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Abstract. We analyze the distribution of PageRank on a directed con-
figuration model and show that as the size of the graph grows to infinity,
the PageRank of a randomly chosen node can be closely approximated
by the PageRank of the root node of an appropriately constructed tree.
This tree approximation is in turn related to the solution of a linear
stochastic fixed-point equation that has been thoroughly studied in the
recent literature.

1 Introduction

Google’s PageRank proposed by Brin and Page [4] is arguably the most influen-
tial technique for computing centrality scores of nodes in a network, see [10] for a
thorough review. In this paper we analyze the power law behavior of PageRank
scores in scale-free directed random graphs.

In real-world networks, it is often found that the fraction of nodes with (in-
or out-) degree k is ≈ c0k

−α−1, usually α ∈ (1, 3), see e.g. [14] for an excellent
review of the mathematical properties of complex networks.

More than ten years ago Pandurangan et al. [13] discovered the interesting
fact that PageRank scores also exhibit power laws, with the same exponent as
the in-degree. This property holds for a broad class of real-life networks [16]. In
fact, the hypothesis that this always holds in power-law networks is plausible.
However, analytical mathematical evidence supporting this hypothesis is surpris-
ingly scarce. As one of the few examples, Avrachenkov and Lebedev [3] obtained
the power law behavior of average PageRank scores in a preferential attachment
graph by using Polya’s urn scheme and advanced symbolic computations.

In a series of papers, Volkovich et al. [11,15,16] suggested an analytical expla-
nation for the power law behavior of PageRank by comparing it to the endoge-
nous solution of a stochastic fixed-point equation (SFPE). The properties of this
equation and the study of its multiple solutions has itself been an interesting
topic in the recent literature [1,2,7–9,12], and is related to the broader study
of weighted branching processes. The tail behavior of the endogenous solution,
the one more closely related to PageRank, was given in [7–9,12], where it was
shown to have a power law under many different sets of assumptions. However,
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the SFPE does not fully explain the behavior of PageRank in networks since it
implicitly assumes that the underlying graph is an infinite tree, an assumption
that is not in general satisfied in real-world networks.

This paper makes a fundamental step further by extending the analysis
of PageRank to graphs that are not necessarily trees. Specifically, we analyze
PageRank in a directed configuration model (DCM) with given degree distri-
butions, as developed by Chen and Olvera-Cravioto [6]. We present numerical
evidence that in this type of graphs the behavior of PageRank is very close to
the one on trees. Intuitively, this is true for two main reasons: 1) the influence
of remote nodes on the PageRank of an arbitrary node decreases exponentially
fast with the graph distance; and 2) the DCM is asymptotically tree-like, that is,
when we explore a graph starting from a given node, then with high probability
the first loop is observed at a distance of order log n, where n is the size of the
graph (see Figure 1).

Our main result establishes analytically that PageRank in a DCM is well
approximated by the PageRank of the root node of a suitably constructed tree
as the graph size goes to infinity. As a consequence, the analysis of PageRank on
the graph reduces to studying PageRank on a tree, a problem that, as mentioned
earlier, can be solved by using the properties of the SFPE. In particular, since
the endogenous solution to the SFPE is known to have a power-law tail when
the in-degree follows a power-law, our main result allows us to establish the
power-law behavior of PageRank on the graph.

Fig. 1. Graph construction process. Unpaired outbound stubs are in blue.

Section 2 below describes the DCM as presented in [6]. Then, in Section 3
we analytically compare the PageRank scores in the DCM to their approximate
value obtained after a finite number of power iterations. Next, in Section 4 we
explain how to couple the PageRank of a randomly chosen node with the root
node of a suitable branching tree, and give our main analytical results. Finally, in
Section 5 we give numerical results validating our analytical work. The complete
proofs for more general stochastic recursions, that also cover the PageRank case
considered here, are given in [5], which also contains a detailed presentation of
the corresponding SFPEs and the results that can be derived from there.
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2 Directed Random Graphs

We will give below an algorithm, taken from [6], that can be used to generate
a scale-free directed graph. Formally, power law distributions are modeled using
the mathematical notion of regular variation. A nonnegative random variable X
is said to be regularly varying, if F (x) := P (X > x) = L(x)x−α, x > 0, where
L(·) is a slowly varying function, that is, limx→∞ L(tx)/L(x) = 1, for all t > 0.

