
Chapter 2
The p-Median Problem

Mark S. Daskin and Kayse Lee Maass

Abstract The p-median problem is central to much of discrete location modeling
and theory. While the p-median problem is NP-hard on a general graph, it can
be solved in polynomial time on a tree. A linear time algorithm for the 1-median
problem on a tree is described. We also present a classical formulation of the
problem. Basic construction and improvement algorithms are outlined. Results
from the literature using various metaheuristics including tabu search, heuristic
concentration, genetic algorithms, and simulated annealing are summarized. A
Lagrangian relaxation approach is presented and used for computational results on
40 classical test instances as well as a 500-node instance derived from the most
populous counties in the contiguous United States. We conclude with a discussion
of multi-objective extensions of the p-median problem.

Keywords Algorithm • Center • Covering • Lagrangian relaxation • Median •
Multi-objective

2.1 Introduction

The p-median problem is that of locating p facilities to minimize the demand
weighted average distance between demand nodes and the nearest of the selected
facilities. The problem dates back to the seminal work of Hakimi (1964, 1965). The
p-median problem is one of several classical location problems which also include
the capacitated and uncapacitated facility location problems (Chap. 3), the p-center
problem (Chap. 4), covering problems (Chap. 5) and anti-covering problems (Chap.
6). The p-median problem lies at the heart of many practical location problems, and,
as shown below (Sect. 2.7), some of the other classical location problems can readily
be formulated as p-median problems, leading to multicriteria location problems as
outlined in Chap. 9.

Our objective is not to review every paper and every result related to this seminal
problem. Rather, we summarize key results, algorithms and important extensions.
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We refer the reader to ReVelle et al. (2008) for a fairly recent annotated bibliography
of the p-median and related models.

The remainder of this chapter is organized as follows. Section 2.2 outlines several
key properties of the problem. Section 2.3 discusses optimal solution algorithms
for the problem on a tree. Section 2.4 formulates the p-median problem as an
optimization problem. Section 2.5 outlines algorithms for the problem on a general
network. Section 2.6 presents selected computational results. Section 2.7 outlines
two key multi-objective extensions of the p-median problem. Finally, conclusions
are briefly presented in Sect. 2.8.

2.2 Model Properties

There are three key properties of the p-median problem that are important to know.
First, Kariv and Hakimi (1979) showed that the p-median problem is NP-hard on a
general graph. This is the bad news. The good news, as outlined below, is that there
are many effective algorithms and approaches to solving the p-median problem.

Second, Hakimi (1965) showed that at least one optimal solution to the p-median
problem consists of locating only on the nodes. To see that this is true, consider
a solution that entails locating a facility somewhere on an edge between nodes A
and B. Let DA be the total demand served by this facility that enters the edge via
node A, and let DB be the total demand served by the facility that enters via node B.
Clearly, if DA > DB we can move the facility to node A and reduce the objective
function. This contradicts the assumed optimality of the facility at an intermediate
location on the edge. Similar arguments hold if DB > DA in which case we move
the facility to node B. If DA D DB we can move the facility to either node without
adversely impacting the objective function value. Note that moving the facility to
one of the nodes may result in the reassignment of demands to or from the facility if
doing so will reduce the objective function. Such reassignments will only improve
the objective function. Also note that moving the facility to one of the nodes may
also result in some demands that were served by the facility, and that entered via the
other node, to now enter the facility directly without traversing the edge between A
and B. This would occur if traveling directly to the facility is shorter than traveling
via the edge between A and B. Finally, we note that the nodal optimality property
holds if the distance between a demand node and a candidate facility site is replaced
by any concave function of the distance.

Finally, the demand weighted total cost or distance (or the demand weighted
average cost or distance) decreases with the addition of each subsequent facility.
This is clearly true since, if there exists an optimal solution to the problem with
p facilities, then adding a p C 1st facility at any of the candidate nodes that does
not have a facility will decrease the demand-weighted total cost or distance and
therefore will also decrease the objective function. Locating the p C 1 facilities
optimally is clearly as good or better than first locating p facilities optimally and
adding a subsequent facility to that solution.
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Table 2.1 Median results for top 100 counties in US

p
Demand weighted
average distance Change Sites

1 969.45 St. Louis, MO
2 450.65 518.80 San Bernardino, CA; Allegheny,

PA
3 320.15 130.50 Los Angeles, CA; Shelby, TN;

Hudson, NJ
4 257.23 62.92 Los Angeles, CA; Tarrant, TX;

New York, NY; Jefferson, KY
5 190.22 67.01 Los Angeles, CA; Cook, IL;

Dallas, TX; New York, NY;
Orange, FL

We would also expect that the marginal improvement in the demand weighted
total (or average) cost or distance would decrease monotonically as we add facilities.
This is frequently the case, but not always. As an example of a situation in which
this is not so, consider the p-median problem with the 100 largest counties in the
contiguous United States based on the 2010 census. While these counties represent
only 3.2 % of the 3,109 counties in the contiguous United States, they account for
42.2 % of the total population. Using great circle distances and population as a
proxy for demand, we obtain the results shown in Table 2.1. The demand weighted
average distance decreases with the number of facilities as shown in the second
column. However, the change in the demand weighted average distance increases
from about 63 miles to 67 miles as we increase from four to five facilities.

