen, Lu and Zhang [3] further discussed the fractional matching
games. We follow the stream and study the least-core and nucleolus of a natural
variation of matching games, called threshold matching games [1].

In this paper, we aim at computing the least-core and the nucleolus for the
threshold matching games on unweighted graph, especially when the core is
empty. Firstly, we show that for an arbitrary threshold value, the least-core can
be obtained in polynomial time through separation oracle technique. By linear
program duality, we further provide a general characterization of the least core
for a large class of threshold cardinality matching games, which can be used to
simplify the sequence of linear programs of the nucleolus. Secondly, we discuss the
algorithms for the nucleolus. Especially, when the threshold being one (which
is called edge coalitional games), we know that finding the least-core and the
nucleolus can be done efficiently based on a clear description of the least-core.
When the threshold value is relevant to the input size, we prove that the least-
core and the nucleolus can also be computed in polynomial time for the games
on two typical graphs, the graphs with a perfect matching or bipartite graphs.
To our surprise, in all the cases considered, the least-core and the nucleolus do
not depend on the value of the threshold. We conjecture our method can be
generalized into dealing with general graphs.

2 Preliminaries and Definitions

A cooperative game Γ = (N, v) consists of a player set N = {1, 2, · · · , n} and
a value function v : 2N → R with v(∅) = 0. ∀S ⊆ N , v(S) represents the
profit obtained by S without the help of others. We use x = (x1, x2, · · · , xn) to
represent the payoff vector while xi is the payoff for player i. For convenience,
let x(S) �

∑
i∈S xi. The core of Γ is defined as: C(Γ ) := {x ∈ Rn : x(N) =

v(N) and x(S) ≥ v(S), ∀S ⊆ N}.
A payoff vector in C(Γ ) guarantees that any coalition S cannot get more

profit if it breaks away from the grand coalition. When C(Γ ) = ∅, there is
a nature relaxation of the core: the least-core. Given ε ≤ 0, an imputation
x is in the ε-core of Γ , if it satisfies x(S) ≥ v(S) + ε for all S ⊂ N . Let
ε∗ := sup{ε|ε-core of Γ is nonempty}. The ε∗-core is called the least-core of Γ ,
denoted by LC(Γ ), and the value ε∗ is called the LC(Γ ) value. Obviously, the
optimal solution of the following linear program LP1 is exactly the value and
the imputations in LC(Γ ):

LP1 :

max ε

s.t.

⎧⎨⎩x(S) ≥ v(S) + ε, ∀S ⊂ N
xi ≥ v({i}), ∀i ∈ N
x(N) = v(N).
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Now we turn to the concept of the nucleolus. Given any payoff x, the excess of
a coalition S under x is defined as e(x, S) = x(S) − v(S), which can be viewed
as the satisfaction degree of the coalition S under the given x. The excess vector
is the vector θ(x) = (e(x, S1), e(x, S2), · · · , e(x, S2n−2)), where S1, · · · , S2n−2 is
a list of all nontrivial subsets of N that satisfies e(x, S1) ≤ e(x, S2) ≤ · · · ≤
e(x, S2n−2). The nucleolus of the game Γ , denoted by η(Γ ), is the payoff x that
lexicographically maximizes the excess vector θ(x).

Kopelowitz [8] proposed that η(Γ ) can be computed by recursively solving
the following sequential linear programs SLP (η(Γ )) (k = 1, 2, · · · ):

LPk :

max ε

s.t.

⎧⎪⎪⎨⎪⎪⎩
x(S) = v(S) + εr, ∀S ∈ Jr r = 0, 1, · · · , k − 1

x(S) ≥ v(S) + ε, ∀S ∈ 2N \ ∪k−1
r=0Jr

xi ≥ v({i}), ∀i ∈ N
x(N) = v(N).

Initially, we set J0 = {∅, N} and ε0 = 0. The number εr is the optimal value of
the r-th program LPr, and Jr = {S ⊆ N : x(S) = v(S) + εr, ∀x ∈ Xr}, where
Xr = {x ∈ Rn : (x, εr) is an optimal solution of LPr}. We call a coalition in Jr

fixed since its allocation is fixed to a number. Kopelowitz [8] showed that this
procedure converges in at most n steps.

We now introduce the definitions of threshold matching games. For a weighted
graph G = (V,E;w) and a threshold T ∈ R+, the corresponding threshold
matching game (TMG) is a cooperative game defined as Γ = (V,w;T ). We have
the player set V and ∀ S ⊆ V ,

v(S) �
{
1, if w(M) ≥ T , where M is the maximum weight matching of G[S]

0, otherwise

where G[S] is the induced subgraph by S on G, w(M) =
∑

e∈M w(e). By The-
orem 1 in [6], when C(Γ ) �= 0, the core and the nucleolus can be given directly.
However, when C(Γ ) = 0, the least-core and the nucleolus is hard to compute [1].

In the following we restrict ourselves to threshold cardinality matching game
(TCMG) Γ = (V ;T ) based on unweighted graph G = (V,E). That is, ∀S ⊆ N ,
v(S) = 1 if the size of a maximum matching in G[S] is no less than T , and
v(S) = 0 otherwise.

Let G = (V,E) be a graph. Given A ⊆ V , we use B and D denote the set
of even components and odd components in G \ A, respectively. A set A ⊆ V
is called a Tutte set if each maximum matching M∗ of G can be decomposed
as M∗ = MB ∪MA,D ∪MD, where MB (MD) induces a perfect (nearly perfect)
matching in any component B ∈ B (D ∈ D), and MA,D is a matching which
matches every vertex in A to some vertex in an odd component in D.

Lemma 1 (Gallai-Edmonds Decomposition) [10] Given G = (V,E), one
can construct a Tutte set A ⊆ V in polynomial time such that

1. all odd components D ∈ D are factor-critical;

2. ∀D ∈ D there is a maximum matching M∗ of G which does not completely
cover D (we say M∗ leaves D uncovered).
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3 Least-Core of TCMG

Throughout this section, let Γ = (V ;T ) be the TCMG defined on an unweighted
graph G = (V,E) with threshold T : 1 ≤ T ≤ v∗. Since both testing the core
nonemptiness and finding a core member can be done efficiently, we focus on the
case where C(Γ ) = ∅.

From a subtle analysis, we can conclude that the least-core LC(Γ ) of TCMG
can be characterized as the optimal solution of the following linear program
LPT

1 :

LPT
1 :

max ε

s.t.

⎧⎨⎩
x(MT ) ≥ 1 + ε, ∀MT ∈MT

x(V ) = 1
xi ≥ 0, i = 1, 2, · · · , n.

