
Chapter 5
Covering Location Problems

Sergio García and Alfredo Marín

Abstract When deciding where to locate facilities (e.g., emergency points where
an ambulance will wait for a call) that provide a service, it happens quite often that
a customer (e.g., a person) can receive this service only if he/she is under a certain
distance to the closest facility (e.g., the ambulance can arrive in less than 7 min
at this person’s home). The problems that share this property receive the name of
covering problems and have many applications (analysis of markets, archaeology,
crew scheduling, emergency services, metallurgy, nature reserve selection, etc.).
This chapter surveys the Set Covering Problem, the Maximal Covering Location
Problem, and related problems and introduces a general model that has as particular
cases the main covering location models. The main theoretical results in this topic
as well as exact and heuristic algorithms are reviewed. A Lagrangian approach to
solve the general model is detailed and, although the emphasis is on discrete models,
some information on continuous covering is provided at the end of the chapter.

Keywords Covering • Discrete optimization • Location

5.1 Introduction

When deciding where to locate facilities (e.g., emergency points where an ambu-
lance will wait for a call) that provide a service, it happens quite often that a
customer (e.g., a person) can receive this service only if he/she is under a certain
distance to the closest facility (e.g., the ambulance can arrive in less than 7 min
at this person’s home). The problems that have this property receive the name
of covering problems and, when the previous condition holds, it is said that the
customer is covered.
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The first mentions to covering problems in literature can be found in Berge (1957)
where the problem of finding a minimum cover on a graph is introduced and a
theorem that provides an algorithm to find a minimum cover using a matching is
stated and in Hakimi (1965) where it must be decided on the minimum number of
police patrols required to protect a highway network. However, the problem was
mathematically formulated for the first time in the Location area in Toregas et al.
(1971), although out of a Location context it had already been formulated in Roth
(1969).

In general, there are two types of covering problems: set covering and maximal
covering. In a set covering problem (Toregas et al. 1971), the total cost of locating a
set of facilities so that every customer is covered must be minimized. Particularly, if
all the facilities have the same location cost, this is equivalent to minimize the total
number of facilities to be located. A quick analysis of a solution to the set covering
problem will usually show that with just a few facilities it is possible to cover an
important percentage of the demand and that only by locating a high number full
coverage can be achieved. Since locating as many facilities as needed may not
be possible (e.g., due to budget constraints), a natural variant is to maximize the
number of customers that are covered (or, equivalently, minimize the non-covered
customers) by locating a fixed number of facilities. This problem is the maximal
covering problem which was introduced in Church and ReVelle (1974).

According to Balas and Padberg (1976), the set covering problem is one of the
three special structures in pure integer programming with the most wide-spread
applications, together with set partitioning and the traveling salesman problem. Just
to mention a few, set covering models have been applied in the following areas:
analysis of markets (Storbeck 1988), archaeology (Bell and Church 1985), crew
scheduling (Ceria et al. 1998), deployment of emergency services (Toregas et al.
1971; Eaton et al. 1986), mail advertising (Dwyer and Evans 1981), metallurgy
(Vasko et al. 1989), nature reserve selection (Church et al. 1996) and Steiner
matrices (Feo and Resende 1989).

Due to its importance and the rich literature on this topic, it is not surprising that
reviews have been published regularly. The first one is Christofides and Korman
(1975), a comparison of five computational methods for the set covering problem.
Later, we have Chung (1986) which examines several applications of the maximal
covering model to problems that do not belong to the Location field, and ReVelle
(1989), a review focused on emergency service. Broader reviews are Schilling et al.
(1993), an exhaustive survey on covering models in Location reviewing 96 papers,
and Caprara et al. (2000), a comparison of recent algorithms (exact and heuristic)
for the set covering problem. Plastria (2002) is an exhaustive review of continuous
covering models and it is a perfect complement to this chapter. More recently, we
have Berman et al. (2010) which considers some of the latest trends by reviewing
gradual coverage, cooperative coverage, and variable radius coverage models, and
Snyder (2011) which reviews the seminal covering models plus some extensions.
Finally, the most recent survey is Farahani et al. (2012), an exhaustive list of models
reviewing more than 150 papers that study covering problems in the area of facility



5 Covering Location Problems 95

location. More focused as a detailed tutorial than as a proper survey, Daskin (1995)
is an excellent introduction to the basic properties of covering models.

At this point, it must be said that there are many different models involving
covering and that the goal of this chapter is not to cover them all but to provide
an insight on the main models and results on the topic. Particularly, we focus on
discrete models because they have received most of the attention in literature. The
rest of this chapter is organized as follows: the main models from the literature
are obtained in Sect. 5.2 as particular cases of a general model. Section 5.3
summarizes the main theoretical results on two of the main models (Set Covering
and Maximal Covering Location). Then, we survey exact (Sect. 5.4) and heuristic
(Sect. 5.5) solution methods. Since Lagrangian relaxation technique is widely used
for approaching covering models, we extend it to the general model described
in Sect. 5.6. Finally, although the focus of this chapter is on discrete models,
some information on continuous covering is provided in Sect. 5.7 for the sake of
completeness.

5.2 Models

We will use a general covering model to present as particular cases the main
covering location problems in the literature as well as several other basic location
problems which can be also considered sophisticated extensions of covering models.