2.3 The p-Median Problem on a Tree

While the p-median problem is NP-hard on a general graph, the problem can be
solved in polynomial time on a tree. We illustrate this with a linear time algorithm
for finding the 1-median on a tree, which was proposed by Goldman (1971). This
algorithm also helps explain why the problem is called the “median” problem. If
any node of the tree has half or more of the total demand of all nodes on the tree,
then it is clearly optimal to locate at that node. Moving away from that node will
move the facility further from half or more of the demand and closer to less than
half of the demand, thereby increasing the objective function value.

To outline this algorithm, we define the following sets:

I D f1; : : : ; i; : : : ; mg the set of candidate locations

J D f1; : : : ; j; : : : ; ng the set of demand nodes:
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Fig. 2.1 Example tree
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In addition, we define the following additional inputs:

dj demand of customer j
cij unit cost of satisfying customer j from facility i.

Now suppose that no node has half or more of the total demand. We call any
node that is connected to only one other node in the tree, a tip node. We let d

0

j be the

modified demand at node j 2 J. We also define Dtotal D
X

j 2Jdj . The algorithm

is as follows.

Step 1: Let d 0
j D dj for all nodes j 2 J.

Step 2: Select any tip node. Call the tip node, node A and the node to which it is
connected node B. Remove node A and edge (A, B). Add the modified demand at
node A to the modified demand at node B. If the new modified demand at node B
equals or exceeds Dtotal/2, stop; node B is the 1-median of the tree. Otherwise repeat
step 2.

This is clearly an O(n) algorithm since Step 2 can be performed in constant time
and each node is examined at most once in Step 2. The complexity of Step 1 is also
clearly O(n).

We can illustrate this algorithm with the tree shown in Fig. 2.1. The demand
associated with each node is shown in a box beside the node and the edge distances
are shown beside the edges. Nodes A, B, E and F are tip nodes. The total demand
in the tree is DtotalD 1,000. Clearly, no node has half or more of the total demand.
We select node E as the first tip node to eliminate (since it has the largest demand
of any tip node). We remove node E and link (C, E) from the tree and add 250 (the
demand at node E) to the demand at node C. The modified demand at node C is now
375, which does not exceed half of the total demand. Next we can process node F,
removing it as well as arc (D, F) and adding its demand to that of node D, resulting
in a modified demand at node D of 375. Next we process node B, removing it as
well as arc (B, D) and adding its demand to that of node D, resulting in a modified
demand at node D of 525, which exceeds half of the total demand in the tree. Node
D is therefore the 1-median of the tree.
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Note that in computing the location of the 1-median we do not need to use the
distances. In fact, node D would be the 1-median of the tree for any arc distances for
the tree. To compute the objective function value, we clearly do need the distances.
The objective function value for the 1-median located at node D in Fig. 2.1 is 5,375.

Kariv and Hakimi (1979) present an O(n2p2) algorithm for the p-median problem
on a tree. Tamir (1996) improved the computation time and presented an O(pn2)
algorithm for the problem of locating p facilities on a tree.

2.4 Model Formulation

In this section, we formulate the p-median problem. In addition to the notation
defined above, we define the following additional input:

p the number of facilities to locate.

Finally, we define the following decision variables:

yi D
�

1 if a facility is located at candidate site i

0 otherwise

xij the fraction of the demand of customer j that is supplied from facility i.

With this notation, we can formulate the p-median problem as follows:

minimize
X

i2I
X

j 2Jdj cijxij (2.1)

subject to
X

i2Ixij D 1 8j 2 J (2.2)

X
i2Iyi D p (2.3)

xij � yi � 0 8i 2 II j 2 J (2.4)

yi 2 f0; 1g 8i 2 I (2.5)

xij � 0 8i 2 II j 2 J: (2.6)

The objective function (2.1) minimizes the demand-weighted total cost. Con-
straints (2.2) mean that all of the demand at demand site j must be satisfied.
Constraints (2.3) require exactly p facilities to be located. Constraints (2.4) state that
demand nodes can only be assigned to open facilities. Constraints (2.5) stipulate that
the location variables must be integer and binary. Finally, constraints (2.6) state that
the assignment variables must be non-negative.
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Note that we do not require the assignment variables to be binary variables. If
the unit cost from a demand node to the nearest open facility is strictly less than
the unit cost between that node and any other open facility, then the corresponding
assignment variables for that demand node will naturally be binary. That is, all of
the demand at that node will be assigned to the nearest open facility. If the unit
costs between a demand node and two or more open facilities are the same, and the
unit costs are less than the unit costs between the demand node and any other open
facility, the assignment variables may indicate that the demand is to be split between
the set of nearest facilities. We can always round all but one of these assignment
variables down to 0 and round the last one up to 1 if we require all-or-nothing
demand assignments or single sourcing.

2.5 Solution Heuristics for the p-Median Model on a General
Network

In this section, we outline a number of heuristic algorithms for solving the p-median
problem on a general network. We conclude the section by structuring a Lagrangian
relaxation algorithm (Fisher 1981, 1985).

2.5.1 Basic Construction and Improvement Algorithms

The simplest algorithm is the myopic or greedy adding algorithm. In this algorithm,
all candidate facility sites are examined and the one whose addition to the current
solution reduces the demand-weighted total distance the most is added to the
incumbent solution. The process continues until the solution includes p facilities.
The following is pseudocode for the myopic algorithm. In this and all subsequent
pseudocodes, we define z .J; X/ D

X
j 2Jdj minm2X

˚
cmj

�
; where X is the current

set of candidate facility sites. Note that the function depends on both the set of
demand nodes to be considered and the candidate locations to be used.