We can show that least-core can be solved efficiently by ellipsoid method with
a polynomial time separation oracle.

Theorem 1. If Γ = (V ;T ) is a TCMG with empty core, then the problems of
computing the LC(Γ ) value, finding a LC(Γ ) member and checking if an impu-
tation is in LC(Γ ) are all polynomial time solvable.

In the following, we further provide a characterization of the least core of
TCMG under some conditions. Denote MT = {M1,M2, · · · ,Mm} be the set of
all matchings whose sizes are exact T , and let a1, a2, · · · , am be the the indicator
vectors of the set of vertices that are covered by the matchings inMT . We have
the following result which is quite useful in the algorithm design for the nucleolus
in next sections.

Theorem 2. Let Γ = (V ;T ) be a TCMG with empty core. If (2Tn , · · · , 2T
n )n is

a convex combination of a1, a2 · · · , am, then the value of LC(Γ ) is ε = 2T
n − 1

and ( 1n , · · · ,
1
n )n ∈ LC(Γ ).

4 Nucleolus of TCMG

We firstly consider the edge coalitional game (ECG) Γ 1 = (V ; 1) defined on an
unweighted graph G = (V,E), i.e., the TCMG with threshold T = 1. When
C(Γ 1) = ∅, the linear program for LC(Γ 1) is as follows:

LP 1
1 :

max ε

s.t.

⎧⎨⎩xi + xj ≥ 1 + ε, ∀e = (i, j) ∈ E
x(V ) = 1
xi ≥ 0, i = 1, 2, · · · , n.

According to Gallai-Edmonds Decomposition, every graph can be decomposed
into A, B, D. Let D0 be the set of singletons in D (D0 may be empty). Let G0

be a bipartite graph with vertex set A∪D0 and edge set consisting of edges with
two endpoints in A and D0 separately. Find a maximum matching M0 in G0.
Denote the matched vertices in A and D0 by A1 and D01 with respect to M0.
Let A2 = A \A1 and D02 = D \ D01.
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If D02 = ∅, by making use of Theorem 2, the least-core value and an imputa-
tion in the least-core can be obtained directly:

Proposition 1 Given an ECG Γ 1 = (V ; 1), if D02 = ∅, then the value of
LC(Γ 1) is ε = 2

n − 1 and ( 1n , · · · ,
1
n )n ∈ LC(Γ ).

When D02 �= ∅, we cannot find such a convex combination. But if we delete
D02 from G, we can find a convex combination in G′ = G[V \ D02] by using
the similar argument Proposition 1. Denote Γ ′ to be the corresponding ECG
defined on G′ and the value of LC(Γ ′) is 2

n′ − 1 where n′ = n− |D02|. Consider
the following imputation x̃:

i ∈ V i ∈ V (B)
i ∈ V (A)

and
D02 → i

i ∈ V (A)
and

D02 � i

i ∈ V (D01)
and

D02 → i

i ∈ V (D01)
and

D02 � i
i ∈ V (D02)

x̃i
1
n′

2
n′

1
n′ 0 1

n′ 0

Here, D02 → i (or D02 � i) represents i is reachable (or unreachable) from
D02 by M0-alternating path in G0. We can easily check that the imputation x̃
with ε = 2

n′ − 1 is feasible, i.e., the value of LC(Γ 1) is also 2
n′ − 1.

We then focus on the computation of nucleolus. Since we have seen ε1 = 2
n′−1,

we can prove LP 1
k in SLP (η(Γ 1)) can be rewritten as:

LP 1
k :

max ε

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(e) = 2

n′ − ε1 + εr, e ∈ Er, r = 1, · · · , k − 1
xi = −ε1 + εr, i ∈ Vr, r = 1, · · · , k − 1

x(e) ≥ 2
n′ − ε1 + ε, e ∈ E \

⋃k−1
r=1 Er

xi ≥ −ε1 + ε, i ∈ V \
⋃k−1

r=1 Vr

x(V ) = 1, xi ≥ 0, i ∈ V.

Initially set E0 = V0 = ∅ and ε0 = 0. The number εr is the optimal value of the
r-th program LP 1

r , and Er = {e ∈ E : x(e) = 1 + εr, ∀x ∈ Xr}, Vr = {i ∈ N :
xi = 1− 2

n′ + εr, ∀x ∈ Xr}, where Xr = {x ∈ Rn : (x, εr) is an optimal solution
of LP 1

r }. Therefore, the size of the linear programs in LP 1
1 and SLP (η(Γ 1)) are

all polynomial. It follows that the least-core and the nucleolus of ECG can be
computed efficiently.

Theorem 3. Given an ECG Γ 1 = (V ; 1), the nucleolus η(Γ 1) can be obtained
in polynomial time.

Now we consider the general case Γ T = (V ;T ) with arbitrary threshold 1 ≤
T ≤ v∗. In the following theorem, we firstly show that for the graphs with
a perfect matching, the least-core of Γ T is independent of T . Then we use this
characterization to prove that the nucleolus of Γ T can be obtained in polynomial
time and η(Γ T ) is also independent of T .

Theorem 4. Suppose G = (V,E) is a simple graph which has a perfect matching
and Γ T = (V ;T ) is a TCMG defined on G. Let Γ 1 = (V ; 1) be the corresponding
ECG defined also on G. Then the value of LC(Γ T ) is εT1 = 2T

n −1 and LC(Γ T ) =
LC(Γ 1). Furthermore, η(Γ T ) = η(Γ 1).
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Let G = (L,R;E) be a bipartite graph with vertex set L∪R and edge set E.
Find a maximum matching M∗ in G. Denote the matched vertices in L and R
as L1 and R1 with respect to M∗ respectively. Let L2 = L\L1 and R2 = R\R1.
If both L2 and R2 are empty, it is reduced to the situation in Theorem 4. So we
assume at least one of L2 and R2 is not empty. If we delete L2 and R2 from G,
we can find the least-core value and an imputation in least-core by Theorem 4.
Denote Γ ′ to be the corresponding TCMG defined on G′ where G′ is the induced
subgraph by (L∪R) \ (L2 ∪R2) in G. Then the value of LC(Γ ′) is 2T

n′ − 1 where

n′ = n− |L2| − |R2|. It is obvious that 2T
n′ − 1 is an upper bound of the value of

LC(Γ T ). Actually, we can show that this is actually the value of the least-core
in the bipartite graphs.