Let J D f1; : : : ; ng be the set of customers (also called demand points) and let
I D f1; : : : ; mg be the set of potential centers (facilities). Since many applications
of covering models come from Location, we will use indistinctively “sites” for
customers and potential centers. For each pair .i; j / 2 I � J , a known constant
aij 2 f0; 1g represents whether demand point j can be covered (value one) or not
(value zero) by a center installed at site i . These constants can be obtained with
different procedures depending on the model under consideration as we will see
below.

Associated to each i 2 I , a fixed cost fi � 0 has to be paid for opening a center
at site i . In some models it is possible to open more than one center at the same
site. In this case we assume that the cost of the centers to be opened in i 2 I is
equal (i.e., fi is the opening cost for all centers to be opened at site i ). Each demand
point j 2 J must be covered by at least bj 2 Z

C
0 facilities, where bj D 0 if site j

does not need to be covered. Besides, a maximum number of p 2 Z
C facilities can

be opened (note that when the fixed costs of the centers are zero, this maximum
number is always reached by some optimal solution).

Non-negative integer variables yi represent the number of facilities to be opened
at site i 2 I . These are the main location variables and they will be explicitly present
in all the particular cases that are obtained from the general model. The maximum
number of facilities that can be opened at site i is given by the constant ei 2 Z

C.
Particularly, if ei D 1, then yi is a binary variable that takes value one if a facility is
located at site i (and zero otherwise).
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A second family of (binary) variables is wjk. Here, j belongs to the set of demand
points J while k belongs to an index set K D f1; : : : ; hg, whose meaning will
depend on the particular model that is considered. Associated to variables wjk, fixed
costs gjk 2 R are given. These costs gjk can be negative, representing in this case
the profit from wjk taking value one. In order to avoid unnecessary complicating
constraints in the basic model, without loss of generality, we assume that gj1 �
gj 2 � : : : � gjh for each j 2 J . Whenever this condition does not hold, it will be
explicitly stated.

The mathematical Integer Programming formulation for our general covering
model is:

(COV) Minimize
X

i2I

fi yi C
X

j 2J

X

k2K

gjkwjk (5.1)

subject to
X

i2I

yi � p; (5.2)

X

i2I

aijyi D bj C
X

k2K

wjk 8j 2 J; (5.3)

yi 2 f0; 1; : : : ; eig 8i 2 I; (5.4)

wjk 2 f0; 1g 8j 2 J; 8k 2 K: (5.5)

The objective function (5.1) has two parts. The first sum returns the total fixed
cost of opening yi facilities at site i 2 I . The second sum returns the total cost (or
profit, if negative) provided by the w-variables that take value one. Constraint (5.2)
limits the number of centers to p. Note that all the centers installed at the same site
contribute to the sum.

The main constraints in the model are (5.3). For each demand point j 2 J , the
left-hand side of (5.3) measures the number of open facilities which are covering j .
This number must be at least equal to the lower bound bj on the right-hand side,
while the sum of wjk variables measures the slack in the coverage of j , i.e., the
number of centers which are covering j besides the minimum number bj . Due to
the condition that we imposed on the g-values, the w-variables taking value one will
be in the first positions, that is, constraints wjk � wj;kC1, j 2 J , k 2 f1; : : : ; h � 1g
are satisfied without including them explicitly in the formulation. In such a way,
a cost gj1 will be paid if demand point j is covered by at least bj C 1 centers;
additional cost gj 2 will be paid if demand point j is covered by at least bj C2 centers
and so on.

Constraints (5.4) are the integrality constraints for y-variables and impose that at
most ei centers can be installed at site i . Constraints (5.5) state that variables w are
binary.

Therefore, model (COV) forces to cover each demand point j with a minimum
of bj facilities by using at most p facilities while minimizing the location cost of the
facilities plus an additional cost (or, instead, minus an additional benefit) associated
to the number of facilities which over-cover customers. By giving particular values
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to the constants in (COV), different models from the literature (and, particularly, all
the classical models) are obtained. The details are given next.

Set Covering Problem: In the Set Covering Problem (SCP) we have that, under
the context of emergency center location of Toregas et al. (1971), aij D 1 if the
response time or distance dij from a center located at i 2 I when an emergency
happens at j 2 J is under a certain given threshold s (i.e., aij D 1 if and only if
dij � s). There is no maximum number of centers to be located (i.e., p D m) and
all demand points must be covered at least once (bj D 1 8j 2 J ). The only costs
in the objective function are fi D 1 8i 2 I because the goal is just to minimize
the number of open centers. Therefore, variables wjk can be removed from the
model by replacing the equalities in (5.3) by inequalities “�” (equivalently, take
h D m � 1 and gjk D 0 for all j 2 J , k 2 K in (COV)). In the SCP, opening
more than one facility at the same site is not optimal. Thus, ei D 1 8i 2 I .
Given the special importance of this model, its classical formulation is explicitly
shown:

(SCP) Minimize
X

i2I

yi

subject to
X

i2I

aijyi � 1 8j 2 J; (5.6)

yi 2 f0; 1g 8i 2 I:

As an optimization problem, the SCP is a classical problem. The particular case
where I D J is the set of nodes of an undirected graph and aij D 1 if and only
if edge .i; j / exists, usually called Node Covering Problem, has been deeply
studied during the last century. The interested reader can consult the survey by
Balinski (1965). Other interesting seminal papers are Norman and Rabin (1959)
and Hohn (1955), where the mathematical problem is identified in the context of
electronic circuits when analyzing a general way of designing a contact network
satisfying given requirements and employing a minimum number of contacts.
Surprisingly, although the SCP is an NP-complete problem (Garey and Johnson
1979), it happens often that the linear relaxation already provides an integer
solution. Another important property that must be remarked is that the SCP
has usually many different optimal solutions, i.e., sets of centers with the same
minimum cardinality which cover all the demand points.