Our goal now is to create a directed graph Gn with the property that the
in-degrees and out-degrees will be approximately distributed, for large sizes of
the graph, according to distributions f in

k = P (N = k), and fout
k = P (D = k),

k = 0, 1, 2, 3, . . . , respectively, where E[N ] = E[D ]. The only condition needed
is that these distributions satisfy

F in(x) =
∑

k>x

f in
k ≤ x−αLin(x) and F out(x) =

∑

k>x

fout
k ≤ x−βLout(x),

for some slowly varying functions Lin(·) and Lout(·), and α, β > 1.
The first step in our procedure is to generate an appropriate bi-degree sequence

(Nn,Dn) = {(Ni,Di) : 1 ≤ i ≤ n}

representing the n nodes in the graph. The algorithm given below will ensure
that the in- and out-degrees follow closely the desired distributions and also that
the sums of in- and out-degrees are the same:

Ln :=
n∑

i=1

Ni =
n∑

i=1

Di.

Denote
κ0 = min{1 − α−1, 1 − β−1, 1/2}.

Algorithm 1. Generation of a bi-degree sequence with given in-/out-degree dis-
tributions.

1. Fix 0 < δ0 < κ0.
2. Sample an i.i.d. sequence {N1, . . . ,Nn} from distribution F in.
3. Sample an i.i.d. sequence {D1, . . . ,Dn} from distribution F out, independent

of {Ni}.
4. Define Δn =

∑n
i=1(Nn − Dn). If |Δn| ≤ n1−κ0+δ0 proceed to step 5; other-

wise repeat from step 2.
5. Choose randomly |Δn| nodes {i1, i2, . . . , i|Δn|} without replacement and let

Ni =

{
Ni + 1 if Δn < 0 and i ∈ {i1, i2, . . . , i|Δn|},
Ni otherwise,

Di =

{
Di + 1 if Δn ≥ 0 and i ∈ {i1, i2, . . . , i|Δn|},
Di otherwise.
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Remark: It was shown in [6] that

P
(
|Δn| > n1−κ0+δ0

)
= O

(
n−δ0(κ0−δ0)/(1−κ0)

)
(1)

as n → ∞, and therefore Algorithm 1 will always terminate after a finite number
of steps (i.e., it will eventually proceed to step 5).

Having obtained a realization of the bi-degree sequence (Nn,Dn), we now
use the configuration model to construct the random graph. The idea in the
directed case is essentially the same as for undirected graphs. To each node vi

we assign Ni inbound half-edges and Di outbound half-edges; then, proceed to
match inbound half-edges to outbound half-edges to form directed edges. To be
more precise, for each unpaired inbound half-edge of node vi choose randomly
from all the available unpaired outbound half-edges, and if the selected outbound
half-edge belongs to node, say, vj , then add a directed edge from vj to vi to the
graph; proceed in this way until all unpaired inbound half-edges are matched.
Note that the resulting graph is not necessarily simple, i.e., it may contain self-
loops and multiple edges in the same direction.

We point out that conditional on the graph being simple, it is uniformly
chosen among all simple directed graphs having bi-degree sequence (Nn,Dn) (see
[6]). Moreover, it was also shown in [6] that, provided α, β > 2, the probability
of obtaining a simple graph through this procedure is bounded away from zero,
and therefore one can obtain a simple graph having (Nn,Dn) as its bi-degree
sequence by simply repeating the algorithm enough times. When we can only
ensure that α, β > 1, then a simple graph can still be obtained without loosing
the distributional properties of the in- and out-degrees by erasing the self-loops
and merging multiple edges in the same direction. These considerations about
the graph being simple are nonetheless irrelevant to the ranking problem here.

3 PageRank Iterations in the DCM

Although PageRank can be thought of as the solution to a system of linear
equations, we will show in this section how it is sufficient to consider only a
finite number of matrix iterations to obtain an accurate approximation for the
PageRank of all the nodes in the graph. We first introduce some notation.

