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Preface

The idea of editing this book emerged during the fourth meeting on Combinatorial
Optimization, Routing and Location, held in Benicassim, Spain, in May 2012
(CORAL 2012) and was formalized during the 12th International Symposium on
Locational Decisions (ISOLDE XII), held in Nagoya and Kyoto, Japan, in July the
same year.

Our goal was to edit a comprehensive and structured book gathering the
essential knowledge on modern Location Science, as opposed to a collection of
exhaustive surveys or a pedagogical textbook with worked examples and exercises.
Rather, this is a book on “what you should know” about various aspects of Location
Science. It provides the basic knowledge and structures of the field. It can be used
either in standard academic programs or in specialized courses.

The book contains an introduction to modern Location Science and 23 chapters
grouped under three main headings: basic concepts (five chapters), advanced
concepts (12 chapters), and applications (six chapters).

We have identified some of the best reputed specialists in the field to write the
different chapters of the book. Each chapter was reviewed several times by at least
one of the editors. The process was completed within two years. Today we are glad
to present to the location community a high quality book which we hope to update
on a regular basis.

We thank all the authors who accepted our challenge to be involved in this book.
The quality of their work together with their dedication and enthusiasm contributed
to making this project a success.

Finally, thanks are also due to Mr Christian Rauscher and to the Springer staff
for their help and encouragement throughout this project.

Montréal, Canada Gilbert Laporte
Karlsruhe, Germany Stefan Nickel
Lisbon, Portugal Francisco Saldanha da Gama
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Chapter 1
Introduction to Location Science

Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama

Abstract This chapter introduces modern Location Science. It traces the roots of
the area and describes the path leading to the full establishment of this research
field. It identifies several disciplines having strong links with Location Science
and offers examples of areas in which the knowledge accumulated in the field of
location has been applied with great success. It describes the purpose and structure
of this volume. Finally, it provides suggestions on how to make use of the contents
presented in this book, namely for organizing general or specialized location courses
targeting different audiences.

Keywords Application areas ¢ Foundations ¢ Location courses ¢ Location
science, Related disciplines

1.1 Introduction

In the past decades, Location Science has become a very active research area,
attracting the attention of many researchers and practitioners. Facility location
problems lie at the core of this discipline. These consist of determining the “best”
location for one or several facilities or equipments in order to serve a set of demand
points. The meaning of “best” depends on the nature of the problem under study,
namely in terms of the constraints and of the optimality criteria considered.
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Location Science is a rich and fruitful field, gathering a large variety of problems.
The research conducted in this area has led to the creation of a considerable amount
of knowledge, both in terms of theoretical properties and modeling frameworks,
together with solution techniques. This knowledge has evolved over time, pushed
by the need to solve practical location problems, by technical and theoretical
challenges, and often by problems arising in various disciplines. In fact, the
interaction with other disciplines such as economics, geography, regional science
and logistics, just to mention a few, has always been a driving force behind the
development of Location Science. Nowadays, the potential of this field of study
in the context of many real-world systems is widely recognized. This book emerges
from the need to gather in a single volume the basic knowledge on Location Science
as well as from the importance of somehow structuring the field and showing how
it interacts with other disciplines.

In this introductory chapter we start by tracing the roots of what is now known
as Location Science. This is done is Sects. 1.2 and 1.3. In Sect. 1.4 we present the
purpose and structure of this book. Finally, in Sect. 1.5 we provide some suggestions
on how to make the best use of the book.

1.2 The Roots

In order to trace the roots of modern Location Science, one must go back to an old
geometric problem which is simple to state: What is the point in the Euclidean
plane minimizing the sum of its distances to three given points (Fig. 1.1)? This
problem is widely credited to the French mathematician Pierre de Fermat (1601—
1665)! although its origin is a matter of debate (see Wesolowsky 1993).

Since the seventeenth century, different solutions have been proposed for
Fermat’s problem. There is evidence that the first one is due to the Italian scientist
Evangelista Torricelli (1608—1647). The geometric approach proposed by Torricelli
is depicted in Fig. 1.2 and can be described as follows: By joining the three given
points with line segments, a triangle is obtained. Equilateral triangles can now

C
.

Fig. 1.1 Fermat’s problem 4%

The problem is presented in his famous essay on maxima and minima.
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Fig. 1.2 Torricelli’s
geometric construction for the
Fermat problem

be constructed on the sides of this triangle, their vertices pointing outwards.
A circumscribing circle can then be drawn around each of these three triangles.
The circles will intersect at a single point called the Torricelli point or, as some
authors call it, the Fermat-Torricelli point. If all the angles in the initial triangle are
at most equal to 120°, this point is the optimal solution to the problem; otherwise,
the Torricelli point falls outside the initial triangle. In this case, the optimal solution
is the initial point located at the apex of the angle greater than 120° (Heinen 1834).

It is interesting to note that nowadays this problem still attracts the attention of
the scientific community (see, for instance, Nam 2013).

The first documented attempt to position location analysis within an economic
context is due to Johann Heinrich von Thiinen (1783—1850), an educated landowner
in northern Germany. Von Thiinen wished to understand the rural developments
around an urban center. The results of his analysis were presented in 1826 in a
treatise entitled Die isolierte Staat in Beziehung auf Landwirtschaft und Nation-
alokonomie, which was edited as a book in 1842 and translated into English in
1966 (von Thiinen 1842). Figure 1.3 depicts the cover of the 1842 edition. Von
Thiinnen (1842) considered an isolated and homogeneous area with an urban center
and aimed to discover laws which then governed agricultural prices translating them
into land usage patterns. He also considered several types of agricultural activities
(e.g., grain farming and livestock) grouped according to their relative economic
yield per unit area, their perishability, and the difficulty in delivering the products to
the (central) market. His findings led him to postulate that three factors should have
a crucial impact on the spacial distribution of the activities: (1) the more perishable
a product is, the closer to the market it will be grown; (2) the higher the economic
productivity of a product per land area, the closer to the market it will be grown;
(3) higher transportation difficulty leads to locating an activity closer to the market.
One should therefore expect that the different agriculture activities will evolve in
concentric rings around the urban center (Fig. 1.4).
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Fig. 1.3 “Die Isolierte Staat”
by Johann Heinrich von
Thiinen, Rostock, 1852

(Soure: Universiy of Der isolierte Staat
Toronto—Robarts Library,

https://www.archive.org/

details/ in Beziehung auf
derisoliertestaa0Othuoft)

Landwirtschaft und Nationalokonomie.

Erster Teil,

Untersuchungen iiber den Einflub, den die Getreide-
preise, der Reichtum des Bodens und dic Abgaben
auf den Ackerban ausiiben.

Johann Heinrich von Thiinen

anf Tellow in Mecklenbure.

Rostock 1842

There still exists an intensive debate on the theory of von Thiinen (Block and
DuPuis 2001). Despite its merit, von Thiinen’s model is only descriptive, i.e., it is
aimed at predicting the behavior of the system. In fact, at the time, models were
mostly used to answer to questions such as “why do we do it?”. Von Thiinen’s work
can be viewed as fundamental in urban economics and location theory. Nowadays,
it is still relevant in areas such as geography, agricultural economics and sociology
(Block and DuPuis 2001). These authors emphasize that the centrality theory of von
Thiinen is still relevant for some dairy products such as milk. Other researchers have
pursued von Thiinen’s centrality idea. The results are reviewed by Fischer (2011).

The first normative location models aimed at determining “what we should do”,
were proposed by Carl Friedrich Launhardt (1832-1918) and Alfred Weber (1868—
1958). Launhardt (1900) introduced the problem of tracing an optimal rail route
connecting three points. Interestingly, the author casted this problem within an
industrial context. The problem was revisited by Pinto (1977) who stated it as
follows: Consider the three nodes depicted in Fig. 1.5. Suppose that w, tons of


https://www.archive.org/details/derisoliertestaa00thuoft
https://www.archive.org/details/derisoliertestaa00thuoft
https://www.archive.org/details/derisoliertestaa00thuoft
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Fig. 1.4 Von Thiinen’s rings.

. K — 350 —
From “Die Isolierte Staat” by
Johann Heinrich von : X
. B : == .
Thiinen”, Rostock 1842, Treve- Forat- Frochiwechsel- mmj Qrefeider
Wirtschaft Wartschaft Wertsghaft Wertsenaft Wiiersghalt

p- 389 (Source: University of
Toronto—Robarts Library,
https://www.archive.org/
details/
derisoliertestaa0Othuoft)
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Fig. 1.5 Location problem Cowe
proposed by Launhardt ?
(1900) within an industrial

context

iron ore (collected at A) have to be combined with wp tons of coal (collected at
B) to produce w¢ tons of pig-iron to be dispatched to C. The problem calls for
an industrial facility to be located somewhere between A, B and C. If d, dp, d¢
denote the Euclidean distances between the industrial location (to be determined)
and nodes A, B, and C, respectively, then the goal is to determine the location of
the industrial plant that will minimize the total weighted transportation cost given
by wads +wpdp +wcedc.


https://www.archive.org/details/derisoliertestaa00thuoft
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Fig. 1.6 Launhardt’s C
geometric solution

This problem introduced by Launhardt is exactly what we now call the three-
node Weber problem. However, as pointed out by Pinto (1977), the problem was
introduced about 10 years before Weber (1909). Indeed, Launhardt (1900) proposed
a simple geometric solution scheme for the problem. The solution is obtained as
follows (see Fig. 1.6): Consider the triangle ABC defined by the original nodes (the
locational triangle) and select one node, say C. Consider another triangle whose
sides are proportional to the weights w4, wp and we.? Draw a triangle AOB similar
(in the geometric sense) to the weight triangle but such that the edge proportional
wc has the same length as edge AB, which is the one opposite to C in the locational
triangle. The new triangle AOB is depicted in Fig. 1.6.> We can now circumscribe
nodes A, B and O, by just touching each point. Finally, a straight line can be drawn
connecting O and C. The intersection between the circle and this line yields the
optimal location for the industrial facility.

This same problem was treated by Weber (1909) or, to be more accurate, by
the mathematician Georg Pick (1859-1942), who is the author of the appendix
in which the mathematical considerations of Weber’s book are presented. The
problem was solved in a different way but this resulted in the same solution. As
put by Losch (1944), the solution to this problem was discovered by Carl Friedrich
Launhardt and rediscovered “one generation later” by Alfred Weber. Nevertheless,
Weber (1909), presented a deeper analysis of the problem. He first noted that if
the geometric construction leads to a point outside the original triangle, then the
optimal solution lies on the boundary of the original triangle. Second, he observed
that the pole method, which Launhardt (1900) believed should work for polygons

2This triangle is referred to by Weber (1909) as the weight triangle.
3Node O was called by Launhardt the pole of the locational triangle.
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with more than three sides, does not necessarily yield the optimal solution when
more than three nodes are involved. A practical algorithm for solving the problem
with an arbitrary number of nodes was proposed by Weiszfeld (1937).* The iterative
procedure proposed in this work was recently revisited in depth by Plastria (2011).

A synthesis of the first steps towards inserting location theory into an economic
context is due to Losch (1944). The importance of this work stems from the fact that,
for the first time, location theory and the theory of market areas were connected.
This work constitutes the first explicit recognition of the strong link that is often
observed between these two areas.

1.3 Towards a New Science

The 1960s set the foundations of Location Science as new scientific area. We first
witnessed the natural extension of the Weber problem to the multi-facility case.
This was done, among others, by Miehle (1958) and Cooper (1963). In particular,
the latter work introduced the planar p-median problem for which each demand
node must be served by one out of p new facilities to be located. This became
a fundamental problem in Location Science, which still attracts the attention of
the scientific community (see the recent papers by Brimberg and Drezner 2013,
Brimberg et al. 2014, and Drezner et al. 2014).

The seminal papers by Hakimi (1964, 1965) opened new important research
directions. Hakimi (1964) introduced the concept of absolute median of a graph:
a single facility is to be located anywhere in a network so as to minimize the sum
of the distances of the nodes of the network to the facility. The author proved that
there always exists an optimal solution for which the absolute median is a vertex
of the graph. It is also in this paper that the concept of absolute center was first
introduced: a single facility has to be located (anywhere in the network) in order to
minimize the maximum distance between the facility and all the vertices. This work
was extended to the multi-facility case by Hakimi (1965): now, p facilities are to
be located. The vertex-optimality property is still valid for the resulting p-median
problem. This property is of major importance because it means that many network
location problems can be cast into a discrete setting which, in turn, leads to the
possibility of using integer programming and combinatorial optimization techniques
for tackling these problems.

4The author is now known to be Andrew Vizsonyi (1916-2003).
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It is interesting to note that an important step toward the development of
discrete facility location problems was taken in the same year when Balinski (1965)
proposed the first mixed-integer linear programming (MILP) formulation for a
discrete problem which also became classical in Location Science: the uncapacitated
facility location problem (UFLP). Some inequalities proposed in this work were
later used by ReVelle and Swain (1970) who formulated the first MILP model for
the discrete p-median problem. One year later, Toregas et al. (1971) introduced the
first integer programming formulation for a covering-location problem.

By the early 1970s, the foundations were laid for what would soon become a
very active research field. The recent book by Eiselt and Marianov (2011) describes
the works that can be considered to constitute the basis of Location Science.

In the past 40 years, significant advances have been made in several areas of
Location Science, which is attested by several review papers, such as those by
Brandeau and Chiu (1989), ReVelle and Laporte (1996), Avella et al. (1998), Hale
and Moberg (2003), ReVelle and Eiselt (2005), ReVelle et al. (2008), and Smith
et al. (2009).

Initially, the major concern of the researchers had to do with theoretical develop-
ments and properties of the problems and their solutions. Much work was developed
on continuous and network location problems as well as on fundamental discrete
facility location problems. Further links were created with other areas. For instance,
the developments in continuous location problems led to the important connection
between location analysis and computational geometry. This link remains quite
strong to this day. In fact, one of the most relevant structures in computational
geometry, the Voronoi diagram [after Georgy Feodosevich Voronoy (1868—1908)],
is of major importance in the resolution of many continuous location problems (see,
for instance, the review by Okabe and Suzuki 1997).

Nowadays, location problems can still be categorized according to the location
space (continuous, network or discrete), but also according to their context, namely
the objectives, constraints or type of facilities involved. Eiselt and Marianov (2011)
highlight the three major forms of facility location problems according to the type
of objective function: minsum, covering and minmax. For some time, it was also
popular to distinguish between public, semi-public and private facility location.

Location Science is highly interconnected with other disciplines and has appli-
cation in many areas. The theoretical foundations of this area lie in mathematics,
economics, geography and computer science. The developments we have observed
touch each of these areas.

More recently, stimulated by real-world problems, many areas have emerged
where facility location has been applied with great success. Among these, we can
point out logistics (see, for instance, Melo et al. 2006, for a problem in the context
of logistics network design), telecommunications (see, for instance, Gollowitzer and
Ljubi¢ 2011, for a telecommunications network design problem), routing (e.g., in
the truck and trailer routing problem introduced by Chao 2002, the location of the
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trailer-parking places is one of the relevant decisions to make), and transportation
(see, e.g., Nickel et al. 2001, for a location problem in the context of public
transportation systems). The application of location theory in these areas partially
explains why discrete facility location problems have progressively acquired a major
relevance when compared with the early developments in Location Science.
Nowadays, Location Science is a very active and well-established research area
with its own identity and research community. In addition to the fundamental prob-
lems, we observe different research branches being intensively investigated such has
multi-criteria facility location, multi-period facility location, facility location under
uncertainty, location-routing and competitive location, just to mention a few.

1.4 Purpose and Structure of This Book

As highlighted above, many location problems have applications in other disci-
plines. Researchers working in these disciplines often encounter location decisions
as part of broader problems. From the point of view of researchers coming
from the location community, the recent decades have shown that several very
successful applications of the knowledge gathered in Location Science require a
deep understanding of these disciplines.

In this book, readers will find a full coverage of basic aspects, fundamental
problems and properties defining the field of Location Science, as well as advanced
models and concepts that are crucial to the solution of many real-life complex
problems. The book also presents applications of location problems to several fields.
It is intended for researchers working on theory and applications involving location
problems and models. It is also suitable as a textbook for graduate courses in
facility location. This book is neither a typical textbook with worked examples
and exercises, nor a collection of extensive surveys. It is more a book on “what
you should know” about various aspects of Location Science; it provides the basic
knowledge and structures the field. It is divided into three parts: basic concepts,
advanced concepts and applications.

I. Basic concepts
This part is devoted to the fundamental problems in Location Science, which
include:

* Chapter 2: p-median problems;

* Chapter 3: Fixed-charge facility location problems;
* Chapter 4: p-center problems;

* Chapter 5: Covering location problems;

* Chapter 6: Anti-covering location problems.

The goal of this part is to provide the reader with the basic background of
location theory. The problems described in Part I serve as a basis for much of
the content of Parts IT and III.
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II. Advanced concepts
This part covers models and concepts that aim at broadening and extending the
basic knowledge presented in Part I, thus providing the reader with important
tools to better understand and solve real-world location problems. The chapters
in this part are the following:

* Chapter 7: Location of dimensional facilities in a continuous space;
* Chapter 8: Facility location under uncertainty;
* Chapter 9: Location problems with multiple criteria;

* Chapter 10:
* Chapter 11:
* Chapter 12:
* Chapter 13:
* Chapter 14:
* Chapter 15:
* Chapter 16:
* Chapter 17:
* Chapter 18:

III. Applications

Ordered median location problems;
Multi-period facility location;

Hub location problems;

The quadratic assignment problem;
Competitive location;

Location-routing and location-arc routing;
Location and logistics;

Stochastic location models with congestion;
Aggregation in location.

The links between Location Science and other areas are the focus of the third
part. By presenting a wide range of applications, it is possible not only to
understand the role of facility location in such areas, but also to show how
to handle realistic location problems. These applications include:

* Chapter 19:
* Chapter 20:
* Chapter 21:
* Chapter 22:
* Chapter 23:
* Chapter 24:

Location and GIS;

Location problems in telecommunications;
Location problems in healthcare;

The design of rapid transit networks;
Districting problems;

Location problems under disaster events.

1.5 How to Use This Book

Over the past decades, problems, models, properties, and techniques from Location
Science have been increasingly taught to students enrolled in different programs. We
have identified six types of post-graduate curricula having a strong location content:
business, computer science, economics, engineering, geography and mathematics.
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Depending on the audience, different contents emerge as the most appropriate.
This book can be used with the purpose of organizing courses tuned for specialized

targets by
suggestions

selecting specific combinations of chapters. Below, we offer some
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Mathematics
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This book can also be used to build specialized courses in specific areas. Below,
we provide examples in four areas: facility location and supply chain management,
location of undesirable facilities, location of emergency facilities, and location in
transportation systems.
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When used for teaching, this book should be complemented with examples and
exercises; when used for research, it should be complemented with specialized
readings. We found the following comprehensive references particularly relevant:
Mirchandani and Francis (1990), Drezner (1995), Drezner and Hamacher (2002),
Nickel and Puerto (2005), Eiselt and Marianov (2011), and Daskin (2013).
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Chapter 2
The p-Median Problem

Mark S. Daskin and Kayse Lee Maass

Abstract The p-median problem is central to much of discrete location modeling
and theory. While the p-median problem is NP-hard on a general graph, it can
be solved in polynomial time on a tree. A linear time algorithm for the 1-median
problem on a tree is described. We also present a classical formulation of the
problem. Basic construction and improvement algorithms are outlined. Results
from the literature using various metaheuristics including tabu search, heuristic
concentration, genetic algorithms, and simulated annealing are summarized. A
Lagrangian relaxation approach is presented and used for computational results on
40 classical test instances as well as a 500-node instance derived from the most
populous counties in the contiguous United States. We conclude with a discussion
of multi-objective extensions of the p-median problem.

Keywords Algorithm  Center * Covering ¢ Lagrangian relaxation ¢ Median °
Multi-objective

2.1 Introduction

The p-median problem is that of locating p facilities to minimize the demand
weighted average distance between demand nodes and the nearest of the selected
facilities. The problem dates back to the seminal work of Hakimi (1964, 1965). The
p-median problem is one of several classical location problems which also include
the capacitated and uncapacitated facility location problems (Chap. 3), the p-center
problem (Chap. 4), covering problems (Chap. 5) and anti-covering problems (Chap.
6). The p-median problem lies at the heart of many practical location problems, and,
as shown below (Sect. 2.7), some of the other classical location problems can readily
be formulated as p-median problems, leading to multicriteria location problems as
outlined in Chap. 9.

Our objective is not to review every paper and every result related to this seminal
problem. Rather, we summarize key results, algorithms and important extensions.
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We refer the reader to ReVelle et al. (2008) for a fairly recent annotated bibliography
of the p-median and related models.

The remainder of this chapter is organized as follows. Section 2.2 outlines several
key properties of the problem. Section 2.3 discusses optimal solution algorithms
for the problem on a tree. Section 2.4 formulates the p-median problem as an
optimization problem. Section 2.5 outlines algorithms for the problem on a general
network. Section 2.6 presents selected computational results. Section 2.7 outlines
two key multi-objective extensions of the p-median problem. Finally, conclusions
are briefly presented in Sect. 2.8.

2.2 Model Properties

There are three key properties of the p-median problem that are important to know.
First, Kariv and Hakimi (1979) showed that the p-median problem is NP-hard on a
general graph. This is the bad news. The good news, as outlined below, is that there
are many effective algorithms and approaches to solving the p-median problem.

Second, Hakimi (1965) showed that at least one optimal solution to the p-median
problem consists of locating only on the nodes. To see that this is true, consider
a solution that entails locating a facility somewhere on an edge between nodes A
and B. Let D, be the total demand served by this facility that enters the edge via
node A, and let Dp be the total demand served by the facility that enters via node B.
Clearly, if D4 > Dp we can move the facility to node A and reduce the objective
function. This contradicts the assumed optimality of the facility at an intermediate
location on the edge. Similar arguments hold if Dp > D4 in which case we move
the facility to node B. If D4 = Dp we can move the facility to either node without
adversely impacting the objective function value. Note that moving the facility to
one of the nodes may result in the reassignment of demands to or from the facility if
doing so will reduce the objective function. Such reassignments will only improve
the objective function. Also note that moving the facility to one of the nodes may
also result in some demands that were served by the facility, and that entered via the
other node, to now enter the facility directly without traversing the edge between A
and B. This would occur if traveling directly to the facility is shorter than traveling
via the edge between A and B. Finally, we note that the nodal optimality property
holds if the distance between a demand node and a candidate facility site is replaced
by any concave function of the distance.

Finally, the demand weighted total cost or distance (or the demand weighted
average cost or distance) decreases with the addition of each subsequent facility.
This is clearly true since, if there exists an optimal solution to the problem with
p facilities, then adding a p + 1% facility at any of the candidate nodes that does
not have a facility will decrease the demand-weighted total cost or distance and
therefore will also decrease the objective function. Locating the p + 1 facilities
optimally is clearly as good or better than first locating p facilities optimally and
adding a subsequent facility to that solution.
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Table 2.1 Median results for top 100 counties in US

Demand weighted

p average distance | Change Sites

1 969.45 St. Louis, MO

2 450.65 518.80 San Bernardino, CA; Allegheny,
PA

3 320.15 130.50 Los Angeles, CA; Shelby, TN;
Hudson, NJ

4 257.23 62.92 Los Angeles, CA; Tarrant, TX;
New York, NY; Jefferson, KY

5 190.22 67.01 Los Angeles, CA; Cook, IL;
Dallas, TX; New York, NY;
Orange, FL

We would also expect that the marginal improvement in the demand weighted
total (or average) cost or distance would decrease monotonically as we add facilities.
This is frequently the case, but not always. As an example of a situation in which
this is not so, consider the p-median problem with the 100 largest counties in the
contiguous United States based on the 2010 census. While these counties represent
only 3.2 % of the 3,109 counties in the contiguous United States, they account for
42.2 % of the total population. Using great circle distances and population as a
proxy for demand, we obtain the results shown in Table 2.1. The demand weighted
average distance decreases with the number of facilities as shown in the second
column. However, the change in the demand weighted average distance increases
from about 63 miles to 67 miles as we increase from four to five facilities.

2.3 The p-Median Problem on a Tree

While the p-median problem is NP-hard on a general graph, the problem can be
solved in polynomial time on a tree. We illustrate this with a linear time algorithm
for finding the 1-median on a tree, which was proposed by Goldman (1971). This
algorithm also helps explain why the problem is called the “median” problem. If
any node of the tree has half or more of the total demand of all nodes on the tree,
then it is clearly optimal to locate at that node. Moving away from that node will
move the facility further from half or more of the demand and closer to less than
half of the demand, thereby increasing the objective function value.
To outline this algorithm, we define the following sets:

J=1{1,...,i,...,m} the set of candidate locations

d=A{1,...,j,...,n} the set of demand nodes.
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Fig. 2.1 Example tree
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In addition, we define the following additional inputs:

d;  demand of customer j
¢;j  unit cost of satisfying customer j from facility i.

Now suppose that no node has half or more of the total demand. We call any
node that is connected to only one other node in the tree, a tip node. We let d;. be the

modified demand at node j € J. We also define D,y = Z 'egd ;- The algorithm
J
is as follows.

Step 1: Letd; = d; forallnodes j € J.

Step 2: Select any tip node. Call the tip node, node A and the node to which it is
connected node B. Remove node A and edge (A, B). Add the modified demand at
node A to the modified demand at node B. If the new modified demand at node B
equals or exceeds Dy,,1/2, stop; node B is the 1-median of the tree. Otherwise repeat
step 2.

This is clearly an O(n) algorithm since Step 2 can be performed in constant time
and each node is examined at most once in Step 2. The complexity of Step 1 is also
clearly O(n).

We can illustrate this algorithm with the tree shown in Fig. 2.1. The demand
associated with each node is shown in a box beside the node and the edge distances
are shown beside the edges. Nodes A, B, E and F are tip nodes. The total demand
in the tree is Dy, = 1,000. Clearly, no node has half or more of the total demand.
We select node E as the first tip node to eliminate (since it has the largest demand
of any tip node). We remove node E and link (C, E) from the tree and add 250 (the
demand at node E) to the demand at node C. The modified demand at node C is now
375, which does not exceed half of the total demand. Next we can process node F,
removing it as well as arc (D, F) and adding its demand to that of node D, resulting
in a modified demand at node D of 375. Next we process node B, removing it as
well as arc (B, D) and adding its demand to that of node D, resulting in a modified
demand at node D of 525, which exceeds half of the total demand in the tree. Node
D is therefore the 1-median of the tree.
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Note that in computing the location of the 1-median we do not need to use the
distances. In fact, node D would be the 1-median of the tree for any arc distances for
the tree. To compute the objective function value, we clearly do need the distances.
The objective function value for the 1-median located at node D in Fig. 2.1 is 5,375.

Kariv and Hakimi (1979) present an O(np?) algorithm for the p-median problem
on a tree. Tamir (1996) improved the computation time and presented an O(pn?®)
algorithm for the problem of locating p facilities on a tree.

2.4 Model Formulation

In this section, we formulate the p-median problem. In addition to the notation
defined above, we define the following additional input:

p the number of facilities to locate.

Finally, we define the following decision variables:

~_ ) Lif afacility is located at candidate site i
' 0 otherwise

x;  the fraction of the demand of customer j that is supplied from facility i.

With this notation, we can formulate the p-median problem as follows:

minimize Ziejzjeadjcijxij (2.1)
subject to Ziejxij =1 Vjej (2.2)
=D 2.3)

xj—yi<0 Vielje] 2.4)
yi €{0,1} Viel (2.5)

xj >0 Viel;jed. (2.6)

The objective function (2.1) minimizes the demand-weighted total cost. Con-
straints (2.2) mean that all of the demand at demand site j must be satisfied.
Constraints (2.3) require exactly p facilities to be located. Constraints (2.4) state that
demand nodes can only be assigned to open facilities. Constraints (2.5) stipulate that
the location variables must be integer and binary. Finally, constraints (2.6) state that
the assignment variables must be non-negative.
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Note that we do not require the assignment variables to be binary variables. If
the unit cost from a demand node to the nearest open facility is strictly less than
the unit cost between that node and any other open facility, then the corresponding
assignment variables for that demand node will naturally be binary. That is, all of
the demand at that node will be assigned to the nearest open facility. If the unit
costs between a demand node and two or more open facilities are the same, and the
unit costs are less than the unit costs between the demand node and any other open
facility, the assignment variables may indicate that the demand is to be split between
the set of nearest facilities. We can always round all but one of these assignment
variables down to 0 and round the last one up to 1 if we require all-or-nothing
demand assignments or single sourcing.

2.5 Solution Heuristics for the p-Median Model on a General
Network

In this section, we outline a number of heuristic algorithms for solving the p-median
problem on a general network. We conclude the section by structuring a Lagrangian
relaxation algorithm (Fisher 1981, 1985).

2.5.1 Basic Construction and Improvement Algorithms

The simplest algorithm is the myopic or greedy adding algorithm. In this algorithm,
all candidate facility sites are examined and the one whose addition to the current
solution reduces the demand-weighted total distance the most is added to the
incumbent solution. The process continues until the solution includes p facilities.
The following is pseudocode for the myopic algorithm. In this and all subsequent

pseudocodes, we define z (7, X) = Z 'egdj min,,ex {cmj}, where X is the current
j

set of candidate facility sites. Note that the function depends on both the set of
demand nodes to be considered and the candidate locations to be used.

Myopic Algorithm Pseudocode

1. Set X < &./* X is the set of locations to be used
2. Find i * = argmin, ¢4 {z (J, XU {i})}.

3. Set X <« XU {i*}.

4. If | X| < p, go to Step 2; else stop.

Step 1 initializes the set of locations to the empty set. Step 2 finds the best node
to add to the emerging solution. Step 3 adds that site to the solution. Step 4 asks if
less than p facilities have been added to the emerging solution. If so, the algorithm
continues with Step 2; if not, the algorithm stops.
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The myopic algorithm can readily paint itself into a corner. There is no guarantee
of optimality for the myopic algorithm. As illustrated below in the computational
results, the algorithm can perform quite poorly. That said, it is clear that it is optimal
if we are locating only a single facility.

Exploiting the optimality of the myopic algorithm for the 1-median problem,
Maranzana (1964) proposed a neighborhood improvement algorithm. Starting with
any feasible solution to the p-median problem, the algorithm assigns each demand
node to its nearest facility. Ties are broken arbitrarily. The set of nodes assigned to
a facility constitutes the neighborhood of that facility. Within each neighborhood,
the algorithm examines each candidate node and selects the one that minimizes
the demand-weighted total distance among all nodes in the neighborhood. In other
words, within each neighborhood, the algorithm solves a 1-median problem. If
no facility locations have changed, the algorithm stops; otherwise, if any facility
locations have changed as a result of solving the 1-median problem, the algorithm
re-assigns all demand nodes to the nearest open facility. If no assignments have
changed, the algorithm stops; otherwise, the algorithm continues by solving the 1-
median problem in each neighborhood. This process of determining neighborhoods
and solving 1-median problems within each neighborhood continues until no further
improvement is possible. The pseudocode below outlines the neighborhood search
algorithm.

Neighborhood Search Algorithm Pseudocode

1. Input: X /* X is a set of p facility locations
Set: N; < ¢, Vi € J/* N; is the set of demand nodes for which
/* candidate site i is the closest open facility
For j € Jdo
Set i* « argmin, 4 {c;}
Set Ni* <~ Ni*U {j}
End For
Set X <« ¢ /* X" is the set of new facility locations
Fori € Jdo
9. If |N;| > O then
10. Find k* = argmin ¢y, z (N;, {tk})
11. Set X" «— XU {k*}
12. End If
13. End For
14. If X # X" then set X < X" and go to Step 2; else stop

N

® NN kW

Step 1 initializes the solution with any set of p facilities. Steps 2 through
6 initialize and then set the neighborhoods. Step 7 initializes a new candidate
set of facility locations. Steps 8 through 13 find the new candidate locations. In
particular, in Step 10, the algorithm finds the 1-median within each neighborhood
and adds that vertex to the emerging new solution in Step 11. The algorithm, as
written, assumes that the sets of demand locations and candidate sites are the same.
While the neighborhood search algorithm finds the optimal location within each
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neighborhood, there is no guarantee that it will find the global optimum for the
problem.

The exchange algorithm, proposed by Teitz and Bart (1968), is another heuristic
improvement algorithm that tends to do better than the neighborhood search
algorithm. The algorithm attempts to improve the current solution by removing a
node that is in the solution and replacing it with a node that is not in the solution.
If an exchange of this sort can be found and improves the solution (i.e., reduces
the demand-weighted total distance), it is implemented. The algorithm terminates
when there is no such exchange that improves the solution. The pseudocode for one
variant of the exchange algorithm is shown below.

Exchange Algorithm Pseudocode

1. Input: X /* X is a set of p facility locations
2. Fori € X do
3. For k € I\ X

4 Ifz(J, X) > z(J, XU {k}\{i}) then
5. Set X < XU {k}\ {i} and stop
6. End If

7 End For

8. End For

Step 1 initializes the solution with any set of p facilities. In Step 2 we loop over
the sites in the current solution. In Step 3 we loop over candidate sites that are not
in the solution. In Step 4, we ask if removing one site from the current solution
and replacing it with a site not in the current solution will improve the objective
function. If so, we make that substitution and the algorithm stops.

There are numerous ways of implementing an exchange algorithm. The algo-
rithm might implement the first exchange that improves the solution, as shown in
the pseudocode above. Alternatively, the algorithm might find the first node in the
solution whose removal will result in an improvement to the solution and then find
the best node to insert into the solution in place of the removed facility. Finally, the
algorithm can find the best improving pair of nodes over all possible nodes to be
removed and inserted into the solution.

If either of the first two approaches are adopted—that is, if the exchange
algorithm does not find the best overall exchange possible—there are alternate ways
in which the algorithm can proceed. One option is to continue the search with the
next indexed node that is not in the solution, attempting to replace the node that was
just inserted into the solution with another node. Another option is to proceed to
the next node in the solution and attempt to find exchanges based on that node. A
third option is to reinitiate the search from the first node in the solution. The various
options for selecting an exchange to implement, as well as the different ways in
which the algorithm can proceed once an improving exchange has been identified,
result in numerous possible implementations of the exchange algorithm. Most of the
literature does not identify which implementation was employed.
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2.5.2 Metaheuristics for the p-Median Problem

The myopic algorithm is a construction algorithm. The neighborhood and exchange
algorithms are improvement algorithms. A large variety of metaheuristic algorithms
have been devised to find solutions to the p-median problem. Mladenovié et al.
(2007) provide a relatively recent review of these techniques. Below we highlight a
few of the classic papers and approaches in this field.

Chiyoshi and Galvao (2000) present a statistical analysis of a simulated annealing
algorithm (Kirkpatrick 1984) for the p-median model. They employed the 40-
instance dataset proposed by Beasley (1990). The dataset includes instances ranging
from 100 to 900 demand locations. They found that in 100 runs of a simulated
annealing algorithm for each instance, the best solution found was the optimal
solution in 26 of the 40 instances. The maximum deviation from optimality for
the best of the 100 runs for the 40 instances was 1.62 %. Al-khedhairi (2008)
also employed simulated annealing for the Beasley dataset and found the optimal
solution in 33 of the cases. However, the maximum deviation was over 18 % for
the seven instances for which the simulated annealing algorithm failed to find
the optimal solution. Murray and Church (1996) also discuss the application of
simulated annealing to the p-median problem as well as to the maximal covering
problem.

Alp et al. (2003) propose an effective genetic algorithm (Goldberg 1989; Haupt
and Haupt 1998; Holland 1975; Michalewicz 1994; Mitchell 1998) for the p-median
problem. For the 40-instance Beasley dataset, they ran their algorithm 10 times for
each instance. They found the optimal solution at least once in 28 of the 40 cases. In
six of the cases, the genetic algorithm always identified the optimal solution. In the
12 cases in which the genetic algorithm failed to find the optimal solution, the best
of the ten runs resulted in objective functions that deviated from the optimal value
by 0.02-0.4 %.

Rolland et al. (1996) applied tabu search (Glover 1990; Glover and Laguna 1997)
to the p-median problem. They tested their algorithm using randomly generated
datasets ranging in size from 13 to 500 nodes. For instances with 100 nodes or
fewer, the results were compared to two-exchange heuristics as well as to the optimal
solution found using an integer programming algorithm. For the larger instances,
optimal solutions were not obtained and the three heuristics were compared with
each other. In all cases, the tabu search algorithm outperformed the other two
heuristics. For the smaller instances (100 nodes or fewer) the tabu search algorithm
averaged 0.5 % from optimality with a maximum deviation of 6 %. Tabu search
found the optimal solution in 66 % of the smaller test cases. For the 12 larger test
cases, tabu search found the best solution in all but one case.

If an improvement (e.g., the neighborhood search or exchange algorithm outlined
above) is started with many different randomly generated solutions, the p facilities
that are selected are often similar across the various solutions. In other words, some
sites are selected in many of the runs and many other candidate sites are never
selected. Using this observation, Rosing and ReVelle (1997) developed a heuristic
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concentration algorithm for the p-median problem. The idea is to generate a number
of good solutions based on randomized starting solutions. A subset of the nodes
that are selected in the various runs is then used to reduce the number of location
variables in formulation (2.1)—(2.6) above. In other words, the concentration set, or
the set of candidate sites, is reduced from J to a smaller set consisting of a subset of
the nodes selected as facilities in the various randomized runs.

Heuristic concentration is based on eliminating some of the location variables.
Church (2008) proposed the BEAMR approach which attempts to eliminate some of
the assignment variables. BEAMR attempts to utilize only the h; closest assignment
variables for each demand node. To ensure feasibility, the model also includes
a variable for each demand node allowing the assignment to a dummy facility
further than the A; closest candidate facilities. This assignment does not need
to satisfy constraints (2.4). The resulting model provides a lower bound on the
objective function value for the p-median problem. An upper bound can be found
by simply assigning every demand node to the nearest of the selected facility
sites. If the bounds are not close enough, then some of the 4; values can be
increased, particularly for those nodes for which assignment to one of the nearest
h; candidate sites was not possible. The algorithm typically results in provably
optimal solutions using a fraction of the constraints and variables of the original
formulation (2.1)—(2.6).

Rosing et al. (1998) compared heuristic concentration to tabu search in problems
with 100 and 200 demand nodes and candidate sites. Heuristic concentration found
the optimal (or best known) solution in 17 of the 21 test cases, while tabu search
found the optimal (or best known) solution in only two cases.

Mladenovi¢ and Hansen (1997) introduced a variable neighborhood search
algorithm. Hansen and Mladenovi¢ (1997) applied this algorithm to the p-median
problem. They found that variable neighborhood search outperformed both a greedy
interchange algorithm and two different tabu search-based algorithms.

Hansen and Mladenovi¢ (2001) reviewed the basics of variable neighborhood
search algorithms and compared a variety of metaheuristic algorithms, including
variable neighborhood search for the 12 largest of the 40 Beasley instances. They
found that variable neighborhood search and heuristic concentration outperformed
tabu search and a greedy interchange algorithm. Variable neighborhood search was
slightly better than heuristic concentration.

2.5.3 A Lagrangian Heuristic for the p-Median Problem

In this subsection, we outline a Lagrangian relaxation algorithm to the p-median
problem. The advantage of Lagrangian relaxation over any heuristic approach is
twofold. First, at every iteration of the Lagrangian procedure we obtain lower and
upper bounds on the objective function value. Second, the Lagrangian procedure can
readily be embedded in a branch-and-bound algorithm to obtain provably optimal
solutions.
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We relax constraint (2.2) to obtain the following Lagrangian problem:

MaxaMing, 6= 30 3" dyegry + 325 (1= ) )

i€J 2.7)

= Z,Ejzjeg (djei = Aj) xi + Zjeg%'

subject to (2.3)—(2.6).

For fixed values of the Lagrange multipliers, A;, we compute the value of
being able to add a facility at node i € J. This value is given by V; =
Z;eg min {0, djcij — Aj}. We then select the p sites with the p most negative V;

values, breaking ties arbitrarily. This determines the values of the location variables,
vi. The assignment variables are determined by setting x; = 1 if (i) y; = 1 and (ii)
djcij —A; < 0, and setting x;; = 0 otherwise. The resulting values can be used to
evaluate (2.7), providing a lower bound on the objective function value. To obtain an
upper bound on the objective function value, we simply assign every demand node
to the nearest candidate facility for which y; = 1 and evaluate (2.1) using these
assignment values.

Some of constraints (2.2) are likely to be violated by the solution to the
Lagrangian problem as outlined above. In particular, some demand nodes may not
be assigned to any facility and some may be assigned to multiple facilities. This
occurs when the Lagrange multipliers are not at their optimal values. Subgradient
optimization can be used to improve the Lagrange multipliers. Daskin (2013)
provides a detailed explanation of the Lagrangian algorithm for the p-median
problem.

The Lagrange multipliers coupled with the best lower and upper bounds can be
used to force candidate sites in and out of the solution at any point in the Lagrangian
procedure. Typically, it is most useful to do so when the bounds are very close to
each other but still differ by a small amount. Let LB and UB be the best-known lower
and upper bounds, respectively. Using the Lagrange multipliers associated with LB,
sort the V; values so that Vy; is the ith smallest value. In other words, V[y; is the most
negative value and Vj,,) is the last value that resulted in selecting a candidate facility
site in the Lagrangian solution. Additionally, V[, is the next largest value.

