
Chapter 17
Stochastic Location Models with Congestion

Oded Berman and Dmitry Krass

Abstract In this chapter we describe facility location models where consumers
generate streams of stochastic demands for service, and service times are stochastic.
This combination leads to congestion, where some of the arriving demands cannot
be served immediately and must either wait in queue or be lost to the system.
These models have applications that range from emergency service systems (fire,
ambulance, police) to networks of public and private facilities. One key issue is
whether customers travel to facilities to obtain service, or mobile servers travel to
customer locations (e.g., in case of police cars). For the most part, we focus on
models with static (fixed) servers, as the underlying queueing systems are more
tractable and thus a richer set of analytical results is available. After describing the
main components of the system (customers, facilities, and the objective function),
we focus on the customer-facility interaction, developing a classification of models
based on the how customer demand is allocated to facilities and whether the demand
is elastic or not. We use our description of system components and customer-
response classification to organize the rich variety of models considered in the
literature into four thematic groups that share common assumptions and structural
properties. For each group we review the solution approaches and outline the main
difficulties. We conclude with a review of some important open problems.

Keywords Congestion • Facility location • Mobile and immobile servers •
Queuing • Stochastic demand

17.1 Introduction

The class of facility location models that is the main focus of the current chapter
make the following key assumptions:

1. Customers generate stochastic stream of demands, typically assumed to be a
Poisson process, or, more generally a renewal process.
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2. Facilities contain resources (often called “servers”) that have limited capacity
and stochastic service times.

3. Customer-facility interactions happen as the result of customers traveling to
facilities to seek service, i.e., our primary focus is on the “fixed” or “immobile”
server models (in the “mobile server” case, servers travel to customers to provide
service).

4. Due to stochastic arrivals of customer demands at the facilities, stochastic service
times, and limited capacities, facilities may experience periods of congestion
where not all arriving demands can be served immediately. Customers that arrive
when the system is busy may either enter a queue or leave without getting service.
This behavior will result in either queues, or lost demands, or both.

Applications of these models range from public service facilities such as hospitals,
medical clinics and government offices, to private facilities such as retail stores or
repair shops.

We note that assumptions listed above specifically exclude a number of interest-
ing and important classes of related location models (some of these are treated in
other chapters in the current volume). First, there are many models that incorporate
capacity limitations in a deterministic, rather than stochastic, manner. These include
models seeking to ensure that there is sufficient average capacity to provide
adequate service, models that try to design a system that should perform well
even under stochastic conditions by equalizing loads between facilities, and models
that handle possible congestion indirectly by requiring certain reserve capacity
at the facilities. All of these can be regarded as deterministic approximations of
the underlying stochastic system. While this deterministic approach leads to large
technical simplifications and, as a result, much easier computations, the roughness
of the approximation is usually impossible to estimate a priori. This may lead to
systems with poor levels of customer service (at some of the facilities), and is
typically not appropriate in cases where understanding and controlling potential
congestion is important.

Second, there are some models where facilities are modeled as reliability, rather
than queueing, systems, i.e., a facility may “fail” with certain probability in some
periods, at which point it cannot provide service to customers (who are typically
assumed to try to seek service from non-failed facilities). These models do incor-
porate stochastic demands explicitly. Moreover, “failure” periods may be regarded
as representing periods of congestion at the facilities when new customer arrivals
are blocked. Thus, these models are closer to the systems we study. However,
the key difference is that “reliability” models treat the blockage probability as
exogenous to the system (a typical assumption is that each facility may fail with
certain probability at any time, where such probability is a system parameter), while
models where facilities are represented as queues treat the probability of blockage as
endogenous, i.e., it is a direct outcome of other decisions such as capacity allocation
and customer-facility interactions. Thus, reliability models can only be regarded as
approximations for the systems we are interested in.
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Third, there is an important class of models where servers are assumed to
be “mobile”, i.e., servers travel to customers rather than customers traveling to
facilities. Examples of the underlying systems include emergency services (fire,
ambulance, police) as well as repairmen making house calls. These models are close
“cousins” of the fixed-server models as they do include most of the same com-
ponents: stochastic demand streams, stochastic service times, congestion/queuing
behavior. However, these models also include additional significant levels of
complexity, such as dynamic dispatching and routing of servers, where servers can
be repositioned between facilities, re-routed before completion of the call, etc. The
underlying queuing models are analytically intractable, even if the facility locations
are assumed fixed, leading to various approximation-based approaches. In contrast,
the queuing systems underlying models with fixed servers are often (though not
always) analytically tractable, allowing for more (theoretically) precise solutions
in many cases. We refer the reader to a survey by Berman and Krass (2002) and
to a more recent survey on emergency systems planning by Ignolfsson (2013) for
more details on models with mobile servers. We note that the technical distinction
between models with fixed and mobile servers does not lie in the server mobility per
se, but rather in how the underlying queuing network is modeled (in fact, some of the
models described in this chapter have been applied in mobile server contexts). We
will provide more precision for this distinction below, once the underlying technical
framework is properly introduced.

The field of Stochastic Location models with Congestion and Immobile Servers
(SLCIS), the main focus of this chapter, has seen a rather explosive growth over a
relatively recent time period. As noted in Berman and Krass (2002), by the early
2000s, only a handful of papers on SLCIS could be found. However, by 2006 over
20 contributions were listed in the comprehensive review by Boffey et al. (2006) (we
are only counting the papers that meet the assumptions for SLCIS models discussed
earlier). In the last eight years, this number has roughly doubled. It is our intent to
review the current state of the field, as well as to systematize the many variants of
SLCIS models that have been proposed.

We note that much of the recent work has been on models with elastic demand—
i.e., where the intensity of customer demands depends on the quality of the service
provided by the facilities. In this regard it is important to mention a review by
Brandeau et al. (1995) that describes early foundation for much of this work.

As with most other location models, one could focus on cost minimization or on
net revenue (profit) maximization. Cost minimization is more appropriate when the
revenues are either not well-defined (e.g., in the case of public health facilities), or
are assumed to be exogenous to the model (e.g., when customer demand levels and
prices are fixed). While most SLCIS models in the literature are formulated with the
cost minimization objective, profit optimization is more general and is much more
natural when demand is elastic. Therefore, we will assume this objective type in our
general formulation in the following section.

The remainder of this chapter is organized as follows. We start by describing
the main model components in Sect. 17.2. These components include customers,
facilities, and the objective function of the model. A crucial part of any SLCIS
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model is the set of assumptions made about how customers and facilities interact,
specifically how customer demand is “allocated” to facilities and how much of
the potentially available demand is “captured”. These issues are explored in detail
in Sect. 17.3, where we also introduce a classification of SLCIS models based on
the types of customer response. All model components come together in Sect. 17.4
where we formulate a “general” SLCIS model and review the main features that are
typically included in various sub-classes. In Sect. 17.5 we provide an overview of
SLCIS models discussed in the literature, providing a unifying structure organized
around four main “themes”. We also discuss the key challenges that arise for
different model classes and computational approaches that have been developed.
In the last section we discuss conclusions and suggestions for future research.

17.2 Key Model Components

As noted earlier, SLCIS models describe the system consisting of customers,
facilities and their interactions. We start by describing each of these components
in more detail.

17.2.1 Customers

Customers are assumed to be located in a set J , with customer location j 2 J

capable of generating a demand stream with maximum intensity of �max
j per unit

time. In the vast majority of models described in the literature, J is assumed to be
a discrete set, often conceptualized as the set of nodes of some underlying network
G D .J; A/, where A is the set of links. Other common alternatives in location
(but not in SLCIS) literature include J being a sub-region of the real plane R2, or
consisting of both links and nodes of a network G. The most general SLCIS setting
we are aware of is given in Baron et al. (2008), where J is a bounded sub-space of
RN and can contain a mixture of discrete points and continuous regions. To keep
the presentation as transparent as possible, we will retain the common assumption
that J is discrete and n D jJ j is the number of customer demand points, which we
will frequently refer to as “nodes”.

Let uj represents the utility derived by customers at node j 2 J from services
offered by the facilities. The demand stream generated by j is assumed to be a
Poisson process with rate �.uj / 2 Œ0; �max

j �. We will postpone the description of
utility functions until Sect. 17.3.1, since other system components need to be defined
first. However, we can already identify two different classes of SLCIS models: the
elastic demand models, where �.uj / is a non-constant function, i.e., �.uj / 6D �max

j

for some values of uj , and the inelastic demand models where the demand rate is
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assumed to be constant and equal to �max
j . As a shorthand, we will use �j D �.uj /

to represent the demand rate of customer node j 2 J . The inter-arrival times of
the demand processes generated by different customer locations are assumed to be
independent.

We should also note that while it is tempting to relax the Poisson assumption
for the demand process, this must be done with care as the facilities see aggregate
demands from different customer locations, i.e., a superposition of the demand
processes. In order to apply standard queueing results to the facilities, the demand
process seen by each facility must be a renewal process. While the superposition
of Poisson processes is Poisson, which is obviously a renewal process, in general,
the superposition of renewal processes is not a renewal process. This quickly leads
to a loss of tractability for the models. Thus, except for some trivial extensions,
the Poisson assumption for demand streams appears unavoidable (one interesting
exception occurs when customer demand space is continuous, rather than finite, in
which case facilities see Poisson arrivals under much loser conditions—see Baron
et al. (2008) for the development and required assumptions). However, there is no
problem, at least from the analytical point of view, in assuming that the demand
process at each node j 2 J is not time-homogenous, i.e., that the demand rate
is a function of time. To simplify the presentation, we will stick with the time-
homogenous assumption.

An important implicit assumption in all SLCIS models we are aware of is that
all customers generate “identical” demands (in terms of service requirements), i.e.,
that the streams of demand are indistinguishable once they reach the facility.

17.2.2 Facilities

Customer demands are serviced by the facilities that contain service resources (or
“servers”). All aspects related to the facilities, including their number, locations,
and the amount/types of resources allocated to them can, potentially, be treated as
decision variables in the model. In describing the system dynamics below we will
initially treat the values of these variables as having already been determined, but
will relax this assumption when describing model formulations later.

We will assume that facility locations must belong to some set I and that at
most m � 0 facilities can be located; we will use i 2 I; to represent the location
(site) of facility i . By far, the most common assumption in SLCIS literature is that
set I is discrete, i.e., that all potential locations for the facilities have already been
enumerated. In this case, we can assume without loss of generality that I � J

(since any point in I not containing customers can be treated as a customer demand
point with the maximum demand rate equal to 0). Other options, include I � R2,
leading to continuous SLCIS models (see, for example, Brimberg and Mehrez
1997; Brimberg et al. 1997), or I � J [ A for a network G, leading to network
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SLCIS models (see, e.g., Berman et al. 2014). Unless stated otherwise, we will
generally assume I to be discrete.

