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Preface

The 11th Workshop on Algorithms and Models for the Web Graph (WAW 2014) took
place at the Academy of Mathematics and Systems Science in Beijing, China, during
December 17–18, 2014. This is an annual meeting, which is traditionally colocated with
another, related, conference. WAW 2014 was colocated with the 10th Conference on
Web and Internet Economics (WINE 2014). Colocation of the workshop and conference
provided opportunities for researchers in two different but interrelated areas to interact
and to exchange research ideas. It was an effective venue for the dissemination of new
results and for fostering research collaboration.

The World Wide Web has become a part of our everyday life, and information re-
trieval and data mining on the Web are now of enormous practical interest. The al-
gorithms supporting these activities combine the view of the Web as a text repository
and as a graph, induced in various ways by links among pages, hosts, and users. The
aim of the workshop was to further the understanding of graphs that arise from the
Web and various user activities on the Web, and stimulate the development of high-
performance algorithms and applications that exploit these graphs. The workshop gath-
ered the researchers who are working on graph-theoretic and algorithmic aspects of
related complex networks, including social networks, citation networks, biological net-
works, molecular networks, and other networks arising from the Internet.

This volume contains the papers presented during the workshop. Each submission
was reviewed by the Programme Committee members. Papers were submitted and re-
viewed using the EasyChair online system. The committee members decided to accept
12 papers.

December 2014 Anthony Bonato
Fan Chung Graham

Paweł Prałat
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Clustering and the Hyperbolic Geometry
of Complex Networks

Elisabetta Candellero1 and Nikolaos Fountoulakis2(B)

1 Department of Statistics, University of Warwick Coventry,
Coventry CV4 7AL, UK

elisabetta.candellero@gmail.com
2 School of Mathematics, University of Birmingham,

Edgbaston B15 2TT, UK
n.fountoulakis@bham.ac.uk

Abstract. Clustering is a fundamental property of complex networks
and it is the mathematical expression of a ubiquitous phenomenon that
arises in various types of self-organized networks such as biological net-
works, computer networks or social networks. In this paper, we consider
what is called the global clustering coefficient of random graphs on the
hyperbolic plane. This model of random graphs was proposed recently
by Krioukov et al. [22] as a mathematical model of complex networks,
implementing the assumption that hyperbolic geometry underlies the
structure of these networks. We do a rigorous analysis of clustering and
characterize the global clustering coefficient in terms of the parameters
of the model. We show how the global clustering coefficient can be tuned
by these parameters, giving an explicit formula.

1 Introduction

The theory of complex networks was developed during the last 15 years mainly
as a unifying mathematical framework for modeling a variety of networks such as
biological networks or large computer networks among which is the Internet, the
World Wide Web as well as social networks that have been recently developed
over these platforms. A number of mathematical models have emerged whose
aim is to describe fundamental characteristics of these networks as these have
been described by experimental evidence – see for example [1]. Among the most
influential models was the Watts-Strogatz model of small worlds [30] and the
Barabási-Albert model [3], that is also known as the preferential attachment
model. The main typical characteristics of these networks have to do with the
distribution of the degrees (e.g., power-law distribution), the existence of clus-
tering as well as the typical distances between vertices (e.g., the small world
effect).

Loosely speaking, the notion of a complex network refers to a class of large
networks which exhibit the following characteristics:

Nikolaos Fountoulakis: This research has been supported by a Marie Curie Career
Integration Grant PCIG09-GA2011-293619.

c© Springer International Publishing Switzerland 2014
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2 E. Candellero and N. Fountoulakis

1. they are sparse, that is, the number of their edges is proportional to the
number of nodes;

2. they exhibit the small world phenomenon: most pairs of vertices which
belong to the same component are within a short distance from each other;

3. clustering : two nodes of the network that have a common neighbour are
somewhat more likely to be connected with each other;

4. the tail of their degree distribution follows a power law : experimental evi-
dence (see [1]) indicates that many networks that emerge in applications
follow power law degree distribution with exponent between 2 and 3.

The books of Chung and Lu [13] and of Dorogovtsev [15] are excellent references
for a detailed discussion of these properties.

The models that we described above as well as other known models, such
as the Chung-Lu model (defined by Chung and Lu [11], [12]) fail to capture all
the above features simultaneously or if they do so, they do it in a way that is
difficult to tune these features independently. For example, the Barabasi-Albert
model (when suitably parametrized) exhibits a power law degree distribution
with exponent between 2 and 3, and average distance of order O(log log N), but
it is locally tree-like around a typical vertex (cf. [8], [16]). On the other hand,
the Watts-Strogatz model, although it exhibits clustering and small distances
between the vertices, has degree distribution that decays exponentially [4].

The notion of clustering formalizes the property that two nodes of a network
that share a neighbor (for example two individuals that have a common friend)
are more likely to be joined by an edge (that is, to be friends of each other).
In the context of social networks, sociologists have explained this phenomenon
through the notion of homophily, which refers to the tendency of individuals to
be related with similar individuals, e.g. having similar socioeconomic background
or similar educational background. There have been numerous attempts to define
models where clustering is present – see for example the work of Coupechoux and
Lelarge [14] or that of Bollobás, Janson and Riordan [9] where this is combined
with the general notion of inhomogeneity. In that context, clustering is planted
in a sparse random graph. Also, it is even more rare to quantify clustering
precisely (as for example in random intersection graphs [5]). This is the case
as the presence of clustering is the outcome of heavy dependencies between the
edges of the random graphs and, in general, these are not easy to handle.

However, clustering is naturally present on random graphs that are created on
a metric space, as is the case of a random geometric graph on the Euclidean plane.
The theory of random geometric graphs was initiated by Gilbert [18] already in
1961 and started taking its present form later by Hafner [20]. In its standard form
a geometric random graph is created as follows: N points are sampled within a
subset of Rd following a particular distribution (most usually this is the uniform
distribution or the distribution of the point-set of a Poisson point process) and
any two of them are joined when their Euclidean distance is smaller than some
threshold value which, in general, is a function of N . During the last two decades,
this kind of random graphs was studied in depth by several researchers – see
the monograph of Penrose [29] and the references therein. Numerous typical
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properties of such random graphs have been investigated, such as the chromatic
number [24], Hamiltonicity [2] etc.

There is no particular reason why a random geometric graph on a Euclidean
space would be intrinsically associated with the formation of a complex network.
Real-world networks consist of heterogeneous nodes, which can be classified into
groups. In turn, these groups can be classified into larger groups which belong to
bigger subgroups and so on. For example, if we consider the network of citations,
whose set of nodes is the set of research papers and there is a link from one paper
to another if one cites the other, there is a natural classification of the nodes
according to the scientific fields each paper belongs to (see for example [10]). In
the case of the network of web pages, a similar classification can be considered in
terms of the similarity between two web pages: the more similar two web pages
are, the more likely it is that there exists a hyperlink between them [25].

This classification can be approximated by tree-like structures representing
the hidden hierarchy of the network. The tree-likeness suggests the hypothesis
that the geometry of this hierarchy is hyperbolic. One of the basic features of
a hyperbolic space is that the volume growth is exponential which is also the
case, for example, when one considers a k-ary tree, that is, a rooted tree where
every vertex has k children. Let us consider for example the Poincaré unit disc
model (which we will discuss in more detail in the next section). If we place the
root of an infinite k-ary tree at the centre of the disc, then the hyperbolic metric
provides the necessary room to embed the tree into the disc so that every edge
has unit length in the embedding.

Recently Krioukov et al. [22] introduced a model which implements this idea.
In this model, a random network is created on the hyperbolic plane (we will see
the detailed definition shortly). In particular, Krioukov et al. [22] determined
the degree distribution for large degrees showing that it is scale free and its tail
follows a power law, whose exponent is determined by some of the parameters of
the model. Furthermore, they consider the clustering properties of the resulting
random network. A numerical approach in [22] suggests that the (local) cluster-
ing coefficient1 is positive and it is determined by one of the parameters of the
model. In fact, as we will discuss in Section 2, this model corresponds to the
sparse regime of random geometric graphs on the hyperbolic plane and hence is
of independent interest within the theory of random geometric graphs.

This paper investigates rigorously the presence of clustering in this model,
through the notion of the clustering coefficient. Our first contribution is that we
manage to determine exactly the value of the clustering coefficient as a function
of the parameters of the model. More importantly, our results imply that in fact
the exponent of the power law, the density of the random graph and the amount
of clustering can be tuned independently of each other, through the parameters
of the random graph. Furthermore, we should point out that the clustering
coefficient we consider is the so-called global clustering coefficient. Its calculation
involves tight concentration bounds on the number of triangles in the random
graph. Hence, our analysis initiates an approach to the small subgraph counting
1 This is defined as the average density of the neighbourhoods of the vertices.
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problem in these random graphs, which is among the central problems in the
general theory of random graphs [7],[21] and of random geometric graphs [29].

1.1 Random Geometric Graphs on the Hyperbolic Plane

The most common representations of the hyperbolic plane are the upper-half
plane representation {z ∈ C : �z > 0} as well as the Poincaré unit disc which
is simply the open disc of radius one, that is, {(u, v) ∈ R

2 : 1 − u2 − v2 > 0}.
Both spaces are equipped with the hyperbolic metric; in the former case this
is 1

(ζy)2 dy2 whereas in the latter this is 4
ζ2

du2+dv2

(1−u2−v2)2 , where ζ is some positive
real number. It can be shown that the (Gaussian) curvature in both cases is
equal to −ζ2 and the two spaces are isometric, i.e., there is a bijection between
the two spaces that preserves (hyperbolic) distances. In fact, there are more
representations of the 2-dimensional hyperbolic space of curvature −ζ2 which
are isometrically equivalent to the above two. We will denote by H

2
ζ the class of

these spaces.
In this paper, following the definitions in [22], we shall be using the native

representation of H2
ζ . Here, the ground space of H2

ζ is R2 and every point x ∈ R
2

whose polar coordinates are (r, θ) has hyperbolic distance from the origin equal
to r. More precisely, the native representation can be viewed as a mapping of
the Poincaré unit disc to R

2, where the origin of the unit disc is mapped to the
origin of R2 and every point v in the Poincaré disc is mapped to a point v′ ∈ R

2,
where v′ = (r, θ) in polar coordinates: r is the hyperbolic distance of v from the
origin of the Poincaré disc and θ is its angle.

An elementary but tedious calculation can show that a circle of radius r
around the origin has length equal to 2π

ζ sinh ζr and area equal to 2π
ζ2 (cosh ζr−1).

We are now ready to give the definitions of the two basic models introduced
in [22]. Consider the native representation of the hyperbolic plane of curvature
K = −ζ2, for some ζ > 0. For some constant ν > 0, we let N = νeζR/2 – thus R
grows logarithmically as a function of N . We shall explain the role of ν shortly.
We create a random graph by selecting randomly and independently N points
from the disc of radius R centered at the origin O, which we denote by DR.

The distribution of these points is as follows. Assume that a random point u
has polar coordinates (r, θ). The angle θ is uniformly distributed in (0, 2π] and
the probability density function of r, which we denote by ρN (r), is determined
by a parameter α > 0 and is equal to

ρN (r) =

{
α sinhαr

coshαR−1 , if 0 ≤ r ≤ R

0, otherwise
. (1)

Note that when α = ζ, this is simply the uniform distribution.
An alternative way to define this distribution is as follows. Consider H2

α and
the Poincaré representation of it. Let O′ be the centre of the disc. Consider
the disc D′

R of radius R around O′ and select N points within D′
R uniformly at

random. Subsequently, the selected points are projected onto DR preserving their
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polar coordinates. The projections of these points, which we will be denoting by
VN , will be the vertex set of the random graph. We will be also treating the
vertices as points in the hyperbolic space indistinguishably.

Note that the curvature in this case determines the rate of growth of the
space. Hence, when α < ζ, the N points are distributed on a disc (namely D′

R)
which has smaller area compared to DR. This naturally increases the density
of those points that are located closer to the origin. Similarly, when α > ζ
the area of the disc D′

R is larger than that of DR, and most of the N points
are significantly more likely to be located near the boundary of D′

R, due to the
exponential growth of the volume.

Given the set VN on DR we define the following two models of random
graphs.

1. The disc model : this model is the most commonly studied in the theory of
random geometric graphs on Euclidean spaces. We join two vertices if they
are within (hyperbolic) distance R from each other. Figure 1 illustrates a
disc of radius R around a vertex v ∈ DR.

Fig. 1. The disc of radius R around v in DR

2. The binomial model : we join any two distinct vertices u, v with probability

pu,v =
1

exp
(
β ζ

2 (d(u, v) − R)
)

+ 1
,

independently of every other pair, where β > 0 is fixed and d(u, v) is the
hyperbolic distance between u and v. We denote the resulting random graph
by G(N ; ζ, α, β, ν).

The binomial model is in some sense a soft version of the disc model. In the
latter, two vertices become adjacent if and only if their hyperbolic distance is at
most R. This is approximately the case in the former model. If d(u, v) = (1+δ)R,
where δ > 0 is some small constant, then pu,v → 0, whereas if d(u, v) = (1−δ)R,
then pu,v → 1, as N → ∞.
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Also, the disc model can be viewed as a limiting case of the binomial model
as β → ∞. Assume that the positions of the vertices in DR have been realized.
If u, v ∈ VN are such that d(u, v) < R, then when β → ∞ the probability that
u and v are adjacent tends to 1; however, if d(u, v) > R, then this probability
converges to 0 as β grows.

Müller [26] has shown that the disc model is in fact determined by the ratio
ζ/α. In that case, one may set ζ = 1 and keep only α as the parameter of the
model.

Krioukov et al. [22] provide an argument which indicates that in both models
the degree distribution has a power law tail with exponent that is equal to
2α/ζ + 1. Hence, when 0 < ζ/α < 2, any exponent greater than 2 can be
realised. This has been shown rigorously by Gugelmann et al. [19], for the disc
model, and by the second author [17], for the binomial model. In the latter case,
the average degree of a vertex depends on all four parameters of the model.
For the disc model in particular, having fixed ζ and α, which determine the
exponent of the power law, the parameter ν determines the average degree. In
the binomial model, there is an additional dependence on β. Our results focus on
the binomial model and show that clustering does not depend on ν. Therefore,
in the binomial model the “amount” of clustering and the average degree can be
tuned independently.

1.2 Notation

Let {XN}N∈N be a sequence of real-valued random variables on a sequence of
probability spaces {(ΩN ,PN )}N∈N. For a real number a, we write XN

p→ a or
else XN converges to a in probability, if for every ε > 0, we have PN (|XN − a| >
ε) → 0 as N → ∞. If EN is a measurable subset of ΩN , for any N ∈ N, we
say that the sequence {EN}N∈N occurs asymptotically almost surely (a.a.s.) if
P(EN ) = 1 − o(1), as N → ∞. However, with a slight abuse of terminology, we
will be saying that an event occurs a.a.s. implicitly referring to a sequence of
events.

For two functions f, g : N → R we write f(N) � g(N) if f(N)/g(N) → 0 as
N → ∞. Similarly, we will write f(N) � g(N), meaning that there are positive
constants c1, c2 such that for all N ∈ N we have c1g(N) ≤ f(N) ≤ c2g(N).
Analogously, we write f(N) � g(N) (resp. f(N) � g(N)) if there is a positive
constant c such that for all N ∈ N we have f(N) ≤ cg(N) (resp. f(N) ≥ cg(N)).
These are shorthands for the standard Landau notation, but we chose to express
them as above in order to make our presentation more readable.

2 Some Geometric Aspects of the Two Models

The disc model on the hyperbolic plane can be also viewed within the framework
of random geometric graphs. Within this framework, the disc model may be
defined for any threshold distance rN and not merely for threshold distance
equal to R. However, only taking rN = R yields a random graph with constant
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average degree that is bounded away from 0. More specifically for any δ ∈ (0, 1), if
rN = (1−δ)R, then the resulting random graph becomes rather trivial and most
vertices have no neighbours. On the other hand, if rN = (1 + δ)R, the resulting
random graph becomes too dense and its average degree grows polynomially fast
in N .

The proof of these observations relies on the following lemma which provides
a characterization of what it means for two points u, v to have d(u, v) ≤ (1+δ)R,
for δ ∈ (−1, 1), in terms of their relative angle, which we denote by θu,v. For
this lemma, we need the notion of the type of a vertex. For a vertex v ∈ VN ,
if rv is the distance of v from the origin, that is, the radius of v, then we set
tv = R − rv – we call this quantity the type of vertex v. It is not very hard
to see that the type of a vertex is approximately exponentially distributed. If
we substitute R − t for r in (1), then assuming that t is fixed that expression
becomes asymptotically equal to αe−αt.

The lemma that connects the hyperbolic distance between two vertices with
the relative angle between them is a generalisation of a similar lemma that
appears in [6].

Lemma 1. Let δ ∈ (−1, 1) be a real number. For any ε > 0 there exists an
N0 > 0 and a c0 > 0 such that for any N > N0 and u, v ∈ DR with tu + tv <
(1 − |δ|)R − c0 the following hold.

– If θu,v < 2(1 − ε) exp
(

ζ
2 (tu + tv − (1 − δ)R)

)
, then d(u, v) < (1 + δ)R.

– If θu,v > 2(1 + ε) exp
(

ζ
2 (tu + tv − (1 − δ)R)

)
, then d(u, v) > (1 + δ)R.

Let us consider temporarily the (modified) disc model, where we assume
that two vertices are joined precisely when their hyperbolic distance is at most
(1 + δ)R. Let u ∈ VN be a vertex and assume that tu < C (by the above
observation on the distribution of the type of a vertex, it is not hard to see that
most vertices will satisfy this, if C is chosen large). We will show that if δ < 0,
then the expected degree of u, in fact, tends to 0. Let us consider a simple case
where 0 < ζ/α < 2 and δ satisfies ζ

2α < 1 − |δ| < 1. It can be shown that a.a.s.
there are no vertices of type much larger than ζ

2αR. Hence, since tu < C, if N

is sufficiently large, then we have ζ
2αR < (1 − |δ|)R − tu − c0. By Lemma 1,

the probability that a vertex v has type at most ζ
2αR and it is adjacent to u

(that is, its hyperbolic distance from u is at most (1 + δ)R) is proportional to
e

ζ
2 (tu+tv−(1−δ)R)/π. If we average this over tv we obtain

Pr [u is adjacent to v|tu] � eζtu/2

e
ζ
2 (1−δ)R

∫ ζ
2α

R

0

eζtv/2 α sinh(α(R − tv))

cosh(αR) − 1
dtv

� eζtu/2

e
ζ
2 (1−δ)R

∫ R

0

eζtv/2 eα(R−tv)

cosh(αR) − 1
dtv

� eζtu/2

e
ζ
2 (1−δ)R

∫ R

0

e(ζ/2−α)tv dtv

0<ζ/α<2� eζtu/2

N1−δ

δ<0
= o

(
1

N

)
.
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Hence, the probability that there is such a vertex is o(1). Markov’s inequality
implies that with high probability most vertices will have no neighbors.

A similar calculation can actually show that the above probability is Ω
(

eζtu/2

N1−δ

)
.

Thereby, if 0 < δ < 1, then the expected degree of u is of order N δ. A more
detailed argument can show that the resulting random graph is too dense in
the sense that the number of edges is no longer proportional to the number of
vertices but grows much faster than that.

3 The Clustering Coefficient

The theme of this work is the study of clustering in G(N ; ζ, α, β, ν). The notion
of clustering was introduced by Watts and Strogatz [30], as a measure of the local
density of the graph. In the context of biological or social networks, this measures
the likelihood of two vertices that have a common neighbor to be joined with
each other. This is expressed by the density of the neighborhood of each vertex.
More specifically, for each vertex v of a graph, the local clustering coefficient
is defined to be the density of the neighborhood of v. In [30], the clustering
coefficient of a graph G, which we denote by C1(G), is defined as the average of
the local clustering coefficients over all vertices of G. The clustering coefficient
C1(G(N ; ζ, α, β, ν)), as a function of β is discussed in [22], where simulations and
heuristic calculations indicate that C1 can be tuned by β. For the disc model,
Gugelmann et al. [19] have shown rigorously that this quantity is asymptotically
with high probability bounded away from 0 when 0 < ζ/α < 2.

The case where β > 1 and 0 < ζ/α < 2 is of particular interest. More
specifically, in this regime G(N ; ζ, α, β, ν) has constant (i.e., not depending on
N) average degree that depends on ν, ζ, α and β, whereas the degree distribution
follows the tail of a power law with exponent 2α/ζ + 1. This has been shown by
the second author in [17]. Note that since 2α/ζ > 1, the exponent of the power
law may take any value greater than 2. When 1 < ζ/α < 2, this exponent is
between 2 and 3. In [17] we also show that when β ≤ 1, the average degree of
the random graph grows at least logarithmically in N .

As we mentioned above, there has been significant experimental evidence
which shows that many networks which arise in applications have degree distri-
butions that follow a power law usually with exponent between 2 and 3 (cf. [1] for
example). Also, such networks are typically sparse with only a few nodes of very
high degree which are the hubs of the network. Thus, in the regime where β > 1
and 0 < ζ/α < 2 the random graph G(N ; ζ, α, β, ν) appears to exhibit these
characteristics. In this work, we explore further the potential of this random
graph model as a suitable model for complex networks focusing on the notion of
global clustering and how this is determined by the parameters of the model.

A first attempt to define this notion was made by Luce and Perry [23], but
it was rediscovered more recently by Newman, Strogatz and Watts [27]. Given
a graph G, we let T = T (G) be the number of triangles of G and let Λ = Λ(G)
denote the number of incomplete triangles of G; this is simply the number of (not
necessarily induced) paths having length 2. Then the global clustering coefficient
C2(G) of a graph G is defined as
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C2(G) :=
3T (G)
Λ(G)

. (2)

This parameter measures the likelihood that two vertices which share a neighbor
are themselves adjacent.

The present work has to do with the value of C2(G(N ; ζ, α, β, ν)). Our results
show exactly how clustering can be tuned by the parameters β, ζ and α only.
More precisely, our main result states that this undergoes an abrupt change as
β crosses the critical value 1.

Theorem 1. Let 0 < ζ/α < 2. If β > 1, then

C2(G(N ; ζ, α, β, ν))
p→

{
L∞(β, ζ, α), if 0 < ζ/α < 1
0, if 1 ≤ ζ/α < 2 ,

where

L∞(β, ζ, α) =

3
2

(ζ − 2α)2(α − ζ)
(πCβ)2

∫
[0,∞)3

e
ζ
2 (tu+tv)+ζtwgtu,tv,tw

(β, ζ)e−α(tu+tv+tw)dtudtvdtw,

with

gtu,tv,tw
(β, ζ) =

∫
[0,∞)2

1

zβ
1 + 1

1

zβ
2 + 1

1(
e

ζ
2 (tw−tv)z1 + e

ζ
2 (tw−tu)z2

)β

+ 1
dz1dz2

and Cβ := 2
β sin(π/β) .

If β ≤ 1, then
C2(G(N ; ζ, α, β, ν))

p→ 0.

The fact that the global clustering coefficient asymptotically vanishes when
ζ/α ≥ 1 is due to the following: when ζ/α crosses 1 vertices of very high degree
appear, which incur an abrupt increase on the number of incomplete triangles
with no similar increase on the number of triangles to counterbalance that.

Recall that for a vertex u ∈ VN , its type tu is defined to be equal to R − ru

where ru is the radius (i.e., its hyperbolic distance from the origin) of u in DR.
When 1 ≤ ζ/α < 2, vertices of type larger than R/2 appear, which affect the
tail of the degree sequence of G(N ; ζ, α, β, ν). For β > 1, it was shown in [17]
that when 1 ≤ ζ/α < 2 the degree sequence follows approximately a power law
with exponent in (2, 3]. More precisely, asymptotically as N grows, the degree
of a vertex u ∈ VN conditional on its type follows a Poisson distribution with
parameter equal to Keζtu/2, where K = K(ζ, α, β, ν) > 0. As we have pointed
out in Section 2, when ζ/α < 1, a.a.s. all vertices have type less than R/2.

Let us consider, for example, more closely the case ζ = α, where the N
points are uniformly distributed on DR. In this case, the type of a vertex u
is approximately exponentially distributed with density ζe−ζtu . Hence, there
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are about Ne−ζ(R/2−ω(N)) � eζω(N) vertices of type between R/2 − ω(N) and
R/2 + ω(N); here ω(N) is assumed to be a slowly growing function. Now, each
of these vertices has degree that is (up to multiplicative constants) at least
e

ζ
2 (R

2 −ω(N)) = N1/2e−ζω(N)/2. Therefore, these vertices’ contribution to Λ is at
least eζω(N) × (

N1/2e−ζω(N)/2
)2

= N .
Now, if vertex u is of type less than R/2 − ω(N), its contribution to Λ in

expectation is proportional to

∫ R/2−ω(N)

0

(
eζtu/2

)2

e−ζtudtu � R. (3)

As most vertices are indeed of type less than R/2 − ω(N), it follows that these
vertices contribute RN on average to Λ.

However, the amount of triangles these vertices contribute is asymptotically
much smaller. Recall that for any two vertices u, v the probability that these
are adjacent is bounded away from 0 when d(u, v) < R. By Lemma 1 having
d(u, v) < R can be expressed saying that the relative angle between u and v is
θu,v � e

ζ
2 (tu+tv−R). Consider three vertices w, u, v which, without loss of gen-

erality, satisfy tv < tu < tw < R/2 − ω(N). Since the relative angle between u
and v is uniformly distributed in [0, π], it turns out that the probability that u

is adjacent to w is proportional to e
ζ
2 (tw+tu−R); similarly, the probability that

v is adjacent to w is proportional to e
ζ
2 (tw+tv−R). Note that these events are

independent. Now, conditional on these events, the relative angle between u and
w is approximately uniformly distributed in an interval of length e

ζ
2 (tw+tu−R).

Similarly, the relative angle between v and w is approximately uniformly dis-
tributed in an interval of length e

ζ
2 (tw+tv−R). Hence, the (conditional) proba-

bility that u is adjacent to v is bounded by a quantity that is proportional to
e

ζ
2 (tu+tv)/e

ζ
2 (tv+tw) = e

ζ
2 (tu−tw). This implies that the probability that u, v and

w form a triangle is proportional to e
ζ
2 tw+ζtu+

ζ
2 tv/N2. Averaging over the types

of these vertices we have

1
N2

∫ R/2−ω(N)

0

∫ tw

0

∫ tu

0

e
ζ
2 tw+ζtu+

ζ
2 tv−ζ(tv+tu+tw)dtvdtudtw � 1

N2
.

Hence the expected number of triangles that have all their vertices of type at
most R/2−ω(N) is only proportional to N . Note that if we take α > ζ, then the
above expression is still proportional to N , whereas (3) becomes asymptotically
constant giving contribution to Λ that is also proportional to N . This makes
the clustering coefficient be bounded away from 0 when ζ/α < 1. Our analysis
makes the above heuristics rigorous.

It turns out that the situation is somewhat different if we do not take into con-
sideration high-degree vertices (or, equivalently, vertices that have large type).
For any fixed t > 0, we will consider the global clustering coefficient of the
subgraph of G(N ; ζ, α, β, ν) that is induced by those vertices that have type at
most t. We will denote this by Ĉ2(t). We will show that when β > 1 then for
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all 0 < ζ/α < 2, the quantity Ĉ2(t) remains bounded away from 0 with high
probability. Moreover, we determine its dependence on ζ, α, β.

Theorem 2. Let 0 < ζ/α < 2 and let t > 0 be fixed. If β > 1, then

Ĉ2(t)
p→ L(t;β, ζ, α), (4)

where

L(t;β, ζ, α) :=
6
∫
[0,t)3

e
ζ
2 (tu+tv)+ζtwgtu,tv,tw

(β, ζ)e−α(tu+tv+tw)dtudtvdtw

(πCβ)2
∫
[0,t)3

e
ζ
2 (tu+tv)+ζtwe−α(tu+tv+tw)dtudtvdtw

,

where gtu,tv,tw
(β, ζ) and Cβ are as in Theorem 1.

The most involved part of the proofs, which may be of independent interest,
has to do with counting triangles in G(N ; ζ, α, β, ν), that is, with estimating
T (G(N ; ζ, α, β, ν)). In fact, most of our effort is devoted to the calculation of
the probability that three vertices form a triangle. Thereafter, a second moment
argument, together with the fact that the degree of high-type vertices is concen-
trated around its expected value, implies that T (G(N ; ζ, α, β, ν)) is close to its
expected value.

4 Conclusions

In this contribution, we study the presence of clustering as a result of the
hyperbolic geometry of a complex network. We consider the model of Krioukov
et al. [22], where the resulting random graph is sparse and its degree distribution
follows a power law. We quantify the existence of clustering and, furthermore,
for the part of the random network that consists of typical vertices, we show
that the clustering coefficient is bounded away from 0. More importantly, we
find how does this quantity depend on the parameters of the random graph and
show that this can be determined independently of the average degree.
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21. Janson, S., �Luczak, T., Ruciński, A.: Random graphs. Wiley-Interscience, xii+333
pages (2001)

22. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic
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Abstract. We introduce a new graph parameter called the burning
number, inspired by contact processes on graphs such as graph boot-
strap percolation, and graph searching paradigms such as Firefighter.
The burning number measures the speed of the spread of contagion in a
graph; the lower the burning number, the faster the contagion spreads.
We provide a number of properties of the burning number, including
characterizations and bounds. The burning number is computed for sev-
eral graph classes, and is derived for the graphs generated by the Iterated
Local Transitivity model for social networks.

1 Introduction

The spread of social influence is an active topic in social network analysis;
see, for example, [3,8,13,14,18,19]. A recent study on the spread of emotional
contagion in Facebook [16] has highlighted the fact that the underlying network
is an essential factor; in particular, in-person interaction and nonverbal cues
are not necessary for the spread of the contagion. Hence, agents in the network
spread the contagion to their friends or followers, and the contagion propagates
over time. If the goal was to minimize the time it took for the contagion to reach
the entire network, then which agents would you target with the contagion, and
in which order?

As a simplified, deterministic approach to these questions, we consider a new
approach involving a graph process which we call burning. Burning is inspired
by graph theoretic processes like Firefighting [4,7,10], graph cleaning [1], and
graph bootstrap percolation [2]. There are discrete time-steps or rounds. Each
node is either burned or unburned ; if a node is burned, then it remains in that
state until the end of the process. Every round, we choose a node to burn. Once
a node is burned in round t, in round t + 1, each of its unburned neighbours
becomes burned. In every round, we choose one additional unburned node to
burn (if such a node is available). The process ends when all nodes are burned.
The burning number of a graph G, written by b(G), is the minimum number
of rounds needed for the process to end. For example, it is straightforward to
see that b(Kn) = 2. However, even for a relatively simple graph such as the
path Pn on n nodes, computing the burning number is more complex; in fact,
b(Pn) = �n1/2� as stated below in Theorem 3 (and proven in [6]).
c© Springer International Publishing Switzerland 2014
A. Bonato et al. (Eds.): WAW 2014, LNCS 8882, pp. 13–22, 2014.
DOI: 10.1007/978-3-319-13123-8 2
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Burning may be viewed as a simplified model for the spread of social con-
tagion in a social network such as Facebook or Twitter. The lower the value of
b(G), the easier it is to spread such contagion in the graph G. Suppose that in
the process of burning a graph G, we eventually burned the whole graph G in k
steps, and for each i, 1 ≤ i ≤ k, we denote the node that we burn in the i-th step
by xi. We call such a node simply a source of fire. The sequence (x1, x2, . . . , xk)
is called a burning sequence for G. With this notation, the burning number of
G is the length of a shortest burning sequence for G; such a burning sequence
is referred to as optimal. For example, for the path P4 with nodes v1, v2, v3, v4,
the sequence (v2, v4) is an optimal burning sequence (See Figure 1). Note that
for a graph G with at least two nodes, we have that b(G) ≥ 2.

Fig. 1. Burning the path P4 (the open circles represent burned nodes)

The goal of the current paper is to introduce the burning number and explore
its core properties. A characterization of burning number via a decomposition
into trees is given in Theorem 1. As proven in [6], computing the burning number
of a graph is NP-complete, even for planar, disconnected, or bipartite graphs.
As such, we provide sharp bounds on the burning number for connected graphs,
which are useful in many cases when computing the burning number. See The-
orem 2.2 for bounds on the burning number. We compute the burning number
on the Iterated Local Transitivity model for social networks (introduced in [5])
and grids; see Theorem 8 and Theorem 9, respectively. In the final section, we
summarize our results and present open problems for future work.

2 Properties of the Burning Number

In this section, we collect a number of results on the burning number, ranging
from characterizations, bounds, to computing the burning number on certain
kinds of graphs. We first need some terminology. If G is a graph and v is a node
of G, then the eccentricity of v is defined as max{d(v, u) : u ∈ G}. The radius
of G is the minimum eccentricity over the set of all nodes in G. The center of G
consists of the nodes in G with minimum eccentricity. Given a positive integer k,
the k-th closed neighborhood of v is defined to be the set {u ∈ V (G) : d(u, v) ≤ k}
and is denoted by Nk[v]; we denote N1[v] simply by N [v].

We first make the following observation. Suppose that (x1, x2, . . . , xk), where
k ≥ 3, is a burning sequence for a given graph G. For 1 ≤ i ≤ k, the fire spread
from xi will burn only all the nodes within distance k − i from xi by the end of
the k-th step. On the other hand, every node v ∈ V (G) must be either a source of
fire, or burned from at least one of the sources of fire by the end of the k-th step.
In other words, any node of G that is not a source of fire must be an element of
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Nk−i[xi], for some 1 ≤ i ≤ k. Therefore, we can see that (x1, x2, . . . , xk) forms
a burning sequence for G if and only if the following set equation holds:

Nk−1[x1] ∪ Nk−2[x2] ∪ . . . ∪ N0[xk] = V (G). (1)

Here is another simple observation. For each pair i and j, with 1 ≤ i < j ≤ k,
d(xi, xj) ≥ j−i. Since, otherwise, if d(xi, xj) = l < j−i, then xj will be burned at
stage l+ i (< j) which is a contradiction. Hence, we have the following corollary.

Corollary 1. Suppose that (x1, x2, . . . , xk) is a burning sequence for a graph G.
If for some node x ∈ V (G)\{x1, . . . , xk} and 1 ≤ j ≤ k−1, we have that N [x] ⊆
N [xj ], and for every i 	= j, d(x, xi) ≥ |i − j|, then (x1, . . . , xj−1, x, xj+1, . . . , xk)
is also a burning sequence for G.

2.1 Characterizations of Burning Number via Trees

The following theorem provides an alternative characterization of the burning
number. Note that through the rest of this paper we consider the burning prob-
lem for connected graphs. The depth of a node in a rooted tree is the number of
edges in a shortest path from the node to the tree’s root. The height of a rooted
tree T is the greatest depth in T . A rooted tree partition of G is a collection of
rooted trees which are subgraphs of G, with the property that the node sets of
the trees partition V (G).

Theorem 1. Burning a graph G in k steps is equivalent to finding a rooted tree
partition into k trees T1, T2, . . . , Tk, with heights at most (k − 1), (k − 2), . . . , 0,
respectively such that for every 1 ≤ i, j ≤ k the distance between the roots of Ti

and Tj is at least |i − j|.
Proof. Assume that (x1, x2, . . . , xk) is a burning sequence for G. For all 1 ≤
i ≤ k, after xi is burned, in each round t > i those unburned nodes of G in the
(t−i)-neighborhood of xi will burn. Hence, any node v is burned by receiving fire
via a shortest path of burned nodes from a fire source like xi (this path can be of
length zero in the case that v = xi). Hence, we may define a surjective function
f : V (G) → {x1, x2, . . . , xk}, with f(v) = xi if v receives fire from xi, where i
is chosen with the smallest index. Now {f−1(x1), f−1(x2), . . . , f−1(xk)} forms
a partition of V (G) such that G[f−1(xi)] (the subgraph induced by f−1(xi))
forms a connected subgraph of G. Since every node v in f−1(xi) receives the
fire spread from xi through a shortest path between xi and v, by deleting extra
edges in G[f−1(xi)] we can make a rooted subtree of G, called Ti with root xi.
Since every node is burned after k steps, the distance between each node on Ti

and xi is at most k − i. Therefore, the height of Ti is at most k − i.
Conversely, suppose that we have a decomposition of the nodes of G into k

rooted subtrees T1, T2, . . . , Tk, such that for each 1 ≤ i ≤ k, Ti is of height at most
k− i. Assume that x1, x2, . . . , xk are the roots of T1, T2, . . . , Tk, respectively, and
for each pair i and j, with 1 ≤ i < j ≤ k, d(xi, xj) ≥ j − i. Then (x1, x2, . . . , xk)
is a burning sequence for G, since the distance between any node in Ti and xi is
at most k − i. Thus, after k steps the graph G will be burned. ��
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Fig. 2. A rooted tree partition

Figure 2 illustrates Theorem 1. The burning sequence is (x1, x2, x3). We
have shown the decomposition of G into subgraphs T1, T2, and T3 based on this
burning sequence by drawing dashed curves around the corresponding subgraphs.
Each node has been indexed by a number corresponding to the step that it is
burned.

The following corollary is useful for determining the burning number of a
graph, as it reduces the problem of burning a graph to burning its spanning trees.
First, note that for a spanning subgraph H of G, it is evident that b(G) ≤ b(H)
(since every burning sequence for H is also a burning sequence for G).

Corollary 2. For a graph G we have that

b(G) = min{b(T ) : T is a spanning subtree of G}.

Proof. By Theorem 1, we assume that T1, T2, . . . , Tk is a rooted tree partition of
G, where k = b(G), derived from an optimal burning sequence for G. If we take
T to be a spanning subtree of G obtained by adding edges sequentially between
the Ti’s which do not induce a cycle in G, then b(T ) ≤ k = b(G) ≤ b(T ), where
the second inequality holds since T is a spanning subgraph of G. ��

2.2 Bounds

A subgraph H of a graph G is called an isometric subgraph if for every pair of
nodes u, v in H, we have that dH(u, v) = dG(u, v). For example, a subtree of a
tree is an isometric subgraph. As another example, if G is a connected graph and
P is a shortest path connecting two nodes of G, then P is an isometric subgraph
of G. The following theorem (with proof omitted) shows that the burning number
is monotonic on isometric subgraphs.

Theorem 2. For any isometric subgraph H of a graph G, we have that b(H) ≤
b(G).

However, this inequality may fail for non-isometric subgraphs. For example,
let H be a path of order 5, and form G by adding a universal node to H. Then
b(H) = 3, but b(G) = 2. The following corollary is an immediate consequence of
Theorem 2.
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Corollary 3. If T is a tree and H is a subtree of T , then we have that b(H) ≤
b(T ).

The burning number of paths is derived in the following result (with proof
omitted).

Theorem 3. For a path Pn on n nodes, we have that b(Pn) = �n1/2�.
We have the following immediate corollaries.

Corollary 4. 1. For a cycle Cn, we have that b(Cn) = �n1/2�.
2. For a graph G of order n with a Hamiltonian (that is, spanning) path, we

have that b(G) ≤ �n1/2�.
The following theorem gives sharp bounds on the burning number. For s ≥ 3,

let K1,s denotes a star ; that is, a complete bipartite graph with parts of order
1 and s. We call a graph obtained by a sequence of subdivisions starting from
K1,s a spider graph. In a spider graph G, any path which connects a leaf to the
node with maximum degree is called an arm of G. If all the arms of a spider
graph with maximum degree s are of the same length r, we denote such a spider
graph by SP (s, r).

Lemma 1. For any graph G with radius r and diameter d, we have that

�(d + 1)1/2� ≤ b(G) ≤ r + 1.

Proof. Assume that c is a central node of G with eccentricity r. Since every node
in G is within distance r from c, the fire will spread to all nodes after r+1 steps.
Hence, r + 1 is an upper bound for b(G).

Now, let P be a path connecting two nodes u and v in G with d(u, v) = d.
Since P is an isometric subgraph of G, and |P | = d + 1, by Theorem 2 and
Theorem 3 we conclude that b(G) ≥ b(P ) = �(d + 1)1/2�. ��
As proven in [6], the lower bound is achieved by paths, and the right side bound
is achieved by spider graphs SP (r, r). Note that when proving b(G) ≤ r + 1 in
Theorem 1, we viewed G as covered by a ball with radius r, with a central node
chosen as a center of the ball. Hence, by burning a central node, after r+1 steps
every node in G will be burned. A covering of G is a set of subsets of the nodes
of G whose union is V (G). We may generalize this idea to the case that there is
a covering of G by a collection of balls with a specified radius.