Myopic Algorithm Pseudocode

1. Set X  ∅. /* X is the set of locations to be used
2. Find i� D argmini2I fz .J; X[fig/g.
3. Set X  X[fi�g.
4. If jX j < p, go to Step 2; else stop.

Step 1 initializes the set of locations to the empty set. Step 2 finds the best node
to add to the emerging solution. Step 3 adds that site to the solution. Step 4 asks if
less than p facilities have been added to the emerging solution. If so, the algorithm
continues with Step 2; if not, the algorithm stops.
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The myopic algorithm can readily paint itself into a corner. There is no guarantee
of optimality for the myopic algorithm. As illustrated below in the computational
results, the algorithm can perform quite poorly. That said, it is clear that it is optimal
if we are locating only a single facility.

Exploiting the optimality of the myopic algorithm for the 1-median problem,
Maranzana (1964) proposed a neighborhood improvement algorithm. Starting with
any feasible solution to the p-median problem, the algorithm assigns each demand
node to its nearest facility. Ties are broken arbitrarily. The set of nodes assigned to
a facility constitutes the neighborhood of that facility. Within each neighborhood,
the algorithm examines each candidate node and selects the one that minimizes
the demand-weighted total distance among all nodes in the neighborhood. In other
words, within each neighborhood, the algorithm solves a 1-median problem. If
no facility locations have changed, the algorithm stops; otherwise, if any facility
locations have changed as a result of solving the 1-median problem, the algorithm
re-assigns all demand nodes to the nearest open facility. If no assignments have
changed, the algorithm stops; otherwise, the algorithm continues by solving the 1-
median problem in each neighborhood. This process of determining neighborhoods
and solving 1-median problems within each neighborhood continues until no further
improvement is possible. The pseudocode below outlines the neighborhood search
algorithm.

Neighborhood Search Algorithm Pseudocode

1. Input: X /* X is a set of p facility locations
2. Set: Ni  �; 8i 2 I /* Ni is the set of demand nodes for which

/* candidate site i is the closest open facility
3. For j 2 J do
4. Set i�  argmini2I

˚
cij

�

5. Set Ni�  Ni�[fj g
6. End For
7. Set Xnew  � /* Xnew is the set of new facility locations
8. For i 2 I do
9. If jNi j > 0 then

10. Find k� D argmink2Ni
z .Ni ; fkg/

11. Set Xnew  Xnew[fk�g
12. End If
13. End For
14. If X ¤ Xnew then set X  Xnew and go to Step 2; else stop

Step 1 initializes the solution with any set of p facilities. Steps 2 through
6 initialize and then set the neighborhoods. Step 7 initializes a new candidate
set of facility locations. Steps 8 through 13 find the new candidate locations. In
particular, in Step 10, the algorithm finds the 1-median within each neighborhood
and adds that vertex to the emerging new solution in Step 11. The algorithm, as
written, assumes that the sets of demand locations and candidate sites are the same.
While the neighborhood search algorithm finds the optimal location within each
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neighborhood, there is no guarantee that it will find the global optimum for the
problem.

The exchange algorithm, proposed by Teitz and Bart (1968), is another heuristic
improvement algorithm that tends to do better than the neighborhood search
algorithm. The algorithm attempts to improve the current solution by removing a
node that is in the solution and replacing it with a node that is not in the solution.
If an exchange of this sort can be found and improves the solution (i.e., reduces
the demand-weighted total distance), it is implemented. The algorithm terminates
when there is no such exchange that improves the solution. The pseudocode for one
variant of the exchange algorithm is shown below.

Exchange Algorithm Pseudocode

1. Input: X /* X is a set of p facility locations
2. For i 2 X do
3. For k 2 InX
4. If z .J; X/ > z .J; X[fkg n fig/ then
5. Set X  X[fkg n fig and stop
6. End If
7. End For
8. End For

Step 1 initializes the solution with any set of p facilities. In Step 2 we loop over
the sites in the current solution. In Step 3 we loop over candidate sites that are not
in the solution. In Step 4, we ask if removing one site from the current solution
and replacing it with a site not in the current solution will improve the objective
function. If so, we make that substitution and the algorithm stops.

There are numerous ways of implementing an exchange algorithm. The algo-
rithm might implement the first exchange that improves the solution, as shown in
the pseudocode above. Alternatively, the algorithm might find the first node in the
solution whose removal will result in an improvement to the solution and then find
the best node to insert into the solution in place of the removed facility. Finally, the
algorithm can find the best improving pair of nodes over all possible nodes to be
removed and inserted into the solution.

If either of the first two approaches are adopted—that is, if the exchange
algorithm does not find the best overall exchange possible—there are alternate ways
in which the algorithm can proceed. One option is to continue the search with the
next indexed node that is not in the solution, attempting to replace the node that was
just inserted into the solution with another node. Another option is to proceed to
the next node in the solution and attempt to find exchanges based on that node. A
third option is to reinitiate the search from the first node in the solution. The various
options for selecting an exchange to implement, as well as the different ways in
which the algorithm can proceed once an improving exchange has been identified,
result in numerous possible implementations of the exchange algorithm. Most of the
literature does not identify which implementation was employed.
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2.5.2 Metaheuristics for the p-Median Problem

The myopic algorithm is a construction algorithm. The neighborhood and exchange
algorithms are improvement algorithms. A large variety of metaheuristic algorithms
have been devised to find solutions to the p-median problem. Mladenović et al.
(2007) provide a relatively recent review of these techniques. Below we highlight a
few of the classic papers and approaches in this field.

