
Chapter 11
Multi-Period Facility Location

Stefan Nickel and Francisco Saldanha da Gama

Abstract In this chapter, we cover basic aspects related with facility location
problems involving time dependent parameters. The emphasis is put on problems
defined over a multi-period finite planning horizon. A brief overview of continuous
and network problems is presented. Nevertheless, most of the chapter focus on
a discrete setting. Basic modeling aspects and solution techniques are discussed.
Additionally, some features of practical relevance are considered. The value of the
multi-period solution is introduced as a measure for the relevance of considering
a multi-period modeling framework instead of a static one. Current challenges and
future trends on the topic are discussed.

Keywords Discrete models • Multi-period facility location • Value of the multi-
period solution

11.1 Introduction

Facility location decisions are usually made taking into account the values of some
parameters, such as the setup costs for the facilities and the demand levels. If
variations are predictable for such values, it may be desirable to plan in advance for
future adjustments in the location of facilities and in other related decisions (e.g.,
shipment decisions). In this case, locating a set of facilities becomes a question not
only of “where” but also of “when”. A new dimension is introduced in the decision
space: the time. This is the topic of the current chapter.
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In order to capture predictable variations in the parameters of a facility location
problem, we often have to consider a dynamic or time-dependent model. From a
practical point of view, this type of model can be quite relevant because it allows for
embedding other decisions, such as those related with (1) inventory management,
(2) opening new facilities and removing existing ones, and (3) adjustment of the
operating capacities (which, from a cost point of view is often better than opening
new facilities). Even when the underlying parameters do not induce a dynamic
model, some other conditions may do so. For instance, if a budget constraint exists
say, per year, for installing new facilities, then locating the facilities over time may
be unavoidable.

When facility location decisions are to be made over time, it is important to define
the planning horizon beforehand. This is the time frame for which the decision
maker wishes to plan. Only a few papers have investigated facility location problems
over an infinite planning horizon. In this case, a static or a finite-horizon decision is
usually sought that is “the best” for an infinitely long planning horizon. Some works
in this direction include Chand (1988) and Daskin et al. (1992). Nevertheless, in
most cases, decision makers assume a finite planning horizon (see the recent review
paper by Arabani and Zanjirani Farahani 2012). This is the case we consider in this
chapter.

When working with dynamic models, we can make a distinction between
continuous and discrete-time models. In the first case, there are no specific moments
for implementing the decisions; the best timing for performing changes in the
system is itself a decision to make. Some works exploring this feature include
Drezner and Wesolowsky (1991), Orda and Rom (1991), Puerto and Rodríguez-Chía
(1999), and Zanjirani Farahani et al. (2009). In our opinion, continuous-time facility
location problems are better addressed in the context of optimal control. Therefore,
in this chapter we do not focus on this type of problems. Instead, we consider a
discrete-time setting in which we have several moments in time for implementing
the decisions. These moments induce a partition of the planning horizon into several
time periods.

Facility location problems are often classified, according to the location space,
as being continuous, on a network, or discrete (Hamacher and Nickel 1998). In
recent years, due to successful applications of location theory to many areas, discrete
models have increasingly played a major role. For this reason, in this chapter, special
emphasis is given to this type of problems.

The remainder of the chapter is organized as follows: in Sects. 11.2 and 11.3 we
present a brief overview of continuous and network multi-period facility location
problems, respectively. In Sects. 11.4 and 11.5 we focus on discrete problems.
Section 11.6 is used for introducing the value of the multi-period solution. Finally,
in Sect. 11.7, we discuss some challenges and future trends on the topic.
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11.2 Continuous Problems

One of the best-known facility location problems is the Weber problem: given a
set of weighted nodes in the Euclidean plane, where to locate a single facility
minimizing the weighted sum of the distances to the points? A multi-period
extension of this problem was first proposed by Wesolowsky (1973). A finite
planning horizon T , divided into several time periods, is assumed. In each period
t 2 T , a set of weighted nodes Jt is considered. The goal is to find the optimal
location for the single facility in each period. When the facility changes from one
location to another (in consecutive periods), a relocation cost is paid. The conceptual
model proposed by Wesolowsky (1973) is the following:

Minimize
X

t2T

X

j 2Jt

ctj.xt ; yt / C
jT jX

tD2

ft zt (11.1)

subject to zt D 0 if dt�1;t D 0; t 2 T nf1g (11.2)

zt 2 f0; 1g; t 2 T: (11.3)

In this model, ctj.xt ; yt / represents the present value of the cost for shipping from a
facility located at .xt ; yt / to demand point j 2 Jt in period t 2 T ; ft denotes the
cost for relocating the facility at the beginning of period t 2 T ; dt�1;t is the distance
by which the facility is moved at the beginning of period t 2 T nf1g. All the costs are
assumed to be forecasted in advance and therefore known to the model. For tackling
this problem, Wesolowsky (1973) proposed an incomplete dynamic programming
algorithm. The stages are associated with the time periods, the states correspond to a
set of possible locations for the facility and the decisions correspond to the possible
changes in the location of the facility. The relevance of this work arises from the
fact that it represents the first attempt to extend the Weber problem to a multi-period
setting. Nevertheless, the first work addressing the location and relocation of a single
facility in the plane over a multi-period finite planning horizon is due to Ballou
(1968). The goal is to maximize the total profit generated by a distribution system
involving factories, markets and the single warehouse to be located and relocated.
In that paper, a restricted set of potential locations for the warehouse was defined
considering the optimal location for the facility in the different periods. This set then
defined the states for all periods, and (incomplete) dynamic programming was then
applied. The method was later converted into an exact one by Sweeney and Tatham
(1976) who extended the restricted set just mentioned. In fact, a set of potential
locations for the warehouse can be found in each time period, thus ensuring that the
optimal solution of the problem is not lost when dynamic programming is applied.
It is worth noting that the methodologies proposed by Ballou (1968) and Sweeney
and Tatham (1976) can be applied to problems defined in a discrete setting.
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Drezner and Wesolowsky (1991), investigated a different type of problem. Like
in all of the above works, a single facility is considered, which can be relocated
over time as a reaction to predictable changes in the demand. The set J of demand
nodes is the same throughout the planning horizon. The demand of each node j 2
J , is represented by a continuous function of time wj .:/. A planning horizon T

divided into several time periods is assumed. The following optimization model can
be considered for each period t 2 T :