Weighted Set Covering Problem: The Weighted SCP (WSCP) is a generalization
of the SCP where the opening costs fi can be different from one.

Redundant Covering Location Problem: The Redundant Covering Location
Problem (RCLP) was approached in Daskin and Stern (1981) as an extension
of the SCP where the aim is to choose, among the optimal solutions to the SCP,
the one which maximizes the number of demand points covered at least twice.
Each site can only shelter one center. Again, aij D 1 if and only if dij � s,
p D m, bj D 1 8j 2 J (because the demand points must be covered at least
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once), and ei D 1 8i 2 I . Since we are also interested in knowing whether
each demand point j 2 J is covered or not by a second center (disregarding
the number of additional facilities which cover j ), only variables wj1 would be
necessary if equalities (5.3) were replaced by inequalities (5.6) as in the SCP
discussed above. Alternatively, the RCLP can be obtained as a particular case
of (COV) by taking h D m � 1, gjk D 0 8j 2 J , k � 2, and gj1 D �1 8j 2 J .
In order to prioritize the minimization of the number of open facilities, we define
fi D n C 1 8i 2 I as a cost large enough.

Hierarchical Covering Location Problem (HCLP): An objective function which
allows the simultaneous minimization of the number of facilities that are opened
and the maximization of the number of previously existing facilities that are kept
(within the minimum total number of facilities) was introduced in Plane and
Hendrick (1977) in a paper devoted to the location of fire stations. Values aij are
equal to one if and only if focal point i can be served by a pumper company at
location j in less than the response time specified for site i . They found a major
difficulty when using the SCP: this model does not differentiate between those
sites that have existing fire stations and those that require the construction of a
station. This drawback was fixed by modifying the objective function of the SCP
as follows: consider a partition of the set of facilities I D I0 [ I1, where I0 is
the set of existing facilities and I1 is the set of potential new facilities. Then,
define fi D 1 8i 2 I1 and fi D 1 � " > 0 8i 2 I0 with " a small positive
amount. This way, the slightly lower cost of the already existing centers makes
them more interesting when minimizing the total cost.

Maximal Covering Location Problem: The Maximal (or Maximum) Covering
Location Problem (MCLP) was introduced in Church and ReVelle (1974) and, as
it has been explained in the previous section, it entails an important change with
regard to the goal of the previous models listed in this section because, since
now the number of facilities to be located is limited to a given value p < m,
we do not require to cover all the demand but to maximize the covered demand.
Then, h D p and bj D 0 8j 2 J . Again, ei D 1 8i 2 I and values aij are
defined as usual. Since we need to know whether a demand point is covered
or not without minding about the number of different facilities that cover it,
we avoid that variables yi and variables wjk with k ¤ 1 contribute to the
objective function (5.1) by fixing their corresponding coefficients to zero, i.e.,
fi D 0 8i 2 I and gjk D 0 8j 2 J , 8k � 2. Besides, we set gj1 D �1 in order
to maximize the number of demand points covered by the open facilities.
An alternative to this model that was proposed in Church and ReVelle (1974) is
to combine mandatory covering of some demand points (assume these points
are indexed by means of J1 � J ) and maximization of the coverage of the
remaining points (those in J n J1). This situation can also be approached by
means of model (COV) by taking h D p, bj D 1 8j 2 J1, bj D 0 8j 2 J n J1,
ei D 1 8i 2 I , and fi D 0 8i 2 I . The g-coefficients are defined as follows:
gj1 D �1 8j 2 J n J1, gjk D 0 8j 2 J n J1, 8k � 2, and gjk D 0 8j 2 J1,
8k 2 K . We call this model MCLP’.
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Backup Set Covering Problems: Several models can be grouped under this name.
The common idea is to cover the demand points with more than one facility
in order to guarantee the coverage in case of either failure or overflow in one
or some of the centers (in this sense, the RCLP can be considered a backup
problem). There are two natural goals: minimization of the number of open
facilities and maximization of the backup coverage. Sometimes this problem
has been approached from the point of view of multiobjective optimization as,
for example, in Storbeck and Vohra (1988) and model BACOP1 in Hogan and
ReVelle (1986). Some other times, both objectives are combined into a unique
function as in model BACOP2 in Hogan and ReVelle (1986). Details are provided
next.
Coverage of all demand points is not mandatory, and each site can host several
facilities. Demands tj are associated to points j 2 J . A maximum number of
p facilities can be opened (h D p). Values aij are obtained as in most of the
previous models. A parameter 0 < ˇ < 1 measures the relative importance of
covering once or twice each demand point: the smaller ˇ is, the more importance
is given to cover each point twice. The goal here is to maximize the demand
covered by the facilities and also the demand covered twice, using ˇ to give each
objective its relative importance. Taking this into account, we define fi D 0 8i 2
I , ei D p 8i 2 I , gjk D 0 8j 2 J , 8k � 3 and bj D 0 8j 2 J . Variables wj1