Theorem 5. Suppose G = (L,R;E) is a bipartite graph and Γ T = (V ;T ) is a
TCMG defined on G. Let Γ 1 = (V ; 1) be the corresponding ECG defined also
on G. Then the value of LC(Γ T ) is εT1 = 2T

n′ − 1 and LC(Γ T ) = LC(Γ 1), here
n′ = n− |L2| − |R2|. Furthermore, η(Γ T ) = η(Γ 1).
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Abstract. We study the existence of approximate pure Nash equilibria
in social context congestion games. For any given set of allowed cost
functions F , we provide a threshold value μ(F), and show that for the
class of social context congestion games with cost functions from F , α-
Nash dynamics are guaranteed to converge to α-approximate pure Nash
equilibrium if and only if α > μ(F).

Interestingly, μ(F) is related and always upper bounded by Rough-
garden’s anarchy value [19].

1 Introduction

In recent years, social context games [1] have been used to model other-regarding
preferences in multiple scenarios.

In this paper, we continue the study of altruistic social context in congestion
games.Congestion games always admit a pure Nash equilibrium, where players
pick a single strategy and do not randomise. Rosenthal [18] showed this by
introducing an (exact) potential function. Such a function has the property that
if a single player deviates to an alternative strategy, then the potential changes
by the same amount as the cost of the deviating player.

The existence of pure Nash equilibria is a desirable property of games. Un-
fortunately, in congestion games this property is very fragile. Several general-
isations of congestion games do not possess such states in general. Examples
include weighted congestion games [8, 10, 15], player specific congestion games
[16], and social context congestion games [1]. A natural question to ask is how
much we have to relax the equilibrium condition in order to guarantee the ex-
istence of pure equilibria. More precisely, we are interested in the existence of
an α-approximate pure Nash equilibrium, a pure strategy profile in which no
player can improve by a factor α > 1. For weighted congestion games, this ques-
tion has recently been addressed by Hansknecht et al. [11], who showed that
α-approximate pure Nash equilibria exist for reasonable small values of α.

Our contribution. In this paper, we study the existence of approximate pure
Nash equilibria in social context congestion games.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 480–485, 2014.
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As our main result, we show that for the class of social context congestion
games with asymmetric social context and with cost functions from some given
set F of allowed cost functions, there is a threshold value μ(F), such that:

– For any α > μ(F), α-Nash dynamics converge to an α-approximate Nash
equilibrium (Theorem 1). In other words, such games are α-potential games.

– For α = μ(F), there exits a social context congestion game with cost func-
tions in F , where α-Nash dynamics cycle. We construct even a game with
binary social context where each player can choose between one of two re-
sources with identical cost function (Theorem 2).

The threshold value μ(F) is defined as follows:

Definition 1. For a set of allowed cost functions F , define

μ(F) = sup
d∈F

sup
x∈N

{
x · d(x)

(x− 1) · d(x− 1) + d(x)

}
.

Note that μ(F) is related to the anarchy value β(F) introduced by Roughgarden
[19]. He showed that the price of anarchy of non-atomic congestion games with
cost functions in F is upper bounded by

β(F) = sup
d∈F

sup
x,y≥0

{
x · d(x)

y · d(y) + (x− y) · d(x)

}
.

Obviously, μ(F) ≤ β(F) for all sets of cost functions F , since μ(F) is more
restrictive, i.e., it requires y = x − 1 and x ∈ N. For some F , e.g., polynomials
of maximum degree Δ with non-negative coefficients, μ(F) ≈ β(F). However,
μ(F) can also be significantly better, e.g. for exponential cost functions.

For general cost functions, μ(F) can also be unbounded. Consider, for exam-
ple, a convex function where d(x − 1) = 0 and d(x) = 1. For such functions,
one can easily adapt our analysis to show that α-improvements cycle for some
α = Θ(n). In Section 3, we show that if we restrict to symmetric social context,
there can be a cycle of Θ(

√
n)-improvements even for singleton games with bi-

nary context on two resources with convex cost functions. We also show that in
this case Θ(

√
n) is worst possible.

Related work. In recent years, the impact of altruism and spite in games has
been widely studied (see e.g.[13, 14] and references therein). Hoefer and Skopalik
[13] studied the existence of pure Nash equilibria in social context games. They
showed that such games admit an exact potential function if and only if they are
isomorphic to a social context congestion game with linear cost functions. They
also showed that singleton congestion games with binary social context might
not admit a pure Nash equilibrium for concave cost functions.1For convex cost
functions they left the existence of a pure Nash equilibrium as an open problem.
1 Our analysis contrasts this by showing that they admit 4/3-approximate pure Nash

equilibria.
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Congestion games without social context always admit a pure Nash equilib-
rium [18] and computing such an equilibrium is PLS-complete [7]. Skopalik and
Vöcking [20] and Caragiannis et al. [2, 3] study the complexity of α-approximate
pure Nash equilibria in different scenarios.

Harks et al. [12] characterise weighted congestion games admitting a poten-
tial function. Gairing and Klimm [9] provide such a characterisation for player-
specific congestion games.

Chien and Sinclair [5] studied the convergence to α-approximate Nash equilib-
ria in symmetric congestion games. Chen and Roughgarden [4] used approximate
potential functions to show the existence of approximate pure Nash equilibria
in network design games. Christodoulou et al. [6] used approximate potential
functions to provide tight bound on the efficiency of approximate pure Nash
equilibria.

Model. Let N = {1, · · · , n} be a non-empty finite set of n players and let
R = {1, · · · ,m} be a non-empty finite set of m resources. A congestion game is
a tuple (N,R, (Si)i∈N , (dr)r∈R), where each player chooses as his pure strategy
a set si ⊆ R from a given set of available strategies Si ⊆ 2R. A state or strategy
profile s = (s1, . . . , sn) specifies a strategy for every player. Each resource r ∈ R is
associated with a cost or delay function dr : N→ R+. The load nr(s) of resource
r in a state s is the number of players using resource r, i.e., nr(s) = |{i ∈ N :
r ∈ si}|. The personal cost of a player i is given by ci(s) =

∑
r∈si

dr(nr(s)).
We extend the definition of congestion games by embedding in it a social

context. A social context is defined by an n × n matrix F = (fij)i,j∈N where
fij expresses player i’s interest towards player j. A social context is symmetric,
if fij = fji for all i, j ∈ N . Otherwise, the context assymetric. Throughout, we
assume that fii ≥ fij for all i, j ∈ N and that the self-interest value for every
player i is scaled to fii = 1. This implies that fij ≤ 1.

The perceived cost of a player i ∈ N is given by a linear combination of his
personal cost and a weighted sum of personal costs of the remaining players,

ci(s, F ) = ci(s) +
∑

j∈N,j �=i

fij · cj(s) =
∑
j∈N

fij · cj(s).

The social context extension of congestion games is classified as a cost minimi-
sation game where every player wishes to minimise his perceived cost.