To take advantage of the discreteness of I we will follow the typical convention
in location modeling and define yi 2 f0; 1g to be a binary indicator variable with
the value 1 if a facility is open at site i 2 I , and 0 otherwise. To ensure that the total
number of open facilities does not exceed m we require:

X

i2I

yi � m: (17.1)

If a facility is opened at i 2 I (i.e. yi D 1), it must be allocated some service
capacity �i > 0, which can be thought of as the average processing rate. We will
assume that �i D 0 whenever yi D 0, which can be assured by using the constraints

�i � Myi ; i 2 I; (17.2)

where M is the maximum possible processing capacity that can be assigned to a
facility.

As noted in Baron et al. (2008), there are two standard approaches to represent
facility capacity in queuing environment: as a “single-server” facility where the
capacity level can take on any value in some interval �i 2 Œ0; �max�, where �max is
the maximum practical capacity level, or as a “multi-server” facility housing �i � 0

parallel servers each with fixed capacity �0, where �i 2 f0; : : : ; kg is an integer,
�i D �i�

0 is the processing capacity of facility i , and k is the maximum number of
servers that can be stationed at a facility (with �max D k�0).

While there are some important differences between the single-server and multi-
server models (these will be touched on later) our bias is to favor the single-server
representation. It is more transparent, typically leads to cleaner analytical results,
and seems more practical as well: a typical facility will house a variety of processing
resources and discrete “servers” may be hard to identify. For example, a medical
clinic will often house doctors, nurses, examination rooms, X-ray machines, etc.
While it is sensible for a planner to think of processing capacity of a clinic in
terms of patients per hour (and how this processing capacity changes when certain
resources are added or removed), it is harder to think of the clinic containing �

distinct servers (are these doctors? nurses? rooms?). Thus, unless stated otherwise,
each facility will be assumed to house a single “server” with capacity �.

The service times at each facility are assumed to be stochastic. More specifically,
following Baron et al. (2008), we assume First Come First Serve (FCFS) service
discipline and that service requirements (which can be thought of as the amount
of work required to process one customer request) are independent and identically
distributed random variables with a cumulative distribution function (CDF) FS .w/,
and a well-defined moment generating function (MGF) GS .�/. We also assume that
the mean service time EŒS� D 1—this assumption is made with no loss of generality
as it simply rescales service times. Note that in this framework, since �i represents
the service rate of facility i , the mean service time is 1=�i and it is not hard to show
that the distribution of service times is given by FS.�i w/ with MGF GS .�=�i/.
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We define xij to be demand allocation decision variables, specifying what portion
of demand from customer node j 2 J is directed to facility i 2 I . We will initially
assume that demand allocations are binary, with the value of 1 if the demand stream
generated by customer node j is directed to facility i , and 0 otherwise. The key
underlying assumption is that once the decisions about the number of facilities,
their locations yi and the service capacities �i for i 2 I are made, the demand
allocations xij can be determined; the exact mechanism for determining demand
allocations depends on the underlying assumptions about system dynamics and is
described later. Mathematically, we assume that xij satisfies the following set of
constraints

X

i2I

xij � 1; j 2 J (17.3)

xij � yi ; i 2 I; j 2 J (17.4)

xij 2 f0; 1g; i 2 I; j 2 J (17.5)

These constraints are quite standard in location models: (17.3) ensures that at most
100 % of customer demand from j is allocated to the facilities, (17.4) prevents
allocating a customer to an unopened facility, and (17.5) enforces the binary
assumption for the allocations.

The integrality of xij reflects the “single sourcing” assumption made in most
SLCIS models, requiring each customer node to be assigned to at most one
facility. An alternative is to allow “multisourcing”, in which case xij is allowed
to be continuous, by replacing (17.5) with its linear relaxation. We also note that
constraints (17.3)–(17.5) represent “minimal” requirements on xij; they are often
supplemented by other constraints describing the mechanisms by which allocation
of customers to facilities is made.

We allow for the possibility that the demand from j is not assigned to any facility,
i.e.,

P
i2I xij D 0, which we interpret as the case of “intentionally” lost demand,

i.e. demand that could have been captured but was lost at the system planning stage,
usually due to insufficient overall system capacity. We note that even when xij D 1

some demand from i may be lost due to congestion at facility J - this portion can be
regarded as “unintentionally” lost demand, since the system did attempt to provide
service to customers at i . The amount of lost demand is typically controlled via a
penalty cost or constraints—we will return to these when we discuss specific model
formulations below. For each facility i we define the set Ni D fj 2 J jxij D 1g,
which represents the service region of facility i (clearly Ni D ; when yi D 0).

Observe that once �i and xij are known, the demand rate facing an open facility
i is a Poisson process with rate

�i D
X

j 2Ni

�j D
X

j 2J

�j xij: (17.6)

As mentioned earlier, the Poisson property results from the fact that superposition
of Poisson processes is also a Poisson process. Moreover, the demand streams faced
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by different facilities are independent of each other. Thus, each facility i 2 I acts as
a stand-alone queueing system with Poisson arrivals and general service times, i.e.,
an M=G=1 (or M=G=�i ) queue with service rate �i .

System stability (i.e., ensuring that queue lengths are finite) requires that

�i � �i ; i 2 I; (17.7)

which acts as a constraint on capacity assignment decisions. In addition, the
framework defined above allows us to express the key performance characteristics
of the facilities, such as the steady-state system waiting time Wi D W.�i; �i /

(this includes both queueing and service times), and the steady-state number of
customers in the system Li D Li .�i ; �i /, both of which are random variables
whose distributions can, in principle, be obtained. We will come back to these
quantities when we discuss system costs and service-level constraints in the next
section.

It may also be useful to require that each facility face some minimum demand
rate �min in order to ensure that it can be operated economically; sometimes these
minimum demand rates are imposed by regulators for public service facilities (see,
e.g., Zhang et al. 2010). These constraints take the form

�i � �minyi ; i 2 I: (17.8)

We note that many models make additional assumptions regarding the operations
of facilities. For example, the assumption that the distribution of service times is
exponential is quite common (though likely not very realistic in many real-life
systems; e.g., see the discussion in Boffey et al. 2006). Some authors (e.g., Boffey
et al. 2010) assume limited buffer space at the facilities. We will delay the discussion
of these additional aspects until Sect. 17.5. For the moment we regard each facility
as an infinite-buffer M=G=1 or M=G=� queue.

Remark The fact that each facility (once location, capacity and customer allocation
decisions are made) can be viewed as an independent queueing system is the
main characteristic distinguishing immobile from mobile server models; in mobile
server models the systems operated by different facilities cannot be decoupled.
This is because in these models the typical assumption is that server assignments
are dynamic, i.e., depend on the state of the system. Thus a server from a given
facility may service demands from customers at point j under some conditions,
but not under others. This leads to a system which is not, in general, separable,
and where servers located at different facilities must be treated as distinguishable.
Such queueing networks are analytically intractable even when all location, capacity
and allocation decisions are made. Thus, all modeling approaches involve strong
approximations and/or descriptive/simulation components (e.g., the Hypercube
model proposed by Larson (1974) is frequently used as the modeling foundation).

In contrast, SLCIS models decompose into a set of queues with Poisson
arrivals—systems for which strong analytical results (both exact and approximate)
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are available. We emphasize that this tractability rests in the static nature of
customer-to-facility allocations (the demand allocations are determined once and
then remain in force for all states of the system). Thus, SLCIS models where
customers decide which facility to visit based on the current state of the system
(e.g., based on posted information about current waiting times), or where other
dynamic customer allocation mechanisms may be present, are likely to be closer
(in terms of tractability and solution approaches) to models with mobile servers.
On the other hand, models with mobile servers where static and non-intersecting
service regions are assumed for all facilities (effectively assuming away dynamic
customer reallocation) are quite similar to SLCIS models; many of the mobile server
models reviewed in Berman and Krass (2002) fall into this group. Thus, instead
of differentiating stochastic location models with mobile vs. immobile servers, it
would be more accurate to differentiate models with dynamic vs. static customer
assignments.

17.2.3 Costs, Revenues, and Constraints

To complete the description of the system it remains to specify two components: (1)
the mechanisms by which customers are “allocated” to the facilities, expressed by
the variables xij (which would also determine the actual demand rates �j ; j 2 J ),
and (2) the overall system costs and constraints assuring acceptable service levels.
We will postpone the discussion of (1) until Sect. 17.3, focusing on the costs and
constraints in the current section and treating values of the key location, allocation,
capacity assignment and demand level decisions fyi ; xij; �i ; �i g; i 2 I; j 2 J as
fixed.

17.2.3.1 Travel Cost and Coverage Constraints

We assume that for each customer j 2 J and potential facility location i 2 I a
distance metric d.i; j / is defined, satisfying the regular properties of distance. The
travel cost function TC.d/ for d � 0, representing the cost of traveling distance d

is assumed to be non-decreasing and non-negative. This yields the System Travel
Cost of

STC D
X

j 2J

X

i2I

TC.d.i; j //�j xij; (17.9)

where we assume that constraint (17.4) ensures that customers are only assigned to
open facilities. This expression merely states that the system travel cost is the sum
of travel costs of all customers to their assigned facilities. We note that a frequent
assumption is that the travel cost is a linear function of distance. More generally,
since both J and I are discrete, one could simply redefine the distance measure
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to be d 0.i; j / D TC.d.i; j // for all j 2 J; i 2 I and use this new measure in
place of the original one. Thus, after suitably redefining distances and without loss
of generality, we can write

STC D
X

j 2J

X

i2I

ˇd.i; j /�j xij; (17.10)

where ˇ > 0 is a parameter relating the travel cost to other terms in the objective
function (defined below). We will use this linear form in place of (17.9) from this
point on.

Of course, a possible concern with the previous expression is that the short travel
cost of one customer will be added to the long travel cost of another, resulting in the
total quantity that may look reasonable, but will still provide poor service to some
customers. To assure that no customer faces an unreasonably long travel distance,
one can impose coverage constraints:

X

i2I

d.i; j /xij � R for all j 2 J; (17.11)

where R > 0 is the “coverage radius”, i.e., the maximum allowed travel distance
for a customer to be “covered” by a facility (this constraint should be interpreted
as referring to the “adjusted ” distance measure that incorporates the travel cost,
as discussed above). We note that most SLCIS models will include either (17.10)
or (17.11); while, in principle, both can be used in the same model, such usage is
rare.