are used to represent whether customer j is covered or not and variables wj 2

are used to check whether j is covered twice or not. We define gj1 D �ˇtj
and gj 2 D �.1 � ˇ/tj . Model (COV) is valid when ˇ � 1=2. When ˇ < 1=2,
constraints wj1 � wj 2 8j 2 J must be included to preserve the correct definition
of the w-variables.
Batta and Mannur (1990) propose a different criterion for coverage which
can also be viewed as a particular case of (COV). Recently, Curtin et al.
(2010) developed a backup coverage model in order to locate police patrols,
where a priority tj of crime incident in j 2 J is known, the number of police
patrols is limited to p and aij takes value one if, and only if, a patrol located
at i can cover a crime incident located at j . The model is called PPAC and
is a particular case of (COV) obtained by defining fi D 0 8i 2 I , h D p,
gjk D �tj 8k, bj D 0 8j 2 J , and ei D 1 8i 2 I .

Maximum Expected Covering Location Problem: Several covering location
models are based on probabilistic principles. One of the most important is
the Maximum Expected Covering Location Problem (MECLP) (Daskin 1983),
where each facility has a probability of 0 < q < 1 of being busy or failing,
independently of any circumstance of the system. Therefore, a demand point
covered by ` facilities has a probability 1�q` of receiving service. In this model,
demands tj associated to the demand points are also known, and the goal is to
locate at most p facilities in such a way that the total expected demand (the
sum of the demands of the points times their probability of being serviced) is
maximized. Apart from PPAC, this is the first model considered here where
all the w-variables really make sense, since it is necessary to know how many
facilities are covering each demand point in a given feasible solution. When
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variable wjk takes value one, this can be then be re-interpreted as demand point j

is covered at least k times. Thus, in order to obtain the right total in the objective
function (5.1), we define gjk D �tj .1 � q/qk�1 8j 2 J; 8k 2 K . This way,
we have that

P`
kD1 gjk D �tj .1 � q`/ which is the correct contribution of j

to objective function when j is covered by ` facilities and wjk � wj;kC1 8k.
But this last inequality is satisfied implicitly because qk � qkC1 means that
coefficients fgjkgk are sorted in increasing order for every demand point j .
Finally, we define fi D 0 8i 2 I and bj D 0 8j 2 J . It is also natural in this
problem to assume that a site can host more than one facility because it could
lead to better solutions which is why we define ei D p 8i 2 I .
Some of the strong assumptions of this model (e.g., servers are independent,
servers have the same failure probabilities) have been relaxed several times in
the literature. See, for example, Batta et al. (1989) and Galvão et al. (2005).

Probabilistic Location Set Covering Problem: In order to examine the relation-
ships between the number of facilities being located and their reliability, ReVelle
and Hogan (1989a) proposed a Probabilistic Location Set Covering Problem
(PLSCP) whose main (and almost unique) difference with the SCP is that
values bj can be greater than one and they are obtained in such a way that the
reliability of coverage of each point j 2 J is guaranteed to be at least equal to a
threshold value ˛. Particularly, bj is calculated as the minimum integer number
such that

�
Fj

bj

�bj

� 1 � ˛;

where Fj is an average busy fraction associated with point j . Optionally, in this
model ei can take values greater than one since this can lead to better solutions.

Maximum Availability Location Problem: Suppose now that a profit uj associ-
ated with each demand point j 2 J is obtained only if at least `j facilities
cover it. The total number of facilities is limited, a site can host more than
one facility and there is no facility opening cost. The Maximum Availability
Location Problem (MALP), first described in ReVelle and Hogan (1989b), is
a particular case of (COV) obtained by defining fi D 0 8i 2 I , ei D p 8i 2 I ,
bj D 0 8j 2 J , and gjk D 0 8j 2 J , 8k ¤ `j , whereas gj `j D �uj 8j 2 J .
Since now the g-values are not sorted in increasing order, constraints wjk �
wj;kC1 8j 2 J; 8k < h; must be included.

Covering Problem: The so-called Covering Problem (CP) in Kolen and Tamir
(1990) is that of minimizing the costs of opening some facilities plus the penalty
costs associated to uncovered demand points. It is obtained from (COV) by
defining p D m, ei D 1 8i 2 I , bj D 0 8j 2 J , gjk D 0 8j 2 J , 8k � 2 and
gj1 D �uj 8j 2 J where uj is the penalty for not covering demand point j .
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A constant �Pj 2J gj1 must be added to the objective to get the right optimal
value. This way, when variable wj1 takes value one, j is covered and the penalty
cost �gj1 is removed from the objective function.