Ct D min
xt ;yt

8
<

:
X

j 2J

Wjtdj .xt ; yt /

9
=

; : (11.4)

In this expression, .xt ; yt / denotes the coordinates of the facility in period t 2 T ;
Wjt D R at

at�1
wj .�/d� ; at�1 and at are the lower and upper time limits for period t ,

respectively; dj .xt ; yt / denotes the distance between demand point j 2 J and point
.xt ; yt /. The cost for the entire planning horizon is given by

P
t2T Ct . Drezner and

Wesolowsky (1991) made use of the above model to solve a more general problem
which consists of making a decision about the division of the planning horizon into
time periods. In this case, the number of time periods and the “break points” are
decisions to make. This work was later extended by Zanjirani Farahani et al. (2009)
that included a cost for relocating the facility.

Scott (1971) studied a multi-facility, multi-period continuous location problem,
assuming a finite planning horizon T divided into several time periods, and a set of
demand nodes, J . In each time period, a single facility is to be located and must
remain operating until the end of the planning horizon. A sequence of jT j problems
can be considered. In particular, the following mathematical model holds for period
t 2 T (the coordinates .x� ; y� /, � D 1; : : : ; t � 1, were already determined):

Minimize
X

j 2J

t�1X

�D1

uj�dj .x� ; y� / C
X

j 2J

ujtdj .xt ; yt / (11.5)

subject to
tX

�D1

uj� D 1; j 2 J (11.6)

uj� 2 f0; 1g; � D 1; : : : ; t; j 2 J: (11.7)

In this model, .xt ; yt / are the coordinates (to be determined) of the facility to install
at the beginning of period t 2 T ; ujt is a binary variable equal to 1 if demand point
j 2 J is allocated to the facility installed in period t 2 T (such allocation can only
occur in periods t; : : : ; jT j), and 0 otherwise; dj .xt ; yt / is the Euclidean distance
between demand node j 2 J and the facility to be installed in period t 2 T . By
solving the full sequence of problems (one for each t 2 T ), a solution is obtained for
the multi-period problem. Nevertheless, using such a myopic procedure, optimality
cannot be guaranteed for the whole planning horizon.
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A multi-period extension of the planar p-median problem was proposed by
Drezner (1995) who considered a finite planning horizon divided into jT j D p time
periods. The set of demand nodes is denoted by J and demand changes over time.
The demand of node j 2 J is represented by a continuous function of time wj .:/. At
the beginning of each time period t 2 T , exactly one facility is to be installed. The
decision variables are the coordinates of the p locations for the facilities, .xt ; yt /,
t 2 T . The problem can be formulated as follows:

Minimize
X

t2T

X

j 2J

Wjt min
�D1;:::;t

˚
dj .x� ; y� /

�
; (11.8)

where dj .xt ; yt /, t 2 T , represents the distance between demand node j 2 J and
the facility established at the beginning of period t 2 T ; Wjt D R at

at�1
wj .�/d� ; at�1

and at are, respectively, the lower and upper time limits for period t . The function to
be minimized in (11.8) results from adding the costs for all periods. Drezner (1995)
proposed a specially tailored algorithm for the 2-facility problem and suggested the
use of a standard non-linear solver for the general case.

11.3 Network Problems

One of the earliest works on multi-period facility location problems on networks
is due to Cavalier and Sherali (1985). The problems under consideration consist of
progressively installing a set of facilities on a chain or on a tree considering a multi-
period finite planning horizon. In each period, at most one facility can be installed.
Demand occurs continuously on the edges, according to a uniform distribution.
Different strategies were analyzed for obtaining solutions to the problems.

Considering general networks, Mesa (1991) addressed several multi-period
facility location problems. Different concepts were introduced in that paper, such
as the vertex jT j-period p-median, the vertex multi-period .˛1; : : : ; ˛jT j/-median
and the absolute multi-period .˛1; : : : ; ˛jT j/-median. Among the different problems
studied, the absolute multi-period .˛1; : : : ; ˛jT j/-median problem was, at the time,
the one which was closer to what could be referred to as an extension of the
p-median problem to a multi-period setting. In that problem, ˛t points must be
located in each period t 2 T , satisfying

P
t2T ˛t D p. The author proved that the

initial infinite set of possible choices for facilities can be reduced to a discrete set
of nodes. This is due to the vertex-optimality property (Hakimi 1964, 1965), which
holds for this multi-period problem.

The extension of the network p-median problem to a multi-period setting was
proposed by Hakimi et al. (1999). Considering a time varying network, N D
.V; E; T /, with T representing the planning horizon, it is assumed that the weight of
each vertex vj 2 V and the length of each edge e 2 E are functions of time and are
invariant in each period. Assuming moving costs for the facilities, the multi-period,
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1-median problem on network N can be formulated as follows:

Minimize
X

t2T

0

@
X

j 2V

wjtdt.vj ; xt / C g.t/dt .xt ; xtC1/

1

A : (11.9)

In this model, wjt denotes the weight of vertex vj 2 V in period t 2 T ; xt represents
the location of the median in period t 2 T (the exact location xt , is defined with
respect to the edge to which the median belongs and is given by its distance to the
closest end node of the edge); dt .vj ; xt / is the shortest path between vj and xt in
period t 2 T ; g.t/ is a function representing the unitary cost for relocating the
facility in the end of period t moving it from location xt in period t to location xtC1

in period t C 1 (t 2 T , xjT jC1 D xjT j). Hakimi et al. (1999) proved that the vertex-
optimality property holds for this problem. The above model and this result can be
easily extended to the p-facility case. The formulation is the following:

Minimize
X

t2T

0

@
X

j 2V

wjtdt.vj ; Xt/ C g.t/dt .Xt ; XtC1/

1

A : (11.10)

In this case, X1; : : : ; XjT j are the sets of locations for the p facilities during the
planning horizon with XjT jC1 D XjT j; dt .vj ; Xt/ D minfdt.vj ; xk/ j xk 2 Xtg;
dt.Xt ; X;tC1/ is defined by the total weight of a minimum weight perfect matching
in the complete bipartite graph Gt .Xt ; XtC1/ defined as follows: Xt and XtC1 define
the partition; for every point x0 in Xt and for every point x00 in XtC1 the weight of
the edge .x0; x00/ is given by dt.x

0; x00/. In (11.10), g.t/ denotes the unitary cost
for relocating a facility in (the end of) time period t 2 T . This problem is NP-hard
since it includes the static network p-median problem as a particular case. For this
reason, the authors developed a heuristic procedure.

One important class of facility location problems on networks are center
problems. The multi-period extension of the 1-center problem on a network was
proposed also by Hakimi et al. (1999). The model is the following (the notation is
the same presented above):

Minimize
x1;x2;:::;x

jT jC1

X

t2T

max
j 2V

˚
wjtdt.vj ; xt / C g.t/dt .xt ; xtC1/

�
: (11.11)

Again, XjT jC1 D XjT j. If the choice for xt is restricted to a finite number of points
in the network, the problem can be handled using a technique similar to the one
presented in the same paper for the multi-period p-median problem.

The existing literature reveals that for most of the multi-period extensions
proposed so far for well-known minsum facility location problems, the vertex-
optimality property holds. This reduces the location space to a discrete set.
Accordingly, models and techniques from integer programming and combinatorial
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optimization emerge as a possibility for tackling these problems. Multi-period
minmax facility location problems on networks have been scarcely investigated.

11.4 Discrete Problems

We start with one of the best-known discrete facility location problems, the p-
median problem (see Chap.2), which can be easily extended to a multi-period
setting. Consider a set J , of nodes, whose demand must be supplied during a finite
multi-period planning horizon, T . Let I � J be the set of nodes where the facilities
can be located and assume that p facilities have to be operating in each period.
The problem of deciding the best location for the facilities throughout the planning
horizon, minimizing the total cost for satisfying the demand can be formulated as
follows:

Minimize
X

t2T

X

i2I

X

j 2J

cijtxijt (11.12)

subject to
X

i2I

xijt D 1; t 2 T; j 2 J (11.13)

X

j 2J

xijt � jJ jxiit; t 2 T; i 2 I (11.14)

X

i2I

xiit D p; t 2 T (11.15)

xijt 2 f0; 1g; t 2 T; i 2 I; j 2 J: (11.16)

In this formulation, cijt represents the cost for allocating demand node j 2 J to
facility i 2 I in period t 2 T ; xijt is a binary variable equal to 1 if demand node
j 2 J is allocated to facility i 2 I in period t 2 T and 0 otherwise; xiit D 1

indicates that a facility is operating at i 2 I in period t 2 T (i is allocated to itself).
When I D J we have a multi-period p-median problem.

In order to progressively build models that are more relevant from a practical
point of view, we first note that the above problem still has little “multi-period
flavor” because it can be decoupled, leading to jT j single-period problems. Nev-
ertheless, this model is an excellent basis for what we present next. In fact, a more
interesting multi-period problem emerges if we include opening and closing costs
for the facilities. This was first done by Wesolowsky and Truscott (1975). The
extended problem can be formulated as follows:

Minimize
X

t2T

X

i2I

X

j 2J

cijtxijt C
X

t2T

X

i2I

gitz
0
it C

X

t2T

X

i2I

hitz
00
it (11.17)

subject to (11.13)–(11.16)
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X

i2I

z0
it � mt ; t 2 T (11.18)

xiit � xii;t�1 C z00
i;t�1 � z0

it D 0; t 2 T n f1g; i 2 I (11.19)

z0
it; z00

it 2 f0; 1g; t 2 T; i 2 I: (11.20)

In this model, facilities are assumed to be opened (closed) at the beginning (end) of
time periods; mt is the maximum number of facilities that can be opened in each
period t 2 T , whereas the binary variable z0

it (z00
it) is equal to 1 if a facility is opened

(closed) at i 2 I in period t 2 T and 0 otherwise; git and hit (i 2 I , t 2 T ) denote
the opening and closing costs, respectively. Wesolowsky and Truscott (1975) solve
the above problem using dynamic programming. However, the method can only
be used for instances with a small number of potential locations for the facilities
because the dimension of the state space is exponential in this number.

Galvão and Santibañez-Gonzalez (1992) do not consider closing decisions and
assume that the number of operating facilities does not have to be the same in all
periods. Their formulation can be obtained from the above model by ignoring the
variables and costs associated with closing the facilities and by replacing p with pt

in (11.15). For each period t 2 T , pt denotes the number of facilities to be operating
in that period. Furthermore, in their model constraints (11.18) are redundant (mt D
jI j, t 2 T ) and constraints (11.14) are disaggregated, yielding

xijt � xiit; t 2 T; i 2 I; j 2 J: (11.21)

Without closing decisions, constraints (11.19) can be written as

z0
it � xiit � xii;t�1; t 2 T nf1g; i 2 I: (11.22)

For this problem, Galvão and Santibañez-Gonzalez (1992) proposed two
Lagrangean relaxation based procedures for computing lower and upper bounds: in
the first one, constraints (11.13) and (11.22) are dualized; in the second, the choice
involves constraints (11.21) and (11.22).