Theorem 4. Let {C1, C2, . . . , Ct} be a covering of the nodes of a graph G, in
which each Ci is a connected subgraph of radius at most k. Then we have that
b(G) ≤ t + k.

We finish this section by providing some bounds on the burning number in
terms of certain domination numbers. A k-distance dominating set like Dk for G
is a subset of nodes such that for every node u ∈ V (G) \ Dk, there exists a node
v ∈ Dk, with d(u, v) ≤ k. The number of the nodes in a minimum k-distance
dominating set of G is denoted by γk(G) and we call it the k-distance domination
number of G. We have the following result (proof omitted).
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Theorem 5. For any graph G with burning number k we have, γk−1(G) ≤ k.

We now give bounds on the burning number in terms of distance domination
numbers.

Theorem 6. If G is a connected graph, then we have that

1
2
(
min
i≥1

{γi(G) + i} + 1
) ≤ b(G) ≤ min

i≥1
{γi(G) + i}.

Proof. The upper bound is an immediate corollary of Theorem 4. For the lower
bound, let k = b(G), and let (x1, . . . , xk) be a burning sequence. Then we have
that

V (G) ⊆ Nk−1[x1] ∪ . . . ∪ N0[xk]
⊆ Nk−1[x1] ∪ . . . ∪ Nk−1[xk].

Hence, {x1, . . . , xk} is a k-distance dominating set of G. Since by Theorem 5 we
have that γk−1(G) ≤ k, and γk−1(G) + (k − 1) ≤ 2k − 1 = 2b(G) − 1, we derive
that mini≥1{γi(G) + i} ≤ γk−1(G) + (k − 1) ≤ 2b(G) − 1. ��

We have the following fact about the k-distance domination number of graphs.

Theorem 7. [17] If G is a connected graph of order n with n ≥ k + 1, then we
have that

γk(G) ≤ n

k + 1
.

Now we use the bound in Theorem 7 for k-distance domination number which
provides another upper bound for the burning number.

Corollary 5. If G is a connected graph of order n, then we have that

b(G) ≤ 2n1/2 − 1.

We conjecture that for any connected graph G of order n, b(G) ≤ �n1/2�.

3 Burning in the ILT Model

The Iterated Local Transitivity (ILT) model [5], simulates on-line social networks
(or OSNs). The central idea behind the ILT model is what sociologists call
transitivity : if u is a friend of v, and v is a friend of w, then u is a friend of w.
In its simplest form, transitivity gives rise to the notion of cloning, where u is
joined to all of the neighbours of v. In the ILT model, given some initial graph as
a starting point, nodes are repeatedly added over time which clone each node, so
that the new nodes form an independent set. The only parameter of the model is
the initial graph G0, which is any fixed finite connected graph. Assume that for
a fixed t ≥ 0, the graph Gt has been constructed. To form Gt+1, for each node
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x ∈ V (Gt), add its clone x′, such that x′ is joined to x and all of its neighbours
at time t. Note that the set of new nodes at time t + 1 form an independent set
of cardinality |V (Gt)|.

The ILT model shares many properties with OSNs such as low average dis-
tance, high clustering coefficient densification, and bad spectral expansion; see
[5]. The ILT model has also been studied from the viewpoint of competitive
diffusion which is one model of the spread of influence; see [20].

We have the following theorem about the burning number of graphs obtained
based on ILT model. Even though the graphs generated by the ILT model grow
exponentially in order with t, we see that the burning number of such networks
remains constant.

Theorem 8. Let Gt be the graph generated at time t ≥ 1 based on the ILT model
with initial graph G0. If G0 has an optimal burning sequence (x1, . . . , xk) in
which xk has a neighbor that is burned in the (k−1)-th step, then b(Gt) = b(G0).
Otherwise, b(Gt) = b(G0) + 1.

Proof. It is straightforward to see that G0 is an isometric subgraph of Gt. There-
fore, by Theorem 2, b(Gt) ≥ b(G0). On the other hand, assume that (x1, . . . , xk)
is an optimal burning sequence for G0. Since every node x′ ∈ V (Gt) \ V (G0) is
adjacent to a node in G0, we have that (x1, . . . , xk) is a burning sequence for the
subgraph of Gt induced by V (Gt)\(NGt

[xk]\NG0 [xk]). Thus, b(Gt) ≤ b(G0)+1.
Hence, we conclude that always either we have that b(Gt) = b(G0), or b(Gt) =
b(G0) + 1.

Suppose that for every optimal burning sequence of G0 all the neighbours
of xk are burned in the k-th step. We claim that b(G1) = b(G0) + 1. Assume
not; that is, b(G1) = b(G0). Let (y1, y2, . . . , yk) be an optimal burning sequence
for G1. Without loss of generality, by Corollary 1, and the structure of G1,
we can assume that {y1, y2, . . . , yk−1} ⊆ G0. Then, we have two possibilities;
either yk = x or yk = x′ ∈ V (G1) \ V (G0), for some x ∈ V (G0). If the former
holds, then to burn x′ by the end of the k-th step, one of the nodes in the
neighbourhood of x must be burned in an earlier stage, which is a contradiction.
Since in this case (y1, y2, . . . , yk) forms a burning sequence for G0. If the latter
holds, that is, yk = x′ ∈ V (G1) \ V (G0), for some x ∈ V (G0), then, we must
have x = yk−1 (Note that all the neighbours of x must be burned either in the
(k − 1)-th step or the k-th step; Otherwise, yk is burned before the k-th step,
which is a contradiction). Otherwise, if x 	= yk−1, to burn x by the k-th step,
one of the neighbours of x must be burned in an earlier stage. But then in this
case, (y1, . . . , yk−1, x) forms an optimal burning sequence for G0 such that one
of the neighbours of x is burned in the (k − 1)-th step which is a contradiction
with the assumption. Thus, x = yk−1.

If all the neighbours of x, including y, are burned in the (k − 1)-th step,
then (y1, . . . , yk−2, y, x) forms an optimal burning sequence for G0. But this is
a contradiction with the assumption. If at least one of the neighbours of x like
y is burned at the k-th step, then (y1, . . . , yk−2, x, y) forms an optimal burning
sequence for G0, which is again a contradiction with the assumption. Therefore,
in this case, b(G1) = b(G0) is impossible, and hence, b(G1) = b(G0) + 1.
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Conversely, suppose that b(G1) = b(G0) + 1, and (x1, . . . , xk) is an optimal
burning sequence for G0. If xk has a neighbour that is burned at stage k − 1,
then x′

k is also burned at stage k. Therefore, (x1, . . . , xk) is a burning sequence
for G1, and we have that b(G1) = b(G0), which is a contradiction. Thus, b(G1) =
b(G0)+1, if and only if for every optimal burning sequence of G0, say (x1, . . . , xk),
all the neighbours of xk are burned in stage k. By induction, we can conclude
that b(Gt) = b(G0) + 1 if and only if for every optimal burning sequence of G0,
say (x1, . . . , xk), all the neighbours of xk are burned in stage k. Since starting
from any graph G0, for any t ≥ 1, b(Gt) = b(G0), or b(Gt) = b(G0) + 1, we
conclude that b(Gt) = b(G0) if and only if for every optimal burning sequence
of G0, say (x1, . . . , xk) one of the neighbours of xk is burned in stage k − 1. ��

4 Cartesian Grids

The Cartesian product of graphs G and H, written G�H, has nodes V (G) ×
V (H) with (u, v) adjacent to (x, y) if u = x and vy ∈ E(H) or v = y and ux ∈
E(G). The Cartesian m × n grid is Pm�Pn. We prove the following theorem.

Theorem 9. If G is a Cartesian m×n grid with 1 ≤ m ≤ n, then we have that

b(G) =

{
Θ(n1/2) if m = O(n1/2)
Θ((mn)1/3) if m = Ω(n1/2).

Proof. First, we find a general upper bound by applying the covering idea in
Theorem 4 as follows. Using a layout as shown in Figure 3 we may provide a
covering of G by a collection of t closed neighbourhoods of radius r. Note that
the r-th neighbourhood of a vertex in a grid is a subset of a “diamond” with
diameter 2r+1 in the Cartesian grid plane. Thus, by a simple counting argument
we have that

t =
⌈

m

2r + 1

⌉⌈
n

2r + 1

⌉
+

(⌈
m

2r + 1

⌉
+ 1

) (⌈
n

2r + 1

⌉
+ 1

)

≤ 2
(⌈

m

2r + 1

⌉
+ 1

) (⌈
n

2r + 1

⌉
+ 1

)
.

Fig. 3. A covering of the Cartesian grid
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Therefore, t = O(mn
r2 + m

r + n
r ), and consequently, by Theorem 4,

b(G) = O
(
r +

mn

r2
+

m

r
+

n

r

)
. (2)

First, we consider the case that m = O(n1/2): Since Pn is an isometric subgraph
of G, then by Theorem 3, we have that b(G) = Ω(n1/2). Moreover, by taking
r = n1/2, we derive that mn

r2 = m = O(n1/2), and m
r + n

r ≤ 2n
r = O(n1/2).

Thus, by equation (2), b(G) = O(n1/2), and we conclude that in this case,
b(G) = Θ(n1/2).

Now, suppose m = Ω(n1/2). Let S = (x1, x2, . . . , xk) be a burning sequence
for G. Thus, every node in G must be in the (k − i)-th neighborhood of a node
xi, for some 1 ≤ i ≤ k. By direct checking, the number of nodes in the r-th
closed neighborhood of a node x in G equals

|Nr[x]| = |{y ∈ G : d(x, y) ≤ r}| = 1 + 4 + · · · + 4r

= 1 + 2r(r + 1).

Therefore, by double counting the nodes of G and by (1), we have that

mn = |G| ≤ |Nk−1[x1]| + |Nk−2[x2]| + · · · + |N0[xk]|

= k +
k−1∑
i=1

2i(i + 1) =
2k3 + k

3
.

Since the above inequality holds for all burning sequences, we conclude that
b(G) = Ω((mn)1/3). On the other hand, by taking r = (mn)1/3 in equation (2),
we derive that b(G) = O((mn)1/3). Hence, the proof follows. ��

5 Conclusions and Future Work

We introduced a new graph parameter, the burning number of a graph, written
b(G). The burning number measures how rapidly social contagion spreads in
a given graph. We gave a characterization of the burning number in terms of
decompositions into trees, and gave bounds on the burning number which allow
us to compute it for a variety of graphs. We determined the asymptotic order of
the burning number of grids, and determined the burning number in the Iterated
Local Transitive model for social networks.

Several problems remain on the burning number. We conjecture that for a
connected graph G of order n, b(G) ≤ �n1/2�. Determining the burning num-
ber remains open for many classes of graphs, including trees and disconnected
graphs. It remains open to consider the burning number in real-world social net-
works such as Facebook or LinkedIn. As Theorem 8 suggests, the burning number
of on-line social networks is likely of constant order as the network grows over
time. We remark that burning number generalizes naturally to directed graphs;
one interesting direction is to determine the burning number on Kleinberg’s small
world model [15], which adds random directed edges to the Cartesian grid.

A simple variation which leads to complex dynamics is to change the rules
for nodes to burn. As in graph bootstrap percolation [2], the rules could be varied
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so nodes burn only if they are adjacent to at least r burned neighbors, where
r > 1. We plan on studying this variation in future work.
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Abstract. Personalized PageRank is an algorithm to classify the impor-
tance of web pages on a user-dependent basis. We introduce two gener-
alizations of Personalized PageRank with node-dependent restart. The
first generalization is based on the proportion of visits to nodes before
the restart, whereas the second generalization is based on the proportion
of time a node is visited just before the restart. In the original case of
constant restart probability, the two measures coincide. We discuss inter-
esting particular cases of restart probabilities and restart distributions.
We show that both generalizations of Personalized PageRank have an
elegant expression connecting the so-called direct and reverse Personal-
ized PageRanks that yield a symmetry property of these Personalized
PageRanks.

1 Introduction and Definitions

PageRank has become a standard algorithm to classify the importance of nodes
in a network. Let us start by introducing some notation. Let G = (V,E) be a
finite graph, where V is the node set and E ⊆ V ×V the collection of (directed)
edges. Then, PageRank can be interpreted as the stationary distribution of a
random walk on G that restarts from a uniform location in V at each time
with fixed probability 1−α ∈ (0, 1). Thus, in the Standard PageRank centrality
measure [10], the random walk restarts after a geometrically distributed number
of steps, and the restart takes place from a uniform location in the graph, and
otherwise jumps to any one of the neighbours in the graph with equal probability.
Personalized PageRank [17] is a modification of the Standard PageRank where
the restart distribution is not uniform. Both the Standard and Personalized
PageRank have many applications in data mining and machine learning (see
e.g., [3,4,10,13,16,17,19,20]).

In the (standard) Personalized PageRank, the random walker restarts with a
given fixed probability 1−α at every step, independently of the node the walker
presently is at. We suggest a generalization where a random walker restarts
with probability 1 − αi when it is at node i ∈ V . When the random walker
restarts, it chooses a node to restart at with probability distribution vT . In
many cases, we let the random walker restart at a fixed location, say j ∈ V .
c© Springer International Publishing Switzerland 2014
A. Bonato et al. (Eds.): WAW 2014, LNCS 8882, pp. 23–33, 2014.
DOI: 10.1007/978-3-319-13123-8 3
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Then the Personalized PageRank is a vector whose ith coordinate measures the
importance of node i to node j.

The above random walks (Xt)t≥0 can be described by a finite-state Markov
chain with the transition matrix

P̃ = AD−1W + (I − A)1vT , (1)

where W is the (possibly non-symmetric) adjacency matrix, D is the diagonal
matrix with diagonal entries di = Dii =

∑n
j=1 Wij , and A = diag(α1, . . . , αn)

is the diagonal matrix of damping factors. The case of undirected graphs cor-
responds to the case when W is a symmetric matrix. In general, Dii is the
out-degree of node i ∈ V . If some node does not have outgoing edges, we add
artificial outgoing edges from that node to all the other nodes. Throughout the
paper, we assume that the graph is strongly connected, that is, each node can
be reached from any other node.

We propose two generalizations of the Personalized PageRank with node-
dependent restart:

Definition 1 (Occupation-Time Personalized PageRank, OT PPR).
The Occupation-Time Personalized PageRank with restart vector v is the vector
whose ith coordinate is given by

πi(v) = lim
t→∞P(Xt = i). (2)

By the fact that (πi(v))i∈V is the stationary distribution of the Markov chain,
we can interpret πi(v) as a long-run frequency of visits to node i, i.e.,

πi(v) = lim
t→∞

1
t

t∑
s=1

1{Xs=i}. (3)

Our second generalization is based on the location where the random walker
restarts.

Definition 2 (Location-of-Restart Personalized PageRank, LORPPR).
The Location-of-Restart Personalized PageRank with restart vector v is the vector
whose ith coordinate is given by

ρi(v) = lim
t→∞P(Xt = i just before restart) = lim

t→∞P(Xt = i | restart at time t+1).

(4)

We can interpret ρi(v) as a long-run frequency of visits to node i which are
immediately followed by a restart, i.e.,

ρi(v) = lim
t→∞

1
Nt

t∑
s=1

1{Xt=i,Xt+1 restarts}, (5)
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where Nt denotes the number of restarts up to time t. When the restarts occur
with equal probability at every node, Nt ∼ Bin(t, 1 − α), i.e., Nt has a bino-
mial distribution with t trials and success probability 1 − α. When the restart
probabilities are unequal, the distribution of Nt is more involved. We note that

Nt/t
a.s.−→

∑
i∈V

(1 − αi)πi(v), (6)

where a.s.−→ denotes convergence almost surely.
Both generalized Personalized PageRanks are probability distributions, i.e.,

their sum over i ∈ V gives 1. When vT = e(j), where ei(j) = 1 when i = j
and ei(j) = 0 when i �= j, then both πi(v) and ρi(v) can be interpreted as the
relative importance of node i from the perspective of node j.

We see at least three applications of the generalized Personalized PageRank.
The network sampling process introduced in [6] can be viewed as a particular
case of PageRank with a node-dependent restart. We discuss this relation in
more detail in Section 4. Secondly, the generalized Personalized PageRank can
be applied as a proximity measure between nodes in semi-supervised machine
learning [5,16]. In this case, one may prefer to discount the effect of less infor-
mative nodes, e.g., nodes with very large degrees. And thirdly, the generalized
Personalized PageRank can be applied for spam detection and control. It is
known [11] that spam web pages are often designed to be ranked highly. By
using the Location-of-Restart Personalized PageRank and penalizing the rank-
ing of spam pages with small restart probability, one can push the spam pages
from the top list produced by search engines.

Let us mention some other works generalizing the fixed probability of restart
in PageRank. In [14] and [15] the authors consider the damping factor as a
random variable distributed according to user behavior. These works general-
ize [9] where the random damping factor is chosen according to the uniform
distribution. Also, there is a stream of works, starting from [8], that generalize
the damping parameter to the damping function. In those works, the random
walk restarts with probability as a function of the number of steps from the last
restart.

In this paper, we investigate the two generalizations of Personalized Page-
Rank. The paper is organised as follows. In Section 2, we investigate the
Occupation-Time Personalized PageRank. In Section 3, we investigate the
Location-of-Restart Personalized PageRank. In Section 4, we specify the results
for some particular interesting cases. We close in Section 5 with a discussion of
our results and suggestions for future research.

All proofs can be found in the accompanying research report [1].

2 Occupation-Time Personalized PageRank

The Occupation-Time Personalized PageRank can be calculated explicitly as
follows:
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Theorem 1 (Occupation-Time Personalized PageRank Formula). The
Occupation-Time Personalized PageRank π(v) with restart vector v and node-
dependent restart equals

π(v) =
1

vT [I − AP ]−11
vT [I − AP ]−1, (7)

with P = D−1W the transition matrix of random walk on G without restarts.

By the renewal-reward theorem (see e.g., Theorem 2.2.1 in [22]), formula (7)
admits the following probabilistic interpretation

πi(v) =
Ev[# visits to i before restart]
Ev[# steps before restart]

, (8)

where Ev denotes expectation with respect to the Markov chain starting in dis-
tribution v.

Denote for brevity πi(j) = πi(eT
j ), where ej is the jth vector of the standard

basis, so that πi(j) denotes the importance of node i from the perspective of
node j. Similarly, πj(i) denotes the importance of node j from the perspective
of i. We next provide a relation between these “direct” and “reverse” PageRanks
in the case of undirected graphs.

Theorem 2 (Symmetry for undirected Occupation-Time Personalized
PageRank). When WT = W and A > 0, the following relation holds

dj

αjKj(A)
πi(j) =

di

αiKi(A)
πj(i), (9)

with di = Dii the degree of node i and

Ki(A) =
1

eT
i [I − AP ]−11

. (10)

We note that the term (AD−1W )k can be interpreted as the contribution
corresponding to all paths of length k, while Ki(A) can be interpreted as the
reciprocal of the expected time between two consecutive restarts if the restart
distribution is concentrated on node i, i.e.,

Ki(A)−1 = Ei[# steps before restart], (11)

see also (8). Thus, a probabilistic interpretation of (9) is that

dj

αj
Ej [# visits to i before restart] =

di

αi
Ei[# visits to j before restart]. (12)

Since

Ei[# visits to j before restart] =
∞∑

k=1

∑
v1,...,vk

k−1∏
t=0

αvs

dvs

, (13)
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where v0 = i, we immediately see that the expression for

Ej [# visits to i before restart]

is identical to (13), except for the first factor of αi/di, which is present in

Ei[# visits to j before restart],

but not in Ej [# visits to i before restart], and the factor αj/dj , which is present
in Ej [# visits to i before restart], but not in Ei[# visits to j before restart].
This explains the factors di/αi and dj/αj in (12) and gives a probabilistic proof
alternative to the algebraic proof given in [1].

3 Location-of-Restart Personalized PageRank

The Location-of-Restart Personalized PageRank can also be calculated
explicitly:

Theorem 3 (Location-of-Restart Personalized PageRank Formula).
The Location-of-Restart Personalized PageRank ρ(v) with restart vector v and
node-dependent restart is equal to

ρ(v) = vT [I − AP ]−1[I − A], (14)

with P = D−1W .

The proof follows from (13) and the formula

ρi(v) = Ev[# visits to i before restart]P(restart from i) (15)
= Ev[# visits to i before restart](1 − αi).

The Location-of-Restart Personalized PageRank admits an even more elegant
relation between the “direct” and “reverse” PageRanks in the case of undirected
graphs:

Theorem 4 (Symmetry for undirected Location-of-Restart Personal-
ized PageRank). When WT = W and αi ∈ (0, 1), the following relation
holds

1 − αj

αj
dj ρi(j) =

1 − αi

αi
di ρj(i). (16)

A probabilistic proof follows from (12) and (15).

Interestingly, in (9), the whole graph topology has an effect on the relation
between the “direct” and “reverse” Personalized PageRanks, whereas in the case
of ρ(v), see equation (16), only the local end-point information (i.e., αi and di)
have an effect on the relation between the “direct” and “reverse” PageRanks.
We have no intuitive explanation of this distinction.
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4 Interesting Particular Cases

In this section, we consider some interesting particular cases for the choice of
restart probabilities and distributions.

4.1 Constant Probability of Restart

The case of constant restart probabilities (i.e., αi = α for every i) corresponds
to the original or standard Personalized PageRank. We note that in this case
the two generalizations coincide. For instance, we can recover a known formula
[21] for the original Personalized PageRank with A = αI from equation (7).
Specifically,

vT [I − AP ]−11 = vT [I − αP ]−11 = vT
∞∑

k=0

αkP k1 =
1

1 − α
, (17)

and hence we retrieve the well-known formula

π(v) = (1 − α)vT [I − αP ]−1. (18)

We also retrieve the following elegant result connecting “direct” and “reverse”
original Personalized PageRanks on undirected graphs (WT = W ) obtained
in [5]:

diπj(i) = djπi(j), (19)

since in the original Personalized PageRank αi ≡ α. Finally, we note that in the
original Personalized PageRank, the expected time between restarts does not
depend on the graph structure nor on the restart distribution and is given by

Ev[time between consecutive restarts] =
1

1 − α
, (20)

which is just the mean of a geometrically distributed random variable with
parameter 1 − α.

4.2 Restart Probabilities Proportional to Powers of Degrees

Let us consider a particular case when the restart probabilities are proportional
to powers of the degrees. Namely, let σ ∈ R and define

A = I − aDσ, (21)

with adσ
max < 1. We first analyse [I − AP ]−1 with the help of a Laurent series

expansion. Let T (ε) = T0 − εT1 be a substochastic matrix for small values of ε
and let T0 be a stochastic matrix with associated stationary distribution ξT and
deviation matrix H = (I −T0+1ξT )−1−1ξT . Then, the following Laurent series
expansion takes place (see Lemma 6.8 from [2])

[I − T (ε)]−1 =
1
ε
X−1 + X0 + εX1 + . . . , (22)
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where the first two coefficients are given by

X−1 =
1

πT T11
1ξT , (23)

and
X0 = (I − X−1T1)H(I − T1X−1). (24)

Applying the above Laurent power series to [I −AP ]−1 with T0 = P , T1 = DσP
and ε = a, we obtain

[I − AP ]−1 = [I − (P − aDσP )]−1 =
1
a

1
πT T11

1ξT + O(1) (25)

=
1
a

1
ξT Dσ1

1ξT + O(1).

This yields the following asymptotic expressions for the generalized Personalized
PageRanks

πj = ξj + O(a), (26)

and

ρj =
dσ

j ξj∑
i∈V dσ

i ξi
+ O(a). (27)

In particular, if we assume that the graph is undirected (WT = W ), then ξj =
dj/

∑
i di and we can further specify the above expressions as

πj =
dj∑
i di

+ O(a), (28)

and

ρj =
d1+σ

j∑
i∈V d1+σ

i

+ O(a). (29)

We observe that using a positive or negative power σ of the degrees, we can
significantly penalize or promote the score ρ for nodes with large degrees.

As a by-product of our computations, using (11), we have also obtained a
nice asymptotic expression for the expected time between restarts in the case of
undirected graph:

Ev[time between consecutive restarts] =
1
a

∑
i∈V di∑

i∈V d1+σ
i

+ O(1). (30)

One interesting conclusion from the above expression is that when σ > 0 the
highly skewed distribution of the degree in G can significantly shorten the time
between restarts.
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4.3 Random Walk with Jumps

In [6], the authors introduced a process with artificial jumps. It is suggested
in [6] to add artificial edges with weights a/n between each two nodes to the
graph. This process creates self-loops as well. Thus, the new modified graph is a
combination of the original graph and a complete graph with self-loops. Let us
demonstrate that this is a particular case of the introduced generalized definition
of Personalized PageRank. Specifically, we define the damping factors as

αi =
di

di + a
, i ∈ V, (31)

and as the restart distribution we take the uniform distribution (v = 1/n).
Indeed, it is easy to check that we retrieve the transition probabilities from [6]

pij =

{
a+n

n(di+a) when i has an edge to j,
a

n(di+a) when i does not have an edge to j.
(32)

As was shown in [6], the stationary distribution of the modified process, coin-
ciding with the Occupation-Time Personalized PageRank, is given by

πi = πi(1/n) =
di + a

2|E| + na
, i ∈ V. (33)

In particular, from (6) we conclude that in the stationary regime

Eπ[time between consecutive restarts] =

⎛
⎝∑

j∈V

(
1 − dj

dj + a

)
dj + a

2|E| + na

⎞
⎠

−1

=
2|E| + na

na
=

d̄ + a

a
,

where d̄ is the average degree of the graph. Since π(v) is the stationary distri-
bution of P̃ with v = 1/n (see (1)), it satisfies the equation

π(AP + [I − A]1vT ) = π. (34)

Rewriting this equation as

π[I − A]1vT = π[I − AP ], (35)

and postmultiplying by [I − AP ]−1, we obtain

π[I − A]1vT [I − AP ]−1 = π (36)

or
vT [I − AP ]−1 =

π∑n
j=1 πj(1 − αj)

. (37)
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This yields

ρi(v) =
πi(1 − αi)∑n

j=1 πj(1 − αj)
. (38)

In our particular case of αi = di/(di +a), the combination of (33) and (38) gives
that πi(1 − αi) is independent of i, so that

ρi = 1/n. (39)

This is quite surprising. Since vT = 1
n1T , the nodes just after restart are dis-

tributed uniformly. However, it appears that the nodes just before restart are also
uniformly distributed! Such effect has also been observed in [7]. Algorithmically,
this means that all pages receive the same generalized Personalized PageRank
ρ, which, for ranking purposes, is rather uninformative. On the other hand, this
Personalized PageRank can be useful for sampling procedures. In fact, we can
generalize (31) to

αi =
di

di + ai
, i ∈ V, (40)

where now each node has its own parameter ai. Now it is convenient to take as
the restart distribution

vi =
ai∑

k∈V ak
.

Performing similar calculations as above, we arrive at

πi(v) =
di + ai

2|E| +
∑

k∈V ak
, i ∈ V,

and
ρi(v) =

ai∑
k∈V ak

, i ∈ V.

Now in contrast with (39), the Location-of-Restart Personalized PageRank can
be tuned to give any distribution that we like.

5 Discussion

We have proposed two generalizations of Personalized PageRank when the prob-
ability of restart depends on the node. Both generalizations coincide with the
original Personalized PageRank when the probability of restart is the same for
all nodes. However, in general they show quite different behavior. In particular,
the Location-of-Restart Personalized Pagerank appears to be stronger affected
by the value of the restart probabilities. We have further suggested several appli-
cations of the generalized Personalized PageRank in machine learning, sampling
and information retrieval and analyzed some particularly interesting cases.

We feel that the analysis of the generalized Personalized PageRank on ran-
dom graph models is a promising future research direction. We have already
obtained some indications that the degree distribution can strongly affect the
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time between restarts. It would be highly interesting to analyze this effect in
more detail on various random graph models (see e.g., [18] for an introduction
into random graphs, and [12] for first results on directed configuration models).
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Abstract. The clustering coefficient of an unweighted network has been
extensively used to quantify how tightly connected is the neighbor around
a node and it has been widely adopted for assessing the quality of nodes
in a social network. The computation of the clustering coefficient is chal-
lenging since it requires to count the number of triangles in the graph.
Several recent works proposed efficient sampling, streaming and MapRe-
duce algorithms that allow to overcome this computational bottleneck.
As a matter of fact, the intensity of the interaction between nodes, that
is usually represented with weights on the edges of the graph, is also an
important measure of the statistical cohesiveness of a network. Recently
various notions of weighted clustering coefficient have been proposed but
all those techniques are hard to implement on large-scale graphs.

In this work we show how standard sampling techniques can be used
to obtain efficient estimators for the most commonly used measures
of weighted clustering coefficient. Furthermore we also propose a novel
graph-theoretic notion of clustering coefficient in weighted networks.

1 Introduction

In recent years we observed a growing attention on the study of the structural
properties of social networks [15,17] as result of the fast increase of the amount of
social network data available for research. A widely adopted measure of the graph
structure of a social network is the clustering coefficient [30]. The local clustering
coefficient of a node is defined as the probability that any two neighbors of a
node are themselves neighbors. The clustering coefficient of a graph is the average
local clustering coefficient of the nodes of the graph.

The clustering coefficient is used to measure how tightly interconnected the
community is around a node. The degree of closeness of any two neighbors of
a node is also interpreted as an index of trust of the node itself. The local
clustering coefficient of a node has been proved for example to be a relevant
feature for detecting spam nodes in the web [3] and high quality users in social
networks [3].
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ported from Google Focused Award “Algorithms for Large-scale Data Analysis”, EU
FET project MULTIPLEX 317532, EU ERC project PAAI 259515.
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Computing the clustering coefficient of a network is a challenging computa-
tional task since it reduces to counting the number of triangles in a graph. This
task can be naively executed in O(n3) time or it can be reduced to matrix mul-
tiplication. The problem of computing the local clustering coefficient for every
node of the network is even more challenging. Several recent works have pro-
posed a variety of efficient methods for fast computation of clustering coefficient
in large scale networks based on random sampling [10], streaming algorithms
[6,13], and MapReduce parallel computation [27].

However, most of the studies on the structural properties of social networks
have focused on unweighted networks. In practice, many real world networks
exhibit a varying degree of intensity and heterogeneity in the connections which
is usually modeled with positive real weights on edges. Weights on edges are
used for instance to measure the number of messages exchanged between friends
or the number of links between hosts. Since the statistical level of cohesiveness
in a network should in principle depend also on the weight of the edges, some
recent interesting papers started to investigate weighted networks [19]. Several
new notions of weighted clustering coefficient have also been introduced ([2,
21] among others) but, unfortunately, no efficient method for estimating the
weighted clustering coefficient has been presented so far.

Computing the exact values of the weighted clustering coefficient is at least
as hard as for the unweighted clustering coefficient. Sampling is the key for an
efficient and accurate approximation [6,10].

Our Contributions. We summarize in the following the main contributions of
our work:

1. We show how to obtain efficient estimators for several standard definitions
of weighted clustering coefficient. Our sampling algorithm are easily paral-
lelizable too.

2. We introduce a novel notion of weighted clustering coefficient. We base our
proposal on the observation that edges with large weights are more likely to
play a role in the social network. Our model defines a family of unweighted
random graphs with edges existing with different probabilities. The proba-
bility of an edge depends on its weight. The largest the weight, the highest
the probability. Each graph of the family of random graphs is an unweighted
graph. The local weighted clustering coefficient of a node is defined as the
expected local clustering coefficient in the family of random graphs. Our def-
inition naturally extends to the weighted clustering coefficient of the entire
graph1. We also design a polynomial time algorithm to compute the value
of the weighted clustering coefficient and a sampling technique to estimate
it efficiently.

3. We perform experiments that show interesting properties of the weighted
clustering coefficient.

1 We note that our definition of weighted random random graph is different from the
definition of [9] and it is more in line with the standard definition used in data mining
and biology [11].
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1.1 Related Works

A survey of several approaches to clustering coefficient in weighted networks can
be found in [24]. In [22] the definition of clustering coefficient is based on the
average weight on the edges of a triangle. In [2] the definition of the local clus-
tering coefficient of a node only depends on the weights of the two edges incident
to the node but not on the weight of the third edge of the triangle. In [1] it is
adopted the standard unweighted definition with the exception that triangles
are weighted by the edge that closes the triangle. In [21] the weight is only con-
sidered in the numerator of the definition of clustering coefficient whereas the
denominator is the one of the unweighted case. In [31] the weight of a triangle is
obtained by multiplying the weights of the edges. Other proposals that are sub-
stantially different from our approach can also be found in [14,32]. The study of
the clustering coefficient in several classes of random unweighted graphs can be
found in [4].

The problem of estimating the clustering coefficient is closely related to the
problem of counting the number of triangles in a graph. This is computation-
ally expensive even on graphs of moderate size because of the time complexity
needed to enumerate all the length-two paths of the graph. Several works pro-
posed efficient heuristics [16,26] with computational results reported for graphs
of large size. More recently, there are algorithms designed under the MapReduce
[8] programming model. Using a MapReduce infrastructure, [27] proposed algo-
rithms for computing the exact number of triangles and the clustering coefficient
of graphs. Randomized algorithms for counting triangles were also implemented
under the MapReduce paradigm [23]. Finally to estimate the total number of
triangle in a graph is possible to use also matrix sketches [18], unfortunately it
is not clear how to extend this approach to local clustering coefficient. A related
measure is also the transitivity coefficient of a graph [20]. Techniques adopted for
estimating the clustering coefficient usually extend to the transitivity coefficient.

A natural approach for problems in massive networks is also to provide
approximate solutions based on the application of data stream and random sam-
pling algorithms. These algorithms usually provide an (1 ± ε) approximation of
the number of triangles with probability 1 − δ. The number of samples and
amount of memory needed depends on the quality of the approximation. Data
stream algorithms for estimating the number of triangles of a graph have been
considered in [13,29]. Semi-streaming algorithms have been proposed in [3]. A
sampling-based algorithm for estimating the clustering coefficient of a graph is
given in [25].

2 Preliminaries

Let G = (V,E) be an undirected graph with n = |V | and m = |E| edges.
For every vertex v ∈ V let N (v,G) denote its neighborhood, i.e. N (v,G) =
{u ∈ V : ∃(u, v) ∈ E}. The clustering coefficient Cv(G) of a vertex v ∈ V is
defined as the probability that a random pair of its neighbors is connected by
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an edge, i.e. Cv(G) :=
∣∣{(u,w)∈E:u,w∈N (v,G)

}∣∣
(|N(v,G)|

2 ) . In case of |N (v,G)| < 2 we

define Cv(G) := 0. The clustering coefficient C(G) of G is the average clustering
coefficient of its vertices, i.e. C(G) = 1

n · ∑
v∈V Cv(G).

Let us denote by W (v,G) = {〈u,w〉 : u,w ∈ N (v,G)} the set of wedges of
vertex v in graph G, i.e., the set of distinct paths of length two centered at v.

We denote by w : E → �+ the positive weight on the edges of the graph.
Let W = maxe∈Ew(e) be the maximum weight of an edge. We normalize the
edge weights in a way that their range varies in [0, 1]. Denote by p : E → [0, 1]
the normalized weights. We denote with 1C , the indicator variable for the event
C. In the experimental section we will use the following classic normalization
p(e) = 1

1+log W/w(e) .
Finally, we say that we have an (ε, δ) estimator for a measure M , if we can

estimate M within an ε multiplicative factor with probability at least 1 − δ.

2.1 Generalizations of Clustering Coefficient in Weighted
Networks

In this paper we consider three generalizations of the clustering coefficient in
weighted networks. In particular we focus our attention to two definitions pro-
posed in [2,21] that well represent two general approaches to the problem: in one
case the weights of the edges are added, in the other case they are multiplied.
We additionally introduce a novel definition that is particularly relevant when
the weights on the edges can be interpreted as probabilities2.

Onnela et al. The first definition of clustering coefficient that we consider has
been introduced by Onnela et al. [21]:

WCOnnela
v =

∑
〈u,w〉∈W (v,G) ŵ(e(v, u))ŵ(e(v, w))ŵ(e(u,w))

|N (v,G)| (|N (v,G)| − 1)
.

where with w(e(v, u)) we indicate the weight of the edge e(v, u) and ŵ(e(·, ·)) =
w(e(·,·))

W .

Barrat et al. The second definition of clustering coefficient that we consider has
been introduced by Barrat et al. [2]:

WCBarrat
v =

∑
〈u,w〉∈W (v,G)(w(e(v, u)) + w(e(v, w)))1e(u,w)

(|N (v,G)| − 1)
∑

v∈e w(e)
.

where 1e(u,w) is equal 1 if the edge (u,w) exists and 0 otherwise.

2 This setting is particularly relevant generated using inference models [12].
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Weighted clustering coefficient for probabilistic networks. The last measure that
we analyze is novel. The basic idea is that the normalized weights can be inter-
preted as probabilities of existence of the edges in the graph. More formally,
define the class of random graph Gn,p with edge e appearing independently with
probability p(e). Each graph G′ = (V,E′) ∈ Gn,p is an edge subset E′ of E. The
probability of G′ is p(G′) =

∏
e∈E′ p(e)

∏
e/∈E′(1 − p(e)).

The weighted clustering coefficient WCv of a vertex v ∈ V is defined as
the expected clustering coefficient over the class of graphs Gn,p: WCrandom

v =
EG′∈Gn,p

Cv(G′).

3 Computing the Weighted Clustering Coefficient in
Probabilistic Networks

In this section we give a polynomial algorithm to compute the new definition
of weighted clustering coefficient efficiently. Note that at first sight our problem
seems computationally very challenging because there are exponentially many
possible realizations of the neighborhood of each node.3

Our first algorithmic contribution is to show that the problem is in P, we
give an algorithm with complexity O(|N (v,G)|4). Our algorithm is based on a
dynamic program that computes incrementally the contribution of each neighbor
pair to the clustering coefficient of each node.

Unfortunately our exact algorithm is too slow to run on real networks where
the maximum degree is typically very large(in the order of millions for Twitter
or Google+) fortunately in the next section we show that the new measure has
an efficient (ε, δ) estimator.

Recall that the unweighted clustering coefficient of a node v is defined as
the probability that a randomly selected pair of its neighbors is connected by
an edge, based on this we can give an alternative definition of weighted cluster-
ing coefficient for probabilistic networks. Let χ(u,w) be a random variable that
has value 1 if the randomly selected pair is (u,w) and 0 otherwise. We have:
Cv(G) :=

∑
u,w∈N (v,G)∧(u,w)∈E Pr(χ(u,w) = 1). Where each pair is counted

only once. In the following we shorten N (v,G′) to N ′(v). Using this defini-
tion we can rewrite the weighted clustering coefficient for v as: WCrandom

v =
EG′∈Gn,p

[∑
u,w∈N ′(v)∧(u,w)∈E′ Pr(χ(u,w) = 1|G′)

]
.

Now by defining ξ(u,w) a random value that has value 1 if and only if
u,w ∈ N ′(v) ∧ (u,w) ∈ E′, and by denoting with 1ξ(u,w) its indicator function,
we have:
3 Note that enumerating all the triangles in the graph would not work in this setting

because of the dependency induced by the number of wedges in the realization of
the random graph.
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WCrandom
v

= EG′∈Gn,p

⎡
⎣ ∑

u,w∈N ′(v)∧(u,w)∈E′
Pr(χ(u, w) = 1|G′)

⎤
⎦

= EG′∈Gn,p

[ ∑
u,w∈N (v)

(
1ξ(u,w)Pr(χ(u, w) = 1|G′)

)]

=
∑

u,w∈N (v)

EG′∈Gn,p

[
1ξ(u,w)Pr(χ(u, w) = 1|G′)

]

=
∑

u,w∈N (v)

(
Pr(ξ(u, w) = 1) ∗ EG′∈Gn,p

[
1ξ(u,w)Pr(χ(u, w) = 1|G′)

∣∣∣∣ξ(u, w) = 1)

])

=
∑

u,w∈N (v)

(
Pr(u, w ∈ N ′(v) ∧ (u, w) ∈ E′) ∗ Pr(χ(u, w) = 1|ξ(u, w) = 1)

)

Now the first term of the sum can be easily computed because Pr(u,w ∈
N ′(v) ∧ (u,w) ∈ E′) = p(eu,v)p(ew,v)p(ew,u). The second term is still problem-
atic. In fact Pr(χ(u,w) = 1|ξ(u,w) = 1) depends on all the possible instantia-
tions of G′ and so it potentially involve the computation of exponentially many
terms.