Minimum Cost Maximal Covering Problem (MCMCP): This is the name for the
model introduced in Broin and Lowe (1986) whose only difference with regard
to CP is that the total number of facilities is limited. They gave a dynamic
programming algorithm for solving MCMCP in O.p2n minfm2; n2g/ time when
the matrix A D .aij/ is totally balanced.

p-Median Problem: Studied in detail in Chap. 2, the p-Median Problem (pMP)
consists in, given a set of n demand points, choosing p of them to locate facilities
and allocating each demand point to one of these facilities (which receive the
name of medians) in such a way that the total cost be minimum, where the cost of
allocating j to i is the distance dij between the two points (assuming dii D 0 8i

and dij > 0 in all other cases).
Instead of using the classical formulation for pMP, an artificial set J can be
designed in order to get it as a particular case of (COV): for each demand point j ,
a vector Dj D .D1j ; : : : ; DGj j / which is obtained by sorting in increasing order
the values in fd1j ; : : : ; dnj g (removing multiplicities):

0 D D1j < D2j < : : : < DGj j D max
1�i�n

fdijg:

Then define J D f.`; j / W j 2 f1; : : : ; ng; ` 2 f2; : : : ; Gj gg and ai;.`;j / D
1 if and only if dij < D j̀ . Besides, we set fi D 0 8i 2 I , ei D 1 8i 2
I , b.j;`/ D 0 8.`; j / 2 J , and h D p. Coefficients g.`;j /1 are defined with
value D`�1;j � D j̀ and g.`;j /k D 0 8k � 2.
With this approach, constraints (5.3) force variables w.j;`/1 to take value zero
if there is no open facility at a distance less than D j̀ from demand point j

and the allocation cost of j is increased from D`�1;j to D j̀ , as desired. A
constant

Pn
j D1 DGj j must be added to the objective function to get the right

optimal value. This formulation has been very successfully used in García et al.
(2011), where a column-and-row generation algorithm is developed to solve very
large instances.

Uncapacitated Facility Location Problem: The problem considered in Chap. 3
(UFLP) and pMP differ in the number of centers which in UFLP is not fixed
beforehand, but there is a fixed cost fi for opening a facility at site i . Therefore,
a straightforward modification of these parameters will allow to obtain UFLP
as a particular case of (COV). This particular formulation was first proposed
in Cornuéjols et al. (1980) and later in Kolen and Tamir (1990).

Table 5.1 summarizes the information about covering models in the literature
which have been shown in this chapter to be particular cases of (COV).
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5.3 Theoretical Results

The Set Covering Problem is an NP-hard model (Garey and Johnson 1979). As
a consequence, much effort has been put into understanding better the structure
of this model in order to develop solving algorithms (which are reviewed later
in this chapter). This knowledge can be divided mainly into three categories:
preprocessing, relation with other problems, and polyhedral analysis.

When solving SCP, all the setup costs fi can be assumed to be positive because
if fi � 0 for a certain facility i , then we can fix yi D 1, remove this variable from
the model and delete any inequality (5.6) that includes yi . As explained in some
early papers (Roth 1969; Lemke et al. 1971; Toregas and Revelle 1972, 1973), it
is trivial that if a demand point j can be covered only by a certain facility i1 (that
is, fi 2 I W aij D 1g D fi1g), then we can fix yi1 D 1. We have also some
dominance rules: constraint (5.6) for a demand point j1 can be removed if there is
another demand point j2 such that fi 2 I W aij2 D 1g � fi 2 I W aij1 D 1g, that is,
if all the facilities covering demand point j2 can cover also j1. Similarly, a facility i1
which covers a set of demand points which can be all covered by a cheaper facility i2
will never be used: if fi1 � fi2 and fj 2 J W ai1j D 1g � fj 2 J W ai2j D 1g,
then we can fix yi1 D 0. Sometimes, it is possible to use several facilities to cover
all the demand points covered by another facility (Lorena and Lopes 1994): if we
assume that the y-columns are sorted in increasing order in cost (with those columns
with equal cost sorted in decreasing order in the number of rows that they cover),
and we define ˇj D minfi 2 I W aij D 1g 8j and Hi D [j 2J fˇj W aij D 1g 8i ,
then we can fix yi D 0 if

P
`2Hi

f` < fi . Applying these tests cyclically (i.e., not
just once) can lead to substantial reductions in the size of the formulation.

The SCP formulation can be further improved by studying the polyhedral
structure of its polytope. Balas (1980) uses disjunctions based on conditional bounds
to obtain strong cuts in the form of cover constraints. Particularly, the inequalities
introduced in Bellmore and Ratliff (1971) are generalized. Given an inequality of the
form

P
j 2J ˛j yj � ˇ, with ˛j 2 f0; 1g 8j and ˇ a positive integer, some necessary

and sufficient conditions using the bipartite incidence graph of the matrix defining
the SCP polytope are given in Cornuéjols and Sassano (1989) for this inequality to
be a facet. Sassano (1989) studies the properties of this polytope and presents two
sequential lifting procedures to obtain valid inequalities and facets. Particularly, it is
shown that the SCP polytope is full dimensional if and only if every demand point
can be covered by at least two different facilities. It is also characterized when an
inequality of the form

P
i2J0

yi � 1 with J0 � J is a facet. When the polytope is
full-dimensional, then the trivial inequality yj � 1 is shown to be always a facet,
and the trivial inequality yj � 0 is a facet if and only if every demand point can be
covered by at least two different facilities different from j . Some deeper results on
facets and lifting can be found in Nobili and Sassano (1989). Balas and Ng (1989a)
characterize facet-defining inequalities for the SCP polytope with right-hand side 2
and coefficients 0, 1 or 2. In Balas and Ng (1989b) it is shown that each of these
facets can be obtained using a lifting procedure from an inequality with only three
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non-zero coefficients that is valid in a lower dimensional polytope. Sánchez-García
et al. (1998) do a similar study for the case of facets with coefficients in f0; 1; 2; 3g
and right-hand side equal to 3.