Chiyoshi and Galvão (2000) present a statistical analysis of a simulated annealing
algorithm (Kirkpatrick 1984) for the p-median model. They employed the 40-
instance dataset proposed by Beasley (1990). The dataset includes instances ranging
from 100 to 900 demand locations. They found that in 100 runs of a simulated
annealing algorithm for each instance, the best solution found was the optimal
solution in 26 of the 40 instances. The maximum deviation from optimality for
the best of the 100 runs for the 40 instances was 1.62 %. Al-khedhairi (2008)
also employed simulated annealing for the Beasley dataset and found the optimal
solution in 33 of the cases. However, the maximum deviation was over 18 % for
the seven instances for which the simulated annealing algorithm failed to find
the optimal solution. Murray and Church (1996) also discuss the application of
simulated annealing to the p-median problem as well as to the maximal covering
problem.

Alp et al. (2003) propose an effective genetic algorithm (Goldberg 1989; Haupt
and Haupt 1998; Holland 1975; Michalewicz 1994; Mitchell 1998) for the p-median
problem. For the 40-instance Beasley dataset, they ran their algorithm 10 times for
each instance. They found the optimal solution at least once in 28 of the 40 cases. In
six of the cases, the genetic algorithm always identified the optimal solution. In the
12 cases in which the genetic algorithm failed to find the optimal solution, the best
of the ten runs resulted in objective functions that deviated from the optimal value
by 0.02–0.4 %.

Rolland et al. (1996) applied tabu search (Glover 1990; Glover and Laguna 1997)
to the p-median problem. They tested their algorithm using randomly generated
datasets ranging in size from 13 to 500 nodes. For instances with 100 nodes or
fewer, the results were compared to two-exchange heuristics as well as to the optimal
solution found using an integer programming algorithm. For the larger instances,
optimal solutions were not obtained and the three heuristics were compared with
each other. In all cases, the tabu search algorithm outperformed the other two
heuristics. For the smaller instances (100 nodes or fewer) the tabu search algorithm
averaged 0.5 % from optimality with a maximum deviation of 6 %. Tabu search
found the optimal solution in 66 % of the smaller test cases. For the 12 larger test
cases, tabu search found the best solution in all but one case.

If an improvement (e.g., the neighborhood search or exchange algorithm outlined
above) is started with many different randomly generated solutions, the p facilities
that are selected are often similar across the various solutions. In other words, some
sites are selected in many of the runs and many other candidate sites are never
selected. Using this observation, Rosing and ReVelle (1997) developed a heuristic
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concentration algorithm for the p-median problem. The idea is to generate a number
of good solutions based on randomized starting solutions. A subset of the nodes
that are selected in the various runs is then used to reduce the number of location
variables in formulation (2.1)–(2.6) above. In other words, the concentration set, or
the set of candidate sites, is reduced from J to a smaller set consisting of a subset of
the nodes selected as facilities in the various randomized runs.

Heuristic concentration is based on eliminating some of the location variables.
Church (2008) proposed the BEAMR approach which attempts to eliminate some of
the assignment variables. BEAMR attempts to utilize only the hj closest assignment
variables for each demand node. To ensure feasibility, the model also includes
a variable for each demand node allowing the assignment to a dummy facility
further than the hj closest candidate facilities. This assignment does not need
to satisfy constraints (2.4). The resulting model provides a lower bound on the
objective function value for the p-median problem. An upper bound can be found
by simply assigning every demand node to the nearest of the selected facility
sites. If the bounds are not close enough, then some of the hj values can be
increased, particularly for those nodes for which assignment to one of the nearest
hj candidate sites was not possible. The algorithm typically results in provably
optimal solutions using a fraction of the constraints and variables of the original
formulation (2.1)–(2.6).

Rosing et al. (1998) compared heuristic concentration to tabu search in problems
with 100 and 200 demand nodes and candidate sites. Heuristic concentration found
the optimal (or best known) solution in 17 of the 21 test cases, while tabu search
found the optimal (or best known) solution in only two cases.

Mladenović and Hansen (1997) introduced a variable neighborhood search
algorithm. Hansen and Mladenović (1997) applied this algorithm to the p-median
problem. They found that variable neighborhood search outperformed both a greedy
interchange algorithm and two different tabu search-based algorithms.

Hansen and Mladenović (2001) reviewed the basics of variable neighborhood
search algorithms and compared a variety of metaheuristic algorithms, including
variable neighborhood search for the 12 largest of the 40 Beasley instances. They
found that variable neighborhood search and heuristic concentration outperformed
tabu search and a greedy interchange algorithm. Variable neighborhood search was
slightly better than heuristic concentration.