In a social context congestion game, for α ≥ 1, a unilateral deviation is called
an α-improvement move for player i if

ci(si, s−i, F ) > α · ci(s′i, s−i, F ).

A sequence of α-improvement moves is called α-Nash dynamics. An
α-approximate pure Nash equilibrium in a game with social context is a state
s ∈ S where

ci(si, s−i, F ) ≤ α · ci(s′i, s−i, F ), ∀i, ∀s′i ∈ Si.

For α = 1, such a state s is a pure Nash equilibrium.
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For α ≥ 1, a function Φ is called an α-potential function if ci(si, s−i, F ) >
α · ci(s′i, s−i, F ) implies Φ(s) > Φ(s′i, si). For α = 1, this definition coincides with
the definition of generalised potential functions in [17]. Such a function is called
an exact potential function if ci(s)− ci(s

′
i, s−i) = Φ(s)−Φ(s′i, s−i) for every state

s, player i ∈ N and strategy s′i ∈ Si.

2 General Social Context

In this section, we allow for general asymmetric social context. We show that for
the class of social context congestion games with cost functions from any given set
of functions F , α-Nash dynamics are guaranteed to converge to α-approximate
pure Nash equilibrium if and only if α > μ(F). We start by showing convergence
for any α > μ(F).
Theorem 1. In congestion games under social context with cost functions in
F , α-Nash dynamics converge to an α-approximate Nash equilibrium for any
α > μ(F).
Proof. Denote φr

i (s) =
∑

j∈[n]:sj=r fij . Assume by way of contradiction that
there exists a cycle of α-improving steps. On this cycle fix a step s→ s′, where
s′ = (s−i, s

′
i) of some player i, such that

ci(s) =
∑
r∈si

dr(nr(s)) ≤ ci(s′) =
∑
r∈s′i

dr(nr(s′)). (1)

Such a step must exist, since otherwise each step in the cycle improves Rosen-
thal’s potential function [18]. In this step, player i improves by a factor∑

r∈R φr
i (s) · dr(nr(s))∑

r∈R φr
i (s′) · dr(nr(s′))

≤
∑

r∈si\s′i
φr
i (s) · dr(nr(s)) +

∑
r∈s′i\si

φr
i (s) · dr(nr(s))∑

r∈si\s′i
φr
i (s′) · dr(nr(s′)) +

∑
r∈s′i\si

φr
i (s′) · dr(nr(s′))

Now for all r ∈ s′i \ si, we have dr(nr(s′)) ≥ dr(nr(s)) and φr
i (s

′) = φr
i (s) + 1,

and for r ∈ si \ s′i, we have dr(nr(s′)) = dr(nr(s) − 1) and φr
i (s

′) = φr
i (s) − 1.

Moreover, (1) implies
∑

r∈si\s′i
dr(nr(s)) ≤

∑
r∈s′i\si

dr(nr(s′)). Using these, we
can upper bound our factor by∑

r∈si\s′i
φr
i (s) · dr(nr(s)) +

∑
r∈s′i\si

φr
i (s) · dr(nr(s))∑

r∈si\s′i
φr
i (s′) · dr(nr(s′)) +

∑
r∈s′i\si

(φr
i (s) + 1) · dr(nr(s′))

≤
∑

r∈si\s′i
φr
i (s) · dr(nr(s))∑

r∈si\s′i
φr
i (s′) · dr(nr(s′)) +

∑
r∈s′i\si

dr(nr(s′))

≤
∑

r∈si\s′i
φr
i (s) · dr(nr(s))∑

r∈si\s′i
(φr

i (s)− 1) · dr(nr(s)− 1) +
∑

r∈si\s′i
dr(nr(s))

≤ max
r∈si\s′i

φr
i (s) · dr(nr(s))

(φr
i (s)− 1) · dr(nr(s)− 1) + dr(nr(s))

.
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where we used (1) in the second to last step. Observe, that this expression is
increasing in φr

i (s) and for each r ∈ si, we have φr
i (s) =

∑
j∈[n]:sj=r fij ≤∑

j∈[n]:sj=r 1 = nr(s). Thus

max
r∈si\s′i

φr
i (s) · dr(nr(s))

(φr
i (s)− 1) · dr(nr(s)− 1) + dr(nr(s))

≤ max
r∈si\s′i

nr(s) · dr(nr(s))
(nr(s)− 1) · dr(nr(s)− 1) + dr(nr(s))

≤ μ(F),

which is a contradiction to α > μ(F) . ��

We proceed by providing a matching lower bound.

Theorem 2. Given a set of cost functions F , there exists a singleton congestion
game with asymmetric binary social context with cost functions from F , where
μ(F)-Nash dynamics cycle, even for |R| = 2 resources with identical latency
functions.

Proof. Given F we construct a congestion game with asymmetric binary social
context as follows. Let d ∈ F be the cost function and x ∈ N the integer that
achieve μ(F) in Definition 1. Construct a game with two resources with identical
cost function d and a cyclic ordered set N = {0, . . . , 2x−2} of n = 2x−1 players.
The asymmetric binary social context F is defined as follows: Each player i ∈ N
considers the next x − 1 in N as friend, i.e., fij = 1 if j ∈ [i, i + x − 1] and
fij = 0, otherwise. Here intervals are considered modulo 2x− 1.

Define the initial state s where the x players in {0, . . . , x− 1} are assigned to
one resource and the remaining x−1 players {x, . . . , 2x−2} to the other resource.
In this profile, the perceived cost of player 0 is c0(s) = x · d(x). By deviating
to the other resource, player 0 can achieve a perceived cost of d(x) + (x − 1) ·
d(x − 1). Thus, this is an α-improving step for α = x·d(x)

(x−1)·d(x−1)+d(x) = μ(F).
By symmetry of F , the remaining players can also iteratively improve in the
order {1, . . . , 2x− 2} by the same factor. We end up in a state which is similar
to s, except that each player is now assigned to the other resource. The theorem
follows. ��

3 Symmetric Binary Context

In this section, we consider convergence of α-Nash dynamics for social context
congestion games with symmetric binary context.

Theorem 3. In congestion games under social context, for |R| = 2 and α ≥√
2n, α-Nash dynamics converge to an α-approximate Nash equilibrium.

The asymptotical tightness follows from the next theorem.

Theorem 4. There exists a singleton congestion game with symmetric binary
social context, where α-Nash dynamics cycle for α = 1

3
√
2
·
√
n, even for |R| = 2

resources with identical convex latency functions.
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Abstract. Cluster formation games are games in which self-organized
groups (or clusters) are created as a result of the strategic interactions of
independent and selfish players. We consider fractional hedonic games,
that is, cluster formation games in which the happiness of each player in
a group is the average value she ascribes to its members. We adopt Nash
stable outcomes, where no player can improve her utility by unilaterally
changing her own group, as the target solution concept and study their
existence, complexity and performance for games played on general and
specific graph topologies.