In the following we show how to compute it efficiently using dynamic pro-
gramming4. Note that Pr(χ(u,w) = 1|ξ(u, v) = 1) = Pr(χ(u,w) = 1|u,w ∈
N ′(v)) because the existence of the edge (u,w) does not change the probability
of selecting u and v as random neighbors of v. And Pr(χ(u,w) = 1|u,w ∈ N ′(v))
is the probability that a pair u,w of neighbors of v are selected conditioned on
the fact that u,w ∈ N ′(v).

To compute this probability we use the equivalence between the following
two processes. The first one selects two elements uniformly at random without
replacement from a set S, and the second one computes a random permutation
of the elements in the set S and then returns the first two elements of the
permutation.

Using this equivalence we can rephrase the probability Pr(χ(u,w) = 1|u,w ∈
N ′(v)) as the probability that in a random permutation of the nodes in N (v),
u and w are the two nodes with the smallest positions in N ′(v). Note that for
this to happen either u and w are the first two nodes in the permutation of the
nodes in N (v), or all the nodes that are in positions smaller than u and w do
not appear in N ′(v).

Now leveraging on this fact, we give a quadratic dynamic program to com-
pute Pr(χ(u,w) = 1|ξ(u,w) = 1). Consider an arbitrary order to the nodes in
N (v) \ {u,w}, z1, z2, ..., z|N (v)|−2. In our algorithm we implicitly construct all

4 Unfortunately to the best of our knowledge, there is no analytic technique to esti-
mate this quantity correctly or with a close approximation without using a dynamic
programming.
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the possible permutations incrementally and at the same time we estimate the
probability that u,w are selected in each permutation. More specifically, ini-
tially we analyze the permutations containing only the elements {u,w} then the
ones containing the elements {u,w, z1}, then the ones containing the elements
{u,w, z1, z2}, and so on so for until we get the probability for each permutation
containing all the elements in N (v).

The key ingredient of our algorithm is the following observation. Once we
have computed the probability for all the permutations containing the nodes
{u,w, z1, z2, ..., zi−1}, to extend our computation to the permutations containing
also the node zi, we have to consider only two scenarios: in the first one zi appears
after u,w in the permutation in this case the probability that u and w are the
nodes in N ′(v) with the two smallest positions is the same. In the second one
zi appears before either of u or of w, conditioned on this event the probability
that u and w are the nodes in N ′(v) with the two smallest positions decreases
by a multiplicative factor 1 − p(ev,zi

).
We are now ready to state our dynamic program more formally. Let M be

a square matrix of dimension |N (v)| − 1 such that Mi,j , for j ≤ i, contains
the probability that in a random permutation of nodes {u,w, z1, z2, ..., zi} u
and w are preceded by exactly j elements in the permutation but they are in
the first and second position when we consider the ordering induced only to
nodes in N ′(v). Note that M0,0 is equal to 1, because in this case we consider
permutations containing only {u,w}. Similarly, we can compute M1,0 and M1,1.
In particular, for M1,0 we require that z1 is in a position after u and w so we
have M1,0 = 1

3M0,0. Instead, M1,1 = 2
3 (1 − p(ev,zi

))M0,0. More generally, we
have that for j ≤ i:

Mi,j =

⎧⎪⎪⎨
⎪⎪⎩

i−1
i+1Mi−1,0 if j = 0
i−j−1

i+1 Mi−1,j + j+1
i+1 p(ev,zi

)Mi−1,j−1 if j<i
and j>0

i
i+1p(ev,zi

)Mi−1,j−1 if j = i

Where p(∗) = 1 − p(∗).
Once we have computed the matrix M we can compute Pr(χ(u,w) =

1|u,w ∈ N ′(v)), in fact we have that: Pr(χ(u,w) = 1|u,w ∈ N ′(v)) =∑|N ′(v)|−2
i=0 M|N ′(v)|−2,i So we have:

WCrandom
v =

∑
u,w∈N (v)

(
1
2
p(eu,v)p(ew,v)p(ew,u) ∗

( |N ′(v)|−2∑
i=0

M|N ′(v)|−2,i

))

Note that the above algorithm has complexity O(|N (v)|4), so it is too slow
to run on large networks for this reason in the next section we study of efficient
estimators.
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4 Efficient Estimators for the Weighted Clustering
Coefficient

We propose efficient (ε, δ) estimators for the various definition of weighted clus-
tering coefficient. Our estimators that use basic concentration theory are similar
to the one presented in [5,28]. They are the first linear estimators for the weighted
clustering coefficient to the best of our knowledge.

Onnela et al. Recall the definition of Onnela et al. [21] given in Section 2.
In this definition the weighted clustering coefficient is equal to the total

normalized weight of the triangles containing v averaged by the number of wedges
centered on v. Thus if we sample the wedges uniformly at random, using the
Hoeffding bound and the fact that the normalized weights are in [0, 1], we get
an efficient (ε, δ) estimator for WCOnnela

v
5.

More formally, let X1, . . . , Xs identical random variables that with proba-
bility 1

|N (v,G)|(|N (v,G)|−1) have value ŵ(e(v, u)) ŵ(e(v, w))ŵ(e(u,w)) for every
wedge < u,w >. Then, E [

∑s
i=1 Xi] = sWCOnnela

v . Furthermore, by Hoeffding

bound we have that: P

(∣∣∣∣∣X − E [
∑s

i=1 Xi]

∣∣∣∣∣ ≤ εE [
∑s

i=1 Xi]

)
≤ e

ε2E[
∑s

i=1 Xi]
3

= e
εsW COnnela

v
3 So if we want δ > e

εsW COnnela
v
3 , it suffices to have s ∈ O(log 1

δ ·
1

ε2·WCOnnela
v

) samples.

Lemma 1. There is a sampling-based algorithm which with probability 1 − δ
returns a (1 ± ε)-approximation of the local weighted clustering coefficient
WCOnnela

v of a vertex v of a weighted graph G. It needs O(log 1
δ · 1

ε2·WCOnnela
v

)
samples.

Furthermore note that for the sampler we only need to be able to sample random
wedges and this can be easily done in linear time.

Barrat et al. Recall the definition of Barrat et al. [2] given in Section 2. In this
case the weighted clustering coefficient is not an explicit average so we cannot
use the Hoeffding bound directly as before. Nevertheless note that we can define
WCBarrat

v as the average value of the random variable X where X has value
1e(u,w) with probability w(e(v,u))+w(e(v,w))

(|N (v,G)|−1)
∑

v∈e w(e) for all 〈u,w〉 ∈ W (v,G).
Using this alternative definition combined with the Chernoff bound we get

that by using k samples of the wedges weighted with the correct probability
we can get good estimation of WCBarrat

v . We omit the formal proof of the
correctness of this estimator for lack of space and because it is very similar to
the previous one.
5 Note that for this to work it is fundamental that the weight on the edges have been

normalized and so are in [0, 1].
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Lemma 2. There is a sampling-based algorithm which with probability 1 − δ
returns a (1 ± ε)-approximation of the local weighted clustering coefficient
WCBarrat

v of a vertex v of a weighted graph G. It needs O(log 1
δ · 1

ε2·WCBarrat
v

)
samples.

Weighted clustering coefficient for probabilistic networks. The algorithm is based
on sampling a random wedge 〈u,w〉 ∈ W (v,G′) from a random graph G′ ∈ Gn,p

and checking whether (u,w) ∈ G′. The core idea of our sampler is to generate
for a node v s neighbor realizations N (v)1, . . . ,N (v)s uniformly at random from
Gn,p. Then for each realization sample a random wedge < u,w > uniformly
from N (v)i and check if the wedge is part of a triangle in the realization. The
estimation of the clustering coefficient is equal to the number of wedge that are
part of a triangle divided by s.

For the sake of completeness we give a simple analysis of the algorithm below.
We first show that the expected value of Xi is exactly WCrandom

v .

We have for each i ∈ {1, . . . , s}: E [Xi] = EG′∈Gn,p

[∣∣{(u,w)∈E′:u,w∈N (v,G′)
}∣∣

(|N(v,G′)|
2 )

]
= EG′∈Gn,p

[Cv(G′)] = WCrandom
v

Then we use the fact that for 0 − 1 random variables we have Var [Xi] ≤
E[X2

i ] = E[Xi] = WCrandom
v .

Now we analyze the variance of X. Since the Xi are mutually independent
we get Var [X] = Var

[
1
s · ∑s

i=1 Xi

]
= 1

s2 ·∑s
i=1 Var [Xi] ≤ WCrandom

v

s . Finally,
we can apply Chebyshev inequality. This gives us Pr

[∣∣X − E[X]
∣∣ ≥ ε · E[X]

] ≤
Var[X]

(ε·E[X])2 ≤ WCrandom
v

s·ε2·(WCrandom
v )2

= 1
s·ε2·WCrandom

v
.

If s ≥ 3
ε2·WCrandom

v
then with probability 2

3 the algorithm sampling WCrandom
v

approximates the weighted clustering coefficient of vertex v in G within a rela-
tive error of (1 ± ε). In order to amplify the probability of success we run the
algorithm Θ(log 1

δ ) times and return the median of all results. This leads to the
following corollary:

Lemma 3. There is a sampling-based algorithm which with probability 1 − δ
returns a (1 ± ε)-approximation on the local weighted clustering coefficient
WCrandom

v of a vertex v of a weighted graph G. It needs O
(
log 1

δ · 1
ε2·WCrandom

v

)
samples.

We note that all the previous estimation algorithms are implementable using
2 rounds of MapReduce. The first round samples random wedges and to check if
they form triangles, and the second round cumulates the scores. Furthermore the
total amount of messages in each round is bounded by O

(∑
v log 1

δ · 1
ε2·WC∗

v

)
,

and all the mappers and the reducers have Õ(n) running time, where n is the size
of their input. Additional details of the MapReduce implementation are omitted
in the extended abstract for lack of space.
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5 Experiments

The main goal of this section is to show experimentally some properties of the
weighted clustering coefficient and to show the speed-up obtained by our simple
estimators.

Dataset and experiment settings. The clustering coefficient is a fundamental
topological property of networks and also one of the most used topological fea-
tures in machine learning on graphs. Indeed, it has been used to detect spam
on the web [3].

For this reason we study the effectiveness of weighted clustering coefficient
by studying its power as a machine learning feature. In particular, we focus on
the specific case where we are interested in detecting spam in the Web. Toward
this end, we use a public available dataset [7] composed by a collection of hosts
manually labelled (spam/non spam) by a group of volunteers and by the weighted
host graph network. The graph is composed by 114,529 hosts in the .UK domain
and there are 5709 hosts marked as “non spam” and 344 hosts marked as “spam”.
Even if the web graph is directed in this section we ignore the directionality of
the edges for simplicity6. Finally we note that there are 2058 hosts marked as
“non spam” and 93 hosts marked as “spam” with clustering coefficient bigger
than 0 (for any, weighted or unweighted, definition of clustering coefficient).

In our experiments we are only interested in analyze the correlation between
various definitions of clustering coefficient and the integrity of an host. To do
it, for each definition we first compute the corresponding score for each labelled
node, then we rank all the labelled nodes with score bigger than 0 according to
their scores and compute the precision of each position i of the ranking as the
percentage of “non spam” hosts before position i. This measure, even if simplis-
tic, gives a good intuition of the correlation between the clustering coefficient
and the goodness of a page.

Performances of the sampling algorithm. Here we first analyze the running time
of the sampling algorithm presented in Section 4 when we vary the number of
samples used in the algorithm and we compare its running time with the running
time of the algorithms that considers all the triangles to compute the unweighted
clustering coefficient or the weighted clustering coefficient defined by Barrat
et al. [2].

Then we analyze how the precision of the ranking varies as a function of the
number of samples performed by the algorithm. In Figure 1 we show the average
running time of the sampling algorithm when we vary the number of samples.
It is interesting to note that the running time increase almost linearly with the
number of seeds showing that the algorithm efficiently use all the parallelization
offered by the MapReduce framework. Furthermore it is quite interesting to
note the huge difference in running time between the sampling algorithm and
6 Note that all the discussed notion of clustering coefficient can be extended to capture

the directionality of the edges.
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Fig. 1. Running time vs Number of seeds and precision vs Ranking position of the
sample algorithm when we vary the number of samples between 50, 100, 200 and 3200
and comparison with unweighted clustering coefficient

the quadratic algorithm that considers all the triangles. In fact when we used
50, 100, 200 and 400 samples the sampling algorithm is 900 times faster than the
quadratic algorithm, and even when we use 3200 samples the sampling algorithm
is still 120 times faster!

Now we turn our attention to the effects of varying the number of samples
on the precision of the algorithm. In Figure 1 we show how the precision curve
of the new notion of weighted clustering coefficient changes when we use 50,
100, 200 or 3200 samples(we notice a similar trends also with 400, 800, 1600
samples and for other clustering coefficient definition, we do not show them in
the figure for clarity). Also in this case we plot the average precisions with lines
and the standard deviations with the shadows around the lines. From the plots it
seems that few samples are enough to obtain a good estimation of the weighted
clustering coefficient.

Finally we compare the weighted clustering coefficient with the classic clus-
tering coefficient. It is possible to note that the ranking obtained by our new
definition Random of weighted clustering coefficient has higher precision for the
first positions in the ranking while it has performances comparable with the rank-
ings obtained using the other definitions on the higher positions of the ranking.
The definitions of Onnela et al. and Barrat et al. have performances very similar
to the classic unweighted definition of clustering coefficient.

Acknowledgments. We thank Corinna Cortes for suggesting the problem.

References

1. Applying social network analysis to the information in cvs repositories. In: 1st
International Workshop on Mining Software Repositories (MSR)

2. Barrat, A., Barthlemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture
of complex weighted networks. Proceedings of the National Academy of Sciences
of the United States of America



Efficient Computation of the Weighted Clustering Coefficient 45

3. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: KDD 2008 (2008)

4. Bollobs, B.: Mathematical results on scale-free random graphs. In: Handbook of
Graphs and Networks

5. Budak, C., Agrawal, D., El Abbadi, A.: Structural trend analysis for online social
networks. In: VLDB 2011 (2011)

6. Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Count-
ing triangles in data streams. In: PODS 2006 (2006)

7. Castillo, C., Donato, D., Becchetti, L., Boldi, P., Leonardi, S., Santini, M., Vigna,
S.: A reference collection for web spam. SIGIR 2006 (2006)

8. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI 2004 (2004)

9. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E.
10. Hardiman, S.J., Katzir, L.: Estimating clustering coefficients and size of social

networks via random walk. In: WWW 2013 (2013)
11. Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic

graphs. Data Min. Knowl. Discov.
12. Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic

graphs. Data Min. Knowl. Discov. (2008)
13. Jha, M., Seshadhri, C., Pinar, A.: A space efficient streaming algorithm for triangle

counting using the birthday paradox. In: KDD 2013 (2013)
14. Kalna, G., Higham, D.J.: Clustering coefficients for weighted networks. In: Sym-

posium on Network Analysis in Natural Sciences and Engineering
15. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news

media?. In: WWW 2010 (2010)
16. Latapy, M.: Main-memory triangle computations for very large (sparse(power-law))

graphs. Theoretical Computer Science
17. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging net-

work. In: WWW 2008 (2008)
18. Liberty, E.: Simple and deterministic matrix sketches. In: KDD 2014 (2014)
19. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)
20. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social

networks. Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002)
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Abstract. In this paper, we analyze the behavior of the global cluster-
ing coefficient in scale free graphs. We are especially interested in the
case of degree distribution with an infinite variance, since such degree
distribution is usually observed in real-world networks of diverse nature.

There are two common definitions of the clustering coefficient of a
graph: global clustering and average local clustering. It is widely believed
that in real networks both clustering coefficients tend to some positive
constant as the networks grow. There are several models for which the
average local clustering coefficient tends to a positive constant. On the
other hand, there are no models of scale-free networks with an infinite
variance of degree distribution and with a constant global clustering.

In this paper we prove that if the degree distribution obeys the power
law with an infinite variance, then the global clustering coefficient tends
to zero with high probability as the size of a graph grows.

1 Introduction

In this paper, we analyze the global clustering coefficient of graphs with a power-
law degree distribution. Namely, we consider a sequence of graphs with the degree
distribution following a regularly varying distribution F . Our main result is the
following. If the degree distribution has an infinite variance, then the global
clustering coefficient tends to zero with high probability.

It is important to note that we do not specify any random graph model,
our result holds for any sequence of graphs. The only restriction we have on a
sequence is the distribution of degrees: we assume that the degrees of vertices
(except one vertex, see the explanation at the end of Section 3) are i.i.d. random
variables following a regularly varying distribution with a parameter 1 < γ < 2.

Our results are especially interesting taking into account the fact that it was
suspected that for many types of networks both the average local and the global
clustering coefficients tend to non-zero limit as the network becomes large. It is
a natural assumption as in many observed networks the values of both clustering
coefficients are considerably high [9]. Note that actually these observations do
not contradict ours:
c© Springer International Publishing Switzerland 2014
A. Bonato et al. (Eds.): WAW 2014, LNCS 8882, pp. 47–58, 2014.
DOI: 10.1007/978-3-319-13123-8 5
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– Large values of global clustering coefficient are usually obtained on small
networks.

– For the networks with the power-law degree distribution the observed global
clustering is usually less than the average local clustering, as expected.

– Our results can be applied only to networks with regularly varying degree
distribution. If a network has, for example, a power-law degree distribution
with an exponential cut-off, then our results cannot be applied.

The rest of the paper is organized as follows. In the next section, we discuss
two definitions of the clustering coefficient. Then, in Section 3, we formally define
our restriction on the sequence of graphs. In Section 4, we prove that a simple
graph with the given degree sequence exists with high probability. In Section 5,
we prove that the global clustering coefficient for any such sequence of graphs
tends to zero. Then we discuss one graph constructing procedure which gives a
sequence of graphs with superlinear number of triangles, but the global clustering
coefficient for such sequence still tends to zero. Section 7 concludes the paper.

2 Clustering Coefficients

There are two popular definitions of the clustering coefficient [3,9]. The global
clustering coefficient C1(Gn) is the ratio of three times the number of triangles
to the number of pairs of adjacent edges in Gn. The average local clustering
coefficient is defined as follows: C2(Gn) = 1

n

∑n
i=1 C(i), where C(i) is the local

clustering coefficient for a vertex i: C(i) = T i

P i
2
, where T i is the number of edges

between the neighbors of the vertex i and P i
2 is the number of pairs of neighbors.

Note that both clustering coefficients equal 1 for a complete graph.
It was mentioned in [3,9] that in research papers either average local or global

clustering are considered. And it is not always clear which definition is used. On
the other hand, these two clustering coefficients differ. It was demonstrated in
[11] that for networks based on the idea of preferential attachment the difference
between these two clustering coefficients is crucial.

Note that both definitions of the clustering coefficient work only for graphs
without multiple edges. Also, most measurements on real-world networks do
not take multiple edges into account. Therefore, further we consider only sim-
ple graphs: graphs without loops and multiple edges. Clustering coefficient for
weighted graphs can also be defined (see, e.g., [10]). We leave the analysis of the
clustering coefficient in weighted graphs for the future work

3 Scale-Free Graphs

We consider a sequence of graphs {Gn}. Each graph Gn has n vertices. We
assume that the degrees of these vertices are independent random variables fol-
lowing a regularly varying distribution with a cumulative distribution function
F such that:

1 − F (x) = L(x)x−γ , x > 0, (1)
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where L(·) is a slowly varying function, that is, for any fixed constant t > 0

lim
x→∞

L(tx)
L(x)

= 1.

There are other obvious restrictions on the function L(·), for instance, the
function 1 − L(x)x−γ must be a cumulative distribution function of a random
variable taking positive integer values with probability 1. Further in this paper
we use the following property of slowly varying functions: L(x) = o (xc) for any
c > 0.

Note that (1) describes a broad class of heavy-tailed distributions without
imposing the rigid Pareto assumption. Power-law distribution with parameter
γ + 1 corresponds to the cumulative distribution 1 − F (x) = L(x)x−γ . Further
by ξ, ξ1, ξ2, . . . we denote random variables with the distribution F . Note that
for any α < γ the moment Eξα is finite.

Models with γ > 2 and with the global clustering coefficient tending to some
positive constant were already proposed (see, e.g., [11]). Therefore, in this paper
we consider only the case 1 < γ < 2.

One small problem remains: we can construct a graph with a given degree
distribution only if the sum of degrees is even. This problem is easy to solve:
we can either regenerate the degrees until their sum is even or we can add 1
to the last variable if their sum is odd [4]. For simplicity we choose the second
option, i.e., if

∑n
i=1 ξi is odd, then we replace ξn by ξn + 1. It is easy to see that

this correction does not change any of our results, therefore, further we do not
focus on the evenness.

4 Existence of a Graph with Given Degree Distribution

4.1 Result

As pointed out in [8], the probability of obtaining a simple graph with given
degree distribution by random pairing of edges’ endpoints (configuration model)
converges to a strictly positive constant if the degree distribution has a finite
second moment. In our case the second moment is infinite and it can be shown
that the probability of obtaining a simple graph just by random pairing of edges’
endpoints tends to zero with n.

However, we can prove that in this case a simple graph with a given degree
distribution exists with high probability and it can be constructed, e.g., using
Havel-Hakimi algorithm [6,7].

Theorem 1. For any δ such that 1 < δ < γ with probability 1 − O
(
n1−δ

)
there

exists a simple graph on n vertices with the degree distribution defined above.

4.2 Auxiliary Results

We use the following theorem proved by Erdős and Gallai in 1960 [5].
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Theorem 2 (Erdős–Gallai). A sequence of non-negative integers d1≥ . . .≥dn

can be represented as the degree sequence of a finite simple graph on n vertices
if and only if

1. d1 + . . . + dn is even;
2.

∑k
i=1 di ≤ k(k − 1) +

∑n
i=k+1 min(di, k) holds for 1 ≤ k ≤ n.

In this case a sequence d1 ≥ . . . ≥ dn is called graphic.
If a degree sequence is graphic, then one can use Havel-Hakimi algorithm to

construct a simple graph corresponding to it [6,7]. The idea of the algorithm is
the following. We sort degrees in nondecreasing order d1 ≥ . . . ≥ dn. Then we
take the vertex of the highest degree d1 and connect this vertex to the vertices of
degrees d2, . . . , dd1+1. After this we get the degree sequence d2 − 1, . . . , dd1+1 −
1, dd1+2, . . . , dn and apply the same procedure to this sequence, and so on.

We also use the following theorem several times in this paper (see, e.g., [1]).

Theorem 3 (Karamata’s theorem). Let L be slowly varying and locally
bounded in [x0,∞] for some x0 ≥ 0. Then

1. for α > −1∫ x

x0

tαL(t)dt = (1 + o(1))(α + 1)−1xα+1L(x), x → ∞ .

2. for α < −1∫ ∞

x

tαL(t)dt = −(1 + o(1))(α + 1)−1xα+1L(x), x → ∞ .

We also use the following known lemma (proof can be found, e.g., in [12]).

Lemma 1. Let ξ1, . . . , ξn be mutually independent random variables, Eξi = 0,
E|ξi|α < ∞, 1 ≤ α ≤ 2, then

E [|ξ1 + . . . + ξn|α] ≤ 2α (E [|ξ1|α] + . . . + E [|ξn|α]) .

4.3 Proof of Theorem 1

We need the following lemma on the number of edges in the graph.

Lemma 2. For any θ such that 1 < θ < γ with probability 1 − O(n1−θ) the
number of edges E(Gn) in our graph satisfies the following inequalities:

nEξ

4
≤ E(Gn) ≤ 3nEξ

4
.
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Proof. The expectation of the number of edges is

EE(Gn) = nEξ/2 .

Note that for 1 < θ < γ we have E|ξ − Eξ|θ < ∞ and

P (|E(Gn) − nEξ/2| ≥ nEξ/4) ≤ 4θ
E |∑n

i=1 (ξi − Eξ) /2|θ
nθ(Eξ)θ

≤ 8θnE|ξ − Eξ|θ
nθ(Eξ)θ

= O
(
n1−θ

)
.

Here we applied Lemma 1. This concludes the proof of Lemma 2.

Let us order the random variables ξ1, . . . , ξn and obtain the ordered sequence
d1 ≥ . . . ≥ dn.

We want to show that with probability 1 − O
(
n1−δ

)
the condition

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k) (2)

holds for all k, 1 ≤ k ≤ n.
Note that if k ≥ √

2Eξn, then with probability 1 − O
(
n1−δ

)
we have

k∑
i=1

di ≤ 2E(Gn) ≤ k(k − 1)

as 2E(Gn) ≤ 3Eξ
2 n (here we apply Lemma 2 with θ = δ). Therefore the condi-

tion (2) is satisfied.
Now consider the case k <

√
2Eξn. In this case we will show that

n∑
i=k+1

min(di, k) ≥
k∑

i=1

di

which implies the condition (2). Note that min(di, k) > 1 so

n∑
i=k+1

min(di, k) ≥ n −
√

2Eξn .

It remains to show that with probability 1 − O
(
n1−δ

)
we have

√
2Eξn∑
i=1

di ≤ n −
√

2Eξn . (3)

Fix some α such that δ < α < γ. Consider any β such that

0 < β < min
{

2 − δ

γ
,

1
2γ

,
α − δ

γ(α − 1)

}
(4)
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and let

Sn =
n∑

i=1

ξiI
[
ξi > nβ

]
.

We will show that with probability 1 − O
(
n1−δ

)
we have

√
2Eξn∑
i=1

di ≤ Sn ≤ n −
√

2Eξn (5)

which implies (3). Note that in order to prove the left inequality it is sufficient
to show that with probability 1 − O

(
n1−δ

)
we have

S′
n :=

n∑
i=1

I
[
ξi > nβ

] ≥
√

2Eξn.

The expectation of S′
n is

ES′
n = E

n∑
i=1

I
[
ξi > nβ

]
= nP

(
ξ > nβ

)
= nL

(
nβ

)
n−γβ .

Now we will show the concentration:

P

(
|S′

n − ES′
n| >

ES′
n

2

)
≤ 4Var(S′

n)
(ES′

n)2
=

=
4n

(
L
(
nβ

)
n−γβ − (

L
(
nβ

))2
n−2γβ

)
n2 (L (nβ))2 n−2γβ

= O

(
nγβ

nL (nβ)

)
= O

(
n1−δ

)
.

Here in the last equation we use the inequality β < 2−δ
γ , so γβ − 1 < 1 − δ.

It remains to note that as β < 1
2γ for large enough n we have

1
2
nL

(
nβ

)
n−γβ ≥

√
2Eξn .

Now let us prove the right inequality in (5), i.e., prove that with probability
1 − O

(
n1−δ

)
we have

Sn ≤ n −
√

2Eξn .

As before, first we estimate the expectation of Sn:

ESn = n

∫ ∞

nβ

xdF (x) = −n

∫ ∞

nβ

x d(1 − F (x))

= −nx(1 − F (x))
∣∣∣∣
∞

nβ

+ n

∫ ∞

nβ

(1 − F (x)) dx

= nnβn−γβL
(
nβ

)
+ n

∫ ∞

nβ

x−γL(x) dx

∼ n1+β(1−γ)L
(
nβ

)
+ n(γ − 1)−1nβ(1−γ)L

(
nβ

)
=

γ

γ − 1
n1+β(1−γ)L

(
nβ

)
.
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In order to show concentration we first estimate

E
(
ξI

[
ξ > nβ

])α
= −

∫ ∞

nβ

xα d(1 − F (x))

= −xα(1 − F (x))
∣∣∣∣
∞

nβ

+
∫ ∞

nβ

(1 − F (x)) dxα

= nαβn−γβL
(
nβ

)
+ α

∫ ∞

nβ

xα−γ−1L(x) dx

∼ nβ(α−γ)L
(
nβ

)
+ (γ − α)−1nβ(α−γ)L

(
nβ

)
=

γ + 1 − α

γ − 1
nβ(α−γ)L

(
nβ

)
.

We get

P

(
|Sn − ESn| >

ESn

2

)
≤ E|Sn − ESn|α

(ESn)α

= O

(
nE

(
ξI

[
ξ > nβ

])α

(ESn)α

)
= O

(
n1+β(α−γ)L

(
nβ

)
nα(1+β(1−γ)) (L (nβ))α

)
= O

(
n1−δ

)
.

Here in the last equation we use the inequality β < α−δ
γ(α−1) .

It remains to note that as γ > 1 for large n we have

γ

2(γ − 1)
n1+β(1−γ)L

(
nβ

)
< n −

√
2Eξn.

5 Global Clustering Coefficient

5.1 Result

Theorem 4 . For any ε > 0 and any α such that 1 < α < γ with probability
1 − O(n1−α) the global clustering coefficient satisfies the following inequality

C1(Gn) ≤ nε− (γ−2)2

2γ .

Taking small enough ε one can see that with high probability C1(Gn) → 0 as n
grows.

5.2 Proof of Theorem 4

We will use the following estimate for C1(Gn):

C1(Gn) ≤
E(Gn)

∣∣{i : ξ2i ≥ E(Gn)}∣∣ +
∑

i:ξ2
i <E(Gn) ξ2i

P2(n)
. (6)

Here P2(n) is the number of pairs of adjacent edges in Gn. In order to obtain
inequality (6) we use the following observation. The number of triangles con-
nected to a vertex cannot be larger than the number of edges in a graph. Also,
this number cannot be larger than the degree squared.
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Using Lemma 2 (with θ = α) we get that with probability 1 − O
(
n1−α

)

C1(Gn) ≤
3Eξn
4

∣∣∣{i : ξ2i ≥ Eξn
4

}∣∣∣ +
∑

i:ξ2
i < 3Eξn

4
ξ2i

P2(n)
. (7)

Let us find a lower bound for the number of pairs of adjacent edges P2(n).

Lemma 3. For any δ > 0 and any α such that 1 < α < γ with probability
1 − O

(
n1−α

)
we have

P2(n) ≥ n
2
γ −δ .

Proof. Let ξmax = max{ξ1, . . . , ξn}, then

P2(n) ≥ ξmax(ξmax − 1)
2

.

It remains to find a lower bound for ξmax now:

P(ξmax < 2n
1
γ − δ

2 ) =
[
P
(
ξ < 2n

1
γ − δ

2

)]n

= exp
(
n log

(
1 − P(ξ ≥ 2n

1
γ − δ

2 )
))

= exp
(
n log

(
1 − L

(
2n

1
γ − δ

2

)
2−γn−γ( 1

γ − δ
2 )
))

= exp
(
−n

(
L
(
2n

1
γ − δ

2

)
2−γn−1+γ δ

2

)
(1 + o(1))

)
= exp

(
−L

(
2n

1
γ − δ

2

)
2−γnγ δ

2 (1 + o(1))
)

= O
(
n1−α

)
.

So, with probability 1 − O
(
n1−α

)
we have

P2(n) ≥ n
2
γ −δ .

This concludes the proof of Lemma 3

Now we estimate the number of vertices with large degrees.

Lemma 4. For any δ > 0 and any α such that 1 < α < γ we have

P

(∣∣∣∣∣
{

i : ξi ≥
√

Eξn

4

}∣∣∣∣∣ ≤ n1− γ
2 +δ

)
= 1 − O

(
n1−α

)
.

Proof. Let

S′
n :=

n∑
i=1

I

[
ξi ≥

√
Eξn

4

]
.

The expectation of S′
n is

ES′
n = E

n∑
i=1

I

[
ξi ≥

√
Eξn

4

]
= nP

(
ξ ≥

√
Eξn

4

)

= n

(
Eξn

4

)−γ/2

L

(√
Eξn

4

)
.
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We can apply Hoeffding’s inequality:

P (S′
n > 2ES′

n) ≤ exp
(−2(ES′

n)2n
)

= O
(
n1−α

)
.

It remains to note that for large enough n we have

2ES′
n < n1− γ

2 +δ .

Lemma 5. For any δ > 0 and any α such that 1 < α < γ we have

P

⎛
⎝ ∑

i:ξ2
i < 3Eξn

4

ξ2i ≤ n2−γ/2+δ

⎞
⎠ = 1 − O

(
n1−α

)
.

Proof. Let

Sn =
n∑

i=1

ξ2i I

[
ξi <

√
3Eξn

4

]
.

Again, we first estimate the expectation of Sn. Since L(x) is locally bounded we
can apply Karamata’s theorem:

ESn = −n

∫ √
3Eξn

4

0

x2d(1 − F (x))

= −nx2(1 − F (x))
∣∣∣∣
√

3Eξn
4

0

+ 2n

∫ √
3Eξn

4

0

x(1 − F (x)) dx

= n

(
3Eξn

4

)1−γ/2

L

(√
3Eξn

4

)
+ 2n

∫ √
3Eξn

4

0

x1−γL(x) dx

∼ n

(
3Eξn

4

)1−γ/2

L
(√

n
)

+ 2n(2 − γ)−1

(
3Eξn

4

)1−γ/2

L
(√

n
)

=
4 − γ

2 − γ

(
3Eξ

4

)1−γ/2

n2−γ/2L
(√

n
)

.

In order to show concentration we first estimate

E

(
ξ2I

[
ξ <

√
3Eξn

4

])α

= −
∫ √

3Eξn
4

0

x2α d(1 − F (x))

= −x2α(1 − F (x))
∣∣∣∣
√

3Eξn
4

0

x2α +
∫ √

3Eξn
4

0

(1 − F (x)) dx2α

=
(

3Eξn

4

)α−γ/2

L

(√
3Eξn

4

)
+ 2α

∫ √
3Eξn

4

0

x2α−γ−1L(x) dx

∼
(

3Eξn

4

)α−γ/2

L
(√

n
)

+ (2α − γ)−1

(
3Eξn

4

)α−γ/2

L
(√

n
)

= O
(
nα−γ/2L

(√
n
))

.
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And we get

P

(
|Sn − ESn| >

ESn

2

)
≤ E|Sn − ESn|α

(ESn)α

≤
2αnE

(
ξ2I

[
ξ <

√
3Eξn
4

])α

(ESn)α
= O

(
nα−γ/2L (

√
n)

nα(2−γ/2) (L (
√

n))α

)
= O

(
n1−α

)
.

Here in the last equation we use the inequality α < 2 < 2
γ−1 .

It remains to note that for large enough n we have

3(4 − γ)
2(2 − γ)

(
3Eξ

4

)1−γ/2

n2−γ/2L
(√

n
) ≤ n2−γ/2+δ .

This concludes the proof of Lemma 5

Theorem 4 follows immediately from Lemmas 3, 4, 5, and Equation (7).

6 Experiments

In the previous section, we proved that for any sequence of graphs with a regu-
larly varying degree distribution with a parameter 1 < γ < 2 the global cluster-

ing coefficient tends to zero at least as fast as n− (γ−2)2

2γ . In this case the number
of pairs of adjacent edges is superlinear in the number of vertices and it grows
faster than the number of triangles.

In this section, we present a simple method which allows to construct scale-
free graphs with a superlinear number of triangles. Consider a sequence of graphs
constructed according to Havel-Hakimi algorithm. On Figure 1 we present the
number of triangles, the number of pairs of adjacent edges, and the global clus-
tering coefficient for such graphs. For each n we averaged the results over 100
independent samples of power-law degree distribution. Note that for γ > 2 the
number of pairs of adjacent edges grows linearly and for 1 < γ < 2 it grows as
n2/γ , as expected. The number of triangles grows linearly for γ > 2 and grows
as n3/(γ+1) for 1 < γ < 2. The constant 3/(γ + 1) can be explained in the fol-
lowing way. If the degree distribution follows the power law with a parameter
γ, then the maximum clique which can be obtained is of size n

1
γ+1 since dk ≈ k

for k ∼ n
1

γ+1 . This clique gives
(
k
3

)
triangles. Since Havel-Hakimi algorithm also

connects the vertices of largest degrees to each other, we get ∼ n3/(γ+1) triangles.
To sum up, we can construct a sequence of graphs with n

3
γ+1 triangles and

our theoretical upper bound is n2− γ
2 . It is easy to see that for 1 < γ < 2 we have

3
γ+1 < 2− γ

2 . So, there is a gap between the number of constructed triangles and
the upper bound.
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Fig. 1. Global clustering coefficient for graphs constructed according to Havel-Hakimi
algorithm
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7 Conclusion

In this paper, we analyzed the global clustering coefficient in scale-free graphs.
We proved that for any sequence of graphs with a regularly varying degree
distribution with a parameter 1 < γ < 2 the global clustering coefficient tends
to zero with high probability. We also proved that with high probability a graph
with the required degree distribution exists.

Finally, we demonstrated the construction procedure which allows to obtain
the sequence of graphs with superlinear number of triangles. Unfortunately, the
number of triangles in this case grows slower than the upper bound obtained in
Section 5.
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4. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with
prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)
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Abstract. In this paper, we obtain improved algorithms for two graph-
theoretic problems in the popular MapReduce framework. The first
problem we consider is the densest subgraph problem. We present a
primal-dual algorithm that provides a (1 + ε) approximation and takes
O( log n

ε2
) MapReduce iterations, each iteration having a shuffle size of

O(m) and a reducer size of O(dmax). Here m is the number of edges, n is
the number of vertices, and dmax is the maximum degree of a node. This
dominates the previous best MapReduce algorithm, which provided a
(2 + δ)-approximation in O( log n

δ
) iterations, with each iteration having

a total shuffle size of O(m) and a reducer size of O(dmax).
The standard primal-dual technique for solving the above problem

results in O(n) iterations. Our key idea is to carefully control the width
of the underlying polytope so that the number of iterations becomes
small, but an approximate primal solution can still be recovered from
the approximate dual solution. We then show an application of the same
technique to the fractional maximum matching problem in bipartite
graphs. Our results also map naturally to the PRAM model.

1 Introduction

Over the last two decades, the primal-dual method (e.g., [3,9,14,17]) has been
used to solve many graph optimization problems. Recently, the programming
paradigmMapReduce [7] and its main open-source implementation, Hadoop [10],
have had an enormous impact on large scale data processing. In this paper, our goal
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is to adapt the primal-dual technique for solving graph optimization problems to
the MapReduce framework. We consider the densest subgraph problem as well
as the fractional maximum bipartite matching problem, both of which have the
following structure: These problems can be written as linear programs; further-
more, either the linear program or its dual can be interpreted as solving maximum
or concurrently maximum flows on suitably defined bipartite graphs. We present
a simple algorithmic technique for solving these optimization problems to arbi-
trarily good approximations, which yields fast sequential as well as MapReduce
algorithms, thus improving the state of the art.

1.1 Problem Formulations and Results

We will focus on two graph optimization problems in this paper (although our
technique is more widely applicable). The first is the classic densest subgraph
problem in general graphs. This can be defined either for undirected or directed
graphs. For an undirected graph G(V,E) with n vertices and m edges, the prob-
lem is defined as follows. Find a subset H of vertices such that the induced
subgraph G′(H,F ) has maximum density (or average degree), |F |/|H|. For a
directed graph G(V,E), the densest subgraph problem [11] asks to find two sub-
sets S, T ⊆ V (not necessarily disjoint) such that if E(S, T ) denotes the set
of edges (u, v) where u ∈ S and v ∈ T , then the density D(S, T ) = |E(S,T )|√

|S||T |
is maximized. This problem has various applications for web, social, and bio-
logical networks, such as identifying spammers, dense communities of users, or
functional genetic modules. We refer the reader to [5,15] for several applications.

The other problem we consider is the maximum generalized fractional match-
ings on bipartite graphs. This problem has several applications in Adword allo-
cation and load balancing [13]. Specifically, we consider the following allocation
problem [13]: There are n1 advertisers, where advertiser i has demand di; there
are n2 ad slots, where slot j has supply sj ; furthermore there is a bipartite graph
specifying which advertiser is interested in which ad slots. The goal is to find
an allocation of slots to advertisers that maximizes the demand satisfied; if the
supply and demands are large, this can be thought of as a fractional allocation
without loss of generality.

MapReduce Model. We base the presentation of our MapReduce results on
the model described in [1], which takes into account practical aspects of MapRe-
duce, such as shuffle costs and the “curse of the last reducer” [16], while still
being independent of the implementation details such as number of processors,
Mappers, and Reducers (unlike abstractions such as in [12]). For a phase of a
MapReduce computation, the model in [1] has two measures, reducer size and
replication rate. Reducer size is the maximum number of values associated with
a reduce key and captures the maximum input size, maximum memory, and
maximum running time for a single reduce key per phase. Replication rate is the
average number of (key; value) pairs produced per input map key per phase. For
the sake of simplicity of presentation, instead of replication rate, we will use an
equivalent measure that we denote as sequential complexity, which captures the
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total output size (and hence, the complexity of the shuffle operation, ignoring
implementation details) and total running time of all mappers and reducers in
a phase. Note that in this paper, the mappers and reducers are linear (or near-
linear) time and space algorithms. Therefore, the distinction between input size,
memory, and running time is not important. Hence, we will express our MapRe-
duce results using three measures, namely, reducer size, sequential complexity,
and number of phases.