2.5.3 A Lagrangian Heuristic for the p-Median Problem

In this subsection, we outline a Lagrangian relaxation algorithm to the p-median
problem. The advantage of Lagrangian relaxation over any heuristic approach is
twofold. First, at every iteration of the Lagrangian procedure we obtain lower and
upper bounds on the objective function value. Second, the Lagrangian procedure can
readily be embedded in a branch-and-bound algorithm to obtain provably optimal
solutions.
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We relax constraint (2.2) to obtain the following Lagrangian problem:

Max�Minx;yL D
X

i2I
X

j 2Jdj cijxij C
X

j 2J�j

�
1 �

X

i2I
xij

�

D
X

i2I
X

j 2J
�
dj cij � �j

�
xij C

X
j 2J�j

(2.7)

subject to (2.3)–(2.6).
For fixed values of the Lagrange multipliers, �j, we compute the value of

being able to add a facility at node i 2 I. This value is given by Vi DX
j 2J min

˚
0; dj cij � �j

�
. We then select the p sites with the p most negative Vi

values, breaking ties arbitrarily. This determines the values of the location variables,
yi. The assignment variables are determined by setting xij D 1 if (i) yi D 1 and (ii)
dj cij � �j < 0, and setting xij D 0 otherwise. The resulting values can be used to
evaluate (2.7), providing a lower bound on the objective function value. To obtain an
upper bound on the objective function value, we simply assign every demand node
to the nearest candidate facility for which yi D 1 and evaluate (2.1) using these
assignment values.

Some of constraints (2.2) are likely to be violated by the solution to the
Lagrangian problem as outlined above. In particular, some demand nodes may not
be assigned to any facility and some may be assigned to multiple facilities. This
occurs when the Lagrange multipliers are not at their optimal values. Subgradient
optimization can be used to improve the Lagrange multipliers. Daskin (2013)
provides a detailed explanation of the Lagrangian algorithm for the p-median
problem.

The Lagrange multipliers coupled with the best lower and upper bounds can be
used to force candidate sites in and out of the solution at any point in the Lagrangian
procedure. Typically, it is most useful to do so when the bounds are very close to
each other but still differ by a small amount. Let LB and UB be the best-known lower
and upper bounds, respectively. Using the Lagrange multipliers associated with LB,
sort the Vi values so that V[i] is the ith smallest value. In other words, V[1] is the most
negative value and V[p] is the last value that resulted in selecting a candidate facility
site in the Lagrangian solution. Additionally, VŒpC1� is the next largest value.

Consider a candidate site i 2 I that is in the best-known solution. Then, if UB <

LB�ViCVŒpC1�, site i 2 I can be forced into the solution; in other words, we can set
yi D 1 in all subsequent Lagrangian iterations and in any branching below the node
at which this check is done (e.g., the root node of a branch-and-bound algorithm).
Similarly, if site i 2 I is not part of the best-known solution and UB < LB�VŒp�CVi ,
then site i 2 I can be forced out of the solution; in other words, we can set yi D 0 in
all subsequent Lagrangian iterations and in any branching below the node at which
this check is done (e.g., the root node).
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2.6 Computational Results

In this section, we provide sample results for some of the algorithms outlined above.
We begin with Table 2.2 which shows the results of using a Lagrangian relaxation
algorithm embedded in branch-and-bound for the Beasley dataset. The instances
were all solved using an expanded version of the SITATION software (Daskin 2013)
on a Macintosh computer running OS X version 10.8.5 with a 2.7 GHz Intel Core i7
processor and 16 GB of 1,600 MHz DDR3 memory using Parallels 7.0.15107. The
average solution time was under 45 s. The longest solution time—for PMED36—
was under 13 min. Seventeen of the 40 instances were solved at the root node and
all but three of the instances required less than 40 branch-and-bound nodes. The
average solution time is 44.9 s and the average number of branch-and-bound nodes
needed is 21.5.

The second part of the table illustrates the impact of using the variable forcing
rules outlined at the end of Sect. 2.5 at the end of the Lagrangian algorithm at the
root node of the branch-and-bound tree. The rules are quite effective at eliminating
candidate nodes; on average nearly 85 % of the candidate sites that could not be
in the solution were excluded at the root node using these rules. (The number of
candidate sites that could not be in the solution was equal to the total number of
candidate sites minus the number of facilities). Overall, 81 % of the candidate sites
were either forced in or out of the solution, on average.

Next we turn our attention to tests performed using the 500 most populous
counties among the 3,109 counties in the contiguous United States. While these
represent less than one sixth of the total counties, they encompass over 75 % of the
population living in the contiguous United States. Great circle distances between
the county centroids were employed. We used SITATION to solve the p-median
problem for this dataset with the number of facilities increasing from 1 to 25.
The solution time for each of these 25 runs was under 5 s and only two instances
required branch-and-bound to obtain provably optimal solutions. In each of these
two instances, only three nodes in the branch-and-bound tree needed to be explored
after the root node forcing rules were employed. Figure 2.2 plots the results for five,
10, 15, 20 and 25 medians. The model locates the first five cities near the major
cities of New York, Los Angeles, Dallas, Chicago and Miami. Additional facilities
are then added to better serve the rest of the counties. Figure 2.3 plots the demand-
weighted average distance versus the number of medians. As expected, the average
distance decreases with the number of medians. Also, the marginal improvement
decreases with the number of medians in this case.
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Table 2.2 Lagrangian relaxation results for Beasley datasets

Dataset # Dem # Med. Objective Iterations B&B nodes CPU time (s)