Consider a candidate site i € J that is in the best-known solution. Then, if UB <
LB—V; +V|p+1, site i € J can be forced into the solution; in other words, we can set
y; = 1in all subsequent Lagrangian iterations and in any branching below the node
at which this check is done (e.g., the root node of a branch-and-bound algorithm).
Similarly, if site i € Jis not part of the best-known solution and UB < LB—V|,+V;,
then site i € J can be forced out of the solution; in other words, we can set y; = 0 in
all subsequent Lagrangian iterations and in any branching below the node at which
this check is done (e.g., the root node).
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2.6 Computational Results

In this section, we provide sample results for some of the algorithms outlined above.
We begin with Table 2.2 which shows the results of using a Lagrangian relaxation
algorithm embedded in branch-and-bound for the Beasley dataset. The instances
were all solved using an expanded version of the SITATION software (Daskin 2013)
on a Macintosh computer running OS X version 10.8.5 with a 2.7 GHz Intel Core i7
processor and 16 GB of 1,600 MHz DDR3 memory using Parallels 7.0.15107. The
average solution time was under 45 s. The longest solution time—for PMED36—
was under 13 min. Seventeen of the 40 instances were solved at the root node and
all but three of the instances required less than 40 branch-and-bound nodes. The
average solution time is 44.9 s and the average number of branch-and-bound nodes
needed is 21.5.

The second part of the table illustrates the impact of using the variable forcing
rules outlined at the end of Sect. 2.5 at the end of the Lagrangian algorithm at the
root node of the branch-and-bound tree. The rules are quite effective at eliminating
candidate nodes; on average nearly 85 % of the candidate sites that could not be
in the solution were excluded at the root node using these rules. (The number of
candidate sites that could not be in the solution was equal to the total number of
candidate sites minus the number of facilities). Overall, 81 % of the candidate sites
were either forced in or out of the solution, on average.

Next we turn our attention to tests performed using the 500 most populous
counties among the 3,109 counties in the contiguous United States. While these
represent less than one sixth of the total counties, they encompass over 75 % of the
population living in the contiguous United States. Great circle distances between
the county centroids were employed. We used SITATION to solve the p-median
problem for this dataset with the number of facilities increasing from 1 to 25.
The solution time for each of these 25 runs was under 5 s and only two instances
required branch-and-bound to obtain provably optimal solutions. In each of these
two instances, only three nodes in the branch-and-bound tree needed to be explored
after the root node forcing rules were employed. Figure 2.2 plots the results for five,
10, 15, 20 and 25 medians. The model locates the first five cities near the major
cities of New York, Los Angeles, Dallas, Chicago and Miami. Additional facilities
are then added to better serve the rest of the counties. Figure 2.3 plots the demand-
weighted average distance versus the number of medians. As expected, the average
distance decreases with the number of medians. Also, the marginal improvement
decreases with the number of medians in this case.
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Table 2.2 Lagrangian relaxation results for Beasley datasets

Dataset # Dem # Med. Objective Iterations B&B nodes CPU time (s)
Pmed1 100 5 5,819 1,200 1 2.94
Pmed2 100 10 4,093 3,500 9 8.92
Pmed3 100 10 4,250 2,958 7 7.70
Pmed4 100 20 3,034 1,200 1 3.06
Pmed5 100 33 1,355 1,200 1 3.03
Pmed6 200 5 7,824 5,758 19 15.09
Pmed7 200 10 5,631 1,200 1 3.08
Pmed8 200 20 4,445 1,200 1 3.09
Pmed9 200 40 2,734 4,981 15 14.73
Pmed10 200 67 1,255 1,200 1 5.31
Pmed11 300 5 7,696 1,788 3 4.81
Pmed12 300 10 6,634 5,927 19 17.3
Pmed13 300 30 4,374 1,200 1 4.80
Pmed14 300 60 2,968 1,747 3 8.70
Pmed15 300 100 1,729 1,200 1 7.94
Pmed16 400 5 8,162 8,447 29 24.55
Pmed17 400 10 6,999 9,220 29 27.89
Pmed18 400 40 4,809 1,200 1 6.55
Pmed19 400 80 2,845 1,200 1 9.30
Pmed20 400 133 1,789 2,401 5 24.50
Pmed21 500 5 9,138 1,200 1 3.70
Pmed22 500 10 8,579 13,687 39 55.86
Pmed23 500 50 4,619 1,200 1 8.64
Pmed24 500 100 2,961 3,995 10 41.42
Pmed25 500 167 1,828 4,721 11 72.44
Pmed26 600 5 9,917 5,380 15 22.25
Pmed27 600 10 8,307 2,925 7 12.53
Pmed28 600 60 4,498 1,200 1 12.30
Pmed29 600 120 3,033 1,200 1 18.81
Pmed30 600 200 1,989 2,001 4 57.55
Pmed31 700 5 10,086 6,517 19 29
Pmed32 700 10 9,297 3,212 7 15.41
Pmed33 700 70 4,700 1,200 1 19.88
Pmed34 700 140 3,013 1,200 1 33.02
Pmed35 800 5 10,400 9,680 31 47.64
Pmed36 800 10 9,934 140,011 437 767.16
Pmed37 800 80 5,057 5,754 14 97.06
Pmed38 900 5 11,060 17,905 57 107.78
Pmed39 900 10 9,423 22,018 65 136.27
Pmed40 900 90 6,128 1,200 1 32.89

(continued)
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Table 2.2 (continued)

Dataset |#Dem |# Med. |No. sites forced in | No. forced out | % in | % out | % forced
Pmedl 100 5 4 94 80 99 98
Pmed2 | 100 10 2 79 20 88 81
Pmed3 100 10 3 71 30 79 74
Pmed4 | 100 20 15 75 75 94 90
Pmed5 100 33 25 59 76 88 84
Pmed6 | 200 5 0 161 0 83 81
Pmed7 | 200 10 8 189 80 99 99
Pmed8 | 200 20 18 178 90 99 98
Pmed9 | 200 40 1 71 3 44 36
Pmed10 | 200 67 52 116 78 87 84
Pmedl1 |300 5 0 280 0 95 93
Pmed12 | 300 10 0 257 0 89 86
Pmed13 | 300 30 27 267 90 99 98
Pmed14 | 300 60 9 160 15 67 56
Pmedl15 | 300 100 78 178 78 89 85
Pmed16 | 400 5 0 336 0 85 84
Pmed17 | 400 10 0 327 0 84 82
Pmed18 | 400 40 24 314 60 87 85
Pmed19 | 400 80 67 307 84 96 94
Pmed20 | 400 133 49 163 37 61 53
Pmed21 | 500 5 5 495 100 | 100 100
Pmed22 | 500 10 0 397 0 81 79
Pmed23 | 500 50 44 444 38 99 98
Pmed24 | 500 100 14 308 14 77 64
Pmed25 | 500 167 36 191 22 57 45
Pmed26 | 600 5 0 542 0 91 90
Pmed27 | 600 10 0 539 0 91 90
Pmed28 | 600 60 50 496 83 92 91
Pmed29 | 600 120 97 450 81 94 91
Pmed30 | 600 200 24 131 12 33 26
Pmed31 | 700 5 0 639 0 92 91
Pmed32 | 700 10 0 645 0 93 92
Pmed33 | 700 70 13 603 19 96 88
Pmed34 | 700 140 98 459 70 82 80
Pmed35 | 800 5 0 684 0 86 86
Pmed36 | 800 10 0 478 0 61 60
Pmed37 | 800 80 10 610 13 85 78
Pmed38 | 900 5 0 780 0 87 87
Pmed39 | 900 10 0 707 0 79 79
Pmed40 | 900 90 85 805 94 99 99
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Fig. 2.2 (continued)
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15-Median Solution
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25-Median Solution
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Fig. 2.2 Optimal locations for 5, 10, 15, 20 and 25 medians
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Fig. 2.3 Demand-weighted average distance versus number of medians

37



38 M.S Daskin and K.L. Maass

Fig. 2.4 Histogram of the Percent of Possible Occurences
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With 1-25 medians being selected, there conceivably could be 325 unique nodes
chosen as medians. This was not the case. Only 55 unique nodes were selected and
these were biased toward the larger demand nodes. With the dataset sorted from
the most populous to the least populous county, Fig. 2.4 plots the distribution of
the number of times nodes in different groupings were selected. Nearly half of the
counties selected were among the top 50 most populous counties. Over 75 % of the
selected counties were in the top 150 most populous counties.

Figure 2.5 plots the percent error due to limiting the candidate solution set to
the most populous 100, 200, 300 and 400 counties, compared to allowing all 500
counties to be in the solution. The errors are generally less than 1 % as long as at
least 200 nodes are in the candidate set. Even when the candidate set is limited to
only 100 nodes, the maximum error in the 25 runs was under 4 %, though the error
seems to be growing with the number of medians in this case.
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Fig. 2.6 Errors due to using Percent Error for Various Algorithms
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We next consider the impact of using different construction and improvement
algorithms to solve the problem. Five different algorithms were tested: the greedy
adding or myopic algorithm (GA), the greedy adding algorithm with the node
exchange algorithm applied after every median is added (GAS-Every), the greedy
adding algorithm with the neighborhood algorithm applied after every median
is added (Neighborhood-Every), the greedy adding algorithm with the exchange
algorithm applied after all nodes have been added (GAS-Last), and the greedy
adding algorithm using the neighborhood algorithm only after all nodes have been
added to the solution (Neighborhood-Last).

Figure 2.6 plots the results. Both the greedy adding algorithm (GA) and the
Neighborhood algorithm applied after all nodes have been added to the solution
(Neighborhood-Last) result in large errors, often exceeding 10 %. The other three
algorithms perform much better and result in errors that are under 4 % and often
under 2 %.

Figure 2.7 plots the results of using a genetic algorithm similar to that proposed
by Alp et al. (2003). The variant employs a standard crossover operator. To ensure
feasibility of the solution generated by the crossover operator, we randomly drop
nodes from any solution that has more than p facilities (always retaining facilities
that are in both parent’s solutions) and randomly add facilities from the parents
when the operator results in fewer than p facilities being selected. The standard
genetic algorithm can result in large errors and the errors seem to grow with the
number of medians. However, if the final genetic algorithm solutions are subject to
an exchange algorithm, the errors are under 1 % and average under 0.1 % for the 25
cases.
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Fig. 2.7 Errors due to using Percent Error for Genetic Algorithms
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2.7 Multi-objective Extensions of the p-Median Model

The formulation above, (2.1)—(2.6), can be modified to obtain a formulation of the
maximum covering problem (Church and ReVelle 1974). The maximum covering
problem finds the location of p facilities to maximize the number of demand nodes
that are covered within some coverage distance, d.. In particular, we let d;; be the
distance between candidate site i € J and demand node j € J. We then define

YUl 1ifdy > d..

If we now solve (2.1)—(2.6) with c¢;; replaced by ¢;;, we will be able to solve a
maximum covering problem. In essence, we are minimizing the total number of
uncovered demands, which is equivalent to maximizing the number of covered
demands.

We can also find the tradeoff between the covering and average cost (or average
distance) objective by minimizing a suitable linear combination of the two cost
terms. In particular, we minimize a weighted sum ¢; = ac; + (1 — ) é; of the
original ¢;; and the coverage term ¢;;, with 0 < a < 1. Clearly, if @ = 1, the model
will simply minimize the demand weighted total distance or cost. Also, if & = 0,
the model will minimize the number of uncovered demands.

The choice of « is critical if we want to trace out the complete tradeoff curve.
Many researchers and practitioners simply solve the problem for fixed values of o.
For example, they might solve the problem for ¢« = 0, 0.05, 0.1,...,1.0. We do
not recommend this approach because it is simultaneously likely to miss important
points on the tradeoff curve and to result in obtaining many identical solutions.
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Instead, one should solve the problem using &y = 1 — €|, where ¢, > 0
is a suitably small value so that we are guaranteed to get one of the (possibly)
alternate optima for the p-median problem. Let Z! be the objective function value

we obtain and let D' = ZZd jciix;i be the demand-weighted total distance

ieljegd
corresponding to this solution and U' = ZZd ;Cijxij be the total uncovered
i€l jed
demand corresponding to this solution. Next, solve the problem with oy = e,

where €, > 0 is a suitably small value such that we are guaranteed to get one
of the (possibly) alternate optima for the maximum covering problem. Let Z> be
the corresponding objective function value and let D?> and U? be the demand-
weighted total distance and uncovered demand corresponding to this solution. We
then solve a3 D' + (1 —a3) U' = o3D?* + (1 —o3) U? for as. This results in
a3 = (U2 - Ul) / (D1 - D>+ U? - Ul). We then use this value of o to weight
the two objectives. This will either result in a new solution being found with a
demand-weighted total distance of D* and uncovered demand U?, or the solution
will return one of the two original solutions on the tradeoff curve. If a new solution
is found, the procedure continues by exploring the region between solution 1 and
solution 3 (i.e., using gy = (U> — U')/(D' — D3 + U3 — U")) and then between
solution 3 and solution 2. If no new solution is found, then no new solution can
be identified between solutions 1 and 2. This process continues until all adjacent
solutions have been explored in this manner. As a final note, we observe that this
is the weighting method, which will fail to find the so-called duality gap solutions
(Cohon 1978).

The tradeoff between the demand weighted total distance and the maximum
distance—the p-center objective—can also be found using formulation (2.1)—(2.6) if
we suitably modify the distance (or cost) matrix, assuming all distances are integer
valued. (This is not an overly restrictive assumption since we can approximate any
real distances by integer values. For example, if we need distances accurate to the
nearest 0.01 mile (or about 50 ft) we just multiply all distances by 100 and round the
resulting values.) We do so by initially solving the problem as formulated, letting
c;j be the distance between demand node j € J and candidate location i € J.
We record the maximum distance, D?, . We then modify the distance matrix so

¢ if ¢;j < DY .

Y f Y 71ax , where M is a very large number. We then resolve
formulation (2.1)—(2.6) replacing the original costs or distances c; by ;™. If M is
sufficiently large, the new solution will not entail assignments with distances greater

than orequalto D% . Let D). < DY . bethe new maximum distance. The process
continues in this manner until no feasible solution can be found, indicating that the

final value of D,,,, that was obtained is the solution to the p-center problem. While

that ¢} =
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this approach seems to also be a weighting approach since we are assigning a large
weight to any distance greater than or equal to the most recently found maximum
distance, it is really the constraint method (Cohon 1978) since we are precluding the
assignment of demand nodes to facilities that are too far away. This approach will
find all non-dominated solutions.

We close this section by illustrating these two multi-objective problems. Fig-
ure 2.8 plots the tradeoff between the average distance and the percent of the demand
covered within 200 miles using ten facilities with demand represented by the 500
most populous counties of the contiguous United States. The maximum covering
solution results in nearly an 18 % increase in the average distance from 137.32 to
161.93 miles, while increasing the percent covered by approximately 4 %. Obtaining
the 12 solutions shown in the figure took under 10 min of solution time.

Figure 2.9 is a sample center-median tradeoff curve using the 250 most populous
counties in the contiguous US. While this is under 10 % of the counties, it still
encompasses over 61 % of the total population in the contiguous US. The algorithm
above found 22 solutions (shown with squares and a solid line), only nine of which
(shown with circles and a dashed line) could be found using a weighting method.
The average distance ranges from about 125 miles to 152 miles, while the maximum
distance ranges from a low of 349 miles to a high of 553 miles. Several good
compromise solutions are clearly shown at the bend in the curve. Figure 2.10 is
an example of one such compromise solution. Obtaining the 22 solutions shown in
the figure took nearly 16 h of computing time.
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2.8 Conclusions

The p-median problem is central to much of discrete location theory and modeling.
This chapter has outlined several important model properties and has reviewed a
classic formulation of the problem. While the problem is NP-hard on a general
graph, it can be solved in polynomial time on a tree. We summarized a linear-time
algorithm for the 1-median on a tree and cited results for the general p-median
problem on a tree. The chapter then presented classic construction and improvement
algorithms for the p-median problem and pointed the reader to literature on a
number of modern heuristic algorithms that have been employed in solving the
problem on general graphs. Computational results were presented for both the
classical Beasley datasets as well as a 500-node instance based on the most populous
counties in the contiguous United States. A well-constructed Lagrangian algorithm
embedded in a branch-and-bound algorithm can solve problem instances with up to
1,000 demand nodes and 1,000 candidate sites in reasonable time. (For p = 1
the myopic algorithm—which amounts to total enumeration in this case—will
find provably optimal solutions.) Larger problem instances may require the use of
heuristic algorithms such as tabu search or simulated annealing.

The chapter concluded with two multi-objective extensions of the p-median
problem. The first examines the tradeoff between the p-median objective and the
maximum covering objective, while the second explores the tradeoff between the p-
median objective and the p-center objective. For small instances it is often possible
to solve bi-objective problems using extensions of the Lagrangian algorithm
outlined above. For larger instances, using a genetic algorithm is often advisable
since the population of solutions in a genetic algorithm automatically gives an initial
approximation of the non-dominated set of solutions.
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Chapter 3
Fixed-Charge Facility Location Problems

Elena Fernandez and Mercedes Landete

Abstract Fixed-Charge Facility Location Problems are among core problems in
Location Science. There is a finite set of users with demand of service and a
finite set of potential locations for the facilities that will offer service to users.
Two types of decisions must be made: Location decisions determine where to
establish the facilities whereas allocation decisions dictate how to satisfy the users
demand from the established facilities. Potential applications of various types
arise in many different contexts. We provide an overview of the main elements
that may intervene in the modeling and the solution process of Fixed-Charge
Facility Location Problems, namely, modeling hypotheses and their implications,
characteristics of formulations and their relation to other formulations, properties of
the domains, and appropriate solution techniques.

Keywords Discrete location * Models and formulations ¢ Solution Algorithms e
Inequalities and facets

3.1 Introduction

Fixed-Charge Facility Location Problems (FLPs) are among core problems in
Location Science. In FLPs there is a finite set of users with demand of service and a
finite set of potential locations for the facilities that will offer service to users. Two
types of decisions must be made. Location decisions determine where to establish
the facilities whereas allocation decisions dictate how to satisfy the users demand
from the established facilities. Each possible decision incurs fixed-charge costs for
the facilities that are established and assignment costs for the allocation decisions.
In FLPs the aim is to make optimal decisions with respect to the considered costs.
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Applications of FLPs arise in an wide variety of contexts. The book by Drezner
and Hamacher (2002) surveys different applications of fixed-charge facility location
in such diverse areas as the public sector, software for GIS or robotics. Furthermore,
fixed-charge facility location also plays a critical role in many other areas like supply
chain management, distributed systems, humanitarian relief, emergency systems,
location-routing problems or freight transportation. Melo et al. (2009) survey
facility location models in the context of supply chain management until 2009.
Klose and Drexl (2005) summarize applications of FLPs within distributed system
design. The paper by Balcik and Beamon (2008) is a recent sign of the interest of
the combination of both humanitarian relief analysis and facility location models.
Further examples of applications can be found in Owen and Daskin (1998), Daskin
et al. (2002), Nagy and Salhi (2007) and Jiaa et al. (2007). In fact, the applicability
of fixed-charge facility location models goes beyond the area of Location Analysis.
Some fixed-charge facility location models are also valid within other fields like
machine scheduling, cluster analysis or combinatorial auctions (Escudero et al.
2009; Klose and Drexl 2005; Singh 2008).

It has been traditionally assumed that in FLPs location decisions are strate-
gic, whereas allocation decisions are tactical or operational. There are potential
applications, however, in which location and allocation decisions are at the same
hierarchy level in the decision making process. One example of application in which
both decisions are strategic can be found in the design of a backbone network
in telecommunications. An example of application in which both decisions are
operational can be faced by some logistic companies which, at each time period,
have to solve a FLP to determine the warehouses locations and the distribution
pattern to be applied within the corresponding period.

Because FLPs are difficult optimization problems with many potential applica-
tions the study of their properties and efficient solution methods is of interest on
its own. A further motivation for this study is that it sets the basis for the analysis
of more complex models related to FLP extensions. In some cases, these extensions
can, in turn, be modeled as some basic FLP. For example, some multi-period facility
location problems (see Chap. 11) or some hub-arc location problems (see Chap. 12)
can be can be reduced to the FLPs studied here (see, for instance Albareda-Sambola
et al. 2009a; Contreras and Fernandez 2013).

There are indeed a number of issues that define the characteristics of FLPs.
These will be discussed in this chapter and include the possibility of satisfying
the demand of each of the users from more than one facility, or capacity limits on
the maximum demand that can be served from any selected facility, among others.
Furthermore, several alternative formulations can be valid for a given FLP. Usually,
none of these alternatives has a clear advantage over the others although, as it often
happens with other discrete optimization problems, each of them is better suited
for a certain solution technique. We aim to give the reader a broad overview of
the main elements that may intervene in the solution process of FLPs, namely,
modeling assumptions and their implications, characteristics of formulations and
their relation to other formulations, properties of the domains, and appropriate
solution techniques. However, in order to keep the length of the chapter within
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a reasonable limit, it has been impossible to address all relevant variants and
extensions of the problem. As a consequence, we have selected some topics which,
in our opinion, cover most of the major issues related to fixed-charge facility
location. Diversity among the selected topics has been a major guideline as well.

The material presented in this chapter is the result of the research carried out
by many authors in this area over the last 60 years. Most of it has been published
but occasionally we present and prove some unpublished results which are either
adaptations of well-known results for other cases, or simple results that can be easily
derived from the existing state of knowledge.

The remainder of this chapter is structured as follows. In Sect. 3.2 we introduce
our notation and we provide an overview of the problems we study. Section 3.2
also discusses modeling issues leading to standard formulations or to alternative Set
Partitioning formulations and properties of the domains. A sample of possible solu-
tion methods, namely Lagrangean relaxation and column generation is presented
in Sect. 3.3. Some of the major difficulties of FLPs that will offer service to users
derive from the assumption that individual facilities do not have enough capacity to
satisfy the demand of all customers. Releasing this assumption yields a particular
FLP known as the Uncapacitated Facility Location Problem (UFLP), which is
studied in Sects. 3.4 and 3.5. The UFLP satisfies some specific properties that do
not hold for general FLPs. These properties can be exploited for modeling purposes
or for deriving specific solution techniques. In particular, Sect.3.4.1 studies some
properties derived from Linear Programming duality, whereas Sect. 3.4.2 presents a
formulation for the UFLP based on its supermodular property and relates it with the
so-called radius based formulations. Finally, Sect. 3.5 gives some polyhedral results
related to the UFLP. The chapter closes in Sect. 3.6 with some comments.

3.2 Overview and Modeling Issues

In this chapter we will use indistinctively the term service center when referring
to a facility, and customer or demand point when referring to a user. Let I =
{1,...,i,...,m} denote the index set for the potential locations for the facilities
and J = {l,...,/,...,n} the index set for the users. We will refer to potential
locations by their indices, so we will say that a facility is open at location i, or
simply that facility i is open, if the decision to establish a service center at the
potential location i is made. We will also denote users by their indices and simply
refer to user j. Associated with each i € I, g; denotes the maximum capacity of
facility i, if it is opened. The service demand of user j € J is denoted by d;. As
mentioned, there are two types of costs. The decision to establish a facility ati € [
incurs a fixed-charge (setup) cost f;. Fori € I and j € J, ¢;; is the cost for serving
all the demand of customer j from facility i.
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Classical formulations for FLPs use two sets of decision variables: one set for the
selection of the facilities to open and another set for the allocation of users demand
to open facilities. For the location decisions, associated with each i € I we define

1 if a facility is open at location i
Vi = .
0 otherwise.

For the allocation decisions, associated with i € I, j € J we define

= 1 if the demand at user j is served by facility i
Y| 0 otherwise.

A standard integer programming formulation for the FLP is as follows:

minimizez = Y fiyi + Y Y Xy (3.1)

iel iel jeJ
subject to Zx, =1 jelJ (3.2)

iel

Ydixy<qiyi i€l (3.3)

jeJ

y; € {0, 1} iel (3.4)

x; €{0,1} iel, jel. (3.5

Constraints (3.2) guarantee that each customer is served from one facility, while
constraints (3.3) play a double role: (1) they ensure that the capacity of facilities is
not exceeded; and (2) they prevent users from being allocated to non-open facilities.
Constraints (3.4) and (3.5) define the domains of the decision variables. In the above
formulation inequalities (3.3) can be substituted by the two sets:

Zdjx,j < q; iel 3.6)

jeJ

Xj < yi ieljel. (3.7)

Now the set of knapsack constraints (3.6) enforce that facility capacities are not
violated, whereas inequalities (3.7) relate the two sets of decision variables. While
constraints (3.3) are equivalent to (3.6) and (3.7) when the binary condition of the
y variables (3.4) is enforced, the compact set of constraints (3.3) dominates (3.6)
and (3.7) when the integrality of the location variables is relaxed to 0 < y; < 1,
iel.

Formulation (3.1)—(3.5) is appropriate for models requiring that the total
demand of each customer be served from the same facility. A number of situations
exist where such a requirement is justified, the most obvious one being the case
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where the demand of each customer represents a physical object that cannot be
split. This case is known as the single allocation FLP (SFLP). Equations (3.1)—(3.5)
is a valid formulation for the SFLP. Many FLP models, however, allow splitting the
demand at users among several open facilities. Such models, which are referred to
as multiple allocation FLPs (MFLPs), arise, for instance, when customers represent
population areas and not all the individuals in a given area need to be served from
the same service center. In MFLPs allocating customer j to facility i means that
some positive fraction of d; is served from facility i. Hence, fori € I, j € J
the allocation decision variables x;; are defined as the fraction of demand of user
Jj served by facility i, and the domain for the x variables is thus substituted by its
continuous relaxation

O<x;<1, ieljel. (3.8)

With the above definition of the allocation decision variables, constraints (3.2)
have a slightly more general interpretation than in the single allocation case. Since
they impose that the sum of all the fractions served from the different facilities be
one, they also guarantee that the total demand at each user is satisfied. Therefore,
in order to obtain a valid formulation for the MFLP, in formulation (3.1)-(3.5) we
“only” have to change the domain of the allocation variables x. It then follows
that (3.1)—(3.4) together with (3.8) is a valid formulation for the MFLP.

The FLP is .4 #-hard since a polynomial transformation can be used to reduce
the node cover problem, which is known to be .4 #-hard (Garey and Johnson
1979), into the FLP (see, for instance, Cornuéjols et al. 1990).

The reader may note that the “difficult” decision in FLPs is the selection of the
facilities to open. This is readily seen in the multiple allocation case where, if the
set of facilities to open is given, S C I, the best allocation of customers within S
can easily be obtained by solving the following transportation problem:

TP(S) minimize z = ZZ(CU’/dj)SU (3.9)
ies jeJ
subject to Zsif >d; jed (3.10)
ies
dosi<q  ie€S (3.11)
jer
55> 0 ieS. jel. (3.12)

In formulation (3.9)—(3.12) above the continuous decision variable s; denotes
the amount of demand of customer j which is served from facility i. Hence we
have the relation, x;; = s;;/d;.

In the single allocation case, finding an optimal allocation of customers to
a given set of open facilities S C [ is still a difficult problem, namely a
Generalized Assignment Problem, which is also .4 &?-hard (Fisher et al. 1986).
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Now, a formulation for finding the best allocation of customers within the set of
facilities S is given by:

GAP(S) minimizez = » > c;xy (3.13)
ieS jel
subjectto Y x; = 1 jelJ (3.14)
ieS
Y dixj<q i€S (3.15)
jeJs
x; €40, 1} ieS, jelJ. (3.16)

So far we have presented FLPs as a minimization problems in which both
types of decisions incur costs. However, the type of objective function depends on
the decision maker. Minimization FLPs usually appear in the public sector when
locating facilities for essential services: public hospitals or schools, dumps for
garbage collection, etc. In the private sector, however, service to customers produces
a profit to companies so that the objective of companies facing location decisions
for their service centers is to maximize the net profit, defined as the difference
between the revenue derived from the serviced customers and the cost for the
location of the selected facilities. There is indeed an essential difference between
these two models: while minimization FLPs impose that all customers be served
(no demand point can be excluded from an essential service), in maximization FLPs
not all users necessarily have to be served. The company may not have enough
incentive for servicing all customers and only those generating a profit in an optimal
location setting will be served. However, as we will next see, from a mathematical
programming point of view the maximization and minimization versions of the FLP
are equivalent.

Consider a maximization FLP where b;; denotes the profit for servicing customer
J € J from facility i € I. As indicated in Cornuéjols et al. (1990), typically, b;; is
a function of the unit production costs at facility i (%;), the unit transportation costs
from facility i to customer j (f;;), and the service price for customer j (s;). Thatis,
bij = d;(s; — h; —t;). Then, the objective function for a maximization FLP is

maximizez = — Y fiyi + ) Y byxi. (3.17)

iel iel jeJ

In principle, if not all customers have to be served, allocation constraints should
be stated as inequalities, i.e. Zi e; Xij < 1, j € J. However, such constraints are
easily transformed into equalities by simply defining a fictitious potential facility
0, representing the facility to which all unserved demand is allocated. To this end,
we assume a sufficiently large capacity for the fictitious facility, go = Y jes dj,
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and set to zero, both the fixed-charge cost of the fictitious facility (f, = 0) and
the allocation profits of all customers (by; = 0, j € J). Thus, without loss of
generality we can assume that in the maximization FLP allocation constraints must
also be satisfied as equality.

Taking into account the expression of the coefficients b; and because of the
equality allocation constraints, the second term in (3.17) can be rewritten as

DD bixy =) dils; —hi —ty)x;

i€l jeJ i€l jeJ
=Y D disixy— Y dihi +1y)xy
iel jeJ iel jeJ
= E djs; E E CijXij-
jeJ iel jeJ

Hence objective (3.17) reduces to

Y djsp—min | D fivi+ YD cix |- (3.18)

jeJ iel iel jeJ

Since the first term in (3.18) is a constant, the maximization FLP is equivalent to a
minimization FLP.

3.2.1 Set Partitioning Formulation of FLPs

Below we present alternative formulations for FLPs which use decision variables
to model the overall customers demand allocated to open facilities. Consider for
the moment the single allocation case and note that feasible assignments to a
given facility i € [ are associated with subsets of customers 7 C J such that
> jer d; < g;. We will use the notation K; to denote the index set of feasible
assignment subsets for facility i € I, T C J the index set of the customers served
in feasible assignment k € K;, and py; for the fixed-charge cost of facility i plus the
cost for assigning to i all the customers indexed in Ty, i.e. py = f; + ZjeTk Cij.
Also, fori € I,k € K;, j € J,leta = 1if j € T; and O otherwise. Consider
now the following decision variables:

__ | 1 if the subset of customers T} is assigned to facility i

i = .
! 0 otherwise.
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Then, a set partitioning formulation for the SFLP is

SPSFLP  minimize Y Y pu (3.19)
i€l kek;
subject to Z Z apzi =1 jelJ (3.20)
i€l kek;
> wi=yi iel (3.21)
keK;
yi €1{0,1} iel (3.22)
zi € {0, 1} iel keK;,. (3.23)

Constraints (3.20) ensure that each customer is assigned to exactly one facility.
Constraints (3.21) guarantee that no assignment is selected for a non-open facility
and also that one feasible assignment is selected for each open facility. Observe
that, because of (3.20), constraints (3.21) can be written as < inequalities and will
still be satisfied as equalities. Constraints (3.22) and (3.23) define the domain of the
decision variables. The above a formulation will be referred to as SPSFLP.

A set partitioning formulation for the multiple allocation case can be obtained
from the above formulation by simple relaxing the integrality conditions on the z
variablesto 0 < z; < 1,i € I,k € K;. Itis now necessary to use the < expression
for constraints (3.21), since optimal solutions may exist with some open facility
only serving fractions of demand of the allocated customers. This formulation will
be referred to as SPMFLP.

The large number of variables both in SPSFLP and in SPMFLP make these
formulations suitable for column generation.

3.3 Solution Algorithms for Fixed-Charge Facility Location

In this section we overview solution methods for FLPs. Several heuristic and
exact algorithms have been proposed for FLPs and an exhaustive survey on the
related literature is outside the scope of this chapter. Branch-and-bound methods
proposed in the early papers (S4 1969; Davis and Ray 1969; Ellwein and Gray
1977; Akinc and Khumawala 1977; Nauss 1978; Neebe and Rao 1983) were
followed by many algorithms based on Lagrangean relaxation (Geoffrion and
McBride 1978; Christofides and Beasley 1983; Guignard and Kim 1983; Barcel6
and Casanovas 1984; Klincewicz and Luss 1986; Pirkul 1987; Beasley 1988;
Guignard and Opaswongkarn 1990; Barcel6 et al. 1990, 1991; Cornuéjols et al.
1991; Beasley 1993; Sridharan 1993, 1995; Holmberg et al. 1999). Some of the
first works on approximation algorithms are those of Shetty (1990), Shmoys et al.
(1997) and Chudak and Shmoys (1999). Algorithms based on Benders and cross



3 Fixed-Charge Facility Location Problems 55

decomposition have been respectively proposed in Wentges (1996) and Van Roy
(1986), whereas branch-and-price has been applied by Diaz and Fernandez (2002)
and Klose and Gortz (2007). Some recent works are Barahona and Chudak (2005),
Sankaran (2007), Sharma and Berry (2007), Ghiani et al. (2012), and Zhen et al.
(2012). For an overview of heuristics for FLPs the interested reader is addressed
to Jacobsen (1983), Filho and Galvao (1998), Delmaire et al. (1999a,b), Hindi and
Pienkosz (1999), Cortinhal and Captivo (2003), Ahuja et al. (2004) and references
therein.

The most obvious strategy for solving an FLP instance to optimality is to use
a standard mixed integer programming (MIP) solver with formulation SFLP or
MFLP, depending on the case. This approach may, however, fail on large instances,
especially for the single source case. Some alternatives are presented below, which
somehow exploit the structure of the problem and lead either to an exact algorithm
or to methods that can be embedded within an exact algorithm. First we study
Lagrangean relaxation, which has been used by a number of authors both for the
single and multiple allocation cases. Then we address the pricing problem for the
set partitioning formulation SPSFLP, which is one of the main ingredients of the
branch-and-price algorithm of Diaz and Fernandez (2002).

3.3.1 Lagrangean Relaxation

We next present a Lagrangean relaxation of model SFLP in which the assignment
constraints (3.2) are relaxed. This relaxation has been used by a number of authors
(see, for instance, Pirkul 1987; Barcel6 et al. 1990, 1991; Beasley 1993; Holmberg
et al. 1999). The Lagrangean subproblem associated with a given set of multipliers
e R is

LSFLP(n) = minimize Z fiYi + ZCU’X,']' + letj (1 — Z)C,j) (3.24)

i€l jeJ jeJ iel
subjectto Y djx; <qiyi i€l (3.25)

jeJ

x;j € {0,1} iel,jeld (3.26)

yi €40, 1} iel (3.27)

After rearranging its terms the objective function can be rewritten as

an + min Z Jiyi +Z(Cij_”j)xij

jeJ iel jeJ
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A solution to Lggrp(7r) can be obtained applying the following two steps:

(1) Foreachi € I solve the knapsack problem

KP(i) : maximize Y (cj — ;) x; (3.28)
jeJ

subject to Z djxij < qi (3.29)
jeJ

x;j€{0,1} jel. (3.30)

Let J(i) denote the index set of variables at value 1 in an optimal solution to
KP(i)and v(i) = Y (c;— m;) its associated optimal value.
JEJ(@)
(2) Foreachi € I, with f; + v(i) <Otheny; = 1,and x; = 1, for j € J(i).

The Lagrangean dual associated with Lgprp() is
Dgprp max Lgprp(m).
mEeR”

Proposition 3.1 The optimal value of the Lagrangean dual Dgprp coincides with
the value of the linear programming (LP) relaxation of program SPSFLP.

Proof Consider the following Lagrangean function resulting from relaxing con-
straints (3.20) in SPSFLP in a Lagrangean fashion:

LspsrLp(7r) = minimize Z Z DiiZii + Z mi|1- Z Z QjkZki

iel kek jeJ i€l kek;
(3.31)
subjectto Y zy <y i€l (3.32)
keK;
>0 iel kek; (3.33)
y; €{0,1} iel. (3.34)

The objective function (3.31) can be expressed as

an + min Z Z PkiZki_Z Z ana,;;kzk,- =

jeJ i€l kek; i€l kek; jeJ

an + min Z Z(p"i_ Z T )Zki

jeJ i€l kek; jeTx
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Thus, for a given vector , the solution to Lgpsr;p(77) can be obtained as follows:
e Fori €1,do

— Find k(i) € argmaxiex,{pi — Y. 7}

J €Tk
- Ifpryi — Y 7 <Otheny; =1, zky = 1,z = 0, k € K; \ {k(i)}.
J €Tk
prk(i)i — Z T = Othen y; =0, z; =0,k € K;.
J €Ty

Note that, for each feasible solution (z,y) to (3.32)—(3.34), for each i € [
there exists a one-to-one correspondence between (J;, (Zw)kek,), and a vector
(Vi. (X;) jes), that satisfies constraints (3.25). In particular, X; = Y, K, arZii for
alli € I, j € J. Note that the above solution is well defined since fori € I there
is at most one k € K; with z;; = 1. Furthermore, by definition of the z variables, for
i € I, (X;);es represents a feasible assignment to facility 7, i.e. Zjej dixj < ¢
Finally, the objective function values of the two solutions coincide since for i € [
fixed, ) yck. PriZs = fiJi + ) cy%y. Therefore, taking into account the above
jeJ
considerations, Lgspsrrp(77) can be rewritten as

Zm + minimize Z fiyi + ch‘jxl‘j - Z Z]TjX[j (3.35)

iel jeJ jes jeJiel

subject to Zdj.X[j =qiyi i€l

jeJ
x; €{0,1} iel,jeld
yi €{0,1} iel,
which is indeed Lggp (7). O

The reader will immediately conclude that a similar result holds for the MFLP.

Proposition 3.1 establishes that Dgpp and the LP relaxation of SPSFLP are
equally tight in terms of the lower bounds they produce (the same is true for Dyprp
and the LP relaxation of SPMFLP). Now, the question that arises naturally is how
to compare both types of formulations from an algorithmic point of view.

As we have seen, the Lagrangean subproblem Lgg;p(7r) is rather easy to solve
and subgradients are easy to compute at each point. For a given vector m, let
(y(m),x(r)) denote an optimal solution to Lgpp(7w). Then, a subgradient of
Lgrip(m) is givenby ¢ = (¢;)jes, where ¢; = 1 =", ., x;i(;). Therefore, Dspyp
can be efficiently solved with subgradient optimization. However, when looking
for an exact algorithm, the Lagrangean dual Dyrrp may not be very handy within
an enumeration scheme. In contrast the LP relaxation of SPSFLP may be more
demanding than Dgp;p from a computational point of view (the pricing subproblem
must be solved repeatedly to generate all the needed columns), but it can be very
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well integrated within a branch-and-price scheme. For this reason, the next section
studies the pricing problem for generating columns for SPSFLP, which is the main
component of an exact branch-and-price algorithm for the SFLP based on this
formulation (Diaz and Fernandez 2002).

3.3.2 The Pricing Problem for SPSFLP

Suppose we have solved the LP relaxation of the subproblem of SPSFLP associated
with a subset of columns K = (?i),-e ;1. Let 7, and A denote the optimal values of
the dual variables associated with constraints (3.20) and (3.21), respectively. Then
in order to know whether there exists a z variable of the overall formulation that, if
added to the current set of columns, would improve the current LP solution, we must
find the column of the coefficient matrix of SPSFLP with the smallest reduced cost.
The reduced cost of variable z;,i € I,k € K;,is givenby ry; = pki_zj'ej i Ajjk—
A;. Thus, in order to find the column that yields the smallest reduced cost we must
solve the following pricing problem:

PP min Vi = Pki — 7r~a-~k—/\».
( ) il kek; i DPki E Jj i i
je€J

Since pii = fi + X jer, Cip thenry = fi + 3¢, (cij — mj) aj — A;i. Note
also that feasible columns a;i, k € K;,i € I, are characterized by the condition
> jes djajx < q;. Thus, the solution to PP can be obtained by solving a series of
independent problems, one for eachi € /. Since, fora giveni € I, the value f; —A;
is fixed, then the corresponding problem reduces to

PP; minimize E (Cij -7 j) Ajjk
jeJ
subject to E diagx < qi
jeJ

agp €10,1} j e J.

3.4 The Uncapacitated Facility Location Problem

An important particular case of the FLP arises under the assumption that the
capacity of any open facility is sufficient to satisfy the demand of all customers,
ie.qi > Zje] dj,i € I, so that the capacity constraints (3.3) are not needed. This
particular case is known as the Uncapacitated Facility Location Problem (UFLP)
and has received a considerable amount of attention. Next we focus on the UFLP
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and study some of its properties. The interested reader is addressed to Cornuéjols
et al. (1990) for a deeper analysis and further details.

A first observation is that the UFLP basically involves one main decision: finding
the set of facilities to open. Note that an optimal allocation of customers within a
given set of open facilities, say S, is trivial, and consists of serving all the demand of
each customer from a facility in S with minimum allocation cost, with ties broken
arbitrarily. That is, for j € J, leti(j) € argmin{c; | i € S} be arbitrarily chosen,
then x;(;y; = 1, x; = 0,7 € I \ i(j) is an optimal allocation of customers within
the set of facilities S. Thus, a closed expression for the objective function value for a
set of facilities S € [ is 2(S) = }_;c5 fi + ) ;e Minjes ¢;;. The main implication
of this observation is that the UFLP can be stated as the minimization of a known
set function. Before addressing this issue, we study some properties and algorithmic
alternatives, derived from a standard MIP formulation for the UFLP.