1 Introduction

Hedonic games, introduced in [6], are games in which players have preferences
over the set of all possible player partitions (called clusterings). In particular, the
utility of each player only depends on the composition or structure of the cluster
she belongs to. Cluster formation is of fundamental importance in a variety of
social, economic, and political problems. Therefore, a big stream of research con-
sidered this topic from a strategic cooperative point of view [5,7,9]. Nevertheless,
studying strategic solutions under a non-cooperative scenario becomes important
when considering huge environments (like the Internet) lacking a social planner
or where the cost of coordination is tremendously high. In this setting, a cluster-
ing is Nash stable if no player can improve her utility by unilaterally changing
her own cluster. A non-cooperative research on hedonic games can be found in
[8].

A notably class of hedonic games is that of additively separable ones [2,5],
in which the utility of a player is given by the sum of the weights of the edges

� This work was partially supported by PRIN 2010–2011 research project ARS Tech-
noMedia: “Algorithmics for Social Technological Networks” and by COST Action
IC1205 on Computational Social Choice.
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being incident to the other players belonging to the same cluster. Moreover,
within this class of games, the symmetric case, where the weights are given by
an undirected edge-weighted graph in which nodes represent players and edge
weights measure the happiness of the players for belonging to the same cluster,
has received significant attention [3,5].

In this paper, we consider the class of (symmetric) fractional hedonic games
recently introduced in [1]. The main difference with respect to additive separable
hedonic games is that, in the fractional model, the utility of each player in a clus-
ter is divided by the number of players belonging to it. In such a way, fractional
hedonic games model natural behavioral dynamics in social environments that
are not captured by additive separable ones: one usually prefers having a couple
of good friends in a cluster composed by few other people rather than being part
of a crowded cluster populated by uninteresting guys. We analyze this class of
games from a non-cooperative perspective, with the aim of understanding the
existence, computability and performance of Nash stable clusterings.

We first show that in presence of negative edge weights, Nash stable cluster-
ings are not guaranteed to exist, while, if edge weights are non-negative, the
basic outcome in which all players belong to the same cluster (basic Nash stable
clustering) is Nash stable. Then, we evaluate their performance by means of the
widely used notions of price of anarchy and price of stability. We give an upper
bound of O(n) on the price of anarchy for weighted graphs and show that it is
asymptotically tight even for unweighted paths. We also prove a lower bound
of Ω(n) on the price of stability holding even for weighted stars. We observe
that, being the basic Nash stable clustering the responsible for such a bad per-
formance, one may ask whether Nash stable clusterings of better quality may
exist and be efficiently computed. To this aim, we show that Nash stable clus-
terings may not be reached by independent selfish agents unless some kind of
centralized control is enforced in the game (that is, uncoordinated best-response
dynamics may not converge to stable outcomes), even for unweighted bipartite
graphs. This last result, in particular, rises the question of the existence of effi-
cient algorithms for the determination of good quality Nash stable clusterings.
To this aim, however, we prove that computing the best quality Nash stable
clustering, as well as an optimal (non necessarily stable) one, is an NP-hard
problem. Given the above negative and impossibility results, we focus on frac-
tional hedonic games played on particular graph topologies such as unweighted
bipartite graphs and unweighted trees which already pose challenging questions
and require non-trivial approaches. For bipartite graphs we show that the price
of stability is strictly greater than 1 and provide a polynomial time algorithm
computing a Nash stable clustering approximating the social optimum by a fac-
tor strictly smaller than 2 (thus proving that 2 is an upper bound to the price of
stability in this setting). For trees, we prove that the price of stability is 1 and
show how to constructively compute in polynomial time an optimal Nash stable
clustering.

Due to space limitations, most of the proofs are omitted. All details can be
found in the full version of the paper.
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2 Definitions, Notation and Preliminaries

For an integer n > 0, denote with [n] the set {1, . . . , n}. Let G = (N,E,w),
with w : E → R>0 (we consider positive weights because in Lemma 1 we prove
that Nash stable clusterings may not exist with negative weights), be an edge
weighted connected undirected graph. We denote with n = |N | and with wu,v

the weight of edge (u, v) ∈ E. Furthermore, given any set of edges X ⊆ E, let
W (X) =

∑
(u,v)∈X wu,v. We say that G is unweighted when wu,v = 1 for each

(u, v) ∈ E. Given a subset of nodes S ⊆ N , GS = (S,ES) is the subgraph of
G induced by the set S, i.e., ES = {(u, v) ∈ E : u, v ∈ S}. Nu(S) denotes the
neighbors of u in S, i.e., Nu(S) = {v ∈ S : (u, v) ∈ E}, and Eu(S) the edges in
ES being incident to u, i.e., Eu(S) = {(u, v) ∈ E : (u, v) ∈ ES}.

The fractional hedonic game induced by G, denoted as G(G), is the non-
cooperative strategic game in which each node u ∈ N is associated with a selfish
player (or agent) and each player chooses to join a certain cluster (assuming that
candidate clusters are numbered from 1 to n). Hence, a state of the game, that
we will call in the sequel a clustering, is a partition of the agents into n clusters
C = {C1, C2, . . . , Cn} such that Cj ⊆ N for each j ∈ [n],

⋃
j∈[n] Cj = N and

Ci ∩Cj = ∅ for any i, j ∈ [n] with i �= j. Notice that every cluster does not need
to be necessarily non-empty. If u ∈ Ci, we say that u is a member of Ci. We
denote by C(u) the cluster in C of which agent u is a member. In a clustering C,

the payoff (or utility) of agent u is defined as pu(C) = W (Eu(C(u)))
|C(u)| . Each agent

chooses the cluster she belongs to with the aim of maximizing her payoff. We
denote by (C, u, j), the new clustering obtained from C by moving agent u from
C(u) to Cj ; formally, (C, u, j) = C \ {C(u), Cj} ∪ {C(u) \ {u}, Cj ∪ {u}}. An
agent deviates if she changes the cluster she belongs to. Given a clustering C, an
improving move (or simply a move) for player u is a deviation to any cluster Cj

that strictly increases her payoff, i.e., pu((C, u, j)) > pu(C). Moreover, player u
performs a best-response in clustering C by choosing a cluster providing her the
highest possible payoff (notice that a best-response is also a move when there
exists a cluster Cj such that pu((C, u, j)) > pu(C)). An agent is stable if she
cannot perform a move; a clustering is Nash stable (or is a Nash equilibrium)
if every agent is stable. An improving dynamics is a sequence of moves, while
a best-response dynamics is a sequence of best-responses. A game has the finite
improvement path property if it does not admit an improvement dynamics of
infinite length. Clearly, a game possessing the finite improvement path property
always admits a Nash stable clustering. We denote with NSC(G(G)) the set of
Nash stable clusterings of G(G). The social welfare of a clustering C is the
summation of the players’ payoffs, i.e., SW(C) =

∑
u∈N pu(C). We overload

the social welfare function by applying it also to single clusters to obtain their
contribution to the social welfare, i.e., SW(Ci) =

∑
u∈Ci

pu(C) so that SW(C) =∑
i∈[n] SW(Ci).