Pmed1 100 5 5,819 1,200 1 2.94
Pmed2 100 10 4,093 3,500 9 8.92
Pmed3 100 10 4,250 2,958 7 7.70
Pmed4 100 20 3,034 1,200 1 3.06
Pmed5 100 33 1,355 1,200 1 3.03
Pmed6 200 5 7,824 5,758 19 15.09
Pmed7 200 10 5,631 1,200 1 3.08
Pmed8 200 20 4,445 1,200 1 3.09
Pmed9 200 40 2,734 4,981 15 14.73
Pmed10 200 67 1,255 1,200 1 5.31
Pmed11 300 5 7,696 1,788 3 4.81
Pmed12 300 10 6,634 5,927 19 17.3
Pmed13 300 30 4,374 1,200 1 4.80
Pmed14 300 60 2,968 1,747 3 8.70
Pmed15 300 100 1,729 1,200 1 7.94
Pmed16 400 5 8,162 8,447 29 24.55
Pmed17 400 10 6,999 9,220 29 27.89
Pmed18 400 40 4,809 1,200 1 6.55
Pmed19 400 80 2,845 1,200 1 9.30
Pmed20 400 133 1,789 2,401 5 24.50
Pmed21 500 5 9,138 1,200 1 3.70
Pmed22 500 10 8,579 13,687 39 55.86
Pmed23 500 50 4,619 1,200 1 8.64
Pmed24 500 100 2,961 3,995 10 41.42
Pmed25 500 167 1,828 4,721 11 72.44
Pmed26 600 5 9,917 5,380 15 22.25
Pmed27 600 10 8,307 2,925 7 12.53
Pmed28 600 60 4,498 1,200 1 12.30
Pmed29 600 120 3,033 1,200 1 18.81
Pmed30 600 200 1,989 2,001 4 57.55
Pmed31 700 5 10,086 6,517 19 29
Pmed32 700 10 9,297 3,212 7 15.41
Pmed33 700 70 4,700 1,200 1 19.88
Pmed34 700 140 3,013 1,200 1 33.02
Pmed35 800 5 10,400 9,680 31 47.64
Pmed36 800 10 9,934 140,011 437 767.16
Pmed37 800 80 5,057 5,754 14 97.06
Pmed38 900 5 11,060 17,905 57 107.78
Pmed39 900 10 9,423 22,018 65 136.27
Pmed40 900 90 6,128 1,200 1 32.89

(continued)
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Table 2.2 (continued)

Dataset # Dem # Med. No. sites forced in No. forced out % in % out % forced

Pmed1 100 5 4 94 80 99 98
Pmed2 100 10 2 79 20 88 81
Pmed3 100 10 3 71 30 79 74
Pmed4 100 20 15 75 75 94 90
Pmed5 100 33 25 59 76 88 84
Pmed6 200 5 0 161 0 83 81
Pmed7 200 10 8 189 80 99 99
Pmed8 200 20 18 178 90 99 98
Pmed9 200 40 1 71 3 44 36
Pmed10 200 67 52 116 78 87 84
Pmed11 300 5 0 280 0 95 93
Pmed12 300 10 0 257 0 89 86
Pmed13 300 30 27 267 90 99 98
Pmed14 300 60 9 160 15 67 56
Pmed15 300 100 78 178 78 89 85
Pmed16 400 5 0 336 0 85 84
Pmed17 400 10 0 327 0 84 82
Pmed18 400 40 24 314 60 87 85
Pmed19 400 80 67 307 84 96 94
Pmed20 400 133 49 163 37 61 53
Pmed21 500 5 5 495 100 100 100
Pmed22 500 10 0 397 0 81 79
Pmed23 500 50 44 444 88 99 98
Pmed24 500 100 14 308 14 77 64
Pmed25 500 167 36 191 22 57 45
Pmed26 600 5 0 542 0 91 90
Pmed27 600 10 0 539 0 91 90
Pmed28 600 60 50 496 83 92 91
Pmed29 600 120 97 450 81 94 91
Pmed30 600 200 24 131 12 33 26
Pmed31 700 5 0 639 0 92 91
Pmed32 700 10 0 645 0 93 92
Pmed33 700 70 13 603 19 96 88
Pmed34 700 140 98 459 70 82 80
Pmed35 800 5 0 684 0 86 86
Pmed36 800 10 0 478 0 61 60
Pmed37 800 80 10 610 13 85 78
Pmed38 900 5 0 780 0 87 87
Pmed39 900 10 0 707 0 79 79
Pmed40 900 90 85 805 94 99 99
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Fig. 2.2 (continued)
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Fig. 2.2 (continued)



2 The p-Median Problem 37

Fig. 2.2 Optimal locations for 5, 10, 15, 20 and 25 medians

Fig. 2.3 Demand-weighted average distance versus number of medians
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Fig. 2.4 Histogram of the
frequency of county selection
out of 325 possible cases
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Fig. 2.5 Percent error due to
limiting the candidate
node set
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With 1–25 medians being selected, there conceivably could be 325 unique nodes
chosen as medians. This was not the case. Only 55 unique nodes were selected and
these were biased toward the larger demand nodes. With the dataset sorted from
the most populous to the least populous county, Fig. 2.4 plots the distribution of
the number of times nodes in different groupings were selected. Nearly half of the
counties selected were among the top 50 most populous counties. Over 75 % of the
selected counties were in the top 150 most populous counties.