Indeed a MIP formulation for the UFLP can be obtained with the y and x
decision variables of the previous sections. Now it is no longer necessary to impose
the binary condition on the allocation variables, even if single allocation is imposed.
The argument is simple: if some customer is allocated to more than one facility in
an optimal solution, the allocation costs of that customer to all its allocated facilities
must be equal (otherwise the solution would not be optimal). Thus the customer can
be fully served from any arbitrarily selected open facility of minimum allocation
cost. On the other hand, even if capacity constraints are no longer needed, it is still
necessary to impose that no customer is assigned to a non-open facility. Thus, by
replacing constraints (3.3) by (3.7) we obtain the following valid formulation for the
UFLP:

UFLP minimize »  fiyi + > Y cyx; (3.36)
iel iel jeJ
subjectto » “x;=1 jeJ (3.37)
iel
Xij = Vi iGI,jGJ (3.38)
0 =< x; iel, jeld (3.39)
y; €{0,1} el (3.40)

A broad literature exists on the UFLP. From seminal papers (Kuehn and
Hamburger 1963; Stollsteimer 1963; Manne 1964; Balinski 1966; Efroymson 1966;
Spielberg 1969a,b; Khumawala 1972; Bilde and Krarup 1977; Cornuéjols et al.
1977; Guignard and Spielberg 1977; Nemhauser et al. 1978) and other early
contributions (Guignard 1980; Cornuéjols and Thizy 1982; Guignard 1988; Beasley
1988; Korkel 1989; Beasley 1993; Aardal 1998), to more recent works (Goldengorin
et al. 2004; Klose and Drex] 2005; Mladenovic et al. 2006; Janacek and Buzna 2008;
Beltran-Royo et al. 2012; Letchford and Miller 2012, 2014), virtually any type of
solution algorithm has been proposed for it. As with the general facility location
problem, an extensive literature review is outside the scope of this chapter. The
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interested reader is referred to Krarup and Pruzan (1983), Cornuéjols et al. (1990),
Labbé et al. (1995), ReVelle and Laporte (1996) or Verter (2011) for overviews of
the main contributions.

3.4.1 Bounds for UFLP Derived from LP Duality

Consider the LP relaxation of UFLP, in which constraints (3.38) have been
written as y; — x; > 0, and the upper bound constraints on the y variables
as —y; > —1,i € I. Let u, w and ¢ denote the vectors of dual variables of
appropriate dimensions associated with constraints (3.37), (3.38) and the upper
bound constraints, respectively. Then, the dual of the LP relaxation of UFLP is

DUFLP maximize Y u;—» 1 (3.41)
jeJ i€l
subjectto » “wyj—1; < fi i €1 (3.42)
jeJ
Ltj—W,'jEC,'j iEI,jEJ (343)
w; >0 iel, jel (3.44)
>0 iel. (3.45)

The optimal values for the ¢ variables can be determined from the optimal w
+
values as t; = (Zjej Wwij — f,) ,i € I, where ()t = max{0,a}. In turn, the

optimal w values can be determined from the optimal u values as w;; = (u = cij)+,
i € I,j € J. Therefore, DUFLP can be expressed in terms of only u variables as

+

DUFLP max D(u) =Y uj—» Z(u;—c,-,-)+—f,-

jeJ iel \jeJ

Furthermore, the following optimality conditions hold:

(a) There exists an optimal DUFLP solution where u; > min;¢; ¢;; forall j € J.
If u; < min;e; ¢ for some j € J, then we can increase the value of u; without
decreasing the objective function value.

(b) There exists an optimal DUFLP solution where 3, (uj — c,-j)+ — fi <0for
alli € 1. N
I3 es (u; —cy)" — fi > 0 for some i € I, we can decrease the value of
some component u; (with u; > ¢;) without decreasing the objective function
value.
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Condition (b) means that the objective function value of an optimal dual solution
reduces to ) jes Uj- In other words, an optimal dual solution exists with #; = 0 for
alli € I.Hence, the complementarity slackness conditions for constraints (3.42) are

fim > (wj—e)" |y =0 iel (3.46)

jeJ

These conditions, which apply to any primal-dual optimal pair to the LP relax-
ation of UFLP, hold trivially for all i € I with y; = 0. When y; > 0, (3.46) holds
provided that 3 ; (u; — c,-j)+ = f;. For the integer UFLP the complementarity
slackness conditions (3.46) give the guidelines for primal-dual heuristics. Two
alternative strategies may be applied: (1) the primal solution is obtained first and
then a vector u is built to satisfy Zje] (uj - cij)+ = f; forall i € I with
y; = 1; or (2) the dual solution u is first obtained and then the primal solution sets
yi = 1foralli € I with Zje] (uj - cij)+ = f;. The first strategy can be applied
starting from any set of open facilities S (which can be obtained, for instance, with
a greedy heuristic). The associated dual solution u(S) can be obtained by setting
u;(S) = min;es ¢; for all j € J (note that this solution need not satisfy condition
(b)). The DUFLP objective function value for u; (S) is

+
+
D@(S) =Y uj(H =Y (D (S —cy) - fi| =
jeJ i€l \jeJ
+
+
Sminers = 3| X (migers —r) 1) =
jeJ i€l \jeJ
+
+
S miners =3 | 3 (miners —er)
jeJ i¢S \JjeJ

Since the value of the primal solution associated with S is Z(S) = ), cs fi +
> jeJ min;es ¢, the deviation between the primal/dual values of S and u(S) is

+

N
25)- sy ="+ > (glensl e — c,;,.) i

ies igs \jeJ

The above expression for the deviation suggests choosing S in order to satisfy
. + ; . .
Yies (minjrescirj — ;)" — fi < Oforalli ¢ S, since in this case the above
deviation reduces to ). ¢ fi-



62 E. Fernandez and M. Landete

To illustrate the second strategy let # be a dual solution satisfying the optimality
condition (b) above and define I (1) = {i € I | Zjej(c,-j—uj)Jr—fi = 0}. Assume
further that u; > min; ¢;(,)c;;. Consider now a set of facilities S(«) C I (u) satisfying
max; e/ Cjj = MaX;es() Cjj, foralli € I andlets; = {i € S(u) | c; <u;},je€J.
Then, D(u) = Z(S(u)) (see Proposition 3.2. in Cornuéjols et al. 1990). This means
that under the above assumptions, S(u) is an optimal UFLP solution.

Note that D(u) = Z(S(u)) means that the optimal UFLP value coincides with
that of its LP relaxation. Thus, in general, one should not expect to find a solution u
that together with S (u) satisfies the conditions stated above. However the DUALOC
heuristic (see Erlenkotter 1978; Bilde and Krarup 1977), which follows this spirit
has proved to be extremely effective for finding optimal or near-optimal solutions
for the UFLP. The basic idea is to start with u = (4;)je; = (Ilnei}l cij)jes, and then

progressively attempt to increase each component u; while satisfying condition (b).
If u; can be increased, then its next value is min{c;; | ¢; > u;}, provided that this
value satisfies (b). If not, u; is increased to the maximum possible value. Indeed,
the outcome of the above heuristic depends on the order in which the indices in
j € J are considered. Necessary and sufficient conditions for the duality LP gap to
be zero, which may lead to tighter bounds have been proposed in Mladenovic et al.
(2006). Heuristics in the same spirit have been proposed for other discrete facility
location problems, like the one for the stochastic version of the FLP proposed in
Louveaux and Peeters (1992).

3.4.2 The UFLP as the Optimization of a Supermodular
Set Function

As mentioned, the UFLP can be stated as the minimization of a set function. In
this section we see that an alternative formulation for the UFLP can be obtained
by exploiting the supermodularity property of this set function, which has been
observed by several authors, namely Spielberg (1969a), Frieze (1974), Babayev
(1974), Fisher et al. (1978), and we relate such a formulation with a radius based
formulation. We start by recalling some well-known results on supermodular set
functions (see, e.g., Section II1.3.1 in Nemhauser and Wolsey 1988) and introduce
some additional notation.

Definition 3.1 Let N be a finite set, and Z a real-valued function on the subsets
of N. The function Z is supermodular it Z(S) + Z(T) < Z(SUT) + Z(S N
T), VS, TCN.

Fori € N let p;(S) = Z(S U {i}) — Z(S) be the incremental value of adding
element i to the set S.

Lemma 3.1 Each of the following statements is equivalent and defines a super-
modular set function.
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(a) ZS)+Z(T)<ZSUT)+Z(SNT), VS, TCN.
(b) Z(SU{i})—Z(S)<Z(TU{i})—Z(T), VSCTCNandi€N.
(c) If, in addition, Z is non-increasing, then Z(T) > Z(S) + >. pi(S),
i€T\S
vS, T C .

In the following we suppose that N is the set of potential facilities, i.e. N = I,
and we consider as set function Z the cost function of UFLP solutions. That is
Z(S) = Y ies fi + 2 ey minjes cj. To see that Z(.) is supermodular we recall
that a positive linear combination of supermodular functions is supermodular and
we observe that Z(S) = f(S) + ¢(S) with f(S) = Y ,cg fi and ¢(S) =
> jes minjes ¢ Thus, it is enough to see that both f(.) and ¢(.) are supermodular.
Because f(S) is linear, it is clear that it is supermodular. We next see that c(.) is
also supermodular.

Proposition 3.2 c(.) is supermodular and non-increasing.

Proof We will use the characterization of supermodular functions of Lemma 3.1b.
ForSCT Cl,andi € I\ T,

c(SU{i})—c(S):Z[ min c,-/j—minc,-/j]:Zmin{o,cij—minc,-/j} <

., . n n

ies i’eSU{i} i’eS ey i’eS

E min{O,cij—r/ninc,-/j} = E |: min ci/j—rpinci/j]:
e ., . e

jer i’eT ies i’eTU{i} i’eT

(T Ui}y —ce(T).

where the inequality follows since min;/es ¢;/; > minyercir; for all j € J.
Furthermore, ¢ is non-increasing since

c(SUfih—c(S) =) [i,ggi&i}cw - fl,leigcz"/} =0. O

For the function c(.) the incremental value of adding element i to the set S is
c(S U{i}) —c(S). Hence, statement (b) of Lemma 3.1 can be rewritten as

e(T) = c(S)+ Y [e(SUtih—c(S))=c(S)+ Y [e(SULih)—e(S)].VS.T C L.
ieT\S i€T\S

(3.47)

The UFLP formulation below exploits the supermodular property of z(.) and ¢(.)
as well as the non-increasing property of c¢(.). Consider the polyhedron
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Pgp = {(n,x,y) e RxBIPVTx BTy = 3" fiyi +¢(8) + Y pi(S)yi. VS € 1} ,
i€eS i¢S

where 7 is a continuous variable and B/ XI/| and B! are the domains of the binary
vectors associated with the location and allocation variables x and y, respectively.

Theorem 3.1 Let T C I and (n.x7,y7) € R x BV 5 BV with x and
y the incidence vectors of the UFLP solution associated with subset T. Then,
(n,x",y") € Psp ifand only if n > Z(T).

Proof If (n,xT,yT) € Pgr then

=Y fivl +eM+ )Y oMyl =) fi+c(T) = Z(T).

i€T i¢T ieT
Suppose now that n > Z(T). We have

SOy =Y"fivl = > fivk+ Y Syl

i€T ieTNS i€T\S
=Y Syl + 3 £yl foranscl.
i€S i€T\S

Since c¢ is non-increasing supermodular, by (3.47), we also have

(M ze®)+ Y [eSUtin-c®)]=cs)+ Y [eSUh -]y,

i€T\S i¢s
forall § C I.

Thus, forall S € I

Z() = f(T) +e(T) = 3 fixl + Y fiv! +e(®)+ Y [e(s Ut —es) ]!

i€S i€T\S i¢S

Hence, n > Z(T) > Zf,-y,-T +c(S) + Z,o,-(S)y,-T, forall S C 1.
i€es i¢S
Therefore, (1, 7, xT) € Pgp and the result follows. O
As a consequence of Theorem 3.1, the UFLP can be stated as the following MIP
(see Nemhauser and Wolsey 1981):

minimize n (3.48)

subjectto =Y fiyi+c(S)+ Y _p(S)y:  VSCI* (3.49)
i€l e¢sS
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n=0 (3.50)
yi €{0,1} iel, 3.51)

where /* = 1 U {i*} and i* is a fictitious facility such that (1) ¢;+x > max;e; ¢y,
for all j € J; and (2) Zjej cixj > maxies(fi + Zjej c;j). This assumption
guarantees that at least one variable y; is at value one in any optimal solution to the
above formulation.

Taking into account the supermodularity of ¢(.) we can obtain a tighter formula-
tion by respectively substituting objective (3.48) and constraints (3.49) by

minimize Y fiyi + Y 1/, (3.52)
iel jeJ
and 7’ = minc; + Z [i/ggi&i}ciq —?/leiglci’ji| yi, VSCI* jel.
i¢S
(3.53)

The following observation indicates that only a polynomial number of con-
straints (3.53) is required to obtain a valid formulation for the UFLP.

Remark 3.1 For § C I and j € J given, the right-hand side of their associated
constraint (3.53) does not change if the summation is taken over all i € I, since
mingesyg) ¢i/j — Minges ¢;r; = 0, fori € §. Moreover, for any S C I, the value
of min; es ¢;; will be one of the values ¢;;, withi € S. Thatis, for any § its associated
constraint (3.53) can be written as

n > cy+ Z(CU —¢) " Vi for some s € S.

i€l

To apply the above remark and obtain a formulation with a polynomial number
of constraints, for each j € J, we order the elements of / in non-decreasing values
of their coefficients ¢;;, and we denote by i, the rth index according to that ordering.
Thatis, ¢;;; < ¢ip; < ... = ¢ipj = Cipp,j» Where ¢, o ; = ¢;=; is the allocation
cost of customer j to the fictitious facility i *.

Theorem 3.2 The UFLP can be formulated as

(SUFLP) vs = minimize Yy fiyi + »_n’/ (3.54)

i€l jer
subjectto 0/ =i+ Y (cg—ci,)) yi r=1...m+1 jelJ
“ (3.55)
n =0 jed (3.56)
yi €{0,1} iel (3.57)
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The proof which is based on Remark 3.1 is left to the reader. Formulation (3.54)—
(3.57) involves |m| binary variables y and |J| continuous variables 7. Its total
number of constraints is (m + 1)]J|.

The reader familiar with Benders type reformulations (Benders 1962) will
immediately observe that, in fact, constraints (3.55) are nothing but Benders cuts.
Thus formulation (3.54)—(3.57) admits an alternative interpretation as a Benders
type reformulation for the UFLP. The interested reader is addressed to the inspiring
chapter by Magnanti and Wong (1990) for an extensive description of the
application of Benders reformulations to the UFLP.

We close this section by interpreting SUFLP as a radius-based formulation.
Such formulations have been broadly used in recent years for different types of
location and hub location problems, after the work by Elloumi et al. (2004). Their
main characteristic is the use of decision variables to model the service cost for
customers. Using the above notation, in which, for j € J, ¢;,; denotes the rth
smallest allocation cost for customer j, we define a new set of binary decision
variables z,;, r = 1,...,m, where z,; = 1 if and only if the allocation cost of
customer j is at least ¢;, ;. With these decision variables, the allocation cost of
customer j can be written as the telescopic sum ¢;,; + > »_5(Ci,j — Ci,_, j)Zrj» SO
that an alternative UFLP formulation is

(RUFLP) vy = minimize Zfiyi + Z (cilj + Z(ci,j—cirlj)z,j) (3.58)

iel jed r=2

subjectto  z,; + Zyizl r=1,....m+1, jelJ
iel
€ij<Cir j

(3.59)

zj € 40,1} jeJr=1,....m+1

(3.60)

yi €{0,1} iel 3.61)

The equivalence between both formulations can be established by observing that
feasible solutions to SUFLP define feasible solutions to RUFLP and vice versa.
Indeed, if (7, y) is feasible for SUFLP we obtain a feasible RUFLP solution by
setting, for each j € J, z; = O for all r with ¢; ; > n’/, and zero otherwise.
Constraints (3.55) guarantee that (z, y) satisfies constraints (3.59) and is feasible
for RUFLP. Conversely, we can also check that a feasible SUFLP solution can be
obtained from a feasible RUFLP solution by setting for, j € J, n/ = Ci «j With
r* =argmin{c; ; : y;, = 1}.
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3.5 Polyhedral Analysis of the UFLP

This section concentrates on the polyhedral analysis of the UFLP. We assume the
reader is familiar with the basic polyhedral concepts (an exposition can be found, for
instance in Nemhauser and Wolsey 1988). Although any UFLP formulation can be
analyzed from a polyhedral perspective, we focus on the set packing formulation for
the UFLP, because it is the one that has received more attention from a polyhedral
point of view. An alternative analysis to the one we develop next, based on a set
partitioning UFLP formulation, can be found in Guignard (1980).

As indicated in Sect.3.2 facility location problems can also be modeled as
maximization problems in which the expression of the objective function is (3.17).
In the case of the UFLP such a formulation can be easily transformed into a set
packing one by doing the change of variables y; = 1 — y;,i € I;ie. y; = 1
if and only if facility i is not opened. The objective function can be rewritten in
terms of the new variables as — > ¢, fi + D ;s fidi + Xjer 2o ey PyXij Whose
maximization reduces to maximizing the objective Y ¢, fi¥i + D ic; X ey PiiXii
within the appropriate domain. Hence, a set packing formulation for the UFLP is

(KUFLP) maximizez = Y fiji + »_ Y piXi (3.62)
iel iel jeJ
subject to inj <1 jelJ (3.63)
iel
xj+y <1 iel,VjelJ (3.64)
x; € {0,1} iel,VjelJ (3.65)
yi €{0,1} iel. (3.66)

Formulation KUFLP can be viewed as a set packing formulation and thus its set
packing properties are inherited. For this we will consider the intersection graph,
that we denote by G(m, n), with a node for each variable of KUFLP and with an
edge for each pair of variables sharing a constraint in KUFLP.

In the following P™ and F™ denote the convex hull of the feasible solutions
of KUFLP and its LP relaxation, LKUFLP, respectively. For m* < m and n* < n,
we call m* x n* adjacency matrix S to any m* x n*, 0-1 matrix with no zero row
and no zero column. Given an adjacency matrix S and two ordered sets 15 C [
and JS C J, we denote by G5 = (V5, ES) the subgraph of G(m,n) given by
VS = {Xij 1€ IS,j (S] JS,Sij 75 O}U{fl 1€ IS}, ES = {(xij,xkj) : l,k (S]
I5,i <k,jeJS sj=s5=1U{(Gi,x;j): i€l5jeJSs;=1} Finally,
a(G) denotes the independence number of graph G, i.e., the maximal cardinality of
a packing of nodes in G, and B denotes a cyclic matrix of type (k, ), i.e. its size is
k x k and its rows are 0-1 vectors with ¢ adjacent 1’s, which move one position to
the right in each row.
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Some relevant contributions on the polyhedral analysis of KUFLP are (in
chronological order): Cornuéjols et al. (1977), Guignard (1980), Cornuéjols and
Thizy (1982), Cho et al. (1983a,b), Myung and Tcha (1996), Canovas et al. (2000,
2001, 2002, 2003), Baiou and Barahona (2009a) and Chen et al. (2012). New trends
in this area relate to the study of how to adapt the known polyhedral properties of
the UFLP to problems generalizing it. Nice examples are the papers by Hamacher
et al. (2004) and by Baiou and Barahona (2009b). In both cases the authors give
results allowing to directly adapt any valid inequality of the UFLP to the Hub
Location Problem and the Two-Level Facility Location Problem, respectively. Next
we summarize the main results in this area.

First of all, P™ is full-dimensional, i.e., dim(P™) = mn + p. Thus, two
different facets of P™" always define two different sets of feasible solutions for
KUFLP.

Cho et al. (1983a) have proven that for m < 2 or n < 2 the coefficients matrix
of KUFLP is totally unimodular, so the polyhedral analysis is of little interest. They
have also given a complete description of the facets of P™ whenm = 3 orn = 3.
Recently, Baiou and Barahona (2009a) and Chen et al. (2012) have presented new
conditions for F™ to be integral, i.e., to have all its extreme points integral. Both
papers define a particular type of odd cycles in the intersection graph of KUFLP
without which the extreme points of the polyhedron F™" are integral.

The remainder of this section is divided in three parts: extreme points of F"™",
valid inequalities and facets of P, and lifting procedures.

3.5.1 Extreme Points

We are aware of two papers dealing with the characterization of the fractional
extreme points. Cornuéjols et al. (1977) give a characterization for the extreme
pointsof F" . Letl, ={i el :0<y; <1}, Jo=1{j eJ x5 €{0,1—y;}
for all i and x;; non-integer for some i } and let U be the |/ 7| x |Jo| matrix whose
elements are

1if Xjj > 0,
I/lij = . ;
0if x; = 0.
Theorem 3.3 (Cornuéjols et al. 1977) The fractional feasible solution (x,y) of
LKUFLP is an extreme point of F™" if and only if

(a) 1 —y; = max;{x;}foralli €Iy,
(b) foreach j € J, there is at most one i with 0 < x; < 1 — y;,
(c) the rank of U equals |1 z|.

Cénovas et al. (2001) have later provided a characterization for the extreme points
of a more general polyhedron and proved that condition (a) of Theorem 3.3 follows
from conditions (b) and (c). Cho et al. (1983a) make use of this characterization
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to prove that a certain family of valid inequalities can cut fractional solutions of
LKUFLP. The results of Canovas et al. (2001) also characterize the extreme points
of the polyhedra associated with the FLP formulation in Leung and Magnanti (1989)
and of other related problems.

3.5.2 Valid Inequalities and Facets

Next we present several families of valid inequalities of P"™". Further details and
results can be found in Cho et al. (1983a) and Canovas et al. (2002).

Cornuéjols et al. (1977) presented the first polyhedral study of the KUFLP. They
proposed, without proof, the following family of valid inequalities of P"™"

Z bijxjj + Z Vi <2k —[k/t], (3.67)

iel€ iel€

where k and ¢ are integers such that k = #p 4 1 for some integer p, B is a cyclic
matrix of type (k,t) and I8 C I, JB C J are subsets of cardinality k. Later,
Cornuéjols and Thizy (1982) proved that (3.67) is a facet.

Several well-known families of facets for the KUFLP with binary coefficients are
discussed below:

Theorem 3.4 (Cho et al. 1983b) Consider IS < I and JS C J. Then, the
inequality

DO sixg+ Y Fi <a(GY),

ielS jeJS iels

where s; = 0 or 1, is facet-defining for P™ (and different from a clique facet) if
and only if S is a |15| x |J S|, maximal mn-adjacency matrix.

A characterization of maximal mn-adjacency matrices can be found in Cho et al.
(1983Db). A special case of maximal mn-adjacency matrix gives rise to a concrete
family of facet-defining inequalities of P™":

Theorem 3.5 (Cornuéjols and Thizy 1982) Consider £ and t such that2 < t <
L < m and subsets P C I, D C J, such that |D| = (f), |P| = L. Let AY be the
matrix whose columns are all vectors 0-1 with t ones and £ — t zeros. Then,
£t B 5. o< e t 1
YD ajx+y =)=
iel jeJ iel

is a facet-defining inequality of P™.
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By exploiting the set packing structure of KUFLP, the odd holes in the intersec-
tion graph of KUFLP allow to define two new families of valid inequalities.

Theorem 3.6 (Cornuéjols and Thizy 1982) The inequality

3 3 3
D Xt Y X+ moa i+ Y i <4

i=1 i=1 i=1

is facet-defining for P3.
Theorem 3.7 (Cornuéjols and Thizy 1982) The inequality

5 5 5
X13 + x4 + ini + Z-x(i+l) mod 5 + fo =7

i=1 i=1 i=1

is facet-defining for P>.

Families of facet defining inequalities for KUFLP with general integer coeffi-
cients are also known.

Theorem 3.8 (Canovas et al. 2000) Let S be an r X ¢ adjacency matrix satisfy-
ing

(i) Vii,ip € 15 3j € JS such that s;, jsi,; = 1 and
(i) Y(i,j) € IS x JS with s; = 13 € IS5, £ # i, such that s;; = 1 and
smSen =0 Vh # .

Then,
S S
DI B DILENI EES 3D SURILRS
ielS jeJS ielS \jeJS ielS jeJS

is a facet-defining inequality of P’
Theorem 3.9 (Canovas et al. 2002) Letr S be the k x k adjacency matrix, k > 3,

given by
S — ( 0 L1y )
L—1nyx1 Lge—1)x(k—1)
Then,
k
DO sixi+ k=251 + Y 5 <2k =2
ielS jeJS i=2

is a facet-defining inequality of P**.
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Theorem 3.10 (Canovas et al. 2002) Consider three numbers, k > 5,1 < a <
k—3andb =k —3 —a and let S be the k x k adjacency matrix given by

qua Ouxb Ouxl 0a><1 laxl
0pxa Ioxb 1ox1 Opx1 1px1
S=]1ixa0ixp 1 0 0
01><a 11><b 0 1 0
01><a 01><b 1 1 1

Then,

Z Z SijXij + Z Vi+ayk— +byr—1 <2k-3

ielS jeJs ielS\{k—2.k—1}

is a facet-defining inequality of P**.

Theorem 3.11 (Canovas et al. 2002) Let B be the cyclic 2k +1,2) matrix, k > 1,
and let S be the 2k + 2) x (4k + 2) adjacency matrix given by

S = (B(2k+1)x(2k+1) I(2k+1)x(2k+1))

01x2k+1) Lixok+1
Then,
2%+1
Z Z X + Z 2y; + (k + 1) yok4+2 < 6k + 3
ielS jeJs i=1

is a facet-defining inequality of Pk +2)4k+2),

Other types of inequalities have been suggested. For instance, Myung and Tcha
(1996) develop a family of inequalities that may cutoff feasible solutions but not
optimal ones. In particular, they propose a method for generating inequalities for a
constrained KUFLP which considers its feasible domain and the objective function
value, as well. For the sake of brevity, details are omitted here.

3.5.3 Lifting Procedures

The procedures that transform a valid inequality (facet) of a polyhedron pment
into a valid inequality (facet) of an higher polyhedron P™, m > m* orn > n*,
are called lifting procedures. Such results invite the study of small polyhedra. The
following result indicates how to lift all the facets in the previous section.
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Theorem 3.12 (Cho et al. 1983b) Let

DD mpxi+ Y b < 7o (3.68)

ieP jeD ieP

be a facet-defining inequality of P™ " Then, (3.68) is also a facet-defining
inequality of P™ form > m*, n > n*.

Cho et al. (1983b) also give a constructive procedure for obtaining facets of P™"
from cyclic adjacency matrices which do not define facets themselves.

Theorem 3.13 (Cho et al. 1983b) Consider P < I, D C J, such that |P| =
|D| = q, g = 3. Consider the facet-defining inequality of P9 given by

DD xi+ Y Ji<2q-2

ieP jeD; iep

where the sets D; are all the different subsets of D with |D;| = q — 1. Suppose we
add |S| + |T| facilities of I to P in such a way that each facility in S covers ¢ — 1
destinations and each facility in T covers all the q destinations. Let |S| = s and
|T| = t. Then,

Yoo D mix+ Y B <Qq+s—-2@g-1)+1(g-2)

i€elUSUT jeD; ielUSUT

is a facet-defining inequality of PYUtSTD4 where

A Nij:pLi:q—l, iEPUS,jEDi,
11. nii:ui:q—2, ieT,jeD;.

3.6 Conclusions

Fixed-Charge Facility Location Problems capture the main issues arising in fixed-
charge location, so they are an excellent workbench for reviewing relevant aspects
in this field. This was the aim of this chapter where we have covered a broad
range of possibilities related to the modeling and the solution process of FLPs.
Indeed the problems studied in this chapter can be seen as simplifications of
more realistic models that take into account additional issues. We have studied
deterministic static problems, without taking uncertainty into account (see, for
instance, Lin 2009; Albareda-Sambola et al. 2011, 2013; Gao 2012) or temporal
aspects (see, for instance, Albareda-Sambola et al. 2009a, 2010, 2012). Also, the
way we have considered capacity constraints on the facilities may seem simplistic,
since modular capacities (incurring their corresponding costs) can be more realistic
(see, for instance, Gouveia and Saldanha da Gama 2006; Gourdin and Klopfenstein
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2008; Correia et al. 2010). FLPs can be extended in various ways: One can
consider more involved objective functions or multiple objectives (Ferndndez and
Puerto 2003; Boland et al. 2006; Wu et al. 2006; Zanjirani Farahani et al. 2010),
problems combining FLP decisions with network design (Melkote and Daskin
2011; Contreras et al. 2012), additional constraints (Albareda-Sambola et al. 2009b;
Gendron and Semet 2009; Marin 2011), or the possibility of installing several
facilities at the same site (Ghiani et al. 2002), to mention just a few possibilities.
Some of these extensions are addressed in other chapters of this book.
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Chapter 4
p-Center Problems

Hatice Calik, Martine Labbé, and Hande Yaman

Abstract A p-center is a minimax solution that consists in a set of p points that
minimizes the maximum distance between a demand point and a closest point
belonging to that set. We present different variants of that problem. We review
special polynomial cases, determine the complexity of the problems and present
mixed integer linear programming formulations, exact algorithms and heuristics.
Several extensions are also reviewed.

Keywords p-Center * Location in public sector * Minimax facility location

4.1 Introduction

Minimizing the total or average distance that potential users have to travel to reach a
facility may not be the right decision criterion for placing a public facility. Total- or
average distance minimization tends to favor clients who are clustered in population
centers to the detriment of clients who are spatially dispersed. Discrimination of this
kind with regard to accessibility may have a negative impact on remote clients in the
case of an emergency service (ambulances, fire brigades, police stations, etc.). As a
result, decision makers may want to consider a criterion focusing on clients who are
the poorest served.
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The center problem, defined as finding a vertex whose distance to all the other
vertices of a graph is minimum, has been known for a long time in graph theory
(see, for instance, Berge 1967).

Hakimi (1964) introduced the absolute center problem to locate a police station
or a hospital such that the maximum distance of the station to a set of communities
connected by a highway system is minimized. Given a graph G = (V, E) with
V = {vi1,...,v,}, weight w; for node v; € V and length {; for edge {i, j} € E
connecting nodes v; and v;, the aim of the absolute center problem is to find a
point x on the nodes or edges such that max; =y, w;d(v;, x) is minimized, where
d(v;, x) is the length of the shortest path between node v; and point x (referred to
as distance between v; and x). The optimal value is called the absolute radius of
graph G. If x is limited to the nodes of G, then we obtain the center of graph G and
the optimal value is the radius of G. The center of G is not necessarily an absolute
center of G. In other words, the absolute radius can be smaller than the radius. To
see this, consider a very simple example with two nodes of weight 1 and an edge
connecting them with length 1. In this example, the absolute radius is 0.5 whereas
the radius is 1.

Hakimi (1964) proposed a solution method to compute the absolute center of a
graph and motivated further studies of this problem by casting it as a game. Two
people, X and Y, are playing a game on a graph G. First player X chooses a point
x in G, then player Y chooses a point y in G and X pays d(x, y) units to Y. When
X chooses point x, Y chooses a point farthest from x to maximize his gain. Hence,
player X computes the absolute radius of graph G to minimize his loss.

In the conclusion of his subsequent paper on median and covering problems,
Hakimi (1965) mentions the generalization of the absolute center problem to the
p-center problem. Given a set X, = {xi,...,x,} of p points in G, the distance
d(X,,v;) between X, and node v; is computed as min;=;, , d(x;,v;). The
p-center problem is to find a set X, of p points in G such that max;—__,w;d
(v, Xp) is minimized.

As defined above, the p-center problem is a network location problem. The
literature contains several variants. In this chapter, we refer to the following
variants:

* vertex-restricted p-center problem: X , is restricted to be a subset of the node set;

* unweighted p-center problem: all node weights are equal;

* discrete p-center problem: the graph G = (J U I, E) is bipartite and complete
with I denoting the set of possible facility locations and J denoting the set of
demand points.

One can find a discussion of several theoretical results and exact methods for
the p-center problem on general and tree networks in Tansel (2011). A large scale
review of the exact and heuristic methods proposed for the p-center and capacitated
p-center problems is provided by Calik (2013).
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This chapter is organized as follows. We review some polynomial cases, identify
the complexity of the problems in general and present some approximation results
in Sect. 4.2. Section 4.3 is devoted to the mixed integer linear programming models
and algorithms for solving p-center problems. Heuristics are discussed in Sect. 4.4
and some extensions of the p-center problem are considered in Sect. 4.5. Section 4.6
concludes the chapter.

4.2 Polynomial Cases, Complexity and Approximation
Results

An algorithm to compute an absolute center of a graph was proposed by Hakimi
(1964). The idea is to compute, for each edge, an optimal point assuming that
the center is restricted to be on that edge. Such an optimal point is called a local
center of that edge. Then the algorithm finds the best local center. Hence, the
overall complexity is equal to the number of edges multiplied by the complexity
of computing a local center of an edge.

The computation of a local absolute center is based on the observation that the
objective function is piecewise linear on each edge and that local minima correspond
to intersection points and vertices (see Minieka 1970). A point x on edge {vi, v} €
E qualifies as an intersection point if there exist two distinct nodes v;, v; € V such
that x is the unique point on {v, v,, } for which d (v;, x) = d(v;, v) + d (v, x) =
d(x,v;) =d(x,v,) + dVm, vj).

It follows from this definition that the number of intersection points on an edge
is bounded by O(n?). Nevertheless, Kariv and Hakimi (1979) observed that at most
n + 1 such points can be local minima of the objective function. The resulting
algorithm proposed by Kariv and Hakimi (1979) solves the absolute center problem
in O(|E|n + n’logn) time.

An algorithm for finding an absolute center in the weighted case can be derived
along the same lines. First, a solution can also be found in the set of local centers,
i.e., solutions to the problems in which the solution is restricted to be on an edge.
Then, the objective function remains piecewise linear on each edge but the slopes
of the linear pieces depend on the vertex weights w;. Kariv and Hakimi (1979)
showed that, on an edge, at most 3n — 2 intersections points can determine a local
minima. A point x on an edge {vk, v,,} is now an intersection point if there exist
two distinct nodes v;, v; € V such that x is the unique point on {v, v,,} for which
wid (v, x) = wi(d (v, vk) +d (v, x)) = w;d(x,v;) = w;(d(x, V) +d(Vm, v))).
The complexity of the resulting algorithm proposed by Kariv and Hakimi (1979) is
O(| E |nlogn).

Goldman (1972) proposed an O(n?) algorithm to find an absolute center of a tree
in the unweighted case. The algorithm checks whether an edge contains an absolute
center and if not, searches the two subtrees obtained by deleting this edge. Handler
(1973) proposed an O (n) algorithm exploiting the fact that the midpoint of a longest
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path of the tree is an absolute center and that the distance is a convex function along
any path of the tree. Given any node v;, the algorithm first determines the vertex v;
whose distance to v; is maximum, then determines the node v; whose distance to
v; is maximum. The path linking v; and vy is a longest one and the absolute center
is its midpoint.

Kariv and Hakimi (1979) provided an O(nlogn) algorithm for the weighted
center problem on a tree, which was improved to O(n) by Megiddo (1983).

For an arbitrary graph G and p > 2, Kariv and Hakimi (1979) proved that the
p-center problem is NP-hard even on a planar graph where the maximum degree is
3 and all node weights and edge lengths are equal to 1. The result is also true for
the vertex-restricted problem. The authors show that the problem with p > 2 can be
solved in O(n%logn) time when G is a tree.

Hochbaum and Shmoys (1985) developed a two-approximation algorithm for the
unweighted discrete problem with / = J and edge lengths satisfying the triangle
inequality. The algorithm runs in O(|E|log| E|) time. Hsu and Nemhauser (1979)
proved that it is NP-hard to find an approximation with a better guarantee. Dyer and
Frieze (1985) gave an O (np) algorithm with a guarantee of min{3, 1 + «}, where «
is the ratio of the largest weight and the minimum weight. In the unweighted case,
this guarantee is 2.

4.3 Exact Methods for p-Center Problems

We first observe that the different variants of the p-center problem can be trans-
formed into a discrete p-center problem and solved as such.

In the case of the vertex-restricted p-center problem, the set I of possible
locations and the set J of demand points are both equal to the set of vertices V.

The weighted and unweighted absolute p-center problems enjoy the same
property as their single facility counterpart: an optimal solution can always be found
in the set of vertices and intersection points. This follows from the fact that each
point x; of an optimal solution X, must be a local minimizer of the function given
by the maximum (possibly weighted) distance to the vertices that are allocated to
X;i, i.e., which are closer to that x; than to any other point of X,. To transform an
absolute p-center problem into a discrete p-center problem one thus simply sets
I =V U P, where P denotes the set of intersection points, and J = V.

The remainder of this section is now devoted to models and algorithms for
solving the discrete p-center problem.

Several methods based on solving finite series of an auxiliary problem called the
set covering problem are developed. The set covering problem is a kind of covering
problem (see Chap.5), which is closely related to the p-center problem. Given a
zero-one matrix A = [a;], the set covering problem consists of finding a set of
columns at minimum cost that covers the rows of the matrix 4. In order to minimize
the number of facilities required to serve all customers within a given radius value
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r, one can solve a set covering problem with unit column costs by constructing A as
follows:

1,ifd(j,i) <,

= Vjiel,iel.
0, otherwise J !

i

If the optimal value of the set covering problem is greater than p, then the optimal
value of the p-center problem needs to be greater than r; if it is less than or equal to
P, then it means that the optimal value of the p-center problem is less than or equal
tor.

The first set covering based approach was proposed by Minieka (1970). Let r; <
rp < ... < rk be an ordering of the distinct distance values in the distance matrix
D =1[dy] : dy =d(j,i)i €1,j € Jand R = {r1,rs,...,rx}. The method
by Minieka (1970) solves the set covering problem for a smaller value in R not yet
considered at each step by updating the matrix A. The algorithm terminates when
the optimal value of the set covering problem is greater than p. Since the number
of different distance values in D is at most |/|.|J|, the algorithm converges to an
optimal solution in a finite number of steps.

Garfinkel et al. (1977) improved the set covering based approach by Minieka
(1970) by first finding a heuristic solution, then, reducing the search space of the
radius values and eliminating some of the intersection points. They also reduce the
size of the set covering matrix by using standard matrix reductions and heuristic
techniques. For the selection of the radius values at the next step, they proposed
using a bisection or binary search strategy instead of moving to the next smaller
radius value.

The first mixed integer programming (MIP) formulation for the discrete p-center
problem was proposed by Daskin (2013). The following decision variables are
defined: y; = 1 if a facility is placed at node i € I and O otherwise, x; = 1 if
Jj € J is assigned to a facility placed ati € I and O otherwise. The formulation by
Daskin can be stated as follows:

Minimize V4 4.1
subject to Z diixij <z vVjedJ, (4.2)
i€l
Y ox=1 Vjeld, (4.3)
i€l
x;j < Yi Viel,jelJ, (4.4)
Y v <o (4.5)
i€l
y; € 40,1} Viel, (4.6)

x; €40, 13} Viel, jel. 4.7)
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The objective function (4.1) together with (4.2) ensure that the objective value is no
less than the maximum of the distances between demand points and their facilities.
Constraints (4.3) establish the assignment of each demand point to exactly one
facility. Constraints (4.4) avoid assignment of demand points to locations with no
facility. Constraint (4.5) restricts the number of facilities to p. Constraints (4.6)
and (4.7) are the binary restrictions.

Daskin (2013) also proposed a set covering based algorithm, in which the radius
value of the set covering problem is selected from an interval of real numbers
between pre-determined lower and upper bounds. At each step of the algorithm,
the interval is halved and one of the segments is removed depending on whether the
objective value of the set covering problem is greater than p or less than or equal
to p.

Ilhan and Pinar (2001) proposed a two-phase extension of the algorithm devel-
oped by Daskin (2013). In the first phase, they solve the linear programming (LP)
relaxation of the feasibility problem defined by (4.5), (4.6), and

Zaﬁy, >1, Vjel, (4.8)

i€l

iteratively for fixed r values to obtain a relatively tight lower bound for the p-center
problem. In the second phase, they restrict the interval of the radius values with
the lower bound obtained in the first phase and solve the integer programming (IP)
version of the same feasibility problem iteratively to obtain the optimal value of the
p-center problem.

Elloumi et al. (2004) proposed a new IP formulation for the p-center problem.
This formulation utilizes the fact that the optimal value of the p-center problem
is restricted to a finite set of distance values. They introduced additional binary
variables z, k = 2,..., K, with zZ£ = 0 if all demand points can be covered by
p facilities within a radius value of r,—; and Z¥ = 1 otherwise. The formulation is
given below:

K
Minimize  r + Z(rk — i) (4.9)
k=2
subject to 4.5), (4.6),
Y oyizl (4.10)
iel
F+ ) izl Vied k=2, K, 4.11)
itdji<rg

Fef0,1} k=2,....K. (4.12)
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Constraint (4.10) eliminates the solutions with no open facility. Constraints (4.11)
and the objective function (4.9) ensure that all demand points are served by a facility
within the smallest possible distance.

A semi-relaxation of this formulation, which is obtained by removing the
binary restriction on the y variables, provides the best known lower bound for the
p-center problem. This lower bound can be obtained by solving a finite series of LP
problems, which are the LP relaxations of the set covering problems. Elloumi et al.
(2004) also provided an exact algorithm that combines the important properties of
the algorithms of Minieka (1970) and Ilhan and Pinar (2001). Their algorithm uses
the two-phase idea and a binary search strategy similar to the algorithm by Ilhan and
Pinar (2001), but restricts the set of radius values to solve the set covering problems
with the finite radius set R as in Minieka (1970).