Let M = M(n) ∈ R
n×n be the matrix constructed as follows:

Mi,j =

{
sijc/Di, if there are sij edges from i to j,

0, otherwise,

and let 1 be the row vector of ones. In the classical definition [10], PageRank
π = (π1, . . . , πn) is the unique solution to the following equation:

π = π(cM) +
1 − c

n
1, (2)



124 N. Chen et al.

where c ∈ (0, 1) is a parameter known as the damping factor. Rather than
analyzing π directly, we consider instead its scale-free version

nπ =: R = R(cM) + (1 − c)1 (3)

obtained by multiplying (2) by the size of the graph n. Moreover, whereas πi is
a probability distribution (πi ≥ 0 for all i and π1T = 1), its scale-free version
R = (R1, . . . , Rn) has components that are essentially unbounded for large n
and that satisfy E[Ri] = 1 for all 1 ≤ i ≤ n and all n (hence the name scale-free).

One way to solve the system of linear equations given in (3) is via power
iterations. We define the kth iteration of PageRank on the graph as follows.
First initialize PageRank with a vector r0 = r01, r0 ≥ 0, and then iterate
according to R(n,0) = r0 and

R(n,k) = R(n,k−1)M + (1 − c)1 = (1 − c)1
k−1∑

i=0

M i + r0Mk

for k ≥ 1. In this notation, R = R(n,∞), and our main interest is to analyze
the distribution of the PageRank of a randomly chosen node in the DCM, say
R

(n,∞)
1 . The first step of the analysis is to compare R(n,∞) to its kth iteration

R(n,k). To this end, note that R(n,∞) = (1 − c)1
∑∞

i=0 M i, and therefore,

R(n,k) − R(n,∞) = r0Mk − (1 − c)1
∞∑

i=k

M i.

Moreover,

∣∣∣
∣∣∣R(n,k) − R(n,∞)

∣∣∣
∣∣∣
1

≤
∣∣∣∣r0Mk

∣∣∣∣
1

+ (1 − c)
∞∑

i=0

∣∣∣∣1Mk+i
∣∣∣∣
1

≤ r0n
∣∣∣∣Mk

∣∣∣∣
∞ + (1 − c)n

∞∑

i=0

∣∣∣∣Mk+i
∣∣∣∣

∞ ,

where for the last inequality we used the observation that

||1Mr||1 =
n∑

j=1

n∑

i=1

(Mr)ij =
n∑

i=1

||(Mr)i•||1 ≤ n ||Mr||∞ ,

where Ai• denotes the ith row of matrix A. Furthermore, since M is equal to c
times a transition probability matrix, we have

||Mr||∞ ≤ ||M ||r∞ = cr.

It follows that
∣∣∣
∣∣∣R(n,k) − R(n,∞)

∣∣∣
∣∣∣
1

≤ r0nck + (1 − c)n
∞∑

i=0

ck+i = (r0 + 1)nck. (4)
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The approach used to derive bound (4) for the L1-norm of the error is valid
for any directed network. However, this bound does not, in the general case,
provide information on the convergence of specific coordinates and does not give
a good upper bound for the quantity |R(n,k)

1 −R
(n,∞)
1 | that we are interested in.

It is here where the structure of the DCM plays a role, since by construction, it
makes all permutations of the nodes’ labels equally likely, which implies that all
coordinates of the vector R(n,k) −R(n,∞) have the same distribution. This leads
to the following observation.

Let Fn = σ((Nn,Dn)) denote the sigma-algebra generated by the bi-degree
sequence, which does not include information about the pairing process. Then,
conditional on Fn,

E
[∣∣∣R(n,k)

1 − R
(n,∞)
1

∣∣∣
∣∣∣Fn

]
=

1
n

E
[∣∣∣

∣∣∣R(n,k) − R(n,∞)
∣∣∣
∣∣∣
1

∣∣∣Fn

]
≤ (r0 + 1) ck,

and for any ε > 0 Markov’s inequality gives,

P
(∣∣∣R(n,∞)

1 − R
(n,k)
1

∣∣∣ > ε
)

≤ E
[
ε−1E

[∣∣∣R(n,k)
1 − R

(n,∞)
1

∣∣∣
∣∣∣Fn

]]

≤ (r0 + 1) ε−1ck. (5)

Note that (5) is a probabilistic statement, which is not completely analogous
to (4). In fact, (5) states that we can achieve any level of precision with a pre-
specified high probability by simply increasing the number of iterations k. This
leads to the following heuristic, that if the DCM looks locally like a tree for k
generations, where k is the number of iterations needed to achieve the desired
precision in (5), then the PageRank of node 1 in the DCM will be essentially
the same as the PageRank of the root node of a suitably constructed tree. The
precise result and a sketch of the arguments will be given in the next section.