17.2.3.2 Congestion Costs and Service Level Constraints

While travel-related costs are present in all classes of location models covered in
the current volume, the congestion-related costs and constraints are, of course, a
defining feature of the stochastic location models with congestion. As discussed
earlier, the two common performance measures in a queueing system operated by
each open facility i 2 I are the system waiting time Wi (recall that this includes the
service time; a closely related measure is W

q
i which only covers the waiting time in

queue) and the number of customers in the system Li , which are random variables
with certain steady-state distributions. The most common way to define congestion
costs is in terms of expectations of these quantities, W i and NLi , respectively. Since
the two are related by Little’s Law, we will focus on the former (which is also more
commonly used). For an M=G=1 queue, the expression for the mean waiting time
in the system W can be found in any standard reference on queuing (see, e.g., Gross
and Harris 1985, p. 255):

W D W
q C 1

�
D 1 C �2

2

	

1 � 	

1

�
C 1

�
(17.12)
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where W
q

is the expected time in queue, 	 D �=� is the utilization ratio and �2 is
the squared coefficient of variation for service times, given by �2 D 
2�2, where

2 is the variance of service times. Each term in the expression for W

q
has an

intuitive interpretation. Recall that we are assuming Poisson arrivals, which have

coefficient of variation equal to 1, and thus the term 1C�2

2
represents the average

squared coefficient of variation for arrival and service processes, often called the
“variability factor” (for exponential service this term equals to 1). The second term,
	=.1 � 	/ can be interpreted by recalling that 	 is the probability that the server is
busy and thus .1 � 	/ is the probability that an arriving demand goes straight into
service. The ratio can thus be interpreted as the length of the busy period measured
in units of the length of the free period. The last term is simply the average service
time per customer, sometimes known as the “scale effect” to recognize that as more
capacity is assigned to the system, the average service time per customer declines.
Thus

W
q D ŒVariability Factor�

�
Prob system busy

Prob system free

�
ŒScale Effect�: (17.13)

The expression for W simply adds the expected service time to the above.

Remark As noted earlier, two popular ways to represent the queueing system at a
given facility are as either single-server M=G=1 queue with capacity �, where � is
a decision variable, or as a multi-server M=G=� system where each of the � servers
has capacity �0 and � is the decision variable. If we set ��0 D �, i.e., require both
systems to have the same processing capacity, we can ask to what extent are these
systems “equivalent”? Can the simpler M=G=1 system be used as an approximation
of harder-to-analyze M=G=� one?

Equations (17.12) and (17.13) can be used to analyze the relationship between
these two systems. First note that the coefficient of utilization 	 is the same when
� D ��0. While no closed-form expression for W is known for the multi-server
M=G=� case, a popular approximation (see e.g., Hopp and Spearman 2000, p. 273)
is:

W D W
q C 1

�0
� 1 C �2

2

	
p

2.�C1/�1

1 � 	

1

��0
C 1

�0
; (17.14)

which is very similar to (17.12): focusing on the expression for W
q
, we see that

the only difference is that 	 in the numerator of (17.12) is replaced with 	
p

2.�C1/�1

in (17.14). In fact, the latter approximates the probability that all servers are busy in
the M=G=� system. Thus, each term in the intuitive interpretation (17.13) of W

q
has

the same interpretation for both systems. The only difference in the expected waiting
times is that M=G=1 system is busy more frequently (since 1 > 	 > 	

p
2.�C1/�1),

thus yielding larger values of W
q
. On one hand, the relative difference in W

q
can be

quite large (it approaches 100 % as 	 ! 0). On the other hand, this difference should
be small when 	 is close to 1 and waiting times in both systems are significant,
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while when 	 is small, the waiting times in both systems are quite small and the
large relative difference may not be of practical significance. Thus, as a rough
approximation, M=G=1 system can be used in place of M=G=� when the expected
waiting times are of primary interest.

However, when the primary measure of interest is the expected total time in the
system W , one has to be more careful. When the system is highly utilized, i.e., 	 is
close to 1, the main determinant of W is the waiting time and the previous argument
applies. However, when the system utilization is lower, the expected service time
will play a large role. Since it is 1=�0 for M=G=� and 1=� D �=�0 for M=G=1,
the difference is quite large and approximation is no longer appropriate. Thus, with
respect to W , the approximation can only be justified in the heavy utilization case.

Turning our attention back to the M=G=1 system, we would like to
rewrite (17.12) in terms of decision variables in our model. This is not difficult
to do, and with a little algebraic manipulation we obtain the following expression
for the expected waiting time at an open facility i 2 I :

W i D W
q

i C 1

�i

D .1 C �2/�i

2�i .�i � �i /
C 1

�i

(17.15)

with �i given by (17.6). We assume that W i D 0 if there is no facility at i .
Several comments are in order. First, we treat �2 as an intrinsic model parameter,

rather than a decision variable, i.e., we assume that the coefficient of variation of
service times is fixed in advance. While this is certainly the case when a specific
distribution of service times is assumed (e.g., for M=M=1 queues �2 D 1), there is,
in principle, no reason why this should not be a decision parameter in the system.
For example, if the decision on how much capacity to install in facility i also deals
with what kind of capacity to install, then the coefficient of variation � could well
be affected, as well as �i : service systems with higher level of automation may have
lower � , while more manual processes may have higher � (of course the resulting
values may be different at different facilities, so �i notation would have to be used).
Another case where � may be a decision variable is when customers at different
nodes have different service time variabilities, in which case the allocation decisions
xij may well influence the total demand �i and the variability of service times �i

as well as �i . Nevertheless, we are not aware of any SLCIS model that treats this
parameter as a decision variable; in fact the value of the coefficient of variation is
assumed to be identical at all facilities, which is reflected in our usage of � without
a subscript.

Second, observe that W i (and W
q

i ) is decreasing in �i , increasing in �i and
convex with respect to both �i and �i whenever system stability conditions (17.7)
hold. These properties are exploited in many SLCIS models that follow.

Let WC.w/ represent the “waiting cost”, i.e. the cost incurred by customers
waiting w units of time (henceforth we assume that waits include service times,
i.e. use measure W defined earlier; an equivalent treatment can be developed by
focusing on waiting times in queue only, i.e. W q). As with the travel costs, we
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assume that WC.w/ is non-negative and non-decreasing, noting that many models
make the simplifying assumption that the waiting cost is proportional to w. The total
expected waiting cost in the system can now be expressed as

SWC D
X

j 2J

X

i2I

W C.W i /xij: (17.16)

In view of non-linear dependence of the expected waiting time W i on the decision
variables, SWC is a non-linear function even when the waiting cost is assumed to be
linear.

We note that since the waiting cost is only incurred by customers who are
assigned to some facility, we should also add a penalty term for customers that
are not assigned to any facility (i.e., not served)—otherwise the model may have
an incentive to not assign customers even if service capacity is available. The
“intentionally lost demand” customers may be represented in the revenue term
described later (i.e., they are treated as an opportunity cost of lost revenue).
Alternatively they can be represented by a term p

P
j 2J

�
1 � P

i2I xij
�

which may
be added to the SWC expression above, where p represents the penalty for choosing
to not service a customer.

There are two potential issues with using (17.16) as the sole measure of service
quality (in terms of waiting times) at the facilities. First, as with the system travel
cost, a small value of SWC does not necessarily ensure that all customers are
receiving adequate service—a small expected waiting time at one facility may
“hide” a large expected waiting time at another. Thus, one may want to add the
constraints (these are traditionally stated in terms of waiting time, rather than system
time; we follow this tradition):

W
q

i � EW; i 2 I; (17.17)

where EW represents the acceptable maximum waiting time at any facility.
Second, the expected waiting time may not be sufficient to express the desired

service quality; we may wish to ensure that most customers experience no waiting
at all or that the probability of “long” waits is sufficiently low. For this we need to
consider a constraint of the form

P.W
q

i > T / � ˛T ; i 2 I; (17.18)

where P.�/ is the steady-state distribution of W
q

i , T > 0 is the specified threshold
for the waiting times, and ˛T 2 .0; 1/ is the maximum acceptable probability
of waits longer than T at any facility. For example, ˛0 represents the maximum
acceptable proportion of customers that must wait for service at any facility.

Both (17.17) and (17.18) above are examples of Service level Constraints (SCs)
that are quite common in SLCIS models. Since (17.17) refers to the expected
behavior of the system, while (17.18) refers to the probability of occurrence of
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certain (undesirable) events, we will refer to the former as the “Mean SC” and the
latter as the “Probabilistic SC”. While the Mean SC is easily expressed in terms
of the decision variables by substituting (17.15) into (17.17), the Probabilistic SC
requires an expression for the steady-state distribution of the waiting time, which
is not generally available. One option is to make additional assumptions about
the distribution of service times (e.g., assuming M=M=1 or M=Ek=1 queues at
the facilities) since steady-state distributions of waiting times have been derived
for many common systems. Another option is to use an approximation. The
one we follow here is based on Baron et al. (2008). Assume that the service
constraints (17.18) are specified and let

V.T; ˛T / D � ln.˛T /

T
I

observe that since ln.˛T / < 0, this is a positive constant that is decreasing in ˛T and
in T . Then (under certain mild technical assumptions), constraint (17.18) is satisfied
whenever

GS .
V.T; ˛T /

�i

/.�i � 1/ � V.T; ˛T /; (17.19)

where GS .�/ is the MGF of service times defined earlier. Recall that GS .�/ is
an increasing function for � > 0, implying that the left-hand side of (17.19)
is decreasing in �i . This is quite intuitive: when T or ˛T are decreased, the
probabilistic SC becomes tighter, requiring more capacity at the facility. In fact,
as V.T; ˛T / becomes larger, satisfying (17.19) requires more capacity �i .

This leads to a general view of service constraints: for any arrival rate �i at
facility i 2 I one can define a minimum capacity level N�.�i/ such that SC holds if
and only if

�i � N�.�i /; (17.20)

where N�.�i/ is computed (perhaps numerically) from (17.17), (17.18), or (17.19).
Of course, an equivalent view is to specify a function N�.�/, which is just an inverse
of N�.�/, so that SC holds whenever

�i � N�.�i /; (17.21)

i.e., for a given capacity level �i there is a maximal arrival rate N�.�i / for which
an adequate service level can be provided by facility i . This view extends to other
definitions of SCs (e.g., instead of using waiting time one could use L or another
service level measure)—the only thing that changes is the way functions N�.�/ and
N�.�/ are computed.

We note that system stability conditions imply that N�.�/ > � (equivalently
N�.�/ < �) and the difference N�.�/ � � may be interpreted as the amount of

the “capacity cushion” (capacity in excess of the minimal possible level) needed
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to ensure adequate service given the arrival rate �. For many systems and many
specifications of service level constraints it has been shown that this amount grows
proportionately to

p
�, i.e.

N�.�/ � � C Q
p

� (17.22)

for some constant Q (see, e.g., the discussion in Castillo et al. 2009). The derivations
in Whitt (1992) suggest that, under many conditions, a good interpretation for Q is
provided by

p
2Q �

p
�2 C 1P.W > 0/;

where � is the coefficient of variation of arrivals. Thus,
p

2Q=
p

�2 C 1 is approx-
imately equal to the probability of waiting, a natural service level measure. To
summarize, when the probability of waiting is used as the service-level measure,
the constraint

P.Wi > 0/ � ˛0; i 2 I

holds if

�i � N�.�i / � �i C
"r

�2 C 1

2
˛0

#
p

�i ; i 2 I: (17.23)

Similar expressions can be derived with for service level measures where the
threshold for waiting time is set above 0.