Figure 2.5 plots the percent error due to limiting the candidate solution set to
the most populous 100, 200, 300 and 400 counties, compared to allowing all 500
counties to be in the solution. The errors are generally less than 1 % as long as at
least 200 nodes are in the candidate set. Even when the candidate set is limited to
only 100 nodes, the maximum error in the 25 runs was under 4 %, though the error
seems to be growing with the number of medians in this case.
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Fig. 2.6 Errors due to using
various heuristic algorithms
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We next consider the impact of using different construction and improvement
algorithms to solve the problem. Five different algorithms were tested: the greedy
adding or myopic algorithm (GA), the greedy adding algorithm with the node
exchange algorithm applied after every median is added (GAS-Every), the greedy
adding algorithm with the neighborhood algorithm applied after every median
is added (Neighborhood-Every), the greedy adding algorithm with the exchange
algorithm applied after all nodes have been added (GAS-Last), and the greedy
adding algorithm using the neighborhood algorithm only after all nodes have been
added to the solution (Neighborhood-Last).

Figure 2.6 plots the results. Both the greedy adding algorithm (GA) and the
Neighborhood algorithm applied after all nodes have been added to the solution
(Neighborhood-Last) result in large errors, often exceeding 10 %. The other three
algorithms perform much better and result in errors that are under 4 % and often
under 2 %.

Figure 2.7 plots the results of using a genetic algorithm similar to that proposed
by Alp et al. (2003). The variant employs a standard crossover operator. To ensure
feasibility of the solution generated by the crossover operator, we randomly drop
nodes from any solution that has more than p facilities (always retaining facilities
that are in both parent’s solutions) and randomly add facilities from the parents
when the operator results in fewer than p facilities being selected. The standard
genetic algorithm can result in large errors and the errors seem to grow with the
number of medians. However, if the final genetic algorithm solutions are subject to
an exchange algorithm, the errors are under 1 % and average under 0.1 % for the 25
cases.
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Fig. 2.7 Errors due to using
a genetic algorithm
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2.7 Multi-objective Extensions of the p-Median Model

The formulation above, (2.1)–(2.6), can be modified to obtain a formulation of the
maximum covering problem (Church and ReVelle 1974). The maximum covering
problem finds the location of p facilities to maximize the number of demand nodes
that are covered within some coverage distance, dc. In particular, we let dij be the
distance between candidate site i 2 I and demand node j 2 J. We then define

bcij D
�

0 if dij � dc

1 if dij > dc:

If we now solve (2.1)–(2.6) with cij replaced by ĉij, we will be able to solve a
maximum covering problem. In essence, we are minimizing the total number of
uncovered demands, which is equivalent to maximizing the number of covered
demands.

We can also find the tradeoff between the covering and average cost (or average
distance) objective by minimizing a suitable linear combination of the two cost
terms. In particular, we minimize a weighted sum Qcij D ˛cij C .1 � ˛/ Ocij of the
original cij and the coverage term ĉij, with 0 � ˛ � 1. Clearly, if ˛ D 1, the model
will simply minimize the demand weighted total distance or cost. Also, if ˛ D 0,
the model will minimize the number of uncovered demands.

The choice of ˛ is critical if we want to trace out the complete tradeoff curve.
Many researchers and practitioners simply solve the problem for fixed values of ˛.
For example, they might solve the problem for ˛ D 0; 0:05; 0:1; : : : ; 1:0. We do
not recommend this approach because it is simultaneously likely to miss important
points on the tradeoff curve and to result in obtaining many identical solutions.
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Instead, one should solve the problem using ˛1 D 1 � �1, where �1 > 0

is a suitably small value so that we are guaranteed to get one of the (possibly)
alternate optima for the p-median problem. Let Z1 be the objective function value
we obtain and let D1 D

X

i2I

X

j 2J
dj cijxij be the demand-weighted total distance

corresponding to this solution and U 1 D
X

i2I

X

j 2J
dj Ocijxij be the total uncovered

demand corresponding to this solution. Next, solve the problem with ˛2 D �2,
where �2 > 0 is a suitably small value such that we are guaranteed to get one
of the (possibly) alternate optima for the maximum covering problem. Let Z2 be
the corresponding objective function value and let D2 and U2 be the demand-
weighted total distance and uncovered demand corresponding to this solution. We
then solve ˛3D1 C .1 � ˛3/ U 1 D ˛3D2 C .1 � ˛3/ U 2 for ˛3. This results in
˛3 D

�
U 2 � U 1

�
=

�
D1 �D2 C U 2 � U 1

�
. We then use this value of ˛ to weight

the two objectives. This will either result in a new solution being found with a
demand-weighted total distance of D3 and uncovered demand U3, or the solution
will return one of the two original solutions on the tradeoff curve. If a new solution
is found, the procedure continues by exploring the region between solution 1 and
solution 3 (i.e., using ˛4 D .U 3 � U 1/=.D1 �D3 C U 3 � U 1/) and then between
solution 3 and solution 2. If no new solution is found, then no new solution can
be identified between solutions 1 and 2. This process continues until all adjacent
solutions have been explored in this manner. As a final note, we observe that this
is the weighting method, which will fail to find the so-called duality gap solutions
(Cohon 1978).