The connection of SCP to other classical problems has also been studied in the
literature. Balas and Padberg (1976) show how to turn a set partitioning problem
into a set covering. In Krarup and Pruzan (1983) it is discussed how SCP can be
transformed into a set packing, set partitioning or simple plant location problem.
Reciprocal results are given to turn a set partitioning or simple plant location
problem into a set covering problem.

Less theoretical results can be found for the Maximal Covering Location
Problem, which is known to be NP-hard (Megiddo et al. 1983). In the literature,
MCLP has been formulated using other classical models. For example, Church
and ReVelle (1976) show the equivalence between MCLP and a certain p-median
problem where the distances in this second problem are defined as

d 0
ij D

(
0; if dij � s;

1; if dij > s;

with dij the distances from the original problem and s is the maximum distance that a
demand point can be from the facility that covers it. Another different reformulation
is given in Klastorin (1979) where the problem is formulated as a generalized
assignment problem by adding some artificial variables.

The Maximal Expected Coverage Location Problem and the Backup Coverage
Location Problem are shown in Church and Weaver (1986) to be special cases
of the vector assignment p-median problem. Techniques developed for this latter
model are used to solve instances of the first two problems. The Capacitated Set
Covering Problem and the Capacitated Maximal Covering Location Problem are
formulated in Current and Storbeck (1988) as a capacitated plant location problem
and a capacitated p-median problem, respectively.

Several technical results on covering problems with special emphasis on trees
and matrices in standard greedy form can be found in Kolen and Tamir (1990).

5.4 Solution Methods

The first exact algorithms for the Set Covering Problem were almost purely
enumerative: Lemke et al. (1971) develop a branch-and-bound method that exploits
the structure of the SCP formulation and solutions. Later, Etcheberry (1977) uses a
branch-and-bound strategy where the branching is done on constraints and not on
variables. The lower bounds of the tree are calculated using Lagrangian relaxation
instead of the simplex method.

Using cutting planes from conditional bounds, the algorithm proposed in Balas
(1980) is exploited in Balas and Ho (1980). This method uses two sets of heuristics:
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one to find good upper bounds (primal heuristics) and another to obtain lower
bounds and cutting planes (dual heuristics). Subgradient optimization is applied to
find better lower bounds. This last technique is also used in Beasley (1987) where
a branch-and-bound method is proposed whose main elements are a dual ascent
procedure and subgradient optimization. This algorithm is improved in Beasley and
Jørnsten (1992) by incorporating the heuristic published in Beasley (1990) along
with some other enhancements.

Of special interest is Neebe (1988) which solves the problem of calculating for
every possible maximum distance the minimum number of facilities that cover
all the nodes (instead of solving the set covering problem for a single maximum
distance). This approach uses a chain of linear programming relaxations and, after
every linear model, some tests are used to obtain an integer solution. Although
these tests do not guarantee that an optimal integer solution will be found, the
author claims to solve to optimality almost all the instances he considers (up to
100 nodes). Each of the auxiliary problems is solved with a modification of the
procedure suggested in Lemke et al. (1971).

Fisher and Kedia (1990) propose an algorithm for a model which includes
both set covering and set partitioning constraints. It is an exact branch-and-bound
algorithm that uses greedy and 3-opt heuristics applied to the dual problem.
Exploiting the use of bounds, Mannino and Sassano (1995) propose a lower
bounding procedure and a branch-and-bound scheme to solve set covering problems
that appear in Steiner triple systems (a certain matrix structure). Balas and Carrera
(1996) develop a procedure applied to a Lagrangian dual problem at each node that
combines subgradient optimization with primal and dual heuristics which tighten
the upper and lower bounds. These strengthened bounds allow to fix some variables.
In general, Lagrangian methods are the most extended and effective methods in
the literature. More recently, Avella et al. (2009) propose a cutting plane algorithm
where the separation algorithm is solved in an exact way on a subproblem defined
by a subset of the original constraints and variables of the set covering problem
formulation.

On the contrary, not many exact algorithms have been developed for the Maximal
Covering Location Problem. Downs and Camm (1996) obtain a primal solution
using the greedy heuristic of Church and ReVelle (1974). They use complementary
slackness conditions for the maximal covering problem formulation to obtain a
dual feasible solution. This solution is the starting vector of multipliers for the
Lagrangian dual problem of MCLP which is solved with subgradient optimization.
If an integer solution is not obtained, branch-and-bound is used.

5.5 Approximate Solution Methods

As it happens with any hard optimization problem, there are more heuristic
algorithms than exact methods in the literature. Roth (1969), the first paper to
formulate the Set Covering Problem, already proposes a probabilistic heuristic. A
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random initial solution is selected and then refined using a set of predefined rules
based on the concept of �-optimal cover. This procedure is repeated many times with
the hope of finding a good solution. Chvátal (1979) proposes a basic greedy heuristic
that selects iteratively the facility with the largest number of nodes covered per unit
cost. A bound is established for the worst value of the solution provided by the
heuristic. Feo and Resende (1989) develop a probabilistic heuristic for set covering
problems arising in Steiner triple systems. It is a non-deterministic variation of a
previous deterministic heuristic where randomization is introduced to escape from
local minima.