Our Results. In this paper, we develop a simple and general algorithmic tech-
nique that achieves a (1 + ε) approximation to the above problems (for any
ε > 0), with sequential running times of the form O(mf(log n, 1/ε)) where f is a
polynomial. Here, m is the number of edges, and n the number of vertices in the
input graph. We will be interested in making the function f as small as possible.
We will further design MapReduce implementations that minimize the num-
ber of phases subject to two constraints: (1) The reducer size (i.e. the maximum
size/computation/memory associated with any map or reduce key) is O(dmax),
the maximum degree, and (2) The sequential complexity (the total volume of
data transferred, or the total time spent) in any phase is Õ(m), where the Õ
notation hides low order terms ( log n

ε to be precise). Our results are summarized
as follows, where the running time refers to sequential running times.

– Undirected densest subgraph: We present an algorithm that runs in
O

(
m log n

ε2

)
time, and takes O

(
log n

ε2

)
MapReduce phases (Section 2). The

total running time and shuffle size in any one phase is O(m). The best previ-
ous MapReduce implementation is a greedy algorithm in [5]; this algorithm
takes O

(
log n

δ

)
phases to yield a 2 + δ approximation1.

– Directed densest subgraph: We combine the above approach with a
linear programming formulation due to Charikar [6] to obtain Õ

(
m log2 n

ε3

)
running time, and O

(
log n

ε2

)
MapReduce phases (Appendix B). Again, the

best previous best MapReduce algorithm [5] was a greedy (2 + δ) approx-
imation.

– Fractional matching on bipartite graphs: We show that exactly the same
technique yields Õ

(
m log n

ε3

)
running time, and O

(
log2 n

ε3 log dmax

)
MapReduce

phases (Appendix C). This matches (and in fact, improves by a log dmax fac-
tor) that of the natural MapReduce implementation of the semi-streaming
algorithm in [2]2. Furthermore our sequential running time is comparable to
the best sequential algorithms in [13] (which we do not know how to imple-
ment on MapReduce). While the improvement in running time is small,
note that the previous algorithms were tailored to the bipartite matching

1 Superficially, the number of phases in [5] might seem smaller. However, note that
even δ = 0 for their work corresponds to ε = 1/2 for us.

2 Though Ahn and Guha [2] present several improvements to their basic algorithm,
these are in the semi-streaming model and do not appear to produce corresponding
improvements in the MapReduce model.
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problem, whereas our algorithm naturally follows from the more general
framework we describe next.

While we have stated our results in the MapReduce computation frame-
work, they also map to (and are novel in) the PRAM framework: the reducer
size corresponds to the parallel running time per phase (given n processors) and
the sequential running time corresponds to the total amount of work done.

1.2 Technique: Width Modulation

We design our algorithms by exploiting connections to fast algorithms for pack-
ing and covering linear programs. We illustrate this for the densest subgraph
problem. We start with a linear programming relaxation of the densest sub-
graph problem (due to Charikar [6]) and show that it is the dual of a maximum
concurrent multi-commodity flow (MCMF) problem on a suitably defined bipar-
tite graph (where the goal is to simultaneously route demand from all sources
to a sink). We then proceed to exploit fast approximation algorithms for the
MCMF problem due to Plotkin-Shmoys-Tardos [9,14] and Young [17], which
are unified in a framework due to Arora-Hazan-Kale [3]. These algorithms suffer
from two significant roadblocks.

First, the number of parallel iterations of these algorithms depends on the
width of the problem, which in our case is proportional to the maximum
degree dmax. This dependence arises because the MCMF formulation attempts
to route demands of size 1 concurrently in a graph with capacities either infinity
or dmax. The algorithms are based on the Lagrangian approach, which converts
the MCMF problem to a maximum multi-commodity flow problem ignoring the
demands, which can make the Lagrangian route demand that can be a factor
dmax larger than the original demands. We overcome this hurdle by a technique
that we term width modulation, whereby we add spurious capacity constraints
to make capacities a small constant factor larger than the maximum demand,
which is 1.

Though the above method reduces width to a constant and does not affect
feasibility, this introduces the second roadblock: Adding capacities to the dual
program changes the primal problem. Though this is not an issue for optimal
solutions (after all, we did not affect feasibility), an approximately optimal pri-
mal solution for the changed problem need not yield an approximately optimal
solution to the problem we intended to solve. We need the modulation part
to overcome this hurdle – we show that for width being sufficiently large, we
can indeed recover an approximately optimal primal solution via developing a
problem-specific efficient rounding scheme. In a sense, there is a trade-off between
running time (small width helps) and ability of the algorithm to recover the
solution to the original problem (large width helps). We show that this trade-off
leads to a final solution with constant width, which yields an O

(
log n

ε2

)
phase

MapReduce implementation and an O
(
m log n

ε2

)
overall running time.
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For directed graphs, we use a parametric linear programming formulation
due to Charikar [6]. To adapt this to our framework, we devise a parametric
search procedure. We finally show that the same technique applies with small
changes to the fractional bipartite matching problem, showing its generality.

In summary, we show that several linear programs which have wide practical
applications can be efficiently approximated on MapReduce by considering
their dual formulation. We show that there is a tension between reducing the
width of the dual problem (which is needed for efficiency) and recovering the
primal solution itself, and present a general technique based on width modulation
and rounding to achieve this trade-off without sacrificing efficiency or precision.

1.3 Related Work

In addition to presenting the LP formulations that we use, Charikar [6] also
presents a greedy 2-approximation for the densest subgraph problem (see also [15]).
This algorithm is modified to yield an efficientMapReduce implementation in [5];
this algorithm takes O

(
log n

ε

)
rounds to yield a 2 + ε approximation.

There is a long line of work on fast approximate algorithms for covering
linear programs; see [4] for a survey. One closely related line of work are the
algorithms for spreading metrics due to Garg-Konemann [8] and their parallel
implementation due to Awerbuch et al. [4]. These algorithms can possibly be
applied to our dual formulations; however, when implemented in MapReduce
these methods will need poly(log n, 1/ε) phases for a large degree polynomial,
which is a far worse running time than what we show. For example, the algorithm
of Awerbuch et al., when applied to our setting, would result in O( log

6 n
ε4 ) phases.

Furthermore, note that the techniques in [4,8] can also be viewed as width
reduction, where the width is reduced by adding constraints that the flow along a
path is at most the minimum capacity on that path (see [3] for details). However,
our width modulation technique is fundamentally different - we modulate the
capacities themselves based on the demand being routed. In contrast with the
technique in [4,8], our technique changes the description of the primal problem
and does not preserve approximate optimality. Hence we need a problem-specific
rounding scheme to recover the primal solution.

Roadmap. For lack of space, we relegate the description of the multiplicative
weight method to Appendix A. We present the FPTAS and MapReduce imple-
mentation for undirected densest subgraph in Section 2, that for directed densest
subgraph in Appendix B, and for fractional bipartite matchings in Appendix C.

2 Undirected Densest Subgraph

For an undirected graph G(V,E) with n vertices and m edges, the Densest
Subgraph problem is defined as follows. Find a subset H ⊆ V of vertices such
that the induced subgraph G′(H,F ) has maximum density (or average degree),
|F |/|H|. We denote the optimum density by D∗. We present an algorithm that for
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any ε > 0, outputs a subgraph of density D∗(1 − ε) in Õ
(
m log n

ε2

)
running time,

where the Õ(·) notation ignores lower order terms. In the MapReduce model,
we show that with reducer size O(dmax), where dmax is the maximum degree,
and sequential complexity O (m), the algorithm requires O

(
log n

ε2

)
phases.

2.1 Linear Program and Duality

Let D∗ denote the optimal density. We will first present a well-known linear
program which is known to compute the optimal solution [6]. For any vertex
v ∈ V , let xv ∈ {0, 1} denote whether v ∈ H. For any edge e ∈ E, let ye ∈ {0, 1}
denote whether e ∈ F , which are the edges induced by H. We relax xv, ye to be
any real number. The value D∗ is the solution to the following linear program:

Maximize
∑

e

ye

ye ≤ xv ∀e ∈ E, e incident on v∑
v xv ≤ 1

xv, ye ≥ 0 ∀v ∈ V, e ∈ E

To interpret the above program, note that if ye = 1 for e = (u, v), then both
xu and xv have to be 1. This implies the first constraint. The objective should
maximize (

∑
e ye)/(

∑
v xv). We can scale the values so that

∑
v xv = 1, and

enforce this as the second constraint. This means the objective now maximizes∑
e ye. Therefore, the value of the above LP is at least D∗. (It is in fact known

that it is exactly D∗, but we will not need that fact.) For simplicity, we overload
notation and denote the optimal value of the LP by D∗.

We now take the dual of the above program. Let αev denote the dual variable
associated with the first constraint, and let D denote the dual variable associated
with the second constraint. We parametrize the dual constraints by the variable
D, and call these set of constraints Dual(D):

αeu + αev ≥ 1 ∀e = (u, v) ∈ E∑
e incident on v αev ≤ D ∀v ∈ V

αev ≥ 0 ∀e, v

Since the dual program is minimizing D, using strong duality, we have:

Lemma 1. Dual(D) is feasible iff D ≥ D∗.

We note that the dual program is a maximum concurrent multi commodity
flow (MCMF) problem: Construct a bipartite directed graph G′(U ′, V ′, E′) as
follows: U ′ = E, V ′ = V , and E′ = {(e, v) ∈ E × V |e is incident on v}. Each
node in U ′ has demand 1, and the nodes in V ′ are connected to a sink with
directed edges of capacity D. The first constraint means that each demand of
1 is completely routed; the second constraint means that for all directed edges
to the sink of capacity D, the flow routed is at most the capacity. Therefore,
the goal is decide if all demand can be concurrently routed to the sink while
satisfying the capacity constraints.
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2.2 Width Modulation

We will apply the multiplicative weight update framework as described in
Appendix A to decide feasibility of Dual(D) for given D. In particular, we
will decide the feasibility of the set of constraints:

αeu + αev ≥ 1 ∀e = (u, v) ∈ E

subject to the polyhedral constraints P (D) (which depends on parameter D):∑
e incident on v αev ≤ D ∀v ∈ V

αev ≥ 0 ∀e ∈ E, v ∈ V

The dual vector corresponding to the constraint αeu + αev ≥ 1 is ye, whose
dimension is m. The main issue with a naive application of the method is the
width. Each αev can be as large as D, so that the LHS of the above constraint
can be as large as 2D, which is also the width. Since D is the density and can
be as large as n, this implies a polynomial number of MapReduce rounds, and
a correspondingly large sequential running time. Our goal will now be to reduce
the width to a constant.

In order to achieve this, consider the following modified polyhedral con-
straints, that we term P (D, q). Here, q ≥ 1 will be a small integer. We will
denote the corresponding feasibility problem as Dual(D, q).∑

e incident on v αev ≤ D ∀v ∈ V
αev ≤ q ∀e ∈ E, v ∈ V
αev ≥ 0 ∀e ∈ E, v ∈ V

Note that the second constraint in P (D, q) is new, and it does not change the
feasibility of Dual(D), since if the original system is feasible, it is also feasible
with αev ≤ 1 for all e, v. In other words, Dual(D) is feasible iff Dual(D, 1) is
feasible. We will set q to be a small constant that we decide later.

Lemma 2. The width ρ of Dual(D, q) as written above is at most 2q.

Proof. For any α ∈ P (D, q), we have αeu ≤ q. Therefore αeu + αev ≤ 2q, which
implies a width of 2q.

In order to apply the multiplicative weight update method as described in
Appendix A, we need to compute Oracle(y). This involves solving the following
problem for given y:

C(y,D, q) = max
α∈P (D,q)

∑
v

∑
e incident on v

yeαev

Lemma 3. Oracle(y) can be computed in O(m) time.

Proof. For any y, for each v, the optimal solution C(y,D, q) sets αev as follows.
Let r = �D/q	 and let s = D − rq. Then αev = q for the r largest ye incident on
v, and αev = s for the e with the (r + 1)st largest ye. This involves finding the
rth and (r + 1)st largest ye for each vertex, which can be done in linear time.
This is followed by a linear time computation to set the values.
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Using the above two lemmas, the following theorem is immediate from The-
orem 5.

Theorem 1. For any integer D and constants q and ε ∈ [0, 1], in time O
(
m log m

ε2

)
,

the multiplicative weight algorithm either returns that Dual(D, q) is infeasible, or
finds α so that for all e = (u, v) ∈ E: αeu + αev ≥ 1 − ε.

2.3 Binary Search for D∗

We showed earlier how we can apply the multiplicative weight update algorithm
to decide if Dual(D, q) is feasible. Let k(ε) be the number of phases needed to
compute a (1+ε) approximation to D∗, and k′(ε) the number of phases needed to
compute a (1+ ε) approximation given a (1+2ε) approximation, where ε < 1/2.
From Theorem 5, it follows (since q is a constant) that k′(ε) = O

(
log n

ε2

)
. Since

k(ε) ≤ k′(ε) + k(2ε), this gives k(ε) = O
(

log n
ε2

)
. Since ε decreased by a factor

of 2 in each recursive step above, the above recurrence can be thought of as a
binary search.

Let (α,y) denote the final solution corresponding to running the multiplica-
tive weight procedure on Dual(D̃, q). Here the approximately optimal dual solu-
tion y is found as in Theorem 5.

Theorem 2. For 0 ≤ ε ≤ 1/3 and any constant q ≥ 1, the value D̃ and the
final solution (α,y) satisfy:

1. D∗(1 − ε) ≤ D̃ ≤ D∗(1 + ε).
2.

∑
e ye ≥ (1 − 3ε)C(y, D̃, q).

Proof. Suppose D̃ < D∗(1−ε). Since the multiplicative weight procedure returns
an ε-optimal solution, we can scale up α by 1/(1−ε) so that these values are fea-
sible for Dual(D, 2q) for D = D̃/(1− ε) < D∗, and hence feasible for Dual(D).
This violates the optimality of D∗ as the smallest D for which Dual(D) is fea-
sible. On the other hand, Dual(D, q) is feasible for any D ∈ [D∗,D∗(1 + ε)],
which means the multiplicative weight algorithm cannot declare in-feasibility for
any D falling within this range. Therefore D∗(1 − ε) ≤ D̃ ≤ D∗(1 + ε).

Recall from the discussion preceding Theorem 5 that

λ∗ = max {λ s.t. αeu + αev ≥ λ ∀e = (u, v) is feasible for α ∈ P (D, q)}

For D ≤ D∗(1+ε), we have λ∗ ≤ 1+ε, else by scaling α we can show Dual(D, q)
is feasible for D < D∗, which is not possible. Therefore, Theorem 5 implies for
0 ≤ ε ≤ 1/3: ∑

e

ye ≥ (1 − ε)2C(y, D̃, q) ≥ (1 − 3ε)C(y, D̃, q)
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2.4 Rounding Step: Recovering the Densest Subgraph

Using Theorem 2, we have a value D̃ ∈ [(1 − ε)D∗, (1 + ε)D∗] along with dual
variables y that satisfies

∑
e ye ≥ (1 − 3ε)C(y, D̃, q). We will now use these

variables to recover an approximately optimal densest subgraph. We first discuss
why this is not straightforward.

Technical Hurdle. The problem Dual(D̃, q) is different from the problem
Dual(D̃) in that the corresponding primal problems are different. The primal
feasibility problem corresponding to Dual(D̃, q) is the following:

Find y,x, z ≥ 0 s.t.
∑

e ye∑
e,v(D̃xv + qzev)

≥ 1

where ye ≤ min (xu + zeu, xv + zev) ∀e = (u, v) ∈ E

The primal feasibility problem corresponding to Dual(D̃) does not have vari-
ables z. These problems are equivalent from the perspective of exact feasibility
since the exact optimal primal solution of Dual(D̃, q) will indeed set z = 0, and
the resulting x,y are precisely the vertex and edge variables in the LP formula-
tion we began from. The catch is the following: An ε-approximate solution using
Dual(D̃, q) need not yield an ε-approximate solution using Dual(D̃). The rea-
son is that an approximately optimal solution to Dual(D̃, q) might have large
z, so that the resulting y,x variables have no easy interpretation.

Despite this difficulty, we show that for q = 2, we can round an ε-approximate
solution to Dual(D̃, q) into an ε-approximate solution to Dual(D̃), and hence
recover the approximate densest subgraph. We note that the primal problem
itself is a fractional densest subgraph that must be further converted (or rounded)
into an integer solution. We fold both the rounding steps into one in the proof
below, noting that even recovering the fractional densest subgraph would need
our new rounding method.

First recall that C(y, D̃, q) is computed as follows: Let r̃ = �D̃/q	, and s̃ =
D̃ − qr̃. For simplicity in the proof below, we assume s̃ > 0. For any vertex
v, we sort the ye values incident on v in decreasing order, and denote these
y1(v) ≥ y2(v) ≥ · · · ≥ yn(v). Then:

C(y, D̃, q) =
∑

v

(
r̃∑

k=1

qyk(v) + s̃yr̃+1(v)

)

The important point is that this is a linear function of y.

Step 1: Discretization. This step is mainly to improve efficiency. Let Y =
maxe ye. Scale up or down the ye values so that Y = 1. Consider all edges e
with ye ≤ ε/m2. The contribution of these edges to the summation

∑
e ye and

to C(y, D̃, q) is at most ε/m. We set all these ye = 0. Since we originally had∑
e ye ≥ (1−3ε)C(y, D̃, q), the new vector y satisfies:

∑
e ye ≥ (1−4ε)C(y, D̃, q).

Now round each ye down to the nearest power of (1+ε). This does not change
any individual ye by more than a factor of (1 + ε). Therefore, the resulting y
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satisfies:
∑

e ye ≥ (1 − 6ε)C(y, D̃, q). At this point, note that there are only

O
(

log m
ε

)
distinct values of ye.

Step 2: Line Sweep. Fix any γ ≥ 0. Let I(z) = 1 if z ≥ γ. Consider the
process that includes edge e if ye ≥ γ. Let G(γ) denote the subgraph induced
by these edges; let E(γ) denote the set of induced edges; V (γ) denote the set
of induced vertices; and let dv(γ) denote the degree of v in G(γ). Note that
dv(γ) =

∑
e∈N(v) I(ye), and |E(γ)| =

∑
e I(ye). Furthermore, let:

Hv(γ) =
∑

v

(
r̃∑

k=1

I(yk(v)) +
s̃

q
I(yr̃+1(v))

)

Lemma 4. There exists γ such that G(γ) is non-empty, and |E(γ)| ≥ q(1 −
6ε)

∑
v Hv(γ). Furthermore, this value of γ can be computed in O

(
m log m

ε

)
time.

Proof. We note that: ∑
e

ye =
∫ 1

γ=0

|E(γ)|dγ

C(y, D̃, q) = q

∫ 1

γ=0

∑
v

Hv(γ)dγ

Since
∑

e ye ≥ (1 − 6ε)C(y, D̃, q), this implies the existence of a γ that satisfies

the condition of the lemma. There are only O
(

log m
ε

)
distinct values of γ, and

computing |E(γ)|, ∑
v min(D̃/q, dv(γ)) takes O(m) time for any γ.

Start with the value of γ that satisfies |E(γ)| ≥ q(1 − 6ε)
∑

v Hv(γ). Let V1

denote the set of vertices such that for v ∈ V1, we have yr̃+1(v) ≥ γ. For these
vertices, Hv(γ) =

∑r̃
k=1 1 + s̃/q = D̃/q. Let V2 denote the remaining vertices;

for these we have dv(γ) = Hv(γ). Therefore, we have∑
v

Hv(γ) = D̃/q × |V1| +
∑
v∈V2

dv(γ)

Suppose we delete all vertices in V2 simultaneously. Let G(V1, E1) denote the
subgraph induced on V1. Then:

|E1| ≥ |E(γ)| −
∑
v∈V2

dv(γ) ≥ q(1 − 6ε)

(
D̃/q × |V1| +

∑
v∈V2

dv(γ)

)
−

∑
v∈V2

dv(γ)

Therefore, |E1| ≥ (1 − 6ε)D̃|V1| for q ≥ 2 and ε < 1/12.
The final technicality is to show that G(V1, E1) is non-empty. There are now

two cases: (a) If
∑

v∈V2
dv(γ) = 0, then |E1| ≥ |E(γ)| > 0, so that G(V1, E1)

is non-empty. (b) Otherwise, the final inequality is strict and we again have
|E1| > 0. This implies G(V1, E1) is always non-empty. The density of G(V1, E1)
is at least D̃(1 − 6ε) ≥ D∗(1 − 7ε), and we finally have the following theorem.
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Theorem 3. For ε ∈ (0, 1/12), a subgraph of density D∗(1−ε) can be computed
in O

(
m log m

ε2

)
time.

The key point in the above proof is that the very final inequality crucially
needs q > 1 + 6ε; indeed for smaller values of q, there are examples where an
approximately optimal solution to Dual(D̃, q) does not imply an approximately
optimal densest subgraph in any natural way.

2.5 Summary of the Algorithm

Before presenting the MapReduce implementation details, we summarize the
algorithm as follows:

– Define Dual(D, q) and Oracle(y) = C(y,D, q) for q = 2.
– Decide feasibility of Dual(D, q) using multiplicative weight method; wrap

this in a discretized binary search to find the smallest D = D̃ for which the
problem is approximately feasible.

– The output of the previous step is a value D̃ and dual vector y such that∑
e ye ≥ (1 − 3ε)C(y, D̃, q).

– Discretize ye and throw away values at most ε/m2 times the largest value.
– Perform a line sweep to find γ for which the subgraph induced by edges e

with ye ≥ γ satisfies the condition in Lemma 4.
– Remove vertices with degree at most �D̃/q	 from this subgraph, and output

the remaining subgraph.

2.6 Number of MapReduce Phases

We now show how to implement the above algorithm in O
(

log m
ε2

)
MapReduce

phases, where each phase operates on O (m) total (key; value) pairs.

Oracle C(y,D, q) Computation. The mappers take as input (e;αeu, αev, yold
e ),

and produce (u; ynew
e ) and (v; ynew

e ). These are shuffled using the vertex as the
key. The reducer for vertex v needs to compute the 
D/q�th largest ye and set
αev for edges e with larger ye. This takes linear time in dmax, the maximum
degree; this determines the reducer size. The reducers output {(e;αev, ye)} and
(v;Sv), where Sv is the contribution of v to C(y,D, q). The next phase does
a summation of the Sv to compute the value of the oracle; the next shuffle
phase shuffles the (e;αev, ye) using the edge as the key; and the next reduce
phase produces (e;αeu, αev, ye). Therefore, the oracle can be implemented in
two MapReduce phases.

Binary Search. As mentioned before, this takes k(ε) = O
(

log m
ε2

)
phases of the

oracle computation.

Rounding Steps. The scaling requires estimating the maximum of the ye,
which requires a single phase. The scaling and discretization can be done in
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the next Map phase. The various choices of γ can be tried in sequence, one in
each phase of MapReduce, giving O

(
log m

ε

)
phases. For each γ, the subgraph

computed involves filtering the edges by their ye and throwing away small degree
vertices; this takes O(m) sequential complexity and O(dmax) reducer size. One
final MapReduce phase can pick the best density from the various values of γ.
We therefore have the following theorem:

Theorem 4. For ε ∈ (0, 1/12), a subgraph of density D∗(1−ε) can be computed
with O(dmax) reducer size, O (m) sequential complexity per phase, and O

(
log m

ε2

)
phases.

Note that restricting ε to be less than 1/12 poses no problem in the binary
search since we can always start with an O(1) approximation using [5]. We finally
note that the same technique applies to the weighted version of the problem.

A The Multiplicative Weights Update Framework

We next present a simple algorithm for deciding feasibility of covering linear
programs due to Young [17]; we use the exposition and bounds due to Arora-
Hazan-Kale [3]. We first define the generic covering problem.

Covering: ∃?x ∈ P such that Ax ≥ 1, where A is an r × s matrix and P
is a convex set in Rs such that Ax ≥ 0 for all x ∈ P .

The running time of the algorithm is quantified in terms of the Width defined
as:

ρ = max
i

max
x∈P

aix

The algorithm assumes an efficient oracle that solves the Lagrangian of the con-
straints Ax ≥ 1. Given dual multipliers yi associated with the constraint aix ≥ 1,
the oracle takes a linear combination of the constraints, and maximizes the LHS
with respect to x.

Oracle(y): Given an r-dimensional dual vector y ≥ 0, solve C(y) =
max{ytAz : z ∈ P}.

By duality theory, and as explained in [3], it is easy to see that if there exists
y ≥ 0, C(y) < ||y||1 (where ||y||1 = yt1 =

∑r
k=1 yr is the l1 norm of vector y),

then Ax < 1 for all x ∈ P , and hence Covering is infeasible. The multiplicative
weight update procedure described in Fig. 1 iteratively updates the vector y so
that it either correctly declares in-feasibility of the program or finds an x ∈ P
with Ax ≥ (1 − ε)1.

The above procedure not only provides a guarantee on the final value x∗,
but also yields a guarantee on the dual variables y that it computes. Define an
optimization version of Covering as follows:

λ∗ = max{λ : Ax ≥ λ1 and x ∈ P}
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Multiplicative Weight Update Algorithm

Let T ← 4ρ log r
ε2

; y1 = 1
For k = 1 to T do:

Find xk using Oracle(yk).
If C(yk) < ||yk||1, then declare infeasible and stop.

Update yik+1 ← yik

(
1 − εaixk

ρ

)
for i = 1, 2, . . . . , r.

Return x∗ = (
∑

k xk)/T .

Fig. 1. The Multiplicative Weight Update Algorithm for Covering Linear Programs

The problem Covering is equivalent to deciding λ∗ ≥ 1. By the definition of λ∗,
we have that for any y ≥ 0, λ∗||y||1 ≤ C(y); the multiplicative weight method
makes this inequality approximately tight as well if it runs for T steps. The next
theorem is implicit in the analysis of [3], and is explicitly presented in [8,17].

Theorem 5. The multiplicative weight procedure either correctly outputs Ax ≥
1 is infeasible for x ∈ P , or finds a solution x∗ ∈ P such that Ax∗ ≥ (1 − ε)1.
Furthermore, in the latter case, there exists an iteration k such that3:

λ∗ × ||yk||1 ≥ (1 − ε)C(yk)

B Densest Subgraph in Directed Graphs

Let G(V,E) denote a directed graph. The densest subgraph problem asks to find
two subsets S, T ⊆ V (not necessarily disjoint) such that if E(S, T ) denotes the
set of edges (u, v) where u ∈ S and v ∈ T , then the density D(S, T ) = |E(S,T )|√

|S||T | is

maximized. Let OPT denote the optimal density. We present an algorithm with
running time O

(
m log2 m

ε3

)
that outputs a subgraph of density (1 − ε)OPT . We

will only outline the portions different from the undirected case.

B.1 Parametric LP Formulation

We start with a modification of an ingenious parametrized linear program of
Charikar [6]. Consider the following linear program Primal(z). There is a vari-
able ye for each edge e ∈ E, and variables sv, tv for each vertex v ∈ V . The value
z is a parameter that we will search over.

Maximize
∑

e

ye

3 Young [17] shows that if Ax ≥ λ1 for the final solution, then the average over k of
C(yk)/||yk||1 converges to at most λ/(1 − ε) ≤ λ∗/(1 − ε). This implies one of these
values is at most λ∗/(1 − ε), implying the claim. The exact same guarantee is also
explicitly obtained by Plotkin-Shmoys-Tardos [14], though their update procedure
is somewhat different and much more involved.
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ye ≤ su ∀e = (u, v) ∈ E
ye ≤ tv ∀e = (u, v) ∈ E∑

v

(
zsv + 1

z tv
) ≤ 2

ye, sv, tv ≥ 0 ∀e, v

The difference with the LP in [6] is that our penultimate constraint is obtained
by taking a linear combination of two constraints in their LP. This leads to a
nicer dual formulation where the dual objective can be directly interpreted as
the density.

Lemma 5 ([6]). OPT ≤ maxz Primal(z).

Proof. Let S, T ⊆ V denote the densest subgraph. Set z =
√|T |/|S|. Set ye =

1/
√|S||T | for all e within the subgraph; set su = 1/

√|S||T | for all u ∈ S, and
set tv = 1/

√|S||T | for all v ∈ T . It is easy to check that this is a feasible solution
with objective value exactly equal to the density of this subgraph.

Let D∗ = maxz Primal(z). Consider the following dual linear program
Dual(D, z):

αeu + αev ≥ 1 ∀e = (u, v) ∈ E∑
e|e=(v,w) αev ≤ Dz/2 ∀v ∈ V∑
e|e=(u,v) αev ≤ D/(2z) ∀v ∈ V

αev ≥ 0 ∀e, v

Using strong duality, we immediately have:

Lemma 6. D∗ = maxz min{D| Dual(D, z) is feasible}.

B.2 Covering Program and Width Modulation

In order to decide if Dual(D, z) is feasible, we use the multiplicative weight
framework to decide the feasibility of the set of constraints:

αeu + αev ≥ 1 ∀e = (u, v) ∈ E

subject to the polyhedral constraints P (D, z):∑
e|e=(v,w) αev ≤ Dz/2 ∀v ∈ V∑
e|e=(u,v) αev ≤ D/(2z) ∀v ∈ V

αev ≤ 2 ∀e, v
αev ≥ 0 ∀e, v

As before, the constraints αev ≤ 2 have been added to reduce the width of
the program. Note that the width is at most 4. The Oracle(y) problem assigns
dual vector y to the set of constraints αeu + αev ≥ 1 and solves:

C(y,D, z) = max
α∈P (D,z)

∑
v

∑
e incident on v

yeαev
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This can be solved in O(m) time: For each vertex v, we only need to find the
top Dz/4 values ye for edges leaving v, and the top D/(4z) values ye for edges
entering v; we set αev = 2 for the corresponding edges. We assume for simplicity
of exposition that Dz/4 and D/(4z) are integers; the proof extends to the general
case with minor modification.

Lemma 7. For any D, z and ε ∈ [0, 1], in time O
(
m log m

ε2

)
, the multiplicative

weight update algorithm either returns that Dual(D, z) is infeasible, or finds
α ∈ P (D, z) such that αeu + αev ≥ 1 − ε for all e = (u, v) ∈ E.

B.3 Parametric Search

We apply the multiplicative weight update algorithm within the following para-
metric search procedure. Discretize z and D in powers of (1 + δ). For each
discretized z, perform a binary search to find the smallest discretized D (call
this D̃(z)) for which the multiplicative weight algorithm returns a feasible (δ-
optimal) solution. Find that z which maximizes D̃(z); denote this value of z as
z̃ and this value of D̃(z) as D̃. Since the density is upper bounded by m, and
since we can assume D/z and Dz lie in [1, 2n], the number of parameters we try
is O

(
log m

δ

)
ignoring lower order terms. This increases the running time by the

corresponding factor compared to the undirected case.
Let (α,y) denote the final solution found by the above procedure, where

the dual vector y is found as in Theorem 5. The following theorem is proved
analogously to Theorem 2 by choosing δ to be a sufficiently small constant
fraction of ε. (The only additional observation we need is that modifying z by a
factor of (1 + δ) changes D̃(z) by at most that factor.)

Theorem 6. For 0 ≤ ε ≤ 1/3, the values D̃, z̃ and the final solution (α,y)
satisfy:
1. D∗(1 − ε) ≤ D̃ ≤ D∗(1 + ε).
2.

∑
e ye ≥ (1 − 3ε)C(y, D̃, z̃)

B.4 Rounding Step: Recovering the Densest Subgraph

Using Theorem 2, we have a value D̃ ∈ [(1 − ε)D∗, (1 + ε)D∗] along with a value
z̃ and dual variables y that satisfy

∑
e ye ≥ (1 − 3ε)C(y, D̃, z̃). We will now use

these variables to recover an approximately optimal densest subgraph.

Step 1: Discretization. First note that C(y, D̃, z̃) is computed as follows: For
each v ∈ V , sum up the largest at most D̃z̃/4 ye for e = (v, w), and the largest
D̃/(4z̃) ye for e = (w, v), and double this value. Let Y = maxe ye. Scale up
or down the ye values so that Y = 1. We eliminate all edges with ye ≤ ε/m2

and round each ye down to the nearest power of (1 + ε). As shown before, the
resulting y satisfies: ∑

e

ye ≥ (1 − 6ε)C(y, D̃, z̃)

At this point, note that there are only O
(

log m
ε

)
distinct values of ye.
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Step 2: Line Sweep. Let G(γ) denote the subgraph induced by edges with ye ≥ γ.
Let E(γ) denote the set of induced edges, S(γ) denote the set of induced source
vertices, and T (γ) denote the set of induced destination vertices. Let dS

v (γ) and
dT

v (γ) denote the out-degree and in-degree respectively of v in G(γ).

Lemma 8. There exists γ such that

|E(γ)| ≥ 2(1 − 6ε)
∑

v

(
min

(
D̃z̃/4, dS

v (γ)
)

+ min
(
D̃/(4z̃), dT

v (γ)
))

Furthermore, this value of γ can be computed in O
(
m log m

ε

)
time.

Proof. We note that: ∑
e

ye =
∫ 1

γ=0

|E(γ)|dγ

and

C(y, D̃, z̃) = 2
∫ 1

γ=0

∑
v

(
min

(
D̃z̃/4, dS

v (γ)
)

+ min
(
D̃/(4z̃), dT

v (γ)
))

dγ

Since
∑

e ye ≥ (1 − 6ε)C(y, D̃, z̃), this implies the existence of a γ that satisfies

the condition of the lemma. There are only O
(

log m
ε

)
distinct values of γ, and

computing |E(γ)| and the degrees of the vertices takes O(m) time for any γ.

Start with the value of γ that satisfies the condition of the previous lemma.
Let S1 denote the set of vertices with dS

v (γ) ≥ D̃z̃/4 and T1 denote the set of
vertices with dT (γ) ≥ D̃/(4z̃). We have:

∑

v

(

min

(
D̃z̃

4
, d

S
v (γ)

)

+ min

(
D̃

4z̃
, d

T
v (γ)

))

=
D̃

4

(

z̃|S1| + |T1|
z̃

)

+
∑

v∈V \S1

d
S
v (γ)+

∑

v∈V \T1

d
T
v (γ)

Consider the sets (S1, T1) and the edge set E(S1, T1) that goes from S1 to T1.
Since this edge set is obtained by deleting edges out of V \ S1 and edges into
V \ T1, the above conditions imply:

|E(S1, T1)| ≥ |E(γ)| −
⎛
⎝ ∑

v∈V \S1

dS
v (γ) +

∑
v∈V \T1

dT
v (γ)

⎞
⎠

≥ 2(1 − 6ε)

⎛
⎝D̃

4

(
z̃|S1| +

|T1|
z̃

)
+

∑
v∈V \S1

dS
v (γ) +

∑
v∈V \T1

dT
v (γ)

⎞
⎠

−
⎛
⎝ ∑

v∈V \S1

dS
v (γ) +

∑
v∈V \T1

dT
v (γ)

⎞
⎠

≥ (1 − 6ε)
D̃

2
(z̃|S1| + |T1|/z̃)
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for ε ≤ 1/12. Now observe that for any z̃, we have z̃|S1| + |T1|/z̃ ≥ 2
√|S||T |.

Therefore:

Density of (S1, T1) =
|E(S1, T1)|√|S||T | ≥ (1 − 6ε)D̃ ≥ (1 − 7ε)D∗

Theorem 7. For any ε ∈ (0, 1/12), a directed subgraph with density D∗(1 − ε)
can be computed in time O

(
m log2 m

ε3

)
.

MapReduce Implementation. The details of the Oracle computation and the
rounding step are the same as the undirected case. The parametric search can
be done in parallel for all values of D, z; the sequential complexity per phase is
now O

(
m log2 m

ε2

)
since the parametric search is over both D and z instead of

just over D. Therefore, the overall implementation still takes O
(

log m
ε2

)
phases

with O
(
m log2 m

ε2

)
sequential complexity per phase, and O(dmax) reducer size,

where dmax is the maximum degree.

C Fractional Matchings in Bipartite Graphs

In this section, we show the broader applicability of width modulation by pre-
senting an FPTAS for fractional maximum size matchings in bipartite graphs;
incidentally, we also obtain a slight decrease in the number of phases. As moti-
vation, consider the following Adword allocation problem [13]: There are n1

advertisers, where advertiser u has demand du; there are n2 ad slots, where slot
v has supply sv; furthermore there is a bipartite graph specifying which adver-
tiser is interested in which ad slots. The goal is to find a (possibly fractional)
allocation that maximizes the demand satisfied.

We present an efficient algorithm for the case where all supplies and demands
are 1 (the maximum fractional matching case); this algorithm extends with
minor modification to the general case. On a graph with n vertices and m

edges, our algorithm takes O
(
m log n

ε3

)
running time, and can be implemented

in O
(

log2 n
ε3 log dmax

)
phases of MapReduce with reducer size O(dmax), the maxi-

mum degree, and sequential complexity Õ(m) per phase. The number of phases
improves by a log dmax factor that which can be achieved by the algorithm of
Ahn-Guha [2], which was designed for the semi-streaming model.

Formally, we are given a bipartite graph G(V1, V2, E) on n vertices. Let K∗

denote the size of the optimal fractional matching. For vertex v, let N(v) denote
the set of edges incident on v. The maximum fractional matching is the solution
to the following linear program.

Maximize
∑

e

ye
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∑
e∈N(u) ye ≤ 1 ∀u ∈ V1∑
e∈N(v) ye ≤ 1 ∀v ∈ V2

ye ≥ 0 ∀e ∈ E

As before, we write the following dual program Dual(K).

xu + xv ≥ 1 ∀e = (u, v) ∈ E∑
v∈V1∪V2

xv ≤ K

It is well-known that the dual is fractional Vertex Cover, where variable xv

captures whether vertex v is in the cover. By strong duality, Dual(K) is feasible
iff K ≥ K∗.

C.1 Covering Program, Width Modulation, and Binary Search

We will now check the feasibility of the constraints:

xu + xv ≥ 1 ∀e = (u, v) ∈ E

subject to the polyhedral constraints P (K).∑
v xv ≤ K
xv ≤ 1/ε ∀v ∈ V1 ∪ V2

As before, the second set of constraints is added to reduce the width of the
program. Without these constraints, the width can be as large as 2K. With
these constraints, it becomes at most 2/ε. For simplicity of exposition, we assume
from now that εK is an integer; the proof only needs a minor modification if this
assumption is removed.

The problem Oracle(y) assigns dual variables y to the set of constraints
xu + xv ≥ 1, and computes:

C(y,K) = max
x∈P (K)

∑
v∈V1∪V2

xv

⎛
⎝ ∑

e∈N(v)

ye

⎞
⎠

This involves the following O(m) time computations: (1) Compute Sv(y) =∑
e∈N(v) ye for each vertex v; and (2) Compute the top εK values Sv(y); sum

these; and multiply this result by 1/ε.
The following theorem is now analogous to Theorem 1

Theorem 8. For any integer K and ε ∈ [0, 1], in time O
(
m log n

ε3

)
, the mul-

tiplicative weight algorithm either returns that Dual(K) is infeasible, or finds
x ∈ P (K) such that xu + xv ≥ 1 − ε for all e = (u, v) ∈ E.

As before, we apply the multiplicative weight algorithm in the following
Binary Search procedure: Round the values K in powers of (1 + ε). Perform
binary search over these discretized values to find the smallest K (call this K̃)
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for which the multiplicative weight algorithm returns a feasible solution. Let
(x,y) denote the final solution found by the above procedure, where the dual
solution y is found as in Theorem 5. The following theorem is now analogous to
Theorem 2.

Theorem 9. For 0 ≤ ε ≤ 1/3, the value K̃ and the final solution (x,y) satisfy:
(1) K∗(1 − ε) ≤ K̃ ≤ K∗(1 + ε); and (2)

∑
e ye ≥ (1 − 3ε)C(y, K̃).