As noted earlier, incidence of long waits can be controlled through service level
constraints and/or explicit waiting cost terms in the objective function. While, in
principle, both can be used in the same SLCIS model, it is far more common
to use one or the other. In models where only service level constraints are used,
these constraints will be tight in an optimal solution (since capacity is costly). If,
in addition, the demand is assumed to be inelastic, �i is a linear function of the
decision variables xij. In this case a significant simplification is achieved by using
the previous expression: setting the SC as an equality, we can eliminate decision
variables �i from the model, replacing them with the right-hand side of (17.23).

17.2.3.3 Facility Costs

We assume that the decision to open a facility at i 2 I incurs two types of costs:
the fixed cost FCi , which depends on the characteristics of the location i , and the
variable cost VC.�i /, which depends on the amount of capacity �i allocated to
the facility. The function VC.�/ is assumed to be non-decreasing and non-negative
with VC.0/ D 0; concavity of VC.�/ is a frequently made assumption, reflecting
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economies of scale. With these definitions, the System Facility Cost is defined as
follows:

SFC D
X

i2I

FCi yi C
X

i2I

VC.�i / (17.24)

17.2.3.4 Revenues and Overall Objectives

We assume that each customer that is served brings in a revenue r to the system (for
public service applications, we can treat r as a “system benefit” parameter). The
total expected revenue can be expressed as

SR D r
X

i2I

�i D r
X

j 2J

�j

X

i2I

xij: (17.25)

In principle, the parameter r can be treated as a decision variable—the price
charged by the decision-maker for service. However, in the vast majority of SLCIS
literature this term is treated as an exogenous parameter (Tong 2011 and Berman
et al. 2014 being the exceptions). Since treating prices as decision variables
introduces significant new complications, we will generally treat r as constant in
the model.

We also observe that when demand is inelastic (i.e., �j D �max
j for all

j 2 J ) and when the constraints require that all customers must be served (i.e.,P
i2I xij D 1; j 2 J ), it is easy to see that SR D r

P
j 2J �max

j ; which is a
constant. In this case, the revenue term in the objective can be dropped, leading to
a pure cost minimization case. Even in models where some customers may not be
served, but the demand is inelastic, it is common to use cost minimization with a
penalty term, which can be interpreted as opportunity cost for unserved customers.

To summarize, the overall objective for a general SLCIC model is given by

maximize ŒSR � STC � SWC � SFC� ;

where the respective components are defined by (17.25), (17.10), (17.16),
and (17.24). We note that in most specific models described in the literature,
only a subset of the terms above is present, the rest being implicitly controlled by
constraints (e.g., in the presence of service level constraints, the SWC term is often
dropped).

Most of the terms above depend on demand allocations xij and demand rates �j ,
which have not yet been described. This is the subject of the following section.
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17.3 Customer Response: Demand Levels and Allocations

In this section we discuss the two remaining key issues in SLCIS models: the
mechanism determining the allocation of customer demand to facilities, represented
by xij variables, and the amount of demand �j generated by customers at j 2 J .

In location modeling two approaches for allocating customer demand to facilities
are generally considered: directed choice, where the same decision-maker determin-
ing the number and locations of the facilities also has the power to assign customers
to the facilities in a way that will optimize the model objective, and user choice
where customers self-assign to facilities based on maximization of their own utility
functions, which may not be aligned with the overall model objective. For example,
a common customer utility function is the travel distance. Thus, in a user choice
environment, each customer will select the closest facility, while in the directed
choice case a customer may be assigned to a further facility even when a closer one
is open (if such assignment reduces the overall facility cost).

The same framework can be applied to the SLCIS models. However it may be
more useful to also classify the models in terms of the assumed customer reaction.
We differentiate four classes of models:

Type NR: Models with no customer reaction: customers do not control the
demand allocations and the demand rates are fixed (directed choice with inelastic
demand)

Type AR: Models with allocation-only reaction: customers select utility-
maximizing facilities, but the demand rates are fixed (user choice with inelastic
demand)

Type DR: Models with demand rate-only reaction: customer do not control the
demand allocations but do determine the demand rates (directed choice with
elastic demand)

Type FR: Models with full customer reaction: customers control both, the alloca-
tion of demand (by selecting the utility-maximizing facilities) and the demand
rates (user choice with elastic demand).

This classification is summarized in Table 17.1.
The NR models correspond to the standard directed choice assumptions in the

literature: the values of the assignment variables xij are entirely controlled by the
decision-maker and must only satisfy the basic constraints (17.3)–(17.5). One may
also interpret such models as describing a “social optimum” (also known as “first
best solution” in economics)—the customers will accept whatever assignments are
needed to optimize the overall system objective, even if that means that some of

Table 17.1 Model
classification by customer
response

Demand allocation

Decision-maker Customer

Inelastic demand NR AR

Elastic demand DR FR
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them may have to travel to more distant and more congested facilities than the ones
available in their immediate neighborhood. On the other hand, since the objective
function combines the costs borne by the decision-maker (facility costs SFC) with
those borne by the customers (travel cost STC and waiting cost SWC), the interests
of both parties should be “balanced” in the solution. Customer demand is assumed
to be inelastic, with �j D �max

j for all j 2 J . Since customer utility has no effect
in this model, there is no need to define it. We note that xij are usually assumed
to be binary in NR models (though it is easy to construct examples showing that
higher objective values may be possible with fractional assignments). This is due
to the concern that enforcing fractional demand allocations is likely impractical in
most contexts. Thus, in NR models only the “minimal” constraints (17.3)–(17.5)
need to be imposed on demand allocations: the decision-maker is free to choose any
allocation that satisfies these constraints.

The other three model types assume some form of customer reaction in the form
of utility-maximizing behavior. The description of the utility mechanism is provided
next.

17.3.1 Customer Utility Functions

Recall that uj is the utility derived by customer j 2 J from the service provided
by the facilities. Note that there are two costs borne by the customer: travel and
waiting. Suppose a customer experiences travel distance d (as before we assume
that distances have been redefined to represent travel costs) and expected system
waiting time w. Let the utility U.d; w/ be a non-increasing function of d and w. To
relate uj to U.d; w/ we assume that the total utility derived by customer j is only
affected by the facilities this customer actually visits, letting

uj D
X

i2I

U.d.i; j /; W i /xij; (17.26)

Note that this definition remains valid even when the single-sourcing assumption
is relaxed. In this case, xij represents the proportion of time facility i is used by
customer j and uj can be interpreted as the resulting expected utility. Observe also
that if a customer does not receive service from any facility, xij D 0 for all i 2 I

and uj D 0.
Perhaps the most natural specification for the utility function U.d; w/ is the linear

form

U L.d; w/ D �.�d d C �ww/; (17.27)

where �d ; �w > 0 are the relative weights on travel distance and waiting time,
respectively. When �w D 1, the parameter �d can be interpreted as the average
travel speed, so that �d d is the average travel time, and the right-hand side of (17.27)
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represents the negative of the total expected time spent by the customer in the system
(until the end of service).

There are two other common specifications of U.d; w/. The simpler one is

U D.d; w/ D ��d d; (17.28)

i.e., customer’s utility is simply proportional to the traveling distance (representing
the travel cost) and is independent of the waiting time. This is a very popular
specification form appearing (often implicitly) in numerous SLCIS models. While
the lack of dependence on w may seem counterintuitive, it is usually justified
by assuming that customers do not have advance knowledge of waiting times at
the facilities and thus must make their decisions based on travel times only. This
justification is not entirely convincing sine in a steady-state system some learning
about expected waiting times should, presumably, occur. Alternative justification is
that the waiting costs are dominated by the travel costs. Perhaps more importantly,
as will be seen below, specification (17.28) avoids many technical complications
that occur when a more general utility structure is used and can thus be treated as
an approximation.

Another natural specification is the log-linear form

U E.d; w/ D exp.��d d � �ww/; (17.29)

which is quite similar to (17.27) with the advantage of the utility being non-negative,
convex and bounded by 1. Note that U E.d; w/ D 1 when d D w D 0, i.e., when
the customer incurs neither travel nor waiting cost, and U E.d; w/ ! 0 as d; w !
1. This makes it convenient to interpret U E.d; w/ as the proportion of maximum
available demand realized from customer j if this customer is faced with travel
distance d and expected wait w. This interpretation will be useful when describing
elastic demand models below.

Finally, we note that a utility function can be defined in terms of service measures
other than the expected waiting time W — one can use the probability of waiting
P.W q > 0/, or any other performance measure of the queuing system operated at
the facilities. The specifications of the utility can also be generalized to incorporate
other decision variables, such as the price charged by the facility operator for service
(see Berman et al. 2014 for an example).

17.3.2 SLCIS Models with Customer Reaction

Once a utility function is specified, it should be possible to specify the customer
reaction as well. At a first glance, this seems fairly straightforward: a SLCIS model
with customer reaction can be viewed as a bi-level game, where the decision-maker
first specifies the number, locations and capacities of the facilities (i.e., values of m,
yi and �i for i 2 I ) and then each customer selects a utility-maximizing strategy.
Unfortunately, as we will see shortly, complications quickly arise. This has to do,
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primarily, with the fact that customer utility is a function of the waiting time W i ,
which is not directly controlled by the decision-maker, but rather arises as a result
of joint actions of the decision-maker and all customers: the former determines
facility locations and capacities �i , while the latter determine the demand rates �i .
This gives rise to traffic equilibrium conditions, where the actions of one customer
(adjusting their demand rate �j and/or demand allocation xij) change the waiting
times at the facilities and thus affect the utilities of all other customers. Thus, not
only is there a bi-level game being played between the decision-maker and the
customers, but there is also a simultaneous non-cooperative game being played
between the customers themselves. Moreover, the response functions in the latter are
rather complicated, which may lead to lack of equilibria (if customers are restricted
to simple strategies), or to multiple equilibria, not to mention serious difficulties
in computing these equilibria. We discuss these issues briefly below, referring the
interested reader to more general references on spatial equilibria like Nagurney
(1999).

17.3.2.1 AR: Models with Allocation-Only Reaction

In this type of models, it is assumed that the demand rate of each customer node is
fixed a priori, with �j D �max

j for all j 2 J . However, the customers determine their
demand allocations, i.e., the values of xij variables, in a utility-maximizing fashion.
For concreteness, we will assume the linear specification of the utility function
U L.d; w/ given by (17.27), though much of the discussion extends to alternative
specifications as well.