4 Main Result: Coupling with a Thorny Branching Tree

As mentioned in the previous section, we will now show how to identify R
(n,k)
1 with

the PageRank of the root node of a tree. To start, we construct a variation of a
branching tree where each node has an edge pointing to its parent but also has a
number of outbound stubs or half-edges that are pointing outside of the tree (i.e.,
to some auxiliary node). We will refer to this tree as a Thorny Branching Tree
(TBT), the name “thorny” referring to the outbound stubs (see Figure 1).

To construct simultaneously the graph Gn and the TBT, denoted by T , we
start by choosing a node uniformly at random, and call it node 1 (the root
node). This first node will have N1 inbound stubs which we will proceed to
match with randomly chosen outbound stubs. These outbound stubs are sam-
pled independently and with replacement from all the possible Ln =

∑n
i=1 Di

outbound stubs, discarding any outbound stub that has already been matched.
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This corresponds to drawing independently at random from the distribution

fn(i, j) = P (node has i offspring, j outbound links |Fn)

=
n∑

k=1

1(Nk = i,Dk = j)P (an outbound stub of node k is sampled |Fn)

=
n∑

k=1

1(Nk = i,Dk = j)
Dk

Ln
. (6)

This is a so-called size-biased distribution, since nodes with more outbound stubs
are more likely to be chosen.

To keep track of which outbound stubs have already been matched we will
label them 1, 2, or 3 according to the following rule:

1. Outbound stubs with label 1 are stubs belonging to a node that is not yet
attached to the graph.

2. Outbound stubs with label 2 belong to nodes that are already part of the
graph but that have not yet been paired with an inbound stub.

3. Outbound stubs with label 3 are those which have already been paired with
an inbound stub and now form an edge in the graph.

Let Zr, r ≥ 0, denote the number of inbound stubs of all the nodes in the
graph at distance r of the first node. Note that Z0 = N1 and Zr is also the
number of nodes at distance (r + 1) of the first node.

To draw the graph we initialize the process by labeling all outbound stubs
with a 1, except for the D1 outbound stubs of node 1 that receive a 2. We
then start by pairing the first of the N1 inbound stubs with a randomly chosen
outbound stub, say belonging to node j. Then node j is attached to the graph by
forming an edge with node 1, and all the outbound stubs from the new node are
now labeled 2. In case that j = 1 the pairing forms a self-loop and no new nodes
are added to the graph. Next, we label the chosen outbound stub with a 3, since
it has already been paired, and in case j �= 1, give all the other outbound stubs
of node j a label 2. We continue in this way until all N1 inbound stubs of node 1
have been paired, after which we will be left with Z1 unmatched inbound stubs
that will determine the nodes at distance 2 from node 1. In general, the kth
iteration of this process is completed when all Zk−1 inbound stubs have been
matched with an outbound stub, and the process ends when all Ln inbound
stubs have been paired. Note that whenever an outbound stub with label 2 is
chosen a cycle or double edge is formed in the graph. If at any point we sample
an outbound stub with label 3 we simply discard it and do a redraw until we
obtain an outbound stub with labels 1 or 2.

We now explain the coupling with the TBT. We start with the root node
(node 1, generation 0) that has N̂1 = N1 offspring. Let Ẑk denote the number
of individuals in generation k + 1 of the tree, Ẑ0 = N̂1. For k ≥ 1, each of the
Ẑk−1 individuals in the kth generation will independently have offspring and
outbound stubs according to the random joint distribution fn(i, j) given in (6).
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The coupling of Gn and the TBT is done according to the following rules:

1. If an outbound stub with label 1 is chosen, then both the graph and the TBT
will connect the chosen outbound stub to the inbound stub being matched,
resulting in a node being added to the graph and an offspring being born to
its parent. In particular, if the chosen outbound stub corresponds to node j,
then the new offspring in the TBT will have Dj −1 outbound stubs (pointing
to the auxiliary node) and Nj inbound stubs (number of offspring). We then
update the labels by giving a 2 label to all the ‘sibling’ outbound stubs of
the chosen outbound stub, and a 3 label to the chosen outbound stub itself.