C.2 Rounding Step: Recovering the Fractional Matching

We start with the K̃ ∈ [K∗(1−ε),K∗(1+ε)] and y computed above. Recall that
Sv(y) =

∑
e∈N(v) ye. Therefore,

∑
e∈E ye = 1

2

∑
v Sv(y). Let κ = εK̃. Suppose

the vertices are sorted in decreasing order of Sv(y). Let Q denote the set of first
κ vertices. The previous theorem implies:∑

e

ye ≥ (1 − 3ε)C(y, K̃) =
1 − 3ε

ε

∑
v∈Q

Sv(y)

where the final equality follows from the definition of C(y, K̃). Let v∗ ∈ V \ Q
have the largest Sv(y). Since Sv(y) ≥ Sv∗(y) for all v ∈ Q and since |Sv(y)| = κ,
we have

∑
v∈Q Sv(y) ≥ κSv∗(y).

Construct z as follows: For every e incident on a vertex in Q, we set ze = 0;
otherwise, set ze = ye. Note that Sv(z) ≤ Sv(y) and maxv Sv(z) = Sv∗(y). We
have the following sequence of inequalities:
∑

e

ze ≥
∑

e

ye−
∑
v∈Q

Sv(y) ≥
(
1 − 3ε

ε
− 1

)∑
v∈Q

Sv(y) ≥ 1 − 4ε

ε
·K̃ε·Sv∗ (y) = (1−4ε)K̃Sv∗ (y)

Since maxv Sv(z) = Sv∗(y) by construction, we have:∑
e ze

maxv Sv(z)
≥ (1 − 4ε)K̃ ≥ (1 − 5ε)K∗

for ε ∈ (0, 1/6). By scaling so that maxv Sv(z) = 1, it is easy to check that the
new vector z is a feasible fractional matching with value at least (1− 5ε)K∗. We
therefore have:

Theorem 10. For ε ∈ (0, 1/6), a fractional matching of value K∗(1 − ε) can be
computed in O

(
m log m

ε3

)
time.

MapReduce Implementation. The key difference in the Oracle computation
is that it requires summing the top Kε values Sv(y). Since we assume reducer
size O(dmax), the maximum degree which can be much smaller than n, this step
will in general take O(logdmax

n) phases to execute (via random partitioning).
Therefore, for any given K, the multiplicative weight procedure will require
O

(
log2 n

ε3 log dmax

)
phases to execute. The remaining details are the same as before,

so that the overall implementation takes O
(

log2 n
ε3 log dmax

)
MapReduce phases

with O
(
m log n

ε

)
sequential complexity per phase and O(dmax) reducer size.
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Abstract. The diffusion state distance (DSD) was introduced by Cao-
Zhang-Park-Daniels-Crovella-Cowen-Hescott [PLoS ONE, 2013] to cap-
ture functional similarity in protein-protein interaction networks. They
proved the convergence of DSD for non-bipartite graphs. In this paper,
we extend the DSD to bipartite graphs using lazy-random walks and
consider the general Lq-version of DSD. We discovered the connection
between the DSD Lq-distance and Green’s function, which was studied
by Chung and Yau [J. Combinatorial Theory (A), 2000]. Based on that,
we computed the DSD Lq-distance for Paths, Cycles, Hypercubes, as
well as random graphs G(n, p) and G(w1, . . . , wn). We also examined
the DSD distances of two biological networks.

1 Introduction

Recently, the diffusion state distance (DSD, for short) was introduced in [3] to
capture functional similarity in protein-protein interaction (PPI) networks. The
diffusion state distance is much more effective than the classical shortest-path
distance for the problem of transferring functional labels across nodes in PPI
networks, based on evidence presented in [3]. The definition of DSD is purely
graph theoretic and is based on random walks.

Let G = (V,E) be a simple undirected graph on the vertex set {v1, v2, . . . , vn}.
For any two vertices u and v, let He{k}(u, v) be the expected number of times
that a random walk starting at node u and proceeding for k steps, will visit
node v. Let He{k}(u) be the vector (He{k}(u, v1), . . . , He{k}(u, vn)). The diffu-
sion state distance (or DSD, for short) between two vertices u and v is defined
as

DSD(u, v) = lim
k→∞

∥∥∥He{k}(u) − He{k}(v)
∥∥∥
1
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provided the limit exists (see [3]). Here the L1-norm is not essential. Generally,
for q ≥ 1, one can define the DSD Lq-distance as

DSDq(u, v) = lim
k→∞

∥∥∥He{k}(u) − He{k}(v)
∥∥∥

q

provided the limit exists. (We use Lq rather than Lp to avoid confusion, as p
will be used as a probability throughout the paper.)

In [3], Cowen et al. showed that the above limit always exists whenever the
random walk on G is ergodic (i.e., G is connected non-bipartite graph). They
also prove that this distance can be computed by the following formula:

DSD(u, v) = ‖(1u − 1v)(I − D−1A + W )−1‖1
where D is the diagonal degree matrix, A is the adjacency matrix, and W is the
constant matrix in which each row is a copy of π , π = 1∑n

i=1 di
(d1, . . . , dn) is the

unique steady state distribution.
A natural question is how to define the diffusion state distance for a bipartite

graph. We suggest to use the lazy random walk. For a given α ∈ (0, 1), one can
choose to stay at the current node u with probability α, and choose to move to
one of its neighbors with probability (1 − α)/du. In other words, the transitive
matrix of the α-lazy random walk is

Tα = αI + (1 − α)D−1A.

Similarly, let He
{k}
α (u, v) be the expected number of times that the α-lazy

random walk starting at node u and proceeding for k steps, will visit node v. Let
He

{k}
α (u) be the vector (He

{k}
α (u, v1), . . . , He

{k}
α (u, vn)). The α-diffusion state

distance Lq-distance between two vertices u and v is

DSDα
q (u, v) = lim

k→∞

∥∥∥He{k}
α (u) − He{k}

α (v)
∥∥∥

q
.

Theorem 1. For any connected graph G and α ∈ (0, 1), the DSDα
q (u, v) is

always well-defined and satisfies

DSDα
q (u, v) = (1 − α)−1‖(1u − 1v)G‖q. (1)

Here G is the matrix of Green’s function of G.

Observe that (1−α)DSDα
q (u, v) is independent of the choice of α. Naturally,

we define the DSD Lq-distance of any graph G as:

DSDq(u, v) := lim
α→0

(1 − α)DSDα
q (u, v) = ‖(1u − 1v)G‖q.

This definition extends the original definition for non-bipartite graphs.
With properly chosen α, ‖He

{k}
α (u) − He

{k}
α (v)‖q converges faster than

‖He{k}(u) − He{k}(v)‖q. This fact leads to a faster algorithm to estimate a
single distance DSDq(u, v) using random walks. We will discuss it in Remark 1.



Computing Diffusion State Distance Using Green’s Function 81

Green’s function was introduced in 1828 by George Green [17] to solve some
partial differential equations, and it has found many applications (e.g. [1], [5],[9],
[16], [19], [24]).

The Green’s function on graphs was first investigated by Chung and Yau [5]
in 2000. Given a graph G = (V,E) and a given function g : V → R, consider the
problem to find f satisfying the discrete Laplace equation

Lf =
∑
y∈V

(f(x) − f(y))pxy = g(x).

Here pxy is the transition probability of the random walk from x to y. Roughly
speaking, Green’s function is the left inverse operator of L (for the graphs with
boundary). It is closely related to the Heat kernel of the graphs (see also [15])
and the normalized Laplacian.

In this paper, we will use Green’s function to compute the DSD Lq-distance
for various graphs. The maximum DSD Lq-distance varies from graphs to graphs.
The maximum DSD Lq-distance for paths and cycles are at the order of Θ(n1+1/q)
while the Lq-distance for some random graphs G(n, p) and G(w1, . . . , wn) are
constant for some ranges of p. The hypercubes are somehow between the two
classes. The DSD L1-distance is Ω(n) while the Lq-distance is Θ(1) for q > 1.
Our method for random graphs is based on the strong concentration of the
Laplacian eigenvalues.

The paper is organized as follows. In Section 2, we will briefly review the
terminology on the Laplacian eigenvalues, Green’s Function, and heat kernel.
The proof of Theorem 1 will be proved in Section 3. In Section 4, we apply
Green’s function to calculate the DSD distance for various symmetric graphs
like paths, cycles, and hypercubes. We will calculate the DSD L2-distance for
random graphs G(n, p) and G(w1, w2, . . . , wn) in Section 5. In the last section,
we examined two brain networks: a cat and a Rhesus monkey. The distributions
of the DSD distances are calculated.

2 Notation and Background

In this paper, we only consider undirected simple graph G = (V,E) with the
vertex set V and the edge set E. For each vertex x ∈ V , the neighborhood of x,
denoted by N(x), is the set of vertices adjacent to x. The degree of x, denoted
by dx, is the cardinality of N(x). We also denote the maximum degree by Δ and
the minimum degree by δ.

Without loss of generalization, we assume that the set of vertices is ordered
and assume V = [n] = {1, 2, . . . , n}. Let A be the adjacency matrix and D =
diag(d1, . . . , dn) be the diagonal matrix of degrees. For a given subset S, let the
volume of S to be vol(S) :=

∑
i∈S di. In particular, we write vol(G) = vol(V ) =∑n

i=1 di.
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Let V ∗ be the linear space of all real functions on V . The discrete Laplace
operator L : V ∗ → V ∗ is defined as

L(f)(x) =
∑

y∈N(x)

1
dx

(f(x) − f(y)).

The Laplace operator can also written as a (n × n)-matrix:

L = I − D−1A.

Here D−1A is the transition probability matrix of the (uniform) random walk
on G. Note that L is not symmetric. We consider a symmetric version

L := I − D−1/2AD−1/2 = D1/2LD−1/2,

which is so called the normalized Laplacian. Both L and L have the same set of
eigenvalues. The eigenvalues of L can be listed as

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ 2.

The eigenvalue λ1 > 0 if and only if G is connected while λn−1 = 2 if and
only if G is a bipartite graph. Let φ0, φ1, . . . , φn−1 be a set of orthogonal unit
eigenvectors. Here φ0 = 1√

vol(G)
(
√

d1, . . . ,
√

dn) is the positive unit eigenvector

for λ0 = 0 and φi is the eigenvector for λi (1 ≤ i ≤ n − 1).
Let O = (φ0, . . . , φn−1) and Λ = diag(0, λ1, . . . , λn−1). Then O is an orthog-

onal matrix and L be diagonalized as

L = OΛO′. (2)

Equivalently, we have

L = D−1/2OΛO′D1/2. (3)

The Green’s function G is the matrix with its entries, indexed by vertices x
and y, defined by a set of two equations:

GL(x, y) = I(x, y) − dy

vol(G)
, (4)

G1 = 0. (5)

(This is the so-called Green’s function for graphs without boundary in [5].)
The normalized Green’s function G is defined similarly:

GL(x, y) = I(x, y) −
√

dxdy

vol(G)
.

The matrices G and G are related by

G = D1/2
GD−1/2.
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Alternatively, G can be defined using the eigenvalues and eigenvectors of L as
follows:

G = OΛ{−1}O′,

where Λ{−1} = diag(0, λ−1
1 , . . . , λ−1

n−1). Thus, we have

G(x, y) =
n−1∑
l=1

1
λl

√
dy

dx
φl(x)φl(y). (6)

For any real t ≥ 0, the heat kernel Ht is defined as

Ht = e−tL.

Thus,

Ht(x, y) =
n−1∑
l=0

e−λitφl(x)φl(y).

The heat kernel Ht satisfies the heat equation

d

dt
Htf = −LHtf.

The relation of the heat kernel and Green’s function is given by

G =
∫ ∞

0

Htdt − φ′
0φ0.

The heat kernel can be used to compute Green’s function for the Cartesian
product of two graphs. We will omit the details here. Readers are directed to [5]
and [6] for the further information.

3 Proof of Main Theorem

Proof (Proof of Theorem 1:). Rewrite the transition probability matrix Tα as

Tα = αI + (1 − α)D−1A.

= D−1/2(αI + (1 − α)D−1/2AD−1/2)D1/2

= D−1/2(αI + (1 − α)(I − L))D1/2

= D−1/2(I − (1 − α)L)D1/2.

For k = 0, 1, . . . , n − 1, let λ∗
k = 1 − (1 − α)λk and Λ∗ = diag(λ∗

0, . . . , λ
∗
n−1) =

I − (1 − α)Λ. Applying Equation (3), we get

Tα = D−1/2OΛ∗O′D1/2 = (O′D1/2)−1Λ∗O′D1/2.
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Then for any t ≥ 1, the t-step transition matrix is T t
α = (OD1/2)−1Λ∗tOD1/2 =

D−1/2OΛ∗tO′D1/2. Denote p
{t}
α (u, j) as the (u, j)th entry in T t

α.

p{t}
α (u, j) =

n−1∑
l=0

(λ∗
l )

t

√
dj

du
φl(u)φl(j)

=
dj

vol(G)
+

n−1∑
l=1

(λ∗
l )

t

√
dj

du
φl(u)φl(j).

Thus,

He{k}
α (u, j) − He{k}

α (v, j) =
k∑

t=0

n−1∑
l=1

(λ∗
l )

td
1/2
j φl(j)(d−1/2

u φl(u) − d−1/2
v φl(v)).

The limit limk→∞ He
{k}
α (u, j)−He

{k}
α (v, j) forms the sum of n geometric series:

∞∑
t=0

n−1∑
l=1

(λ∗
l )

td
1/2
j φl(j)(d−1/2

u φl(u) − d−1/2
v φl(v)).

Note each geometric series converges since the common ratio λ∗
l ∈ (−1, 1). Thus,

lim
k→∞

(
He{k}

α (u, j) − He{k}
α (v, j)

)
=

∞∑
t=0

n−1∑
l=1

(λ∗
l )

td
1/2
j φl(j)(d

−1/2
u φl(u) − d−1/2

v φl(v))

=

n−1∑
l=1

d
1/2
j φl(j)(d

−1/2
u φl(u) − d−1/2

v φl(v))

∞∑
t=0

(λ∗
l )

t

=

n−1∑
l=1

1

1 − λ∗
l

d
1/2
j φl(j)(d

−1/2
u φl(u) − d−1/2

v φl(v))

=
1

1 − α

n−1∑
l=1

1

λl
d
1/2
j φl(j)(d

−1/2
u φl(u) − d−1/2

v φl(v))

=
1

1 − α
(G(u, j) − G(v, j)).

We have
lim

k→∞
He{k}

α (u) − He{k}
α (v) =

1
1 − α

(1u − 1v)G.

Remark 1. Observe that the convergence rate of He
{k}
α (u) − He

{k}
α (v) is deter-

mined by λ̄∗ := max{1− (1−α)λ1, (1−α)λn−1 −1). It is critical that we assume
α �= 0. When α = 0 then λ̄∗ < 1 holds only if λn−1 < 2, i.e. G is a non-bipartite
graph (see [3]).

When λ1 + λn−1 > 2, λ̄∗ (as a function of α) achieves the minimum value
λn−1−λ1
λn−1+λ1

at α = 1− 2
λ1+λn−1

. This is the best mixing rate that the α-lazy random
walk on G can achieve. Using the α-lazy random walks (with α = 1 − 2

λ1+λn−1
)

to approximate the DSD Lq-distance will be faster than using regular random
walks.
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Equation (6) implies ‖G‖2 ≤ 1
λ1

√
Δ
δ . Combining with Theorem 1, we have

Corollary 1. For any connected simple graph G, and any two vertices u and v,

we have DSD2(u, v) ≤
√
2

λ1

√
Δ
δ .

Note that for any connected graph G with diameter m (Lemma 1.9, [6])

λ1 >
1

m vol(G)
.

This implies a uniform bound for the DSD L2 distances on any connected graph
G on n vertices.

DSD2(u, v) ≤
√

2Δ

δ
m vol(G) <

√
2n3.5.

This is a very coarse upper bound. But it does raise an interesting question
“How large can the DSD Lq-distance be?”

4 Some Examples of the DSD Distance

In this section, we use Green’s function to compute the DSD Lq-distance
(between two vertices of the distance reaching the diameter) for paths, cycles,
and hypercubes.

4.1 The Path Pn

We label the vertices of Pn as 1, 2, . . . , n, in sequential order. Chung and Yau
computed the Green’s function G of the weighed path with no boundary (The-
orem 9, [5]). It implies that Green’s function of the path Pn is given by: for any
u ≤ v,

G(u, v) =

√
dudv

4(n − 1)2

(∑
z<u

(d1 + . . . + dz)
2 +
∑
v≤z

(dz+1 + · · · + dn)2

−
∑

u≤z<v

(d1 + · · · + dz)(dz+1 + · · · + dn)

)

=

√
dudv

4(n − 1)2

(
u−1∑
z=1

(2z − 1)2 +

n−1∑
z=v

(2n − 2z − 1)2 −
v−1∑
z=u

(2z − 1)(2n − 2z − 1)

)

=

√
dudv

4(n − 1)2

( n−1∑
z=1

(2z − 1)2 +

n−1∑
z=v

(2n − 2)(2n − 4z) −
v−1∑
z=u

(2z − 1)(2n − 2)

)

=

√
dudv(2n − 1)(2n − 3)

12(n − 1)
+

√
dudv

2(n − 1)

( n−1∑
z=v

(2n − 4z) −
v−1∑
z=u

(2z − 1)

)

=

√
dudv

2(n − 1)

(
(u − 1)2 + (n − v)2 − 2n2 − 4n + 3

6

)
.
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When u > v, we have

G(u, v) = G(v, u) =
√

dudv

2(n − 1)

(
(v − 1)2 + (n − u)2 − 2n2 − 4n + 3

6

)
.

Applying G(u, v) =
√

dv√
du

G(u, v), we get

G(u, v) =

⎧⎨
⎩

dv

2(n−1)

(
(u − 1)2 + (n − v)2 − 2n2−4n+3

6

)
if u ≤ v;

dv

2(n−1)

(
(v − 1)2 + (n − u)2 − 2n2−4n+3

6

)
if u > v.

We have

G(1, 1) =
4n2 − 8n + 3

12(n − 1)
;

G(1, j) =
1

n − 1

(
(n − j)2 − 2n2 − 4n + 3

6

)
for 2 ≤ j ≤ n − 1;

G(1, n) = −2n2 − 4n + 3
12(n − 1)

;

G(n, 1) = −2n2 − 4n + 3
12(n − 1)

;

G(n, j) =
1

n − 1

(
(j − 1)2 − 2n2 − 4n + 3

6

)
for 2 ≤ j ≤ n − 1;

G(n, n) =
4n2 − 8n + 3

12(n − 1)
.

Thus,

G(1, j) − G(n, j) =

⎧⎪⎨
⎪⎩

n−1
2 if j = 1;

n + 1 − 2j if 2 ≤ j ≤ n − 1;
−n−1

2 if j = n.

(7)

Theorem 2. For any q ≥ 1, the DSD Lq-distance of the Path Pn between 1 and
n satisfies

DSDq(1, n) = (1 + q)−1/qn1+1/q + O(n1/q).

Proof.

DSDq(1, n) =

⎛
⎝2

(
n − 1

2

)q

+
n−1∑
j=2

|n + 1 − 2j|q
⎞
⎠

1/q

=
(

1
1 + q

n1+q + O(nq)
)1/q

= (1 + q)−1/qn1+1/q + O(n1/q).
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For q = 1, we have the following exact result:

DSD1(1, n) =
n∑

j=1

|G(1, j) − G(n, j)|

=

{
2k2 − 2k + 1 if n = 2k

2k2 if n = 2k + 1.

4.2 The Cycle Cn

Now we consider Green’s function of cycle Cn. For x, y ∈ {1, 2, . . . , n}, let |x−y|c
be the graph distance of x, y in Cn. We have the following Lemma.

Lemma 1. For even n = 2k, Green’s function G of Cn is given by

G(x, y) =
1
2k

(k − |x − y|c)2 − k

6
− 1

12k
.

For odd n = 2k + 1, Green’s function G of Cn is given by

G(x, y) =
2

2k + 1

(
k + 1 − |x − y|c

2

)
− k2 + k

3(2k + 1)
.

Proof. We only prove the even case here. The odd case is similar and will be left
to the readers.

For n = 2k, it suffices to verify that G satisfies Equations (4) and (5). To
verify Equation (4), we need show

G(x, y) − 1
2
G(x, y − 1) − 1

2
G(x, y + 1) =

{
− 1

n if x �= y;
1 − 1

n if x = y.

Let z = k
6 + 1

12k and i = |x − y|c. For x �= y, we have

G(x, y) − 1
2
G(x, y − 1) − 1

2
G(x, y + 1)

= (
1
2k

(k − i)2 − z) − 1
2
(

1
2k

(k − i − 1)2 − z) − 1
2
(

1
2k

(k − i + 1)2 − z)

= − 1
2k

= − 1
n

.



88 E. Boehnlein et al.

When x = y, we have

G(x, y) − 1
2
G(x, y − 1) − 1

2
G(x, y + 1)

=
1
2k

k2 − z − 1
2

(
1
2k

(k − 1)2 − z

)
− 1

2

(
1
2k

(k − 1)2 − z

)

=
2k − 1

2k

= 1 − 1
n

.

To verify Equation (5), it is enough to verify

12 + 22 + · · · + (k − 1)2 + k2 + (k − 1)2 + · · · + 12 =
2k3 + k

3
= n2z.

This can be done by induction on k.

Theorem 3. For any q ≥ 1, the DSD Lq-distance of the Cycle Cn between 1
and 	n

2 
 + 1 satisfies

DSDq(1, 	n

2

 + 1) =

(
4

1 + q

)1/q (n

4

)1+1/q

+ O(n1/q).

Proof. We only verify the case of even cycle here. The odd cycle is similar and
will be omitted.

For n = 2k, the difference of G(1, j) and G(1 + k, j) have a simple form:

G(1, j) − G(1 + k, j) =
1
2k

((k − i)2 − i2) =
k

2
− i,

where i = |j − 1|c. Thus,

DSDq(1, 1 + k) =

(
2

k−1∑
i=0

∣∣∣∣k2 − i

∣∣∣∣
q
)1/q

=

(
4

1 + q

(
k

2

)1+q

+ O(kq)

)1/q

=
(

4
1 + q

)1/q (n

4

)1+1/q

+ O(n1/q).

4.3 The Hypercube Qn

Now we consider the hypercube Qn, whose vertices are the binary strings of
length n and whose edges are pairs of vertices differing only at one coordinate.
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Chung and Yau [5] computed the Green’s function of Qn: for any two vertices x
and y with distance k in Qn,

G(x, y)=2−2n

⎛
⎝−
∑
j<k

(
(

n
0

)
+ · · · +

(
n
j

)
)(
(

n
j+1

)
+ · · · +

(
n
n

)
)(

n−1
j

) +
∑
k≤j

(
(

n
j+1

)
+ · · · +

(
n
n

)
)2(

n−1
j

)
⎞
⎠

= 2−2n
n∑

j=0

(
(

n
j+1

)
+ · · · +

(
n
n

)
)2(

n−1
j

) − 2−n
∑
j<k

(
n

j+1

)
+ · · · +

(
n
n

)
(

n−1
j

) .

We are interested in the DSD distance between a pair of antipodal vertices.
Let 0 denote the all-0-string and 1 denote the all-1-string. For any vertex x, if
the distance between 0 and x is i then the distance between 1 and x is n − i.
We have

G(0, x) − G(1, x) = −2−n
∑
j<k

(
n

j+1

)
+ · · · +

(
n
n

)
(
n−1

j

) + 2−n
∑

j<n−k

(
n

j+1

)
+ · · · +

(
n
n

)
(
n−1

j

)
= 2−n

n−k−1∑
j=k

(
n

j+1

)
+ · · · +

(
n
n

)
(
n−1

j

) . (8)

Here we use the convention that
∑a

j=b cj = −∑b
j=a cj for b > a.

Theorem 4. For any q ≥ 1, the DSD Lq-distance of the hypercube Qn between
0 and 1 satisfies

DSDq(0,1) =

⎛
⎝ n∑

k=0

(
n

k

) ∣∣∣∣∣∣2−n
n−k−1∑

j=k

(
n

j+1

)
+ · · · +

(
n
n

)
(
n−1

j

)
∣∣∣∣∣∣
q⎞
⎠

1/q

. (9)

In particular, DSDq(0,1) = Θ(1) when q > 1 while DSD1(0,1) = Ω(n).

Proof. Equation (9) follows from the definition of DSD Lq-distance and Equation
(8). Let

ak =
(

n

k

) ∣∣∣∣∣∣2−n
n−k−1∑

j=k

(
n

j+1

)
+ · · · +

(
n
n

)
(
n−1

j

)
∣∣∣∣∣∣
q

.

Observe that ak = an−k, we only need to estimate ak for 0 ≤ k ≤ n/2. Also we
can throw away the terms in the second summation for j > n/2 since that part
is at most half of ak. For k ≤ j ≤ n/2,

1
2

≤ 2−n

((
n

j + 1

)
+ · · · +

(
n

n

))
≤ 1.

Thus ak has the same magnitude as bk :=
(
n
k

) (∑n/2
j=k

1

(n−1
j )

)q

.
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For q > 1, we first bound bk by bk ≤ (
n
k

)(
n/2

(n−1
k )

)q

= O(n(1−q)k+q). When

k > q+2
q−1 , we have bk = O(n−2). The total contribution of those bk’s is O(n−1),

which is negligible. Now consider the term bk for k = 0, 1, . . . , 	 q+2
q−1
. We bound

bk by

bk ≤
(

n

k

)(
1(

n−1
k

) +
n/2(
n−1
k+1

)
)q

= O(1).

This implies DSDq(0,1) = O(1). The lower bound DSDq(0,1) ≥ 1 is obtained
by taking the term at k = 0. Putting together, we have DSDq(0,1) = Θ(1) for
q > 1.

For q = 1, note that

bk =
n/2∑
j=k

(
n
k

)
(
n−1

j

) >

(
n
k

)
(
n−1

k

) =
n

n − k
> 1.

Thus, DSD1(0,1) = Ω(n).

5 Random Graphs

In this section, we will calculate the DSD Lq-distance in two random graphs
models. For random graphs, the non-zero Laplacian eigenvalues of a graph G
are often concentrated around 1. The following Lemma is useful to the DSD
Lq-distance.

Lemma 2. Let λ1, . . . , λn−1 be all non-zero Laplacian eigenvalues of a graph
G. Suppose there is a small number ε ∈ (0, 1/2), so that for 1 ≤ i ≤ n − 1,
|1 − λi| ≤ ε. Then for any pairs of vertices u, v, the DSD Lq-distance satisfies

|DSDq(u, v) − 21/q| ≤ ε

1 − ε

√
Δ

du
+

Δ

dv
if q ≥ 2, (10)

|DSDq(u, v) − 21/q| ≤ n
1
q − 1

2
ε

1 − ε

√
Δ

du
+

Δ

dv
for 1 ≤ q < 2. (11)

Proof. Rewrite the normalized Green’s function G as

G = I − φ′
0φ0 + Υ.

Note that the eigenvalues of Υ := G−I+φ0φ
′
0 are 0, 1

λ1
−1, . . . , 1

λn−1
−1. Observe

that for each i = 1, 2, . . . , n − 1, | 1
λi

− 1| ≤ ε
1−ε . We have

‖Υ‖ ≤ ε

1 − ε
.
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Thus,

DSDq(u, v) = ‖(1u − 1v)D−1/2GD1/2‖q

= ‖(1u − 1v)D−1/2(I − φ′
0φ + Υ)D1/2‖q

≤ ‖(1u − 1v)D−1/2(I − φ′
0φ)D1/2‖q + ‖(1u − 1v)D−1/2ΥD1/2‖q.

Viewing Υ as the error term, we first calculate the main term.

‖(1u − 1v)D−1/2(I − φ′
0φ)D1/2‖q

= ‖(1u − 1v)(I − W )‖q

= ‖(1u − 1v)‖q

= 21/q.

The L2-norm of the error term can be bounded by

‖(1u − 1v)D−1/2ΥD1/2‖2
≤ ‖(1u − 1v)D−1/2‖2‖Υ‖‖D1/2‖

≤
√

1
du

+
1
dv

ε

1 − ε

√
Δ

=
ε

1 − ε

√
Δ

du
+

Δ

dv
.

To get the bound of Lq-norm from L2-norm, we apply the following relation of
Lq-norm and L2-norm to the error term. For any vector x ∈ R

n,

‖x‖q ≤ ‖x‖2 for q ≥ 2.

and
‖x‖q ≤ n

1
q − 1

2 ‖x‖2 for 1 ≤ q < 2.

The inequalities (10) and (11) follow from the triangular inequality of the
Lq-norm and the upper bound of the error term.

Now we consider the classical Erdős-Renyi random graphs G(n, p). For a
given n and p ∈ (0, 1), G(n, p) is a random graph on the vertex set {1, 2, . . . , n}
obtained by adding each pair (i, j) to the edges of G(n, p) with probability p
independently.

There are plenty of references on the concentration of the eigenvalues of
G(n, p) (for example, [12], [14],[21], and [22]). Here we list some facts on G(n, p).

1. For p > (1+ε) log n
n , almost surely G(n, p) is connected.

2. For p � log n
n , G(n, p) is “almost regular”; namely for all vertex v, dv =

(1 + on(1))np.
3. For np(1 − p) � log4 n, all non-zero Laplacian eigenvalues λi’s satisfy (see

[22])

|λi − 1| ≤ (3 + on(1))√
np

. (12)
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Apply Lemma 2 with ε = (3+on(1))√
np , and note that G(n, p) is almost-regular.

We get the following theorem.

Theorem 5. For p(1− p) � log4 n
n , almost surely for all pairs of vertices (u, v),

the DSD Lq-distance of G(n, p) satisfies

DSDq(u, v) = 21/q ± O

(
1√
np

)
if q ≥ 2,

DSDq(u, v) = 21/q ± O

(
n

1
q − 1

2

√
np

)
if 1 ≤ q < 2.

Now we consider the random graphs with given expected degree sequence
G(w1, . . . , wn) (see [2], [7], [8], [9], [20]). It is defined as follows:

1. Each vertex i (for 1 ≤ i ≤ n) is associated with a given positive weight wi.
2. Let ρ = 1∑n

i=1 wi
. For each pair of vertices (i, j), ij is added as an edge with

probability wiwjρ independently. (i and j may be equal so loops are allowed.
Assume wiwjρ ≤ 1 for i, j.)

Let wmin be the minimum weight. There are many references on the concen-
tration of the eigenvalues of G(w1, . . . , wn) (see [10], [11], [12], [14], [22]). The
version used here is in [22].

1. For each vertex i, the expected degree of i is wi.
2. Almost surely for all i with wi � log n, then the degree di = (1 + o(1))wi.
3. If wmin � log4 n, all non-zero Laplacian eigenvalues λi (for 1 ≤ i ≤ n − 1),

|1 − λi| ≤ 3 + on(1)√
wmin

. (13)

Theorem 6. Suppose wmin � log4 n, almost surely for all pairs of vertices
(u, v), the DSD Lq-distance of G(w1, . . . , wn) satisfies

DSDq(u, v) = 21/q ± O

(
1√

wmin

√
wmax

wu
+

wmax

wv

)
if q ≥ 2,

DSDq(u, v) = 21/q ± O

(
n

1
q − 1

2

√
wmin

√
wmax

wu
+

wmax

wv

)
if 1 ≤ q < 2.

6 Examples of Biological Networks

In this section, we will examine the distribution of the DSD distances for some
biological networks. The set of graphs analyzed in this section include three
graphs of brain data from the Open Connectome Project [25] and two more
graphs built from the S. cerevisiae PPI network and S. pombe PPI network used
in [3]. Figure 1 and 2 serves as a visual representation of one of the two brain
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Fig. 1. The brain networks: (a), a Cat; (b): a Rhesus Monkey

Fig. 2. The distribution of the DSD L1-distances of brain networks: (a), a Cat; (b): a
Rhesus Monkey

data graphs: the graph of a cat and the graph of a Rhesus monkey. The network
of the cat brain has 65 nodes and 1139 edges while the network of rhesus monkey
brain has 242 nodes and 4090 edges.

Each node in the Rhesus graph represents a region in the cerebral cortex
originally analyzed in [18]. Each edge represents axonal connectivity between
regions and there is no distinction between strong and weak connections in this
graph [18]. The Cat data-set follows a similar pattern where each node represents
a region of the brain and each edge represents connections between them. The
Cat data-set represents 18 visual regions, 10 auditory regions, 18 somatomotor
regions, and 19 frontolimbic regions[23].

For each network above, we calculated all-pair DSD L1-distances. Divide
the possible values into many small intervals and compute the number of pairs
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Fig. 3. The distribution of the DSD L2-distances of brain networks: (a), a Cat; (b): a
Rhesus Monkey

falling into each interval. The results are shown in Figure 1. The patterns are
quite surprising to us.

Both graphs has a small interval consisting of many pairs while other values
are more or less uniformly distributed. We think, that phenomenon might be
caused by the clustering of a dense core. The two graphs have many branches
sticking out. Since we are using L1-distance, it doesn’t matter the directions
of these branches sticking out when they are embedded into R

n using Green’s
function.

When we change L1-distance to L2-distance, the pattern should be broken.
This is confirmed in Figure 3. The actual distributions are mysterious to us.
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Abstract. Link prediction is one of the fundamental problems in com-
plex networks. In this paper, we focus on link prediction in document
networks, in which nodes are text documents. We propose the relational
topic factorization model (RTF), a model that combines topic models
and matrix factorization. We also develop an efficient Monte Carlo EM
algorithm for learning the parameters. Empirical results show that our
model outperforms other state-of-the-art ones, and can give better under-
standing of the documents.

Keywords: Link prediction · Matrix factorization · Latent Dirichlet
allocation

1 Introduction

In the real world, many kinds of data can be represented by complex networks,
e.g. social networks, citation networks, communication networks and protein
interaction networks. The study on complex networks has attracted researchers
from many different fields. Among the studies, one of the fundamental problems
is link prediction that aims at identifying structural patterns of the networks
and predict missing links among the nodes.

Earlier studies on link prediction are mainly based on analyzing link structure
of networks [9,14,16]. These models can be used in all link prediction tasks since
they ignore the node type. Recently, more complex models are proposed by
taking node attributes into account [3,11,13].

In this paper, we focus on link prediction in document networks, in which
nodes are text documents (e.g., citation networks and web graphs). The model
also applies to other discrete data types (e.g., social networks in which each user
is marked with tags).

Clearly, a full model for both links and node attributes can provide more pre-
cise predictions, and make predictions on new documents that using only their

c© Springer International Publishing Switzerland 2014
A. Bonato et al. (Eds.): WAW 2014, LNCS 8882, pp. 96–107, 2014.
DOI: 10.1007/978-3-319-13123-8 8
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content. This is intuitive, since link patterns and node attributes are closely inter-
related: documents with similar content are more likely to be linked together.
Meanwhile, the model should also be flexible enough to allow link patterns
diverge from node attributes. For instance, the reason why a web page points to
another web page may be simply because that the latter is popular and there is
no content similarity between them. These link patterns cannot be interpreted
by node attributes and have to be learned from the network structure.

However, previous models cannot well balance the influence of links and
node attributes. In this paper, we propose a probabilistic generative model for
document networks, which combines topic models and matrix factorization. We
use topic models to extract topic structures of documents, and use a coupled
matrix factorization to learn link patterns between documents. We express rela-
tionships between topic structures and link patterns by regression models that
connect latent variables of topic models and matrix factorization. The flexibility
is ensured by the smooth connections and well controlled by the parameters.
Furthermore, we also distinguish between outgoing links and ingoing links. For
a document, patterns of these two kinds of links may be different. For instance, a
mathematical article mainly citing other mathematical articles may be cited by
diverse domains such as data mining or biology. We evaluate our model on scien-
tific articles from data mining domain. Empirical results showed that our model
outperforms other state-of-the-art models on link prediction tasks. Moreover,
our model can reveal deep properties of the documents.

The remainder of the paper is organized as follows. In section 2, we give the
background, and review two basic models. In section 3, we present our model
and develop a Monte Carlo EM algorithm to learn the parameters. In section 4,
we evaluate our model via experimental study. Finally, we conclude our work in
section 5.

2 Related Work

Earlier studies on link prediction are mainly based on analyzing network struc-
tures [9,14,16]. Many of them are latent factor models, e.g., mixed membership
stochastic blockmodels (MMSB) [1], matrix factorization (MF) [12], and other
models [5,6,8].

Recently, joint models for both links and node attributes are also proposed. For
discrete node attributes such as text, extensions that incorporating topic mod-
els for document networks have also been proposed [3,4,11,13,19]. As another
related learning task, community detection is also studied by considering node
attributes [2,10,17,18]. As link prediction has intimate connection with recom-
mendation tasks, recently, researchers also employ MF for link prediction tasks
[12]. Our work is also inspired by models for recommender systems [7,15].

Among these models, our model is closely related to RTM [3] and CTR [15].
Compared with RTM, our model use matrix factorization to model link patterns
instead of using direct response functions. Compared with CTR, we are consid-
ering different learning tasks in our model (CTR is a model for recommender
systems), and we also develop a different learning algorithm.
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3 Proposed Model

In this section, we describe our model–the relational topic factorization (RTF).
RTF combines topic modeling with matrix factorization. We use latent Dirichlet
allocation to model the content of documents, and use a coupled matrix factor-
ization to model the links between documents. We first present the definition of
RTF, and then we develop an efficient Monte Carlo EM algorithm for learning
the parameters.

3.1 Relational Topic Factorization

RTF is a generative model for documents and links between them. In RTF, each
document is generated from its corresponding topic proportions. Links between
documents are then generated according to their topic proportions. This is rea-
sonable, since documents with similar topics are more likely to be linked together.

Let zdn be the topic assignment of the nth word in document d, we can
summarize the topics of document d as the average topic assignments z̄d. For
a document pair (d, d′), we wish to describe the generating process of the link
between them. One approach is to directly define a response function for the
link indicator variable ydd′ ,

ydd′ ∼ ψ(·|z̄d, z̄d′). (1)

This is the approach adopted by relational topic modeling (RTM) [3]. The
response function is usually defined as the sigmoid function ψσ(ydd′ = 1) =
σ(ηT (z̄d◦z̄d′)+ν) or the exponential function ψt(ydd′ = 1) = exp(ηT (z̄d◦z̄d′)+ν),
where ◦ denotes the Hadamard (element-wise) product, and σ(·) is the sigmoid
function.

However, this approach limits the descriptive ability of the model, since links
are based heavily on contents. In the real world, many links cannot be well pre-
dicted from contents. For instance, the reason why a web page points to another
may be simply that the latter is popular, and there is no content similarity
between them.

In RTF, we introduce two latent vectors ud and vd for each document d. For
each document pair (d, d′), we define the response function as

ydd′ ∼ N (uT
d vd′ , c−1

dd′)

Let matrices U = (u1, · · · , ud) and V = (v1, · · · , vd), this is equivalent to the
assumption that the adjacency matrix of the network can be factorized into the
product of two low-rank matrices UT and V .

To describe the relationship between links and document contents, we further
specify that the prior of ud and vd is the topic proportions θd of document d

ud ∼ N (θd, λ
−1
u I)

vd ∼ N (θd, λ
−1
v I)

(2)
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This can be considered as a soft constraint between links and contents. In fact,
if we integrate out ud and vd, we obtain the following response function based
purely on topic proportions

ydd′ |θd, θd′ ∼
∫

N (ud|θd, λ
−1
u I)N (vd′ |θd′ , λ−1

v I)

N (ydd′ |uT
d vd′ , c−1

dd′)duddvd′

(3)

where λu, λv and cdd′ are precision parameters. This is a complex function that
has no close form, by which we gain the ability to describe more complex link
patterns.

Based on previous discussions, we define the generative process of RTF as

1. For each topic k,
draw word distribution φk ∼ Dir(β).

2. For each document d,
(a) Draw topic proportions θd ∼ Dir(α).
(b) For each word wdn,

i. Draw topic assignment zdn ∼ Mult(θd)
ii. Draw word wdn ∼ Mult(φzdn

)
(c) Draw latent factors ud ∼ N (θd, λ

−1
u I).

(d) Draw latent factors vd ∼ N (θd, λ
−1
v I).

3. For each pair of documents (d, d′), draw binary link indicator

ydd′ ∼ N (uT
d vd′ , c−1

dd′)

α

cdd′θd θd′

zdn

wdn

zd′n

wd′n

ydd′ud vd′

β

Nd Nd′K

Fig. 1. Graphical representation of RTF



100 W. Zhang et al.

Figure 1 shows the graphical representation of RTF. In RTF, each document
d has three representations: topic proportions θd that represents d’s content; out-
going latent factors ud that represents d’s citation pattern to other documents;
ingoing latent factors vd that represents citations patterns of other documents to
d. Relationships between these three representations reveal interesting properties
of the documents.