Many more different metaheuristic techniques have been used to approach SCP:
surrogate relaxation (Lorena and Lopes 1994), simulated annealing (Jacobs and
Brusco 1995; Brusco et al. 1999), genetic algorithms (Al-Sultan et al. 1996; Beasley
and Chu 1996). However, as with the exact case, subgradient methods are the most
effective. Ceria et al. (1998) use a primal-dual subgradient Lagrangian algorithm to
provide information for a later greedy heuristic to decide which variables to fix to
one. Caprara et al. (1999) use variable pricing to update the subset of columns that
define a core problem in their subgradient optimization heuristic. This is a difference
with respect to Ceria et al. (1998) where the core set is not modified. They also
improve the way in which the step-size and ascent direction definitions are usually
done in subgradient optimization in order to speed up convergence.

For the Maximal Covering Location Problem and similar problems, we can find
several heuristics. Already in Church and ReVelle (1974) where the problem is
introduced, a greedy heuristic is provided. Later, Daskin (1983) describes a heuristic
for the Maximum Expected Covering Location Problem which finds good solutions
for all values of q (the probability of a facility not working). It starts with all the
facilities located at the node that covers the maximum demand and then considers
single node substitutions. For each of the new solutions, it is analyzed if there is
an interval where the current best solution is improved. By iterating this procedure,
interval [0,1] is partitioned and a heuristic solution is given for each of the resulting
subintervals. In MCLP, Galvão and ReVelle (1996) develop a Lagrangian heuristic
that uses a vertex interchange heuristic to improve upper bounds. In Galvão et al.
(2000), heuristics based on Lagrangian and surrogate relaxations are compared.
Here, the relaxed surrogate problem is a binary knapsack problem whose linear
relaxation is solved in the heuristic. The authors show that, when the initial set of
multipliers is obtained using a dual descent procedure, the performance of the two
methods is similar.

Eaton et al. (1986) deal with a hierarchical covering problem where sites with
multiple cover are maximized while the number of vehicles is minimized in an
application to ambulance deployment in Santo Domingo. Although they proposed
two formulations, no solver was available at that moment in the Ministry of Health
of Dominican Republic and they then developed a heuristic that minimizes the
number of facilities, maximizes multiple coverage and minimizes response time.
In their algorithm, they create a cover matrix, then order coverage zones in a list and
remove dominated sites iteratively.
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A further reason for using heuristics is that aggregation is used to reduce the
size of the problem so that larger size instances can be tackled. Daskin et al.
(1989) study the effect of node aggregation for MCLP. Three aggregation schemes
are tested based on relative demands on the disaggregate nodes, distances between
the disaggregate nodes and a mix of both. The first and the third methods are shown
to perform much better than the second. In Current and Schilling (1990) three rules
are proposed to reduce the aggregation error in SCP and MCLP.

5.6 Lagrangian Relaxation

Among the many different methods that have been developed in the literature for
covering models, we highlight here Lagrangian Relaxation (LR) for several reasons.
First, LR can be used as a heuristic method but can additionally provide good lower
bounds which can be embedded into a branch-and-bound framework to develop an
exact method. Second, as shown in Sects. 5.4 and 5.5, LR has been widely used
in covering problems. Third, it can be designed for the general model (COV) and
then used on any particular case without loss of accuracy. And, finally, LR usually
produces very good results in a reasonable amount of computational time. Readers
not familiarized with this technique are referred to Guignard (2003).

In what follows, we apply LR to model (COV) by making the natural choice of
relaxing constraints (5.3). Since the non-relaxed linear constraints (5.2) and yi �
ei 8i 2 I give rise to a totally unimodular coefficients matrix, lower bounds
produced by means of LR will not be greater than lower bounds produced by
the usual linear relaxation. A Lagrangian multiplier vj 2 R associated to each
constraint in (5.3), unrestricted in sign, will be used. So, a family of Lagrangian
relaxed subproblems is obtained with objective functions

X

i2I

fi yi C
X

j 2J

X

k2K

gjkwjk C
X

j 2J

vj

 
X

i2I

aijyi � bj �
X

k2K

wjk

!
D

X

i2I

0

@fi C
X

j 2J

vj aij

1

A yi C
X

j 2J

X

k2K

�
gjk � vj

�
wjk �

X

j 2J

vj bj :

By solving

.COVLR.v// min
P

i2I

�
fi CP

j 2J vj aij

�
yi CP

j 2J

P
k2K

�
gjk � vj

�
wjk

s.t. (5.2); (5.4); (5.5);

and then adding constant �Pj 2J vj bj , we will get a lower bound on the objective
value of (COV) when the set of multipliers is v D .v1; : : : ; vn/.
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Let now .y�.v/; w�.v// be an optimal solution to (COVLR(v)). Prob-
lem (COVLR(v)) splits into

.COVLRy.v// min
P

i2I

�
fi CP

j 2J vj aij

�
yi

s.t. (5.2); (5.4);

and

.COVLRw.v// min
P

j 2J

P
k2K

�
gjk � vj

�
wjk

s.t. (5.5):

(COVLRw(v)) can be easily solved by inspection:

w�
jk.v/ D 1 , gjk � vj 8j 2 J; 8k 2 K:

If, as in most of the models that we considered, gjk-values are sorted in increasing
order for each j 2 J , and assuming that vj 2 .gj `j ; gj;`j C1�, then the optimal
solution to (COVLRw(v)) will look like as follows:

w�
j1.v/ D : : : D w�

j `j
.v/ D 1; w�

j;`j C1.v/ D : : : D w�
jh.v/ D 0:

The corresponding optimal value will be v.COVLRw.v// D P
j 2J .