Calik and Tansel (2013) developed new IP formulations and a new exact
algorithm based on the decomposition of their models for solving the p-center
problem. They associated a binary variable u; with ry, for each k € {1,..., K}.
In particular, uy is equal to 1 if 7y is selected as the optimal value and O otherwise.
Initially, they proposed the following formulation:

K
Minimize Z Frlte (4.13)
k=1
subject to 4.5), (4.6),
> vizw Vielk=1,...,K, (4.14)
iidji<ri
K
Zuk =1, (4.15)
k=1
we € 40,1} k=1,....K. (4.16)

Constraint (4.15) sets exactly one of the variables u; to 1 and the corresponding
i value is selected as the optimal value according to the objective function (4.13).
Constraints (4.14) ensure that each customer is served within the selected radius
by at least one facility. Constraints (4.16) are binary restrictions. The authors
proposed a tightened formulation by using a relationship between their formulation
and the formulation proposed by Elloumi et al. (2004). In this formulation,
constraints (4.14) are replaced with constraints (4.17) given below:

k
Z yiEZ“q’ VieJk=1,... K. (4.17)
id(i,j)<rg g=1

The semi relaxations of these formulations, in which the binary restriction of
the y-variables are removed, provide the tight lower bound obtained by Elloumi
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et al. (2004). The algorithm developed by Calik and Tansel (2013) solves their
formulations for restricted sets of radius values iteratively to converge to an optimal
solution. They proposed several selection strategies for a two-element specialization
of their algorithm. They also utilize the matrix reduction rules known for the set
covering problem in their restricted formulations when solving large problems.

In the recent studies, instances from the OR-Library (Beasley 1990) and TSPLIB
(Reinelt 1991) have been used for making computational experiments. The data
for the uncapacitated p-median problem found in the OR-Library consists of 40
instances with n = 100 — 900 and p = 5 — (n/3). This data was used in
the experiments conducted by Ilhan and Pinar (2001), Elloumi et al. (2004), and
Calik and Tansel (2013). In addition to these instances, Elloumi et al. (2004) used
the instances ul060, 111323 and ul817 (n = 1060, 1323, and 1817, respectively)
and Calik and Tansel (2013) used the instances ul817, d15112, and pcb3038
(n = 1817, 2500, and 3038, respectively) from the TSPLIB.

4.4 Heuristics

Mladenovié et al. (2003) introduced the first meta-heuristic approaches for finding
approximate solutions to the p-center problem. They proposed a multistart local
search algorithm (M-I), a chain substitution Tabu Search (TS) algorithm, and a vari-
able neighborhood search (VNS) algorithm and conducted large scale experiments
on 40 p-median instances from the OR-Library and instances with up to 3,038
nodes from TSPLIB. These experiments reveal that their algorithms outperform the
algorithm proposed by Hochbaum and Shmoys (1985). Among the three heuristics
proposed, TS and VNS algorithms outperform M-I algorithm, VNS performs the
best on the average in terms of both the solution quality and solution time; however,
TS provides slightly better results for the instances with smaller p values.

Pullan (2008) proposed a memetic genetic algorithm (PBS) for the vertex-
restricted p-center problem, which combines a population based meta-heuristic
with a local search algorithm. By using the phenotype crossover and directed
mutation tools of the genetic algorithm, a wide range of elite starting solutions
are generated and then, these solutions are improved to local optimality by using
a local search algorithm. From the computational experiments using the instances
previously tackled by Mladenovi¢ et al. (2003), an improvement in the CPU times
and in the objective value of some problems is observed when PBS is compared with
the VNS algorithm. The PBS algorithm can be executed also in a parallel processing
mode. The experiments conducted by increasing the number of parallel processors
utilized in the algorithm provide better CPU times.

Salhi and Al-Khedhairi (2010) obtained tight lower and upper bounds by using a
three-level meta-heuristic and integrated these bounds with the algorithm by Daskin
(2013) to solve the vertex-restricted p-center problem. In the first and second
levels of the algorithm, a variable neighborhood strategy is utilized with distinct
neighborhood structures. In the third level, a perturbation mechanism is introduced



4 p-Center Problems 87

to avoid sticking at local optima. The computational experiments conducted on
the 40 p-median instances of the OR-Library revealed that the utilization of these
bounds decreases the solution times of Daskin’s algorithm.

Other than the meta-heuristic algorithms, Martinich (1988) proposed a vertex
closing approach for the vertex-restricted p-center problem on complete networks
with distance values that satisfy the triangle inequality. Initially, the algorithm places
a facility on each node and considers the problem of finding n — p facilities to
close so that the maximum of the distances between the nodes and their facilities
is minimized. In this study, the optimal solutions were characterized with the
embedded sub-graphs of the original graph. From this analysis, initial lower and
upper bounds were obtained, two polynomial time algorithms were proposed and
procedures to verify the optimality of the solutions for several special cases were
developed. In terms of the number of instances solved to optimality, they outperform
the algorithm by Hochbaum and Shmoys (1985).

Bozkaya and Tansel (1998) showed that there exists a spanning tree of any
connected network such that the optimal absolute p-center of this tree is optimal also
for the network under consideration. They conducted experiments on two classes
of spanning trees to observe how often these trees provide the optimal solution.
They concluded that these two classes of spanning trees do not always include the
optimizing tree, but they do in most of the instances.

Miheli¢ and Robi¢ (2005) solved the vertex-restricted p-center problem by
introducing a heuristic algorithm based on solving a finite series of minimum
dominating set problems. Given a graph G = (V, E), the minimum dominating
set problem aims to find a node subset S C V' of minimum cardinality so that any
node in V \ S is adjacent to some node in S. They assumed that the underlying
network is complete and the distance values satisfy the triangle inequality. The
computational experiments performed on 40 standard test instances indicate that
their algorithm performs much better than the other polynomial time heuristics
found in the literature and competes with the best known non-polynomial time
algorithms.

4.5 Variants

In this section, we briefly discuss some extensions of the p-center problem.

4.5.1 The Capacitated p-Center Problem

One first variant concerns problems with capacitated facilities. There are few studies
on this variant. Bar-Ilan et al. (1993) introduced a ten-approximation algorithm for
the special case of unit demands. The guarantee was improved to 6 by Khuller and
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Sussmann (2000). If multiple centers can be located at the same location, then the
guarantee is further improved to 5.

Jaeger and Goldberg (1994) proposed a polynomial time algorithm for the
capacitated p-center problem when the graph is a tree, capacities are equal, and
multiple facilities can be located at the same location. In this work, the demand of a
node can be split among different facilities.

Ozsoy and Pinar (2006) proposed an exact algorithm to solve the capacitated
p-center problem. The idea is to see if the all nodes can be assigned within a given
distance and update lower and upper bounds on the radius using this information.
In the subproblem solved to see whether it is possible to assign all nodes within a
given distance, the objective is to minimize the number of facilities required.

In addition to the subproblem solved by Ozsoy and Pinar (2006) to obtain bounds
on the optimal radius, Albareda-Sambola et al. (2010) proposed a second approach
where they solved the problem of maximizing the demand covered within a given
distance using at most p facilities. They used bounds from the Lagrangian relaxation
of the two subproblems to eliminate some radius values and concluded that the first
approach for finding the minimum number of required facilities is a better approach.
Based on this conclusion, they proposed an exact algorithm using binary search over
possible values of the optimal radius.

A very large-scale neighborhood heuristic was developed by Scapparra et al.
(2004). Two types of exchanges were considered. In a cyclic exchange, one takes
a sequence of nodes that are served by different facilities and replaces the facility
of each node with the facility of the next node in the sequence (the facility of the
last node in the sequence becomes the facility of the first node). In a path exchange,
we again take a sequence of nodes served by different facilities and replace the
facility of each node with the facility of the next node. The facility of the last node
is replaced by a facility different from the facilities of the nodes in the sequence. A
relocation step that moves the facilities to better locations with respect to the set of
nodes they are serving is also added to the algorithm.

Three data sets were used in the last three papers mentioned. The first data set
contains 20 instances of the capacitated p-median problem from the OR-Library
(Beasley 1990), with 50 and 100 nodes. The second data set is from Lorena and
Senne (2004) and is also for the capacitated p-median problem. Here there are six
instances with the number of nodes ranging from 100 to 402. Finally, Scapparra
et al. (2004) provided a data set with 8 instances containing 100 and 150 nodes.
Additional instances of the p-median problem were used by Albareda-Sambola
et al. (2010). These authors also compared their approach with the one of Ozsoy
and Pinar (2006).

4.5.2 The Conditional p-Center Problem

The second variant is the conditional p-center problem. In this variant, there
are g existing facilities and additional p facilities are to be located so that the
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maximum distance between a node and its facility (among p + ¢ facilities) is
minimized. Minieka (1980) introduced the conditional 1-center problem. Drezner
(1989) showed that the conditional p-center problem can be solved by solving
O(logn) p-center problems. Suppose that the nodes are ranked in non-increasing
order of their distances to their facilities (using the existing ¢ facilities). Then there
exists a node s such that the optimal value of the conditional p-center problem is
equal to the maximum of the optimal value of the p-center problem solved for the
first s nodes and the distance of the s 4 Ist node to its facility using the existing ¢
facilities. The algorithm tries to find the best s using bisection.

Berman and Simchi-Levi (1990) solved the conditional p-center problem by
solving a p 4 1 center problem. They add a dummy demand node and a dummy
possible location. The distance from a demand node to the dummy location is the
distance of that node to its facility considering the existing facilities. The distance
of the dummy demand node to the dummy location is zero and its distance to the
other possible locations is a very large number. As a result, an optimal solution to
the p + 1-center problem includes the dummy facility location and opens p other
facilities. Berman and Drezner (2008) improved this approach and showed that the
conditional p-center problem can be solved by solving a p-center problem where
the distance between a node and a potential facility is set to the minimum of this
distance and the distance between this node and the closest existing facility.

4.5.3 The Continuous p-Center Problem

The next variant is the continuous p-center problem. When demand points are
continuously distributed over the whole graph, a set X, of p points of the graph
minimizing the largest distance from a demand point to a closest point of X, is
called a continuous p-center.

In the single facility case, i.e., when p = 1, the problem can still be solved
by choosing a best solution among all the local continuous centers, i.e., solutions to
continuous center problem in which the location is restricted to an edge. On an edge,
the objective function is again piecewise linear with O(| E|) breakpoints. Based on
these facts, O(|E|*log(| E|) algorithms were proposed by Hansen et al. (1991) and
Tamir (1988).

On a tree, the absolute center coincides with the unweighted absolute center.

For the continuous p-center problem, Tamir (1987) identified a finite set of
rational numbers containing the optimal solution value. Hence, a continuous
p-center can be found by solving a finite number of continuous set covering
problems, i.e., problems in which one looks for the smallest set of facilities needed
to cover all points of the graph (vertices and interior points to edges) within a given
maximum distance.
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4.5.4 The p-Center Problem with Uncertain Parameters

Finally, we consider the variants with uncertain parameters. Averbakh and Berman
(1997) studied the minmax regret version of the problem where the node weights
are uncertain within given intervals. They showed that the robust version of the
problem can be reduced to the resolution of 7 + 1 deterministic problems. Averbakh
(1997) showed that the robust 1-center problem is strongly NP-hard on general
networks when there is uncertainty in edge lengths. Averbakh and Berman (2000)
developed polynomial time algorithms for the robust weighted 1-center problem
with uncertainty in both node weights and edge lengths on a tree network.

4.6 Conclusions

We conclude this chapter with some future research directions. The majority of the
solution methods proposed for the p-center problem are based on either the set
covering or the dominating set problems. Well known optimization methods such
as the cutting plane, branch-and-cut, Benders decomposition, or dynamic program-
ming are rarely used. Recently, Calik (2013) provided a Benders decomposition
method to solve the vertex restricted p-center problem and developed a branch-
and-cut method for the capacitated p-center problem with multiple allocation. The
experimental study conducted by Calik (2013) revealed that the utilization of a
branch-and-cut method enables obtaining optimal solutions of large instances in
small CPU time. The multiple allocation variant, which was previously studied by
Jaeger and Goldberg (1994) on trees, is also an open research area for the capacitated
p-center problem.

Although there are many studies for the p-center problem on trees, the capac-
itated version is not extensively investigated. The only study on this problem
considers facilities with identical capacities and allows multi centers and multiple
allocation. Hence investigating the capacitated p-center problem on tree networks
with non-identical capacities, without multi centers and/or with single allocation
might be a worthwhile undertaking.

Another variant of the p-center problem that has recently attracted the attention
of the researchers is the fault tolerant p-center problem. This is a generalization of
the p-center problem in which each customer is assigned to o different facilities.
The idea is to make back-up services available in case of a failure of some
facilities. The fault tolerance can also be taken into account for the capacitated
p-center problem. Among the existing studies for the fault tolerant p-center and
capacitated p-center problems, Krumke (1995), Khuller et al. (2000), and Chechik
and Peleg (2012) focus on approximation algorithms and a recent study by Chen
and Chen (2013) presents two exact algorithms. Therefore, developing different
exact approaches and meta-heuristic algorithms for this problem might appeal to
the researchers.
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Chapter 5
Covering Location Problems

Sergio Garcia and Alfredo Marin

Abstract When deciding where to locate facilities (e.g., emergency points where
an ambulance will wait for a call) that provide a service, it happens quite often that
a customer (e.g., a person) can receive this service only if he/she is under a certain
distance to the closest facility (e.g., the ambulance can arrive in less than 7 min
at this person’s home). The problems that share this property receive the name of
covering problems and have many applications (analysis of markets, archaeology,
crew scheduling, emergency services, metallurgy, nature reserve selection, etc.).
This chapter surveys the Set Covering Problem, the Maximal Covering Location
Problem, and related problems and introduces a general model that has as particular
cases the main covering location models. The main theoretical results in this topic
as well as exact and heuristic algorithms are reviewed. A Lagrangian approach to
solve the general model is detailed and, although the emphasis is on discrete models,
some information on continuous covering is provided at the end of the chapter.

Keywords Covering ¢ Discrete optimization ¢ Location

5.1 Introduction

When deciding where to locate facilities (e.g., emergency points where an ambu-
lance will wait for a call) that provide a service, it happens quite often that a
customer (e.g., a person) can receive this service only if he/she is under a certain
distance to the closest facility (e.g., the ambulance can arrive in less than 7 min
at this person’s home). The problems that have this property receive the name
of covering problems and, when the previous condition holds, it is said that the
customer is covered.
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The first mentions to covering problems in literature can be found in Berge (1957)
where the problem of finding a minimum cover on a graph is introduced and a
theorem that provides an algorithm to find a minimum cover using a matching is
stated and in Hakimi (1965) where it must be decided on the minimum number of
police patrols required to protect a highway network. However, the problem was
mathematically formulated for the first time in the Location area in Toregas et al.
(1971), although out of a Location context it had already been formulated in Roth
(1969).

In general, there are two types of covering problems: set covering and maximal
covering. In a set covering problem (Toregas et al. 1971), the total cost of locating a
set of facilities so that every customer is covered must be minimized. Particularly, if
all the facilities have the same location cost, this is equivalent to minimize the total
number of facilities to be located. A quick analysis of a solution to the set covering
problem will usually show that with just a few facilities it is possible to cover an
important percentage of the demand and that only by locating a high number full
coverage can be achieved. Since locating as many facilities as needed may not
be possible (e.g., due to budget constraints), a natural variant is to maximize the
number of customers that are covered (or, equivalently, minimize the non-covered
customers) by locating a fixed number of facilities. This problem is the maximal
covering problem which was introduced in Church and ReVelle (1974).

According to Balas and Padberg (1976), the set covering problem is one of the
three special structures in pure integer programming with the most wide-spread
applications, together with set partitioning and the traveling salesman problem. Just
to mention a few, set covering models have been applied in the following areas:
analysis of markets (Storbeck 1988), archaeology (Bell and Church 1985), crew
scheduling (Ceria et al. 1998), deployment of emergency services (Toregas et al.
1971; Eaton et al. 1986), mail advertising (Dwyer and Evans 1981), metallurgy
(Vasko et al. 1989), nature reserve selection (Church et al. 1996) and Steiner
matrices (Feo and Resende 1989).

Due to its importance and the rich literature on this topic, it is not surprising that
reviews have been published regularly. The first one is Christofides and Korman
(1975), a comparison of five computational methods for the set covering problem.
Later, we have Chung (1986) which examines several applications of the maximal
covering model to problems that do not belong to the Location field, and ReVelle
(1989), a review focused on emergency service. Broader reviews are Schilling et al.
(1993), an exhaustive survey on covering models in Location reviewing 96 papers,
and Caprara et al. (2000), a comparison of recent algorithms (exact and heuristic)
for the set covering problem. Plastria (2002) is an exhaustive review of continuous
covering models and it is a perfect complement to this chapter. More recently, we
have Berman et al. (2010) which considers some of the latest trends by reviewing
gradual coverage, cooperative coverage, and variable radius coverage models, and
Snyder (2011) which reviews the seminal covering models plus some extensions.
Finally, the most recent survey is Farahani et al. (2012), an exhaustive list of models
reviewing more than 150 papers that study covering problems in the area of facility
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location. More focused as a detailed tutorial than as a proper survey, Daskin (1995)
is an excellent introduction to the basic properties of covering models.

At this point, it must be said that there are many different models involving
covering and that the goal of this chapter is not to cover them all but to provide
an insight on the main models and results on the topic. Particularly, we focus on
discrete models because they have received most of the attention in literature. The
rest of this chapter is organized as follows: the main models from the literature
are obtained in Sect.5.2 as particular cases of a general model. Section 5.3
summarizes the main theoretical results on two of the main models (Set Covering
and Maximal Covering Location). Then, we survey exact (Sect.5.4) and heuristic
(Sect. 5.5) solution methods. Since Lagrangian relaxation technique is widely used
for approaching covering models, we extend it to the general model described
in Sect.5.6. Finally, although the focus of this chapter is on discrete models,
some information on continuous covering is provided in Sect.5.7 for the sake of
completeness.

5.2 Models

We will use a general covering model to present as particular cases the main
covering location problems in the literature as well as several other basic location
problems which can be also considered sophisticated extensions of covering models.

Let J = {l1,...,n} be the set of customers (also called demand points) and let
I = {1,...,m} be the set of potential centers (facilities). Since many applications
of covering models come from Location, we will use indistinctively “sites” for
customers and potential centers. For each pair (i, j) € I x J, a known constant
ajj € {0, 1} represents whether demand point j can be covered (value one) or not
(value zero) by a center installed at site i. These constants can be obtained with
different procedures depending on the model under consideration as we will see
below.

Associated to each i € I, a fixed cost f; > 0 has to be paid for opening a center
at site i. In some models it is possible to open more than one center at the same
site. In this case we assume that the cost of the centers to be opened ini € [ is
equal (i.e., f; is the opening cost for all centers to be opened at site i ). Each demand
point j € J must be covered by at least b; € Zg‘ facilities, where b; = 0 if site j
does not need to be covered. Besides, a maximum number of p € Z™ facilities can
be opened (note that when the fixed costs of the centers are zero, this maximum
number is always reached by some optimal solution).

Non-negative integer variables y; represent the number of facilities to be opened
atsite i € I. These are the main location variables and they will be explicitly present
in all the particular cases that are obtained from the general model. The maximum
number of facilities that can be opened at site i is given by the constant ¢; € Z™.
Particularly, if e; = 1, then y; is a binary variable that takes value one if a facility is
located at site i (and zero otherwise).
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A second family of (binary) variables is wj.. Here, j belongs to the set of demand
points J while k belongs to an index set K = {1,...,h}, whose meaning will
depend on the particular model that is considered. Associated to variables wj, fixed
costs gix € R are given. These costs gj can be negative, representing in this case
the profit from wy, taking value one. In order to avoid unnecessary complicating
constraints in the basic model, without loss of generality, we assume that g;; <
gj2 < ... < gy foreach j € J. Whenever this condition does not hold, it will be
explicitly stated.

The mathematical Integer Programming formulation for our general covering
model is:

(COV) Minimize Y fiyi + Y Y guwie (5.1)

i€l j€J keK
subject to Zy,- <p, 5.2)

i€l
ZaiiYi:bj+ZWik Vj e J, (53)
i€l keK
yi €{0,1,....¢;} Viel, (5.4)
wix €{0,1} VjeJ VkeKk. (5.5)

The objective function (5.1) has two parts. The first sum returns the total fixed
cost of opening y; facilities at site i € . The second sum returns the total cost (or
profit, if negative) provided by the w-variables that take value one. Constraint (5.2)
limits the number of centers to p. Note that all the centers installed at the same site
contribute to the sum.

The main constraints in the model are (5.3). For each demand point j € J, the
left-hand side of (5.3) measures the number of open facilities which are covering ;.
This number must be at least equal to the lower bound b; on the right-hand side,
while the sum of wy, variables measures the slack in the coverage of j, i.e., the
number of centers which are covering j besides the minimum number b;. Due to
the condition that we imposed on the g-values, the w-variables taking value one will
be in the first positions, that is, constraints wy > w1, j € J,k € {l,...,h — 1}
are satisfied without including them explicitly in the formulation. In such a way,
a cost g will be paid if demand point j is covered by at least b; + 1 centers;
additional cost g, will be paid if demand point j is covered by at least b; 42 centers
and so on.

Constraints (5.4) are the integrality constraints for y-variables and impose that at
most e; centers can be installed at site i. Constraints (5.5) state that variables w are
binary.

Therefore, model (COV) forces to cover each demand point j with a minimum
of b; facilities by using at most p facilities while minimizing the location cost of the
facilities plus an additional cost (or, instead, minus an additional benefit) associated
to the number of facilities which over-cover customers. By giving particular values
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to the constants in (COV), different models from the literature (and, particularly, all
the classical models) are obtained. The details are given next.

Set Covering Problem: In the Set Covering Problem (SCP) we have that, under
the context of emergency center location of Toregas et al. (1971), a; = 1 if the
response time or distance d;; from a center located at i € / when an emergency
happens at j € J is under a certain given threshold s (i.e., a; = 1 if and only if
djj < s). There is no maximum number of centers to be located (i.e., p = m) and
all demand points must be covered at least once (b; = 1V j € J). The only costs
in the objective function are f; = 1 Vi € [ because the goal is just to minimize
the number of open centers. Therefore, variables wj can be removed from the
model by replacing the equalities in (5.3) by inequalities “>" (equivalently, take
h=m-—1and gg = Oforall j € J, k € K in (COV)). In the SCP, opening
more than one facility at the same site is not optimal. Thus, ¢; = 1 Vi € [.
Given the special importance of this model, its classical formulation is explicitly
shown:

(SCP) Minimize Z Vi

i€l

subjectto Y azyi =1 VjelJ, (5.6)
i€l

yi €{0,1} Viel.

As an optimization problem, the SCP is a classical problem. The particular case
where I = J is the set of nodes of an undirected graph and a;; = 1 if and only
if edge (i, j) exists, usually called Node Covering Problem, has been deeply
studied during the last century. The interested reader can consult the survey by
Balinski (1965). Other interesting seminal papers are Norman and Rabin (1959)
and Hohn (1955), where the mathematical problem is identified in the context of
electronic circuits when analyzing a general way of designing a contact network
satisfying given requirements and employing a minimum number of contacts.
Surprisingly, although the SCP is an NP-complete problem (Garey and Johnson
1979), it happens often that the linear relaxation already provides an integer
solution. Another important property that must be remarked is that the SCP
has usually many different optimal solutions, i.e., sets of centers with the same
minimum cardinality which cover all the demand points.

Weighted Set Covering Problem: The Weighted SCP (WSCP) is a generalization
of the SCP where the opening costs f; can be different from one.

Redundant Covering Location Problem: The Redundant Covering Location
Problem (RCLP) was approached in Daskin and Stern (1981) as an extension
of the SCP where the aim is to choose, among the optimal solutions to the SCP,
the one which maximizes the number of demand points covered at least twice.
Each site can only shelter one center. Again, a; = 1 if and only if d; < s,
p =m,b; =1Vj € J (because the demand points must be covered at least
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once), and e, = 1 Vi € [I. Since we are also interested in knowing whether
each demand point j € J is covered or not by a second center (disregarding
the number of additional facilities which cover j), only variables w;; would be
necessary if equalities (5.3) were replaced by inequalities (5.6) as in the SCP
discussed above. Alternatively, the RCLP can be obtained as a particular case
of (COV) by takingh =m—1,gx =0Vj e J, k>2,andgj; =—-1VjeJ.
In order to prioritize the minimization of the number of open facilities, we define
fi =n+1Vi €I as acost large enough.

Hierarchical Covering Location Problem (HCLP): An objective function which
allows the simultaneous minimization of the number of facilities that are opened
and the maximization of the number of previously existing facilities that are kept
(within the minimum total number of facilities) was introduced in Plane and
Hendrick (1977) in a paper devoted to the location of fire stations. Values a;; are
equal to one if and only if focal point i can be served by a pumper company at
location j in less than the response time specified for site ;. They found a major
difficulty when using the SCP: this model does not differentiate between those
sites that have existing fire stations and those that require the construction of a
station. This drawback was fixed by modifying the objective function of the SCP
as follows: consider a partition of the set of facilities I = Iy U I, where [ is
the set of existing facilities and I, is the set of potential new facilities. Then,
define f; = 1Vi € [1and f; = 1 —¢ > 0 Vi € [, with ¢ a small positive
amount. This way, the slightly lower cost of the already existing centers makes
them more interesting when minimizing the total cost.

Maximal Covering Location Problem: The Maximal (or Maximum) Covering

Location Problem (MCLP) was introduced in Church and ReVelle (1974) and, as
it has been explained in the previous section, it entails an important change with
regard to the goal of the previous models listed in this section because, since
now the number of facilities to be located is limited to a given value p < m,
we do not require to cover all the demand but to maximize the covered demand.
Then,h = pandb; = 0Vj € J. Again, e; = 1 Vi € I and values a; are
defined as usual. Since we need to know whether a demand point is covered
or not without minding about the number of different facilities that cover it,
we avoid that variables y; and variables wy with k # 1 contribute to the
objective function (5.1) by fixing their corresponding coefficients to zero, i.e.,
fi=0Vielandgy =0V, € J,Vk > 2. Besides, we set g;; = —1 in order
to maximize the number of demand points covered by the open facilities.
An alternative to this model that was proposed in Church and ReVelle (1974) is
to combine mandatory covering of some demand points (assume these points
are indexed by means of J; C J) and maximization of the coverage of the
remaining points (those in J \ Jj). This situation can also be approached by
means of model (COV) by takingh = p,b; =1Vj e Ji,b; =0Vj e J\ Ji,
e; = 1Vi el,and f; = 0Vi € I. The g-coefficients are defined as follows:
g1 =—1 Vje J\Jl,gjk:OVj € J\Jl,sz2,andgjk:OVj e Ji,
Vk € K. We call this model MCLP’.
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Backup Set Covering Problems:  Several models can be grouped under this name.
The common idea is to cover the demand points with more than one facility
in order to guarantee the coverage in case of either failure or overflow in one
or some of the centers (in this sense, the RCLP can be considered a backup
problem). There are two natural goals: minimization of the number of open
facilities and maximization of the backup coverage. Sometimes this problem
has been approached from the point of view of multiobjective optimization as,
for example, in Storbeck and Vohra (1988) and model BACOP1 in Hogan and
ReVelle (1986). Some other times, both objectives are combined into a unique
function as in model BACOP2 in Hogan and ReVelle (1986). Details are provided
next.

Coverage of all demand points is not mandatory, and each site can host several
facilities. Demands ¢; are associated to points j € J. A maximum number of
p facilities can be opened (& = p). Values a;; are obtained as in most of the
previous models. A parameter 0 < 8 < 1 measures the relative importance of
covering once or twice each demand point: the smaller § is, the more importance
is given to cover each point twice. The goal here is to maximize the demand
covered by the facilities and also the demand covered twice, using 8 to give each
objective its relative importance. Taking this into account, we define f; = 0 Vi €
I,ee=pViel gg=0VjeJ,Vk>3andb; =0V, € J. Variables w;
are used to represent whether customer j is covered or not and variables w;,
are used to check whether j is covered twice or not. We define g;; = —p¢;
and g;» = —(1 — B)t;. Model (COV) is valid when B > 1/2. When B < 1/2,
constraints w;; > w;, Vj € J mustbe included to preserve the correct definition
of the w-variables.

Batta and Mannur (1990) propose a different criterion for coverage which
can also be viewed as a particular case of (COV). Recently, Curtin et al.
(2010) developed a backup coverage model in order to locate police patrols,
where a priority ; of crime incident in j € J is known, the number of police
patrols is limited to p and a;; takes value one if, and only if, a patrol located
at i can cover a crime incident located at j. The model is called PPAC and
is a particular case of (COV) obtained by defining f; = 0Vi € I, h = p,
ik = —Ij Vk,bj =0VjeJ,ande; =1Viel.

Maximum Expected Covering Location Problem: Several covering location
models are based on probabilistic principles. One of the most important is
the Maximum Expected Covering Location Problem (MECLP) (Daskin 1983),
where each facility has a probability of 0 < g < 1 of being busy or failing,
independently of any circumstance of the system. Therefore, a demand point
covered by £ facilities has a probability 1 —g* of receiving service. In this model,
demands 7; associated to the demand points are also known, and the goal is to
locate at most p facilities in such a way that the total expected demand (the
sum of the demands of the points times their probability of being serviced) is
maximized. Apart from PPAC, this is the first model considered here where
all the w-variables really make sense, since it is necessary to know how many
facilities are covering each demand point in a given feasible solution. When
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variable wj takes value one, this can be then be re-interpreted as demand point j
is covered at least k times. Thus, in order to obtain the right total in the objective
function (5.1), we define gx = —1;(1 — q)¢*"! Vj € J, Yk € K. This way,
we have that Zﬁ: 8k = —t;(1 — q%) which is the correct contribution of j
to objective function when j is covered by £ facilities and wy < w;x41 Vk.
But this last inequality is satisfied implicitly because ¢* > ¢**! means that
coefficients {gy}r are sorted in increasing order for every demand point j.
Finally, we define f; = 0Vi € [ andb; = 0V e J. Itis also natural in this
problem to assume that a site can host more than one facility because it could
lead to better solutions which is why we define e; = p Vi € I.
Some of the strong assumptions of this model (e.g., servers are independent,
servers have the same failure probabilities) have been relaxed several times in
the literature. See, for example, Batta et al. (1989) and Galvao et al. (2005).
Probabilistic Location Set Covering Problem: In order to examine the relation-
ships between the number of facilities being located and their reliability, ReVelle
and Hogan (1989a) proposed a Probabilistic Location Set Covering Problem
(PLSCP) whose main (and almost unique) difference with the SCP is that
values b; can be greater than one and they are obtained in such a way that the
reliability of coverage of each point j € J is guaranteed to be at least equal to a
threshold value «. Particularly, b; is calculated as the minimum integer number

such that
F.\%
(5 e
bj

where F; is an average busy fraction associated with point j. Optionally, in this
model e; can take values greater than one since this can lead to better solutions.

Maximum Availability Location Problem:  Suppose now that a profit u; associ-
ated with each demand point j € J is obtained only if at least £; facilities
cover it. The total number of facilities is limited, a site can host more than
one facility and there is no facility opening cost. The Maximum Availability
Location Problem (MALP), first described in ReVelle and Hogan (1989b), is
a particular case of (COV) obtained by defining f; =0Vi e [,e; = p Vi e I,
bj=0VjeJ,andgy =0V € J,Vk #{;, whereas gj,, = —u; Vj € J.
Since now the g-values are not sorted in increasing order, constraints wj, >
wik+1 Yj € J, Yk < h, must be included.

Covering Problem: The so-called Covering Problem (CP) in Kolen and Tamir
(1990) is that of minimizing the costs of opening some facilities plus the penalty
costs associated to uncovered demand points. It is obtained from (COV) by
defining p =m,e; =1Viel,b; =0VjeJ,gg=0VjeJ,Vk>2and
gj1 = —u; Yj € J where u; is the penalty for not covering demand point ;.
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A constant — ) jes &j1 must be added to the objective to get the right optimal
value. This way, when variable w;; takes value one, j is covered and the penalty
cost —g; is removed from the objective function.

Minimum Cost Maximal Covering Problem (MCMCP): This is the name for the
model introduced in Broin and Lowe (1986) whose only difference with regard
to CP is that the total number of facilities is limited. They gave a dynamic
programming algorithm for solving MCMCP in O(p*n min{m?, n?}) time when
the matrix A = (ay)) is totally balanced.

p-Median Problem:  Studied in detail in Chap. 2, the p-Median Problem (pMP)

consists in, given a set of n demand points, choosing p of them to locate facilities
and allocating each demand point to one of these facilities (which receive the
name of medians) in such a way that the total cost be minimum, where the cost of
allocating j to i is the distance d;; between the two points (assuming d;; = 0 Vi
and dj; > 0 in all other cases).
Instead of using the classical formulation for pMP, an artificial set J can be
designed in order to get it as a particular case of (COV): for each demand point j,
avector D; = (Dyj,..., Dg, ;) which is obtained by sorting in increasing order
the values in {dy;, ..., d,;} (removing multiplicities):

Then define J = {({,j) : j e {l,....,n}, L € {2,...,G;}} and a; ¢ j) =
1 if and only if dj < Dy;. Besides, we set f; = OVi € I,e; = 1Vi €
I,bjey =0V, j) € J,and h = p. Coefficients g ;) are defined with
value Dy_1; — D¢j and g j)xr =0 Vk > 2.

With this approach, constraints (5.3) force variables w; ) to take value zero
if there is no open facility at a distance less than Dy; from demand point j
and the allocation cost of j is increased from D, ; to Dy, as desired. A
constant Z’;:l D¢, ; must be added to the objective function to get the right
optimal value. This formulation has been very successfully used in Garcia et al.
(2011), where a column-and-row generation algorithm is developed to solve very
large instances.

Uncapacitated Facility Location Problem: The problem considered in Chap.3
(UFLP) and pMP differ in the number of centers which in UFLP is not fixed
beforehand, but there is a fixed cost f; for opening a facility at site i. Therefore,
a straightforward modification of these parameters will allow to obtain UFLP
as a particular case of (COV). This particular formulation was first proposed
in Cornuéjols et al. (1980) and later in Kolen and Tamir (1990).

Table 5.1 summarizes the information about covering models in the literature
which have been shown in this chapter to be particular cases of (COV).
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5.3 Theoretical Results

The Set Covering Problem is an NP-hard model (Garey and Johnson 1979). As
a consequence, much effort has been put into understanding better the structure
of this model in order to develop solving algorithms (which are reviewed later
in this chapter). This knowledge can be divided mainly into three categories:
preprocessing, relation with other problems, and polyhedral analysis.

When solving SCP, all the setup costs f; can be assumed to be positive because
if f; < 0 for a certain facility i, then we can fix y; = 1, remove this variable from
the model and delete any inequality (5.6) that includes y;. As explained in some
early papers (Roth 1969; Lemke et al. 1971; Toregas and Revelle 1972, 1973), it
is trivial that if a demand point j can be covered only by a certain facility i; (that
is, {i € I : a; = 1} = {i1}), then we can fix y;, = 1. We have also some
dominance rules: constraint (5.6) for a demand point j; can be removed if there is
another demand point j, such that{i € I : ay, =1} C{i € I : a;, = 1}, thatis,
if all the facilities covering demand point j, can cover also j;. Similarly, a facility 7,
which covers a set of demand points which can be all covered by a cheaper facility i,
will never be used: if f;, > fi,and{j € J : a;; = 1} C{jeJ : a,; =1},
then we can fix y;, = 0. Sometimes, it is possible to use several facilities to cover
all the demand points covered by another facility (Lorena and Lopes 1994): if we
assume that the y-columns are sorted in increasing order in cost (with those columns
with equal cost sorted in decreasing order in the number of rows that they cover),
and we define ; = min{i € I : a; =1} Vj and H; = Uje/{f; : a; = 1} Vi,
then we can fix y; = 0if Y ey fi < fi- Applying these tests cyclically (i.e., not
just once) can lead to substantial reductions in the size of the formulation.

The SCP formulation can be further improved by studying the polyhedral
structure of its polytope. Balas (1980) uses disjunctions based on conditional bounds
to obtain strong cuts in the form of cover constraints. Particularly, the inequalities
introduced in Bellmore and Ratliff (1971) are generalized. Given an inequality of the
form Zjej a;y; > B,witha; € {0,1} Vj and B a positive integer, some necessary
and sufficient conditions using the bipartite incidence graph of the matrix defining
the SCP polytope are given in Cornuéjols and Sassano (1989) for this inequality to
be a facet. Sassano (1989) studies the properties of this polytope and presents two
sequential lifting procedures to obtain valid inequalities and facets. Particularly, it is
shown that the SCP polytope is full dimensional if and only if every demand point
can be covered by at least two different facilities. It is also characterized when an
inequality of the form ) ;. 5, Yi = Lwith Jo C J is a facet. When the polytope is
full-dimensional, then the trivial inequality y; < 1 is shown to be always a facet,
and the trivial inequality y; > 0 is a facet if and only if every demand point can be
covered by at least two different facilities different from j. Some deeper results on
facets and lifting can be found in Nobili and Sassano (1989). Balas and Ng (1989a)
characterize facet-defining inequalities for the SCP polytope with right-hand side 2
and coefficients 0, 1 or 2. In Balas and Ng (1989Db) it is shown that each of these
facets can be obtained using a lifting procedure from an inequality with only three
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non-zero coefficients that is valid in a lower dimensional polytope. Sdnchez-Garcia
et al. (1998) do a similar study for the case of facets with coefficients in {0, 1, 2, 3}
and right-hand side equal to 3.

The connection of SCP to other classical problems has also been studied in the
literature. Balas and Padberg (1976) show how to turn a set partitioning problem
into a set covering. In Krarup and Pruzan (1983) it is discussed how SCP can be
transformed into a set packing, set partitioning or simple plant location problem.
Reciprocal results are given to turn a set partitioning or simple plant location
problem into a set covering problem.

Less theoretical results can be found for the Maximal Covering Location
Problem, which is known to be NP-hard (Megiddo et al. 1983). In the literature,
MCLP has been formulated using other classical models. For example, Church
and ReVelle (1976) show the equivalence between MCLP and a certain p-median
problem where the distances in this second problem are defined as

’ O, ifd,-jfs,

ij .
1, 1fd,-j>s,

with d; the distances from the original problem and s is the maximum distance that a
demand point can be from the facility that covers it. Another different reformulation
is given in Klastorin (1979) where the problem is formulated as a generalized
assignment problem by adding some artificial variables.

The Maximal Expected Coverage Location Problem and the Backup Coverage
Location Problem are shown in Church and Weaver (1986) to be special cases
of the vector assignment p-median problem. Techniques developed for this latter
model are used to solve instances of the first two problems. The Capacitated Set
Covering Problem and the Capacitated Maximal Covering Location Problem are
formulated in Current and Storbeck (1988) as a capacitated plant location problem
and a capacitated p-median problem, respectively.

Several technical results on covering problems with special emphasis on trees
and matrices in standard greedy form can be found in Kolen and Tamir (1990).

5.4 Solution Methods

The first exact algorithms for the Set Covering Problem were almost purely
enumerative: Lemke et al. (1971) develop a branch-and-bound method that exploits
the structure of the SCP formulation and solutions. Later, Etcheberry (1977) uses a
branch-and-bound strategy where the branching is done on constraints and not on
variables. The lower bounds of the tree are calculated using Lagrangian relaxation
instead of the simplex method.

Using cutting planes from conditional bounds, the algorithm proposed in Balas
(1980) is exploited in Balas and Ho (1980). This method uses two sets of heuristics:
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one to find good upper bounds (primal heuristics) and another to obtain lower
bounds and cutting planes (dual heuristics). Subgradient optimization is applied to
find better lower bounds. This last technique is also used in Beasley (1987) where
a branch-and-bound method is proposed whose main elements are a dual ascent
procedure and subgradient optimization. This algorithm is improved in Beasley and
Jgrnsten (1992) by incorporating the heuristic published in Beasley (1990) along
with some other enhancements.

Of special interest is Neebe (1988) which solves the problem of calculating for
every possible maximum distance the minimum number of facilities that cover
all the nodes (instead of solving the set covering problem for a single maximum
distance). This approach uses a chain of linear programming relaxations and, after
every linear model, some tests are used to obtain an integer solution. Although
these tests do not guarantee that an optimal integer solution will be found, the
author claims to solve to optimality almost all the instances he considers (up to
100 nodes). Each of the auxiliary problems is solved with a modification of the
procedure suggested in Lemke et al. (1971).

Fisher and Kedia (1990) propose an algorithm for a model which includes
both set covering and set partitioning constraints. It is an exact branch-and-bound
algorithm that uses greedy and 3-opt heuristics applied to the dual problem.
Exploiting the use of bounds, Mannino and Sassano (1995) propose a lower
bounding procedure and a branch-and-bound scheme to solve set covering problems
that appear in Steiner triple systems (a certain matrix structure). Balas and Carrera
(1996) develop a procedure applied to a Lagrangian dual problem at each node that
combines subgradient optimization with primal and dual heuristics which tighten
the upper and lower bounds. These strengthened bounds allow to fix some variables.
In general, Lagrangian methods are the most extended and effective methods in
the literature. More recently, Avella et al. (2009) propose a cutting plane algorithm
where the separation algorithm is solved in an exact way on a subproblem defined
by a subset of the original constraints and variables of the set covering problem
formulation.