3.2 Learning the Parameters

In this subsection, we develop a Monte Carlo EM algorithm to learn the param-
eters of RTF. In E-step, we use collapsed Gibbs sampling to approximate the
expectations of latent variables; in M-step, we use alternating least squares to
optimize the parameters.

The full joint distribution of RTF is

p(w,y, z, U, V,Θ,Φ|α, β,C)

=
∏
k

p(φk|β)
∏
d

p(θd|α) =
∏
dn

p(wdn|φzdn
)
∏
dn

p(zdn|θd)

=
∏
d

p(ud|zd)
∏
d

p(vd|zd) =
∏
dd′

p(ydd′ |ud, ud′ , cdd′)

(4)

where {w,y} is the set of observations, {z,Θ,Φ} is the set of latent variables,
and {U, V } is the set of parameters.

E-step
In E-step, our goal is to compute the posterior distribution of latent variables
{z,Θ,Φ}, given the parameters {U, V }:

p(z,Θ,Φ|U, V ) (5)

where observations y,w, and hyperparameters α, β,C are omitted for succinct-
ness. As in LDA, we integrate out Θ and Φ to obtain the collapsed joint
distribution:

p(w, z, U, V )

=
∏
d

[
Γ(Kα)

Γ(Nd + Kα)

∏
k

Γ(Ndk + α)
Γα

] ∏
k

[
Γ(Wβ)

Γ(Nk + Wβ)

∏
w

Γ(Nkw + β)
Γβ

]
∏
d

N (ud|zd, λuI)
∏
d′

N (vd′ |zd′ , λvI)

(6)

where K is the number of topics, W is the vocabulary size, and N·· are counting
variables.

We cannot directly compute the posterior distribution p(z|U, V ), so we use
Gibbs sampling to approximate it. With all other variables fixed, the conditional
distribution for sampling zdn is given by:

p(zdn = k|z¬dn, ud, vd, wdn = w)

∝
[
(N¬dn

dk + α)
N¬dn

kw + β

N¬dn
k + Wβ

]
N (ud|zd, λuI)N (vd′ |zd′ , λvI)

(7)
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The result is quite intuitive: it is the conditional distribution from LDA, mul-
tiplied by the likelihood term of the latent factors. We initialize zd variables and
then iteratively sample each zdn from the corresponding conditional distribution.
After sufficiently many iterations, we collect sufficient statistics of zd’s, which
will be used in M-step for optimizing the parameters. It turns out that we only
need to compute the sample mean of the each zdn and record the average value
E[z̄d] for each document.

M-step
In M-step, our goal is to optimize parameters U, V by maximizing the expecta-
tions of the complete log-likelihood.

argmaxU,V

∑
z

p(z|Uold, V old) ln p(z,y|U, V ) (8)

We separate items containing U, V , and obtain the following optimization
problem:

argminU,V
λu

2

∑
d

(ud − E[z̄d])
T (ud − E[z̄d]) +

λv

2

∑
d′

(vd′ − E[z̄d′ ])T (vd′ − E[z̄d′ ])

+
∑
dd′

cdd′

2
(ydd′ − uT

d vd′)2

(9)
We use alternating least squares to optimize U and V . With V fixed, the prob-

lem becomes quadratic with respect to U . We compute gradients with respect
to ud’s, and set them to zero to obtain the following updating equation:

ud = (V CdV
T + λuIK)−1(V CdYd + λuE[z̄d]) (10)

where Cd is a diagonal matrix with cdd′ , d′ = 1 · · · ,D as its diagonal elements
and Yd = (ydd′)D

d′=1. Similarly, we can optimize vd′ by the following equation:

vd′ = (UCd′UT + λvIK)−1(UCd′Yd′ + λvE[z̄d′ ]) (11)

where Cd′ and Yd′ are similarly defined. For further details, the reader is referred
to [7].

With these updating equations, we alternatively optimize U and V until
convergence conditions are achieved.

Prediction
We consider two prediction tasks in this paper. The first task is in-matrix pre-
diction, which means predicting links based on contents and previous links. In
general, the prediction is estimated by,

E[ydd′ |D] ≈ E[ud|D]TE[vd′ |D] (12)

We approximate these expectations using the point estimations of ud, vd′ ,

y∗
dd′ = (u∗

d)
T v∗

d′ (13)
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The second task is out-of-matrix prediction, which means predicting links for
a new document based purely on its content. For a new document d, we cannot
infer its latent factors, but we can still infer its topic proportions θd by Gibbs
sampling.

There are three possibilities. For links from a new document dnew to an old
document dold, we approximate the prediction as:

y∗
dnewdold

= (E[θdnew
])T v∗

dold
(14)

For links from an old document dold to a new document dnew, we approximate
the prediction as:

y∗
dolddnew

= (u∗
dold

)T
E[θdnew

] (15)

For links between two new documents d and d′, we approximate the prediction
as:

y∗
dd′ = E[θd]TE[θd′ ] (16)

4 Empirical Results

4.1 Dataset

The data we used are scientific articles from data mining domain, which was
collected from Microsoft Academy Search Engine1. For each article, we have its
title, abstract, authors, and references. We removed articles that do not have
abstracts to obtain a dataset that contains 56280 articles and 219293 citation
links.

For each article, we concatenated its title and abstract. After removing stop
words, we use tf-idf to choose the top 8,000 distinct words as the vocabulary.
Finally, we obtain a corpus of 4.3M words.

4.2 Evaluation Metrics

In this paper, we focus on link prediction problems. Our task is to predict links for
a document based on its content and(or) its previous links. Precision and recall
are two alternative metrics. In our experiment, precision cannot be correctly
computed. This is because that missing links are uncertain–the author may be
not aware of other documents. Hence, we choose recall as our evaluation metric.
In our model, we distinguish outgoing and ingoing links. But for evaluation and
comparisons, we treat links as undirected ones. For each document d, we suggest
M links for it based on the average predictions for outgoing and ingoing links
on other documents. We then define the recall@M as:

recall@M =
number of true links in all predictions

total number of true links
(17)

Note that we calculate only once for each document pair (d, d′).
1 http://academic.research.microsoft.com

http://academic.research.microsoft.com
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4.3 In-matrix Prediction

We use 5-fold cross validation to evaluate the performance. For every docu-
ment that has as least 5 outgoing links, we randomly split the links into 5 even
folds. At each iteration, we consider one of them as test set, with the others as
training set.

Fig. 2. In-matrix prediction Fig. 3. Out-of-matrix prediction

We compare our model (RTF) with relational topic models (RTM) and
matrix factorization (MF). For all models, we set K = 50. For MF, we set
λu = λv = 0.01; for RTF, we set λu = λv = 1; For RTM, we use the exponential
response function.

Figure 2 shows the comparison of three models. We observe that RTF out-
performs other two models, and MF also outperforms RTM in this task. This
is because that in RTM, response functions are restricted, and the predictions
are based heavily on content. In contrast, RTF can better balance the effect of
content and links, and hence make more precise predictions.

Impact of Parameters
In this subsection, we investigate the impact of parameters λu and λv. These
precision parameters control how much we allow that the latent factors of docu-
ments can diverge from their topic proportions: large λu means that documents
tend to cite other documents that have similar content; large λv means that
documents tend to be cited by other documents with similar content.

We vary λu and λv ranging from 0.001 to 1000, fit the model with respect to
different parameter pairs, and compute the Recall@50 for each pair. From Figure
4, we observe that the effect of λu and λv is symmetrical, and the performance
reach the optimum when λu · λv ≤ 1. Therefore, we set λu = λv = 1 in our
experiment for symmetry.

4.4 Out-of-Matrix Prediction

We again use 5-fold cross validation. We randomly group all documents into 5
folds. For documents in each folder, we pick out all links on them
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Fig. 4. Impact of parameters λu and λv

(including outgoing and ingoing links) to build the test set, and leave the remain-
ing links as training set. We then iteratively fit the models to each training set,
and evaluate the performance on the corresponding test set. MF cannot perform
out-of-matrix prediction, so we only compare RTF with RTM. From Figure 3,
we observe that RTF also outperforms RTM on this task.

4.5 Relationship with Document Properties

In this subsection, we study how the performance and parameters of our model
vary as functions of object properties: number of outgoing links and number of
ingoing links.

Fig. 5. The left plot shows how the distances between θd and ud vary as functions of
the number of outgoing links of document d; the right plot shows how the distances
between θd and vd vary as functions of the number of ingoing links of document d

Recall that in RTF, each document d has three representations: topic pro-
portions θd, outgoing latent factors ud, and ingoing latent factors vd. From the
left plot of Figure 5, we observe that as a document cites more other documents,



Relational Topic Factorization for Link Prediction in Document Networks 105

Fig. 6. These scatter plots show how the recall varies as functions of the number of
outgoing and ingoing links of documents

the distances between ud and θd tend to increase. This is reasonable, because
that documents citing more others are likely to cite more diverse documents.

Similar results can be observed in the right plot of Figure 5, which means
that popular documents tend to be cited by more diverse documents.

We then study the relationship between performance and document prop-
erties. In Figure 6, we plot recall@100 as a function of the number of arti-
cles a document cites. We observe an upward trend from both sides of plots,
which mean that both outgoing and ingoing links help to make more precise
predictions.

4.6 Examining Topic Spaces

In this subsection, we examine topic spaces learned by RTF. For each document
d, we can interpret its topics from three point of views corresponding to its
three representations θd, ud and vd. θd represents topic proportions based on d’s
content; ud represents average topic proportions of documents that are cited by
d; vd represents average topic proportions of documents that cite d.

We rank entries of each representation vector, and choose top topics for two
example articles. The first article is ”Data Mining: Concepts and Techniques”,
which is one of the top cited articles in the field of data mining. From Table 1,
we observe that topics according to its content (θd) are general topics about
data mining, and topics according to ud and vd are diverse topics of specific
subdomains. This is because it is a survey article that cites many articles of
different subdomains, and it is also cited by other articles from many different
subdomains.

The second article is ”Relational Topic Models for Document Networks”.
From Table 2, we observe that topics ranked by three representations are similar.
This is because the article is mainly about topic models applying to document
networks, and both articles citing it and articles it cites are of similar themes.
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Table 1. Top topics of article ”Data Mining: Concepts and Techniques”, ranked accord-
ing to θd, ud, and vd

Top topics ranked by θd
1. data, mine, mining, representation, learning, field, survey, task
2. pattern, database, algorithm, online, experiment, outperform, sequential
3. discovery, dataset, emerge, pattern, hidden, extract, representation

Top topics ranked by ud

1. space, dimension, subspace, high-dimension, neighborhood, vector
2. cluster, algorithm, data, k-mean, clusters, category, clustering, hierachy
3. feature, select, subset, features, base, selection, filter, candidate

Top topics ranked by vd
1. scientific, challenge, technic, science, research, technology, workshop
2. Wikipedia, coverage, edit, book, supply, article, title, gender
3. track, face, background, target, motion, moment, camera, obstacle

Table 2. Top topics of article ”Relational Topic Models for Document Networks”,
ranked according to θd, ud, and vd

Top topics ranked by θd
1. document, collection, text, documents, topic, paper, corpus, representation
2. network, communication, networks, connect, node, link, complex, topology
3. model, mixture, latent, hidden, infer, probabilistic, generative, factor

Top topics ranked by ud

1. document, collection, text, documents, topic, paper, corpus, representation
2. network, communication, networks, connect, node, link, complex, topology
3. model, mixture, latent, hidden, infer, probabilistic, generative, factor

Top topics ranked by vd
1. topic, author, paper, citation, research, publication, article, academy
2. model, mixture, latent, hidden, infer, probabilistic, generative, factor
3. network, communication, networks, connect, node, link, complex, topology

5 Conclusions and Future Work

In this paper, we proposed a probabilistic generative model for document net-
works. The model (RTF) combines latent Dirichlet allocation and matrix fac-
torization. We evaluate our model on link prediction tasks. Empirical results
demonstrate that our model outperforms other state-of-the-art ones. Moreover,
our model can reveal deep properties of documents. For future work, we are inter-
ested in parallelizing our algorithm and examining it on large-scale datasets.
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Abstract. The Firefighter Problem was proposed in 1995 [16] as a deter-
ministic discrete-time model for the spread (and containment) of a fire.
Its applications reach from real fires to the spreading of diseases and the
containment of floods. Furthermore, it can be used to model the spread
of computer viruses or viral marketing in communication networks.

In this work, we study the problem from a game-theoretical per-
spective. Such a context seems very appropriate when applied to large
networks, where entities may act and make decisions based on their own
interests, without global coordination.

We model the Firefighter Problem as a strategic game where there is
one player for each time step who decides where to place the firefighters.
We show that the Price of Anarchy is linear in the general case, but
at most 2 for trees. We prove that the quality of the equilibria improves
when allowing coalitional cooperation among players. In general, we have
that the Price of Anarchy is in Θ(n

k
) where k is the coalition size. Fur-

thermore, we show that there are topologies which have a constant Price
of Anarchy even when constant sized coalitions are considered.

Keywords: Firefighter problem · Spreading models for networks · Algo-
rithmic game theory · Nash equilibria · Price of anarchy · Coalitions

1 Introduction

The Firefighter Problem was introduced by Hartnell [16] as a deterministic
discrete-time model for the spread and containment of fire. Since then, it has been
subject to a wide variety of research for modeling spreading and containment
phenomena like diseases, floods, ideas in social networks and viral marketing.

The Firefighter Problem takes place on an undirected finite graph G = (V,E),
where initially fire breaks out at f nodes. In each subsequent time-step, two
actions occur: A certain number b of firefighters are placed on non-burning nodes,
permanently protecting them from the fire. Then the fire spreads to all non-
defended neighbors of the vertices on fire. Since the graph is finite, at some
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point each vertex is either on fire or saved. Then the process finishes, because
the fire cannot spread any further. There are several different objectives for
the problem. Typically, the goal is to save the maximum possible number of
nodes. Other objectives include minimizing the number of firefighters (or time-
steps) until the spreading stops, or determining whether all vertices in a specified
collection can be prevented from burning.

Most research on the Firefighter Problem (also the work in this paper) consid-
ers the case f = b = 1, which already leads to hard problems. The problem was
proved NP-hard for bipartite graphs [20], graphs with degree three [11], cubic
graphs [19] and unit disk graphs [14]. However, the problem is polynomial-time
solvable for various well-known graph classes, including interval graphs, split
graphs, permutation graphs, caterpillars, and Pk-free graphs for fixed k [12,14,
15,20]. Furthermore, the problem is (1 − 1/e)-approximable on general trees [6],
1.3997-approximable for trees where vertices have at most three children [18],
and it is NP-hard to approximate within n(1−ε) for any ε > 0 [3]. Later results
on approximability for several variants of the problem can be found in [3,5,8].

Recently, the scientific community has focused on the study of the param-
eterized complexity of the problem. It was shown to be fixed parameter-tractable
w.r.t. combined parameter “pathwidth” and “maximum degree” [7]. Other impor-
tant results can be found in [4,9]. For other variants of the Firefighter Problem
see [10,12,21].

In this work, we study the Firefighter Problem from a game-theorical per-
spective. Instead of global coordination algorithms, we define a game where the
players decide which nodes to protect. Player i chooses where to place the fire-
fighters at time-step i, independently from the other players (one shot game).
Since we consider the case of b = 1, every player can protect at most one node
in his corresponding turn. We can consider different payoffs for the players, the
most natural seems to save as many nodes as possible. At each time-step, the
fire spreads automatically as described in the original problem.

To the best of our knowledge, the only existing game-theoretical models
to similar problems are those referred to as the vaccination problem [3,13],
the spreading of rumors [25] and competitive diffusion [1,22–24]. Those models
however focus on information spreading on social networks, and thus take into
account other inherent aspects of those scenarios, like preferences, reputation,
popularity and other personal traits of the users, and relevance or truthfulness of
the information. Our proposal is well-suited to model fighting against spreading
phenomena in large networks, where the protection strategy for each time-step
is decided by one player, independently from the others.

The paper is organized as follows. In Section 2 we define some basic game-
theoretical concepts extensively used along the paper. In Section 3 we introduce
the game and analyze the quality of its equilibria. Then we explore the behavior
on trees. In Section 4 we introduce a solution concept which allows coalitions of
players. We show that this improves the Price of Anarchy, explore the computa-
tional complexity of finding equilibria and look at graphs with constant cut-width.
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Finally, conclusions and directions for future work can found in Section 5. The
omitted proofs can be found in an extended version of the paper [2].

2 Game-Theoretical Definitions

A strategic game G = (N ,S〉i∈N , (ui)i∈N ) is defined by a set of players N , action
sets Si for each player i ∈ N and utilities ui : S → R, where S = S1 × . . .×S|N |.

Each player i plays an action si ∈ Si and his payoff is ui(s), where s =
(s1, . . . , s|N |) is the strategy vector or strategy profile of all players. The qual-
ity of the outcome of the game when strategy vector s is played is measured
by a so-called social welfare function W (s). Furthermore we denote (s−i, s

′
i) =

(s1, . . . , s′
i, . . . , s|N |), i.e. strategy vector s, where player i changed his strategy

from si to s′
i.

Nash Equilibrium. A strategy profile s is a Nash equilibrium, if no player can
improve his payoff by changing the strategy he played. Let E ⊆ S denote the set
of all Nash equilibrium strategies. We say that s ∈ E if it holds that:

∀i ∈ N ,∀s′
i ∈ Si : ui(s) ≥ ui(s−i, s

′
i).

Price of Anarchy. The Price of Anarchy (PoA) of a game G with respect to
a social welfare function W is defined as the ratio between the optimal solution
and the worst equilibrium.

PoA(G,W ) =
maxs∈S W (s)
mins∈E W (s)

.

Price of Stability. The Price of Stability (PoS) of a game G with respect to
a social welfare function W is defined as the ratio between the optimal solution
and the best equilibrium.

PoS(G,W ) =
maxs∈S W (s)
maxs∈E W (s)

.

3 The Firefighting Game

The Firefighting Problem takes place on an undirected graph G = (V,E), where
fire breaks out at one node, namely v0 ∈ V , and incinerates all neighboring
nodes at every time-step. We call those nodes burning. A fixed number b, called
the budget, of firefighters can be placed on nodes to permanently protect them
from burning. These nodes are called defended. If a node never burns because it
is defended or cut off from the fire it is called saved. All other nodes are called
vulnerable. We just consider the case of a b = 1.
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In order to define a firefighting game, we have to define a set of players N ,
with N = {1, . . . , n− 1} where n = |V |, and for every Player i ∈ N , his strategy
set Si and his utility function ui.

Player i decides which nodes to protect at time-step i. His strategy si is the
subset of nodes he wants to place firefighters, Si denotes the set of all possible
strategies for player i. Since we only deal with the case of b = 1 we overload
notation and instead of subsets of size one, we set the strategies to the vertices
themselves or the empty set, i.e. Si = V ∪ {∅}. This means that players can
choose one node or the empty set as a strategy. Let s = (s1, . . . , s|N |) denote the
strategy profile of all players.

The outcome of the game is a partition of the vertex set into saved and burned
nodes. It is defined in the following way. At time-step 0 the only burning node is
v0. At time-step i > 0, two events occur: First, player i’s node is protected if his
action is valid w.r.t. to strategy profile s, i.e. it is neither burning nor already
defended at the end of time-step i − 1. Second, each node burning at time-step
i − 1 incinerates all its non-defended neighbors. The process stops when the fire
cannot spread any further. Let Safe(s) ⊂ V be the set of all nodes that are saved
when strategy vector s is played. Furthermore, let Safei(s) = Safe(s)\Safe(s−i, ∅)
be the set of nodes that would burn if player i switched his action to the empty
set and let invalid(s, i) denote the event that player i’s action is not valid with
respect to strategy profile s.

3.1 Utility Functions

We look at two different functions, one modelling a selfish behavior and the other
one modelling a non-profitable behavior. As it turns out, the respective games
are equivalent.

a) Selfish Firefighters. In this model, firefighters get paid for the nodes they
save. We call this game G(Selfish). Intuitively, if player i makes a valid move other
than the empty set, he gets one unit of currency from each node he helped to
save. In other words, he gets paid by all nodes that are safe with respect to the
played strategy vector, but would not be safe if he would change his strategy to
the empty set. Additionally, he will get charged a penalty if he makes an invalid
move. Now let us define the utility function formally.

u
(Selfish)
i (s) =

⎧⎨
⎩

−c if invalid(s, i),
0 if si = ∅,
|Safei(s)| − ε otherwise,

with 0 < ε < 1 and c > 0. We can see that the definition follows the intuition
very closely. Subtracting an ε cost for placing a firefighter makes sure that players
always prefer to play the empty set over placing a firefighter on a node that is
already safe (which would not be an invalid move).
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b) Non-Profit Firefighters. Here we assume that the goal of every firefighter is to
save as many total nodes as possible, independently of which firefighters actually
save more nodes. We call this game G(Non-Profit). Formally, we define

u
(Non-Profit)
i (s) =

⎧⎨
⎩

−c if invalid(s, i),
|Safe(s)| if si = ∅,
|Safe(s)| − ε otherwise,

with 0 < ε < 1 and c > 0.

Notice that in an equilibrium, no player plays an invalid move or puts a
firefighter on an already safe node. Also, since we have that 0 < ε < 1, the cost
of placing a firefighter is less than the benefit of saving one node. Because of
that, given that a player does not play the empty set, the ε-value does not affect
his preferences. Therefore, we will ignore it in the proofs.

Equivalence of Games. Surprisingly, the behavior of selfish firefighters leads
to the same equilibria than the behavior of the non-profit firefighters. It can be
shown that the games G(Selfish) and G(Non-Profit) have the same sets of equilibria.
This also implies that

PoS(G(Selfish),W ) = PoS(G(Non-Profit),W )

PoA(G(Selfish),W ) = PoA(G(Non-Profit),W ).

Therefore we will use the utility function which is more convenient for the proof.
Also, we will for now on refer to the game with G, whenever the respective result
holds for both versions of the game.

3.2 Quality of Equilibria

Once we have established a game, we can analyze the quality of the equilibria. In
order to do this, we have to define a measure of the social benefit. We look at the
simple case of the social welfare being the number of the nodes that are saved,
i.e. W (s) = |Safe(s)|. It is easy to argue that equilibria always exist, because
every optimal solution that does not contain invalid moves is an equilibrium for
non-profit firefighter since it maximizes their utility function.

Price of Stability. In the case of non-profit firefighters, every strategy that
maximizes the social welfare also maximizes the utility of every player given
that he cannot improve his payoff by switching to the empty set. All optimal
solution that are valid and do not protect nodes that are already saved are Nash
equilibria. Therefore, we have the PoS is 1. This is independent of the class of
graphs we are considering and holds for every solution concept where players
maximize their utility function.

Lemma 1. PoS(G,W ) = 1. 
�
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v0

v1

u0

v2

v3

v4

u1

u2

complete graph

Fig. 1. Family of graphs GPoA(n) = (VPoA(n), EPoA(n)). Note that (v1, v4) ∈ EPoA(n)
and (v2, v3) ∈ EPoA(n). For better visibility these edges are not drawn in the picture.
Further note that |VPoA(n)| = n, hence the size of the complete graph is n − 8 and the
nodes of this graph together with nodes v1, v2, v3 and v4 form a clique of GPoA(n).

Price of Anarchy. In contrast to the PoS, the PoA is very high in this model.
We first lower bound the PoA and then show that the bound is tight. For the
proofs we use the utility functions of the selfish firefighters.

Theorem 1. PoA(G,W ) ∈ Θ(n).

Proof. We first prove a lower bound on the PoA, i.e. PoA(G,W ) ∈ Ω(n), and
then show that this bound is tight. We look at an instance which has a very bad
equilibrium relative to the optimal strategy with respect to the social welfare.
Consider the family of graphs GPoA(n) shown in Figure 1.

Recall that the fire starts at v0. It is easy to see that s = ({v1}, {v2}, ∅n−3)
is the optimal strategy. Only nodes v0 and u0 burn, hence the social welfare is
W (s) = n−2. Furthermore we have that s′ = ({v3}, {v4}, ∅n−3) is an equilibrium.
Note that the complete graph is burning after two time-steps, therefore at time-
step 3 only u1 and u2 are neither burning nor defended. But these nodes are
already safe, hence players i with i > 2 will not place firefighters on them.
Furthermore, players 1 and 2 cannot improve their payoff, since if one of them
changes strategy, that player will save at most one node. The social welfare of
s′ is W (s′) = 4.

Hence, we have that PoA(G,W ) ≥ n−2
4 . It follows that PoA(G,W ) ∈ Ω(n).

This means that we can only guarantee to save at most constant number of
nodes. To argue that this bound is tight, we show that it is always possible to
save a constant number of nodes.

By definition Player 1 can always place a firefighter on a node before the
fire starts spreading. Also any strategy vector s where player 1 plays the empty
set is not an equilibrium since he can always save at least one node which can-
not be saved by any other player by placing a firefighter to a node adjacent
to the original fire. This yields a upper bound of PoA(G,W ) ≤ n, and hence
PoA(G,W ) ∈ O(n). 
�
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3.3 Price of Anarchy for Trees

Since the PoA is very high in general, let us study the quality of equilibria for
particular topologies. Our aim is to prove that there are cases where the quality
of the equilibria is close to the quality of an optimal solution. In this section,
we look at the PoA on trees. Let GTree denote the Firefighting Game on trees. We
show that in contrast to our general result, the PoA is constant for trees. We
assume that v0, the initial fire, is the root of the tree.

Theorem 2. PoA(GTree,W ) ≤ 2.

Proof. In this proof, we use similar ideas as in the proof of the approximation
ratio of a greedy algorithm in a paper by Hartnell and Li [17].

We use the utility functions of the selfish firefighters. This implies that the
utility of a player equals the size of the subtree he saves.

Let opt = (opt1, . . . , opt|N |) be an optimal solution w.r.t to the social welfare,
i.e. the optimal action opti is the node that is saved at time-step i. Let s =
(s1, . . . , s|N |) be an equilibrium strategy profile of the players. Recall that the
optimal actions as well as the player actions are defined as the nodes in the tree
that are saved. Let optA be the set of optimal actions opti, such that there is no
player who plays the same action and no player action is an ancestor of opti, i.e.
∀j ∈ N : sj = opti ∧ sj is not ancestor of opti. Let optB denote the remaining
optimal actions. Let P (opti) denote the set of action sj that are successors of
opti. Let sA denote the actions of players, that do not have an optimal action as
an ancestor, i.e. ∀j ∈ N : optj is not ancestor of si. Let sB denote the remaining
player actions. Let save(a) denote the numbers of nodes saved by action a.

Note that in optB there are optimal actions where a player plays the same
action or a player action is an ancestor. Those corresponding player actions are
the ones in sA. Therefore we have that∑

opti∈optB

save(opti) ≤
∑

si∈sA

save(si). (1)

Because of the equilibrium property, we have that for every opti ∈ optA

save(si) ≥ save(opti) −
∑

sj∈P (opti)

save(sj),

because otherwise player i would have an incentive to switch his strategy to opti.
If we now sum this up over all optimal actions in optA, we get

∑
opti∈optA

save(opti) ≤
∑

opti∈optA

⎛
⎝save(si) +

∑
sj∈P (opti)

save(sj)

⎞
⎠ .

We can split up the sum on the left hand side and get
∑

opti∈optA
save(si) +∑

opti∈optA

∑
sj∈P (opti)

save(sj). Note that in the double sum, we sum up exactly
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over the player actions that have an optimal action as an ancestor i.e. sB . So we
can rewrite this to∑

opti∈optA

save(opti) ≤
∑

opti∈optA

save(si) +
∑

si∈sB

save(si).

Now we can use Inequality 1 to get∑
opti∈opt

save(opti) ≤
∑

opti∈optA

save(si) +
∑
si∈s

save(si).

Furthermore, we have that
∑

opti∈optA
save(si) ≤ ∑

si∈s save(si) which yields

∑
opti∈opt

save(opti) ≤ 2
∑
si∈s

save(si).

This shows that an equilibrium strategy saves at least half of the nodes saved
by an optimal solution, yielding a PoA of at most 2. 
�

4 Coalitions

In this section let us consider that players may form coalitions. A coalition is
willing to deviate from their strategy as long as no player in the coalition loses
payoff and at least one player increases his utility. We show that this affects the
PoA. First, we need to introduce a suitable solution concept for coalitions.

We call a strategy vector s an equilibrium strategy with respect to coalition
size k, if no set of at most k players can simultaneously change their strategies in
such a way that at least one player increases his payoff and no player decreases his
payoff. Let K ⊆ N denote the coalition and sK a strategy profile of the members
of the coalition. We say that coalition K has an attractive joint deviation if there
is a strategy vector s′

K , such that ui(s) ≤ ui(s−K , s′
K) for all i ∈ K, and for at

least one player in K this inequality is strict.
Let Ek ⊆ S denote the set of all equilibrium strategies with respect to coali-

tion size k. We say that s ∈ Ek, if there is no coalition K of size at most k that
has an attractive joint deviation. Formally, we say that s ∈ Ek if it holds that:

∀K ⊆ N with |K| ≤ k and ∀s′
K = sK : s′

K is not an attractive joint deviation.

Let Gk denote a firefighting game with coalitions of size at most k. In this
case we do not have an equivalence between selfish and non-profit firefighters
like in the Nash case. It can be shown that the sets of equilibria of the respective
games are different. From now on we will only consider non-profit firefighters
since they resemble the usual objective to save as many nodes as possible.

4.1 Price of Anarchy

Now we analyze the PoA for coalitions and its relation with the coalition size.
We can show the following relationship.
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v0

u2ukuk+1

v1v2vkvk+1

u′
2 u′

k

v′1 v′2 v′k

w

complete graph

Fig. 2. Family of graphs GPoA(n, k) = (VPoA(n, k), EPoA(n, k)), with |VPoA(n, k)| = n.
Note that the complete subgraph together with nodes v1 to vk+1 form a clique. The
nodes v′

1 to v′
k together with w form a clique as well. For every vi and uj and for every

v′
i and u′

j there are edges (vi, uj) and (v′
i, u

′
j), respectively, if i ≤ j. Furthermore, for

every ui and u′
i there is an edge to ui+1 and u′

i+1, respectively.

Theorem 3. PoA(Gk,W ) ∈ Θ(n
k ).

Proof. To prove this, we first give an upper bound on the PoA for coalition
size k. Later we show that this bound is tight. The upper bound we show is
PoA(Gk,W ) ≤ n

k − 1. We upper bound the welfare of the optimal solution and
lower bound the welfare of the worst equilibrium. Note that if the optimal solu-
tion uses k or less time-steps, it can be found by a coalition of size k. Therefore,
we assume that in the optimal solution at least in the first k + 1 time-steps a
firefighter is placed on a node. This means that at most n − k − 1 nodes are
saved. We can lower bound the number of nodes saved by the players by k, i.e.
the nodes they place firefighters on. This yields a bound of the PoA of at most
n−k−1

k ≤ n
k − 1.

Now we show PoA(Gk,W ) ≥ n
k+1 − 3 for coalitions of size k ≤ n−3

4 .
We construct a family of graphs where the optimal solution saves at least

all but 3k + 2 nodes, whereas the worst equilibrium saves at most k + 1 nodes.
Figure 2 shows the construction.

Note that any solution is a lower bound for the optimal solution and every
equilibrium is an upper bound for the worst equilibrium in terms of quality.

The solution s∗ = (v1, v2, . . . , vk+1, , ∅|N |−k−1) saves all but 3k + 2 nodes.
This yields a lower bound for the welfare of an optimal solution.

Furthermore, we have that s = (v′
1, v

′
2, v

′
3, . . . , v

′
k, ∅|N |−k) is an equilibrium,

since for every joint deviation the players can only save at most k nodes. In
this equilibrium they save k + 1. Now we have a lower bound of the PoA of
n−3k−2

k+1 ≥ n
k+1 − 3.

Note that this construction uses at least 4k+3 nodes, hence it is only applica-
ble for coalition sizes up to k ≤ n−3

4 . Since the Price of Anarchy for size k = n−3
4

is constant this is no problem for the asymptotic bound.
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We have bound the PoA from both sides and it follows that we have the
claimed asymptotic behavior. 
�

It is interesting to see that for linear sized coalitions, we get a constant PoA.
For constant coalition sizes however, the PoA is still linear. We can improve this
result by fixing a special class of graphs, as we show in the next subsection.

4.2 Graphs with Constant Cut-Width

In this section we explore the impact of the cut-width of a graph on the Price
of Anarchy for certain coalition sizes. We make use of results and ideas from
Chleb́ıková and Chopin [7]. In particular, we show that for every family of graphs
with constant cut-width there is a constant k, such that the PoA approaches one
for coalitions of size k.

The cut-width of a graph G is defined as follows. The Cut-width cw(G) of a
graph G is the smallest integer k such that the vertices of G can be arranged in a
linear layout L = (v0, . . . , vn−1) in such a way that, for every i ∈ {0, . . . , n − 1},
there are at most k edges with one endpoint in {v0, . . . , vi} and the other in
{vi+1, . . . , vn−1}. Let dL(vi, vj) = |j − i| denote the distance between two nodes
in the linear layout L.

Lemma 2. If there is one initially burning node, then there exists a protection
strategy such that the number of total burned nodes is at most f(cw(G)) for some
function f : N → N. 
�
The proof of a more general version of this claim in contained in the proof of
Theorem 2 of [7] and brings us into the position of showing the following lemma.

Lemma 3. For every family of graphs G(n) = (V (n), E(n)) with constant cut-
width there is a constant k, such that

lim
n→∞ PoA(Gk,W ) = 1.

Proof. Let G(n) be a family of graphs with constant cut-width. By Lemma 2
there is a protection strategy s, such that at most f(cw(G)) nodes burn. Now we
make use of the fact that the number of time-steps before the spreading of the
fire stops is less or equal to the total number of burned vertices. This is because
in each time-step at least one node has to burn, otherwise the spreading of the
fire would be stopped. Hence we get that with protection strategy s, the fire is
contained in at most f(cw(G)) time-steps. Note that we can place at most one
firefighter per time-step, therefore a coalition of size k = f(cw(G)) can apply
this protection strategy. Furthermore, only a constant number of nodes burn.
Hence, asymptotically, we have a PoA of 1. 
�

However, we cannot achieve this without coalitions as the following instance
shows. Figure 3 shows a family of graphs. A linear layout is given by the hor-
izontal position of the nodes in the figure. It shows that the cut-width of the
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v0

v1 v2 v3 vm

Fig. 3. Family of graphs with constant cut-width

graph is at most 6, since every vertical line through the graph crosses at most
6 edges. Without coalitions, saving the nodes v1 to vm is an equilibrium, since
each player saves one extra node and cannot do better by switching to another
node. Note that only a constant fraction of the nodes are saved, whereas in the
case of coalition all nodes except a constant number can be saved. This also
yields a constant PoA, but one that is asymptotically strictly larger than one.

This shows that for this class of graphs, constant sized coalitions can improve
the PoA.

5 Conclusions

We have defined a new strategic game that models the Firefighter Problem. We
have shown that in general PoA ∈ Θ(n). For trees however, we get a PoA of at
most 2. Furthermore, we have shown that the coalition size has a direct effect on
the quality of the equilibria. In general we have that PoA ∈ Θ(n

k ), where k is the
coalition size. We have shown that there are topologies where PoA approaches
1 for constant sized coalitions, e.g. graphs with constant cut-width.

Note that it is possible to find equilibria in polynomial time for constant
sized coalitions. This can be done by best response dynamics. Computing a best
response is polynomial since we can try out all possible joint deviations for all
possible coalitions of size at most k. With each best response the players impove
the total number of saved nodes, hence we converge to an equilibrium in a linear
number of iterations. This yields a polynomial time approximation algorithm
for the firefighting problem and its approximation ratio equals the PoA of the
corresponding game.

We think that the most promising area to explore is the quality of equilibria
for other restricted sets of graphs. It is especially interesting to find sets of graphs
that have a low PoA for constant sized coalitions.
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Abstract. We analyze the distribution of PageRank on a directed con-
figuration model and show that as the size of the graph grows to infinity,
the PageRank of a randomly chosen node can be closely approximated
by the PageRank of the root node of an appropriately constructed tree.
This tree approximation is in turn related to the solution of a linear
stochastic fixed-point equation that has been thoroughly studied in the
recent literature.

1 Introduction

Google’s PageRank proposed by Brin and Page [4] is arguably the most influen-
tial technique for computing centrality scores of nodes in a network, see [10] for a
thorough review. In this paper we analyze the power law behavior of PageRank
scores in scale-free directed random graphs.

In real-world networks, it is often found that the fraction of nodes with (in-
or out-) degree k is ≈ c0k

−α−1, usually α ∈ (1, 3), see e.g. [14] for an excellent
review of the mathematical properties of complex networks.

More than ten years ago Pandurangan et al. [13] discovered the interesting
fact that PageRank scores also exhibit power laws, with the same exponent as
the in-degree. This property holds for a broad class of real-life networks [16]. In
fact, the hypothesis that this always holds in power-law networks is plausible.
However, analytical mathematical evidence supporting this hypothesis is surpris-
ingly scarce. As one of the few examples, Avrachenkov and Lebedev [3] obtained
the power law behavior of average PageRank scores in a preferential attachment
graph by using Polya’s urn scheme and advanced symbolic computations.

In a series of papers, Volkovich et al. [11,15,16] suggested an analytical expla-
nation for the power law behavior of PageRank by comparing it to the endoge-
nous solution of a stochastic fixed-point equation (SFPE). The properties of this
equation and the study of its multiple solutions has itself been an interesting
topic in the recent literature [1,2,7–9,12], and is related to the broader study
of weighted branching processes. The tail behavior of the endogenous solution,
the one more closely related to PageRank, was given in [7–9,12], where it was
shown to have a power law under many different sets of assumptions. However,

The second author was partially funded by the EU-FET Open grant NADINE
(288956). The third author was supported by the NSF grant CMMI-1131053.

c© Springer International Publishing Switzerland 2014
A. Bonato et al. (Eds.): WAW 2014, LNCS 8882, pp. 120–131, 2014.
DOI: 10.1007/978-3-319-13123-8 10



PageRank in Scale-Free Random Graphs 121

the SFPE does not fully explain the behavior of PageRank in networks since it
implicitly assumes that the underlying graph is an infinite tree, an assumption
that is not in general satisfied in real-world networks.

This paper makes a fundamental step further by extending the analysis
of PageRank to graphs that are not necessarily trees. Specifically, we analyze
PageRank in a directed configuration model (DCM) with given degree distri-
butions, as developed by Chen and Olvera-Cravioto [6]. We present numerical
evidence that in this type of graphs the behavior of PageRank is very close to
the one on trees. Intuitively, this is true for two main reasons: 1) the influence
of remote nodes on the PageRank of an arbitrary node decreases exponentially
fast with the graph distance; and 2) the DCM is asymptotically tree-like, that is,
when we explore a graph starting from a given node, then with high probability
the first loop is observed at a distance of order log n, where n is the size of the
graph (see Figure 1).

Our main result establishes analytically that PageRank in a DCM is well
approximated by the PageRank of the root node of a suitably constructed tree
as the graph size goes to infinity. As a consequence, the analysis of PageRank on
the graph reduces to studying PageRank on a tree, a problem that, as mentioned
earlier, can be solved by using the properties of the SFPE. In particular, since
the endogenous solution to the SFPE is known to have a power-law tail when
the in-degree follows a power-law, our main result allows us to establish the
power-law behavior of PageRank on the graph.

Fig. 1. Graph construction process. Unpaired outbound stubs are in blue.

Section 2 below describes the DCM as presented in [6]. Then, in Section 3
we analytically compare the PageRank scores in the DCM to their approximate
value obtained after a finite number of power iterations. Next, in Section 4 we
explain how to couple the PageRank of a randomly chosen node with the root
node of a suitable branching tree, and give our main analytical results. Finally, in
Section 5 we give numerical results validating our analytical work. The complete
proofs for more general stochastic recursions, that also cover the PageRank case
considered here, are given in [5], which also contains a detailed presentation of
the corresponding SFPEs and the results that can be derived from there.
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2 Directed Random Graphs

We will give below an algorithm, taken from [6], that can be used to generate
a scale-free directed graph. Formally, power law distributions are modeled using
the mathematical notion of regular variation. A nonnegative random variable X
is said to be regularly varying, if F (x) := P (X > x) = L(x)x−α, x > 0, where
L(·) is a slowly varying function, that is, limx→∞ L(tx)/L(x) = 1, for all t > 0.