We first consider the original “single-sourcing” assumption. Since the customer
will allocate all of their demand to a utility-maximizing facility, xij D 1 implies that

U L
�
d.i; j /; W i

� � U L
�
d.k; j /; W k

�
for all k 2 I with yk D 1;

which, assuming for simplicity that �w D �d D 1 in (17.27), is equivalent to

d.i; j / C W i � d.k; j / C W k if yk D 1; k 2 I:

Recalling that �i is given by (17.6) and W i by (17.15), this leads to the following
equilibrium conditions that must be satisfied by allocations xij:

d.i; j / C W i � Œd.k; j / C W k�yk C M.1 � xij/; i; k 2 I; j 2 J (17.30)

W i D .1 C �2/�i

2�i .�i � �i /
C yi

�i C M.1 � yi /
; i 2 I (17.31)

�i D
X

j 2J

�max
j xij; j 2 J (17.32)
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X

i2I

xij � 1; j 2 J (17.33)

xij � yi ; i 2 I; j 2 J (17.34)

xij 2 f0; 1g; i 2 I; j 2 J (17.35)

where M is a suitably large constant. We assume that some finite limit can be
imposed on the expected waiting time W i at any facility and that M � d.i; j /CW i

for all j and i .
Of course a trivial solution to this system is to have xij D 0 for j 2 J; i 2 I

(which also implies W i D 0 for all i 2 I ), i.e., to have complete loss of all customer
demand. Clearly, we are interested in non-trivial solutions where at least some
customers choose to obtain service. On the other hand, the system may not have
enough capacity to serve all customers. We therefore make the following definition.

Definition 17.1 A subset of customer nodes J 0 � J is serviceable if

X

j 2J 0

�max
j �

X

i2I

�i :

A subset J 0 is fully served if
P

i2I xij D 1 for all j 2 J 0, i.e. if (17.33) holds as
equality for all j 2 J 0.

This definition simply assures that there is sufficient capacity to serve any service-
able subset. We are interested solutions where at least some serviceable subsets of
J are fully served. Unfortunately, the system (17.30)–(17.35) may have no such
solutions.

Example 17.1 Consider a network with one customer node j and two facility nodes
0; 1 both of which contain facilities, i.e., y0 D y1 D 1. Assume further that �0 D
�1 > �max

j , and thus J D fj g is serviceable. Assume d.j; 0/ D d.j; 1/. Then, since
Wi D 0 if xij D 0 and Wi > 0 when xij D 1 for i D 0; 1, there is no feasible solution
to the system (17.30)–(17.35). Indeed, if customers at j select facility i , it creates
non-zero waiting time at that facility, making the other facility a utility-maximizing
choice. Other similar examples of non-existence of equilibria with binary allocation
vectors are easy to construct.

The underlying reason for the phenomena illustrated above is that single-sourcing
strategies create discontinuities (a facility receives either all of customer’s demand,
or none of it), while the existence of equilibria typically requires continuity of the
underlying functions. Indeed, intuitively it is clear that in the previous example
equilibrium allocations are achieved if the customers at j visit each facility with
equal frequency. This, of course, requires the relaxation of the single-sourcing
assumption, allowing xij to take on fractional values, which are interpreted as
visit frequencies. In addition to replacing (17.35) with its linear relaxation, the
equilibrium-defining inequality (17.30) has to be adjusted as follows.



464 O. Berman and D. Krass

Recall the definition of uj given by (17.26), which is now interpreted as the
expected utility for customers at j 2 J given a fractional allocations vector xij; j 2
J; i 2 I (we emphasize that the waiting times are affected by the allocations of all
customers, not just the ones at j ). We seek allocations under which no customer can
improve their utility by making unilateral changes. It follows that the equilibrium
utilities u�

j ; j 2 J must satisfy

d.i; j / C W i

(
D �u�

j if xij > 0I
� �u�

j if xij D 0

(recall that we are assuming linear utilities which are equal to the negative of total
travel and waiting times). These conditions can be represented by replacing (17.30)
with the following non-linear complementarity conditions:

d.i; j / C W i � vj ; j 2 J; i 2 I (17.36)

.d.i; j / C W i � vj /xij D 0; j 2 J; i 2 I (17.37)

vj � 0; j 2 J (17.38)

where vj D �u�
j , representing the equilibrium “disutility” for customers at j 2 J ,

is included in the model as a new decision variable. We will refer to a solution of
the system (17.31)–17.38) as Customer Flow Equilibrium.

The following result follows directly from Theorem 5.4 of Ashtiani and Magnanti
(1981) by continuity of U

�
d.i; j /; W i.x/

�
for all j 2 J; i 2 I , where x is a

fractional allocation vector with components xij.

Theorem 17.1 For any values of yi 2 f0; 1g and �i � 0 such that �i � Myi ,
if a subset J 0 � J is serviceable, then there exists at least one customer flow
equilibrium xij; j 2 J; i 2 I under which J 0 is fully served.

In particular, if the system has the capacity to service all of customer demand,
i.e., J is serviceable, at least one customer flow equilibrium must exist under which
all customers are served.

The discussion and the result above is quite general: in particular, it extends to
models with elastic demand (i.e., models of type FR discussed below). Additionally,
in place of the expected waiting time for an M=G=1 queue, a general measure of
“congestion” can be used with the only requirements that it is strictly increasing,
twice differentiable, non-negative and convex (recall that all capacity decisions are
considered to be fixed in this section). These requirements are clearly satisfied
by most performance measures for queueing systems, including multi-server and
limited-buffer queues. We refer the reader to Brandeau et al. (1995) for a discussion
of these more general settings.

It is important to realize that the customer flow equilibrium may not be unique. In
fact, there may be multiple allocation vectors satisfying the equilibrium conditions
for a particular fully served subset of customer nodes. For an example, consider
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adding a second identical customer node j 0 to the system in Example 1. Now, if
customers at both nodes are assigned to different facilities: xij D 1; x.1�i /j D 0,
xij0 D 0; x.1�i /j 0 D 1 for j D 0; 1, we have two different equilibria. In fact, there
may be infinitely many equilibria: any assignment satisfying

xij D ˛; x.1�i /j D 1 � ˛; xij0 D 1 � ˛; xij0 D ˛; ˛ 2 Œ0; 1�

is also an equilibrium. In principle, different equilibrium allocation vectors may
lead to different values of the objective function in the underlying SLCIS model,
creating uncertainty as to which solution will actually arise. However, all equilibria
are “similar” in certain key aspects, as shown in the following theorem based on the
result provided in Brandeau and Chiu (1994):

Theorem 17.2 For any two customer flow equilibria under which a subset J 0 � J

is fully served, the values of �i i 2 I (total demand seen at each facility) and
vj ; j 2 J (equilibrium disutility of each customer node) are the same.

This theorem implies that, under a sensible specification of the objective function,
where the total travel and waiting cost for each customer node is a function of vj ,
all equilibria will give rise to the same values of the objective.

While the previous results show that AR models with multi-sourcing demand
allocations are well-posed, there is an important issue concerning computational
tractability of system (17.31)–(17.38). Even for fixed facility locations and capac-
ities, solving the customer flow equilibrium conditions is far from easy. While
certain numerical approaches (described in Nagurney 1999) do exist, they are
computationally heavy even for moderate-size problems (see Tong 2011). Often,
to get reasonable algorithmic efficiency one has to make simplifying assumptions
about the system, e.g., assuming M=M=1 queues simplifies (17.31), making the
system much more solvable—see Zhang et al. (2010) who were able to compute
equilibria for a system with jJ j � 500 and jI j � 40 (note that their model also
had elastic demands, which likely increased computational complexity). Keeping in
mind that computing customer flow equilibrium is only a subproblem of an SLCIS
model, embedding this computation in an overall exact optimization procedure is
nearly impossible. Hence both of the papers cited above resort to search heuristics
for the upper level (location and capacity allocation decisions).

In view of the difficulties involved in using the customer flow equilibrium
approach above, it is natural to think of model simplifications. We mention three
such approaches. One is to keep the single-sourcing assumption in spite of the
possible non-existence of equilibria (see Zhang et al. 2009). The reason this may be
reasonable is that, as mentioned earlier, nonexistence is a result of discontinuity—
when re-assignment of a single customer alters the waiting times at the facility
for the remaining customers. It is reasonable to assume that for realistic problem
instances, this should not be an issue: as the number of customers and customer
nodes grows, no single assignment should exert a significant impact on waiting
times at the facilities. Thus, asymptotically, single-sourcing equilibria should
emerge. Indeed, Zhang et al. (2009) did not report issues with nonexistence of
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equilibria when solving realistic-size problem instances for mammography clinics
in Montreal, Canada. The obvious advantage of the single-sourcing approach is that
the system (17.30)–(17.35) is much easier to solve and can be embedded as part of
constraints in a larger SLCIS model.

The second approach is to use distance-only utilities U D.d/ given by (17.28).
Since these are independent of waiting times, the existence of customer flow
equilibria is no longer an issue; utility-maximizing behavior by customers merely
implies that once facility locations are specified, each customer travels to the closest
facility, replacing (17.30) with

d.i; j / � d.k; j /yk C M.1 � xij/; i; k 2 I; j 2 J; (17.39)

which leads to significant simplifications (obviously, single-sourcing assumption
can be retained here as well).

Yet another alternative to customer flow equilibrium is to use market share
allocation approach, as discussed in Sect. 17.3.2.4 below.

17.3.2.2 DR: Models with Demand-Only Reaction

In this model class, the decision-maker has the control of the demand allocation
vector x, however, the demand �j D �.uj / for customer node j 2 J is assumed to
be a function of the utility uj realized by customers at j . Following Brandeau et al.
(1995) we assume that

�j D �max
j h.uj /;

where, as defined earlier, �max
j is the maximum possible demand rate at node j and

h.u/ 2 Œ0; 1� is a strictly decreasing, twice differentiable function with h.0/ D 1 and
h.u/ ! 0 as u ! umin

j , where umin
j is the lower bound on the utility for customers

at j (e.g., if utilities are scaled to be non-negative, then we can set umin
j D 0). Thus,

h.uj / can be interpreted as the percentage of the maximum available demand at j

that is “captured” by the system; it is often called the “participation rate”.
Recall that by (17.26), the utility uj is a function of the waiting time and travel

distance faced by customers at j . As in the case of NR models, we will assume
that xij is binary, motivated by the same considerations as before: when customer
demand allocations are dictated by the decision-maker, rather than by an equilibrium
condition of the previous section, enforcing fractional assignments is typically
unrealistic. Thus, assuming all customers at j will be served (as will be shown
below, this assumption holds automatically in DR models), xij D 1 for exactly one
i D i.j / 2 I . Then, we have

�j .d.i.j /; j /; W i.j // D �max
j h.U.d.i.j /; j /; W i.j ///; j 2 J: (17.40)
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One example of a functional form of h that satisfies the required assumptions is the
exponential utility U E given by (17.29), leading to the popular “exponential decay”
demand specification:

�j .d.i.j /; j /; W i.j // D �max
j exp.��d d.i.j /; j / � �wW i.j //; j 2 J: (17.41)

While this expression is assumed in several published DR models, most of the
results below apply to more general functional forms as well. Observe that (17.40)
implicitly defines an equilibrium condition: the left-hand side depends on the
waiting time W i.j / at facility i.j /, which is a function of demand �i.j / DP

j 2J �j xi.j /;j seen by this facility. Thus, (17.40) should be seen as a system of
jJ j equations that must be solved to yield the actual demand rates; this system
decouples into subsystems consisting of all customers j 2 J with i.j / D i for
each facility i with yi D 1. Thus, even though the allocation variables xij are fixed
(or, rather, set by the decision-maker) for DR models, the issues related to existence
and uniqueness of equilibria must be dealt with. The following result is based on
Berman et al. (2014), where it is established for the case where price r is also a
decision variable.