On the contrary, not many exact algorithms have been developed for the Maximal
Covering Location Problem. Downs and Camm (1996) obtain a primal solution
using the greedy heuristic of Church and ReVelle (1974). They use complementary
slackness conditions for the maximal covering problem formulation to obtain a
dual feasible solution. This solution is the starting vector of multipliers for the
Lagrangian dual problem of MCLP which is solved with subgradient optimization.
If an integer solution is not obtained, branch-and-bound is used.

5.5 Approximate Solution Methods

As it happens with any hard optimization problem, there are more heuristic
algorithms than exact methods in the literature. Roth (1969), the first paper to
formulate the Set Covering Problem, already proposes a probabilistic heuristic. A
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random initial solution is selected and then refined using a set of predefined rules
based on the concept of A-optimal cover. This procedure is repeated many times with
the hope of finding a good solution. Chvatal (1979) proposes a basic greedy heuristic
that selects iteratively the facility with the largest number of nodes covered per unit
cost. A bound is established for the worst value of the solution provided by the
heuristic. Feo and Resende (1989) develop a probabilistic heuristic for set covering
problems arising in Steiner triple systems. It is a non-deterministic variation of a
previous deterministic heuristic where randomization is introduced to escape from
local minima.

Many more different metaheuristic techniques have been used to approach SCP:
surrogate relaxation (Lorena and Lopes 1994), simulated annealing (Jacobs and
Brusco 1995; Brusco et al. 1999), genetic algorithms (Al-Sultan et al. 1996; Beasley
and Chu 1996). However, as with the exact case, subgradient methods are the most
effective. Ceria et al. (1998) use a primal-dual subgradient Lagrangian algorithm to
provide information for a later greedy heuristic to decide which variables to fix to
one. Caprara et al. (1999) use variable pricing to update the subset of columns that
define a core problem in their subgradient optimization heuristic. This is a difference
with respect to Ceria et al. (1998) where the core set is not modified. They also
improve the way in which the step-size and ascent direction definitions are usually
done in subgradient optimization in order to speed up convergence.

For the Maximal Covering Location Problem and similar problems, we can find
several heuristics. Already in Church and ReVelle (1974) where the problem is
introduced, a greedy heuristic is provided. Later, Daskin (1983) describes a heuristic
for the Maximum Expected Covering Location Problem which finds good solutions
for all values of ¢ (the probability of a facility not working). It starts with all the
facilities located at the node that covers the maximum demand and then considers
single node substitutions. For each of the new solutions, it is analyzed if there is
an interval where the current best solution is improved. By iterating this procedure,
interval [0,1] is partitioned and a heuristic solution is given for each of the resulting
subintervals. In MCLP, Galvao and ReVelle (1996) develop a Lagrangian heuristic
that uses a vertex interchange heuristic to improve upper bounds. In Galvao et al.
(2000), heuristics based on Lagrangian and surrogate relaxations are compared.
Here, the relaxed surrogate problem is a binary knapsack problem whose linear
relaxation is solved in the heuristic. The authors show that, when the initial set of
multipliers is obtained using a dual descent procedure, the performance of the two
methods is similar.

Eaton et al. (1986) deal with a hierarchical covering problem where sites with
multiple cover are maximized while the number of vehicles is minimized in an
application to ambulance deployment in Santo Domingo. Although they proposed
two formulations, no solver was available at that moment in the Ministry of Health
of Dominican Republic and they then developed a heuristic that minimizes the
number of facilities, maximizes multiple coverage and minimizes response time.
In their algorithm, they create a cover matrix, then order coverage zones in a list and
remove dominated sites iteratively.
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A further reason for using heuristics is that aggregation is used to reduce the
size of the problem so that larger size instances can be tackled. Daskin et al.
(1989) study the effect of node aggregation for MCLP. Three aggregation schemes
are tested based on relative demands on the disaggregate nodes, distances between
the disaggregate nodes and a mix of both. The first and the third methods are shown
to perform much better than the second. In Current and Schilling (1990) three rules
are proposed to reduce the aggregation error in SCP and MCLP.

5.6 Lagrangian Relaxation

Among the many different methods that have been developed in the literature for
covering models, we highlight here Lagrangian Relaxation (LR) for several reasons.
First, LR can be used as a heuristic method but can additionally provide good lower
bounds which can be embedded into a branch-and-bound framework to develop an
exact method. Second, as shown in Sects.5.4 and 5.5, LR has been widely used
in covering problems. Third, it can be designed for the general model (COV) and
then used on any particular case without loss of accuracy. And, finally, LR usually
produces very good results in a reasonable amount of computational time. Readers
not familiarized with this technique are referred to Guignard (2003).

In what follows, we apply LR to model (COV) by making the natural choice of
relaxing constraints (5.3). Since the non-relaxed linear constraints (5.2) and y; <
e; Vi € I give rise to a totally unimodular coefficients matrix, lower bounds
produced by means of LR will not be greater than lower bounds produced by
the usual linear relaxation. A Lagrangian multiplier v; € R associated to each
constraint in (5.3), unrestricted in sign, will be used. So, a family of Lagrangian
relaxed subproblems is obtained with objective functions

Zfi)h’ + ZZgjijk-f- Zvj (Zaijyi —bj— Zij) =

iel jeJ kek jeJ iel kek

Do A+ D viag | yi+ D0 (g —vi)wie— )by
iel jeJ jeJ kek jeJ
By solving
(COVLR(v)) min ) ;¢; (ﬁ +2es Ujaij) Vit 2 jes Dkek (gix —v;) wir

s.t. (5.2),(5.4), (5.5),

and then adding constant — ) jesVj b;, we will get a lower bound on the objective
value of (COV) when the set of multipliers is v = (vy, ..., v,).
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Let now (y*(v),w*(v)) be an optimal solution to (COVLR(v)). Prob-
lem (COVLR(v)) splits into

(COVLRy(v)) min ) ;, (f, +2ier vjaij) Vi
s.t. 5.2),(5.4),
and
(COVLRw(v)) min 3 c; Yrek (8 = vj) Wik
s.t. (5.5).
(COVLRw(v)) can be easily solved by inspection:
wi(v) =1 & gx <v; VjelJ VkeKk.
If, as in most of the models that we considered, gj-values are sorted in increasing

order for each j € J, and assuming that v; € (g;¢;,&j.,+1], then the optimal
solution to (COVLRw(v)) will look like as follows:

whv) =...= w’;lj(v) =1, Wj,zj+1(v) =...=wy(v) =0.

The corresponding optimal value will be v(COVLRw(v)) = Y je J(Zif;l gk —
Ej Uj).

Regarding (COVLRy(v)), we define f := fi + 3¢, vja; Vi € I and we sort
these values in increasing order:

Sy = =S S0 Sy = = fay
An optimal solution to (COVLRy(v)) is recursively obtained by taking

. i—1
Vi () = o i—1 % %f Z%jl y(})(v) s

P =2 =1 V@) if Xy vy (0) > p— e,

i =/ 1,...t, and y(”;.)(v) =0,i=1t+1,...,n Assuming that 22=1e(4) <p<
Ut e, with i’ < t, we then have that

i’—1

v(COVLRy(v)) = Z eiy | foy + Z Vjag);

i=1 jes
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i’
+ =D e | | fir + D viaa,

i=1 jeJ

A suitable set of Lagrangian multipliers v must be chosen so that v(COVLR(v)) pro-
vides a good lower bound on the optimal value of (COV). This can be achieved by
means of ascent procedures which iteratively modify v, like subgradient algorithms
or tailored dual ascent algorithms. Good feasible solutions (and the corresponding
upper bounds) can be generated from good sets of multipliers as follows. Consider
any optimal solution to the relaxed problem given by (y*(v), w*(v)). We relax the
notation by calling simply y* the optimal values of the y-variables. Once these
have been determined, the best values which the w-variables can take are obtained
by solving for each j € J the subproblem

(COV); Minimize Y guwj

kek
subject to Z Wik = Zaijyi* —bj,
kek iel

wik €{0,1} Vk e K.

If Y .c;aiy’ —b; < 0, the subproblem is infeasible. Otherwise, assuming that
Y iesaiy’ —b; < h (note that in general / is taken large enough) and sorting
g-values in increasing order, the optimal solution to (COV); can be obtained just by
making the first ), ., a;y;* — b; w-variables equal to one, that is,

Yier “ijyi*—b/'
vieov); = Y g
k=1

5.7 Continuous Covering Location Problems

When speaking about continuous covering, it means that the set of candidates where
facilities can be located is not discrete but a whole (continuous) space. Because of
the nature of these problems, most of them are in the plane or, if height/depth is
relevant, in the 3D-space. Besides, most of the applications locate one single facility
because these models are already difficult enough.

Analogous to the discrete Set Covering Problem, the continuous Minimal
Covering Circle Problem (MCCP) consists in finding the smallest circle in the plane
that contains all the points of a given set which need to be covered. The center of
this circle is the optimal site. This is a very old problem which according to Plastria
(2002) was studied in the nineteenth century, but may have been introduced even
earlier. One of the main properties of the solution to MCCP is that there are always
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at least two demand points on the border of the minimal circle. Although several
algorithms to solve this problem have been proposed over time, the best known is the
method published in Elzinga and Hearn (1972) for the case of Euclidean distances.

When the radius of the circle is fixed, it may be not large enough to cover all
the demand points and, as in the discrete Maximal Covering Location Problem,
the objective is now to cover as much demand as possible. These maximal covering
problems have usually multiple solutions, maybe even a region of optimal solutions,
and this region may not even be convex (see Plastria 2002). However, it can be
proved that there is an optimal solution which is either a demand point or an
intersection point of two circles centered at demand points (see Drezner 1981
and Chazelle and Lee 1986 for details on algorithms). There is a similar property
when the facilities can be located on any part of a network (Church and Meadows
1979). Church (1984) shows an analogous property for planar maximal covering
problems with Euclidean or rectilinear distances.

More recently, Drezner et al. (2004) studied a gradual covering problem with
Euclidean distances where a finite set of points needs to be covered with one single
facility. If the facility can be located anywhere on the plane and the total cost of non-
covered points is minimized, then the solution is in the convex hull of the demand
points.

5.8 Conclusions

In this chapter we have provided an overview on covering problems with a special
emphasis on discrete models. Instead of providing a list of the many covering
models that can be found in the literature, we have focused on detailing those that
are considered to be more relevant because of the attention received in the literature
in the last decades. Moreover, we show that many of the models discussed in this
review can be seen as particular cases of a general covering model that we introduce
here. As far as we know, this is the first attempt to develop such a unified approach
for the study of set covering problems.

Having set covering problems received so much attention in the literature, it
seems that the number of theoretical results is too small. These results reduce
basically to some preprocessing rules and to the study of some facets. And none
of them has been used to develop an algorithm that can be considered to be a major
breakthrough in the area. Therefore, future research should try to make better use
of these results or obtain new theoretical properties for these problems. Particularly,
developing exact methods for covering models that are not the SCP seems highly
desirable.
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Chapter 6
Anti-covering Problems

Emilio Carrizosa and Boglirka G.-Toth

Abstract In covering location models, one seeks the location of facilities opti-
mizing the weight of individuals covered, i.e., those at the distance from the
facilities below a threshold value. Attractive facilities are wished to be close to the
individuals, and thus the covering is to be maximized, while for repulsive facilities
the covering is to be minimized. On top of such individual-facility interactions,
facility-facility interactions are relevant, since they may repel each other. This
chapter is focused on models for locating facilities using covering criteria, taking
into account that facilities are repulsive from each other. Contrary to the usual
approach, in which individuals are assumed to be concentrated at a finite set of
points, we assume the individuals to be continuously distributed in a planar region.
The problem is formulated as a global optimization problem, and a branch and
bound algorithm is proposed.

Keywords Big square small square ¢ Covering problems ¢ Global optimization *
Regional demand ¢ Repulsive facilities

6.1 Introduction

Locational Analysis addresses decision problems involving the location of facilities
which interact with a set of individuals, and, eventually interact among them. For
attractive facilities, such as schools, libraries, emergency services or supermarkets,
individuals wish the facilities to be as close as possible to them. Such pu/l models
(facilities are pulled towards demand) do not properly model repulsive facility
location problems (Alonso et al. 1998; Carrizosa and Plastria 1998; Erkut and
Neuman 1989; Fliege 2001; Plastria and Carrizosa 1999), like, for instance, the
location of a polluting plant, wished to be as far as possible from the individuals.
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For such undesirable facilities, a push model, pushing facilities away from the sites
affected by facilities nearness, is more suitable: the location for the facilities is
then sought maximizing a certain non-increasing function of the distances from the
individuals to the facilities. For both desirable and undesirable facilities, interactions
may be measured as a function of the individual-facility distance (or time), or, as
studied here, via coverage; see e.g. Kolen and Tamir (1990), Li et al. (2011), Murray
et al. (2009), Schilling et al. (1993) for extensive reviews on covering models and
solution approaches. It is important to stress here that, independently of the nature of
the facility, either attractive or repulsive, the very same models for covering function
apply (Farhan and Murray 20006), the difference being algorithmic: such covering is
to be maximized for desirable facilities and minimized for undesirable facilities.

On top of individual-facility interactions, facility-facility interactions are also
likely to be relevant. Such interactions may be critical when facilities are obnoxious,
and risk or damage to population scales nonlinearly (e.g., with hazardous materials
deposits or dangerous plants which may suffer chain reactions) and thus negative
impacts are to be dispersed. Facility-facility interactions are also important in
models for locating facilities which, although they are perceived as attractive by
the users, they are perceived as repelling by other facilities competing for the very
same market. In these models, locating the facilities far away from each other
avoids cannibalization and optimizes competitive market advantage (Christaller
1966; Curtin and Church 2006; Lei and Church 2013).

Although the models described are general, the algorithmic approach presented
here is restricted to the planar case (Drezner and Wesolowsky 1994; Plastria 2002;
Plastria and Carrizosa 1999): facilities are identified with points in the plane, and
interact with the remaining facilities and with individuals, also identified with points
in the plane. Interactions are measured via distances in the plane. See Plastria (1992)
for an excellent review of planar distances and planar location models and e.g.
Berman et al. (1996), Berman and Huang (2008), Berman and Wang (2011) for
covering models for which interactions are not measured via planar distances, but
network distances instead, typically shortest-path distances.

Contrary to most papers in the literature, affected individuals are not assumed
here to be concentrated at a finite number of points, and, instead, an arbitrary
distribution (in particular, a continuous distribution) on their location is given. This
way we can directly address models in which affected individuals are densely spread
on a region, but we also address models in which uncertainties exist about the exact
location of the individuals, due to their mobility (Carrizosa et al. 1998b).

Regional models are not so common in the location literature, since, even when
individuals are assumed to be continuously distributed, a discretization process is
usually done, and such continuous distribution is replaced by a discrete one, by e.g.
replacing all points in each district by its centroid, or other central point, see e.g.
Francis and Lowe (2011), Francis et al. (2008, 2000, 2002), Murray and O’Kelly
(2002), Plastria (2001), Tong and Church (2012). Nevertheless, discretization is well
known not to perform well in applications, this issue being especially relevant in
covering models, since significant discrepancies may exist between what is modeled
as covered and what is actually covered, see e.g. Current and Schilling (1990),
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Daskin et al. (1989), Kim and Murray (2008), Murray (2005), Murray and Wei
(2013), Tong (2012), Tong and Murray (2009). For this reason, some papers are
found in which the regional aspect is directly handled. See for instance Blanquero
and Carrizosa (2013), Carrizosa et al. (1995, 1998c), Fekete et al. (2005), Yao and
Murray (2014) for single-facility Weber problems with regional demand, Murat
et al. (2010) for a heuristic method for the extension to p facilities, and Tong (2012),
Tong and Murray (2009) for discrete covering problems, in which the individuals
are identified with objects (polygons) in the plane, which can be considered as fully
or partially covered.

The remainder of the chapter is structured as follows. In Sect. 6.2, a rather general
p-facility covering model for continuously distributed demand is described; how
to address the optimization problem is presented in Sect. 6.3, and illustrated in
Sect. 6.4. Conclusions and future lines of research are outlined in Sect. 6.5.

6.2 Regional Covering Model

Location models are specific in the way the interactions are modeled. Two types of
interactions take place, namely, individual-facility interactions and facility-facility
interactions. Depending on the specific problem, just one or the two types of
interactions may be relevant; see e.g. Erkut and Neuman (1989).

Since these two types of interactions have different nature, they are discussed
separately in what follows.

6.2.1 Individual-Facility Interactions

For a given individual location a and any facility location x, let c¢(a,x) € [0, 1]
denote how much a is covered (affected) by the facility at x. In its general form,
¢(-,-) may be any function ¢ : RT — [0, 1], which is non-increasing in the
(Euclidean) distance || x — a|| separating @ and x,

c(a. x) = ¢(|lx —al). (6.1)

so that, the lower the distance, the higher the coverage. This assumption, yet
sensible, may not be sound for specific problems of locating undesirable facilities;
for instance, Karkazis and Papadimitriou (1992) addresses the problem of locating
a polluting plant whose pollutant is discharged by means of high stacks, and thus
maximal interaction (damage) takes place at a non-negligible distance of the facility.

We remark that we are using the Euclidean distance, but this is not the only
choice of distance function || - || found in the literature in covering models: see e.g.
Ferndndez et al. (2000) for a proposal of (weighted) £, norms and Plastria (2002)
for a thorough discussion on planar distances.
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The basic form of ¢ is an all-or-nothing function, already suggested in Church
and ReVelle (1974), see also e.g. Drezner and Wesolowsky (1994),

1,if |x —al < R

6.2
0, otherwise, 6.2)

cla.x) = ¢(|lx —al) =

where the threshold value R is called the range (Christaller 1966) or coverage
standard. For an attractive facility, R represents the highest distance a user is willing
to overcome to utilize a facility, whereas for undesirable facilities, R represents the
distance of the boundary of the zone within which the facility would have a negative
impact (Farhan and Murray 2006). Extensions of (6.2) abound in the literature,
leading to so-called gradual covering models (Berman et al. 2009c, 2003; Drezner
et al. 2004). For instance the all-or-nothing function above is replaced by a piecewise
constant function modeling different levels of coverage in Berman and Krass (2002),
by a piecewise linear function in Berman et al. (2003), Berman and Wang (2011),
Drezner et al. (2004), or by more general nonlinear functions, such as the logistic
model

1
I+ exp(aa + Ballx —all)’

c(a,x) = ¢(|x —al) = (6.3)

in Fernandez et al. (2000), see also Berman et al. (2010, 2003), Karasakal and
Karasakal (2004). Observe that in some of the papers cited above the coverage
functions ¢ are introduced for attractive facilities, and thus maximization, instead
of minimization, is pursued. However, the models for ¢ are the very same.
Expressions above for ¢, as (6.2), are adequate just for the single-facility case.
When several facilities are to be located, the covering model (6.1) can be extended

in several ways, by first defining, for each facility i = 1,2,..., p, the function
@; converting distances into coverage. In the simplest and most popular model in
the literature, for a p-tuple of facility locations x = (xi,...,x,), covering ¢ of an

individual location a by x is given by

c(a,x) = 112'a<xp ci(a, x;). (6.4)

In the particular form of individual covering ¢; given by (6.2) using ¢; instead of ¢
and R; instead of R, one considers the individual location a to be covered by the
p-tuple of facility locations x = (x,...,x)) if it is covered by at least one of the
p facilities, i.e., if at least one facility 7 is at a distance smaller than its threshold
value R;.

Multifacility covering functions other than (6.4) can be found in the literature,
see Berman et al. (2010) for an updated review. One may consider fuzzy operators
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to aggregate the covering functions ¢;, yielding, for example, the proposal of Hwang
et al. (2004),

clax)=1- ] (1 -ci(a.x;), (6.5)

I<i<p

which, if each ¢; has the form (6.2) is identical to (6.4). Alternatively, realizing that
the max operator used in (6.4) is nothing but taking one of the ordered values of
ci(a, x;), further extensions are natural:

P
c(a,x) = " milzg)EAZ/\,-c,-(a,xi) (6.6)

i=1

for a given A. Taking as A the set

P
A={Q. A Y =12 2=0 w} ,

i=1

one recovers (6.4); taking

V4
1
A=, hp) in=1,;zxi30 Vi},

i=1

for some integer r € {1,2,..., p}, one obtains as coverage the weighted sum of
the r highest covers. These covering models belong to the class of so-called ordered
covering models (Berman et al. 2009¢), in which a weighted sum of the ordered
values of the covers are considered.

Another class of models is given by the so-called cooperative cover model,
discussed in Berman et al. (2009a):

Lif Y Aici(a,xi) = ©

6.7
0, otherwise ©.7)

c(a,x) =

for some positive fixed scalars A; and threshold value . Assuming that each facility
covering function ¢; follows the all-or-nothing model (6.2), model (6.7) means that
we may consider an individual to be covered if the weighted sum of 1-facility covers
yields a value above a threshold limit z.

Summing up, the different proposals in the literature can be considered as
particular cases of a general model of the form

cla,x) =y (cl(a,xl), c(a, xz), ... ,cp(a,xp)) , (6.8)
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where ¥ should take values in [0, 1] and should be componentwise non-decreasing,
so that the higher each individual-facility cover, the higher the cover of individual
location a by the p facilities.

So far we have modeled the interaction between an affected individual at a and
the facilities at X = (xy,...,x,). Now we address the problem of defining a global
individuals-facilities covering measure C(x).

If the main concern is how much the highest coverage is, a worst-case perfor-
mance measure is suitable:

C(x) = supc(a,x). (6.9)

a€A

Under (6.9) as criterion, searching locations x for the facilities such that C(x) < «
means that no individual at all suffers a coverage of more than «.

The (safe) worst-case approach (6.9) may be unfeasible for densely populated
regions, and, instead of searching locations not affecting individuals, the average
coverage may be a suitable choice. Formally, assume that affected individuals are
distributed along the plane, following a distribution given by a probability measure
wonaset A C R?, and the individuals-facilities coverages are aggregated into one
single measure, namely, the expected coverage, given by

C(x)z/Ac(a,x)d,u(a). (6.10)

Assuming, as in (6.10), an arbitrary probability measure p for the distribution
of affected individual locations gives us full freedom to accommodate different
important models. Obviously, for a finite set A of affected individual locations,

A = {ai,...,a,}, denoting w, = u({a}), we recover the basic covering model,
Cx) =) pac(a.x). (6.11)
a€A

in which the covering is given by the weighted sum of the covers of the different
points a. However, we can consider absolutely continuous distributions, in which p
has associated a probability density function f in the plane, and now (6.10) becomes

Cx) = /Ac(a,x)f(a)da. (6.12)

Several types of density functions f are worthy to be considered. One can take,
for instance, f as the uniform density on a region A C R? (a polygon, a disc), and
thus f is given as

1 .
fla) = { ary ta e A (6.13)

0, otherwise,
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where ar(A) denotes the area of the region A; assuming a uniform density of
individuals along the full region A under study seems to be rather unrealistic;
instead, one may better split the region A into smaller and more homogeneous
subregions A; (e.g. polygons), give a weight w; to each A4, and assume a uniform
distribution f; for each 4; :

fl@) =)o, fia), (6.14)
j=1

where each f; is uniform on A, and thus its expression is given in (6.13).

Let us particularize (6.14) for the all-or-nothing case in which the covering
function is given by (6.4), and each ¢; is given by (6.2), i.e., c(a, x) takes the value
1 if at least one facility i is at a distance from a below the threshold R;, and takes
the value 0 otherwise. Then, for any x, C(x) takes the form

Cx) = /c(a,x)f(a)da

r

i )
= Wj c(a,x)da (6.15)
; J ar(A;) 4;
d 1
where, foreachi = 1, ..., p, B;(x;) gives the set of points covered by facility i, i.e.,

the disc centered at x; and radius R;. Hence, the problem is reduced to calculating
areas of intersections of discs B;(x;) with the subregions A;. Such calculation,
although cumbersome in general, are supported in GIS, see Kim and Murray (2008),
Murray et al. (2009), Tong and Murray (2009).

Needless to say, the density f does not need to be piecewise constant, and one
can take, for instance, a mixture of bivariate gaussians, f(a) = Z;=1 w; fi(a),
where each f; is a bivariate gaussian density centered at some u; and with
covariance matrix S,

1 1 To—1
—5(a—u;) "' ST (a—u;)
(a) = — e~ 3T 57 au), (6.16)
f]( ) ZJT |S1|

or, more generally, a radial basis function (RBF) density,
fita) =g;(la—u;l) (6.17)

for some decreasing function g, so that the density is the highest at some knot point
u; and decreasing in all directions.
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Fig. 6.1 Pdf of a mixture of 50 bivariate gaussians

A model like (6.16), or in general (6.17), may be rather promising when the only
information provided for the region is just a set uy, ..., u, of points, aggregating
the actual coordinates of affected individuals around, and then a kernel density
estimation process (Bowman and Foster 1993; Wand and Jones 1993, 1995) is
done. For instance, Fig. 6.1 represents the probability density function (pdf) of the
form (6.16) with 50 knots.

6.2.2 Facility-Facility Interactions

The facility-facility interactions may be defined similarly. As in (6.1), the effect
caused by facility at x; on facility at x; is measured by the scalar cif (xi,x5),

cef (i, x;) = of (Ilxi = x;) (6.18)
for some non-increasing function <pif . All pairwise facility-facility effects are

aggregated into one single facility-facility interactions measure C ¥ (x), which,
similarly to (6.8), is assumed to take the form

CF(X) =ur ((C,»f(xi,x/'))i;ej)
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for some componentwise non-decreasing ¥ The simplest case is given by

wr ((Cif(xi’xj))i;éj) = fgzlj?(c;(xi,xj), (6.19)

and thus C ¥ (x) is calculated as the highest facility-facility interaction, i.e., the one
of the closest pairs of facilities. Hence, under (6.19),

CT(x) < 8 if and only if
¢f (xi,x;) <8 Vi, j. i #j. ifandonlyif

i =1l = (@)~ @) Vioj. i # J.

Assuming all cif in (6.18) are modeled by means of the same (pijr function, (pijr =
of, we have

Cf(x)<§ ifandonlyif min|x; —x;| >, (6.20)
LJ
i#]

with y = ((pF )_1 (8). See Lei and Church (2013) for a discussion and extension
of (6.19) to so-called partial-sum criteria.

6.2.3 The Anti-covering Model

Depending on the specific problem under consideration, either one or the two
covering criteria C, CT are to be optimized. Pure repulsion among facilities
naturally leads to a dispersion criterion (Erkut and Neuman 1991; Kuby 1987;
Lei and Church 2013). By (6.20), minimizing C* amounts to maximizing the
minimal distance among facilities. This criterion alone yields a simple geometrical
interpretation: a set of p non-overlapping circles (the location of the facilities) is
sought so that their (common) radius is maximized (Mladenovic et al. 2005).

When both C and C ¥ are relevant, one naturally faces a biobjective optimization
problem in which both C and C F are to be minimized,

min (Cx).CF ). (6.21)

where .7 C (R?)? is the feasible region, which is assumed to be a compact subset,
and thus embedded in a box. Sensible examples for . may be . = S”, where S
is a polygon in the plane, or .7 = {£;} x {£&,} X ... x {&} x SP7%, where S is a
polygon in the plane, and &, ..., & are fixed points in the plane, corresponding to
facilities already located.
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One can address the problem of finding (an approximation to) the set of Pareto-
optimal solutions to (6.21), as done for other problems in Blanquero and Carrizosa
(2002), Romero-Morales et al. (1997). Alternatively, one can consider one of the
criteria as constraint, and address instead the problem of minimizing the covering
C(x) keeping the facility-facility cover C ¥ (x) below a threshold limit § :

minimize C(x)
subjectto CF(x) < § (6.22)
xe ..

Assuming for C the model given by (6.18), problem (6.22) amounts to finding p
points xp, ..., x, so that they are at a distance at least (qu )_l (6) from each other
and the covering C is minimized. This is the approach proposed e.g. in Berman and
Huang (2008), in which undesirable facilities are located (on a network) so as no
facilities are allowed to be closer than a pre-specified distance.

6.3 Computational Approach

While nowadays computational tools allow one to address discrete p-facility
problems with a very large p, e.g. Avella and Boccia (2007), Avella et al. (2006),
nonconvex continuous location problems, as those addressed here, can only be
solved exactly for a very small number of facilities to be located. The most popular
and most effective technique is a geometric branch and bound, which can already be
found under the name of Big Square Small Square (BSSS) (Hansen et al. 1985), and
later modified by a number of authors (Blanquero and Carrizosa 2008; Drezner and
Suzuki 2004; Plastria 1992; Schobel and Scholz 2010), coining names such as BTST
(Big Triangle Small Triangle) or Big Cube Small Cube. See Drezner (2012) for a
recent review of such variants. In our case the search space is the set of p rectangles
for the p facilities, that gives a multi-dimensional interval, also called a box. The
main steps of the branch and bound are as usual: a list of boxes is handled, each box
being associated with a subproblem, namely, the covering location problem in which
facilities are to be located within such box; at each step one box is selected from
the list and divided into smaller boxes. Bounds on the optimum over the subboxes
are calculated, so that boxes which are found not to contain the global optimum are
removed, while the rest is saved for further processing. The branching and bounding
rules are iterated until the gap between the underestimation and underestimation of
the optimal value is smaller than the prescribed accuracy.

In our implementation, selection of the next box is done by the smallest lower
bound, and the division rule is defined by halving both sides of the largest rectangle
into four equal sized rectangles. An upper bound on the minimum is calculated
evaluating the objective function at the midpoint of the selected box. In what
follows, a bounding procedure, valid for arbitrary pdfs, is discussed.
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A branch and bound can only be used as soon as increasingly tight bounds
are built for C(x) on a box X = (Xy,...,X,). Each X; is a rectangle X; =
([ai, bi], [ci, d;]) where the i-th facility is allowed to be located. One has then on
a given box X

min C(x) = min/ c(a,x)du(a) > / min c¢(a,x)du(a).
x€X xeX J4 A X€X

For the general function c(a,x) = W(ci(a,x1),c2(a,x2),...,cp(a,x,)), as
in (6.8), with ¥ non-decreasing function of ¢; (a, x;) Vi, it can be derived further to

/Alglel)l(l c(a,x)ydu(a) = /AlI/ (xllnel}(ll ci(a, xy),... ,Xll}lel}(lp cp(a,xp)) du(a)

= [ (mip orha =i mip gptla =5, dnca),

where, as in (6.1), ¢; (a, x;) = @i (|la — x;||) for a non-increasing function ¢; of the
distance for all i. This leads to

i > | w - . —
g(rgilC(X)_/A (fpl(ggglla x1), %(;pllggplla xpll))du(a)

_ /A W(wl( max fla—xl).....op( max )||a—xp||)) du(a),

x1€ext(X1) Xp€ext(X),

where ext(X;) denotes the set of vertices of the box X;. For the particular case of an
all-or-nothing covering function as given in (6.2), the above integral simplifies to

du(a),
1(X)

where the set 1(X) = f=1 I; (X;) with [;(X;) = {a € Alci(a,x;) = 1Vx; €
ext(X;)}, i.e. I; (X;) is the set of points a such that, for facility i, all points in X;
cover a (the gray region in Fig. 6.2). For an easier description of the set /;(X;) one
can consider its inscribed circle, /*(X;) as shown in Fig. 6.2.

This leads to

P
Z / du(a).
S reonoag

i<j

P
min C(x 2/ du(a) > / du(a) —
min C(x) o 1u(a) ; ) ju(a)
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Fig. 6.2 Intersection of
covered areas from ext(X;)
giving the region which is
covered by all points in the
box. The integral is computed
over the inscribed circle of
this region, 1;* (X;) 1(X;)

Xi

In what follows, the so obtained bound will be denoted by LB(X),

14
> / du(a).
i,j=1 1,'*(Xi)ﬂ1;<(Xj)

i<j

P
LB(X) = Z/I.*(Xi)dﬂ(a) _

i=1

Notice, that the integral could be computed directly as | 4 J (@) mingex c(a,x)da,
but that is not practical for the all-or-nothing covering function. Numerical inte-
grators take many sample points around discontinuities, that are introduced with
c¢(a,x), therefore taking a very long time for a single integration.

6.4 Numerical Examples

The branch and bound method outlines above was implemented in Fortran 90
(Intel©Fortran Compiler XE 12.0), using the integration tools of the IMSL Fortran
Numerical Library. Executions were carried out on an Intel Core i7 computer with
8.00 Gb of RAM memory at 2.8 GHz, running Windows 7.

Two types of experiments were performed. First, a series of problems with
randomly generated demand functions were solved for p = 1 and p = 2. The
demand function was generated as a mixture of r bivariate gaussian distribution
functions (6.16) with centers and weights uniformly generated in [0, 10]?> and
[0.1,0.1 4+ 1/(10r)], respectively. We set the covariance matrix to w; E, that is
the identity matrix scaled by the knot weight. The location of the facilities were
sought in the square [2, 8]%. Three parameters were considered, leading to different
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problems: the radius R, the minimal distance y in (6.20), and the number of knots r.
As stopping criterion, the algorithm, stopped when the gap was smaller than 1072,

In order to reduce the random variability of the results, for each choice of radius
R, minimal distance y and number of knots r, three independent instances were
generated and solved. The results presented in the tables correspond to the median
out of the three values obtained.

In Table 6.1 running times in seconds are shown for the problem of locating one
facility with a smaller and a larger radius (R = 1.8 and R = 2.4). Itis not surprising
that the computational time grows with the number of knots, as for all knots we need
to do at least one integration.

Running times in seconds are reported in Table 6.2 for the problem of locating
two facilities. Again, the values presented are the median value of the three runs
performed. When at least two out of the three instances could not reach the desired
accuracy in 8h, the message “> 8h” is reported. The results clearly show that,
the higher the number of knots or the radius, the higher the running times. The
connection between the elapsed time and the minimal distance is not so evident.
One can find cases where either smaller or higher minimal distance can be solved
faster, so it looks rather problem dependent.

A second experiment was done in order to analyze the impact of the radius,
displaying the Pareto frontier if one maximizes the radius and minimizes the
coverage. In Fig. 6.3 the Pareto front is displayed for a problem with a mixture
of 50 bivariate gaussian distributions setting minimal distance y = R, and radii
R = 0.45,0.6,...,1.65,1.8. The pdf of such mixture of gaussians was shown in

'l?ab:e ?.I.I.Resultzlfor ; R—18 R=24
single-facility problems
(p = 1) with different 10 3.6 1.9
minimal distances 20 11.8 38.0
50 143.7 244.0
100 675.5 897.6

Table 6.2 Results for
two-facility problems

r Minimal distance | R =1.2 | R =1.8

(p = 2) with different 10 R 1105 | 186.1
minimal distances 1.5R 182.8 124.7
2R 178.1 83.4
20 R 114.0 2714.5
1.5R 95.7 2593.5
2R 86.4 2543.9
50 R 3926.2 12282.9
1.5R 3754.7 18167.5
2R 3675.1 >8h
100 | R 20026.1 | >8h
1.5R >8h >8h

2R >8h >8h
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Covering

Radius

Fig. 6.3 Pareto frontier of the problem of maximizing the radius and minimizing covering

Fig. 6.4 Optimal covering for extreme radii (left) and all radii (right)

Fig. 6.1, while the solutions for the different radii are drawn in Fig. 6.4. In the latter,
the demand function contours as well as the knots (with blue crosses) are shown.
On the left, we focus on the optimal solution of the two extreme radii (R = 0.45
and R = 1.8). The optimal covered regions, i.e., the disc centered at the optimal
facilities and radius R, are plotted. On the right, the optimal covered regions for all
radii addressed are given.
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6.5 Conclusions

While we have focused on purely repulsive facilities, the approach described here
can be used to address location problems of semi-desirable facilities (Carrizosa
and Plastria 1999; Blanquero and Carrizosa 2002; Romero-Morales et al. 1997;
Plastria et al. 2013), in which, instead of having a set A of affected individuals,
all negatively affected and wishing to have the facilities as far as possible, one
has two separated sets, AT and A~ , identifying respectively the individuals feeling
the facilities attractive, and thus want them as close as possible, and those feeling
the facilities repulsive, and thus want them as far as possible. This would imply
replacing the expected coverage function (6.10) by

C(x) = —/A+ cta,x)du™(a) + /r ¢ (a,x)du(a), (6.23)

where ¢t and ¢~ are the covering models respectively for positively and negatively
affected individuals. For finite probability measures ™ and ™, this model corre-
sponds to minimizing a weighted sum of the points covered, where now the points
in AT have a negative weight, already studied in Berman et al. (2009b) in a discrete
setting. The planar version, including the regional case, remains unexplored. It calls
for deriving new bounds for the branch and bound; but, as done here in the repulsive
case, on can construct bounds after obtaining bounds for the covering functions
c(a, x). Whilst for ¢~ the key is that ¢~ is nonincreasing, monotonicity (in this
case, decreasingness) can be used to bound —c™. This approach is not new, since it
already dates back to the seminal branch and bound BSSS (Hansen et al. 1985) but
it deserves being tested.

The basic all-or-nothing cover function ¢ in (6.2) is built assuming R fixed, and
given R, the cover C is minimized. A dual problem consists of maximizing R so that
the cover C remains below a threshold value. This so-called maxquantile problem
(Plastria and Carrizosa 1999) would be solved by doing a binary search in the space
of the values R, and solving, for each R, one problem as those solved in this chapter.

While affected individuals have been assumed to be (continuously) distributed
in a planar region, facilities are considered here to have negligible size, so they are
properly modeled as points. Adapting the branch and bound (in particular, the design
of bounds) for the case of extensive facilities, e.g. Carrizosa et al. (1998a), deserves
further study.

We have considered from the beginning the number of facilities p to be fixed.
A related, somehow dual, problem is the problem of locating as many facilities
as possible so that the coverage function C (or C*, or both) remain(s) within a
given interval. Such is the case of the so-called anticovering location problem, e.g.
Chaudhry (2006), Moon and Chaudhry (1984), Murray and Church (1997), which,
in its simplest version, seeks the highest number p* of facilities such that no two are
at a distance smaller than a threshold value R. Aggregation of the individual-facility
cover functions c(a, x) to C(x) by any of the procedures described in Sect. 6.2 is
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easily shown to be monotonic in the number p of facilities. The same holds for the
aggregation of the facility-facility cover cjf,f (xj,xx) to CF(x). Hence, in order to
find the highest p* for which such covers remain within a given interval, one only
needs to solve sequentially the problem for different values of p. The design of more
direct and efficient procedures is definitely a promising research line.

Acknowledgements Research partially supported by research grants and projects ICT COST
Action TD1207 (EU), MTM2012-36163 (Ministerio de Ciencia e Innovacién, Spain), P11-FQM-
7603, FQM329 (Junta de Andalucia, Spain), all with EU ERDF funds.