Our goal now is to create a directed graph Gn with the property that the
in-degrees and out-degrees will be approximately distributed, for large sizes of
the graph, according to distributions f in

k = P (N = k), and fout
k = P (D = k),

k = 0, 1, 2, 3, . . . , respectively, where E[N ] = E[D ]. The only condition needed
is that these distributions satisfy

F in(x) =
∑
k>x

f in
k ≤ x−αLin(x) and F out(x) =

∑
k>x

fout
k ≤ x−βLout(x),

for some slowly varying functions Lin(·) and Lout(·), and α, β > 1.
The first step in our procedure is to generate an appropriate bi-degree sequence

(Nn,Dn) = {(Ni,Di) : 1 ≤ i ≤ n}

representing the n nodes in the graph. The algorithm given below will ensure
that the in- and out-degrees follow closely the desired distributions and also that
the sums of in- and out-degrees are the same:

Ln :=
n∑

i=1

Ni =
n∑

i=1

Di.

Denote
κ0 = min{1 − α−1, 1 − β−1, 1/2}.

Algorithm 1. Generation of a bi-degree sequence with given in-/out-degree dis-
tributions.

1. Fix 0 < δ0 < κ0.
2. Sample an i.i.d. sequence {N1, . . . ,Nn} from distribution F in.
3. Sample an i.i.d. sequence {D1, . . . ,Dn} from distribution F out, independent

of {Ni}.
4. Define Δn =

∑n
i=1(Nn − Dn). If |Δn| ≤ n1−κ0+δ0 proceed to step 5; other-

wise repeat from step 2.
5. Choose randomly |Δn| nodes {i1, i2, . . . , i|Δn|} without replacement and let

Ni =

{
Ni + 1 if Δn < 0 and i ∈ {i1, i2, . . . , i|Δn|},
Ni otherwise,

Di =

{
Di + 1 if Δn ≥ 0 and i ∈ {i1, i2, . . . , i|Δn|},
Di otherwise.
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Remark: It was shown in [6] that

P
(|Δn| > n1−κ0+δ0

)
= O

(
n−δ0(κ0−δ0)/(1−κ0)

)
(1)

as n → ∞, and therefore Algorithm 1 will always terminate after a finite number
of steps (i.e., it will eventually proceed to step 5).

Having obtained a realization of the bi-degree sequence (Nn,Dn), we now
use the configuration model to construct the random graph. The idea in the
directed case is essentially the same as for undirected graphs. To each node vi

we assign Ni inbound half-edges and Di outbound half-edges; then, proceed to
match inbound half-edges to outbound half-edges to form directed edges. To be
more precise, for each unpaired inbound half-edge of node vi choose randomly
from all the available unpaired outbound half-edges, and if the selected outbound
half-edge belongs to node, say, vj , then add a directed edge from vj to vi to the
graph; proceed in this way until all unpaired inbound half-edges are matched.
Note that the resulting graph is not necessarily simple, i.e., it may contain self-
loops and multiple edges in the same direction.

We point out that conditional on the graph being simple, it is uniformly
chosen among all simple directed graphs having bi-degree sequence (Nn,Dn) (see
[6]). Moreover, it was also shown in [6] that, provided α, β > 2, the probability
of obtaining a simple graph through this procedure is bounded away from zero,
and therefore one can obtain a simple graph having (Nn,Dn) as its bi-degree
sequence by simply repeating the algorithm enough times. When we can only
ensure that α, β > 1, then a simple graph can still be obtained without loosing
the distributional properties of the in- and out-degrees by erasing the self-loops
and merging multiple edges in the same direction. These considerations about
the graph being simple are nonetheless irrelevant to the ranking problem here.

3 PageRank Iterations in the DCM

Although PageRank can be thought of as the solution to a system of linear
equations, we will show in this section how it is sufficient to consider only a
finite number of matrix iterations to obtain an accurate approximation for the
PageRank of all the nodes in the graph. We first introduce some notation.

Let M = M(n) ∈ R
n×n be the matrix constructed as follows:

Mi,j =

{
sijc/Di, if there are sij edges from i to j,

0, otherwise,

and let 1 be the row vector of ones. In the classical definition [10], PageRank
π = (π1, . . . , πn) is the unique solution to the following equation:

π = π(cM) +
1 − c

n
1, (2)
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where c ∈ (0, 1) is a parameter known as the damping factor. Rather than
analyzing π directly, we consider instead its scale-free version

nπ =: R = R(cM) + (1 − c)1 (3)

obtained by multiplying (2) by the size of the graph n. Moreover, whereas πi is
a probability distribution (πi ≥ 0 for all i and π1T = 1), its scale-free version
R = (R1, . . . , Rn) has components that are essentially unbounded for large n
and that satisfy E[Ri] = 1 for all 1 ≤ i ≤ n and all n (hence the name scale-free).

One way to solve the system of linear equations given in (3) is via power
iterations. We define the kth iteration of PageRank on the graph as follows.
First initialize PageRank with a vector r0 = r01, r0 ≥ 0, and then iterate
according to R(n,0) = r0 and

R(n,k) = R(n,k−1)M + (1 − c)1 = (1 − c)1
k−1∑
i=0

M i + r0Mk

for k ≥ 1. In this notation, R = R(n,∞), and our main interest is to analyze
the distribution of the PageRank of a randomly chosen node in the DCM, say
R

(n,∞)
1 . The first step of the analysis is to compare R(n,∞) to its kth iteration

R(n,k). To this end, note that R(n,∞) = (1 − c)1
∑∞

i=0 M i, and therefore,

R(n,k) − R(n,∞) = r0Mk − (1 − c)1
∞∑

i=k

M i.

Moreover,

∣∣∣∣∣∣R(n,k) − R(n,∞)
∣∣∣∣∣∣
1

≤ ∣∣∣∣r0Mk
∣∣∣∣
1

+ (1 − c)
∞∑

i=0

∣∣∣∣1Mk+i
∣∣∣∣
1

≤ r0n
∣∣∣∣Mk

∣∣∣∣
∞ + (1 − c)n

∞∑
i=0

∣∣∣∣Mk+i
∣∣∣∣

∞ ,

where for the last inequality we used the observation that

||1Mr||1 =
n∑

j=1

n∑
i=1

(Mr)ij =
n∑

i=1

||(Mr)i•||1 ≤ n ||Mr||∞ ,

where Ai• denotes the ith row of matrix A. Furthermore, since M is equal to c
times a transition probability matrix, we have

||Mr||∞ ≤ ||M ||r∞ = cr.

It follows that∣∣∣∣∣∣R(n,k) − R(n,∞)
∣∣∣∣∣∣
1

≤ r0nck + (1 − c)n
∞∑

i=0

ck+i = (r0 + 1)nck. (4)
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The approach used to derive bound (4) for the L1-norm of the error is valid
for any directed network. However, this bound does not, in the general case,
provide information on the convergence of specific coordinates and does not give
a good upper bound for the quantity |R(n,k)

1 −R
(n,∞)
1 | that we are interested in.

It is here where the structure of the DCM plays a role, since by construction, it
makes all permutations of the nodes’ labels equally likely, which implies that all
coordinates of the vector R(n,k) −R(n,∞) have the same distribution. This leads
to the following observation.

Let Fn = σ((Nn,Dn)) denote the sigma-algebra generated by the bi-degree
sequence, which does not include information about the pairing process. Then,
conditional on Fn,

E
[∣∣∣R(n,k)

1 − R
(n,∞)
1

∣∣∣∣∣∣Fn

]
=

1
n

E
[∣∣∣∣∣∣R(n,k) − R(n,∞)

∣∣∣∣∣∣
1

∣∣∣Fn

]
≤ (r0 + 1) ck,

and for any ε > 0 Markov’s inequality gives,

P
(∣∣∣R(n,∞)

1 − R
(n,k)
1

∣∣∣ > ε
)

≤ E
[
ε−1E

[∣∣∣R(n,k)
1 − R

(n,∞)
1

∣∣∣∣∣∣Fn

]]
≤ (r0 + 1) ε−1ck. (5)

Note that (5) is a probabilistic statement, which is not completely analogous
to (4). In fact, (5) states that we can achieve any level of precision with a pre-
specified high probability by simply increasing the number of iterations k. This
leads to the following heuristic, that if the DCM looks locally like a tree for k
generations, where k is the number of iterations needed to achieve the desired
precision in (5), then the PageRank of node 1 in the DCM will be essentially
the same as the PageRank of the root node of a suitably constructed tree. The
precise result and a sketch of the arguments will be given in the next section.

4 Main Result: Coupling with a Thorny Branching Tree

As mentioned in the previous section, we will now show how to identify R
(n,k)
1 with

the PageRank of the root node of a tree. To start, we construct a variation of a
branching tree where each node has an edge pointing to its parent but also has a
number of outbound stubs or half-edges that are pointing outside of the tree (i.e.,
to some auxiliary node). We will refer to this tree as a Thorny Branching Tree
(TBT), the name “thorny” referring to the outbound stubs (see Figure 1).

To construct simultaneously the graph Gn and the TBT, denoted by T , we
start by choosing a node uniformly at random, and call it node 1 (the root
node). This first node will have N1 inbound stubs which we will proceed to
match with randomly chosen outbound stubs. These outbound stubs are sam-
pled independently and with replacement from all the possible Ln =

∑n
i=1 Di

outbound stubs, discarding any outbound stub that has already been matched.
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This corresponds to drawing independently at random from the distribution

fn(i, j) = P (node has i offspring, j outbound links |Fn)

=
n∑

k=1

1(Nk = i,Dk = j)P (an outbound stub of node k is sampled |Fn)

=
n∑

k=1

1(Nk = i,Dk = j)
Dk

Ln
. (6)

This is a so-called size-biased distribution, since nodes with more outbound stubs
are more likely to be chosen.

To keep track of which outbound stubs have already been matched we will
label them 1, 2, or 3 according to the following rule:

1. Outbound stubs with label 1 are stubs belonging to a node that is not yet
attached to the graph.

2. Outbound stubs with label 2 belong to nodes that are already part of the
graph but that have not yet been paired with an inbound stub.

3. Outbound stubs with label 3 are those which have already been paired with
an inbound stub and now form an edge in the graph.

Let Zr, r ≥ 0, denote the number of inbound stubs of all the nodes in the
graph at distance r of the first node. Note that Z0 = N1 and Zr is also the
number of nodes at distance (r + 1) of the first node.

To draw the graph we initialize the process by labeling all outbound stubs
with a 1, except for the D1 outbound stubs of node 1 that receive a 2. We
then start by pairing the first of the N1 inbound stubs with a randomly chosen
outbound stub, say belonging to node j. Then node j is attached to the graph by
forming an edge with node 1, and all the outbound stubs from the new node are
now labeled 2. In case that j = 1 the pairing forms a self-loop and no new nodes
are added to the graph. Next, we label the chosen outbound stub with a 3, since
it has already been paired, and in case j �= 1, give all the other outbound stubs
of node j a label 2. We continue in this way until all N1 inbound stubs of node 1
have been paired, after which we will be left with Z1 unmatched inbound stubs
that will determine the nodes at distance 2 from node 1. In general, the kth
iteration of this process is completed when all Zk−1 inbound stubs have been
matched with an outbound stub, and the process ends when all Ln inbound
stubs have been paired. Note that whenever an outbound stub with label 2 is
chosen a cycle or double edge is formed in the graph. If at any point we sample
an outbound stub with label 3 we simply discard it and do a redraw until we
obtain an outbound stub with labels 1 or 2.

We now explain the coupling with the TBT. We start with the root node
(node 1, generation 0) that has N̂1 = N1 offspring. Let Ẑk denote the number
of individuals in generation k + 1 of the tree, Ẑ0 = N̂1. For k ≥ 1, each of the
Ẑk−1 individuals in the kth generation will independently have offspring and
outbound stubs according to the random joint distribution fn(i, j) given in (6).
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The coupling of Gn and the TBT is done according to the following rules:

1. If an outbound stub with label 1 is chosen, then both the graph and the TBT
will connect the chosen outbound stub to the inbound stub being matched,
resulting in a node being added to the graph and an offspring being born to
its parent. In particular, if the chosen outbound stub corresponds to node j,
then the new offspring in the TBT will have Dj −1 outbound stubs (pointing
to the auxiliary node) and Nj inbound stubs (number of offspring). We then
update the labels by giving a 2 label to all the ‘sibling’ outbound stubs of
the chosen outbound stub, and a 3 label to the chosen outbound stub itself.

2. If an outbound stub with label 2 is sampled it means that its corresponding
node already belongs to the graph, and a cycle, self-loop, or multiple edge is
created. In T , we proceed as if the outbound stub had label 1 and create a
new node, which is a copy of the drawn node. The coupling between DCM
and TBT breaks at this point.

3. If an outbound stub with label 3 is drawn it means that this stub has already
been matched, and the coupling breaks as well. In T , we again proceed as if
the outbound stub had had a label 1. In the graph we do a redraw.

Note that the processes Zk and Ẑk are identical as long as the coupling
holds. Showing that the coupling holds for a sufficient number of generations is
the essence of our main result.

Definition 1. Let τ be the number of generations in the TBT that can be com-
pleted before the first outbound stub with label 2 or 3 is drawn, i.e., τ = k iff the
first inbound stub to draw an outbound stub with label 2 or 3 belonged to a node
i, such that the graph distance between i and the root node is exactly k.

The following result gives us an estimate as to when the coupling between
the exploration process of the graph and the construction of the tree is expected
to break.

Lemma 1. Suppose (Nn,Dn) are constructed using Algorithm 1 with α > 1,
and β > 2. Let μ = E[N ] = E[D ] > 1. Then, for any 1 ≤ k ≤ h log n with
0 < h < 1/(2 log μ) there exists a δ > 0 such that,

P (τ ≤ k) = O
(
n−δ

)
as n → ∞.

The proof of Lemma 1 is rather technical, so we will only provide a sketch
in this paper. The detailed proof is given in [5].

Proof (Qualitative argument). Let V̂s be the number of outbound stubs of all
nodes in generation s of the tree. The intuition behind the proof is that for all
s = 1, 2, . . . , neither Ẑs, nor V̂s are expected to be much larger than their means:

E
[
Ẑs

∣∣∣Fn

]
≈ μs+1 and E

[
V̂s

∣∣∣Fn

]
≈ λμs,
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where λ = E[D2]/μ. Next, note that an inbound stub of a node in the rth
generation will be the first one to be paired with an outbound stub having label
2 or 3 with a probability bounded from above by

Pr :=
1

Ln

r∑
s=0

V̂s ≈ λμr

n(μ − 1)
.

Furthermore, for event {τ = r} to occur one of the Ẑr inbound stubs must have
been paired with an outbound stub with labels 2 or 3, which is bounded by the
probability that a Binomial random variable with parameters (Ẑr, Pr) is greater
or equal than 1. By Markov’s inequality we then have that this probability is
smaller or equal than ẐrPr = O

(
μ2rn−1

)
for r ≤ k.

Formally, to ensure that the approximations given above are valid, we first
show that the event

Ek =
{

max
0≤r≤k

μ−rẐr ≤ xn

}
occurs with high probability as n → ∞ for a suitably chosen xn → ∞. Then,
sum over r = 0, 1, . . . , k the events {τ = r, Ek} to obtain that P (τ ≤ k, Ek) =
O

(
μ2kn−1

)
, which goes to zero for k ≤ h log n.

Our main result is now a direct consequence of the bound derived in (5)
and Lemma 1 above, since before the coupling breaks R

(n,k)
1 and the PageRank,

computed after k iterations, of the root node of the coupled tree coincide.

Theorem 1. Suppose (Nn,Dn) are constructed using Algorithm 1 with α > 1,
and β > 2. Let μ = E[N ] = E[D ] > 1 and c ∈ (0, 1). Then, for any ε > 0 and
any 1 ≤ k ≤ h log n with 0 < h < 1/(2 log μ) there exists a δ > 0 such that,

P
(∣∣∣R(n,∞)

1 − R̂
(n,k)
1

∣∣∣ > ε
)

≤ (r0 + 1)ε−1ck + O
(
n−δ

)
,

as n → ∞, where R̂
(n,k)
1 is the PageRank, after k iterations, of the root node of

the TBT described above.

In [5] we explore further the distribution of the PageRank of the root node
of T and show that R̂

(n,k)
1 converges to the endogenous solution of a SFPE on

a weighted branching tree, as originally suggested in [11,15,16]. Moreover, the
tail behavior of this solution has been fully described in [7,8,15].

5 Numerical Results

In this last section we give some numerical results showing the accuracy of
the TBT approximation to the PageRank in the DCM. To generate the bi-
degree sequence we use as target distributions two Pareto-like distributions. More
precisely, we set

Ni = 	X1,i + Y1,i
, Di = 	X2,i + Y2,i
,
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where the {X1,i} and the {X2,i} are independent sequences of i.i.d. Pareto
random variables with shape parameters α > 1 and β > 2, respectively, and
scale parameters x1 = (α − 1)/α and x2 = (β − 1)/β, respectively (note that
E[X1,i] = E[X2,i] = 1 for all i). The sequences {Y1,i} and {Y2,i} are inde-
pendent sequences, each consisting of i.i.d. exponential random variables with
means 1/λ1 > 0 and 1/λ2, respectively. The addition of the exponential random
variables allows more flexibility in the modeling of the in- and out-degree dis-
tributions while preserving a power law tail behavior; the parameters λ1, λ2 are
also used to match the means E[N ] and E[D ].

Once the sequences {Ni} and {Di} are generated, we use Algorithm 1 to
obtain a valid bi-degree sequence (Nn,Dn). Given this bi-degree sequence we
next proceed to construct the graph and the TBT simultaneously, according to
the rules described in Section 4. To compute R(n,∞) we perform matrix iterations
with r0 = 1 until ‖R(n,k) − R(n,k−1)‖2 < ε0 for some tolerance ε0. We only
generate the TBT for the required number of generations in each of the examples;
the computation of R̂

(n,k)
1 can be done recursively starting from the leaves using

R̂
(n,0)
i = 1, R̂

(n,k)
i =

∑
j→i

cR̂
(n,k−1)
j + (1 − c), k > 0, (7)

where j → i means that node j is an offspring of node i. We use || · ||2 here in
order to provide mean squared errors (MSEs) for our approximations.

Tables 1-3 below compare the PageRank of node 1 in the graph, R
(n,∞)
1 , the

PageRank of node 1 only after k power iterations, R
(n,k)
1 , and the PageRank

of the root node of the coupled tree after the same k generations, R̂
(n,k)
1 . The

magnitude of the MSEs, computed using R
(n,∞)
1 as the true value, is also given

in each table. The tolerance for computing R
(n,∞)
1 is set to ε0 = 10−6. For each

n, we generate 100 realizations of Gn as well as of the corresponding TBTs and
take the empirical average of the PageRank values and of the MSEs. Table 1
includes results for different sizes of the graph, and uses kn = 	log n
 iterations
for the finite approximations. We note that all the MSEs clearly decrease as n
increases since kn also increases with n.

Table 1. α = 2, β = 2.5, λ1 = 1, c = 0.5, kn = �logn�

n R
(n,∞)
1 R

(n,kn)
1 R̂

(n,kn)
1 MSE for R

(n,kn)
1 MSE for R̂

(n,kn)
1

10 0.931 0.946 0.983 3.90E-03 4.20E-02
100 1.023 1.027 1.068 1.80E-04 3.70E-02
1000 1.000 1.002 1.010 1.20E-05 8.00E-04
10000 0.964 0.965 0.962 1.00E-06 7.50E-04

Table 2 illustrates the impact of using different values of k, with the error
between R

(n,k)
1 and R

(n,∞)
1 clearly decreasing as k increases. The simulations

were run on a graph with n = 10, 000 nodes. We also point out that although
the accuracy of finitely many PageRank iterations improves as k gets larger, the
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MSE of the tree approximation seems to plateau after a certain point. In order
to obtain a higher level of precision we also need to increase the size of the graph
(as suggested by Theorem 1).

Table 2. n = 10000, α = 2, β = 2.5, λ1 = 1, c = 0.5

kn R
(n,∞)
1 R

(n,kn)
1 R̂

(n,kn)
1 MSE for R

(n,kn)
1 MSE for R̂

(n,kn)
1

2 0.908 0.933 0.928 7.1E-03 8.59E-03
4 0.929 0.933 0.933 1.5E-04 2.20E-04
6 0.908 0.909 0.910 5.4E-06 5.08E-05
8 0.883 0.884 0.884 8.8E-08 1.20E-06
10 0.948 0.949 0.950 7.6E-09 8.16E-05
15 0.932 0.932 0.932 7.9E-13 2.89E-05

Table 3 shows the same comparison as in Table 2, for fixed n, for different
values of the damping factor c. As c gets larger, the approximations provided by
both R

(n,kn)
1 and R̂

(n,kn)
1 get worse due to the slower convergence of PageRank.

Our last numerical result shows how the distribution of PageRank on the
TBT approximates the distribution of PageRank on the DCM. To illustrate this
we generated a graph with n = 100 nodes and parameters α = 2, β = 2.5, μ = 3
and c = 0.5. We set the number of PageRank iterations (number of generations in
the TBT) to be k = 4. We then computed the empirical CDFs of the PageRank of

Fig. 2. The empirical distributions of PageRank on Gn (true and after finitely many
iterations) and the empirical distribution of the PageRank of the root in the TBT

Table 3. n = 10000, α = 2, β = 2.5, λ1 = 1, kn = �logn� = 9

c R
(n,∞)
1 R

(n,kn)
1 R̂

(n,kn)
1 MSE for R

(n,kn)
1 MSE for R̂

(n,kn)
1

0.1 1.011 1.011 1.011 3.8E-22 3.33E-09
0.3 0.958 0.958 0.958 9.8E-13 1.91E-07
0.5 0.898 0.898 0.899 2.7E-08 2.63E-06
0.7 0.755 0.757 0.760 2.4E-05 2.03E-04
0.9 0.663 0.764 0.799 8.3E-02 1.25E-01
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all nodes in the graph and that of the PageRank after only k iterations. We also
generated the coupled TBT 1000 times based on the same graph; each time by
randomly choosing some node i to be the root and computing R̂

(n,k)
i according

to (7). Figure 2 plots the empirical CDF of PagerRank on Gn, the empirical
CDF of PageRank on Gn after only k iterations, and the empirical CDF of the
PageRank of the 1000 root nodes after the same k iterations. We can see that
the CDFs of PageRank on Gn after a finite number of iterations and that of
the true PageRank on Gn are almost indistinguishable. The PageRank on the
TBT also approximates this distribution quite well, especially considering that
n = 100 is not particularly large.
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Abstract. In this paper we model user behaviour in Twitter to capture
the emergence of trending topics. For this purpose, we first extensively
analyse tweet datasets of several different events. In particular, for these
datasets, we construct and investigate the retweet graphs. We find that
the retweet graph for a trending topic has a relatively dense largest con-
nected component (LCC). Next, based on the insights obtained from the
analyses of the datasets, we design a mathematical model that describes
the evolution of a retweet graph by three main parameters. We then quan-
tify, analytically and by simulation, the influence of the model parameters
on the basic characteristics of the retweet graph, such as the density of
edges and the size and density of the LCC. Finally, we put the model in
practice, estimate its parameters and compare the resulting behavior of
the model to our datasets.

Keywords: Retweet graph · Twitter · Graph dynamics · Random graph
model

1 Introduction

Nowadays, social media play an important role in our society. The topics people
discuss on-line are an image of what interests the community. Such trends may
have various origins and consequences: from reaction to real-world events and
naturally arising discussions to the trends manipulated e.g. by companies and
organisations [14]. Trending topics on Twitter are ‘ongoing’ topics that become
suddenly extremely popular1. In our study, we want to reveal differences in the
retweet graph structure for different trends and model how these differences arise.

The work of Nelly Litvak is partially supported the EU-FET Open grant NADINE
(288956).

1 https://support.twitter.com/articles/101125-about-trending-topics
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In Twitter2 users can post messages that consist of a maximum of 140 char-
acters. These messages are called tweets. One can “follow” a user in Twitter,
which places their messages in the message display, called the timeline. Social
ties are directed in Twitter, thus if user A follows user B, it does not imply that
B follows A. People that “follow” a user are called “friends” of this user. We refer
to the network of social ties in Twitter as the friend-follower network. Further,
one can forward a tweet of a user, which is called a retweet.

There have been many studies on detecting different types of trends, for
instance detecting emergencies [9], earthquakes [18], diseases [13] or important
events in sports [11]. In many current studies into trend behaviour, the focus
is mainly on content of the messages that are part of the trend, see e.g. [12].
Our work focuses instead on the underlying networks describing the social ties
between users of Twitter. Specifically, we consider a graph of users, where an
edge means that one of the users has retweeted a message of a different user.

In this study we use several datasets of tweets on multiple topics. First we
analyse the datasets, described in Section 3, by constructing the retweet graphs
and obtaining their properties as discussed in Section 4. Next, we design a math-
ematical model, presented in Section 5, that describes the growth of the retweet
graph. The model involves two attachment mechanisms. The first mechanism
is the preferential attachment mechanism that causes more popular messages
to be retweeted with a higher probability. The second mechanism is the super-
star mechanism which ensures that a user that starts a new discussion receives
a finite fraction of all retweets in that discussion [2]. We quantify, analytically
and with simulations, the influence of the model parameters on its basic char-
acteristics, such as the density of edges, the size and the density of the largest
connected component. In Section 6 we put the model in practice, estimate its
parameters and compare it to our datasets. We find that what our model cap-
tures, is promising for describing the retweet graphs of trending topics. We close
with conclusions and discussion in Section 7.

2 Related Work

The amount of literature regarding trend detection in Twitter is vast. The
overview we provide here is by no means complete. Many studies have been
performed to determine basic properties of the so-called “Twitterverse”. Kwak
et al. [10] analysed the follower distribution and found a non-power-law distri-
bution with a short effective diameter and a low reciprocity. Furthermore they
found that ranking by the number of followers and PageRank both induce sim-
ilar rankings. They also report that Twitter is mainly used for News (85% of
the content). Huberman et al. [8] found that the network of interactions within
Twitter is not equal to the follower network, it is a lot smaller.

An important part of trending behaviour in social media is the way these
trends progress through the network. Many studies have been performed on
Twitter data. For instance, [3] studies the diffusion of news items in Twitter for
2 www.twitter.com

www.twitter.com
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several well-known news media and finds that these cascades follow a star-like
structure. Also, [20] investigates the diffusion of information on Twitter using
tweets on the Iranian election in 2009, and finds that cascades tend to be wide,
not too deep and follow a power law-distribution in their size.

Bhamidi et al. [2] proposed and validated on the data a so-called superstar
random graph model for a giant component of a retweet graph. Their model is
based on the well-known preferential attachment idea, where users with many
retweets have a higher chance to be retweeted [1], however, there is also a super-
star node that receives a new retweet at each step with a positive probability. We
build on this idea to develop our model for the progression of a trend through
the Twitter network.

Another perspective on the diffusion of information in social media is obtained
through analysing content of messages. For example, [17] finds that on Twitter,
tags tend to travel to more distant parts of the network and URLs travel shorter
distances. Romero et al. [16] analyse the spread mechanics of content through
hashtag use and derive probabilities that users adopt a hashtag.

Classification of trends on Twitter has attracted considerable attention in
the literature. Zubiaga et al. [21] derive four different types of trends, using 15
features to make their distinction. They distinguish trends triggered by news,
current events, memes or commemorative tweets. Lehmann et al. [12] study
different patterns of hashtag trends in Twitter. They also observe four different
classes of hashtag trends. Rattanaritnont et al. [15] propose to distinguish topics
based on four factors, which are cascade ratio, tweet ratio, time of tweet and
patterns in topic-sensitive hashtags.

We extend the model of [2] by mathematically describing the growth of a
complete retweet graph. Our proposed model has two more parameters that
define the shape of the resulting graph, in particular, the size and the density of
its largest connected component. To the best of our knowledge, this is the first
attempt to classify trends using a random graph model rather than algorithmic
techniques or machine learning. The advantage of this approach is that it gives
insight in emergence of the trend, which, in turn, is important for understanding
and predicting the potential impact of social media on real world events.

3 Datasets

We use datasets containing tweets that have been acquired either using the
Twitter Streaming API3 or the Twitter REST API4. Using the REST API one
can obtain tweets or users from Twitter ’s databases. The Streaming API filters
tweets that Twitter parses during a day, for example, based on users, locations,
hashtags, or keywords.

Most of the datasets used in this study were scraped by RTreporter, a com-
pany that uses an incoming stream of Dutch tweets to detect news for news
agencies in the Netherlands. These tweets are scraped based on keywords, using
3 https://dev.twitter.com/docs/streaming-apis
4 https://dev.twitter.com/docs/api/1.1

https://dev.twitter.com/docs/streaming-apis
https://dev.twitter.com/docs/api/1.1
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the Streaming API. For this research, we selected several events that happened in
the period of data collection, based on the wikipedia overviews of 2013 and 20145.
We have also used two datasets scraped by TNO - Netherlands Organisation for
Applied Scientific Research. The Project X dataset contains tweets related to
large riots in Haren, the Netherlands. This dataset is acquired by Twitcident6.
For this study, we have filtered this dataset on two most important hashtags:
#projectx and #projectxharen. The Turkish-Kurdish dataset is described in more
detail in Bouma et al. [4]. A complete overview of the datasets, including the
events and the keywords, is given in Table 1. The size and the timespans for
each dataset are given in Table 2.

Table 1. Datasets: events and keywords (some keywords are in Dutch)

dataset keywords
PX Project X Haren projectx, projectxharen
TK Demonstrations in Amsterdam koerden, turken, rellen, museumplein,

related to the Turkish-Kurdish conflict amsterdam
WCS World cup speedskating single distanced 2013 wkafstanden, sochi, sotsji
W-A Crowning of His Majesty King troonswisseling, troon, Willem-Alexander,

Willem-Alexander in the Netherlands Wim-Lex, Beatrix, koning, koningin
ESF Eurovision Song Festival esf, Eurovisie Songfestival, ESF,

songfestival, eurovisie
CL Champions Leage final 2013 Bayern Munchen, Borussia Dortmund,

dorbay, borussia, bayern, borbay, CL
Morsi Morsi deposited as Egyption president Morsi, afgezet, Egypte
Train Train crash in Santiago, Spain Treincrash, treincrash, Santiago,

Spanje, Santiago de Compostella, trein
Heat Heat wave in the Netherlands hittegolf, Nederland
Damascus Sarin attack in Damascus Sarin, Damascus, Syrië, syrië
Peshawar Bombing in Peshawar Peshawar, kerk, zelfmoordaanslag, Pakistan
Hawk Hawk spotted in the Netherlands sperweruil, Zwolle
Pile-up Multiple pile-ups in Belgium on the A19 A19, Ieper, Kortrijk, kettingbotsing
Schumi Michael Schumachar has a skiing accident Michael Schumacher, ski-ongeval
UKR Rebellion in Ukrain Azarov, Euromaidan, Euromajdan, Oekräıne,

opstand
NAM Treaty between NAM and Dutch government Loppersum, gasakkoord, NAM, Groningen
WCD Michael van Gerwen wins PDC WC Darts van Gerwen, PDC, WK Darts
NSS Nuclear Security Summit 2014 NSS2014, NSS,

Nuclear Security Summit 2014,
Den Haag

MH730 Flight MH730 disappears MH730, Malaysia Airlines
Crimea Crimea referendum for independance Krim, referendum, onafhankelijkheid
Kingsday First Kingsday in the Netherlands koningsdag, kingsday, koningsdag
Volkert Volkert van der Graaf released from prison Volkert, volkertvandergraaf,

Volkert van der Graaf

For each dataset we have observed there is at least one large peak in the
progression of the number of tweets. For example, Figure 1 shows such peak in
Twitter activity for the Project X dataset.

When a retweet is placed on Twitter, the Streaming API returns the retweet
together with the message that has been retweeted. We use this information to
construct the retweet trees of every message and the user IDs for each posted
message. The tweet and graph analysis is done using Python and its modules
5 http://nl.wikipedia.org/wiki/2014 & http://nl.wikipedia.org/wiki/2013
6 www.twitcident.com

http://nl.wikipedia.org/wiki/2014
http://nl.wikipedia.org/wiki/2013
www.twitcident.com
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Table 2. Characteristics of the datasets

dataset year first tweet last tweet # tweets # retweets
PX 2012 Sep 17 09:37:18 Sep 26 02:31:15 31,144 15,357
TK 2011 Oct 19 14:03:23 Oct 27 08:42:18 6,099 999
WCS 2013 Mar 21 09:19:06 Mar 25 08:45:50 2,182 311
W-A 2013 Apr 27 22:59:59 May 02 22:59:25 352,157 88,594
ESF 2013 May 13 23:00:08 May 18 22:59:59 318,652 82,968
CL 2013 May 22 23:00:04 May 26 22:59:54 163,612 54,471
Morsi 2013 Jun 30 23:00:00 Jul 04 22:59:23 40,737 13,098
Train 2013 Jul 23 23:00:02 Jul 30 22:59:41 113,375 26,534
Heat 2013 Jul 10 19:44:35 Jul 29 22:59:58 173,286 42,835
Damascus 2013 Aug 20 23:01:57 Aug 31 22:59:54 39,377 11,492
Peshawar 2013 Sep 21 23:00:00 Sep 24 22:59:59 18,242 5,323
Hawk 2013 Nov 11 23:00:07 Nov 30 22:58:59 54,970 19,817
Pile-up 2013 Dec 02 23:00:15 Dec 04 22:59:57 6,157 2,254
Schumi 2013-14 Dec 29 02:43:16 Jan 01 22:54:50 13,011 5,661
UKR 2014 Jan 26 23:00:36 Jan 31 22:57:12 4,249 1,724
NAM 2014 Jan 16 23:00:22 Jan 20 22:59:49 41,486 14,699
WCD 2013-14 Dec 31 23:03:48 Jan 02 22:59:05 15,268 5,900
NSS 2014 Mar 23 23:00:06 Mar 24 22:59:56 29,175 13,042
MH730 2014 Mar 08 00:18:32 Mar 28 22:40:44 36,765 17,940
Crimea 2014 Mar 13 23:02:22 Mar 17 22:59:57 18,750 5,881
Kingsday 2014 Apr 26 23:00:00 Apr 29 22:53:00 7,576 2,144
Volkert 2014 Apr 30 23:08:14 May 04 22:57:06 9,659 4,214
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Fig. 1. Project X Number of tweets and cumulative number of tweets per hour

Tweepy7 and NetworkX 8. In this paper, we investigate the dynamics of retweet
graphs with the goal to predict peaks in Twitter activity and classify the nature
of trends.

4 Retweet Graphs

Our main object of study is the retweet graph G = (V,E), which is a graph
of users that have participated in the discussion on a specific topic. A directed
7 http://www.tweepy.org/
8 http://networkx.github.io/

http://www.tweepy.org/
http://networkx.github.io/
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edge e = (u, v) indicates that user v has retweeted a tweet of u. We observe
the retweet graph at the time instances t = 0, 1, 2, . . ., where either a new node
or a new edge was added to the graph, and we denote by Gt = (Vt, Et) the
retweet graph at time t. As usual, the out- (in-) degree of node u is the number
of directed edges with source (destination) in u. In what follows, we model and
analyse the properties of Gt. For every new message initiated by a new user u
a tree Tu is formed. Then, Tt denotes the forest of message trees. Note that in
our model a new message from an already existing user u (that is, u ∈ Tt) does
not initiate a new message tree. We define |Tt| as the number of new users that
have started a message tree up to time t.

After analyzing multiple characteristics of the retweet graphs for every hour
of their progression, we found that the size of the largest (weakly) connected
component (LCC) and its density are the most informative characteristics for
predicting the peak in Twitter. In Figure 2 we show the development of these
characteristics in the Project X dataset. One day before the actual event, we
observe a very interesting phenomenon in the development of the edge density
of the LCC in Figure 2a. Namely, at some point the edge density of the LCC
exceeds 1 (indicated by the dash-dotted gray lines), i.e. there is more than one
retweet per user on average. We shall refer to this as the densification (or dens.)
of the LCC. Furthermore, the relative size of the LCC increases from 18% to
25% as well, see Figure 2b.
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Fig. 2. Progression for the edge density (a) and the size of the LCC (b) in the Project
X dataset

We have observed a densification of the LCC in each dataset that we have
studied. Indeed, when the LCC grows its density must become at least one (each
node is added to the LCC together with at least one edge). However, we have also
observed that in each dataset the densification occurs before the main peak, but
the scale of densification is different. For example, in the Project X dataset the
densification already occurs one day before the peak activity. Plausibly, in this
discussion, that ended up in riots, a group of people was actively participating
before the event. On the other hand, in the WCS dataset, which tweets about
an ongoing sport event, the densication of the LCC occurs during the largest
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peak. This is the third peak in the progression. Hence, our experiments suggest
that the time of densification has predictive value for trend progression and
classification. See Table 3 for the density of the LCC in each dataset at the end
of the progression.

5 Model

Our goal is to design a model that captures the development of trending
behaviour. In particular, we need to capture the phenomenon that disjoint compo-
nents of the retweet graph join together forming the largest component, of which
the density of edges may become larger than one. To this end, we employ the
superstar model of Bhamidi et al. [2] for modelling distinct components of the
retweet graph, and add the mechanism for new components to arrive and the exist-
ing components to merge. For the sake of simplicity of the model we neglect the
friend-follower network ofTwitter. Note that inTwitter every user can retweet any
message sent by any public user, which supports our simplification.

At the start of the progression, we have the graph G0. In the analysis of this
section, we assume that G0 consists of a single node. Note that in reality, this
does not need to be the case: any directed graph can be used as an input graph
G0. In fact, in Section 6 we start with the actual retweet graph at a given point
in time, and then use the model to build the graph further to its final size.

We consider the evolution of the retweet graph in time (Gt)t≥0. We use a
subscript t to indicate Gt and related notions at time t. We omit the index t
when referring to the graph at the end of the progression.

Recall that Gt is a graph of users, and an edge (u, v) means that v has
retweeted a tweet of u. We consider time instances t = 1, 2, . . . when either a
new node or a new edge is added to the graph Gt−1. We distinguish three types
of changes in the retweet graph:

◦ T1: a new user u has posted a new message on the topic, node u is added to
Gt−1;

◦ T2: a new user v has retweeted an existing user u, node v and edge (u, v)
are added to Gt−1;

◦ T3: an existing user v has retweeted another existing user u, edge (u, v) is
added to Gt−1.

The initial node is equivalent to a T1 arrival at time t = 0. Assume that each
change in Gt at t = 1, 2, . . . is T1 with probability λ/(1 + λ), independently of
the past. Also, assume that a new edge (retweet) is coming from a new user with
probability p. Then the probabilities of T1, T2 and T3 arrivals are, respectively

λ
λ+1 , p

λ+1 , 1−p
λ+1 . The parameter p is governing the process of components merging

together, while λ is governing the arrival of new components in the graph.
For both T2 and T3 arrivals we define the same mechanism for choosing the

source of the new edge (u, v) as follows.
Let u0, u1, . . . be the users that have been added to the graph as T1 arrivals,

where u0 is the initial node. Denote by Ti,t the subgraph of Gt that includes ui
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and all users that have retweeted the message of ui in the interval (0, t]. We call
such a subgraph a message tree with root ui. We assume that the probability
that a T2 or T3 arrival at time t will attach an edge to one of the nodes in Ti,t−1

with probability pTi,t−1 , proportional to the size of the message tree:

pTi,t−1 =
|Ti,t−1|∑

Tj,t−1⊂Tt−1
|Tj,t−1| .

This creates a preferential attachment mechanism in the formation of the mes-
sage trees. Next, a node in the selected message tree Ti,t−1 is chosen as the source
node following the superstar attachment scheme [2]: with probability q, the new
retweet is attached to ui, and with probability 1−q, the new retweet is attached
to any other vertex, proportional to the preferential attachment function of the
node, that we choose to be the number of children of the node plus one.

Thus we employ the superstar-model, which was suggested in [2] for modelling
the largest connected component of the retweet graph on a given topic, in order
to describe a progression mechanism for a single retweet tree. Our extensions
compared to [2] are that we allow new message trees to appear (T1 arrivals),
and that different message trees may either remain disconnected or get connected
by a T3 arrival.

For a T3 arrival, the target of the new edge (u, v) is chosen uniformly at
random from Vt−1, with the exception of the earlier chosen source node u, to
prevent self-loops. That is, any user is equally likely to retweet a message from
another existing user.

Note that, in our setting, it is easy to introduce a different superstar param-
eter qTi

for every message tree Ti. This way one could easily implement specific
properties of the user that starts the message tree, e.g. his/her number of fol-
lowers. For the sake of simplicity, we choose the same value of q for all message
trees. Also note that we do not include tweets and retweets that do not result
in new nodes or edges in a retweet graph. This could be done, for example, by
introducing dynamic weights of vertices and edges, that increase with new tweets
and retweets. Here we consider only an unweighted model.