Theorem 17.3 For any given facility location, capacity, and demand alloca-
tions yi ; �i ; xij for i 2 I; j 2 J , there exist unique equilibrium arrival rates
�j .d.i.j /; j /; W i.j // and waiting times W i .

Note that, unlike the case for AR models, this result holds with binary demand
allocations xij (it obviously extends to the fractional allocations as well). As
illustrated in Aboolian et al. (2012), as well as in Berman and Kaplan (1987),
computation of the equilibrium demand is relatively simple in this case, based on
the fixed-point iteration approach.

An interesting feature of the DR model is that it is self-regulating: as waiting
times become longer at the facilities, customer demand is automatically reduced.
Thus, the system stability is assured by (17.40) without the need for explicit
constraints (17.7). Moreover, even though customer assignments are “dictated” by
the decision-maker through the specification of xij, assigning customer j to a more
distant or more congested facility leads to lower demand �j , with the resulting
loss of revenue. Thus, the model assures that customer assignments must take
customer utilities into consideration, while avoiding the complexities of full traffic
equilibrium treatment. In fact, Aboolian et al. (2012) report (based on computational
experiments) that optimal solutions where some customers are not assigned to their
utility-maximizing facility are quite rare, though they do occur.

The behavior of DR model involves an interesting feedback loop: as the service
offered by the facilities is improved (by locating the facilities closer to customer
nodes, or allocating more capacities to the facilities), the customers respond by
generating more demand (positive feedback), which leads to increased congestion
at the facilities, leading to reduced demand (negative feedback). Thus one could
legitimately ask whether models with elastic demand may lead to counter-intuitive
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results where service improvements result in a net loss of demand. Fortunately, this
is not the case as shown in the following result from Berman et al. (2014):

Theorem 17.4 For j 2 J , let �j .dj ; wj / be the equilibrium demand rate when the
travel time is dj and the expected waiting time is wj . Then �j is non-increasing in
dj and wj (strictly decreasing when the utility function is strictly decreasing in the
corresponding parameter).

Thus, with a reasonably behaved utility function, when the service offered to
customers at j 2 J is improved in terms of either travel distance or waiting time,
or both, the demand rate increases, leading to higher revenue for the decision-
maker (for this customer node). Since nodes that are currently not served (i.e., withP

i xij D 0) can be treated as having the travel distance that is so high that the
demand rate is negligibly close to 0, the decision to serve these nodes by assigning
them to any open facility can be treated as reducing the travel distance. This leads
to the following result:

Corollary 17.1 In the elastic demand case, there exists an optimal solution to
SLCIS where every demand node is served.

17.3.2.3 FR: Full Response Models

In this model class, the customer response to facility location and capacity allocation
decisions includes both the level and the allocation of demand. Thus, the equilibrium
values of xij and �j are described by a system that includes flow equilibrium
conditions (17.36)–(17.38), as well as the elastic demand equilibrium (17.40). The
existence and uniqueness of equilibria are assured by the following corollary:

Corollary 17.2 The equilibrium existence and uniqueness results of Theorems 17.1
and 17.2 extend to the FR model class.

The reader can refer to Brandeau et al. (1995) for further details; note that the
uniqueness result has the same limitations as for the AR models (i.e., uniqueness
can only be guaranteed with respect to the values of the objective, provided the
objective function is suitably defined). Also, just as in AR models, this corollary
requires fractional allocation vectors xij.

The computation of equilibrium solutions presents even more challenges than
for AR models. This has lead to an alternative specification of demand allocation
vectors described in the following section.

17.3.2.4 FR and AR Models with Proportional Allocations: Market Share
Models

Our development of AR and FR models was based on the assumption that customers
allocate their demand in a utility-maximizing fashion. As we have seen, this
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assumption leads to flow equilibrium-type conditions with the ensuing structural and
computational difficulties. An alternative approach is based on the assumption that
customers allocate their demand among many (possibly all) facilities in proportion
to the utility derived from these facilities. Essentially, each customer node j 2 J is
viewed as a “market” with facilities competing for the shares of this market. These
models, that are axiomatically rooted in the stochastic utility theory, have generated
a large body of literature, particularly in economics and marketing; in the latter they
are accepted as the dominant model for customer choice in the presence of many
substitutable alternatives (e.g., predicting market share of a particular brand when
many other brands are available).

In the competitive location literature these models have appeared under many
names, including “competitive interaction models”, “Huff-type models”, “gravity
models”, “multinomial logit models”, “market-share models”. While there are
minor specification differences between these, the basic structure remains the same;
we refer the reader to the recent review by Berman et al. (2009a).

Since SLCIS models of AR and FR type can be regarded as bi-level games played
between the decision-maker and the customers, proportional allocation mechanism
can be applied to the SLCIS context as well (in effect, it specifies the solution to the
non-cooperative game played between customers once the decision-maker’s strategy
is specified). The specification is quite simple: for customers at j 2 J and (open)
facility at i 2 I , the demand allocation is given by

xij D U.d.i; j /; W i /yiP
k2I U.d.k; j /; W k/yk

; (17.42)

where the numerator represents the utility derived from facility i and the denomina-
tor is the total utility derived by customers at j from all open facilities. Note that if
there are any pre-existing competitive facilities that may attract customer demand,
they should be included as an extra sum

P
k2C U.d.k; j /; W k/ in the denominator,

where C is the set of competitive facilities. To simplify the exposition, we will
assume no competitive facilities in the remainder of the current section.

This specification implies that the demand allocations are fractional, and the
demand rate from j attracted by facility i is (as before) �j xij, where �j is elastic
for FR models and inelastic in AR case.

Note that from Eq. (17.42) it follows that market shares add up to 1, i.e.,
all available demand from j is served. This may be unrealistic if none of the
available facilities provide good service to j . The easy modification is to introduce a
“dummy” facility 0, representing “no service”, and letting U.d.0; j /; W 0/ D uj 0—
a constant representing the utility value of not getting served (e.g., the customer
may choose to consume a different product). The popular Multinomial Logit (MNL)
specification (McFadden 1974) employs exponential utilities, leading to

xij D exp.��d d.i; j / � �wW i /yiP
k2I exp.��d d.k; j / � �wW k/yk

; (17.43)
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where weights �d ; �w can be estimated from the available consumer demand
allocation data using the MNL methodology.

The advantage of the proportional allocation approach is that the values of
xij are directly computable from (17.42) or (17.43) without having to solve the
cumbersome flow equilibrium equations. Nevertheless, it is important to recognize
that an equilibrium condition is implicit in the definition above, even in case of
models with inelastic demand: the expressions for xij above are functions of waiting
times W i , which, in turn, are functions of xij. Thus, (17.42) together with waiting
time specification (17.15) and facility-level demand specification (17.6) form a
system of non-linear equations. A solution to this system represents an equilibrium
demand allocations and waiting times. In case of FR models, one also has to add
the elastic demand specification (17.40) and the equilibrium solution includes the
demand rates at each customer node. Thus, the issues of existence and uniqueness
of the equilibrium must be addressed. These were examined in some detail by Lee
and Cohen (1985). The existence follows directly from standard fixed-point results
and the continuity of xij in (17.42) and is based on Theorem 1 in Lee and Cohen
(1985):

Theorem 17.5 There exists an equilibrium solution .xij; W i ; �j /; i 2 I; j 2 J to
the proportional allocation model.

Lee and Cohen (1985) also examine uniqueness and stability of equilibria, where
stability refers to whether a system where customers start with some arbitrary
demand allocations, evaluate their utilities and then re-allocate according to (17.42)
will naturally reach an equilibrium. They derive sufficient conditions for both
uniqueness and stability. In the context of our AR and FR models, their results imply
the following:

Theorem 17.6

1. For AR models with proportional allocation the equilibrium is unique and stable
2. For FR models with proportional allocation the equilibrium is unique and stable

if

1 � uj

�j

@�j

@uj

; for all j 2 J

where uj D P
i2I U.d.i; j /; W i /yi is the utility derived by customers at j from

all open facilities.

The condition in part (2) above states that the elasticity of demand from node j with
respect to the utility provided by all facilities must not exceed 1. As shown in Lee
and Cohen (1985) this holds automatically when the demands are given by (17.41),
as well as by many other common specifications of demand (we note that weaker,
but harder to verify, sufficient conditions are also provided in Lee and Cohen 1985).

We close this section by noting that the analysis in Lee and Cohen (1985)
assumes that all location and capacity allocation decisions have already been made.
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To the best of our knowledge, no papers on SLCIS models of FR class with
proportional demand allocation are available, though there are several publications
on AR models (i.e., where demand is inelastic) with proportional allocation. These
will be further discussed in Sect. 17.5 below.

17.4 General SLCIS Model Specification

In this section we summarize the discussion in the preceding sections. Putting all
the modeling components together allows us to provide the following formulation
for the General SLCIS with M/G/1 queues at facilities:

maximize Z D
r

X

j 2J

�j

X

i2I

xij (17.44)

�
X

j 2J

X

i2I

ˇd.i; j /�j xij (17.45)

�
X

j 2J

X

i2I

WC.W i /xij (17.46)

�
X

i2I

FCi yi �
X

i2I

VC.�i / (17.47)

subject to W i D .1 C �2/�i

2�i.�i � �i /
C yi

�i C M.1 � yi /
; i 2 I (17.48)

[ �j specification for DR and FR models ] (17.49)

[ xij specification for AR and FR models ] (17.50)

[ Coverage Constraints ] (17.51)

[ SC Constraints ] (17.52)
X

i2I

yi � m (17.53)

�i D
X

j 2J

�j xij; i 2 I (17.54)

X

i2I

xij � 1; j 2 J (17.55)

xij � yi ; i 2 I; j 2 J (17.56)



472 O. Berman and D. Krass

�i � �i ; i 2 I; j 2 J (17.57)

xij � 0I �i � 0I yi 2 f0; 1gI integer; i 2 I; j 2 J: (17.58)

The objective function (17.44)–(17.47) represents the total profit which includes
the revenue, travel, congestion, and facility fixed and capacity costs, respectively.
Constraints (17.48) define the expected waiting time for M/G/1 queues. These
can be substituted with constraints defining other relevant congestion measures,
different queueing mechanisms or both. Specifications (17.49) are only relevant
for elastic demand models of type DR and FR type; when the demand rate is
assumed to be inelastic, one should omit these and set �j D �max

j . Similarly,
specifications (17.50) are only relevant for user-choice models of AR and FR
type. Constraints (17.53)–(17.57) enforce the basic interconnections between the
decisions variables and are typically present in some form in all models.