P`j

kD1 gjk �
`j vj /.

Regarding (COVLRy(v)), we define f 0
i WD fi CP

j 2J vj aij 8i 2 I and we sort
these values in increasing order:

f 0
.1/ � : : : � f 0

.t/ � 0 � f 0
.tC1/ � : : : � f 0

.n/:

An optimal solution to (COVLRy(v)) is recursively obtained by taking

y�
.i/.v/ D

(
e.i/ if

Pi�1
`D1 y�

.`/.v/ � p � e.i/;

p �Pi�1
`D1 y�

.`/.v/ if
Pi�1

`D1 y�
.`/.v/ > p � e.i/;

i D 1; : : : t; and y�
.i/.v/ D 0; i D t C 1; : : : ; n. Assuming that

Pi 0

`D1 e.`/ � p <
Pi 0C1

`D1 e.`/, with i 0 � t , we then have that

v(COVLRy(v)) D
i 0�1X

iD1

e.i/

0

@f.i/ C
X

j 2J

vj a.i/j

1

A
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C
0

@p �
i 0X

iD1

e.i/

1

A

0

@f.i 0/ C
X

j 2J

vj a.i 0/j

1

A :

A suitable set of Lagrangian multipliers v must be chosen so that v(COVLR(v)) pro-
vides a good lower bound on the optimal value of (COV). This can be achieved by
means of ascent procedures which iteratively modify v, like subgradient algorithms
or tailored dual ascent algorithms. Good feasible solutions (and the corresponding
upper bounds) can be generated from good sets of multipliers as follows. Consider
any optimal solution to the relaxed problem given by .y�.v/; w�.v//. We relax the
notation by calling simply y� the optimal values of the y-variables. Once these
have been determined, the best values which the w-variables can take are obtained
by solving for each j 2 J the subproblem

(COV)j Minimize
X

k2K

gjkwjk

subject to
X

k2K

wjk D
X

i2I

aijy
�
i � bj ;

wjk 2 f0; 1g 8k 2 K:

If
P

i2I aijy
�
i � bj < 0, the subproblem is infeasible. Otherwise, assuming thatP

i2I aijy
�
i � bj � h (note that in general h is taken large enough) and sorting

g-values in increasing order, the optimal solution to (COV)j can be obtained just by
making the first

P
i2I aijy

�
i � bj w-variables equal to one, that is,

v(COV)j D
P

i2I aijy
�

i �bjX

kD1

gjk:

5.7 Continuous Covering Location Problems

When speaking about continuous covering, it means that the set of candidates where
facilities can be located is not discrete but a whole (continuous) space. Because of
the nature of these problems, most of them are in the plane or, if height/depth is
relevant, in the 3D-space. Besides, most of the applications locate one single facility
because these models are already difficult enough.

Analogous to the discrete Set Covering Problem, the continuous Minimal
Covering Circle Problem (MCCP) consists in finding the smallest circle in the plane
that contains all the points of a given set which need to be covered. The center of
this circle is the optimal site. This is a very old problem which according to Plastria
(2002) was studied in the nineteenth century, but may have been introduced even
earlier. One of the main properties of the solution to MCCP is that there are always
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at least two demand points on the border of the minimal circle. Although several
algorithms to solve this problem have been proposed over time, the best known is the
method published in Elzinga and Hearn (1972) for the case of Euclidean distances.

When the radius of the circle is fixed, it may be not large enough to cover all
the demand points and, as in the discrete Maximal Covering Location Problem,
the objective is now to cover as much demand as possible. These maximal covering
problems have usually multiple solutions, maybe even a region of optimal solutions,
and this region may not even be convex (see Plastria 2002). However, it can be
proved that there is an optimal solution which is either a demand point or an
intersection point of two circles centered at demand points (see Drezner 1981
and Chazelle and Lee 1986 for details on algorithms). There is a similar property
when the facilities can be located on any part of a network (Church and Meadows
1979). Church (1984) shows an analogous property for planar maximal covering
problems with Euclidean or rectilinear distances.

More recently, Drezner et al. (2004) studied a gradual covering problem with
Euclidean distances where a finite set of points needs to be covered with one single
facility. If the facility can be located anywhere on the plane and the total cost of non-
covered points is minimized, then the solution is in the convex hull of the demand
points.

5.8 Conclusions

In this chapter we have provided an overview on covering problems with a special
emphasis on discrete models. Instead of providing a list of the many covering
models that can be found in the literature, we have focused on detailing those that
are considered to be more relevant because of the attention received in the literature
in the last decades. Moreover, we show that many of the models discussed in this
review can be seen as particular cases of a general covering model that we introduce
here. As far as we know, this is the first attempt to develop such a unified approach
for the study of set covering problems.

Having set covering problems received so much attention in the literature, it
seems that the number of theoretical results is too small. These results reduce
basically to some preprocessing rules and to the study of some facets. And none
of them has been used to develop an algorithm that can be considered to be a major
breakthrough in the area. Therefore, future research should try to make better use
of these results or obtain new theoretical properties for these problems. Particularly,
developing exact methods for covering models that are not the SCP seems highly
desirable.
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