2. If an outbound stub with label 2 is sampled it means that its corresponding
node already belongs to the graph, and a cycle, self-loop, or multiple edge is
created. In T , we proceed as if the outbound stub had label 1 and create a
new node, which is a copy of the drawn node. The coupling between DCM
and TBT breaks at this point.

3. If an outbound stub with label 3 is drawn it means that this stub has already
been matched, and the coupling breaks as well. In T , we again proceed as if
the outbound stub had had a label 1. In the graph we do a redraw.

Note that the processes Zk and Ẑk are identical as long as the coupling
holds. Showing that the coupling holds for a sufficient number of generations is
the essence of our main result.

Definition 1. Let τ be the number of generations in the TBT that can be com-
pleted before the first outbound stub with label 2 or 3 is drawn, i.e., τ = k iff the
first inbound stub to draw an outbound stub with label 2 or 3 belonged to a node
i, such that the graph distance between i and the root node is exactly k.

The following result gives us an estimate as to when the coupling between
the exploration process of the graph and the construction of the tree is expected
to break.

Lemma 1. Suppose (Nn,Dn) are constructed using Algorithm 1 with α > 1,
and β > 2. Let μ = E[N ] = E[D ] > 1. Then, for any 1 ≤ k ≤ h log n with
0 < h < 1/(2 log μ) there exists a δ > 0 such that,

P (τ ≤ k) = O
(
n−δ

)
as n → ∞.

The proof of Lemma 1 is rather technical, so we will only provide a sketch
in this paper. The detailed proof is given in [5].

Proof (Qualitative argument). Let V̂s be the number of outbound stubs of all
nodes in generation s of the tree. The intuition behind the proof is that for all
s = 1, 2, . . . , neither Ẑs, nor V̂s are expected to be much larger than their means:

E
[
Ẑs

∣∣∣Fn

]
≈ μs+1 and E

[
V̂s

∣∣∣Fn

]
≈ λμs,
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where λ = E[D2]/μ. Next, note that an inbound stub of a node in the rth
generation will be the first one to be paired with an outbound stub having label
2 or 3 with a probability bounded from above by

Pr :=
1

Ln

r∑

s=0

V̂s ≈ λμr

n(μ − 1)
.

Furthermore, for event {τ = r} to occur one of the Ẑr inbound stubs must have
been paired with an outbound stub with labels 2 or 3, which is bounded by the
probability that a Binomial random variable with parameters (Ẑr, Pr) is greater
or equal than 1. By Markov’s inequality we then have that this probability is
smaller or equal than ẐrPr = O

(
μ2rn−1

)
for r ≤ k.

Formally, to ensure that the approximations given above are valid, we first
show that the event

Ek =
{

max
0≤r≤k

μ−rẐr ≤ xn

}

occurs with high probability as n → ∞ for a suitably chosen xn → ∞. Then,
sum over r = 0, 1, . . . , k the events {τ = r, Ek} to obtain that P (τ ≤ k, Ek) =
O

(
μ2kn−1

)
, which goes to zero for k ≤ h log n.

Our main result is now a direct consequence of the bound derived in (5)
and Lemma 1 above, since before the coupling breaks R

(n,k)
1 and the PageRank,

computed after k iterations, of the root node of the coupled tree coincide.

Theorem 1. Suppose (Nn,Dn) are constructed using Algorithm 1 with α > 1,
and β > 2. Let μ = E[N ] = E[D ] > 1 and c ∈ (0, 1). Then, for any ε > 0 and
any 1 ≤ k ≤ h log n with 0 < h < 1/(2 log μ) there exists a δ > 0 such that,

P
(∣∣∣R(n,∞)

1 − R̂
(n,k)
1

∣∣∣ > ε
)

≤ (r0 + 1)ε−1ck + O
(
n−δ

)
,

as n → ∞, where R̂
(n,k)
1 is the PageRank, after k iterations, of the root node of

the TBT described above.