To the best of our knowledge, no published work contains all components listed
in the general formulation above. The specific SLCIS models considered in the
literature typically include only some of the terms in the objective function, differ in
terms of the queueing assumptions and performance measures, as well as in which
(if any) of the specifications (17.49)–(17.52) to include. The models also differ in
terms of the decision variables. While variables yi and xij are present in all models
we are familiar with (though xij may be restricted to binary values only), most
models will assume that the number of facilities is m and not a decision variable.
Many models also assume that all facilities have identical capacity �, thus dropping
the decision variables �i as well.

It is clear that the variety of SLCIS models one can define by mixing and
matching different parts of the general formulation above is almost unlimited. In the
next section we try to bring some structure to the models considered in the literature
by grouping them around some common themes and describing the key challenges
and solution techniques that have been developed for them.

17.5 SLCIS Models in the Literature: Overview
and Classification

Our primary focus (with a few exceptions) is on relatively recent SLCIS models that
have appeared since the survey of Boffey et al. (2006).

As noted earlier, the published SLCIS models constitute a rather bewildering
pattern of different assumptions, constraints and response mechanisms. However,
several common themes do emerge, allowing us to identify four common types
of models: Coverage-Oriented, Service-Objective, Balanced-objective, and Explicit
Customer Response. These are described in more details in the following sections.
The relevant references are summarized in Tables 17.2, 17.3, and 17.4. These
tables have the following format: the first column identifies the reference by the
list of authors/year of publication; the next two columns identify the Model Class
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by customer response type, as well as by the utility function used, if applicable.
The following three columns indicate the main underlying system assumptions: the
nature of the queuing system, and whether the number of facilities and the number of
servers are flexible or not. The next two columns identify the presence of coverage
and service level constrains. The following five columns indicate the presence of the
specific terms in the objective function. The last two columns briefly describe the
solution approach and any additional comments.

17.5.1 Coverage-Type Models

Coverage-type models aim to design the system that provides adequate service
to customers, where adequacy is usually defined through travel distance and
congestion delays, which are controlled through coverage and service level con-
straints, respectively. The defining feature of this model class is the presence of
coverage constraints (17.51). The coverage-type models are denoted by “C” in the
“Model Type” column of Table 17.2; they include Baron et al. (2008), Berman et al.
(2006), Kakhki and Moghadas (2010), Marianov and Serra (1998). These models
were among the very first SLCIS models to be considered, dating back to Marianov
and Serra (1998), and stem directly from similar models for systems with mobile
servers (see Berman and Krass 2002 for an extensive discussion).

Coverage-type models usually assume that it may not be possible to provide
adequate service to all customers and thus demand losses may occur. The objective
is typically to maximize the “captured” demand, i.e., the total demand of customers
who get adequate service. The travel and congestion costs are not included in
the objective as these are controlled through the corresponding constraints. Earlier
models were of type NR (directed choice); later models tended to be of type AR,
but customer allocations were assumed to be only a function of travel distance,
i.e., the underlying utility is given by (17.28), avoiding all complications related to
equilibrium behaviors. It is interesting to note that even though demand is assumed
to be inelastic, the assumption of demand losses can be viewed as (a rather crude)
form of demand elasticity—corresponding to the implicit utility function which has
a stepwise function form, with customers using service provided by the facilities if
coverage and service level constraints are met, and not using it otherwise.

The typical formulation maximizes the objective consisting of (17.44) with r D 1

(i.e., the captured demand), subject to constraints (17.51)–(17.56). For models of
type AR, one also adds constraints specifying the allocations. These enforce each
customer to travel to the closest available facility. These constraints can be specified
in various forms; see Berman et al. (2006) for a discussion.

It can be seen that this leads to a formulation which is a linear mixed-integer
program (MIP), except for the service level constraints. However, as discussed in
Sect. 17.2.3.2, under some conditions, the latter can be linearized. Recall that a
general service level constraint can be recast as either (17.20), requiring adequate
service capacity at each facility, or (17.21), placing an upper limit on the allowed
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arrival rate at each facility. When the capacities �i are decision variables, these
reformulations remain non-linear. However, if one makes a simplifying assumption
that all facilities have identical service rate � (for multi-server facilities, this
implies assuming identical number of servers at all facilities), non-linearities
disappear. This is a common assumption in coverage-oriented (and other SLCIS)
models: Berman et al. (2006), Kakhki and Moghadas (2010), Marianov and Serra
(1998) assume identical and pre-specified service rates at the facilities. Under this
assumption, (17.21) takes the form

�i � N�;

where the right-hand side is a constant which depends on the desired service level
and is computable in advance. This shows the equivalence of a cover-type SLCIS
model with fixed service rates to the capacitated location problems. Such connection
is discussed at length in Boffey et al. (2006).

The resulting linear MIP may, in principle, be solved exactly using off-the-shelf
software, such as CPLEX. However, as pointed out in Berman et al. (2006), the
formulation resulting from the addition of linearized service level constraints and
the “closest assignment” constraints tends to be large and not very tight, causing
computational difficulties for even moderately-sized instances. This has led Berman
et al. (2006) and other authors to develop heuristic approaches.

Finally, we note an important result from Baron et al. (2008), who studied a very
general version of the coverage-type SLCIS model, where both the number and the
capacities of facilities are decision variables and the facility-related costs are quite
general (in their version, all customer demand must be served and the objective is
to minimize fixed and variable location costs). They show that, under quite general
conditions, the optimal facility configuration is one that ensures that each facility
sees (approximately) the same demand, i.e., ideally, �i D �k should hold for all
open facilities i; k 2 I (identical demand may not be possible to achieve when
customer demand originates from discrete nodes and single-sourcing assumption is
made). Once the facility locations are determined, the optimal capacities �i can be
determined through a separate optimization model.

This result provides an important insight for coverage-type models: when the
goal is to ensure “satisfactory” service experience, the optimal design should
equalize loads at the facilities. This leads to an “Equitable Location Problem”—
a deterministic problem where one seeks to locate a set of facilities so that the
attracted demand is distributed as evenly as possible. Such problem was addressed
in Baron et al. (2007), Berman et al. (2009b), and Suzuki and Drezner (2009).

17.5.2 Service-Objective Models

Service-objective models seek to design a system that optimizes “customer service”
using limited resources. These models are denoted by “S” in the “Model Type”
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in Table 17.2, and include Aboolian et al. (2009), Berman and Drezner (2007),
Boffey et al. (2010), Drezner and Drezner (2011), Hamaguchi and Nakade (2010),
Marianov et al. (2009), Marianov and Serra (2011), and Wang et al. (2002).

Here “limited resources” means that the number of facilities to be located and the
total available service capacity are specified through constraints, rather than through
the objective function term (17.47). “Customer service” is typically defined as the
combination of travel and congestion costs; thus the objective function typically
includes terms (17.45) and (17.46). Since the congestion cost term (17.46) only
measures the aggregate congestion, some authors (see Boffey et al. 2010; Marianov
et al. 2009; Marianov and Serra 2011 and Wang et al. 2002) impose service level
constraints to ensure that congestion is controlled at each facility. Service-objective
models assume inelastic demand, so the revenue term is missing in the objective
as all available customer demand is assumed to be “covered” (even though some
models do allow for demand losses due to congestion, these losses are controlled
through service level constraints). Thus, all customers must be assigned to facilities
and thus constraint (17.55) is specified as equality.

The models of this class are either of NR type (directed assignment, no customer
response) or AR type with distance-based utility function (customers travel to
the closest open facility). An interesting exception is the use of AR model with
proportional allocation and exponential utility (17.29) by Drezner and Drezner
(2011) (though they do not comment on the existence and uniqueness of the
equilibrium solution, it is in fact assured by the results cited earlier).

While the constraint set for service-objective models is quite similar to that
of coverage-oriented models (in fact, it is somewhat simpler since the coverage
constraints and, in some cases, service level constraints are missing), inclusion
of the congestion term in the objective leads to a non-linear model for which
finding exact solutions is problematic. This difficulty is further compounded when
the queues at the facilities are of multi-server type and/or have non-Markovian
service times: in these cases exact closed-form expressions for the congestion-
related performance measures are either not available, or are quite complex,
requiring a separate procedure to evaluate the congestion levels for each set of
values of the facility location and customer allocation decision variables. For this
reason, the proposed solution methods are all heuristic-based, typically employing
meta-heuristic approaches such as tabu search, simulated annealing, and genetic
algorithms.

Service-objective models become significantly more complicated when capac-
ities of facilities are allowed to be flexible (i.e., when �i are not assumed to
be identical at all facilities). Most of the published models assume identical
capacities, with Aboolian et al. (2009) and Berman and Drezner (2007) being
notable exceptions.
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17.5.3 Balanced-Objective Models

Balanced-objective models seek to design a system that “balances” the costs
incurred by the two main “players” in the system: customers, who bear the travel
and congestion costs, and the decision-maker who bears the facility-related costs.
Balanced-objective models are listed in Table 17.3 and include the following
references: Aboolian et al. (2008), Abouee-Mehrizi et al. (2011), Castillo et al.
(2009), Elhedhli (2006), Kim (2013), Marianov and Rios (2000), Pasandideh and
Chambaria (2010), Rabieyan and Seifbarghy (2010), Vidyarthi and Jayaswal (2013),
and Wang et al. (2004).

One may view balanced-objective models as seeking to achieve some kind of
“social optimum”; the objective functions in these models are similar to social
welfare functions in economics. Since the objective incorporates customer concerns,
the models are typically of NR type: customers accept the directed assignments
to optimize “social welfare”, even if this leads to assignments that are suboptimal
from individual customers’ point of view (two references that incorporate customer
response are Aboolian et al. 2008 and Abouee-Mehrizi et al. 2011). The demand
is assumed to be inelastic. The coverage and service level constraints are typically
absent, as service adequacy is addressed by the objective. The objective function
typically includes the “customer-borne” cost terms (17.45)–(17.46) representing
travel and congestion costs, as well as the “operator-borne” facility costs (17.47).
Since most models do not assume any demand losses, the revenue term (17.44) is
not included; the exception being Abouee-Mehrizi et al. (2011), who model revenue
losses due to balking and thus optimize the net profit. Other distinguishing features
of most models of this class are simple constraint sets and the inclusion of flexible
capacity at the facilities as the decision variables. The main solution difficulty stems
from the non-linearities inherent in the congestion term (third term of the objective
function). There are several approaches for either making these terms less complex
or linearizing them, leading to interesting exact algorithms. We describe two such
approaches below.

The first is based on Castillo et al. (2009). They assume an M=M=1 queuing
system at the facilities and use the average number of customers in the system
Li .�i ; �i / as the performance measure at facility i . For M=M=1 queue, this can
be written as

Li .�i ; �i / D �i

�i � �i

: (17.59)

All costs are assumed to be linear and uniform (i.e., identical for all facilities),
leading to the following objective function:

minimize Z D ˇ
X

j2J

X

i2I

d.i; j /�j xij C WC
X

i2I

Li .�i ; �i / C FC
X

i2I

yi C VC
X

i2I

�i ;

(17.60)
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where WC; FC; VC are the waiting cost, fixed cost and variable cost parameters
respectively. This function is minimized subject to constraints (17.53), (17.55)
specified as equality, as well as (17.54), (17.56) and (17.57).