Given a game G(G), an optimal clustering C∗ is one that maximizes the
social welfare of G(G). We denote SW(C∗) as SW∗(G(G)). A clustering C
is feasible if GCi is connected, for every i ∈ [n]. Notice that an optimal
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configuration is always feasible. The price of anarchy of a fractional hedonic game
G(G) is defined as the worst-case ratio between the social welfare of a Nash sta-

ble clustering and the social optimum: PoA(G(G)) = maxC∈NSC(G(G))
SW∗(G(G))

SW(C) .

Analogously, the price of stability of G(G) is defined as the best-case ratio be-
tween the social welfare of a Nash stable clustering and the social optimum:

PoS(G(G)) = minC∈NSC(G(G))
SW∗(G(G))

SW(C) .

Next two lemmas characterize the existence of Nash stable clustering in frac-
tional hedonic games.

Lemma 1. There exists a graph G containing edges with negative weights such
that G(G) admits no Nash stable clusterings.

Lemma 2. For any weighted graph G (with positive weights), NSC(G(G)) �= ∅.

3 General Graphs

This section is devoted to results concerning general graph topologies.

Theorem 1. For any weighted graph G, PoA(G(G)) ≤ n− 1.

Theorem 2. For any integer n ≥ 2, there exists an unweighted path Gn such
that PoA(G(Gn)) = Ω(n).

Theorem 3. For any integer n ≥ 2, there exists a weighted star Gn such that
PoS(G(Gn)) = Ω(n).

Theorem 4. There exists an unweighted bipartite graph G such that G(G) does
not possess the finite improvement path property even under best-response dy-
namics.

Theorem 5. Given a fractional hedonic game, the problem of computing a Nash
stable clustering of maximum social welfare is NP-hard, as well as the problem
of computing an optimal (not necessarily stable) clustering.

4 Bipartite Graphs

In this section, we focus on games played on unweighted bipartite graphs.

Theorem 6. There exists an unweighted bipartite graph G such that
PoS(G(G)) > 1.

We now show how to constructively compute in polynomial time a Nash stable
clustering for such graph topology with good social welfare. As an implication,
we obtain an upper bound to the price of stability. Given an unweighted bipartite
graph G, let V C be a minimum vertex cover of G, and let V C = N \ V C. It
is well known that V C is a maximum independent set of G. Moreover, due to
the König’s theorem, we know that, in a bipartite graph, the number of vertices
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in a minimum vertex cover equals the number of edges in a maximum matching
and the minimum vertex cover can be computed in polynomial time. We will
construct a Nash stable clustering that is composed by |V C| non-empty clusters
where, for each player u ∈ V C, we have a different cluster Cu that is a star
graph having node u as its center. We obtain such a clustering by considering a
particular dynamics of the game G(G). Candidate clusters are numbered from 1
to |V C|, that is, one cluster for each node in V C. Let Cu be the cluster associated
to player u ∈ V C. We fix the strategy of each player u ∈ V C to Cu and let only
players in V C move in the dynamics. The strategy set of a player u ∈ V C is
{Cv|(u, v) ∈ E}. We consider the dynamics starting from a clustering where
each cluster contains at least 2 nodes whose existence is guaranteed by König’s
theorem, i.e., for each edge (u, v) of the maximum matching associated to V C,
without loss of generality we assume u ∈ V C and v ∈ V C, therefore we have a
cluster Cu and the starting strategy of v ∈ V C is the cluster Cu. In this section,
we refer to such a dynamics as D. The following property holds.

Property 1. At each step of the dynamics D, for each u ∈ V C, we have |Cu| ≥ 2.

Lemma 3. The dynamics D converges after a number of moves which is poly-
nomial in the number of players.

Next lemma claims that, once the dynamics reaches a stable clustering (which
is guaranteed by Lemma 3) henceforth called CD, the players in V C are also
stable and therefore CD is Nash stable for the game G(G).

Lemma 4. CD is Nash stable for G(G).

We conclude by proving the approximation guarantee yielded by CD

Theorem 7. The Nash stable clustering CD is such that SW(C∗)
SW(CD) < 2.

Proof. Let V C be the minimum vertex cover of G used to define the dynamics D.
By Property 1, we get that the contribution to the social welfare of any cluster
CD(u), where u ∈ V C, is at least 1, i.e., SW(CD(u)) ≥ 1 for any u ∈ V C. Let
C∗

i be a non-empty cluster of an optimal clustering C∗. We partition the nodes

of C∗
i in two sets XV C

i = C∗
i ∩V C and XV C

i = C∗
i ∩V C. We distinguish between

two cases:
i) XVC

i = ∅; it follows that C∗
i ⊆ V C. Therefore, since V C is an independent

set, it follows that SW(C∗
i ) = 0.

ii) XV C
i �= ∅; in this case the total number of edges in C∗

i is at most

|XV C
i ||XVC

i |+ 1
2 |XV C

i |2.
Hence, the contribution to the optimal social welfare of cluster C∗

i verifies

SW(C∗
i ) ≤ 2

|XV C
i ||XV C

i |+ 1
2 |XV C

i |2

|XV C
i |+ |XVC

i |
= 2|XV C

i |
|XV C

i |+ 1
2 |XV C

i |
|XV C

i |+ |XV C
i |

. (1)

On the other hand, in the Nash stable clustering CD, for any u ∈ XV C
i , there

is a cluster CD(u) whose contribution to the social welfare is at least one; thus,
we get
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∑
u∈XV C

i

SW(CD(u)) ≥ |XV C
i |. (2)

Dividing (1) by (2) we obtain

SW(C∗
i )∑

u∈XV C
i

SW(CD(u))
≤ 2

|XVC
i |+ 1

2 |XVC
i |

|XV C
i |+ |XV C

i |
< 2.

By summing over all the non-empty clusters C∗
i of the optimal clustering C∗

the theorem follows. ��

5 Trees

In this section, we focus on games played on unweighted trees.