The tradeoff between the demand weighted total distance and the maximum
distance—the p-center objective—can also be found using formulation (2.1)–(2.6) if
we suitably modify the distance (or cost) matrix, assuming all distances are integer
valued. (This is not an overly restrictive assumption since we can approximate any
real distances by integer values. For example, if we need distances accurate to the
nearest 0.01 mile (or about 50 ft) we just multiply all distances by 100 and round the
resulting values.) We do so by initially solving the problem as formulated, letting
cij be the distance between demand node j 2 J and candidate location i 2 I.
We record the maximum distance, D0

max. We then modify the distance matrix so

that cnew
ij D

�
cij if cij < D0

max

M if cij � D0
max

, where M is a very large number. We then resolve

formulation (2.1)–(2.6) replacing the original costs or distances cij by cnew
ij . If M is

sufficiently large, the new solution will not entail assignments with distances greater
than or equal to D0

max. Let D1
max < D0

max be the new maximum distance. The process
continues in this manner until no feasible solution can be found, indicating that the
final value of Dmax that was obtained is the solution to the p-center problem. While
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Fig. 2.8 Sample tradeoff
between average distance and
percent covered
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this approach seems to also be a weighting approach since we are assigning a large
weight to any distance greater than or equal to the most recently found maximum
distance, it is really the constraint method (Cohon 1978) since we are precluding the
assignment of demand nodes to facilities that are too far away. This approach will
find all non-dominated solutions.

We close this section by illustrating these two multi-objective problems. Fig-
ure 2.8 plots the tradeoff between the average distance and the percent of the demand
covered within 200 miles using ten facilities with demand represented by the 500
most populous counties of the contiguous United States. The maximum covering
solution results in nearly an 18 % increase in the average distance from 137.32 to
161.93 miles, while increasing the percent covered by approximately 4 %. Obtaining
the 12 solutions shown in the figure took under 10 min of solution time.

Figure 2.9 is a sample center-median tradeoff curve using the 250 most populous
counties in the contiguous US. While this is under 10 % of the counties, it still
encompasses over 61 % of the total population in the contiguous US. The algorithm
above found 22 solutions (shown with squares and a solid line), only nine of which
(shown with circles and a dashed line) could be found using a weighting method.
The average distance ranges from about 125 miles to 152 miles, while the maximum
distance ranges from a low of 349 miles to a high of 553 miles. Several good
compromise solutions are clearly shown at the bend in the curve. Figure 2.10 is
an example of one such compromise solution. Obtaining the 22 solutions shown in
the figure took nearly 16 h of computing time.
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Fig. 2.10 Sample compromise center-median solution
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2.8 Conclusions

The p-median problem is central to much of discrete location theory and modeling.
This chapter has outlined several important model properties and has reviewed a
classic formulation of the problem. While the problem is NP-hard on a general
graph, it can be solved in polynomial time on a tree. We summarized a linear-time
algorithm for the 1-median on a tree and cited results for the general p-median
problem on a tree. The chapter then presented classic construction and improvement
algorithms for the p-median problem and pointed the reader to literature on a
number of modern heuristic algorithms that have been employed in solving the
problem on general graphs. Computational results were presented for both the
classical Beasley datasets as well as a 500-node instance based on the most populous
counties in the contiguous United States. A well-constructed Lagrangian algorithm
embedded in a branch-and-bound algorithm can solve problem instances with up to
1,000 demand nodes and 1,000 candidate sites in reasonable time. (For p D 1

the myopic algorithm—which amounts to total enumeration in this case—will
find provably optimal solutions.) Larger problem instances may require the use of
heuristic algorithms such as tabu search or simulated annealing.

The chapter concluded with two multi-objective extensions of the p-median
problem. The first examines the tradeoff between the p-median objective and the
maximum covering objective, while the second explores the tradeoff between the p-
median objective and the p-center objective. For small instances it is often possible
to solve bi-objective problems using extensions of the Lagrangian algorithm
outlined above. For larger instances, using a genetic algorithm is often advisable
since the population of solutions in a genetic algorithm automatically gives an initial
approximation of the non-dominated set of solutions.

References

Al-khedhairi A (2008) Simulated annealing metaheuristic for solving P-median problem. Int J
Contemporary Math Sci 3:1357–1365

Alp O, Erkut E, Drezner Z (2003) An efficient genetic algorithm for the p-median problem. Ann
Oper Res 122:21–42

Beasley JE (1990) OR-library: distributing test problems by electronic mail. J Oper Res Soc
41:1069–1072

Chiyoshi F, Galvão RD (2000) A statistical analysis of simulated annealing applied to the p-median
problem. Ann Oper Res 96:61–74

Church RL (2008) BEAMR: an exact and approximate model for the p-median problem. Comput
Oper Res 35:417–426

Church RL, ReVelle CS (1974) The maximal covering location problem. Pap Reg Sci Assoc
32:101–118

Cohon JL (1978) Multiobjective programming and planning. Academic, New York
Daskin MS (2013) Network and discrete location: models, algorithms and applications, 2nd edn.

Wiley, New York



2 The p-Median Problem 45

Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems.
Manag Sci 27:1–18

Fisher ML (1985) An applications oriented guide to Lagrangian relaxation. Interfaces 15:10–21
Glover F (1990) Tabu search: a tutorial. Interfaces 20:74–94
Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-

Wesley, Reading
Goldman AJ (1971) Optimal center location in simple networks. Transp Sci 5:212–221
Hakimi SL (1964) Optimum location of switching centers and the absolute centers and medians of

a graph. Oper Res 12:450–459
Hakimi SL (1965) Optimum distribution of switching centers in a communication network and

some related graph theoretic problems. Oper Res 13:462–475
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