References

Alonso I, Carrizosa E, Conde E (1998) Maximin location: discretization not always works. TOP
6:313-319

Avella P, Boccia M (2007) A cutting plane algorithm for the capacitated facility location problem.
Comput Optim Appl 43:39-65

Avella P, Sassano A, Vasil’ev I (2006) Computational study of large-scale p-median problems.
Math Program 109:89-114

Berman O, Huang R (2008) The minimum weighted covering location problem with distance
constraints. Comput Oper Res 35:356-372

Berman O, Krass D (2002) The generalized maximal covering location problem. Comput Oper
Res 29:563-581

Berman O, Wang J (2011) The minmax regret gradual covering location problem on a network
with incomplete information of demand weights. Eur J Oper Res 208:233-238

Berman O, Drezner Z, Wesolowsky GO (1996) Minimum covering criterion for obnoxious facility
location on a network. Networks 28:1-5

Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network.
Eur J Oper Res 151:474-480

Berman O, Drezner Z, Krass D (2009a) Cooperative cover location problems: the planar case. IIE
Trans 42:232-246

Berman O, Drezner Z, Wesolowsky GO (2009b) The maximal covering problem with some
negative weights. Geogr Anal 41:30-42

Berman O, Kalcsics J, Krass D, Nickel S (2009¢) The ordered gradual covering location problem
on a network. Discrete Appl Math 157:3689-3707

Berman O, Drezner Z, Krass D (2010) Generalized coverage: new developments in covering
location models. Comput Oper Res 37:1675-1687

Blanquero R, Carrizosa E (2002) A DC biobjective location model. J Global Optim 23:139-154

Blanquero R, Carrizosa E (2008) Continuous location problems and big triangle small triangle:
constructing better bounds. J Global Optim 45:389-402

Blanquero R, Carrizosa E (2013) Solving the median problem with continuous demand on a
network. Comput Optim Appl 56:723-734

Bowman A, Foster P (1993) Density based exploration of bivariate data. Stat Comput 3:171-177

Carrizosa E, Plastria F (1998) Locating an undesirable facility by generalized cutting planes. Math
Oper Res 23:680-694

Carrizosa E, Plastria F (1999) Location of semi-obnoxious facilities. Stud Locat Anal 12:1-27

Carrizosa E, Conde E, Muiioz-Mdrquez M, Puerto J (1995) The generalized Weber problem with
expected distances. RAIRO-Rech Oper 29:35-57

Carrizosa E, Mufioz-Marquez M, Puerto J (1998a) Location and shape of a rectangular facility in
NR" convexity properties. Math Program 83:277-290



6 Anti-covering Problems 131

Carrizosa E, Mufioz-Marquez M, Puerto J (1998b) A note on the optimal positioning of service
units. Oper Res 46:155-156

Carrizosa E, Mufioz-Marquez M, Puerto J (1998c) The Weber problem with regional demand. Eur
J Oper Res 104:358-365

Chaudhry SS (2006) A genetic algorithm approach to solving the anti-covering location problem.
Expert Syst 23:251-257

Christaller W (1966) Central places in southern Germany. Prentice-Hall, London

Church R, ReVelle C (1974) The maximal covering location problem. Pap Reg Sci Assoc
32:101-118

Current JR, Schilling DA (1990) Analysis of errors due to demand data aggregation in the set
covering and maximal covering location problems. Geogr Anal 22:116-126

Curtin KM, Church RL (2006) A family of location models for multiple-type discrete dispersion.
Geogr Anal 38:248-270

Daskin MS, Haghani AE, Khanal M, Malandraki C (1989) Aggregation effects in maximum
covering models. Ann Oper Res 18:113-139

Drezner Z (2012) Solving planar location problems by global optimization. Logist Res 6:17-23

Drezner Z, Suzuki A (2004) The big triangle small triangle method for the solution of nonconvex
facility location problems. Oper Res 52:128-135

Drezner Z, Wesolowsky G (1994) Finding the circle or rectangle containing the minimum weight
of points. Locat Sci 2:83-90

Drezner Z, Wesolowsky GO, Drezner T (2004) The gradual covering problem. Nav Res Log
51:841-855

Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Eur J Oper Res
40:275-291

Erkut E, Neuman S (1991) Comparison of four models for dispersing facilities. INFOR 29:68-86

Farhan B, Murray AT (2006) Distance decay and coverage in facility location planning. Ann Reg
Sci 40:279-295

Fekete SP, Mitchell JSB, Beurer K (2005) On the continuous fermat-weber problem. Oper Res
53:61-76

Fernandez J, Fernandez P, Pelegrin B (2000) A continuous location model for siting a non-noxious
undesirable facility within a geographical region. Eur J Oper Res 121:259-274

Fliege J (2001) OLAF—a general modeling system to evaluate and optimize the location of an air
polluting facility. OR Spectr 23:117-136

Francis RL, Lowe TJ (2011) Comparative error bound theory for three location models: continuous
demand versus discrete demand. TOP 22:144-169

Francis RL, Lowe TJ, Tamir A (2000) Aggregation error bounds for a class of location models.
Oper Res 48:294-307

Francis RL, Lowe TJ, Tamir A (2002) Demand point aggregation for location models. In: Drezner
Z, Hamacher HW (eds) Facility location. Springer, Berlin/Heidelberg, pp 207-232

Francis RL, Lowe TJ, Rayco MB, Tamir A (2008) Aggregation error for location models: survey
and analysis. Ann Oper Res 167:171-208

Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems
revisited. Oper Res 33:1251-1265

Hwang M, Chiang C, Liu Y (2004) Solving a fuzzy set-covering problem. Math Comput Model
40:861-865

Karasakal O, Karasakal EK (2004) A maximal covering location model in the presence of partial
coverage. Comput Oper Res 31:1515-1526

Karkazis J, Papadimitriou C (1992) A branch-and-bound algorithm for the location of facilities
causing atmospheric pollution. Eur J Oper Res 58:363-373

Kim K, Murray AT (2008) Enhancing spatial representation in primary and secondary coverage
location modeling. J Reg Sci 48:745-768

Kolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location
theory. Wiley, New York



132 E. Carrizosa and B.G.-T6th

Kuby MJ (1987) Programming models for facility dispersion: the p-dispersion and maxisum
dispersion problems. Geogr Anal 19:315-329

Lei TL, Church RL (2013) A unified model for dispersing facilities. Geogr Anal 45:401-418

Li X, Zhao Z, Zhu X, Wyatt T (2011) Covering models and optimization techniques for emergency
response facility location and planning: a review. Math Method Oper Res 74:281-310

Mladenovi¢ N, Plastria F, UroSevi¢ D (2005) Reformulation descent applied to circle packing
problems. Comput Oper Res 32:2419-2434

Moon ID, Chaudhry SS (1984) An analysis of network location problems with distance constraints.
Manag Sci 30:290-307

Murat A, Verter V, Laporte G (2010) A continuous analysis framework for the solution of location-
allocation problems with dense demand. Comput Oper Res 37:123-136

Murray AT (2005) Geography in coverage modeling: exploiting spatial structure to address
complementary partial service of areas. Ann Assoc Am Geogr 95:761-772

Murray AT, Church RL (1997) Solving the anti-covering location problem using lagrangian
relaxation. Comput Oper Res 24:127-140

Murray AT, O’Kelly ME (2002) Assessing representation error in point-based coverage modeling.
J Geogr Syst 4:171-191

Murray AT, Wei R (2013) A computational approach for eliminating error in the solution of the
location set covering problem. Eur J Oper Res 224:52-64

Murray AT, Tong D, Kim K (2009) Enhancing classic coverage location models. Int Reg Sci Rev
33:115-133

Plastria F (1992) Gbsss: the generalized big square small square method for planar single-facility
location. Eur J Oper Res 62:163-174

Plastria F (2001) On the choice of aggregation points for continuous p-median problems: a case
for the gravity centre. TOP 9:217-242

Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher HW (eds)
Facility location. Springer, Berlin/Heidelberg, pp 39-83

Plastria F, Carrizosa E (1999) Undesirable facility location with minimal covering objectives. Eur
J Oper Res 119:158-180

Plastria F, Gordillo J, Carrizosa E (2013) Locating a semi-obnoxious covering facility with
repelling polygonal regions. Discrete Appl Math 161:2604-2623

Romero-Morales D, Carrizosa E, Conde E (1997) Semi-obnoxious location models: a global
optimization approach. Eur J Oper Res 102:295-301

Schilling DA, Jayaraman V, Barkhi R (1993) A review of covering problems in facility location.
Locat Sci 1:25-55

Schdobel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility
location problems. Comput Oper Res 37:115-122

Tong D (2012) Regional coverage maximization: a new model to account implicitly for comple-
mentary coverage. Geogr Anal 44:1-14

Tong D, Church RL (2012) Aggregation in continuous space coverage modeling. Int J Geogr Inf
Sci 26:795-816

Tong D, Murray AT (2009) Maximising coverage of spatial demand for service. Pap Reg Sci
88:85-97

Wand MP, Jones MC (1993) Comparison of smoothing parameterizations in bivariate kernel
density estimation. J Am Stat Assoc 88:520-528

Wand MP, Jones MC (1995) Kernel smoothing. Springer, New York

Yao J, Murray AT (2014) Serving regional demand in facility location. Pap Reg Sci 93:643-662



Part I1
Advanced Concepts



Chapter 7
Location of Dimensional Facilities
in a Continuous Space

Anita Schobel

Abstract In many cases, the facilities to be located cannot be represented by
isolated points, but may be modeled as dimensional structures. Examples for one-
dimensional facilities are straight lines, line segments, or circles while boxes, strips,
or balls are two-dimensional facilities. The goal of this chapter is to review the
location of lines and circles in the plane and the location of hyperplanes and
hyperspheres in higher dimensional spaces. We also discuss the location of some
other dimensional facilities. We formulate the resulting location problems, point
out some of their important properties and review the basic solution techniques and
algorithmic approaches. Our focus lies on presenting a unified understanding of the
common characteristics these problems have, and on reviewing the new findings
obtained in this field within the last 10 years.

Keywords Circle location * Hyperplane location * Line location

7.1 Introduction

Within the locational context, the problem of locating a dimensional facility was
first posed in Wesolowsky (1972, 1975) where the location of a line minimizing the
sum of rectangular or Euclidean distances to a set of existing points was introduced.
Since this time, the subject of locating lines and hyperplanes, circles, spheres,
and other dimensional facilities has been intensively studied. Surveys are given in
Martini and Schobel (1998), Diaz-Banez et al. (2004), an extensive list of papers
dealing with the location of dimensional structures (most of them before 2000) is
also given in Blanquero et al. (2009).

Within the last 10 years, many new results have been found and published. In
this chapter, one goal is to review these new findings. More importantly, another
goal is to present a unified understanding of the subject which is now possible since
the field has become more mature. We hence not only present a list of problems
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treated in the literature, but point out common characteristics and common solution
techniques which are used for many different types of such location problems.

Applications in the location of dimensional facilities are various: These range
from real-world applications in location theory and operations research to appli-
cations in robust statistics and computational geometry. Particular applications are
mentioned at the beginning of the respective sections.

The chapter is organized as follows. We start with a general introduction into the
topic in Sect. 7.2 where we introduce the basic notation, define the problems to be
considered and mention the properties on which we will put some focus later on. We
then discuss the two most extensively researched structures in dimensional facility
location: The location of lines and hyperplanes in Sect. 7.3 and the location of circles
and hyperspheres in Sect.7.4. We finally review other interesting extensions and
problem variations in Sect. 7.5. The chapter is ended by some conclusion in Sect. 7.6
summarizing the findings and pointing out lines for further research.

7.2 Location of Dimensional Facilities

The location of dimensional facilities is a natural generalization of locating one or
more points. As in classical location problems we have given

o afiniteset V = {vy,...,v,} € RP of existing facilities or existing points with
positive weights w; > 0,7 =1,...,n, and

+ adistance measure d : R? x RP — R evaluating the distance for each pair of
points in R”. We mostly consider distances derived from norms or gauges.

We look for a new facility X which minimizes a function of the weighted distances
to the existing points

wid (X, v1)

wad (X, v2)
minimize f(X) =g . , (7.1)

wpd(X, vy)
where the most common functions used for f are the minsum (or median) function,
ie, g1V, ..o, ) = Z’;’:l y; or the minmax (or center) function given as
8max(Y1,...,Yn) = max;=i_,y;. Also, other objective functions such as the

centdian, or more general, ordered median objective functions g, (see Chap. 10)
are possible.

If the new facility X is required to be a point, or a set of points, we are in the
situation of classical continuous facility location, see Drezner et al. (2001). In this
chapter, however, we assume that X is not a point but a dimensional structure such
as a line, a circle, a hyperplane, a hypersphere, a polygonal line, etc. This, in turn,
means that the distance d(X,v) in (7.1) is the distance between a set X (which
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represents the dimensional facility) and a point v. It is given by using the standard
definition

d(X,v) = mei)rfld(x,v). (7.2)

Note that in some applications d (X, v) is defined as max,cy d(x, v), and that the
average distance to all points in the set also is a reasonable definition; however, (7.2)
is the most common model in this context.

We now specify the distances d we are mostly working with in this chapter.
The most common distances in location theory are derived from norms, i.e., d :
R? x RP? — R is given as d(x,y) := ||x — y|| for some norm | - ||. Moreover,
distances derived from a gauge y : R? — R given through d(x, y) = y(y—x) have
also been used in the location of dimensional facilities. Note that gauge-distances
are no metrics since they are in general not symmetric, and that norms are special
gauges. We also use the vertical distance and its generalizations, being neither a
norm nor a gauge but giving insight into the problem, in particular for the location of
lines and hyperplanes. For two points x = (x!,...,x?),y = (y!,....y?) e R?
the vertical distance is given as

[xP —yP|ifx' =y, i=1,....,D—1

7.3
00 otherwise. (7:3)

dver(xa y) =

This distance leads to trivial location problems if X is required to be a point but
yields interesting problems with applications mainly in statistics when locating lines
or hyperplanes.

Figure 7.1 presents two examples on how distances are computed, and optimal
dimensional structures may look like. In both examples we have given six existing
points, all of them with unit weights. The left part of Fig.7.1 shows a line
minimizing the maximum vertical distance to the set of existing facilities. In the

Fig. 7.1 Two illustrations for locating dimensional facilities. Left: A line minimizing the maxi-
mum vertical distance. Right: A circle minimizing the sum of Euclidean distances
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right part a circle minimizing the sum of Euclidean distances to the existing facilities
is depicted. The lengths of the thin lines in both examples correspond to the
distances from the existing facilities to the line (or to the circle, respectively). Note
that the distance between a facility v € X and X is zero—this happens twice in the
right part of the figure where the minsum circle passes through two of the existing
points.

In the following sections we discuss different types of dimensional facilities
to be located. Most of the resulting optimization problems are multi-modal and
neither convex nor concave. Hence, methods of global optimization are required.
However, in many of these location problems it is possible to exploit one or more
of the following properties showing that they have much more structure than just an
arbitrary global optimization problem.

LP properties: Some of the problems become piecewise linear, sometimes even
resulting in linear programming (LP) approaches which can be solved highly
efficiently.

FDS properties: A finite dominating set (FDS) is a finite set of possible solutions
from which it is known that it contains an optimal solution to the problem. This
allows an enumeration approach by evaluating all possible elements of the FDS.

Halving properties:  In many cases, any optimal facility to be located splits the sets
of existing points into two sets of nearly equal weights. This allows to enhance
enumeration approaches.

In our conclusion we provide a summary on these properties and give some general
hints when they hold and why they are useful.

7.3 Locating Lines and Hyperplanes

Given a set of points ¥ C RP the hyperplane location problem is to find a
hyperplane H minimizing the distances to the points in V. In this section we
consider such hyperplane location problems for different types of distances and
different objective functions.

Note that line location deals with finding a line in R? minimizing the distances
to a set of two-dimensional points and is included in our discussion as the special
case D = 2.

7.3.1 Applications

The location of lines and hyperplanes has many applications within at least three
different mathematical fields: Operations research, computational geometry, and
statistics. Applications in operations research are various. The new facility to be
located may be, e.g., a highway (see Diaz-Bénez et al. 2013), a train line (see Espejo
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and Rodriguez-Chia 2011), a conveyor belt, or a mining shaft (e.g., Brimberg et al.
2002). Line location has also been mentioned in connection with the planning of
pipelines, drainage or irrigation ditches, or in the field of plant layout (see Morris
and Norback 1980).

In computational geometry, the width of a set is defined as the smallest possible
distance between two parallel hyperplanes enclosing the set (Houle and Toussaint
1985). If the set is a polyhedron with extreme points V' = {vy, ..., v,} determining
the width of this set is equivalent to finding a hyperplane minimizing the maximum
distance to V. The relation between hyperplane location and transversal theory
is mentioned in Sect.7.3.4.1. In machine learning, a support vector machine is a
hyperplane (if it exists) separating red from blue data points and maximizing the
minimal distance to these points (see Bennet and Mangasarian 1992; Mangasarian
1999). If the set of red and blue points are not linearly separable, one may look for
a hyperplane which minimizes the maximum distance to the points on the wrong
side. This problem can again be solved as a restricted hyperplane location problem,
see Carrizosa and Plastria (2008) and Plastria and Carrizosa (2012).

In statistics, classical linear regression asks for a hyperplane which minimizes
the sum of squared vertical distances to a set of data points, while orthogonal
regression (also called total least squares, see Golub and van Loan 1980) calls for
a hyperplane minimizing the sum of squared Euclidean distances. However, these
estimators are usually not considered as robust. This gives a reason for computing
L -estimators minimizing the sum of absolute vertical (or orthogonal) differences,
since the median of a set is considered more robust than its mean. We refer to
Narula and Wellington (1982) for a survey on absolute errors regression. More
general, many robust estimators can be found as optimal solutions to ordered
hyperplane location problems, i.e., hyperplane location problems minimizing an
ordered median objective function (see Chap. 10 for the definition of ordered median
functions). Such problems are treated in Sect.7.3.6. An example are trimmed
estimators which neglect the k largest distances assuming that these belong to
outliers. We list some of the most popular estimators and their corresponding
hyperplane location problems in Table 7.1. For each of them we specify the distance
function d which is used to measure the distance from the data points (i.e., the
existing points) to the hyperplane, and the vector A € R” which specifies the ordered

Table 7.1 Correspondence between line and hyperplane location problems and robust estimators

Estimator Distance Weights of ordered median function
Least squares d=d2, A=(1,...,1)

Total least squares d = Z% A=(,..., 1)

Least trimmed squares d = dfe,. A=(,..., 1,0,..., 0)

Least absolute deviation d = dy,, A=(,..., 1)

Least trimmed absolute deviation d = dyer A=(,...,1,0,...,0)

Least median of squares d = dfe, A=(0,...,0,1,0,...,0) (n odd)

A=(0,...,0,1,1,0,...,0) (neven)
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median function g, used for modeling the respective estimator. More applications
to classification and regression are pointed out in Bertsimas and Shioda (2007).

7.3.2 Ingredients for Analyzing Hyperplane Location Problems
7.3.2.1 Distances Between Points and Hyperplanes

A hyperplane is given by its normal vector a = (a',...,a”) € R” and a real
number b € R:

H,p ={xeRP:a'x +b =0}.

Given a distance d : R? x R? — R, the distance between a point v € R” and
a hyperplane H,; is given as d(H,»,v) = min{d(x,v) : a’x + b = 0}. For the
vertical distance (see again the left part of Fig. 7.1) the following formula can easily
be computed:

Lemma 7.1 (Schobel 1999a)

it ifaP #£0
dver(Ha,bv U) = 0 zfaD =0anda'v+b=0
oo ifa® =0anda'v+b#0

The second case and the third case comprise the case of a hyperplane which is
vertical itself. Its distance to a point v is defined as infinity unless the hyperplane
passes through v. If not all existing points lie in one common vertical hyperplane,
this means that a vertical hyperplane can never be an optimal solution to the
hyperplane location problem, hence without loss of generality we can assume the
hyperplane H, ; to be non-vertical if the vertical distance is used.

If d is derived from a norm or a gauge y : R? — R, the following formula for
computing d(H, 5, v) has been derived in Plastria and Carrizosa (2001).

Lemma 7.2 (Plastria and Carrizosa 2001)

a'v+b et >
d(H,yv) = ) o FavEbz0
@b =av=b ifgly +b <0
y°(—a) ’

where y° : RP? — R is the dual (polar) norm common in convex analysis (e.g.,
Rockafellar 1970), i.e.,

y°(v) = sup{v'x : y(x) < 1}.

Note that d(H, p, v) = k’};ﬁ’—:{:i’l if y is a norm.
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7.3.2.2 Dual Interpretation

The following geometric interpretation is helpful when dealing with hyperplane
location problems: A non-vertical hyperplane H,; (with a® = 1) may be inter-
preted as point (a',...,a”~!,b) in RP. Vice versa, any point v = (v',...,v?)
may be interpreted as a hyperplane. Formally, we use the following transformation.

Definition 7.1

It can easily be verified that
dyer(Hyp, V) = dyer (T (v), Tp(Haup))

for non-vertical hyperplanes with a” = 1. In particular, we obtain

Lemma 7.3 Let H be a non-vertical hyperplane and v € R be a point. Then
ve H < Tp(H) € Ty(v).

This means that H, 5 passes through a point v if and only if 7y (v) passes through
(a',...,aP ' b).

In the resulting dual space the goal is to locate a point which minimizes the sum
of distances to a set of given hyperplanes {75 (v) : v € V}. In the results of the next
sections it will become clear that this is a helpful interpretation.

Figure 7.2 shows an example of the dual interpretation in IR?. We consider five
points (depicted in the left part of the figure), namely v; = (0, %), v, = (0,1),

Fig. 7.2 Left: Five existing points and a line in primal space. Right: The same situation in dual
space corresponds to five lines and one point
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vy = (—1,0), v4 = (=2,—1) and v5s = (1, —%). In the dual interpretation these
points are transferred to the five lines in the right part of the figure.

1
Li=Hy, = {(x!,x?):x2 = _5}

Ly=Hypy = {(x".x?) :x*=—1}
Ly=H 0= {(x"x?):x*=x"}

L4 = H—Z,l,—l = {(xl,xz) . x2 = 2)(?1 + 1}

1
Ls=H,,_1 = (N x?) i xt = —x! + E}

It can also be seen that the line H_ 11-1 through the two points v; and vz is

transformed to the point v = (—%, —%) in dual space which lies on the intersection
of L and Lj. Furthermore, note that in the point (—1, —1) in dual space three of
the lines meet, namely, L,, L3, and L4. Hence, this point corresponds to the line
H_ ;= {(xl,xz) cx2=xl 4 1} which passes through the three points vy, v3,
and vy4.

7.3.3 The Minsum Hyperplane Location Problem

Let us now start with the minsum hyperplane location problem defined as follows:
Given a set of existing points V = {vy,...,v,} € R? with positive weights w >
0,7 =1,...,n, find a hyperplane H,; which minimizes

fi(Hap) =y wid(Hap,v;).

j=1

A hyperplane H minimizing f;(H) is called minsum hyperplane w.r.t the distance
d. Let us assume throughout this section that there are n > D affinely independent
points, otherwise an optimal solution is the hyperplane containing all of them.

7.3.3.1 Minsum Hyperplane Location with Vertical Distance
We first look at the problem with vertical distance dy... As explained after

Lemma 7.1 we may without loss of generality assume that a” = 1. This simplifies
the problem formulation to the question of finding a',...,a”~!, b € R such that

fila.b) =Y wjlvha+b| (7.4)
i=1
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is minimal (with ¢®? = 1). In order to get rid of the absolute values, we define

H;={je{l,....n}:vja+b>0}
Hy ={je{l,....n}:vja+b <0}

H.y i =4{J 6{1,...,n};v;a+bzo}‘

We furthermore set

W= Doowin W= Do wi W= ) w

J eHu>.b J EHH?! J eHu<.b

andlet W := Z};’=1 w; be the sum of all weights. Since fi(a, b) is piecewise linear
in b we receive:

Theorem 7.1 (Halving Property for Minsum Hyperplanes) (Schobel 1999a;
Martini and Schobel 1998) Let H, ), be a minsum hyperplane w.r.t the vertical
distance dye,. Then

w w
W, < > and W5, < 5 (7.5)

Note that the halving property (7.5) is equivalent to
wp S Wi+ Woy, and W5 < Wi + Wi (7.6)

Looking again at (7.4), note that f; is not only piecewise linear in b but is also
convex and piecewise linear in the D variablesa', ..., a”~!, b. The latter yields the
following incidence property.

Theorem 7.2 (FDS for Minsum Hyperplanes with Vertical Distance) Let d,.,
be the vertical distance and let n > D. Then there exists a minsum hyperplane w.r.t
dyer that passes through D affinely independent points.

Sketch of Proof We can rewrite the objective function fi(H, ) to

Si(Hap) = Z wj(via +b) + Z wj(=via —b) (7.7

J eHu>.b J :EHu<.h

which is easily seen to be linear as long as the signs of v;-a + b do not change, i.e.,
<

on any polyhedral cell given by disjoint sets H=, H= specifying which existing
points should be below (or on) and above (or on) the hyperplane:

R(HZ H=):={(a',....a”"".b) :vla+b = 0forall j € H>

via+b < 0forall j € H=}.
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Note that these polyhedra can be constructed in dual space by using the arrangement
of hyperplanes Ty (v;),j = 1,...,n, i.e., the right hand side of Fig.7.2 shows
exactly the polyhedra in dual space on which the objective function is linear. The
fundamental theorem of linear programming then yields an optimal solution at a
vertex of some of the cells R(H=, H=), i.e., a hyperplane satisfying v;-a +b=0
for at least D indices from {1,...,n}. O

Note that many papers mention this result. For D = 2, it was shown in
Wesolowsky (1972), Morris and Norback (1983), Megiddo and Tamir (1983) and
generalized to higher dimensions, e.g., in Schobel (1999a).

In our example of Fig. 7.2 the depicted line is an optimal solution.

7.3.3.2 Minsum Hyperplane Location with Norm-Based Distance

We now turn our attention to the location of hyperplanes with respect to a norm || - ||.
In this case, we can use Lemma 7.2 and obtain the following objective function

n
[via + b|
Si(Hap) =) wj—— (7.8)
2" ]
where || - ||° denotes the dual norm of || - ||. Still, the objective function is piecewise

linear in b, hence the halving property holds again:

Theorem 7.3 (Halving Property for Minsum Hyperplanes) (Schobel 1999a;
Martini and Schébel 1998) Let d be a norm and H, ) be a minsum hyperplane
w.r.t d. Then

W+

w w
< —and W, < —
a 2 ’ 2

We also receive the incidence property of Theorem 7.2.

Theorem 7.4 (FDS for Minsum Hyperplanes) (Schobel 1999a; Martini and
Schobel 1998, 1999) Let d be derived from a norm and let n > D. Then there exists
a minsum hyperplane w.r.t d that passes through D affinely independent points. If
and only if the norm is smooth, we have that all minsum hyperplanes pass through
D affinely independent points.

Sketch of Proof Different proofs for this property exist. Here, we use the cell
structure of the proof of Theorem 7.2 for the vertical distance. The idea is to use
piecewise quasiconcavity instead of piecewise linearity on these cells. Neglecting
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vertical hyperplanes, we again look at the regions R(H=, HZ) in dual space. On
any such region we obtain that the objective function (7.8) can be rewritten as

via+b —vla—>b
Ao = 2w 2
JEH, JiEH,
1 t t
= | 2 ma b+ 3 wivia—b) |,

JEH,, JiE€HS,

i.e., it is a positive linear function divided by a positive convex function and
hence is quasiconcave. Consequently, it takes its minimum at a vertex of a region
R(H=, HZ), i.e., again at a hyperplane passing through D affinely independent
existing points. O

Note that this theorem has been known for a long time for line location problems
(D = 2) in the case of rectangular or Euclidean distances (Wesolowsky 1972,
1975; Morris and Norback 1980, 1983; Megiddo and Tamir 1983), and has been
generalized to line location problems with arbitrary norms in Schobel (1998, 1999a)
and to D-dimensional hyperplane location problems with Euclidean distance in
Korneenko and Martini (1990, 1993). The extension to hyperplanes with arbitrary
norms is due to Schobel (1999a) and Martini and Schébel (1998).

7.3.3.3 Minsum Hyperplane Location with Gauges

For gauges the results of Theorems 7.4 and 7.3 do not hold any more. There exist
counterexamples showing that optimal hyperplanes need not be halving, see, e.g.,
Schobel (1999a). However, redefining the halving property by taking into account
the non-symmetry on both sides of a hyperplane, the following similar result [based
on formulation (7.6)] may be transferred to gauge distances.

Theorem 7.5 (Halving Property for Minsum Hyperplanes with Gauges) (Plas-
tria and Carrizosa 2001) Let d be a gauge and H(a,b) be a minsum hyperplane
w.r.t. d. Then we have

Wj < Wj
Z ye(a) — Z y°(a)

jEHf.h jeH;bUH;
wi w;
L oS X yca
= y°(—a) T _v°(—a
]EH;.h jGH;bUH(Lb

Also, for gauge-distances it does not hold that there always exists an optimal
minsum hyperplane passing through D of the existing points, for a counterexample
see again Schobel (1999a). However, the following weaker result holds.
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Theorem 7.6 (Incidence Property for Minsum Hyperplanes) (Plastria and Car-
rizosa 2001) Let d be derived from a gauge and let n > D. Then there exists
a minsum hyperplane w.r.t the distance d that passes through D — 1 affinely
independent points.

Note that this incidence property does not define an FDS.

7.3.4 The Minmax Hyperplane Location Problem

We now turn our attention to the minmax hyperplane location problem in which we
look for a hyperplane H, ; which minimizes

A hyperplane H minimizing fi.x(H) is called minmax hyperplane w.r.t d. Again,
let us assume n > D. Since the main results for the location of minmax hyperplanes
are similar for different types of distance functions, we need not distinguish between
vertical, norm-based and gauge distances here. We start with a link to computational
geometry.

7.3.4.1 Relation to Transversal Theory

Minmax location problems often rely on Helly’s theorem (Helly 1923). For the
location of hyperplanes, this result can only be applied for the vertical distance,
since the sets {(a,b) : d(H,p,v) < o} are non-convex in general if d # dye,.
Instead, the following relation to transversal theory may be exploited.

Definition 7.2 Given a family of sets .# in R”, a hyperplane H is called a
hyperplane transversal with respect to # if M N H # @ forall M € A .

Using this definition it is directly clear that f.x(H) < r if and only if H is a
hyperplane transversal for the set .# = {M;(r),j = 1,...,n} with

M;(r)={x¢€ RP cwid(x,vj) <r}.

Instead of looking for a hyperplane minimizing the maximum distance to a set
of existing points, we can hence equivalently look for the smallest possible r > 0
such that a hyperplane transversal for the sets M;(r), j = 1,...,n exists. As an
example, in Fig. 7.3 we search a line minimizing the maximum rectangular distance
to the five given points, each of them with unit weight. Since it is a line transversal
for the five sets M (r), the depicted line / satisfies fiax () < 7.
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Fig. 7.3 A line transversal /
to the five sets (each of them
with radius r) exists, hence
the objective function value
of this line satisfies

fmax(l) S r

7.3.4.2 The Finite Dominating Set Property

The main result for minmax hyperplane location is the following blockedness
property.

Theorem 7.7 (FDS for Minmax Hyperplanes) (Schobel 1999a; Martini and
Schobel 1998, 1999; Plastria and Carrizosa 2012) Let d be derived from a norm
or a gauge and let n > D + 1. Then there exists a minmax hyperplane w.r.t d that
is at the same (maximum) distance from D + 1 affinely independent points. If and
only if the norm or the gauge is smooth, we have that all minmax hyperplanes are
at maximum distance from D + 1 affinely independent points.

Sketch of Proof for Norms Similar to the proof for median hyperplanes we look at
the case for vertical distances first. Here, the objective function is linear as long as
the maximum distance does not change (if » > 1). We hence may use a type of
farthest Voronoi diagram in the dual space, i.e., a partition of the dual space into
(not necessarily connected) polyhedral cells

C;):= {(a,b):d(Huyp,v;) > d(Hyp,v)forallv e V}
={@',....a’ ',b): [via +b] > |[via + b foralli = 1,...,n}
and it can be shown that an extreme point of such a cell is an optimal solution for

the case of the vertical distance. Note that the cell structure does not change when
we replace the vertical distance by a distance d derived from a norm, since we have

C'(v;):= {(a,b):d(Hup,vj) > d(Hup,v)forallv € V}

vja +bl _ |via +b]

= {(@.....a""b): >
e D) T 2 )

foralli =1,...,n}

= C(v)),

and using again that the objective function on these cells is quasiconcave, the result
follows. O
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Note that in contrast to minsum hyperplane location problems, the result also
holds for gauges. This was shown for D =2 in Schobel (1999a) and for arbitrary
D recently in Plastria and Carrizosa (2012). Using transversal theory, it can
furthermore be extended to metrics (under some mild conditions of monotonicity),
see Schobel (1999a) for the case of D = 2.

A geometric point of view was taken in Nievergelt (2002) for the Euclidean
case. He interprets the minmax hyperplane location problem as follows: locate
two parallel hyperplanes such that the set of existing points lies completely
between these two hyperplanes and minimize the distance between these parallel
hyperplanes. He shows that in an optimal solution the two hyperplanes are rigidly
supported by the points in V, i.e., there does not exist any other pair of parallel
hyperplanes enclosing all points and passing through the same points of V. This
property coincides with the blockedness property of Theorem 7.7. The algorithm
proposed in Nievergelt (2002) uses projective shifts to improve a solution in a finite
number of steps.

7.3.5 Algorithms for Minsum and Minmax Hyperplane
Location

We describe the main approaches used for computing minsum hyperplanes.

7.3.5.1 Enumeration

Theorems 7.2, 7.4, and 7.7 specify a finite dominating set for both the minsum
and the minmax hyperplane location problem. The trivial approach is to enumerate
all candidates in the FDS. For the minsum case these are just the hyperplanes
passing through D of the existing points. More effort is necessary to determine
the hyperplanes being at maximum distance from D + 1 of the existing points for
the minmax case. For D = 2 and norm-based distances these are parallel to one
edge of the convex hull of the existing points (Schobel 1999a).

7.3.5.2 Linear Programming for Hyperplane Location with Vertical
and Block Norm Distances

For the vertical distance d,., the hyperplane location problem can be formulated as
a linear program. To this end, we define additional variables d; > 0 which contain
the distances d(H,v;), j = 1,...,n. For the minsum problem we then obtain

n
minimize Z w;d; (7.9)
j=1
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subject to djzvjra+bforj =1,...,n (7.10)
djz—via—bforj=1...n (7.11)
dj>0forj=1,...,n (7.12)
aP =1 (7.13)
b,a' e Rfori =1,...,D —1. (7.14)

For the minmax problem, the objective (7.9) has to be replaced by the minmax
objective function fp.y, i.e., by

minimize ; max w; dj,
which can be rewritten as linear program by using a bottleneck variable z and then
replacing the objective by Minimizez and adding w;d; < zfor j = 1,...,n as
constraints. It is also possible to use other types of objective functions. For the
minsum problem (see Zemel 1984) and for the minmax problem (see Megiddo
1984), the above LP formulation can be solved in O(n) time.

Now consider a block norm yp with unitball B = conviey, ... ,eg},i.e.,eq, 8 =
1,..., G are the fundamental directions of the block norm. The idea is to solve the
problem for each of the fundamental directions separately. To this end, we extend
the vertical distance d,., to a distance d;, t € R as follows.

|| ifu—v = at forsomea € R
oo otherwise.

d;(u,v) :=

We then know the following result.

Lemma 7.4 (Schobel 1999a) Let H be a hyperplane and let d be derived from a
block norm yg with fundamental directions ey, .. ., eg. Then for any point v € RP
there exists g € {1, ..., G} such that

i.e., the fundamental direction e; is independent of the point v.

This result allows to solve the problem with block norm distance in O(Gn) time
in the planar case by iteratively solving the minmax hyperplane location problem
with respect to distance deg, g = 1,...,G, and taking the best solution. Note
that the G problems may be solved by transformation to the vertical distance as
follows: Choose a linear (invertible) transformation " with T'(eg) = (0,0,...,0,1).
Transform all points v} =T(vj),j =1,...,n. We obtain that

duer(T(H), T (v)) = de, (H,v)
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for any hyperplane H and any point v € R?, i.e., we have transformed the problem
with distance d,, to a problem with vertical distance which can be solved by linear
programming as above. Transforming an optimal hyperplane H' for the resulting
problem back to T~!(H’) gives an optimal solution to the problem with distance
deg. Details can be found in Schobel (1999a, 1996).

7.3.5.3 Enhancing the Enumeration for Line Location
with Euclidean Distance

For the Euclidean distance, the minsum straight line problem has received a
lot of attention. Many of the ideas proposed here could also be used for other
distance functions (see Schieweck and Schobel 2012); nevertheless they have been
investigated mainly for the Euclidean case. Algorithms rely on Theorems 7.3 and 7.4
and use the representation of the problem in the dual space.

The Euclidean minsum straight line problem with unit weights can be solved
by sweeping along the so called median trajectory in the dual space (see
Yamamoto et al. 1988). The median trajectory is the point-wise median of the
lines Ty (v;), j = 1,...,n, see Fig.7.4 for the median trajectory in our example.
The breakpoints on the median trajectory coincide with lines passing through two
of the existing points and satisfying the halving property. Hence, the complexity
of the approach depends on the number /(n) of halving lines. In Yamamoto et al.
(1988) the complexity of the approach is given as O(log?(n)h(n)) which can be
improved to O(log(n)h(n)) (see Schieweck and Schobel 2012) by substituting the
algorithm for dynamic convex hulls of Overmars and van Leeuwen (1981) by the
newer O(log(n)) algorithm of Brodal and Jacob (2002).

Note that the order of i(n) is not known yet. It has been shown that the number
of halving lines is in O(n*/?) (see Dey 1998) yielding an O(n*/3 log(n)) approach
for the line location problem with Euclidean distance. The best known lower bound
for the Euclidean minsum line location problem is £2(n log n) using reduction from

Fig. 7.4 The median
trajectory for the example of
Fig.7.2
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the uniform-gap on a circle problem (Yamamoto et al. 1988). We conclude that the
question for an optimal algorithm for this problem is still open.

The Euclidean line location problem with arbitrary weights can be solved in
O(n?), see Lee and Ching (1985).

For the Euclidean minmax line location problem the relation to transversal theory
is exploited leading to an optimal O(#n logn) algorithm for the case with arbitrary
weights (Edelsbrunner 1985).

7.3.6 Ordered Median Line and Hyperplane Location Problem

A rather general objective function in location theory is the ordered median function
(see Nickel and Puerto 2005, or Chap. 10). For tackling ordered median line location
problems, one can combine the ideas of the preceding results on minsum and
minmax location.

Theorem 7.8 (FDS for Ordered Line Location) (See Lozano and Plastria 2009
for the Planar Euclidean Case) Let d be derived from a norm and let n > 2. Then
there exists a solution * to the ordered line location problem w.r.t distance d that
satisfies at least one of the following conditions:

e [* passes through two of the existing points.

e [* passes through one of the existing points and is at same weighted distance
from two of the existing points.

e [* is at the same weighted distance from three of the existing points.

 There exist two pairs of existing points v;,v;» € V and vy, v € V such that

wid(*,v;) =wprd(*,vj) and wid(I*,ve) = wird(I*, vp),

i.e., I* is at the same weighted distance from both points of each of the two pairs.

Sketch of Proof The theorem has been shown in Lozano and Plastria (2009) for the
ordered Euclidean line location problem, but also holds for all distances derived
from norms: Again, we look at the regions in dual space in which the order of the
distances from the line to the existing points does not change, i.e., in which

d(Ha’b, Uj) = d(Hu,b, U,')

does not hold for any j # i. These regions are hence bounded by the affine linear
sets

wila'v; + b wila'v; + b|
ye(a) y°(a)

(a,b): ={(a,b) :wjla'v;+b| = w;i|a"vi+b|}
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in dual space and may be interpreted as the weighted bisectors of the lines T (v;)
and Ty (v;). Taking the intersection of these regions with the regions R(H=, H=)
of the proof of Theorem 7.4, we obtain quasiconcavity on the resulting (smaller)
cells. This yields that the extreme points of these new cells are a finite dominating
set. O

This FDS allows an algorithm to solve the ordered line location problem in
O(n*), see Lozano and Plastria (2009) for the Euclidean case. The problem of
locating a hyperplane minimizing the Euclidean ordered median function has been
investigated in Kapelushnik (2008) where its equivalence to searching within the
levels of an arrangement is shown. The resulting algorithm runs in O(n>”) where its
complexity is reduced to O(nP+HmmMP—LE+y if g — |{j = 1,...,n: 1; # 0}].

A special case concerns the k-centrum line location problem, in which the sum of
distances from the line to the k most distant points is minimized. It is also an ordered
median problem and has been treated in Lozano et al. (2010). The methodology
is similar to the approach of the general ordered median problem and exploits
quasiconcavity of the objective function in the cells mentioned above. For smooth
norms, it is shown that the resulting finite dominating set consists of lines either
passing through two existing points or being at equal weighted distance from three
of them. Based on this, an O((k +log n)n?) algorithm is proposed for computing all
t-centrum lines for 1 < ¢ < k. For unweighted points, Kapelushnik (2008) suggests
an algorithm that finds a k-centrum line in the plane in time O (n logn + nk).

7.3.7 Some Extensions of Line and Hyperplane Location
Problems

7.3.7.1 Obnoxious Line and Hyperplane Location

Instead of minimizing the distances to the existing points, one may also consider
an obnoxious problem in which the new facility should be as far away from the
existing points as possible. A rather general approach for obnoxious line location is
presented in Lozano et al. (2013) in which a weighted ordered median function is
maximized. More precisely, the problem treated is the following: Given a connected
polygonal set S in the plane, the goal is to find a line which intersects S and
maximizes the sum of ordered weighted Euclidean distances to the existing points.
For such problems, the authors are again able to derive a finite dominating set which
yields an O(n*) algorithm for the general Euclidean anti-ordered median case, and
an O(n?) algorithm for the case of the Euclidean anti-median line. The case of
locating an obnoxious plane (i.e., finding the widest empty slab through a set of
existing points V') has been considered in Diaz-Bédnez et al. (2006a). Also here, a
finite dominating set could be identified leading to an algorithm in time O(n?3).
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7.3.7.2 Locating p Lines or Hyperplanes

As in point facility location it is also possible to study the problem of locating p
lines or hyperplanes H, ..., Hp. In this setting, every existing point is served by
its closest line. We may either minimize the sum of distances

fl(Hl,...,Hp):ijqg}inpd(Hq,vj) (7.15)

Jj=1
or the maximum distance

Jmax(H1, ..., Hp) = max w; min d(H,,v)) (7.16)
Jj=Ll..n q=1,..p

from the existing points to their closest lines. Minimizing the sum of distances
is called p-minsum-hyperplane location problem and minimizing the maximum
distance to a set of p hyperplanes is called p-minmax-hyperplane location problem.
Locating p lines has important applications in statistics with latent classes, and also
provides an alternative approach for clustering, called projective clustering (see,
e.g., Har-Peled and Varadarajan 2002; Deshpande et al. 2006).

Both problems are known to be NP-hard for most reasonable distance mea-
sures (see Megiddo and Tamir 1982). However, since each of the p hyperplanes
Hy, ..., H, to be located is a minsum (or minmax) hyperplane for the set of points

Vy={ve{v,...,v}:d(Hy,v) <d(Hy,v)forallg’ =1,..., p}

the results on the finite dominating sets of Theorems 7.4 and 7.7 still hold:
Theorem 7.9 Given p € IN and a set of existing points V.

e If n > D then there exists an optimal solution to the p-minsum-hyperplane
location problem in which each hyperplane passes through D existing points.

e Ifn > D + 1 then there exists an optimal solution to the p-minmax-hyperplane
location problem in which each of hyperplane is at maximum distance from D + 1
existing points.

Hence, enumeration approaches based on such an FDS are possible, however,
the number of candidates to be enumerated is of order O(n”). Recently, such an
enumeration approach for the p-minsum line location problem has been enhanced
by computing lower bounds and using them to discard elements from the FDS, see
Schieweck (2013). The idea is to cluster the demand points and find a line which
minimizes the sum of distances to the resulting demand regions. This problem is not
easier than the original problem, but since the number of demand regions is much
smaller than 7 it can be solved quicker.