Theorem 8. For any unweighted tree graph G, PoS(G(G)) = 1. Moreover, an
optimal clustering for G(G) can be computed in polynomial time.

6 Conclusions

There are several open problems that still need to be addressed. For instance,
some of the provided upper and lower bounds are not tight, so there are some
gaps that need to be closed. Among them, the major one is that requiring the de-
termination of significant bounds to the price of stability for general unweighted
graphs. Another interesting research direction would be considering directed
graphs where the weight of a directed arc (u, v) denotes the value player u has
for player v.
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Abstract. We study two-sided matching markets where the matching
is preceded by a costly interviewing stage in which firms acquire infor-
mation about the qualities of candidates. Our focus is on the impact of
the signals of quality available prior to the interviewing stage. Using a
mixture of simulation, numerical, and empirical game theoretic analysis,
we show that more commonality in the quality signals can be harmful,
yielding fewer matches as some firms make the same mistakes in choosing
whom to interview. Relatively high and medium quality candidates are
most likely to suffer lower match probabilities. The effect can be miti-
gated when firms use “more rational” interviewing strategies, or through
the availability of private signals of candidate quality to the firms.

Keywords: matching, information acquisition, empirical game analysis.

1 Introduction

The matching literature typically assumes that agents know their own prefer-
ences before the mechanism is run. Recently, there have been some papers that
try to relax this stringent assumption [1,2,7], or to look at cases where the
mechanism does not wish to elicit complete preference information [4]. In one-
shot settings, agents come into the matching setting with unknown (or partially
known) true preferences, but can learn more through a costly information ac-
quisition (interviewing) stage before the actual matching happens (for example,
academic job markets) [7,13]; in repeated settings, the “match” is not final, but
conveys information to participants on quality [5,2].

Lee and Schwartz proposed what may be the first model of matching with
an interviewing stage, where employers first simultaneously choose a subset of
workers to interview, and then, in a second stage, submit preferences to a (Gale-
Shapley) matching algorithm that then forms the matching [7]. The basic ques-
tion that Lee and Schwartz ask is about the employer’s decision of whom to
interview, given that interviews are costly and all employers and workers on ei-
ther side of the market are ex ante identical. The main complexity is then that
the marginal benefit of interviewing a worker goes down as her number of other
interviews goes up. The major result is that in symmetric equilibria (where each
employer and worker has the same number of interviews), the number of agents

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 492–497, 2014.
c© Springer International Publishing Switzerland 2014
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matched goes up in the overlap, a measure characterizing the number of common
interview partners among agents.

Our focus is on labor markets with interviewing, and in particular, the role
of information in the interviewing and matching process. Consider the match-
ing process that academic departments go through when interviewing and hiring
faculty candidates. Typically, departments have a budget, say they can interview
three or four candidates for a position. They start off the process by receiving
a noisy signal about their preferences over candidates – CVs, letters of recom-
mendation, and word-of-mouth can yield much information about candidates,
but not nearly as much as an in-person interview. Once they have received these
noisy signals, each department chooses which candidates to interview. Following
Lee and Schwartz [7], after all the interviews have taken place, we can model
the matching process as Gale-Shapley matching with departments submitting
ranked lists of the candidates they interviewed. While this ignores some fric-
tions (like exploding offers [3,8]) that can be important, those are likely to be a
second-order effect compared with the choice of candidates to interview. In con-
trast with Lee and Schwartz, who consider ex ante identical firms and workers,
we are interested in situations where firms and workers are of different qualities,
and some quality signals are available prior to the interviewing stage.

We look at a stylized model where there is a universally shared, common
knowledge ranking of all firms, and there is a “true” universally shared ranking of
all candidates, but this true ranking is not known – instead, firms receive different
signals of candidates’ rankings or qualities. If the true ranking were known to
everyone, there would be only one stable matching, the assortative one, and any
rational interviewing process would lead to the stable outcome in the matching
stage. When signals of quality or ranking are noisy, firms must reason both about
the true quality of candidates and about strategic issues in deciding whom to
interview. This can lead to inefficiencies, where some candidates and firms do
not end up getting matched whereas they would have with better information;
these inefficiencies may fall disproportionately on some portion of the population
of candidates and firms.

We are particularly interested in the roles of common and private information
on aggregate and distributional outcomes in such matching markets. Common
signals are shared across firms – for example, the quality of a CV, number
of publications, LinkedIn endorsements, or public contributions to open source
projects, can all be thought of as common signals of varying precision. Private
signals can be generated through phone screens, preliminary interviews, etc. We
assume that common and private signals are conditionally independent given the
true ranking or value of the candidate. The central question of this paper is the
effect of the relative precision of common signals and private signals on market
outcomes. While a perfect common signal would reduce the problem to one
with known rankings of both firms and candidates (and lead to the assortative
matching and no inefficiencies under any reasonable model), our main finding
is that the presence of a strong, but imperfect, common signal in addition to
existing private signals can actually have significant negative effects, with fewer
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matchings occurring than with a private signal alone. The burden of this is
typically borne by the candidates who are ranked relatively high (but not in
the highest echelon). The mechanism is interesting – when these candidates end
up with a common signal that is “too high”, they interview at firms that are
ranked too high for their actual quality. The firms that are closer to their true
range choose not to interview them, but when these candidates’ true qualities
are revealed, they often don’t get offers from the places that did interview them.

These findings are robust to several different choices of how signals of rankings
and values are generated, and to different strategic choices by firms of whom to
interview. The latter question is independently interesting – we demonstrate the
intuition for our main result with a simple, but realistic, interviewing strategy
where firms interview candidates “around” their true ranking. We then turn
to a form of empirical game theoretic analysis [14] to explore a richer space of
interviewing strategies, yielding “more rational” strategic decisions. This can
alleviate the problem, with more agents being matched when there is only a
common signal, but does not provide much benefit in terms of the number of
agents matched when firms have access to both common and private signals.

2 Model and Inference

There are n workers and n firms, represented by the sets W = {w1, ..., wn} and
F = {f1, ..., fn}. The matching market operates in two stages, following the
model of Lee and Schwarz [7]. In the first stage, each firm selects k workers
(or candidates) to interview; this decision is made on the basis of information
present in the signals received by firms (described below). During the interview
process, the true ranking of the set of candidates that is interviewed is revealed to
each firm. The second stage can then be thought of as a Gale-Shapley matching
where each firm submits a ranked list of the candidates it interviewed (others
are unacceptable), and each candidate submits a ranked list of firms.