Observe that for any specified values of xij and yi , the optimal capacity ��
i can

be determined separately for each facility. Indeed, it is not difficult to show that

��
i D �i C

r
W C

VC
�i :

Observe the similarity of this expression to (17.22) discussed earlier. It also has the
same interpretation: the optimal capacity at facility i consists of the minimal level
�i , necessary to ensure system stability, and “capacity cushion” which grows with
the square root of �i and whose size depends on the ratio of waiting and capacity
costs. Substituting the last expression into (17.60) and performing some algebraic
manipulations allows us to re-state the objective function as

mininize Z D ˇ
X

j2J

X

i2I

d.i; j /�j xij C 2
p

W C � VC
X

j2J

X

i2I

sX

j2J

�j xij C FC
X

i2I

yi ;

subject to constraints (17.53), (17.56), and (17.55) specified as equality; the
variables �i and �i are no longer needed.

This is a MIP with a single concave (more specifically, square root) term in
the objective. Several methods are available to obtain exact solutions for models
of this type, which also arise in location-inventory models, competitive location
models and other contexts. One approach, based on Lagrangian Relaxation, is
described in Shen (2005); a variant of this is used in Castillo et al. (2009). Another
approach, based on piecewise linear approximation of the concave term, is presented
in Aboolian et al. (2007).

It should be noted that in view of the discussion preceding (17.22), a similar
“trick” for replacing the congestion cost term with a concave form should work for
more general queueing systems as well, at least as an approximation.

The second approach for obtaining exact solutions to balanced-type SLCIS is
based on Elhedhli (2006). Once again we start with the model whose objective
function is given by (17.60) and assume an M=M=1 queue at each facility. In
addition, it is assumed that processing capacity of a facility must be equal to one
of H C 1 discrete values, i.e., that �i 2 f0; �1; �2; : : : ; �H g for all i 2 I , where
�1 < �2 < : : : < �H .

Treating the expected queue length Li as a decision variable, we rewrite
(17.59) as

�i D Li

1 C Li

HX

hD1

�hzih; i 2 I; (17.61)
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where zih is a binary decision variable taking the value of 1 if �i D �h and 0

otherwise, with the constraints
PH

hD1 zih � 1; i 2 I added to the model. Now
consider the function f .L/ D L

1CL
. It is concave, and can thus be represented as

the minimum of tangent lines, yielding a linear form. This can be used to represent
the expression (17.61) as an infinite set of linear constraints (note that the objective
is already linear, in terms of the new variable Li ). The resulting MIP can be solved
through a column generation approach. The reader should refer to Elhedhli (2006)
for details.

In summary, the simpler structure of balanced-objective models allows for
effective exact approaches to be developed. Another interesting observation is that
the “location-allocation” and “capacity determination” sub-problems often separate.
As noted earlier, these models, being of type NR, may assign individual customers
to rather distant facilities. However, since the travel cost is in the objective function,
these “undesirable” assignments can be controlled by increasing the corresponding
cost coefficients. The computational results in Castillo et al. (2009) suggest that
when travel costs are “reasonably” high, the overwhelming majority of customers
(over 99 % in the instances solved) are assigned to the closest open facility in the
optimal solution.

17.5.4 Explicit Customer Response Models

The final class we consider consists of SLCIS models where “explicit” customer
response mechanism is specified, i.e., they are of types AR, DR, or FR. These
models are listed in Table 17.4. The demand in these models is generally elastic,
though in a few cases elasticity is specified implicitly through demand losses due
to blockages. The objective always includes the revenue term (17.44), and may also
include the facility cost terms (17.47), unless the number of facilities and servers is
given.

While this class of models has received much recent attention, the earliest
publications date back to the very beginning of the SLCIS modeling: see Berman
and Kaplan (1987). Some of the seminal early work is described in Brandeau et al.
(1995).

Many of the technical issues related to this class of models have been covered in
Sect. 17.3.2. The problem of determining the optimal location for a single facility
(Berman and Drezner 2006; Berman and Kaplan 1987; Tong 2011; Berman et al.
2014) can be solved exactly. However, the treatment of the multi-facility case
is generally quite difficult since, as noted earlier, in addition to the non-linear
objective function the underlying models include the feedback loop between the
customer demand and congestion and/or the equilibrium conditions for facility-
client allocations, or both. Thus, heuristic approaches are almost always employed
for multi-facility models. These heuristics are usually two-level: at the lower
level they incorporate subroutines for computing the equilibrium solutions (using
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non-linear optimization techniques) for a given location set. At the upper level they
try improvement strategies to the determine a good set of open facilities, often using
meta-heuristics. As in the case of balanced-objective models, the determination
of the optimal capacity at a facility can often be done through a separate exact
optimization procedure, for a given location and customer-allocation scheme.

We illustrate the foregoing discussion with the approach loosely based on
Aboolian et al. (2012), who proposed one of the few exact approaches available
for Explicit Customer Response models (in fact, the approach outlined below is an
improvement on the original methodology). The model is of DR type, i.e., customers
accept directed assignments to facilities, responding by reducing their demand
when travel and congestion costs increase. Both M=M=K and M=M=1 queueing
systems can be considered; we will focus on the latter for simplicity. The primary
queuing performance measure is the expected waiting time W i at each facility i .
While a general concave utility function may be used, we employ the exponential
utility (17.29) for transparency, with the elastic demand given by (17.41). The fixed
and variable costs are assumed to be uniform, i.e., identical for all locations.

We start by observing that if customers at node j 2 J are assigned to facility i ,
the maximum demand is given by

�max
ij D �max

j exp.��d d.i; j //;

quantities that can be pre-computed. The resulting model can be formulated as
follows:

maximize Z Dr
X

i2I

�i � FC
X

i2I

yi � VC
X

i2I

�i (17.62)

subject to W i D yi

�i � �i

i 2 I (17.63)

�i D
X

j 2J

�max
ij exp.��wW i /xij i 2 I (17.64)

(17.55), (17.56)

This reflects the typical structure of DR models: explicit specification of the waiting
time and demand, in addition to regular constraints for location models. Note that
system stability constraints (17.57) are omitted, as the demand automatically adjusts
to the offered capacities.

The next observation is that once customer allocation variables xij are specified,
both the optimal capacities at the facilities and the actual realized customer demands
are easy to determine. In fact, the latter only depend on xij through the total maximal
demand allocated to each facility:

�max
i D

X

j 2J

�max
ij xij: (17.65)
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For each facility i we now solve the following univariate “capacity optimization”
model:

maximize r�i � VC�i

subject to �i D �max
i exp.��w

�i

�i � �i

/

�i � 0:

Aboolian et al. (2012) show that the solution to this model is unique and can
be found through a simple univariate search. Note that the solution yields both,
the optimal capacity �i and the corresponding demand level �i . It is convenient
to represent these quantities as functions of the allocated maximum demand:
�.�max

i /; �.�max
i /. Substituting these quantities into the original model (17.62)–

(17.64), (17.55), (17.56) we obtain

maximize Z Dr
X

i2I

�.�max
i / � FC

X

i2I

yi � VC
X

i2I

�.�max
i /

subject to (17.55), (17.56), (17.65),

where the only non-linearities occur in the objective function. By solving the
capacity optimization model repeatedly over a range of possible values of �max

i ,
we can construct a piecewise linear approximation of the functions �.�max

i / and
�.�max

i / to any desired level of tolerance. Using these approximations in the model
above yields a linear MIP which can be solved using standard off-the-shelf software.

As noted earlier, the separation of capacity optimization and customer allocation
problems is a common feature of Explicit Customer-Response models and has been
used by a number of authors. However, an important driver of the exact approach
outlined above is that the model in Aboolian et al. (2012) is of DR type, i.e.,
directed assignment and single-sourcing are both assumed. The analysis presented
in Aboolian et al. (2012) suggests that neither of these assumptions is very restrictive
(echoing the results in Castillo et al. 2009 discussed earlier). It was observed that in
the vast majority of instances solved, customers were, in fact, assigned to facilities
that minimize their sum of waiting and travel times, i.e., the facilities they would
have selected under an FR model. Also, by splitting the original customer nodes into
k copies each containing 1=k of the original demand, and allowing each of these
new nodes to be assigned to a different facility, the impact of the single-sourcing
assumption was examined. Again, it turned out that for the instances solved, the
violation of this assumption was rare (all copies of the original node were assigned
to the same facility in the vast majority of the cases) and when split assignments
occurred, they did not have a large impact on the objective function. Intuitively, both
effects can be explained by the fact that in DR models the incentives of customers
and the decision-maker, while not identical, are well-aligned: by forcing customers
to use a less convenient facility, the realized demand (and the revenue) are reduced.
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Thus, when designing the system, a design that maximizes customer utilities is often
optimal, even though such maximization is not explicitly enforced in the model.

17.6 Conclusions

In this chapter we have focused on a rather specialized sub-field of stochastic loca-
tion models: problems with congestion and static customer assignments. However,
as discussed above, this is a very active and growing field of research. We believe
that the key drivers of this growth are that, on the one hand, SLCIS models do
capture very important trade-offs and stochastic effects that must be taken into
account when designing many real-life systems. On the other hand, these models
retain enough structure to enable exact algorithmic approaches and managerial
insights that may not be available when more complex models (e.g., models with
mobile servers or dynamic customer assignments) are considered.

The variety of SLCIS models considered in the literature is quite bewildering. We
have tried to systematize the models along two dimensions: by customer response
and demand elasticity (leading to our NR/AR/DR/FR classification), and by the key
structural elements of the models, as described in Sect. 17.5. We believe that this
classification should be useful to future researchers in this field, both with respect
to the importance of clearly spelling out the assumptions for customer behavior and
key model objectives, and with regards to realizing what key difficulties may arise
for a given model type.

Many open questions remain, as should be clear from the preceding sections.
The assumptions made with respect to queueing behavior in many models are
quite restrictive and could likely be generalized using the approximation approaches
described in Sect. 17.2.3.2. The assumptions underlying NR models or AR models
with distance-only utility are questionable and could lead to under-performance of
the resulting system (especially with respect to the realized demand). The reliance of
many authors on heuristic approaches without the ability to benchmark the resulting
solutions versus the optimal ones is not comforting given the strategic nature of
decisions underlying SLCIS models. In short, many ways to improve on the existing
models remain to be explored. We hope that some of these improvements will be
investigated in the next generation of SLCIS models.

Finally we would like to mention that many of the issues that have been
explored in the SLCIS context (customer response, elastics demand) are still
waiting to be addressed in the models with mobile servers/dynamic customer
assignments. As noted earlier, these models involve a different level of complexity,
with the underlying queueing systems being much less tractable. Nevertheless,
the assumptions regarding customer behavior and response are very important and
deserve further study.
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