Based on the FDS, another approach is possible: The problem may be trans-
formed to a p-median or p-center problem on a bipartite graph with O(|FDS|) nodes.
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The two node sets of the graph are given by the existing points V' and by the potential
hyperplanes in the FDS. Every node v from V is connected to every node H from
the FDS where the edge (v, H) is weighted by the distance, the node v has from the
hyperplane H . The goal is to serve all customers in V' by installing p new locations
in the FDS.

Finally, the problem of finding p lines in the plane is studied in Bertsimas and
Shioda (2007) where it is formulated as an integer program. Binary variables x; 4
determine to which of the ¢ = 1,..., p lines the existing point v; is assigned.
Applying their basic formulation to the linear program (7.9)—(7.14) of Sect.7.3.5
gives

n
minimize E w;d;

Jj=1

subjectto d;

%

vaa,1+bq—M(1—xj,,,) forj=1,....n,g=1,...,p
d;

v

—vaaq—bq—M(l—xj,q) forj=1,....,n,g=1,...,p

14
Y oxjg=1forj=1...n
q=1

Xjq€{0,1} forj=1,....,n,q=1,...,p
di>0forj=1,...,n
ale forg=1,...,p

bq,af{ eRfori=1,....D—1,g=1,...,p.

Solving the integer program in its basic form is not possible in reasonable time; in
Bertsimas and Shioda (2007) clustering algorithms are performed in a preprocessing
step. The above integer program can also be used for solving the minmax version of
the problem, if > is replaced by max in its objective function.

7.3.7.3 Restricted Line Location

Line location problems in which the line is not allowed to pass through a specified
set R C R? can be tackled by looking at the dual space and transforming
the restriction to a forbidden set there. Since the problem is convex for vertical
distances, techniques from location theory can be used, e.g., the boundary theorem
saying that there exists a solution on the boundary of the restricted set whenever the
restriction is not redundant (see Hamacher and Nickel 1995). The results may be
generalized to block norms or to arbitrary norms, see Schobel (1999b).

In some statistical applications it is preferable to restrict the slope of the line
(or the norm of a) as done in types of RLAD approaches (Wang et al. 2006). Such
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restrictions on the parameters of the hyperplane can again be treated and solved in
dual space, see Krempasky (2012).

Another type of restriction is to force a subset of points of V' to lie on, above
or below the hyperplane. Also for such problems, finite dominating sets have
been derived, see Schobel (2003) for hyperplane location problems in which the
hyperplane is forced to pass through a subset of points and Plastria and Carrizosa
(2012) for the more general case of requiring a specified subset of points below or
above the hyperplane.

7.3.7.4 Line Location with Polyhedra as Existing Facilities

There are also a few approaches considering the location of lines when the existing
facilities are connected sets or polyhedra in R?. The minmax problem is equivalent
to finding the thinnest strip transversal, i.e., a strip of minimal width which intersects
each of the existing polyhedra. For m polyhedra with a total of n vertices, Robert
(1991) and Robert and Toussaint (1994) solve the Euclidean problem by computing
the upper and the lower envelope of the dual representation of the existing sets
resulting in an O(n logn) approach in the unweighted case and in an O(n?logn)
approach in the weighted case. For the minsum problem, the algorithm works by
sweeping the dual arrangement and takes O(mn log m) time.

7.3.7.5 Line Location in R?

Locating a line in R? turns out to be a difficult problem since all of the structure
of line and hyperplane location problems gets lost. In Brimberg et al. (2002, 2003)
some special cases are investigated for the case D = 3, such as locating a vertical
line, or locating a line where the distance measure is given as the lengths of
horizontal paths. If these lengths are measured with the rectangular distance, the
problem can be reduced to two planar line location problems with vertical distance.
For the general case of locating a minsum line in R?, global optimization methods
such as Big-Cube-Small-Cube (Schobel and Scholz 2010) have been successfully
used, see Blanquero et al. (2011). The case of locating a minmax line in R is
known in computational geometry as smallest enclosing cylinder problem. It has
been mainly researched in R3 (Schomer et al. 2000; Chan 2000).

7.4 Locating Circles and Spheres

We now turn our attention to the location of hyperspheres. Again, we have given
a set of existing points V' C RP? with positive weights w; > 0,7 = 1,...,n.
The hypersphere location problem is to find the center point and the radius of a
hypersphere S which minimizes the distances from its surface to the points in V.
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The problem is interesting not only for Euclidean circles and spheres but also for
all unit balls derived from a norm. In this section we consider such hypersphere
location problems for different types of norms and different objective functions.

Note that circle location deals with finding a circle in R?> minimizing the
distances from its circumference to a set of points in the plane. For circle location,
more and stronger results are known than for general hypersphere location; it will
hence be treated separately where appropriate.

7.4.1 Applications

Hyperspheres and circles are mathematical objects which are well-known for
hundreds of years. The Rhind Mathematical Papyrus, written around 1650 BC by
Egyptian mathematicians, already contains a method for approximating the surface
area of a circle, see Robins and Shute (1987). The problem of fitting a circle or a
sphere to a set of data points has also been mentioned in the fourth century BC by
notes of Aristotle on the earth’s sphericity, see Dicks (1985).

Also nowadays, the location of circles and spheres has applications in different
fields. The Euclidean version of the problem is of major interest in measurement
science, where it is used as a model for the out-of-roundness problem which occurs
in quality control and consists of deciding whether or not the roundness of a
manufactured part is in the normal range (see, e.g., Farago and Curtis 1994; Ventura
and Yeralan 1989; Yeralan and Ventura 1988). To this end, measurements are taken
along the boundary of the manufactured part. In order to evaluate the roundness of
the part, a circle is searched which fits the measurements. Mathematical models for
different variants of the out-of-roundness problem are studied for instance in Le and
Lee (1991), Swanson et al. (1995), and Sun (2009).

Circle and hypersphere location problems have also applications in other dis-
ciplines, e.g., in particle physics (Moura and Kitney 1992; Crawford 1983) when
fitting a circular trajectory to a large number of electrically charged particles
within uniform magnetic fields, or in archeology where minmax circles are used to
estimate the diameter of an ancient shard (Chernov and Sapirstein 2008). In Suzuki
(2005), the construction of ring roads is mentioned as an application. Many further
applications are collected in Nievergelt (2010). They include

* the analysis of the design and layout of structures in archeology,

* the analysis of megalithic monuments in history,

* the identification of the shape of planetary surfaces in astronomy,

* computer graphics and vision,

* calibration of microwave devices in electrical engineering,

* measurement of the efficiency of turbines in mechanical engineering,
* monitoring of deformations in structural engineering, or

* the identification of particles in accelerators in particle physics.
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There is also a relation to equity problems (see Gluchshenko 2008; Drezner
and Drezner 2007) of point facility location and to a problem in computational
geometry which is to find an annulus of smallest width. These relations are specified
in Sect. 7.4.4.1.

In statistics, the problem is also of interest. As Nievergelt (2002) points out,
many attempts have been made of transferring total least squares algorithms from
hyperplane location problems to hypersphere location problems (e.g., Kasa 1976;
Moura and Kitney 1992; Crawford 1983; Rorres and Romano 1997; Spéth 1997,
1998; Coope 1993; Gander et al. 1994; Nievergelt 2004).

7.4.2 Distances Between Points and Hyperspheres

Let d be a distance derived from some norm || - ||, i.e.,, d(x,y) = ||y — x|. A
circle or a sphere with respect to the norm || - || is given by its center point x =
(x',...,xP) € R? and its radius r > 0:

Ser={yeRP :d(x,y)=r}.
The distance between a sphere S = S, and a point v € RP is defined as

d(S,v) =mind(y,v)
y€ES

and can be computed as
d(Sx,ry U) = |d(x7 U) - rl'

The following properties of the distance can easily be shown.

Lemma 7.5 (Korner et al. 2012; Korner 2011) Given a distance d derived from
a norm, and a point v € RP, the following hold:

e d(Sy,,v) is convex and piecewise linear in r,
e d(Syr,v) is locally convex in (x, r) if v is a point outside the sphere, and
e d(Sy,,v) is concave in (x,r) if v is inside the sphere.

Before analyzing minsum or minmax circles or hyperspheres, let us remark that
even the special case with only n = 3 existing points in the plane (D = 2)
is a surprisingly interesting problem. Within a wider context it has recently been
studied in Alonso et al. (2012a,b). Here, the circumcircle of a set of three points is
investigated (which is the optimal minmax or minsum circle for the three points).
Dependent on the norm considered, such a circumcircle need not exist, and need
not be unique. Among other results on covering problems, the work focuses on a
complete description of possible locations of the center points of such circumcircles.
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7.4.3 The Minsum Hypersphere Location Problem

We start with the minsum hypersphere location problem. Given a distance d derived
from a norm, the goal is to find a hypersphere S = S, which minimizes

fi(Ser) =Y wid(Ser.v;) =Y wyld(x,v;) = r]. (7.17)

Jj=1 Jj=1

The location of a Euclidean circle in the plane has been defined and treated in
Drezner et al. (2002). This has then been generalized to the location of a norm-circle
in the plane in Brimberg et al. (2009b), and later to the location of a hypersphere with
respect to any norm in R? (Korner et al. 2012). The Euclidean case in dimension d
has been also extensively analyzed in Nievergelt (2010).

We start by presenting some general properties of minsum hypersphere location
problems. In contrast to hyperplanes, it is not obvious in which cases a minsum
hypersphere exists, since a hypersphere can degenerate to a point (for r = 0) and to
a hyperplane (for r — o0). The following results are known.

Lemma 7.6 (Brimberg et al. 2011a; Korner et al. 2012)

* No hypersphere with r = 0 can be a minsum hypersphere.

e For any smooth norm there exist instances for which no minsum hypersphere
exists.

e For any elliptic norm and any block norm a minsum hypersphere exists for all
instances withn > D + 1.

Since no optimal solution degenerates to a point, we need not bother with
existence results if we restrict 7 to an upper bound and solve the problem then.

Let us now discuss the halving property. To this end, we define the set of points
outside, on, and inside the hypersphere

Sx>,r =1{J 6{1,...,n};d(x’vj)>r}
Sx<,r =1{J 6{1,...,n};d(x’vj)<r}
Sx=,r ={je{l,....n}:d(x,v;) =r}

and let

Wx>,r = Z Wi, ij = Z Wjs Wx<,r = Z Wi

JESTy JEST JESE,

As before, let W = Z};’=1 w; be the sum of all weights.
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Theorem 7.10 (Halving Property for Minsum Hyperspheres) (Brimberg et al.
2011a; Korner et al. 2012) Let Sy, be a minsum hypersphere w.r.t to any distance
derived from a norm. Then

w w
W, < ~ and Ws, < 5 (7.18)

Sketch of Proof If we increase the radius from r to r + € the distance to points in
S, decreases by ¢, and the distance to points in S, increases by €. This means,

it W2, > % we can improve the objective function by increasing the radius.
(Analogously, if W=, > % we can improve the objective function by reducing
the radius.) ]

While the halving property can be nicely generalized, this is unfortunately
not true for the determination of a finite dominating set. The generalization of
Theorem 7.4 would be that there always exists an optimal Euclidean circle passing
through three of the existing points. However, this turned out to be wrong, even in
the unweighted case (see Fig.7.1 for a counter-example). For most distances it is
not even guaranteed that there exists an optimal circle passing through two points.
The only incidence property that can be shown is the following.

Lemma 7.7 Let d be any distance derived from a norm. Then there exists a minsum
hypersphere w.r.t d which passes through at least one point v € V.

Sketch of Proof Let Sy, be a hypersphere. Fix its center point x and assume
without loss of generality that the existing points are ordered such that d(x, v;) <
d(x,v2) <...<d(x,v,). Then the objective function f’(r) := fi(Sy,) in (7.17)

is piecewise linear in r on the intervals [; := {r : d(x,v;) < r < d(x,vj41},
j =1,...,n—1, and hence takes a minimum at a boundary point, i.e., there exists
an optimal radius r = d(x, v;) forsome v; € V. O

The proof uses that the radius of an optimal circle is the median of the distances
d(x,vy),...,d(x,v,) which was already recognized in Drezner et al. (2002).

Not much more can be said in the general case. The only (again, weak) property
into this direction we are aware of is the following:

Lemma 7.8 (Korner et al. 2012) Let S = Sy, be a minsum hypersphere with
radius r < oo. Then S intersects the convex hull of the existing points in at least
two points, i.e., |S N conv(V)| = 2.

Furthermore, if |S N conv(V)| < oo, then S N conv(V) C V.

7.4.3.1 Location of a Euclidean Minsum Circle

For the Euclidean distance and the planar case D = 2 it is possible to strengthen
the incidence property of Corollary 7.7.



160 A. Schibel

Theorem 7.11 (Brimberg et al. 2009b) Let d be the Euclidean distance, and
consider the planar case, i.e., let D = 2. Then there exists a minsum circle which
passes through two points of V.

The result has been shown by looking at the second derivatives of the objective
function (in an appropriately defined neighborhood) which reveal that a circle
passing through exactly one or none of the existing points cannot be a local
minimum.

An algorithmic consequence of Theorem 7.11 is that there exists an optimal
circle with center point x being on a bisector of two of the existing points, hence
a line search along the bisectors is possible. Using Theorem 7.10 a large amount
of bisectors may be excluded beforehand. Figure 7.5 shows the Euclidean bisectors
for five existing facilities where the relevant parts (which contain center points of
circles having the halving property) are marked in bold.

Another approach was followed in Drezner and Brimberg (2014): Here the
unweighted case is shown to be an ordered median point location problem with
weights A = (—1,...,—1,1,..., 1) with equal number of —1’s and 1’s if n is even,
and with weights A = (—1,...,—1,0,1,..., 1) with equal number of —1’s and 1’s
if n is odd. The resulting ordered median point location problem was then solved
using the Big-Triangle-Small-Triangle method (Drezner and Suzuki 2004) with the
d.c. bounding technique proposed in Brimberg and Nickel (2009).

\Blz Biy By Bjs
Bys

.V3

v V.
1 2| Vy

/
B3

Fig. 7.5 The Euclidean bisectors for five existing points. The notation B;; indicates that the
corresponding line is the bisector for points v; and v;. The parts of the bisectors which may contain
a center point of a minsum circle are marked in bold
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7.4.3.2 Location of Minsum Circles and Hyperspheres with Block Norms

If d is derived from a block norm, a finite dominating set can be constructed for
the center point of the minsum circle. To this end, graph all fundamental directions
{e1,...,ec} € R? of the block norm through any of the existing points v € V' and
add the bisectors for all pairs of existing points in V. The intersection points of these
lines are a finite dominating set which can be tested within O(n*) time, see Korner
(2011) and Brimberg et al. (2011a).

Using that the block norm of a point y is given as

G G
Iyl =min{} e, :y=> azep.0p = 0forg=1.....G}
g=1 g=1
the problem can in the case of block norms alternatively be formulated as the

following linear program with nG 4 2n 4+ D + 1 variables, see Brimberg et al.
(2011a) for the planar case and Korner et al. (2012) for the case of hyperspheres.

n
minimize Zw j (zj' + Zj_)
=1
G
subject to Z(xg,j =r +zj’ —z;forj=1,...,n
g=1

G
E ag e =x—v;forj=1,...,n
g=1

Zf.g = 0forj=1,....n
g >0forg=1,...,G,j=1,...,n
r>0

x e RP.

7.4.4 The Minmax Hypersphere Location Problem

We now turn our attention to the location of a minmax hypersphere, i.e., we look for
a hypersphere which minimizes the maximum weighted distance from its surface to
the set V' of existing points. Given a distance d derived from a norm, the goal hence
is to find a hypersphere S = S, which minimizes

Fnax(Syr) = max’_jw;d(Sy,.v;) =Y wjld(x,v;) = r]. (7.19)
j=1
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Note that the problem of locating a Euclidean minmax circle in the plane is older
than the corresponding Euclidean minsum circle problem; a finite dominating set
has already been identified in Rivlin (1979). Its rectangular version is due to
Gluchshenko et al. (2009). In R” the Euclidean minmax hypersphere location
problem has been analyzed mainly in the Euclidean case, see Nievergelt (2002).

7.4.4.1 Relation to Minimal Covering Annulus Problem and Equity
Problem

The problem of locating a minmax circle has a nice geometric interpretation. For
equally weighted points it may be interpreted as finding an annulus of minimal width
covering all existing points. This problem has been studied in computational geom-
etry, hence results on minmax circle location have been obtained independently in
location theory and in computational geometry.

In location science the minmax hypersphere location problem has an interesting
application as a point location problem. Namely, the (unweighted) center point x of
an optimal hypersphere S, » minimizes the difference

max d(x,v;)— min d(x,v;),
j=1..n j=1..n
i.e., it minimizes the range to the set V. We conclude that minmax hypersphere
location problems can be interpreted as ordered median point location problems.
Therefore, the point x may be interpreted as a fair location for a service facility as
used in equity problems, see Gluchshenko (2008) for further results.

7.4.4.2 Location of a Euclidean Minmax Circle

Let us start with the Euclidean case in dimension D = 2: In this case, the problem
has been discussed extensively in the literature, mainly in computational geometry
under the name of finding an annulus of smallest width. In contrast to the Euclidean
minsum circle problem, where an FDS could not be found, the following result
shows that an FDS for the (Euclidean) minmax hypersphere exists.

Theorem 7.12 (FDS for the Euclidean Minmax Circle) (e.g., Rivlin 1979; Brim-
berg et al. 2009a) Let D = 2 and let C be a minmax circle with finite radius. Let
h:=max;=1_ _,w;d(C,v;). Then there exist four points having distance h to the
circle C, two of them inside the circle and two of them outside the circle.

The theorem was shown for the unweighted case independently in many papers,
among others in Rivlin (1979), Ebara et al. (1989), Garcia-Lopez et al. (1998) and
it was generalized to the weighted case in Brimberg et al. (2009a). The result can be
interpreted in different ways:
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* In the geometric interpretation, the result means that the annulus of minimal
width covering all points has two points on its inner circumference and two points
on its outer circumference (Rivlin 1979).

» It also shows that the center point of a minimax circle is either a vertex of the
(nearest neighbor) Voronoi diagram or of the farthest neighbor Voronoi diagram
or lies at an intersection point of both diagrams (Le and Lee 1991; Garcia-Lépez
et al. 1998).

For the unweighted problem, Ebara et al. (1989) use this result and present
an enumeration algorithm with runtime in O(n?). If the points in V are given in
an angular order, Garcia-Lopez et al. (1998) present an algorithm which runs in
O(n log n) and which can even be improved to O(n) if the points in V' are the vertices
of a convex polygon. This is in particular helpful for solving the out-of-roundness
problem (see Sect. 7.4.1), since the measurements are taken along the manufactured
part in angular order in this case. A gradient search heuristic is provided in Drezner
et al. (2002) and global optimization methods were used in Drezner and Drezner
(2007) who use the Big-Triangle-Small-Triangle method (based on Drezner and
Suzuki 2004) for its solution. Randomized and approximation algorithms are also
possible, see Agarwal et al. (2004, 1999).

More references on the computation of Euclidean minmax circles can be found
in Garcia-Loépez et al. (1998) and in Brimberg et al. (2009a).

7.4.4.3 Location of a Minmax Circle with Rectangular Distance

Gluchshenko (2008) and Gluchshenko et al. (2009) consider the minimal annulus
problem for the rectangular distance. This means, the circle to be located is a
diamond, and the distances from the given points to the circle are measured in the
rectangular norm. The following is an important result.

Theorem 7.13 (FDS for the Rectangular Minmax Circle) (Gluchshenko et al.
2009) There exists a minmax circle whose center point is a center point of a smallest
enclosing square.

This means the set of all center points of smallest enclosing squares (which can
be determined easily) is an FDS. Based on this, Gluchshenko et al. (2009) develop
an optimal O(n logn) algorithm for finding a minmax circle with respect to the
rectangular norm.

Recently, the problem in which the annulus may also be rotated has been
considered in Mukherjee et al. (2013) where an O(n?logn) algorithm has been
proposed.
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7.4.4.4 Location of a Euclidean Minmax Hypersphere

The problem of finding a minmax hypersphere in dimension D > 3 was considered
in Garcia-Lépez et al. (1998). The authors give necessary and sufficient conditions
for a point to be the center point of a locally minimal hypersphere with respect
to fmax- Independently, also Nievergelt (2002) considers the problem of locating
a hypersphere in R” with Euclidean distance. Analogously to his approach for
minmax hyperplanes, he interprets the problem as the location of two concentric
hyperspheres with minimal distance which enclose the set V' of existing points. This
results in a generalization of Theorem 7.12 to higher dimensions.

Theorem 7.14 (FDS for the Euclidean Minmax Hypersphere) (Nievergelt 2002)
There exists a Euclidean minmax hypersphere S which is rigidly supported by the
point set V, i.e., there does not exist any other pair of concentric hyperspheres
enclosing all points of V' and passing through the same points of V as S.

Based on this property, Nievergelt (2002) derives a finite algorithm finding a
minmax hypersphere with respect to the Euclidean distance. A linear time (1 + €)
factor approximation algorithm for finding a Euclidean minmax hypersphere is
given in Chan (2000).

7.4.5 Some Extensions of Circle Location Problems
7.4.5.1 Minimizing the Sum of Squared Distances

An earlier variant of the hypersphere location problem minimizes the sum of
squared distances of the existing points to the circle, i.e., it considers

fzz(Sx,r) = ZWJ' (d(SXJ" vj))z
j=1

as objective function. In Drezner et al. (2002) it is shown that the least squares
objective is equivalent to minimizing the variance of the distances. The problem is
(like the minsum and minmax problem) non-convex; heuristic solution approaches
are suggested. In Drezner and Drezner (2007) the Big-Triangle-Small-Triangle
global optimization algorithm is successfully applied.

Minimizing the sum of squared distances from the points in V to a circle has
been also considered within statistics in Kasa (1976), Crawford (1983), Moura and
Kitney (1992), Coope (1993), Gander et al. (1994), Rorres and Romano (1997),
Spith (1997, 1998), and Nievergelt (2004).
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7.4.5.2 Locating Euclidean Concentric Circles

In a recent paper, Drezner and Brimberg (2014) introduce the following interesting
extension of the circle location problem: They look for p concentric circles with
different radii ry, ..., r, which minimize the distances to a given set of points. In
their paper they assume a partition of V' into sets V1,..., V), and require that each
point in V; is served by the circle with radius r;. This means the variables to be
determined are the center point x € R? and the radii 1, ..., r » of the p circles. The
model is considered for the least squares objective function, the minsum, and the
minmax objective function. Using that

d(Sx,rj’Uj) = Id(x, vj) _rl

the objective functions which are considered are given as

P
... rpy) = Z Z w; (d(x.v;) )

q=1v;€V,

P
Silx,r, o) = Z Z wild(x,v;)—r]

q=1v;€V,

Drezner and Brimberg (2014) solve the problem by global optimization methods,
using a reformulation of the circle location problem as an ordered median point
location problem (see the location of a Euclidean minsum circle in Sect. 7.4.3) and
applying the Big-Triangle-Small-Triangle method (Drezner and Suzuki 2004).

7.4.5.3 Location of a Circle with Fixed Radius

The location of a circle with fixed radius is considered in Brimberg et al. (2009a). In
this case, it can be shown that considering every triple of points separately yields an
optimal solution, i.e., a finite dominating set can be derived by solving (Z) smaller
optimization problems.

7.4.5.4 Generalized Circle Location: Locating the Unit Ball of One Norm
Measuring Distances with Respect to Another Norm

The circle location problem treated so far is to translate and scale a circle S = {x €
R? : |x|| < 1} (derived from norm | - ||) in such a way that the distances to the set V/
are minimized, where the distances are measured with respect to the same norm || - ||.
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Fig. 7.6 Locating a unit ball of norm k; with respect to another norm k,. Left: The unit circle of
the maximum-norm is to be located, distances are measured w.r.t the rectangular norm. Right: The
Euclidean circle is to be located, distances are measured w.r.t the maximum norm

In Korner et al. (2009, 2011) this problem is studied for two different norms under
the name generalized circle location.

More precisely, given two norms k; and k, and a set of points V' in the plane
with positive weights w; > 0, the goal of generalized circle location is to locate and
scale the unit ball of norm k; such that the sum of weighted distances between its
circumference and the given points is minimized, where distances are measured by
the other norm k,. Figure 7.6 shows two possible situations. In the left part of the

figure, the new facility is the scaled and translated unit circle of the k; := || + ||max
norm and the distances to the four given points are measured by the k, = || - ||
norm. In the right part, k; := || - |2 and k2 := || * || max-

In Korner et al. (2011), properties of minsum generalized circle location are
investigated, and it is shown that not much of the properties for minsum circle
location still hold. There is neither an easy formula for computing the distance
between a point and such a generalized circle, nor does any of the incidence criteria
hold. In fact, there are examples in which no optimal circle passes through any of
the existing points. However, if both norms k| and k, are block norms, a finite
dominating set can still be identified (see Korner et al. 2009). The problem of
locating a general circle is interesting for many special cases, e.g. if a box should be
located. Such cases have been studied in Brimberg et al. (2011b).

7.5 Locating Other Types of Dimensional Facilities

7.5.1 Locating Line Segments

The line segment location problem looks for a line segment with specified length
which minimizes the distances to the set V' of existing points.
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Location of line segments has been considered in Imai et al. (1992), Agarwal
et al. (1993), Efrat and Sharir (1996) for the Euclidean minmax problem, and in
Schobel (1997) for the minsum problem with vertical distances. In both the cases it
is possible to determine a finite dominating set; the latter case can be transformed to
a restricted line location problem.

Recently, locating line segments received new interest within the following
problem: A line segment and a point facility are to be located simultaneously. In
this setting, the line segment can be used to speed up traveling in the plane in which
a new point facility should be built. The problem has been treated in the plane,
using rectangular distances in Espejo and Rodriguez-Chia (2011, 2012) where a
characterization of optimal solutions was used to derive an algorithm. This could be
improved in Diaz-Banez et al. (2013) to an O(n?) approach. These approaches are
based on a finite dominating set which can be obtained by reduction of the location
problem to a finite number of simpler optimization problems.

7.5.1.1 The Widest Empty 1-Corner Corridor in the Plane

An empty corridor in the plane is an open region bounded by two parallel polygonal
chains that does not contain any of the existing points V' = {v;,...,v,}, and that
partitions the existing points into two non-empty parts. This can be interpreted as an
obnoxious dimensional location problem: locate a polygonal chain maximizing the
minimum distance to the existing facilities. Empty corridors have been of interest in
computational geometry (see e.g., Janardan and Preparata 1996). An empty corridor
is called a I-corner empty corridor if each of the two bounding polygonal chains has
exactly one corner point. The problem in which the angle at the corner point is given
and fixed has been studied in Cheng (1996). Recently, Diaz-Bénez et al. (2006b)
considered the problem of locating a widest 1-corner corridor using techniques of
facility location: they were able to derive a finite dominating set consisting of locally
widest 1-corner corridors among which a solution may be chosen. Their approach
needs O(n* logn) time. It was further improved to own? log2 n) time in Das et al.
(2009).

7.5.1.2 Two-Dimensional Facilities

Covering problems are the most common problems in which the location of full-
dimensional facilities is considered. There exist, e.g., many papers about covering
points by a circle (i.e., locating one point x such that all given points are in a given
threshold distance from x), by a set of circles, or even by a set of aligned circles
(occurring when the center points of the circles to be located are forced to lie on
a common straight line), or circles satisfying other restrictions. Covering problems
are not reviewed here, we refer to Plastria (2001) or to Chap. 5.

However, also the location of a two-dimensional facility X such that the minsum
or minmax objective function is minimized, has been considered in the literature. If
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there exists a location for X such that all existing points are covered, this location
is clearly an optimal solution with objective value zero both for the minsum and for
the minmax problem. If it is not possible to cover all points, the minsum and the
minmax problem usually have different solutions.

A paper dealing with the location of a two-dimensional facility is Brimberg and
Wesolowsky (2000) where the rectangular distance is considered and special cases
could be transformed to classical point location problems. In the context of facility
layout the location of a rectangular office with minsum and minmax objective
function has been studied in Savas et al. (2002), Kelachankuttu et al. (2007) and
Sarkar et al. (2007). In these papers, already existing offices are treated as barriers.
Various problem variations for the location of an axis-parallel rectangle (with fixed
circumference, with fixed area, with fixed aspect ratio, or with fixed shape and size)
have been considered in Brimberg et al. (201 1b). For most cases, a finite dominating
set could be derived.

The location of a two-dimensional ball

B, ={yeR*:d(x.y)<r}

with given and fixed radius r has been considered in Brimberg et al. (2013a) both
for the minsum and the minmax objective function. Note that the distance between
B, and v

d(By,v) Zféiz? d(y,v)

is measured as the closest distance to any point in B, and not only to points on its
circumference Sy ,. This means that

d(By.v) = 0 ifvel?x
d(Sy,,v) otherwise.

Hence, Lemma 7.5 yields that d(By, v) is a convex function and consequently, the

resulting optimization problems are much easier to solve than the circle location

problems of Sects. 7.4.3 and 7.4.4. We remark that the location of a full-dimensional

ball has the following interesting interpretation as a point location problem with

partial coverage:

Assume that we are looking for a new facility x € R? for which we know that
little or no service cost (or inconvenience) is associated with existing points that are
within an acceptable travel distance r from x. Thus, costs will be associated only
to those existing points that are further away from the facility than this threshold
distance r. If we assume that these costs are proportional to the distance in excess
of r, the resulting problem is equivalent to the location of a ball with radius r, and its
center point is the optimal location x we are looking for. This has been pointed out
in Brimberg et al. (2013a) where the behavior of the optimal solution with respect
to the threshold distance r is studied.
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Line location with the partial coverage objective function is equivalent to locating
a strip of given width and has recently been considered in Brimberg et al. (2013b).

7.5.1.3 A General Approach Based on dc-Programming

Blanquero et al. (2009) deal with the location of a variety of dimensional facilities
such as segments, arcs of circumferences, arbitrary convex sets, their complements,
or their boundaries. The idea is to fix the shape of the dimensional facility and to
look for a shift vector and an angle of rotation. The objective they follow is very
general, including most objective functions used in location theory, and allows also
to model obnoxious or semi-obnoxious location problems as follows: The set of
existing facilities is split into a subset V'* for which the new facility is attractive
and a subset V'~ for which the new facility has negative effects. The distance from
the new facility to an existing point should be small when the point is in ¥t and
large when it is in V™. In order to combine the distances within the same set V
and V'~ Blanquero et al. (2009) propose to evaluate the norm (or the gauge) of the
resulting single distances.

Using that the Euclidean distance d (S, v) between a point and a set can be written
as difference of convex functions, Blanquero et al. (2009) solve the model by d.c.-
programming methods, outer approximation and branch and bound.

7.6 Conclusions

For the location of dimensional facilities we can draw the following conclusions.

* The location of a one-dimensional facility (i.e., a point) and a two-dimensional
facility of convex shape with respect to a norm are convex problems if distances
are measured by norms.

* In contrast, the location of a one-dimensional facility with respect to a norm is
a non-convex problem which usually has many locally optimal solutions. Only
the vertical distance leads to convex hyperplane location problems (if also the
objective function g is convex).

* However, many of the investigated problems of locating a one-dimensional
facility are piecewise quasiconcave on a cell structure in dual space. This leads to
a finite dominating set. Another possibility for deriving an FDS is via Helly-type
theorems.

* When distances are measured w.r.t a block norm, problems are often piecewise
linear and can hence be solved by linear programming methods.

* The halving property holds when the problem is linear with respect to one of its
variables.

The main properties pointed out in this chapter are summarized in Table 7.2.
They have the following algorithmic consequences.
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Table 7.2 Summary of properties for some of the considered location problems

Problem FDS Halving LP
Minsum hyperplane with d = d,, Yes Yes Yes
Minsum hyperplane with norm Yes Yes No
Minsum hyperplane with block norm Yes Yes Yes
Minsum hyperplane with gauges No (Yes) No
Minmax hyperplane with norm Yes No No
Minmax hyperplane with block norm Yes No Yes
Minmax hyperplane with gauges Yes No No
Ordered minsum hyperplane with norm Yes Yes No
Minsum line in R? No No No
Line may not pass through a polyhedral set Yes No No
Minsum/minmax p-line with norm Yes No No
Minsum hypersphere with norm No Yes No
Minsum hypersphere with block norm Yes Yes Yes
Minmax hypersphere with Euclidean norm Yes No No
Minmax circle with rectangular norm Yes No Yes

The FDS property gives the straightforward possibility of enumerating the
candidate set. Also for the location of p facilities the FDS property is still helpful,
although the number of candidates increases to O(|FDS|?). As demonstrated for the
p-minsum line location problem in Sect.7.3.7, an FDS also allows to transfer the
problem of locating p facilities to a p-location problem on a bipartite graph with
O(|FDS|) nodes. It is ongoing work to test such approaches numerically.

Enumeration may be enhanced by the halving property which can be used
to directly discard candidates. Such discarding tests are also useful in other
approaches, even if no FDS is known, since the halving property allows to discard
whole regions when searching for an optimal solution. An example is the search
along bisectors which can be reduced to the relevant parts in the Euclidean minsum
circle location problem. Also in geometric branch & bound approaches such as Big-
Square-Small-Square (Plastria 1992), Big-Triangle-Small-Triangle (Drezner and
Suzuki 2004), or Big-Cube-Small-Cube (Schobel and Scholz 2010), discarding tests
motivated by the halving property may be interesting.

Using linear programming methods is an efficient way of solving facility location
problems, in particular if the number of variables needed for the linear program
is not too large. This is the case for block norms with not too many fundamental
directions.

While many questions in the location of lines and hyperplanes seem to be solved,
there are still questions remaining in the location of hyperspheres. These concern,
on one hand, general properties about the location of hyperspheres with other than
the minsum objective function and with arbitrary norms or gauges. On the other
hand, there are also many special cases waiting to be investigated, in particular if
the sphere is defined with respect to another norm as the distance function.
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Concerning the location of new types of dimensional structures, researchers
should look for shapes which are of interest for other disciplines or for applications.
Similarly, identifying additional restrictions and particularities arising in applica-
tions in operations research, statistics, and computational geometry and including
them in the models is a future challenge.

Acknowledgements I want to thank Robert Schieweck for providing useful hints on line and
hyperplane location problems.
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Chapter 8
Facility Location Under Uncertainty

Isabel Correia and Francisco Saldanha da Gama

Abstract In this chapter, we cover some essential knowledge on facility location
under uncertainty. We put a major emphasis on modeling aspects related with
discrete facility location problems. Different modeling frameworks are discussed.
In particular, we distinguish between robust optimization, stochastic programming
and chance-constrained models. We also discuss relevant aspects such as solution
techniques, multi-stage stochastic programming models, scenario generation, and
extensions of basic problems.

Keywords Chance constraints ¢ Robust optimization * Stochastic programming

8.1 Introduction

Many facility location problems involve strategic decisions that must hold for
some considerable time. During this time, changes may occur in the underlying
conditions. For instance, we may observe an unexpected disruption in the network
due to some failure, or we may realize that the values of some parameters (e.g.,
demand levels) vary in an unpredictable manner. In such cases, it may be desirable
to account for uncertainty in advance. This can be accomplished by embedding
uncertainty in the models, leading to solutions that somehow anticipate it.

The review papers by Louveaux (1993) and Snyder (2006) show that much work
has been done within this topic. The different sources of uncertainty we may observe
in a facility location problem have led to the development of different research
branches. One of them regards unexpected disruptions in the network structures
(e.g., in the facilities or in the transportation channels) and is addressed in detail
in Chap.24. Another important research branch concerns congestion models. In
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this case, the customers’ requests for service have a probabilistic behavior and
a facility or equipment may be busy when a new request arrives. This is the
topic addressed in Chap. 17. In the current chapter, we focus on aspects emerging
from uncertainty associated with the parameters of a facility location problem. We
show how uncertainty can be embedded in the models built for supporting the
decision making process. For illustrative purposes, we consider several well-known
facility location problems. We focus on discrete models. This is motivated by the
practical relevance that such models have acquired in the recent decades due to
many successful applications of facility location theory to areas such as logistics,
transportation and routing (see Chap. 1).

In the following sections we assume that the reader is familiar with basic
concepts from robust and stochastic optimization. Important references in these
fields include Birge and Louveaux (2011) and Shapiro et al. (2009) (for stochastic
programming) and Kouvelis and Yu (1997) and Ben-Tal et al. (2009) (for robust
optimization).

The remainder of this chapter is organized as follows. In the next section, we
discuss general aspects related with uncertainty. In Sect. 8.3, we address robust
facility location problems. In Sect. 8.4, we focus on stochastic programming models.
Section 8.5 is devoted to chance-constrained problems. In Sect. 8.6 we discuss some
challenges and give suggestions for further reading. The chapter ends with a short
conclusion.

8.2 Uncertainty Issues

Basic information underlying a facility location problem includes demand levels,
travel time or cost for supplying the customers, location of the customers, presence
or absence of the customers, and price for the commodities. Uncertainty may occur
in one or several of these parameters.

One crucial aspect when dealing with uncertainty regards its representation.
First, uncertain parameters may be discrete or continuous. Second, if probabilistic
information is available, the uncertain parameters can be represented through
random variables. In this case, using the well-known characterization proposed by
Rosenhead et al. (1972), we say that we are making a decision under risk and we can
resort to stochastic programming models and methods for dealing with the problem.
If this is not the case, we are making a decision under uncertainty and a robustness
measure is usually considered for evaluating the performance of the system. It is
important to note that the existence of a probabilistic description for the uncertainty
does not prevent the use of some robustness measures, as it will be detailed in the
next section.
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We call “scenario” a complete realization of all the uncertain parameters. This
notion is independent of whether or not probabilistic information is available.
Nevertheless, if uncertain parameters can be represented by random variables, some
probability can be associated with each scenario. Depending on the problem, we
may have a finite or infinite number of scenarios. As it will be discussed later, this
fact has impact on the models and techniques that can be used.

One important feature that influences the type of model to be considered,
regards the attitude of the decision maker towards risk. Two attitudes are typically
considered: risk neutral and risk averse. In the first case, the decision maker does
not take risk into account when making a decision and a linear function is a
correct representation of the utility associated with the decision maker. When a
probability can be associated with each scenario, a risk neutral decision maker looks
for the decision which minimizes the expected cost (or maximizes the expected
return or utility). A risk averse decision maker can be associated with a concave
utility function (when utility is measured on the vertical axis and monetary value
is measured on the horizontal axis). In this case, the decision maker wants to
avoid unnecessary risk and the expected value of the future assets is no longer an
appropriate objective. Such decision maker may look, for instance, for the solution
minimizing the maximum cost across all scenarios.

Finally, in some classes of problems, there is another aspect that influences the
mathematical model to be considered: the identification of the ex ante and ex post
decisions. In the first case, we have the here-and-now decisions, i.e., the decisions
that must be implemented before uncertainty is revealed; in the second case, we
have the decisions to be implemented after uncertainty is disclosed. The latter set
of decisions is often used as a reaction to the values observed for the uncertain
parameters. In a facility location problem, the location of the facilities is often an
ex ante decision. This is a consequence of the strategic nature of such decisions
in many problems, which imposes their fully implementation before uncertainty is
revealed. Regarding the allocation or distribution decisions, they will depend on the
specific problem addressed whether they will be ex ante or ex post decisions. In the
following sections we address both situations.

8.3 Robust Facility Location Problems

We start by assuming that uncertainty is appropriately captured by a finite set of
scenarios. As mentioned above, each scenario fully determines the value of all the
uncertain parameters. If no probabilistic information is available, one possibility for
measuring the performance of a system is to use a robustness measure. Two classical
objectives are often considered: minmax cost and minmax regret.

For illustrative purposes, we consider a well-known facility location problem:
the p-median problem. In this problem, we have a set of demand nodes, J, each
of which to be served by one out of p new facilities to be located. The potential
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locations for the facilities coincide with the locations of the demand nodes. In its
discrete version, the p-median problem can be formulated as follows:

Minimize Y " dja;x; (8.1)
ieJ jeJ

subjectto  » xy=1, jeJ (8.2)
ieJ
Xij = Xii, ielJ, ] eJ (8.3)
ini =P (8.4)
ieJ
x;€1{0,1}, ield, jel. (8.5)

In this formulation, a;; represents the distance or travel time between demand nodes
iand j (i, j € J)andd; is the demand or weight of node j (j € J); x;; is a binary
variable equal to 1 if node j € J is allocated to node i € J and 0 otherwise; x; = 1
indicates that a facility is located at i. The goal is to minimize the total weighted
distance or travel time.

In a p-median problem, uncertainty can occur in the demands (or weights) or
in the distances (or travel times). Denote by §2 the finite set of scenarios and by
® € 2 one particular scenario (that fully determines the uncertain parameters).
Suppose that the location of the facilities is an ex ante decision and the allocation
of the customers to the operating facilities is an ex post decision. In order to capture
uncertainty, we need to consider binary location variables y; indicating whether a
facility is located at i € J, and scenario-indexed binary allocation variables x;;,
indicating whether demand node j € J is allocated to facility i € J in scenario
€ £2. The minmax p-median problem can be formulated as follows:

Minimize v (8.6)
subject to szjwaiiwxijw <v, weN 8.7)
iel jel
Y oxjp=1. jel wef (8.8)
ieJ
Xjo =yi, 1€J,je], we (8.9)
Y yi=p (8.10)
ieJ
Xjw €40,1}, ie€J jel wef 8.11)

y; €4{0,1}, iel. (8.12)
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In this model, d ., represents the demand of node j € J under scenario w € 2,
and a;;, represents the distance (or travel time) between nodesi € J and j € J
under scenario @ € §2. The minmax objective arises from the combination of (8.6)
and (8.7).