All workers know their preference rankings over employers with certainty. We
assume that the workers all have exactly the same preferences over potential
employers. Further, there exists a universal “true” ranking of all the workers
as well, but this ranking is unobserved. Employers receive a private signal of
their preferences as well as a common signal. In this paper we consider two
possibilities. In random-utility models wi has a true value vi (which is drawn
from a normal distribution). fj ’s private signal sj = (s1, s2, . . . sn). Each si, 1 ≤
i ≤ n is a noisy realization of the true value of vi, corrupted by zero-mean
Gaussian or uniform noise. The common signal, received by all employers, is a
single (noisy) vector zC = (z1, z2, . . . zn).

In the Mallows model [11], signals are directly over the ranking space.
Following Lu and Boutilier’s [9] description of its form, we say that each em-
ployer’s private signal is a ranking Γj sampled from the distribution which assigns

Pr(Γj |Γ, φp) = 1
Zφp

d(Γj ,Γ ), where Γ is the modal (true) ranking, φp ∈ (0, 1] is
a dispersion parameter such that the smaller φp is, the more the distribution
will be concentrated around the modal ranking, d is a distance function between
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rankings (we use the Kendall tau distance), and Z is a normalizing factor. The
common signal, ΓC is sampled from a Mallows model with the same modal rank-
ing Γ and a possibly different dispersion parameter φC . In both cases, we assume
common knowledge of all the relevant parameters of the distributions; the only
unknowns are the true values or rankings.

In both the random utility and Mallows models, it is computationally diffi-
cult to perform full Bayesian reasoning over the whole space of possible posterior
rankings, so we assume that firms compute the single most likely posterior rank-
ing from the common and private signals, which we denote as Γ̃j , and use this
single ranking for interviewing decisions. We defer details of the inference pro-
cedures to a longer version of this paper, but note that, in the random utility
models, the procedures follow from those developed by MacQueen [10], while in
the Mallows model, we use an algorithm based on the one devised by Qin et al
[12] in the coset-permutation distance based stagewise (CPS) model (which is
equivalent to the Mallows model using the Kendall tau distance).

3 Results

We first examine outcomes in a market where firms all use the same simple
and intuitive interviewing strategy. They each compute their posterior ranking
based on the available signals, and then interview the k candidates who are
ranked “around” the firms own ranking (e.g. with k = 5, the firm ranked 11
interviews candidates 9 through 13), with the firms at the top and bottom of
the rankings adjusting their interview sets downwards and upwards as needed.
We run 50000 simulations for each of the random utility and Mallows models;
each simulation is of a market with 30 firms and 30 workers, each with interview
budget 5. In each run, we hold the private signal parameters fixed, which are
σp, bp in the random utility models and φp in the Mallows model, and vary the
common signal parameters, which are σC , bC in the random utility models and
φC in the Mallows model.

Based on the observation that the only stable matching if true preferences were
known is the assortative matching, and that adding a common signal gives ev-
eryone more information about the true ranking, one would assume that adding
the common signal always leads to more agents being matched. At the extreme,
this is obvious – suppose the common signal had no noise and contained perfect
information. Then the rational inference is just to use that signal. In this case,
the assortative match would occur for sure.

But it turns out that, as the signal becomes less precise, the number of un-
matched agents goes up sharply, and quickly exceeds the expected number of
unmatched agents when no common signal is present! Surprisingly, on the can-
didates’ side, the candidates who are less likely to get matched are actually the
higher ranked ones (except for the very top ranked ones) (see Figures 1 and 2).
What is the mechanism at play? In a more coordinated environment, as created
by a common signal, the correlation between employers’ estimates of a workers
desirability is higher. Thus, it is more likely that several employers all make the
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Fig. 1. Average number of agents left unmatched (Y axis) versus (decreasing) “pre-
cision” of the common signal (σC for Gaussian noise (left), bC for uniform noise
(middle), and φC for the Mallows model (right)), holding the precision of private
signals fixed. The dashed line shows the number that are left unmatched when there
is no common signal.
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Fig. 2. The probability that the candidate of a particular rank is matched when firms
have access to both a common signal and a private signal. Left: Gaussian noise (σC =
0.6, σp = 0.5), Center: Uniform noise (bC = 0.6, bp = 0.5), Right: Mallows model
(φC = 0.7, φp = 0.6).

mistake of thinking a particular worker is too good or too bad for them. For
candidates, the truth-revealing nature of the interview phase means that it can
be disadvantageous to “place too high” in the first (interview selection) stage.1

When opinions are more independent, as is the case when the private signal is
stronger, it is less likely that someone will fall through the cracks in this man-
ner. Therefore, more homogeneity of opinion, with even a little bit of noise, can
create worse outcomes!

Alternative Interviewing Strategies. Our results thus far apply to a simple in-
terviewing strategy. What if employers used more sophisticated strategies? We
analyze this using the basic idea of empirical game theoretic analysis [14,6]. The
fundamental strategic decision faced by a firm is to choose a set of k candidates

1 For example, suppose a middle-ranked candidate gets early “buzz” on the job market,
he may not get interviews from departments actually ranked in his vicinity because
they think he is out of reach, but may not get offers once he is interviewed by higher
ranked places and they realize he isn’t quite at their level.



Two-Sided Matching with Interviews 497

to interview. Game-theoretically, an (ex-ante) Bayes-Nash equilibrium would be
one where each firm would not change the set of candidates it chose to inter-
view, given the strategies of other firms, and the information available to them
prior to the interview stage. Unfortunately, this game is very complex to ana-
lyze. Therefore, we restrict our attention to a manageable set of strategies: each
firm can decide on any set of k contiguously ranked candidates (in its posterior
private ranking). We can determine (approximate) equilibrium firm strategies
using an iterative empirical method (since firm i’s best strategy depends only
on the choices of the firms ranked above i, and also has no effect on the utilities
of those firms).

Can these “more rational” interviewing strategies resolve some of the ineffi-
ciency in terms of the number of participants left unmatched? Our initial ex-
periments (available in a longer version of this paper) indicate that with only
common signals, when the penalty for being unmatched is high enough, the bet-
ter strategies, do, in fact, reduce the number left unmatched. However, with both
common and private signals, the more complex strategies do not provide much,
if any, societal benefit.
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Schütz, Andreas 453
Seeman, Lior 249
Sheffet, Or 371
Simon, Sunil 441
Skopalik, Alexander 30, 435, 480
Sloan, Peter 292
Sornat, Krzysztof 203
Spirakis, Paul 58
Starnberger, Martin 44
Sun, Xiaoming 474

Thain, Nithum 294
Tsitsiklis, John N. 322

Uetz, Marc 429
Urner, Ruth 338

Vadhan, Salil 371
Vazirani, Vijay V. 338
Végh, László A. 294
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