In all of the problems presented so far in this section, facilities can be opened and
closed more than once during the planning horizon. However, in many applications
this is not realistic. In order to illustrate how this aspect can be captured, we consider
another well-known problem: the uncapacitated facility location problem (UFLP)
described in Chap. 3. Like for the p-median problem, the extension of the UFLP
to a multi-period setting is straightforward. Again we consider a finite multi-period
planning horizon, T . The set of potential locations for the facilities is denoted by
I D f1; : : : ; mg and the set of demand nodes by J D f1; : : : ; ng. Additionally, let
fit be the cost for operating facility i 2 I in period t 2 T , and cijt the cost for
satisfying all the demand of customer j 2 J in period t 2 T from facility i 2 I . A
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multi-period uncapacitated facility location problem is the following:

Minimize
X

t2T

X

i2I

fityit C
X

t2T

X

i2I

X

j 2J

cijtxijt (11.23)

subject to
X

i2I

xijt D 1; t 2 T; j 2 J (11.24)

X

j 2J

xijt � nyit; t 2 T; i 2 I (11.25)

xijt � 0; t 2 T; i 2 I; j 2 J (11.26)

yit 2 f0; 1g; t 2 T; i 2 I: (11.27)

In this formulation, xijt represents the fraction of the demand of customer j 2 J in
period t 2 T that is supplied by facility i 2 I ; yit is a binary variable equal to 1 if a
facility is operating at i 2 I in period t 2 T and 0 otherwise. Again, this problem
can be decomposed into jT j single-period problems. Nevertheless, it contains the
basic ingredients for building more interesting models. In fact, one extension of
this problem was proposed by Warszawski (1973), who included opening costs
for the facilities. These costs are incurred whenever a facility is opened (even if
the same facility has operated in some past period). Denoting by git the cost for
opening a facility at i 2 I in the beginning of period t 2 T , the model proposed
by Warszawski (1973) differs from (11.23)–(11.27) by considering the following
quadratic objective function:

X

t2T

X

i2I

gityit .1 � yi;t�1/ C
X

t2T

X

i2I

fityit C
X

t2T

X

i2I

X

j 2J

cijtxijt; (11.28)

with yi0 D 0, i 2 I . Warszawski (1973) considered dynamic programming for
solving instances with a small number of potential locations for the facilities, jI j,
and a local search heuristic for larger instances. Chardaire et al. (1996) studied
the same problem starting by disaggregating constraints (11.25). They developed
a Langragean relaxation based algorithm for computing lower and upper bounds. A
linearized model was also proposed and compared with the quadratic one in terms
of the quality of the lower bounds produced.

Another extension of model (11.23)–(11.27) was proposed by Canel and Khu-
mawala (1997) for locating facilities across different countries. They explicitly
considered binary decision variables zit indicating whether or not a new facility is
opened at i 2 I in period t 2 T . They proposed a profit maximization problem as
follows:

Maximize
X

t2T

X

i2I

X

j 2J

rijtxijt �
X

t2T

X

i2I

fityit �
X

t2T

X

i2I

gitzit (11.29)

subject to (11.24); (11.26); (11.27)



298 S. Nickel and F. Saldanha da Gama

X

j 2Pit

xijt � nityit; t 2 T; i 2 I (11.30)

zit � yit � yi;t�1; t 2 T; i 2 I (11.31)

zit 2 f0; 1g; t 2 T; i 2 I; (11.32)

with yi0 D 0, i 2 I . In this model, rijt represents the revenue obtained when
supplying all the demand of customer j 2 J in period t 2 T from facility i 2 I .
For each facility i 2 I there is a maximum number of customers, nit, it can supply
in period t 2 T . Furthermore, not all the facilities can supply all customers. In
particular, Pit represents the set of customers that can be served from facility i 2 I

in period t 2 T . As we will see below, constraints (11.30) had been proposed
before for another problem. Canel and Khumawala (1997) developed a branch-and-
bound procedure for this problem adapting the algorithm proposed by Khumawala
(1972), and Canel and Khumawala (2001) proposed a heuristic approach for the
same problem.

In all of the above problems, facilities can be opened and closed more than once
during the planning horizon. Dias et al. (2007) point out that these models ignore
the fact that re-opening a facility has in general a smaller cost than opening it for the
first time (for instance, land acquisition costs are incurred only once). They propose
a model taking this aspect into account. Additional decision variables are required
to distinguish whether a facility is being opened for the first time or is being re-
opened. A primal-dual heuristic is proposed for obtaining lower and upper bounds
for the problem. The gap is closed using a branch-and-bound procedure.

11.5 Modular Construction of Intrinsic Multi-Period Facility
Location Models

In many practical situations it is not acceptable to install and remove a facility,
say, in consecutive periods. This may make sense for seasonal facilities, such as
warehouses if, for instance, they can be rented for short time intervals. Nevertheless,
this cannot be assumed in general. Accordingly, the models presented in the
previous section may be short for capturing some real-world problems. Early,
researchers have noticed this fact and have considered models involving constraints
that impose a limit on the number of changes performed in each location during
the planning horizon. Often, such constraints state that once a facility is installed
(removed), it must remain opened (closed) until the end of the planning horizon.