In [5] we explore further the distribution of the PageRank of the root node
of T and show that R̂

(n,k)
1 converges to the endogenous solution of a SFPE on

a weighted branching tree, as originally suggested in [11,15,16]. Moreover, the
tail behavior of this solution has been fully described in [7,8,15].

5 Numerical Results

In this last section we give some numerical results showing the accuracy of
the TBT approximation to the PageRank in the DCM. To generate the bi-
degree sequence we use as target distributions two Pareto-like distributions. More
precisely, we set

Ni = 	X1,i + Y1,i
, Di = 	X2,i + Y2,i
,
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where the {X1,i} and the {X2,i} are independent sequences of i.i.d. Pareto
random variables with shape parameters α > 1 and β > 2, respectively, and
scale parameters x1 = (α − 1)/α and x2 = (β − 1)/β, respectively (note that
E[X1,i] = E[X2,i] = 1 for all i). The sequences {Y1,i} and {Y2,i} are inde-
pendent sequences, each consisting of i.i.d. exponential random variables with
means 1/λ1 > 0 and 1/λ2, respectively. The addition of the exponential random
variables allows more flexibility in the modeling of the in- and out-degree dis-
tributions while preserving a power law tail behavior; the parameters λ1, λ2 are
also used to match the means E[N ] and E[D ].

Once the sequences {Ni} and {Di} are generated, we use Algorithm 1 to
obtain a valid bi-degree sequence (Nn,Dn). Given this bi-degree sequence we
next proceed to construct the graph and the TBT simultaneously, according to
the rules described in Section 4. To compute R(n,∞) we perform matrix iterations
with r0 = 1 until ‖R(n,k) − R(n,k−1)‖2 < ε0 for some tolerance ε0. We only
generate the TBT for the required number of generations in each of the examples;
the computation of R̂

(n,k)
1 can be done recursively starting from the leaves using

R̂
(n,0)
i = 1, R̂

(n,k)
i =

∑

j→i

cR̂
(n,k−1)
j + (1 − c), k > 0, (7)

where j → i means that node j is an offspring of node i. We use || · ||2 here in
order to provide mean squared errors (MSEs) for our approximations.

Tables 1-3 below compare the PageRank of node 1 in the graph, R
(n,∞)
1 , the

PageRank of node 1 only after k power iterations, R
(n,k)
1 , and the PageRank

of the root node of the coupled tree after the same k generations, R̂
(n,k)
1 . The

magnitude of the MSEs, computed using R
(n,∞)
1 as the true value, is also given

in each table. The tolerance for computing R
(n,∞)
1 is set to ε0 = 10−6. For each

n, we generate 100 realizations of Gn as well as of the corresponding TBTs and
take the empirical average of the PageRank values and of the MSEs. Table 1
includes results for different sizes of the graph, and uses kn = 	log n
 iterations
for the finite approximations. We note that all the MSEs clearly decrease as n
increases since kn also increases with n.

Table 1. α = 2, β = 2.5, λ1 = 1, c = 0.5, kn = �logn�

n R
(n,∞)
1 R

(n,kn)
1 R̂

(n,kn)
1 MSE for R

(n,kn)
1 MSE for R̂

(n,kn)
1

10 0.931 0.946 0.983 3.90E-03 4.20E-02
100 1.023 1.027 1.068 1.80E-04 3.70E-02
1000 1.000 1.002 1.010 1.20E-05 8.00E-04
10000 0.964 0.965 0.962 1.00E-06 7.50E-04

Table 2 illustrates the impact of using different values of k, with the error
between R

(n,k)
1 and R

(n,∞)
1 clearly decreasing as k increases. The simulations

were run on a graph with n = 10, 000 nodes. We also point out that although
the accuracy of finitely many PageRank iterations improves as k gets larger, the
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MSE of the tree approximation seems to plateau after a certain point. In order
to obtain a higher level of precision we also need to increase the size of the graph
(as suggested by Theorem 1).