5.1 Growth of the Graph

The average degree, or edge density, is one of the aspects through which we give
insight to the growth of the graph. The essential properties of this characteristic
are presented in Theorem 1. The proof is given in the Appendix.

Theorem 1. Let τn be the time when node n is added to the graph. Then

E

[ |Eτn
|

|Vτn
|
]

=
1

λ + p
− 1

n(λ + p)
, (1)

var
( |Eτn

|
|Vτn

|
)

=
(n − 1)(λ + 1 − p)

n2(λ + p)2
. (2)
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Note that the variance of the average degree in (2) converges to zero as
n → ∞ at rate 1

n .
The next theorem studies the observed ratio between T2 and T3 arrivals

(new edges) and T1 arrivals (new nodes with a new message). As we see from
the theorem, this ratio can be used for estimating the parameter λ. The proof
is given in the Appendix.

Theorem 2. Let Gt = (Vt, Et) be the retweet graph at time t, let Tt be the set
of all message trees in Gt. Then

E

[ |Et|
|Tt|

]
= λ−1 ·

(
1 −

(
1

λ + 1

)t
)

, (3)

lim
t→∞

λ3t

(1 + λ)2
var

( |Et|
|Tt|

)
= 1, (4)

Furthermore,
λ3/2

√
t

λ + 1

( |Et|
|Tt| − 1

λ

)
D→ Z, (5)

where Z is a standard normal N(0, 1) random variable, and D→ denotes conver-
gence in distribution.

Note that, as expected from the definition of λ,

lim
t→∞E

[ |Et|
|Tt|

]
= λ−1. (6)

This will be used in Section 6 for estimating λ.

5.2 Component Size Distribution

In the following, we assume that Gt consists of m connected components
(C1, C2, . . . , Cm) with known respective sizes (|C1|, . . . , |Cm|). We aim to derive
expressions for the distribution of the component sizes in Gt+1.

Lemma 3. The distribution of the sizes of the components of Gt+1, given Gt is
as follows,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|C1|, . . . , |Ci|, |Cj |, . . . , |Cm|, 1 w.p. λ
λ+1

|C1|, . . . , |Ci| + 1, |Cj |, . . . , |Cm| w.p. p
λ+1 · |Ci|

|V |
|C1|, . . . , |Ci| + |Cj |, . . . , |Cm| w.p. 1−p

λ+1 · 2·|Ci|·|Cj |
|V |2−|V |

|C1|, . . . , |Ci|, |Cj |, . . . , |Cm| w.p. 1−p
λ+1 ·

∑m
k=1 |Ck|2−|Ck|

|V |2−|V |

(7)
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The proof of Lemma 3 is given in the Appendix. Lemma 3 provides a recursion
for computing the distribution of component sizes. However, the computations
are highly demanding if not infeasible. Also, deriving an exact expression of the
distribution of the component sizes at time t is very cumbersome because they are
hard and they strongly depend on the events that occurred at t = 0, . . . , t − 1.
Note that if p = 1, there is a direct correspondence between our model and
the infinite generalized Pólya process [5]. However, this case is uninformative as
there are no T3 arrivals. Therefore, in the next section we resort to simulations to
investigate the sensitivity of the graph characteristics to the model parameters.

5.3 Influence of q, p and λ

We analyze the influence of the model parameters λ, p and q on the character-
istics of the resulting graph numerically using simulations. To this end, we fix
two out of three parameters and execute multiple simulation runs of the model,
varying the values for the third parameter. We start simulations with graph G0,
consisting of one node. We perform 50 simulation runs for every parameter set-
ting and obtain the average values over the individual runs for given parameters.

Parameter q affects the degree distribution [2] and the overall structure of
the graph. If q = 0, then the graph contains less nodes that have many retweets.
If q = 1 each edge is connected to a superstar, and the graph consists of star-like
sub graphs, some of which are connected to each other. In the Project X dataset,
which is our main case study, q ≈ 0.9 results in a degree distribution that closely
approximates the data. Since degree distributions are not in the scope of this
paper, we omit these results for brevity.

We compare the results for two measures that produced especially important
characteristics of the Project X dataset: |ELCC|

|VLCC| and |VLCC|
|V | . These characteristics

do not depend on q. In simulations, we set t = 1, 000, q = 0.9 and vary the values
for p and λ. the results are give in Figure 3.
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Fig. 3. Numerical results for the model using q = 0.9 and t = 1, 000
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We see that the edge density in the LCC in Figure 3a decreases with λ and
p. Note that according to (1), |E|/|V | is well approximated by 1/(λ + p) when
λ or p are large enough. The edge density in LCC shows a similar pattern, but
it is slightly higher than in the whole graph. When λ and p are small, there are
many T3 arrivals, and new nodes are not added frequently enough. This results
in an unexpected non-monotonic behaviour of the edge density near the origin.
For the fraction of nodes in the LCC, depicted in Figure 3b, we see that the
parameter λ is most influential. The parameter p is of considerable influence
only when it is large.

6 The Model in Practice

In this section we obtain parameter estimators for our model and compare the
model to the datasets discussed in Section 3.

Using Theorem 2, we know that |Et|
|Tt| converges to λ−1 as t → ∞. Thus, we

suggest the following estimator for λ at time t > 0:

λ̂t =
|Tt|
|Et| . (8)

Second, we derive an expression for p̂t using (1) and substituting (8) for λ:

p̂t =
|Vt| − |Tt| − 1

|Et| . (9)

Since the Twitter API only gives back the original message of a retweet and
not the level in the progression tree of that retweet, we can not determine q
easily from the data. Since this parameter does not have a large influence on the
outcomes of the simulations, we choose this parameter to be 0.9 for all datasets.

Notice that we can obtain the numbers (|Et|, |Tt| and |Vt|) directly from
a given retweet graph for each t = 1, 2, . . .. The computed estimators for our
datasets are displayed in Table 3.

Next, we compare 50 simulations of the datasets from the point of densifica-
tion of the LCC until the graph has reached the same size as the actual dataset.
We display the average outcomes of these simulations and compare them to the
actual properties of the retweet graphs of each dataset in Table 3.

Here we see diverse results per dataset in the simulations. For the CL, Morsi
and WCD datasets, the simulations are very similar to the actual progressions.
However, for some datasets, for instance the ESF dataset, simulations are far
off. In general, the model predicts the density of the LCC quite well for many
datasets, but tends to overestimate the size of the LCC. We notice that current
random graph models for networks usually capture one or two essential features,
such as degree distribution, self-similarity, clustering coefficient or diameter. Our
model captures both degree distribution and, in many cases, the density of the
LCC. It seems that our model performs better on the datasets that have a
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Table 3. Estimated parameter values using complete dataset, simulation and progres-
sion properties

actual progression simulations (starting at dens.)

dataset λ̂ p̂
|VLCC |

|V |
|E|
|V |

|ELCC |
|VLCC |

|VLCC |
|V |

|E|
|V |

|ELCC |
|VLCC |

PX .23 .78 .76 1.00 1.12 .54 .75 1.08
TK .42 .85 .25 .79 1.00 .54 .74 1.08
WCS .49 .73 .20 .81 .99 .49 .95 1.90
W-A .41 .52 .67 1.07 1.30 .40 .62 1.41
ESF .38 .43 .73 1.24 1.48 .45 .69 1.42
CL .40 .72 .44 .90 1.22 .46 .66 1.16

Morsi .60 .55 .39 .87 1.20 .47 .67 1.17
Train .54 .78 .28 .76 1.04 .50 .70 1.17
Heat .42 .59 .60 .99 1.23 .41 .72 1.68

Damascus .58 .51 .46 .92 1.24 .44 .65 1.30
Peshawar .54 .68 .31 .82 1.18 .53 .75 1.25
Hawk .38 .38 .82 1.31 1.45 .49 .76 1.43
Pile-up .33 .64 .65 1.03 1.24 .58 .93 1.54
Schumi .38 .83 .33 .82 1.08 .56 .77 1.07
UKR .72 .37 .53 .91 1.12 .50 .75 1.38
NAM .44 .48 .50 1.09 1.51 .45 .72 1.51
WCD .26 .81 .66 .94 1.10 .64 .83 1.07
NSS .26 .62 .79 1.13 1.26 .23 .35 1.21

MH730 .33 .52 .15 1.18 1.00 .56 .76 1.09
Crimea .44 .63 .51 .93 1.19 .52 .72 1.12

Kingsday .47 .92 .07 .72 1.11 .47 .67 1.15
Volkert .29 .55 .79 1.18 1.31 .64 .87 1.22

singular peak rather than a series of peaks. We have observed on the data that
each peak activity has a large impact on the parameters estimation. We will
strive to adopt the model for incorporating different rules for activity during
peaks, and improving results on the size of the LCC.

7 Conclusion and Discussion

We have found that our model performs well in modelling the retweet graph
for tweets regarding a singular topic. However, there is a room for improvement
when the dataset covers a prolonged discussion with users activity fluctuating
over time.

A possible extension of the present work is incorporating more explicitly the
time aspect into our model. We could for example add the notion of ‘novelty’,
like Gómez et al. in [6], taking into account that e.g. the retweet probability for a
user may decrease the longer he/she remains silent after having received a tweet.
But also other model parameters may be assumed to vary over time. In addition,
we propose to analyse the clustering coefficient of a node in the network model
and, in particular, to investigate how it evolves over time. This measure (see
[19]) provides more detailed insight in how the graph becomes denser, making it
possible to distinguish between local and global density.
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Appendix

A1. Proof of Theorem 1

Proof. The proof is based on the fact that the total number of edges |Eτn
| equals

a total number of the T2 and T3 arrivals on (0, τn]. By definition, (0, τn] contains
exactly (n−1) of T1 or T2 arrivals, hence, the number of T2 arrivals has a Bino-
mial distribution with number of trials equal to (n − 1), and success probability
P (T2 | T1 or T2) = p

λ+p . Next, the number of T3 arrivals on [τi, τi+1), where
i = 1, . . . , n − 1, has a shifted geometric distribution, namely, the probability of
k T3 arrivals on [τi, τi+1) is

(
1 − 1 − p

λ + 1

)(
1 − p

λ + 1

)k

, k = 0, 1, . . . .

Observe that there have been n−1 of these transitions from 1 node to n. Hence,
the number of T3 arrivals on (0, τn] is the sum of (n−1) i.i.d. Geometric random
variables with mean 1−p

λ+p . Summarizing the above, we obtain (1). For (2) we also
need to observe that the number of T2 and T3 arrivals on [0, τn] are independent.

A2. Proof of Theorem 2

Proof. Let Xt be the number of T2 and T3 arrivals by time t. Note that |Et| =
Xt, and |Tt| = t − Xt + 1, which is the number of T1 arrivals on [0, t], since
the first node at time t = 0 is by definition a T1 arrival. Note that Xt has a
binomial distribution with parameters t and P (T2 arrival) + P (T3 arrival) =
1

λ+1 . Furthermore, the number of T1 arrivals is t − Xt + 1 since the first node
at time t = 0 is by definition a T1 arrival. Hence,

E

[ |Et|
|Tt|

]
=

t∑
i=1

i

t − i + 1

(
t

i

)(
1

λ + 1

)i (
λ

λ + 1

)t−i

=
1
λ

·
t∑

i=1

(
t

i − 1

) (
1

λ + 1

)i−1 (
λ

λ + 1

)t−i+1

,

which proves (3). Next, we write

E

[( |Et|
|Tt|

)2
]

=
t∑

i=0

(
i

t − i + 1

)2 (
t

i

) (
1

λ + 1

)i (
λ

λ + 1

)t−i

=
1
λ

·
t∑

i=1

i

t − i + 1

(
t

i − 1

) (
1

λ + 1

)i−1 (
λ

λ + 1

)t−i+1

=
1
λ
E

[
t + 1

t − Xt
1{Xt≤t−1}

]
− 1

λ

(
1 −

(
1

1 + λ

)t
)

, (10)
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where 1{A} is an indicator of event A. Denoting

Zt =
Xt − E [Xt]√

var (Xt)
=

(λ + 1)Xt − t√
λt

, (11)

we further write

E

[
t + 1

t − Xt
1{Xt≤t−1}

]
= E

[
(t + 1)(λ + 1)
λt(1 − Zt√

λt
)
1{Zt≤

√
λt− λ+1√

λt
}

]
. (12)

We now split the indicator above as follows:

1{Zt≤−√
λt} + 1{−√

λt<Zt<
√

λt/2} + 1{√
λt/2≤Zt≤

√
λt− λ+1√

λt
}. (13)

For the first and the third term we use the Chernoff bound:

E

[
1

1 − Zt√
λt

1{Zt≤−√
λt}

]
≤ 2e−λt/4, (14)

E

[
1

1 − Zt√
λt

1{√
λt/2≤Zt≤

√
λt− λ+1√

λt
}

]
≤

√
λt

λ + 1
2e−λt/16, (15)

and notice that both expressions above converge to zero faster than 1/t. For
the second case, note first that E [Zt] = 0 and hence it follows from (11) and
(13)–(15) that, as t → ∞,

E

[
Zt1{−√

λt<Zt<
√

λt/2}
]

= o

(
1
t

)
.

Then we use the Taylor expansion to obtain:∣∣∣∣∣E
[

1
1 − Zt√

λt

1{−√
λt<Zt<

√
λt/2}

]
− 1

∣∣∣∣∣
≤ E

[
Z2

t

λt

]
+ 2E

[ |Zt|3
(λt)3/2

]
+ o

(
1
t

)
, (16)

as t → ∞. By the central limit theorem, Zt
D−→ Z as t → ∞. Furthermore,

for r > 0, the convergence of moments holds [7]: limt→∞ E [|Zt|r] = E [|Z|r]. In
particular, in (16), E

[|Zt|3
]

converges to a constant, and E
[
Zt

2
]

converges to 1
as t → ∞. Thus, using (10)–(12) and (3) we write

var
( |Et|

|Tt|
)

= E

[( |Et|
|Tt|

)2
]

−
(
E

[ |Et|
|Tt|

])2

= E

[
(t + 1)(λ + 1)
λt(1 − Zt√

λt
)
1{Zt≤

√
λt− λ+1√

λt
}

]
− 1

λ
− 1

λ2
+ o

(
1
t

)
.



146 M. ten Thij et al.

Now, subsequently using (13) – (16), we get

var
( |Et|

|Tt|
)

=
1
λ

(t + 1)(λ + 1)
λt

(
1 +

1
λt

+ o

(
1
t

))

− 1
λ

− 1
λ2

+ o

(
1
t

)
,

which results in (4). Statement (5) is proved along similar lines: we apply the
expansion directly to the random variable

Xt

t − Xt + 1
=

(t + 1)(λ + 1)

(λt + λ + 1)(1 − Zt

√
λt

λt+λ+1 )
1{Zt≤

√
λt} − 1,

and then use the Chernoff bounds and the CLT to obtain the result.

A3. Proof of Lemma 3

Proof. Assume the arrival at time t+1 is of type T1. This occurs w.p. λ
λ+1 , and

then a new component consisting of size one is created in Gt+1, corresponding
to the first case in (3).

Next, consider a T2 arrival, which occurs w.p. p
λ+1 . We now add a node to

an existing component Ci w.p. |Ci|
|V | . Thus the probability that we add the new

node to Ci is p
λ+1 · |Ci|

|V | .
Last, we consider a T3 arrival. In this case we have two options. The new

edge can either join two components, or join two nodes that are already in one
component. For the first case, we derive the probability that Ci and Cj join as

P (Ci and Cj merge) =
1 − p

λ + 1
· 2 · |Ci| · |Cj |

|V |2 − |V | .

Then for the second case, the number of ways a T3 arrival links two nodes that
are already connected in a component, say Ci, is |Ci| (|Ci| − 1). Therefore with
probability

∑m
k=1 |Ck|2−|Ck|

|V |2−|V | the component size does not change.
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Abstract. This paper considers the problem of refreshing a crawl. More
precisely, given a collection of Web pages (with hyperlinks) gathered at
some time, we want to identify a significant fraction of these pages that
still exist at present time. Liveness of an old page can be tested through
an online query at present time. We call LiveRank a ranking of the old
pages that tries to give good rankings to active nodes. The quality of
a LiveRank is measured by the number of queries necessary to identify
a given fraction of the alive pages when using the LiveRank order. We
study different scenarios from a static setting where the LiveRank is com-
puted before any query is made, to dynamic settings where the LiveRank
can be updated as queries are processed. Our results show that building
on the PageRank can lead to efficient LiveRanks for Web graphs.

1 Introduction

One of the main challenges for large networks data mining is to deal with the
high dynamics of huge datasets: not only are these datasets difficult to gather,
but they tend to become obsolete very quickly.

In this paper, we are interested in the evolution of large Web graphs at large
time scale. We focus on batch crawling, where starting from a completely out-
dated snapshot of a large Web crawl, we want to identify a significant fraction
of the pages that are still alive now.

Our motivation is that many old large snapshots of the Web are available
today. Reconstructing roughly what remains from such archives could result in
interesting studies of the long term evolution of these graphs. For large archives
where one is interested in a fraction of the dataset, recrawling the full set of pages
can be prohibitive. We propose to identify as quickly as possible a significant
fraction of the pages that are still alive. Further selection can then be made
to identify a set of pages suitable for the study and then to crawl them. Such
techniques would be especially interesting when testing the liveness of an item is
much lighter than downloading it completely. This is for instance the case for the
Web with HEAD queries compared to GET queries. If a large amount of work
has been devoted to maintaining fresh a set of crawled pages, little attention has
been paid to the coverage obtained by partial recrawling a fairly old snapshot.

Problem formulation: Given an old snapshot, our goal is to identify a signif-
icant fraction of the pages that are still alive or active now. The cost we incur
c© Springer International Publishing Switzerland 2014
A. Bonato et al. (Eds.): WAW 2014, LNCS 8882, pp. 148–160, 2014.
DOI: 10.1007/978-3-319-13123-8 12
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is the number of fetches that are necessary to attain this goal. A typical cost
measure will be the average number of fetches per active item identified. The
strategy for achieving this goal consists in producing an ordering for fetching
the pages. We call LiveRank an ordering such that the pages that are still alive
tend to appear first. We consider the problem of finding an efficient LiveRank in
three settings: static when it is computed solely from the snapshot and the link
relations recorded at that time; sampling-based when a sampling is performed in
a first phase allowing to adjust the ordering according to the liveness of sampled
items; dynamic when it is incrementally computed as pages are fetched.

Contribution: We propose various LiveRank algorithms based on the graph
structure of the snapshot. We evaluate them on two Web snapshots (from 10 to
20 million nodes). We show that a rather simple combination of a small sampling
phase and PageRank-like propagation in the remaining of the snapshot allows
to gather from 15% to 75% of the active nodes with a cost that remains within
a factor of 2 from the optimal ideal solution.

Related work: The process of crawling the Web has been extensively studied.
A survey is given by Olston and Najork [12].
The issue we investigate here is close to a problem introduced by Cho and
Ntoulas [6]: they use sampling to estimate the frequency of change per site and
then to fetch a set of pages such that the overall change ratio of the set is max-
imized. Their technique consists in estimating the frequency of page change per
site and to crawl first sites with high frequency change. Tan et al. [15] improve
slightly over this technique by clusterizing the pages according to several fea-
tures: not only their site (and other features read from the URL) but also content
based features and linkage features (including pagerank and incoming degree).
A change ratio per cluster is then estimated through sampling and clusters are
downloaded in descending order of the estimated values. More recently, Radin-
sky and Bennett [14] investigate a similar approach using learning techniques
and avoiding the use of sampling.

Note that these approaches mainly focus on highly dynamic pages and use
various information about pages whereas we are interested in stable pages and
we use only the graph structure, which is lighter.

With a slightly different objective, Dasgupta et al. [7] investigate how to
discover new pages while minimizing the average number of fetches per new page
found. Their work advocates for: a greedy cover heuristic when a small fraction
of the new pages has to be discovered quickly: an out-degree-based heuristic
gathering a large fraction of the new pages. Their framework is close to ours and
inspired the cost function used in this paper.

A related problem consist in estimating which pages are really valid among
the “dangling” pages on the frontier of the crawled web (those that are pointed
by crawled pages but that were not crawled themselves). Eiron et al. propose to
take this into account in the PageRank computation [8]. In a similar trend, Bar-
Yossef et al. [2] propose to compute a “decay” score for each page by refining on
the proportion of dead links in a page. Their goal is to identify poorly updated
pages. This score could be an interesting measure for computing a LiveRank,
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however its computation requires to identify dead links. It is thus not clear how
to both estimate it and at the same time try to avoid to test dead pages.

Roadmap: In the next Section, we propose a simple cost function to evaluate
the quality of a LiveRank and we introduce several classes of possible LiveRanks.
In Section 3, we introduce two datasets from the .uk Web, for which we derived
some ground truth of page liveness. Lastly, we benchmark our LiveRanks against
these datasets and discuss the results in Section 4.

2 Model

Let G = (V,E) be a directed graph obtained from a past Web snapshot, where
V represents the crawled pages and E the hyperlinks: For i, j in V , (i, j) is in
E if, and only if, there is a hyperlink to j in i.

Let n denote the size of V . At present time, only a subset of G are still alive
(the exact meaning of liveness will be detailed in the next Section). We call a
the function that tells if pages are alive or not: a(X) denotes the alive pages
from X ⊂ V , while ā(X) stands for X \ a(X). Let na be |a(V )|.

The problem we need to solve can be expressed as: how to crawl a maximum
number of pages from a(V ) with a minimal crawling cost. In particular, one
would like to avoid crawling too many pages from ā(V ). If a was known, the
task would be easy, but testing the activity of a node obviously requires to crawl
it. This is the rationale for the notion of LiveRank.

2.1 Performance Metric

Formally, any ordering on V can be seen as a LiveRank, so we need some perfor-
mance metrics to measure the efficiency in ranking the pages from a(V ) first. Fol-
lowing [7], we define the LiveRank cost as the average number of page retrievals
necessary to obtain one alive page, after a fraction 0 < α ≤ 1 of the alive pages
has been retrieved.

In details, let Li represent the i first pages returned by a LiveRank L, and
let i(L, α) be the smallest integer such that |a(Li)|

na
≥ α. The cost function of L

(which depends on α) is then defined by:

cost(L, α) =
i(L, α)
αna

.

A few remarks on the cost function:

– It is always at greater than or equal to 1. An ideal LiveRank would perfectly
separate a(V ) from rest of the nodes, so its cost function would be 1. Without
some oracle, this requires to test all pages, which is exactly what we would
like to avoid. The cost function allows to capture this dilemma.

– Keeping a low cost becomes hard as α gets close to 1: without some clair-
voyant knowledge, capturing almost all active nodes is almost as difficult as
capturing all actives nodes. For that reason, one expects that when α gets
close to 1, the set of nodes any real LiveRank will need to crawl will tend to
V , leading to an asymptotical cost n

na
. This will be verified in Section 4.
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– Lastly, one may have noticed that the cost function uses na = |a(V )|, for
which an exact value requires a full knowledge of liveness. This is not an issue
here as we will perform our evaluation on datasets where a is known. For
use on datasets without ground truth, one could either use an estimation of
na based on a sampling or use a non-normalized cost function (for instance
the fraction of alive pages obtained after i retrievals).

2.2 PageRank

Some of the proposed LiveRanks are based on PageRank. PageRank is a link
analysis algorithm introduced in [13] and used by the Google Internet search
engine. It assigns a numerical importance to each page of a Web graph. It uses
the structural information from G to attribute importance according to the
following (informal) recursive definition: a page is important if it is referenced by
important pages. Concretely, to compute PageRank value, denoted by the row
vector Y , one needs to find the solution of the following equation:

Y = dY A + (1 − d)X, (1)

where A is a substochastic matrix derived from the adjacency matrix of G,
d < 1 a so-called damping factor (often set empirically to d = 0.85), and X � 0
is a teleportation vector. X represents a kind of importance by default that is
propagated from pages to pages according to A with a damping d.

Computation of PageRank vectors has being widely studied. Several spe-
cific solutions were proposed and analysed [3,11] including power method [13],
extrapolation [9,10], adaptive on-line method [1], etc.

We now present the different LiveRanks that we will consider in this paper.
We broadly classify them in three classes: static, sample-based and dynamic.

2.3 Static LiveRanks

Static LiveRanks are computed offline using uniquely the information from G.
That makes them very basic, but also very easy to be used in a distributed way:
given p crawlers of similar capacities, if L = (l1, . . . , ln), simply assign the task
of testing node li to crawler i mod p.

We propose the following three static LiveRanks.

Random Permutation (R). will serve both as a reference and as a building block
for more advanced LiveRanks. R ignores any information from G, so its cost
should be in average n

na
, with a variance that tends to 0 as α tends to 1. We

expect good LiveRanks to have a cost function significantly lower than cost(R).

Decreasing Indegree Ordering (I). is a simple LiveRank that we expect to behave
better than a random permutation. Intuitively, a high Indegree can mean some
importance, and important pages may be more robust. Also, older pages should
have more incoming edges (in terms of correlation), so high degree pages can
correspond to pages that were already old at the time G was crawled, and old
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pages may last longer than younger ones. Sorting by degree is the easiest way
to exploit these correlations.

PageRank Ordering (P ). pushes forward the indegree idea. The intuition is that
pages that are still alive are likely to point toward pages that are still alive also,
even considering only old links. This suggests to use a PageRank-like importance
ranking. In absence of further knowledge, we propose to use the solution of (1)
using d = .85 (typical value for Web graphs) and X uniform on V .

Note that it is very subjective to evaluate PageRank as an importance rank-
ing, as importance should be ultimately validated by humans. On the other
hand, the quality of PageRank as a static LiveRank is straightforward to verify,
for instance using our cost metric.

The possible existence of correlation between Indegree (or PageRank) and
liveness will be verified in Section 3.3.

2.4 Sample-Based LiveRanks

Using a LiveRank consists in crawling V in the prescribed order. During the
crawl, the activity function a becomes partly available, and the obtained infor-
mation could be used to enhance the retrieval. Following that idea, we consider
here a two-steps sample-based approach: we first fix a testing threshold z and
test z items following a static LiveRank (like R, I or P ). For the set Z of nodes
tested, called sample set or training set, a(Z) is known, which allows us to
recompute the LiveRank of the remaining untested pages.

Because the sampling uses a static LiveRank, and the adjusted new LiveRank
is static as well, sample-based LiveRanks are still easy to use in a distributed
way as the crawlers only need to receive crawl instructions on two occasions.

Notice that in the case where the sampling LiveRank is a random permuta-
tion, |a(Z)|nz can be used as an estimate for na. This can for instance be used to
decide when to stop crawling if we desire to identify αna active nodes in a(V ).

Simple Adaptive LiveRank (Pa). When a page is alive, we can assume it increases
the chance that pages it points to in G are also alive, and that life is transmitted
somehow through hyperlinks. Following this idea, a possible adaptive LiveRank
consists in taking for X in (1) the uniform distribution on a(Z). This diffusion
from such an initial set can be seen as a kind of breadth-first traversal starting
from a(Z), but with a PageRank flavour.

Double Adaptive LiveRank (P+/−
a ). The simple adaptive LiveRank does not

use the information given by ā(Z). One way to do this is to calculate an “anti”-
PageRank based on ā(Z) instead of a(Z). This ranking would represents a kind of
diffusion of death, the underlying hypothesis being that dead pages may point to
pages that tend to be dead. As a result, we obtain a new LiveRank by combining
these two PageRanks. After having tested several possible combinations not
discussed in this paper, we empirically chose to weight each node by the ratio
of the two sample-based PageRank, after having set all null entries of the anti-
PageRank equal to the minimal non-null entry.
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Active-Site First LiveRank (ASF). To compare with previous work, we propose
the following variant inspired by the Dasgupta et al. [7] strategy for finding
pages that have changed in a recrawl. Their algorithm is based on sampling
for estimating page change rate for each website and then to crawl sites by
decreasing change rate. In details, Active-site first (ASF) consists in partitioning
Z into websites determined by inspecting the URLs. We thus obtain a collection
Z1, . . . , Zp of sets. For each set Zi corresponding to some site i, we obtain an
estimation |a(Zi)|/|Zi| of its activity (i.e. the fraction of active pages in the site).
We then sort the remaining URLs by decreasing site activity.

2.5 Dynamic LiveRanks

Instead of using the acquired information just one time after the sampling,
Dynamic LiveRanks are continuously computed and updated on the fly along
the entire crawling process. On the one hand, this gives them real-time knowl-
edge of a, but on the other hand, as the dynamic LiveRank may evolve all the
time, they can create synchronization issues when used by distributed crawlers.

Like for sample-based LiveRanks, dynamic LiveRanks use a training set Z
of z pages from a static LiveRank. This allows to bootstrap the adjustment by
giving a non-empty knowledge of a, and prevents the LiveRank from focusing
on only a small subset of V .

Breadth-First Search (BFS). With BFS, we aim at taking direct advantage
of the possible propagation of liveness. The BFS queue is initialized with the
(uncrawled) training set Z. The next page to be crawled is popped from the
queue following First-In-First-Out (FIFO) rule. If the selected page appears to
be alive, all of its uncrawled outgoing neighbors are pushed into the end of
the queue. When the queue is empty, we pick the unvisited page with highest
PageRank1.

Alive Indegree (AI). BFS uses a simple FIFO queuing to determine the process-
ing order. We now propose AI which provides a more advanced page selection
scheme. For AI, each page in the graph is associated with a live score value
indicating how many reported alive pages point to it. These values are set to
zeros at the beginning and always kept up-to-date. AI is initialized by testing Z:
each node in a(Z) will increment the associated values of its out-going neighbors
by one. After Z is tested, the next node to be crawled is simply the one with
highest live score (in case of equality, to keep things consistent, we pick the node
with highest PageRank). Whenever a new alive node is found, we update the
live scores of its untested neighbors.

With Dynamic LiveRank, it is natural to think of a dynamic PageRank-
based strategy where PageRank vector is recursively computed. Starting from
a uniform distribution on a(Z), we obtain X in (1). Then a new teleportation
vector is constructed as a uniform distribution on largest value entries of X,

1 We tested several other natural options and observed no significant impact.
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i.e., those which are considered probably alive after the first diffusion of a(Z).
The process continues and X is updated iteratively. However, this method is not
efficient since it can not escape from the locality of a(Z).

3 Datasets

We chose to evaluate the proposed LiveRanks on datasets of the British domain
.uk available on the WebGraph platform2. In this Section, we present these
datasets, describe how we obtained the alive function a and observe the corre-
lations between a, indegree and PageRank.

3.1 uk-2002 Dataset

The main dataset we use is the web graph uk-20023 from UbiCrawler [4]. This
2002 snapshot contains 18,520,486 pages and 298,113,762 hyperlinks.

The preliminary task is to determine a, the liveness of the pages of the snap-
shot. For each URL, we have performed a GET request and hopefully obtained
a corresponding HTTP code. Our main findings are:

– One third of the total pages are no longer available today, the server returns
error 404.

– One fourth have a DNS problem (which probably means the website is also
dead).

– For one fifth of the cases, the server sends back the redirection message 301.
Most redirections for pages of an old site lead to the root of a new site. If
we look at the proportion of distinct pages alive at the end of redirections,
it is as low as 0.1%.

– Less than 13% of pages return the code 200 (success). However, we found
out that half of them actually display some text mentioning that the page
was not found. To handle this issue, we have fully crawled all the pages with
code 200 and filtered out pages whose title or content have either Page Not
Found or Error 404.

The results are summarized in Table 1. In the end, our methodology led to
finding out 1,164,998 alive pages, accounting for 6.4% of the dataset.

3.2 uk-2006 Dataset

The settings of uk-2002 are rather adversarial (old snapshot with relatively
few alive pages), so we wanted to evaluate the impact of LiveRanks on shorter
time scales. In absence of fresh enough available datasets, we used the DELIS
dataset [5], a series of twelve continuous snapshots4 starting from 06/2006 to

2 http://webgraph.di.unimi.it/
3 http://law.di.unimi.it/webdata/uk-2002/
4 http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/

http://webgraph.di.unimi.it/
http://law.di.unimi.it/webdata/uk-2002/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
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Table 1. Status of web pages in uk-2002, crawled in December 2013

Status Description Number of pages Percentage

Code HTTP 404 Page not found 6 467 219 34,92%

No answer Host not found 4 470 845 24,14%

Code HTTP 301 Redirection 3 455 923 18,66%

Target 301 Target of redirection 20 414 0,11%

Code HTTP 200 Page exists 2 365 201 12,77%

True 200 Page really exists 1 164 998 6,29%

Others (403,. . . ) Other error 1 761 298 9,51%

Total Graph size 18 520 486 100%

05/2007 (one-month intervals). We set G to the first snapshot (06/2006). It
contains 31,316,403 nodes and 813,807,972 hyperlinks. We then considered the
last snapshot (05/2007) as “present time”, setting the active set a(V ) as the
intersection between the two snapshots. With this methodology, we hope to
have a good approximation of a after a one-year period. For this dataset, we
obtained na = 11, 142, 177 “alive” nodes representing 35.56% of the graph.

3.3 Correlations

The rationale behind the LiveRanks I and P is the assumption that the liveness
of pages is correlated to the graph structure of the snapshot, so that a page with
high in-degree or PageRank has more chances to stay alive.

To validate this, we plot in Figure 1 the cumulative distribution of in-degree
(figure 1a) and PageRank (figure 1b) for alive, dead, and all pages of the uk-2002
dataset. We observe that the curve for active nodes is slightly shifted to the
right compared to the other curves in each figures: active users tend to have
slightly higher in-degree and PageRank than in the overall population. The bias
is bigger for PageRank, suggesting that LiveRank (P) should perform better
than LiveRank (I).
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Fig. 1. Cumulative distribution of pages according to Indegree and PageRank
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4 LiveRanks Evaluation

After having proposed several LiveRanks in Section 2 and described our datasets
in previous Section, we can now benchmark our proposals.

All our evaluations are based on representations of the cost functions. In each
plot, the x-axis indicates the fraction α of active nodes we aim to discover and
the y-axis corresponds to the relative cost of the crawl required to achieve that
goal. A low curve indicates an efficient LiveRank. Like said in Section 2.1: an
ideal LiveRank would achieve a constant cost of 1; a random LiveRank is quickly
constant with an average cost n/na; any non-clairvoyant LiveRank will tend to
cost n/na as α goes to 1.

We mainly focus on the uk-2002 dataset. When it is not specified, the train-
ing set contains the z = 100000 pages of higher (static) PageRank.

4.1 Static and Sample-Based LiveRanks

We first evaluate the results of static and sample-based LiveRanks. The results
are displayed in Figure 2. For static LiveRanks, we see as expected that a random
ordering gives an almost constant cost equal to n

na
≈ 15.6. Indegree ordering (I)

and PageRank (P) significantly outperform this result, PageRank being the best
of the three: it is twice more efficient than random for small α, and still performs
approximately 30% better when up to α = 0.6. We then notice that we can
get even much better costs with sample-based approaches, the double-adaptive
LiveRank P

+/−
a giving a significant improvement over the simple-adaptive one

Pa. P
+/−
a allows improving the ordering by a factor of 6 approximately around

α = 0.2 with a cost of 2.5 fetches per active node found. The cost for gathering
half of the alive pages is less than 4, and for 90% it stays less than 10.
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Fig. 2. Main results on static and sample-based LiveRanks
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4.2 Quantitative and Qualitative Impact of the Training Set

We study in Figure 3 the impact of the training sets on sample-based LiveRanks.
Results are shown for P

+/−
a but similar results were obtained for Pa.

Figure 3a shows the impact of the size z of the sampling set (sampling the top
PageRank pages). We observe some trade-off: as the sampling set grows larger,
the initial cost increases as the sample does not used any fresh information, but
it results in a significant increment of efficiency in the long run. For this dataset,
taking a big training set (z=500 000) allows reducing the cost of the crawl for
α ≥ 0.4, and maintains a cost less than 4 for up to 90%.
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Fig. 3. Impact of the training set

Another key aspect of the sampling phase is the qualitative choice of the
sample set. Using z=100 000, we can observe in Figure 3b that the performance
of double adaptive P

+/−
a is further improved by using a random sample set

rather than selecting it according to the PageRank or by decreasing indegree.
We believe that the reason is that a random sample avoids a locality effect in the
sampling set as high PageRank pages tend to concentrate in some local parts of
the graph. To verify that, we tried to modify Indegree and PageRank selection to
avoid to select neighbor pages. The results (not displayed here) show a significant
improvement while staying less efficient than using a random sample.

Note that double-adaptive LiveRank through random sampling offers a very
low cost, within a factor of 2 from optimal for a large range of values α.

4.3 Dynamic LiveRanks

We then consider the performance of fully dynamic strategies, using the double-
adaptive LiveRank with random training set as a landmark. The results are
displayed in Figure 4a. We see that bread-first search BFS and alive indegree
AI perform similarly to double adaptive P

+/−
a for low α and can outperform

it for large α (especially BFS). BFS begin to significantly outperform double
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adaptive for α ≥ 0.5. However, if one needs to gather half of the active pages or
less, double adaptive is still the best candidate as it is much simpler to operate,
especially with a distributed crawler.

Additionally, Figure 4b shows the impact of different sampling sets on BFS
and AI. Except for high values of α where a random sampling outperforms
other strategies, the type of sampling does not seem to affect the two dynamic
LiveRanks as much as it was observed for the double-adaptive LiveRank.
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(a) Performance of dynamic LiveRanks
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Fig. 4. uk-2002 Performance of dynamic LiveRanks

4.4 uk-2006 Dataset

We have repeated the same experiments on the dataset uk-2006, where the
update interval is only one year. Figure 5 shows the results for static and sample-
based LiveRanks, using z=200 000 (because the dataset is larger) and random
sampling. The observation are qualitatively quite similar to uk-2002. The main
difference is that all costs are lower due to a higher proportion of alive pages
( n
na

≈ 2.81). The double-adaptive version still gives the lower relative cost among
static and sample-based LiveRanks, staying under 1.4 for a wide range of α.

4.5 Comparison with a Site-Based Approach

To benchmark with techniques from previous work for finding web pages that
been updated after a crawl, Figure 6 compares double adaptive P

+/−
a to active-

site first ASF with random sampling. The number of random pages tested in
each site and the overall number of tests are the same for both methods. Note
that given the budget z, it was not possible to sample small websites. Unsampled
websites are crawled after the sampled ones.

We see that for α greater than 0.9, ASF performs like a random LiveRank.
This corresponds to the point where all sampled website have been crawled. That
effect aside, the performance of ASF is not as good as double-adaptive LiveRank
for earlier α. In the end, ASF only beats P

+/−
a for a small range of α, between

0.7 and 0.85, and the gain within that range stays limited.
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Fig. 5. uk-2006 main evaluation results
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Fig. 6. Comparison with the cost of an active-site first LiveRank

5 Conclusion

In this paper, we investigated how to efficiently retrieve large portions of alive
pages from an old crawl using orderings we called LiveRanks. We observed that
PageRank is a good static LiveRank, which can be significantly improved by first
testing a small fraction of the pages for adjustment in a sample-based approach.

Compared to previous work on identifying modified pages, our technique per-
forms similarly for a given large desired fraction (around 80%) when compared to
the LiveRank algorithm inspired by the technique in [6]. However, outside that
range, our method outperforms this technique. Interesting future work could
reside in using our techniques for the problem exposed in [6] (identification of
pages that have changed) and compare with the Website sampling approach.

Interestingly, we could not get significant gain when using fully dynamic Liv-
eRanks. As noticed before, each of the two phases of the sample-based approach
can be easily parallelized through multiple crawlers whereas this would be much
more difficult with a fully dynamic approach. The sample-based method could
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for example be implemented with in two rounds of a simple map-reduce pro-
gram whereas the dynamic approach requires continuous exchanges of messages
between the crawlers.

Our work establishes the possibility of efficiently recovering a significant por-
tion of the alive pages of an old snapshot and advocates for the use of an adaptive
sample-based PageRank for obtaining an efficient LiveRank.

To conclude, we emphasize that the LiveRank approach proposed in this
paper is very generic, and its field of applications is not limited to Web graphs.
It can be straightforwardly adapted to any online data with similar linkage
enabling crawling, like P2P networks or online social networks. For future work,
our approach will be mathematically extended. The problem can be formulated
as an accuracy estimation of LiveRank vector, given a uniform distribution on
the alive training set as teleportation vector.
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