We consider again the multi-period p-median problem, i.e., we assume that a
plan is to be made for locating exactly p facilities in a finite multi-period planning
horizon T . Let us assume that removing facilities is not allowed. One additional
feature that may be worth considering for this type of problem is the speed at which
p changes. The adequate model is the following (the notation was introduced in
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Sect. 11.4):

Minimize
X

t2T

X

i2I

X

j 2J

cijtxijt (11.33)

subject to
X

i2J

xijt D 1; t 2 T; j 2 J (11.34)

X

j 2J

xijt � nxiit; t 2 T; i 2 J (11.35)

X

i2J

xiit D pt ; t 2 T (11.36)

xiit � xii;t�1; t D 2; : : : ; jT j; i 2 J (11.37)

xijt � 0; t 2 T; i 2 J; j 2 J; (11.38)

where 1 � p1 � p2 � : : : � pjT j D p.
Constraints of type (11.37) were first proposed for a multi-period facility location

problem by Roodman and Schwarz (1975, 1977). The latter paper was pioneering
in the assumption that a set of facilities may be operating before the beginning
of the planning horizon. These are the facilities that can be removed. Therefore,
the possibility of adapting an existing system to predictable changes in some
parameters, becomes explicitly considered in the models. The set of locations I can
now be partitioned into two subsets: I c and I o. The former represents the facilities
that are operating before the beginning of the planning horizon; the latter represents
the set of locations for new facilities. A more comprehensive model for the multi-
period facility location problem emerges:

Minimize (11.23)

subject to (11.24)–(11.27)

yit � yi;t�1; t D 2; : : : ; jT j; i 2 I c (11.39)

yit � yi;t�1; t D 2; : : : ; jT j; i 2 I o: (11.40)

Roodman and Schwarz (1977) were also pioneering by considering a maximum
number of customers that can be served by each facility in each period and assumed
that not all facilities can serve all customers. These aspects are easily accommodated
in the above model if we replace (11.25) by (11.30). As mentioned before, the
latter constraints would be later considered by Canel and Khumawala (1997). The
research done by Roodman and Schwarz (1977) extends the work by the same
authors published 2 years before (Roodman and Schwarz 1975) in which a pure
phase-out problem had been considered.

The above models allow the removal of an existing facility before the beginning
of period 1 with no costs imputed to the planning horizon. Imposing that the existing
facilities must operate in at least one period, can be easily done by setting yi1 D 1,
i 2 I c .
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Van Roy and Erlenkotter (1982) proposed a reformulation of model (11.23)–
(11.27), (11.39), and (11.40). Their idea, which can be extended to every multi-
period facility location problem, consists of considering binary decision variables
representing a change in a location instead of considering the traditional location
variables. In particular, for an existing facility i 2 I c , a new binary variable zit, can
be defined that is equal to 1 if the facility is removed at the end of period t (i.e., it
operates in periods 1; : : : ; t) and 0 otherwise. For facility i 2 I c , zi jT j D 1, indicates
that the facility is operating during the entire planning horizon. For a potential new
facility i 2 I o, the binary variable, zit, is equal to 1 if it is installed at the beginning
of period t (i.e., it operates in periods t; : : : ; jT j) and 0 otherwise. Using the new set
of variables, we obtain the following model:

Minimize
X

t2T

X

i2I

Fitzit C
X

t2T

X

i2I

X

j 2J

cijtxijt (11.41)

subject to
X

i2I

xijt D 1; t 2 T; j 2 J (11.42)

xijt �
X

�2T it

zi� ; t 2 T; i 2 I; j 2 J (11.43)

xijt � 0; t 2 T; i 2 I; j 2 J (11.44)

zit 2 f0; 1g; t 2 T; i 2 I: (11.45)

In this model, Fit (i 2 I , t 2 T ) represents the total operation cost for facility i if
zit D 1, i.e., Fit D fi1 C : : : C fit for i 2 I c , t 2 T and Fit D fit C : : : C fi jT j
for i 2 I o, t 2 T . The set T it contains the periods in which it is possible to remove
(install) a facility at i 2 I c (i 2 I o) if we want to have it operating in period t 2 T .
More formally, T it D ft; : : : ; jT jg if i 2 I c and T it D f1; : : : ; tg if i 2 I o. It is
important to note that the aggregated costs Fit can be easily extended to more general
situations, such as the one in which we have fixed setup and removal costs for the
facilities. In fact, suppose that a fixed cost git is incurred when removing (installing)
a facility i 2 I c (i 2 I o) in period t . We can simply set Fit D git C fi1 C : : : C fit

for i 2 I c , t 2 T and Fit D git C fit C : : : C fi jT j for i 2 I o, t 2 T .
The relation between the previous y-variables and the new z-variables is

straightforward:

zi jT j D yi jT j; i 2 I c

zit D yit � yi;tC1; t 2 f1; : : : ; jT j � 1g; i 2 I c

zi1 D yi1; i 2 I o

zit D yit � yi;t�1; t 2 f2; : : : ; jT jg; i 2 I o

Using these relations, it is straightforward to prove that model (11.23)–(11.27),
(11.39), and (11.40) is equivalent to model (11.41)–(11.45). The relevance of the
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latter arises from the fact that it is particularly suited for the application of a dual-
based heuristic, which is a popular method for obtaining sharp lower and upper
bounds for discrete facility location problems. This fact was explored by Van Roy
and Erlenkotter (1982). Multiplying constraints (11.43) by �1 the dual of the linear
relaxation of model (11.41)–(11.45) becomes:

Maximize
X

t2T

X

j 2J

vjt (11.46)

subject to vjt � wijt � cijt; t 2 T; i 2 I; j 2 J (11.47)
X

j 2J

X

�2Tit

wij� � Fit; t 2 T; i 2 I (11.48)

wijt � 0; t 2 T; i 2 I; j 2 J: (11.49)

In this model, vjt and wijt (t 2 T , i 2 I , j 2 J ) are the dual variables associated with
constraints (11.42) and (11.43), respectively (with the latter previously multiplied
by �1). The set Tit (i 2 I , t 2 T ) contains the operating periods for facility i if
a change (installation or removal) occurs in this location in period t . In particular,
Tit D f1; : : : ; tg if i 2 I c and Tit D ft; : : : ; jT jg if i 2 I o.