Table 2. n = 10000, α = 2, β = 2.5, λ1 = 1, c = 0.5

kn R
(n,∞)
1 R

(n,kn)
1 R̂

(n,kn)
1 MSE for R

(n,kn)
1 MSE for R̂

(n,kn)
1

2 0.908 0.933 0.928 7.1E-03 8.59E-03
4 0.929 0.933 0.933 1.5E-04 2.20E-04
6 0.908 0.909 0.910 5.4E-06 5.08E-05
8 0.883 0.884 0.884 8.8E-08 1.20E-06
10 0.948 0.949 0.950 7.6E-09 8.16E-05
15 0.932 0.932 0.932 7.9E-13 2.89E-05

Table 3 shows the same comparison as in Table 2, for fixed n, for different
values of the damping factor c. As c gets larger, the approximations provided by
both R

(n,kn)
1 and R̂

(n,kn)
1 get worse due to the slower convergence of PageRank.

Our last numerical result shows how the distribution of PageRank on the
TBT approximates the distribution of PageRank on the DCM. To illustrate this
we generated a graph with n = 100 nodes and parameters α = 2, β = 2.5, μ = 3
and c = 0.5. We set the number of PageRank iterations (number of generations in
the TBT) to be k = 4. We then computed the empirical CDFs of the PageRank of

Fig. 2. The empirical distributions of PageRank on Gn (true and after finitely many
iterations) and the empirical distribution of the PageRank of the root in the TBT

Table 3. n = 10000, α = 2, β = 2.5, λ1 = 1, kn = �logn� = 9

c R
(n,∞)
1 R

(n,kn)
1 R̂

(n,kn)
1 MSE for R

(n,kn)
1 MSE for R̂

(n,kn)
1

0.1 1.011 1.011 1.011 3.8E-22 3.33E-09
0.3 0.958 0.958 0.958 9.8E-13 1.91E-07
0.5 0.898 0.898 0.899 2.7E-08 2.63E-06
0.7 0.755 0.757 0.760 2.4E-05 2.03E-04
0.9 0.663 0.764 0.799 8.3E-02 1.25E-01
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all nodes in the graph and that of the PageRank after only k iterations. We also
generated the coupled TBT 1000 times based on the same graph; each time by
randomly choosing some node i to be the root and computing R̂

(n,k)
i according

to (7). Figure 2 plots the empirical CDF of PagerRank on Gn, the empirical
CDF of PageRank on Gn after only k iterations, and the empirical CDF of the
PageRank of the 1000 root nodes after the same k iterations. We can see that
the CDFs of PageRank on Gn after a finite number of iterations and that of
the true PageRank on Gn are almost indistinguishable. The PageRank on the
TBT also approximates this distribution quite well, especially considering that
n = 100 is not particularly large.
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9. Jelenković, P.R., Olvera-Cravioto, M.: Implicit renewal theory for trees with gen-
eral weights. Stochastic Process. Appl. 122(9), 3209–3238 (2012)

10. Langville, A.N., Meyer, C.D.: Google PageRank and beyond. Princeton University
Press (2006)

11. Litvak, N., Scheinhardt, W.R.W., Volkovich, Y.: In-degree and PageRank: Why
do they follow similar power laws? Internet Mathematics 4(2), 175–198 (2007)

12. Olvera-Cravioto, M.: Tail behavior of solutions of linear recursions on trees.
Stochastic Process. Appl. 122(4), 1777–1807 (2012)

13. Pandurangan, G., Raghavan, P., Upfal, E.: Using PageRank to characterize web
structure. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387,
pp. 330–339. Springer, Heidelberg (2002)

14. van der Hofstad, R.: Random graphs and complex networks (2009)
15. Volkovich, Y., Litvak, N.: Asymptotic analysis for personalized web search. Adv.

Appl. Prob. 42(2), 577–604 (2010)
16. Volkovich, Y., Litvak, N., Donato, D.: Determining factors behind the pagerank

log-log plot. In: Proceedings of the 5th International Workshop on Algorithms and
Models for the Web-graph, pp. 108–123 (2007)

http://arxiv.org/abs/+1409.7443
http://arxiv.org/abs/+1409.7443

	PageRank in Scale-Free Random Graphs
	1 Introduction
	2 Directed Random Graphs
	3 PageRank Iterations in the DCM
	4 Main Result: Coupling with a Thorny Branching Tree
	5 Numerical Results
	References