From (11.47) and (11.49) we may set

wijt D maxf0; vjt � cijtg; t 2 T; i 2 I; j 2 J;

which yields the following condensed dual:

Maximize (11.46)

subject to
X

j 2J

X

�2Tit

maxf0; vjt � cijtg � Fit; t 2 T; i 2 I: (11.50)

The complementary slackness conditions for the linear relaxation of model
(11.41)–(11.45) are the following:

vjt

 
X

i2I

xijt � 1

!
D 0 t 2 T; j 2 J

wijt

0

@
X

�2T it

zi� � xijt

1

A D 0; t 2 T; i 2 I; j 2 J

xijt
�
vjt � cijt � wijt

� D 0; t 2 T; i 2 I; j 2 J

zitSit D 0; t 2 T; i 2 I;

where Sit represent the slack variables for constraints (11.50).
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Van Roy and Erlenkotter (1982) proposed a heuristic for the condensed dual
just presented. Starting from the trivial dual feasible solution defined by vjt D
mini2I fcijtg (t 2 T , j 2 J ) an ascent procedure is performed for increasing the
values of the dual variables vjt, thus increasing the value of the dual objective
function. When this procedure does not lead to further improvements, a primal
solution is constructed using the slackness conditions. Finally, a primal-dual
adjustment phase is performed in order to reduce the gap between the values of
the primal and dual objective functions. When no further gap reduction is achieved,
a branch-and-bound procedure is applied to complete the search for an optimal
solution for the problem. The reader should refer to Van Roy and Erlenkotter (1982)
for further details.

The procedure developed by Van Roy and Erlenkotter (1982) is quite efficient to
solve instances of moderate size. Nevertheless, this multi-period facility location
problem includes the UFLP as a special case and thus, it is NP-hard. For this
reason, Saldanha-da-Gama and Captivo (1998) proposed a two-phase heuristic
procedure for the problem. The first phase is a drop procedure which starts with
all facilities operating in all periods, and progressively removes operating periods
to the facilities. This is done while a reduction in the total cost is observed. Losing
feasibility is never allowed during the process. The second phase consists of a local
search procedure.

Although representing an important basis for describing real problems, the
above models still miss one important feature found in many applications: capacity
constraints. Denote by Qi the capacity of a facility located at i 2 I , and by djt

the demand of customer j 2 J in period t 2 T . A capacitated multi-period facility
location problem consists of minimizing (11.41) subject to (11.42), (11.44), (11.45),
and

X

j 2J

djtxijt � Qi

X

�2T it

zi� ; t 2 T; i 2 I: (11.51)

This model was addressed by Saldanha da Gama (2002) who developed a dual-
based procedure for obtaining lower and upper bounds. The model was previously
enhanced with (11.43) and

X

t2T

X

i2I

Rkitzit � rk; k 2 K: (11.52)

By choosing appropriate values for Rkit and rk , these generic constraints can
accommodate every inequality involving the binary variables. This is important
because the linear relaxation of capacitated facility location problems can often
be strengthened through the inclusion of valid inequalities involving the location
variables. For instance, a set of constraints often used in (static) capacitated facility
location problems, state that the operational capacity must be at least equal to the
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total demand. In the multi-period case, these constraints are written as

X

i2I

0

@Qi

X

�2T it

zi�

1

A �
X

j 2J

djt; t 2 T; (11.53)

which can be easily accommodated in (11.52).
For the linear relaxation of model (11.41)–(11.45), (11.51), and (11.52), Sal-

danha da Gama (2002) extended the dual-based procedure proposed by Van Roy and
Erlenkotter (1982), thus obtaining sharp lower and upper bounds for the problem.

The inclusion of capacity constraints is an important step towards building more
comprehensive multi-period facility location models. Nevertheless, the capacity
constraints (11.51) are rather restrictive when it comes to real applications, namely
those arising in logistics (see Chap. 16). By considering a fixed capacity in each
location, these constraints neglect the possibility of making future adjustments in
the capacity of the facilities, which is a feature quite relevant in practice. In fact, it is
often the case that adjusting the capacity of an existing facility is more advantageous
from a cost point of view than installing a new facility in some other location. One
attempt to overcome such restrictive representation for the capacities was made
by Van Roy and Erlenkotter (1982) who considered exogenous time-dependent
capacities Qit (i 2 I , t 2 T ). Nevertheless, this is still unsatisfactory from a
practical point of view because no connection is established between the capacities
in different periods.

The problem of planning for the capacity expansion of existing facilities was
very much in focus in the 1970s and in the 1980s (see, for instance, Erlenkotter
1981, and Lee and Luss 1987). However, at that time, the focus was put mainly on
the expansion of existing facilities. In many cases, the location of facilities was not
even a decision to make. Furthermore, many of these works considered continuous
adjustments in the capacities, which is often not adequate from a practical point of
view. In fact, if we think of production or sorting lines, we immediately realize that
changes in the capacities should be modular, or at least discrete.

One paper that clearly interconnects multi-period facility location decisions with
discrete capacity expansion is due to Shulman (1991). A set of facility types P

is considered, and in each location, facilities of different types can be progressively
established during the planning horizon, as a way of adjusting the operating capacity
of the system. In each period, at most one facility of each type can be installed in
each location but several facilities can be installed if they are of different types. For
each location i 2 I , a set Pi � P is assumed, corresponding to the set of facility
types that can be located at i . Denote by cijpt the cost for supplying all the demand
of customer j 2 J in period t 2 T from a facility operating at i 2 I that is of
type p 2 Pi . Let fipt be the cost for installing a facility of type p 2 Pi at i 2 I

in period t 2 T . Additionally, let Qp be the capacity of a facility of type p 2 P .
Finally, let nip0 denote the number of facilities of type p 2 Pi operating at location
i 2 I before the beginning of the planning horizon (i.e., the problem captures the
situation in which the system is not built from scratch but is to be adapted to future
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changes in demands). The demand of customer j 2 J in period t 2 T is again
denoted by djt. Two sets of decision variables were proposed by Shulman (1991):
xijpt, representing the fraction of the demand of customer j 2 J in period t 2 T that
is satisfied from a facility operating at i 2 I that is of type p 2 Pi , and yipt denoting
a binary variable that is equal to 1 if in period t 2 T a facility of type p 2 Pi is
installed at i 2 I and 0 otherwise. Assuming that the capacity expansions occur at
the beginning of the time periods, the problem can be formulated as follows:

Minimize
X

t2T

X

i2I

X

p2Pi

fiptyipt C
X

t2T

X

i2I

X

j 2J

X

p2Pi

cijptxijpt (11.54)

subject to
X

i2I

X

p2Pi

xijpt D 1; t 2 T; j 2 J (11.55)

X

j 2J

djtxijpt � nip0Qp C
tX

�D1

Qpyip� ; t 2 T; i 2 I; p 2 Pi

(11.56)

xijpt � 0 t 2 T; i 2 I; j 2 J; p 2 Pi (11.57)

yipt 2 f0; 1g; t 2 T; i 2 I; p 2 Pi : (11.58)

The values cijpt may include the transportation costs between facilities and
customers as well as handling costs at the facilities. Shulman (1991) proposed a
Lagrangean relaxation based procedure for obtaining lower and upper bounds for the
problem. Constraints (11.55) are dualized. The relaxed problem can be decomposed
into jI j problems, each of which to be solved exactly by dynamic programming.
However, the complexity of this algorithm is exponential in the number of facilities.
Therefore, it can only be used when jI j is small. Nevertheless, for the particular case
in which it is not possible to mix different facility types in the same location (i.e.,
jPi j D 1, i 2 I ), a polynomial algorithm for the relaxed problem was proposed in
the same paper.

The need for more comprehensive multi-period facility location models suited
for being applied to real-world problems has led to further important developments.
Hinojosa et al. (2000) proposed the first multi-period, multi-echelon, multi-product
capacitated discrete facility location problem, setting one important foundation for
the strong link that we observe nowadays between multi-period facility location
and logistics network design (see Chap. 16). Two facility echelons are considered in
that work: plants and warehouses. Location decisions are to be made for both. This
paper extends the models proposed by Roodman and Schwarz (1977) by considering
more than one facility echelon and multiple commodities. Existing facilities are
assumed to be operating before period 1 and can be removed during the planning
horizon. Additionally, a set of potential locations for establishing new facilities
during the planning horizon is considered. Once removed, a facility cannot be
opened again, and once installed, a facility must remain opened until the end of the
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planning horizon. Hinojosa et al. (2000) proposed a Lagrangean relaxation based
procedure in order to compute lower and upper bounds. The problem would be later
extended by Hinojosa et al. (2008) to include inventory decisions. The new model
proposed extends the reformulation proposed by Van Roy and Erlenkotter (1982)
(i.e., the decision variables represent the changes in the locations—installation of
new facilities and removal of existing ones—in the different periods of the planning
horizon). A Lagrangean relaxation based procedure was also proposed.

Canel et al. (2001) also investigated a system with two echelons: factories and
facilities (e.g., distribution centers). Unlike the problems investigated by Hinojosa
et al. (2000, 2008), location decisions are to be made only for the lower echelon.
Furthermore, facilities can be opened and closed more than once during the planning
horizon. Multiple commodities are considered as well as an important feature much
relevant is real logistic systems: the possibility of making direct shipments from the
upper echelon to the customers. The authors proposed an exact approach for the
problem based on branch-and-bound and dynamic programming.

Jena et al. (2012) investigated a multi-period capacitated facility location prob-
lem that in addition to the decisions about where to locate new facilities, consider
the possibility of relocating existing facilities or expanding the capacity of existing
ones. The authors also consider the possibility of temporarily closing facility parts.
The problem arises within the context of logging companies that wish to plan for
locating accommodation camps for their workers over some finite planning horizon.
The authors proposed several mixed integer linear programming formulations for
the problem that they compared in terms of the bounds provided by linear relaxation
and tested in instances that use data provided by a real company. They also
observed that the problem calls for a very specific cost structure associated with
capacity changes. This motivated a more recent work (Jena et al. 2014) in which a
general cost structure is associated with capacity changes. A mixed integer linear
programming modeling framework was then proposed and shown to generalize
two important special cases: facility closing and reopening and capacity expansion
and reduction. Alternative formulations were also proposed for these special cases
which were compared with the above general modeling framework in terms of the
linear relaxation bounds. A combination of the above mentioned cases can also
be accommodated in the general modeling framework proposed. In that work, the
general model was solved using an off-the-shelf solver. Computational tests were
performed using a large set of generated instances.

Albareda-Sambola et al. (2009) extended the model proposed by Roodman and
Schwarz (1977) for handling the so-called multi-period incremental service facility
location problem. In each time period, a minimum number of facilities is to be
established that should be kept operating until the end of the planning horizon. All
the customers must start being served in some period and remain served until the
end of the planning horizon. The problem is motivated by some practical problems
requiring a multi-period plan for progressively extending some service to the popu-
lation in some region. Accordingly, the service level is progressively increased over
time until all customers are being served. A Lagrangean relaxation based procedure
was proposed in that paper for obtaining lower and upper bounds. A particular
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case of this problem was addressed by Albareda-Sambola et al. (2010), assuming
that each customer requires service only in a subset of periods. Additionally, it
is possible not to fulfil the request in one or several of those periods but in this
case, a penalty cost is paid. Several mathematical programming formulations were
proposed for the problem, which were compared computationally.

A multi-period discrete facility location problem was also investigated by
Gourdin and Klopfenstein (2008). The problem is motivated within the context of
telecommunications network design and consists of planning for the location of
modular equipment over a finite planning horizon. Operating capacity constraints
are considered for the nodes and for the links. The goal is to progressively expand
the capacity of the equipment as well as the capacity of its links to the demand
nodes. In that paper, the mathematical programming model initially proposed for
the problem was enhanced via polyhedral analysis.

11.6 The Value of the Multi-Period Solution

Multi-period modeling frameworks like those proposed in the previous sections,
involve one extra dimension in the decision space: the time. Models tend to be large
and thus more difficult to tackle, even for instances of moderate size. Accordingly,
one may ask whether it is worth considering this extra dimension. In other words,
let us consider a situation in which it is possible to make a static decision even with
costs, demands (and possibly other parameters) varying over time. Is it still worth
considering a multi-period modeling framework? An answer to this question can be
given by the value of the multi-period solution, which is a concept first introduced
by Alumur et al. (2012) in the context of a multi-period reverse logistics network
design problem.

The value of the multi-period solution compares the optimal value of the multi-
period problem and the value of a solution found by solving a static counterpart.
A static counterpart is a problem that takes into account the information available
for the planning horizon and looks for a static (time invariant) solution. Given the
optimal solution to a static counterpart, one can consider again the original multi-
period problem and set such solution for all periods of the planning horizon. If, by
doing so, we obtain a feasible solution to the multi-period problem, the difference
between its value and the optimal value of the multi-period problem gives the value
of the multi-period solution. In general, several static counterparts can be associated
with a multi-period problem. Depending on the one that is considered, a different
static solution may be obtained. Accordingly, the value of the multi-period solution
may not be unique.

In a multi-period facility location problem, costs, demands, and possibly other
parameters are assumed to change over the planning horizon. A static counterpart
is a problem that looks for a static location for the facilities, i.e., that can be
implemented at the beginning of period 1 and remain unchanged until the end of the
planning horizon. One possibility for building a static counterpart is to somehow
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aggregate the information available for all periods. For instance, consider time
varying demands. If facilities are uncapacitated, then several possibilities emerge
for aggregating this information: (1) the demands can be averaged over the planning
horizon, or (2) a reference value can be determined (e.g., the maximum value
observed throughout the planning horizon). If additional constraints exist (e.g.,
capacity constraints) then, choosing a reference value may render the resulting static
solution infeasible in some periods. In this case, one possibility for building a static
counterpart is to define the (time invariant) demand of each customer according
to the maximum value observed across all periods. In any case, the adequate
aggregation of multi-period data is very much problem-dependent.

In order to clarify the above explanation, we consider problem (11.23)–(11.27),
(11.39), and (11.40). A static counterpart can be obtained simply by considering the
UFLP with operation costs fi , i 2 I , equal to the average of the values fit, t 2 T

and distribution costs cij, i 2 I , j 2 J , given by the average of the values cijt, t 2 T .
When the value of the multi-period solution is obtained by aggregating the data

for all periods we refer to it as a weak value of the multi-period solution. On the other
hand, we obtain a strong value of the multi-period solution when no aggregation is
performed in the data. This is a possibility in some cases, namely when we can add a
set of constraints to the problem stating that some or all decisions are to be the same
in all periods of the planning horizon. In the case of a multi-period facility location
problem, a static counterpart must define a static location, i.e., a solution in which
the location of the facilities is the same for all periods of the planning horizon.
Consider, for instance, problem (11.41), (11.42), (11.44), (11.45), and (11.51). A
static counterpart yielding a strong value of the multi-period solution is obtained by
setting

zit D 0 t D 1; : : : ; jT j � 1; i 2 I c;

zit D 0 t D 2; : : : ; jT j; i 2 I o:

These conditions simply impose that the status of each location does not change
during the planning horizon. Therefore, the set of operating facilities will be the
same across all periods.

To the best of our knowledge, the only paper within the context of facility
location, in which the relevance of using a multi-period modeling framework is
measured is the one by Alumur et al. (2012).

11.7 Conclusions

In this chapter, we have presented and discussed several essential aspects related
with multi-period facility location problems. The existing literature reveals that the
topic has achieved a significant level of maturity. From a modeling point of view, it
is now clear how to capture several features of practical relevance and how to tackle
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the resulting models. We discussed the weak and strong values of the multi-period
solution as measures for the relevance of using a multi-period modeling framework.

In recent years, much work has been developed on facility location problems
arising in the context of logistics systems (see, e.g., Melo et al. 2009). As it will
be discussed in Chap. 16, an adequate modeling framework can hardly neglect
the multi-period nature of such problems. Some papers within this context that
somehow extend some multi-period models discussed in the previous sections are
those by Melo et al. (2006) and Manzini and Gebennini (2008).

Another aspect of relevance in many applications regards the uncertain nature of
the data underlying the problems. Aghezzaf (2005) addressed a multi-period facility
location problem under uncertainty. A robust optimization modeling framework
was proposed. Recently, multi-period stochastic facility location problems were
addressed by Nickel et al. (2012) and Albareda-Sambola et al. (2013). These works
show that capturing uncertainty in multi-period facility location problems is still a
challenge.

Another challenging area in multi-period facility location concerns the location
of public facilities. One first work in this direction is due to Antunes and Peeters
(2001). Although static models for public facilities location have attracted much
attention in the past, the same does not happen with multi-period problems.

One class of problems which is still much unexplored, regards multi-criteria,
multi-period facility location problems. To the best of our knowledge only a few
papers exist within this context. Dias et al. (2008) proposed a memetic algorithm
for multi-period problems when it is possible to install and remove a facility
more than once during the planning horizon. Hugo and Pistikopoulos (2005) and
Melachrinoudis and Min (2007) study multi-criteria, multi-period facility location
problems in the context of logistics network design.

Most of the contents in this chapter are a basis for addressing more complex
real-world problems. In fact, several models presented in the previous sections
have already been extended to problems arising in other areas (see, for instance,
Chaps. 12, 15 and 16). Nevertheless, some challenges still exist. The research done
so far is scarce when it comes to some classes of multi-period facility location
problems, such as those just mentioned above. These are existing research directions
worth exploring in order to broaden the scope and knowledge on multi-period
facility location, making the topic an even stronger basis for being applied to real-
world systems.
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