The solution provided by the previous model tends to be overly conservative. It
reflects a complete aversion of the decision maker towards risk. In fact, by planning
for the worst case scenario (the maximum weighted distance occurring across all
scenarios), the decision maker may be planning for a scenario which turns out to
be very unlikely. A better compromise can be achieved by considering the minmax
regret! criterion, in which the decision maker chooses the decision that minimizes
the maximum regret across all scenarios. The corresponding model is obtained by
replacing (8.7) with

szjwa[ijl‘jw —vr<v, we§L, (8.13)

iel jeJ

where v’ is the optimal value of problem (8.1)-(8.5) solved for scenario w € 2.
Serra and Marianov (1998) consider the above minmax regret model after scaling
the demands. In particular, for each scenario, they divide each demand by the total
demand under that scenario. The authors also note the well-known fact that when
the optimal objective function differs significantly across the different scenarios, the
relative regret is a more appropriate robustness measure (see, for instance, Kouvelis
and Yu 1997). In this case, (8.13) should be replaced by

*
dies Zje] djolijoXijo — Vg,

*
v(t)

we . (8.14)

For this problem, the same authors propose a heuristic approach.

A different problem is addressed by Serra et al. (1996). They consider a firm that
wishes to locate p facilities in a competitive environment. The goal is to maximize
the minimum market captured in a region where competitors are already operating.
The criterion considered corresponds to the “maximization” version of the minmax
“cost” criterion discussed above. Uncertainty is assumed for the demand and for the
location of the competitors. Again, a heuristic approach is proposed for tackling the
problem.

If the allocation of customers to facilities is also an ex ante decision, the models
above can be easily adapted. In this case, the scenario index should be removed
from the allocation variables, i.e., the allocation variables become those introduced
in model (8.1)—(8.5). Furthermore, the location variables y; are no longer necessary,
as variables x;; (i € J) can play their role.

'In each scenario, the regret of a solution is the difference between the cost of the solution if the
scenario occurs and the optimal cost that can be achieved under that scenario (see Kouvelis and Yu
1997 for further details).
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The above models work with a finite set of scenarios. In practice, however, this is
not always a correct representation for the uncertainty. In many situations, an uncer-
tain parameter can lie in some infinite set. A popular way of capturing uncertainty
in these cases is via intervals. In the general context of robust optimization, two
types of uncertainty sets are often considered: box and ellipsoidal uncertainty sets
(see Ben-Tal et al. 2009, for further details). In the first case, uncertainty is defined
by a set of linear constraints; in the second case, quadratic expressions involving
the uncertain parameters are used. We illustrate the use of box uncertainty sets
considering the uncapacitated facility location problem (UFLP), whose well-known
formulation is the following:

Minimize Y fiyi+ Y Y cyd;xy (8.15)

iel iel jeJ

subjectto  » xy=1, jeJ (8.16)
iel
xj <y, i€l jelJ (8.17)
yi €{0,1}, iel (8.18)
xj>0, iel, jel. (8.19)

In this model, / denotes the set of potential locations for the facilities, J is the set
of customers, f; represents the setup cost for facility i € I, c¢;; corresponds to the
unitary cost for supplying the demand of customer j € J from facility i € I and
d; gives the demand of customer j € J. The binary variable y; indicates whether
a facility is installed at i € 7, and the continuous variable x;; represents the fraction
of the demand of customer j € J that is supplied from facility i € I.

We consider now a common source of uncertainty in a facility location problem:
the demand. Under box uncertainty, each demand level, d; (j € J), lies in an
interval B; = [d; —€A;,d; + €A;] with 0 < € < 1. The parameter € measures
the uncertainty “magnitude”; Ej denotes a reference value for the demand of
customer j € J, and is commonly referred to as the nominal value for the unknown
parameter. Finally, A; is a scaling factor.

A particular case of box uncertainty that we consider for illustrative purposes
arises when A; = d; (j € J), which leads to the intervals B, = [d;(1 —
€).d j(1+€)](j € J). Given these intervals, we can formulate the so-called robust
counterpart of model (8.15)—(8.19). Considering an auxiliary variable v, we can
rewrite the objective function of the problem as

Minimize v, (8.20)
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and the following constraint is added to the problem:

S v+ 3D ydixg < v. (8.21)

iel iel jeJ

By considering an augmented constraint for (8.21), namely

i Vi gdjxi o < v, 8.22
D Syt max 0D eydyxgp <0 (8:22)

iel iel jeJ

the robust counterpart of (8.21) becomes

Zfiyi +chij [3,'(1 +e)] X < v. (8.23)

iel iel jeJ

The robust counterpart of (8.15)-(8.19) consists of minimizing (8.20) subject
to (8.16)—(8.19), and (8.23).

A drawback of box uncertainty is that it comprises the possibility of having all
the uncertain parameters taking simultaneously their worst values. This is often
not realistic. Accordingly, other type of uncertainty sets may be more appropriate,
leading to less conservative solutions. Ellipsoidal uncertainty arises as an alternative
in such cases. Baron et al. (2011) study the use of box and ellipsoidal uncertainty
in a facility location problem with a time varying uncertain demand. The location
of the facilities and their operating capacity are ex ante decisions that should hold
for the entire planning horizon, during which the demands must be satisfied. The
goal is to maximize the overall profit. Nikoofal and Sadjadi (2010) avoid the most
conservative solutions arising from considering box uncertainty by imposing a
maximum total scaled variation for the uncertainty parameters. The authors address
a p-median problem with interval uncertainty associated with the distances (or
travel times). In particular, for each pair (i, j), i, j € J, they assume that a;; can take
any value within an interval [a;, a;] previously defined. Additionally, the choices for
the values a;; are restricted by the relation } ; ¢, ;. ;(aj—a;)(@;—a;) < L, where
L denotes a maximum level previously imposed for the total scaled variation. This
type of relation avoids the situation in which all (or many) parameters take their
extreme values simultaneously.

In all problems discussed above, no probabilities were associated with the
scenarios. However, in some situations, a probability 7, can, in fact, be associated
with each scenario w € £2. A well-known robustness measure in this case, is
the expected cost, which is equivalent to the expected regret (see Snyder 2006).
Current et al. (1997) study a facility location problem consisting of locating a set
of p facilities here-and-now, together with the possibility of locating an extra set
of facilities during a planning horizon previously defined. The number of facilities
to locate during the planning horizon is an outcome of the problem. The authors
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compare the solutions obtained using the minmax regret and the expected regret
criteria.

When probabilities can be associated with the scenarios, an alternative robustness
measure proposed by Snyder and Daskin (2006) is “a-robustness”. The idea is to
look for a solution minimizing the expected cost/distance but such that the relative
regret in each scenario is less or equal than «. In the case of the p-median problem,
assuming ex ante location decisions and ex post allocation of customers to the
operating facilities, we obtain the following model:

Minimize Y > " 7,d 0o Xiio (8.24)

weR i€l jeJ

subjectto  (8.8)—(8.12)

Z Z djotijoXijo < (1 + )V}, o€ 2. (8.25)
iel jeJ

As pointed out by Snyder and Daskin (2006), this model generalizes the well-
known models proposed by Weaver and Church (1983) and Mirchandani et al.
(1985). Snyder and Daskin (2006) also apply these ideas to the UFLP. They analyze
the complexity of both problems (the a-robustness p-median problem and the o-
robustness UFLP) and develop Lagrangian relaxation based approaches in order to
compute lower and upper bounds for the problems. The final gaps are closed using
branch-and-bound procedures.

All the robustness measures discussed and illustrated above involve all scenarios.
When the number of scenarios is too high, the large-scale models obtained may
become intractable. In this case, restricting the scenario set may be unavoidable.
This was done by Daskin et al. (1997) that introduced the a-reliable minmax regret
p-median problem. The authors seek to minimize the maximum regret over a subset
of scenarios. This subset is referred to as the reliability set. It is built from the
original set in such a way that the total probability associated with its scenarios is at
least some pre-specified value «. As pointed out by Baron et al. (2011), this idea has
a purpose similar to the use of ellipsoid uncertainty: the exclusion of low-probability
(typically extreme) scenarios. An extension of the above robustness measure was
introduced by Chen et al. (2006) who introduced the «-reliable mean-excess regret.
This measure weights the maximum regret over the reliability set and the conditional
expectation of the regret over the scenarios not included in the reliability set.

A different robustness concept was introduced by Carrizosa and Nickel (2003)
within the context of continuous facility location, although the concept can be
extended to network or discrete problems. In that paper, nominal values are assumed
to have been estimated for the (uncertain) weights of a set of nodes. A maximum
value is preset for the weighted distance between a single facility to be located and
the demand nodes. The robustness of a location is then defined as the minimum
deviation of the vector of weights with respect to the nominal vector that turns that
location an infeasible solution. The goal of the problem is to find the most robust
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location. This yields a non-linear fractional model that the authors tackle by existing
methods and by ad-hoc procedures they propose in the paper.

One final aspect worth mentioning in this section regards the relevance of using
a model like the ones described above, instead of a “simplified” deterministic
model. When probabilities can be associated with the scenarios, we can measure
this relevance by using the expected value of perfect information (EVPI). The EVPI
indicates how much the decision maker would be willing to pay for getting perfect
information. Suppose we have an expected cost minimization problem. In this case,
the EVPI is obtained by computing the difference between the weighted sum of
the optimal values for all scenarios (using the probabilities as weights) and the
minimum expected cost. The reader should refer to Kouvelis and Yu (1997) for
further details.

8.4 Stochastic Facility Location Problems

A facility location problem under uncertainty, can often be casted within a stochastic
programming modeling framework if uncertainty can be described by some proba-
bility distribution. In this case, we say that we are dealing with a stochastic facility
location problem.

We start by considering the UFLP (8.15)—(8.19). In practice, several parameters
in this model may be uncertain. This is the case of the distribution costs and of
the demands. Let us assume that uncertainty can be measured probabilistically. In
particular, denote by = the random vector containing all the random parameters
(e.g., & = ((Cl‘j)l‘e]’je_], (dj)jej)). Furthermore, suppose that we know the joint
probability distribution of Z. Assuming ex ante location decisions, the model to
be adopted will depend on the ex post decisions, namely on the moment in time
where allocation or distribution decisions are to be implemented. If we have ex
post allocation decisions, the following stochastic uncapacitated facility location
problem with recourse can be considered:

Minimize Y fiyi +Q(») (8.26)
i€l
subjectto y; €{0,1}, i€l (8.27)

with Q(y) = Ez [Q(», §)], and Q(y, &) denoting the optimal value of the following
problem:

Minimize Z Z C,",'dj Xij (828)

iel jeJ
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subject to inj =1, jelJ (8.29)
iel
xj <y, i€l jel (8.30)
x;j >0, iel, jel. (8.31)

Model (8.28)—(8.31) is defined for every realization, £, of =, i.e., for every
realization of costs and demands. Accordingly, the allocation decisions x;; (i € I,
j € J), which do not appear in the first-stage problem, can change with different
realizations of the random vector. For this reason, they are referred to as recourse
decisions. Regarding the variables associated with the location of the facilities, y;,
they correspond to ex ante (first-stage) decisions and thus, they must hold for all
possible realizations of the random variables. The expectation defining the recourse
function Q(y), implicitly conveys a neutral attitude of the decision maker towards
risk. Later in this section, we discuss another possible attitude and the corresponding
consequences from a modeling point of view. It is also important to emphasize that
constraints (8.30) and (8.31) together assure that at least one facility is installed.
Finally, it should be noted that we are dealing with a problem that has relatively
complete recourse, i.e., for every first-stage feasible solution, y; (i € I) there is at
least one second-stage feasible completion (solution), x; (i € I, j € J) for every
possible realization of the random quantities.

If we have a finite set of scenarios, say §2, we can go farther with the above
model. In order to do so, we consider scenario-indexed parameters and variables.
Denote by c;, the cost for supplying customer j € J from facility i € I under
scenario @ € §2, and let d,, be the demand of customer j € J under scenario
w € $2.1If x4, is the fraction of the demand of customer j € J satisfied from
facility i € I under scenario w € §2, then we can consider the following extensive
form of the deterministic equivalent:

Minimize Z Jiyi + Z o Z Z Cijod joXijo (8.32)

iel wER iel jeJ

subjectto  (8.28)

D oxjp=1. jelwef (8.33)
iel
Xjo <yi, i€l jel, weR (8.34)

Xjw >0, i€l, jel we . (8.35)
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In the above model, the non-anticipativity principle® is implicitly considered: each
first-stage decision variable has the same value for all scenarios.

So far, no capacities have been considered for the facilities. When they exist,
several adjustments are required. Denote by ¢; the capacity of a facility established
ati € I. A model for the capacitated stochastic facility location problem is obtained
if we replace (8.30) with

Zdjx,j <gqiyi, 1€l (8.36)
jeJ

With the inclusion of these constraints, it may happen that for some first-stage
feasible solution, no feasible completion exists in the second stage for one or
several realizations of the random vector, i.e., the problem no longer has relatively
complete recourse. This feasibility issue adds an extra difficulty to this stochastic
programming problem. Infeasibility in the second stage is often an indication of an
undesirable first-stage solution. A natural way for addressing this issue is to penalize
the non-satisfied demand, which makes sense from a practical point of view. In fact,
such penalties correspond, for instance, to costs associated with opportunity losses.
Denote by v; the demand of customer j € J which is not supplied and denote by
i ; the corresponding unitary penalty cost. Note that v/; is also a random variable as
it depends on the occurring realization of the random vector Z. We can still consider
the first stage problem (8.26)—(8.27). However, the second stage problem becomes
the following:

Minimize Y Y cjd;x;+ Y piv; (8.37)
i€l jeJ jeJ
subjectto  (8.31), (8.36)
Ay xj+v;=d;. jel (8.38)
iel
¥; >0, jelJ. (8.39)

Again, if a finite set of scenarios exists, we can consider scenario-indexed recourse
variables and parameters, and we can write the deterministic equivalent in its
extensive form.

In the capacitated model just described, capacities are exogenous. Louveaux
(1986) considers a stochastic facility location problem with endogenous capacities.
In particular, capacity decisions are ex ante decisions, i.e., the capacities of the
facilities must be decided in advance before uncertainty is disclosed. A unitary cost
gi is considered for the capacity to be installed at location i € [. Additionally,

2 A decision should depend only on the information available at the time it is made (see Rockafellar
and Wets 1991).
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the author considers the existence of variable production costs at the facilities as
well as revenues associated with demand satisfaction. Denote by r; the unitary
revenue obtained from customer j € J. Additionally, assume that ¢; (i € I,
j € J) includes the production costs. A new decision variable z; (i € I) must
be considered, representing the capacity to be installed at location i € I. Now, it
may not be rewarding to satisfy all the demand; the trade-off between revenues and
costs will decide the best service level for each customer. The capacitated model
formulated above, can be easily adapted to the new conditions, leading to the model
proposed by Louveaux (1986):

Minimize Z fiyvi + ZgiZi +Q(y,2) (8.40)
iel iel

subjectto  (8.27)
7z >0, iel, (8.41)

with Q(y,z) = Eg[Q(y,z.§)], and Q(y,z,§) denoting the optimal value of the
following problem:

Minimize » " (c;j—r;) d;xy (8.42)
iel jeJ

subject to inj <1, jelJ (8.43)
iel

(8.30), (8.31)

Zdjx,-jfzi, iel. (844)
jed

Louveaux and Peeters (1992) consider a finite set of scenarios for this problem
and propose a dual-based procedure for the extensive form of the deterministic
equivalent.

A different type of models emerge when the distribution decisions (represented
by x-variables) become first-stage decisions. In this case, penalties are paid in the
second stage for excess and shortage inventory. In addition to the notation already
presented, we denote by ¢; the excess inventory of customer j € J and by A;
the corresponding unitary cost. Assuming deterministic distribution costs (as they
are associated with an ex ante decision), we can formulate the stochastic facility
location problem as follows:

Minimize Y fiyi + Y > cixy + Q(x) (8.45)

iel iel jeJ

subjectto  (8.27), (8.30), (8.31),
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with Q(x) = Ez [Q(x, £)], and Q(x, &) denoting the optimal value of the following
problem:

Minimize Y " A;¢; + > p;¥; (8.46)
jeJ jeJ
subjectto d; Y xj+ VY —¢; =d;.  jeJ (8.47)
i€l
Vi ¢; =0, J€J. (8.48)

Capacities can be easily included in the above model leading to the so-called
stochastic transportation-location problem which has been investigated by several
authors (e.g., Franga and Luna 1982; Holmberg and Tuy 1999).

So far in this section, we have assumed that the allocation and distribution
decisions are made simultaneously, either after or before uncertainty is disclosed.
In some problems, these decisions can be made separately. We now consider the
situation in which the allocation of the customers to the facilities is a here-and-
now decision but the quantities to ship from the facilities to the customers are to
be decided after uncertainty is revealed. This situation is motivated, for instance,
by logistics applications, when a contract has to be previously signed, determining
a priori the distribution channels but leaving the distribution decisions dependent
on the observed values of the stochastic parameters. Such case can also occur
in companies providing some service and that need to define a priori groups of
customers that will be allocated to some server or facility. In this case, we need to
explicitly consider allocation decision variables. In particular, we denote by w;; the
binary variable equal to 1 if customer j € J is allocated to facility i € I and 0
otherwise. The single-allocation version of the problem was introduced by Laporte
et al. (1994) and has the following formulation:

Minimize Y fiyi + Y > byjwi + Q(w) (8.49)
i€l iel jeJ

subjectto w; <y;, i€l,jelJ (8.50)
dowisl jelJ (8.51)
i€l
yiow; €{0,1}, iel, jel, (8.52)

withQ(w) = Ez [Q(w, §)], and O (w, &) denoting the optimal value of the following
problem:

Minimize Z Z (ci—r;)dix; (8.53)
i€l jeJ

subjectto x; <wy;, i€l, jelJ (8.54)
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Y dixi<qi. i€l (8.55)
jeJs
xj >0, iel, jel. (8.56)

In the above model, bj; is a fixed cost for allocating customer j € J to facility
i € I. The other notation was already introduced before. Note that in this problem,
facilities are capacitated. Laporte et al. (1994) consider a finite set of scenarios and
solve the extensive form of the deterministic equivalent using the integer L-shaped
method previously proposed by Laporte and Louveaux (1993).

In line with the idea of allocating the customers before uncertainty is disclosed,
Albareda-Sambola et al. (2011) consider Bernoulli demands, which represent a
possible request for some service. This is an example of a problem in which the
presence or absence of customers is itself a source of uncertainty. The problem,
which we revisit below, is important to show that finding a deterministic equivalent
is not always straightforward (or even possible) as the models above could indicate.

In the problem studied by Albareda-Sambola et al. (2011), there is a limited
capacity for the facilities in terms of the number of customers that can be served.
In particular, for each facility i € I, there is a maximum number of customers, ¢;,
that can be served from the facility. Due to the uncertainty in the demand, it makes
sense to allocate (a priori) to some facility more customers than the service capacity.
In the end, it may turn out that a facility has a number of requests for service
above its capacity. In this case, outsourcing is considered and the corresponding
costs incurred. An important assumption in many logistics systems that the authors
also consider is that, for each facility i € I, there should be a minimum number
of customers ¢; allocated to it to justify its establishment. The problem can be
conceptually formulated as follows.

Minimize Z fiyvi + Ez [Service cost + Outsourcing cost] (8.57)
iel

subjectto Y xy=1, jelJ (8.58)
iel
Xij = Vi, iel, jel (8.59)
Gy <> xz. i€l (8.60)

jeJ

yiox; €401}, iel jel. (8.61)

Denote by &; the demand of customer j € J that is assumed to follow a Bernoulli
distribution with parameter p;. For each first-stage solution, denote by z; the
number of customers assigned to facility i € I (i.e.,z; = Y. jes Xij) and denote by
n; the random variable representing the number of customers that request the service
(referred to as demand customers) among those assigned to facility i € I (i.e.,
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i = ) jes £jXi). Note that the probability distribution of ; is quite involved as it
depends on the actual values of x;; (j € J). Denote by P, (n; = s) the probability
that n; isequaltos (s =0,...,z).

Albareda-Sambola et al. (2011), consider two possible outsourcing actions. We
use one of them to illustrate the difficulties that may arise in formulating a determin-
istic equivalent. In particular, we consider the so-called customer outsourcing. In
this case, when the number of customers allocated to some facility i € I requesting
the service (demand customers) exceeds ¢;, n; — ¢; customers have to be served
directly from an external source. A FIFO policy is assumed for deciding which
customers to serve from the facility and which ones to outsource. The cost for
supplying each outsourced costumer is denoted by g; and depends on the facility
to which the customer was originally assigned. Denote by P;(s) the conditional
probability of serving a demand customer assigned to facility i € I given that the
total number of demand customers assigned to facility i € I is s (i.e., n; = 5). We
have

min{g;,s} J1 ifs <gq;

P;(s) = (8.62)

s qi/s otherwise
Due to the fact that the expected value is additive, the recourse function can be

written as the sum of the expected service cost plus the expected outsourcing cost.
These terms can be computed as follows:

2
E¢ (service cost) = Z Z]P’x (n; = s) x E(Service cost|n; = )

i€l s=0
2
=Y D Pty =) Y P = Lni = $)Pils)eyxy | -
iel s=0 jeJ

(8.63)

Zi
E¢ (Outsourcing cost) = Z Z P, (n; = s) x E¢(outsourcing cost|n; = s)

iel s=0
2
=Yg D Pitn=96-aq) | (8.64)
iel s=q;+1

A close look into the above expressions reveals that even for tiny instances, a
deterministic equivalent formulated from these expressions becomes intractable. In
fact, the number of scenarios is huge even for a small number of customers (note
that a scenario is defined not only by the set of customers which request the service
but also by the order of the requests when calling for service). Nevertheless, for the
homogeneous case, i.e., p; = p, j € J, it is possible to go farther and derive a
tractable deterministic equivalent, as we show next.
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When all the customers have the same probability of requesting the service, then
n; follows a binomial distribution with parameters z; and p. Thus, P, (n; = s) =
(Z;) p’(1—p)i~*,s =0,...,z. We denote by ;,, the probability that a binomial
random variable with parameters ¢ and p takes the value s. In the homogeneous
case, it is straightforward to show that P(§; = 1|n; = s) = s/t and consequently
(taking also (8.62) into account) that P(§; = 1|n; = 5)IP;(s) = min{g;, s}/¢, which
does not depend on x. Accordingly, the service cost (8.63) can be written as

Z Z (Ct/xt/ Z é‘apvmm{q’ : S})

i€l jeJ

A deterministic equivalent can now be obtained by considering discretized location
and allocation variables accounting for the number of customers allocated to a
facility. In particular, define y! as a binary variable equal to 1 is a facility is located

ati € I with ¢ customers allocated to it (t = ¢;,...,|J|) and O otherwise. Define,
also, x as a binary variable equal to 1 if customer j € J is allocated to facility i € 1
which has t customers allocated to it (¢ = ¥;,...,|J|). Finally, we can formulate a

deterministic equivalent problem:

|J] t
Minimize Z Z yigi Z Cis(s — q1)
i€l t={(; s=q;+1
4 mm{ql,s}
+Y D e Y X Zz,ps (8.65)
i€l jeJ t={;
1|
subjectto » Y xh=1, jelJ (8.66)
i€l t={;
doxh=nl ielt=4t.... || (8.67)
jel
17|
Doyl el (8.68)
yie{0,1}, iel,t=4,...,.|J] (8.69)
x; €401}, iel, jed, t=4,... |J| (8.70)

Albareda-Sambola et al. (2011) show that using a general solver, instances of the
problem with a realistic size can be solved within an acceptable CPU time using
the model above. The authors also explore the advantages of the homogenous case
for the alternative outsourcing action they consider. The reader should refer to their
paper for further details.
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Recently, Hinojosa et al. (2014) considered a problem with location decisions
made at a tactical or operational level, i.e., location decisions are ex post decisions.
The multi-product problem considered in this paper arises in the context of logistics
systems. Like in some of the above problems, the available distribution channels
correspond to a decision made before demand is known and result from some
contract or option. Furthermore, due to the limited capacity at the facilities, the
distribution channels contracted in advance may turn out to be insufficient for
covering the demand that occurs. In this case, a penalty is incurred (corresponding,
e.g., to a “last minute” and thus more expensive contract, to an outsourcing action,
or simply to an opportunity loss cost). The location decisions correspond to the
“activation” of existing equipments or facilities from where the commodities will
be shipped to the customers. Accordingly, this becomes a decision that can be
made only after demand is revealed. The authors formulate the extensive form of
the deterministic equivalent and solve it for instances with a realistic size using a
general solver.

In all of the above models, the recourse function is the expected value of the
second-stage problem. As mentioned before, this conveys a neutral attitude of the
decision maker towards risk. Location decisions are often strategic and involve
significant investments. Accordingly, a risk-averse attitude towards risk cannot be
disregarded as a possibility to be considered. One way of capturing such attitude
consists of applying a Markowicz type of approach in which the recourse function
is expanded to include a variability measure. Taking, as an example, model (8.26)—
(8.31) this consists of defining

Q(y) = Ez [Q(y.§)] — AVarg [Q(y. §)]. (8.71)

Such a modeling framework in facility location is far from new (see Jucker and
Carlson 1976). Nevertheless, this type of approach has a clear disadvantage: it often
results in a non-linear large-scale mixed-integer model. Different possibilities for
overcoming this drawback are discussed by Louveaux (1993).

Stochastic discrete facility location problems have attracted much attention in
the recent years. Some papers not mentioned so far include those by Ravi and Sinha
(2006), Lin (2009), Wang et al. (2011) and Kiya and Davoudpour (2012).

In the context of logistics with particular emphasis to logistics network design,
we can also observe an increasing attention paid to stochastic facility location
problems (see Chap. 16 for further details). We can refer, among others, to Aghezzaf
(2005), Listes and Dekker (2005), Mo and Harrison (2005), Romauch and Hartl
(2005), Pan and Nagi (2010), Fonseca et al. (2010), and Nickel et al. (2012).

Recently, Alumur et al. (2012) explored the possibility of using a robustness
measure within a stochastic programming modeling framework. The authors apply
the idea to a hub location problem. Uncertainty is associated with two sets of
parameters. In both cases, uncertainty can be captured by a finite set of scenarios.
For one set of parameters, probabilistic information is assumed to be known which
is not the case for the other set. The authors propose a so-called robust-stochastic
model: for each scenario associated with the parameters that have no probabilistic
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information associated to them, a stochastic program is formulated, capturing the
uncertainty associated with the other set of parameters (those for which probabilistic
information exists). Then, a minmax regret formulation is proposed for the overall
problem. The reader should refer to the paper for further details.

As in the preceding section, when using a stochastic programming approach, it
is important to evaluate its relevance compared to a more simplified deterministic
approach. Although no robust measure exists for asserting such relevance, two
measures are often used to give an indication of such relevance: the EVPI and
the value of the stochastic solution (VSS). The EVPI is computed as described in
Sect. 8.3. To obtain it, we have to solve the distributional problem (i.e., to find the
optimal value for each scenario). In many cases this is cumbersome, namely when
the number of scenarios is high or even infinity. The VSS emerges as an alternative
and can be obtained in two steps: (i) the expected value problem is solved. This is
the deterministic problem obtained when the random variables are replaced by their
expectation; (ii) the stochastic problem is considered and the difference between
its optimal value and the value of the solution obtained in (i) is computed. This
difference gives the VSS (the reader should refer to Birge and Louveaux 2011 for
further details).

8.5 Chance-Constrained Facility Location Problems

One important class of optimization problems under uncertainty includes chance-
constrained problems. The idea is that one or several constraints of the problem are
not required to always hold. Instead, the decision maker is satisfied if they hold with
some given probability. This type of constraints may be of relevance when dealing
with reliability issues.

In the particular case of a facility location problem, if demand is uncertain but
still the decision maker wants to plan for satisfying all the demand whatever it
may turn out to be, the resulting solution may call for an operational capacity
much above the demand level that turns out being observed. In such situation, one
alternative is to plan for assuring a certain service level, i.e., assuring that with some
pre-specified probability, the overall demand does not exceed the capacity of the
operating facilities.

In order to exemplify these modeling capability, we consider the classical single-
source capacitated facility location problem. Assume that fixed costs are associated
with the location of the facilities and also with the allocation of customers to the
facilities. Additionally, assume that facility i € I has capacity ¢;, and that demands
d; (j € J) are stochastic. We can formulate a capacitated facility location problem
with minimum service level as follows:

Minimize Z Jivi + Z Z CijXij (8.72)

iel iel jeJ
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subjectto  (8.16)—(8.18)

P> dixy<qiyi |z i€l (8.73)
jed
x; €{0,1}, i€l jel (8.74)

In this model, «; is the minimum probability of having the demand assigned to
facility i € I not exceeding the capacity of the facility. Typically, high values are
assumed for «; (e.g., 0.90 or 0.95).

One important feature in a model like the one above, is the possibility of obtain-
ing a deterministic equivalent formulation with the probabilistic constraints being
replaced by deterministic ones. Unfortunately, this is not always a straightforward
task. One successful example for the problem above is due to Lin (2009). The author
considers independent demands following a Poisson or a Gaussian distribution. For
illustrative purposes, we detail the procedure in the former case.

If the demands d; are independent and follow a Poisson distribution P(A;),
j € J, then the total demand assigned to facility i € I, i.e., Zjej d;x;; follows
a Poisson distribution P (u;) with u; = Zjej A jx;. Accordingly, (8.73) becomes
equivalent to

Ze_’“% > iel (8.75)
=0

which, in turn, has a deterministic equivalent of the form

Z/\jx,j <vy, i¢€el. (8.76)
jes
In this model, v; = E[Y], where 7 is a random variable following a Poisson

distribution with an expectation that is equal to the largest value assuring that
P(Y < ¢q;) > «;. As detailed by Lin (2009), the value v; can be easily obtained by a
search method in which the mean of 7" is changed until P(7" < g;) is approximately
equal to o; (i € I). After replacing the probabilistic constraints (8.73) by (8.76)
the resulting problem becomes a single-source capacitated facility location problem
that can be tackled by any of the available methods for such problem. Lin (2009)
also explores the possibility of having independent demands following a Gaussian
distribution. In this case, the deterministic equivalent of the probabilistic constraints
yields a non-convex feasible region. The author proposes a relaxation for the
problem that is then embedded into a heuristic approach.

A well-known facility location problem with chance constraints is the covering-
location problem proposed by ReVelle and Hogan (1989). The authors assume that
a server may be busy when a customer requests to be served. Let us denote by 7
the probability that this occurs. In a discrete covering-location problem, we have
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a set of potential locations for the facilities (see Chap.5). A customer is said to
be covered if a facility is established within a maximum distance or travel time
specified in advance. Accordingly, for each customer, we can find the subset of
potential locations for the facilities which cover the customer. The goal is to cover all
the demand minimizing the number of facilities installed. The “classical” covering
constraints are

Yoyizl jel (8.77)

i€l

where I; denotes the set of locations covering customer j € J. The probabilistic
version of these constraints is the following:

P [At least one location is available for serving customer j| >«, j € J. (8.78)

These constraints have as a deterministic equivalent,

Y vizh (8.79)

i€l

with 8 = [In(1 — «)/Inx]. In fact, the probability that no location among those
covering customer j € J is available to serve the customer immediately is given by

miel Vi, Thus, the probability that at least one location covering customer j € J

can serve it immediately is given by 1 — el i which, together with (8.78) leads
to the deterministic equivalent just presented.

8.6 Challenges and Further Reading

Despite all the existing work on facility location problems under uncertainty, many
challenges still exist. In this section, we provide the reader with some notes on
relevant issues not discussed in the previous pages, and we give suggestions for
further reading.

8.6.1 Multi-Stage Stochastic Programming Models

In all the stochastic facility location problems discussed above, it was assumed that
there is a single moment for uncertainty to be revealed. However, in many situations,
this is not the case. Instead, we may observe uncertainty being progressively
revealed in more than one occasion. When this happens, the two-stage stochastic
programming modeling framework discussed in Sect. 8.4 is no longer appropriate,
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and a multi-stage setting is required. Nickel et al. (2012) address one such case by
considering a multi-period facility location problem with service level and invest-
ment decisions. The demand as well as the rates of return for the investments are
uncertain. Uncertainty is captured via a scenario tree. In addition to minimizing the
overall cost, the problem seeks to minimize the downside risk.> The deterministic
equivalent problem is formulated in its extensive form and solved using a general
solver. Other works addressing multi-stage stochastic facility location problems
include the one by Herndndez et al. (2012) which considers a multi-period problem
with stochastic demands. The problem consists of determining the locations and
dimensions of a preset number of new jails in Chile and determine when and where
to expand the existing capacity. The goal is to minimize the total expected costs
of the system. A large-scale model is obtained and solved approximately using a
heuristic combining branch-and-fix coordination (Alonso-Ayuso et al. 2003) and
branch-and-bound. Albareda-Sambola et al. (2013), propose a so-called fix-and-
relax coordination approximation procedure for tackling a multi-period facility
location problem with uncertainty in the costs and in the customers’ requests for
service.

Taking the previous works into account, one might think that a stochastic
multi-period facility location problem necessarily leads to a multi-stage stochastic
programming problem. However, this is not true. In some cases, the strategic
multi-period decisions can be seen as first-stage decisions in a two-stage stochastic
programming modeling framework. For instance, we may decide here-and-now how
the location of the facilities will occur during the entire planning horizon. In the
second stage problem, the operational decisions will be made, which can adapt to
the different realizations of the uncertainty. Works exploring this possibility include
those by Ahmed and Garcia (2004) and Aghezzaf (2005).

8.6.2 Solution Methods

Most facility location problems under uncertainty are NP-hard since they generalize
well-known NP-hard problems. In particular, this is true for the discrete problems
that have been discussed in this chapter. In these cases, either the size of an instance
to be solved is such that the resulting model is manageable by a general solver or
one must resort to techniques from combinatorial optimization, such as heuristics
and relaxation-based approaches.

Regarding robust facility location problems, the minmax structure often con-
sidered makes them harder to solve than the corresponding minsum deterministic
problems. The reader can refer to Snyder (2006) for a deeper discussion on this
issue. That paper presents a sketch of the procedure typically followed for tackling
minmax regret problems. Although some general procedures have been proposed

3Measure of how much the return on investment is below a target initially imposed.
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for minmax problems (e.g., Mausser and Laguna (1998), for minmax regret linear
problems with interval uncertainty) in most cases, specially tailored procedures,
exact or approximate, must be developed for efficiently tackling the problems.
Analytic results and polynomial time algorithms have also been proposed but only
for problems with some underlying structure, such as a network.

As far as stochastic discrete facility location problems are concerned, again, they
are often difficult to solve to optimality. Even when the number of scenarios is finite
and an extensive form of the deterministic equivalent can be obtained, we often end
up with a large-scale mixed-integer linear programming problem not manageable
by a general solver. In this case, specific approaches, exact or heuristic, have to be
developed for tackling the problems. Laporte et al. (1994) make use of the integer
L-shaped method proposed by Laporte and Louveaux (1993) for solving a two-stage
stochastic facility location problem with first-stage binary variables. In the context
of logistics systems, Alonso-Ayuso et al. (2003) introduce the so-called branch-
and-fix coordination scheme, which they consider for solving a stochastic facility
location problem. The technique proposed can be used for solving general two-stage
stochastic programming problems with binary first-stage variables and both binary
and continuous variables in the second stage.

A general approach for multi-stage stochastic mixed-integer linear programming
problems was proposed by Escudero et al. (2009, 2010). In those papers, the branch-
and-fix coordination scheme proposed by Alonso-Ayuso et al. (2003) was extended
in order to solve multi-stage problems with integer variables. As mentioned above,
Hernéndez et al. (2012) embed such approach within a heuristic procedure.

When exact approaches fail to solve the problems, we must resort to approximate
procedures. One particular difficulty in stochastic programming arises when the
number of scenarios is too large or even infinite. In this case, one possibility is
to use a sampling approach. The sample average approximation approach (SAA)
introduced by Kleywegt et al. (2001) is one such example which has become
quite popular. Applications of this approach to stochastic facility location were
proposed by Kiya and Davoudpour (2012), Romauch and Hartl (2005) and Santoso
et al. (2005). Sampling approaches have also been proposed for general chance-
constrained problems by Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009).
The application to facility location problems is still to be explored.

Other algorithms for stochastic programming problems include the generation
of cutting planes introduced by Guan et al. (2009) for multi-stage problems, and
the dual decomposition based approaches developed by Carrge and Schultz (1999)
and Escudero et al. (2012). To the best of our knowledge, the first type of approach
was never applied to stochastic facility location. However, there are several papers
proposing dual decomposition based algorithms for problems that include location
decisions, namely those by Schiitz et al. (2008, 2009). The latter work combines dual
decomposition with SAA. In this type of method, the non-anticipativity constraints
are explicitly considered in the model and dualized, which allows a scenario-
decoupling for the relaxed problem.
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8.6.3 Scenario Generation

In this chapter it has often been assumed that uncertainty can be represented by a set
of scenarios. In particular, it has been assumed that each scenario fully determines
all the uncertain parameters. In practice, defining the scenarios is itself a relevant
problem.

In some situations, scenarios are associated with driving forces (e.g., the political
conditions in a specific region, economic trends or some technological develop-
ments) which, in turn, influence the input of the model that supports the decision
making process. In this case, it is up to the decision maker to understand these
driving forces and the way they influence the input of the model. This understanding
leads to a complete definition of the scenarios. The reader should refer to Kouvelis
and Yu (1997) for a deeper discussion on this matter.

In other situations, namely in the context of stochastic programming, scenario
generation may be important either to instantiate large deterministic equivalent
models or to restrict the set of scenarios in a sampling approach used within a
solution procedure. The reader should refer to Dupacova et al. (2003), Hgyland and
Wallace (2001), Di Domenica et al. (2007) and the references therein for further
details.

In the case of facility location problems, a short discussion on scenario generation
is presented by Kouvelis and Yu (1997) who discuss the issue in the context of a
network with uncertain node weights. Assuming a small set of possible values for
the demand of each node, one possibility is to take as a scenario each element of the
cartesian product of the sets for all nodes. Nevertheless, this is strongly discouraged
since the number of scenarios easily leads to intractable models. Instead, the
authors highlight that in many location problems the driving forces mentioned
above are the key element inducing uncertainty and thus should be identified and
taken into account. Typically, these forces induce high correlation between different
parameters. If a small number of such factors is identified, the number of scenarios
associated with them should be manageable.

8.6.4 Other Notes

One important research topic in facility location under uncertainty regards location-
inventory problems. These are problems in which location decisions are combined
with inventory management: uncertainty can hardly be disregarded in a realistic
modeling framework. This type of problems that was introduced by Daskin et al.
(2002) and extended by Snyder et al. (2007) is of great relevance in complex systems
such as those arising in logistics. The reader should refer to Chap. 16 for further
details.
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Another area with great potential is stochastic location-routing. One such
problem was solved by Albareda-Sambola et al. (2007). This is a complex and
challenging topic.

Finally, this chapter could not come to an end before a brief reference to
continuous and network facility location problems under uncertainty. We did not
focus on this type of problems although some significant work has been done and
much progress achieved. The reader can refer to Snyder (2006) for a review of the
fundamental literature addressing these problems. Some recent works on network
facility location under uncertainty include those by Conde (2007), Berman and
Drezner (2008), Berman and Wang (2010), Sonmez and Lim (2012), Lim and
Sonmez (2013), Lépez-de-los-Mozos et al. (2013), Lu (2013), and Lu and Sheu
(2013). Recent references on continuous problems include Blanquero et al. (2011)
and Drezner et al. (2012).

8.7 Conclusions

In this chapter we have covered several essential aspects related with discrete
facility location under uncertainty. Despite the extensive work reported, the existing
literature can still be considered scarce in comparison with the literature devoted
to deterministic models. However the relevance of facility location in areas where
uncertainty if often unavoidable, such as logistics, routing and transportation, has
led to an increased interest in the topic addressed in this chapter. In order to better
support many decision making processes, it is important to embed uncertainty in the
optimization models and, by doing so, to obtain solutions which can anticipate it.
The existing literature shows that despite the advances we have observed, dealing
with uncertainty in facility location problems remains a challenging and promising
research field.
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Chapter 9
Location Problems with Multiple Criteria

Stefan Nickel, Justo Puerto, and Antonio M. Rodriguez-Chia

Abstract This chapter analyzes multicriteria continuous, network, and discrete
location problems. In the continuous framework, we provide a complete description
of the set of weak Pareto, Pareto, and strict Pareto locations for a general Q-criteria
location problem based on the characterization of three criteria problems. In the
network case, the set of Pareto locations is characterized for general networks as
well as for tree networks using the concavity and convexity properties of the distance
function on the edges. In the discrete setting, the entire set of Pareto locations
is characterized using rational generating functions of integer points in polytopes.
Moreover, we describe algorithms to obtain the solutions sets (the different Pareto
locations) using the above characterizations. We also include a detailed complexity
analysis. A number of references has been cited throughout the chapter to avoid the
inclusion of unnecessary technical details and also to be useful for a deeper analysis.

Keywords Level curves ¢ Networks ¢ Pareto locations e Pareto-optimal e
Rational functions * Tree networks

9.1 Introduction

Very often, locational decisions involve the investment of a significant amount of
money. It will be therefore very probable that a locational decision is made by a
group of Q decision makers (DM). In turn, it is very likely that each DM will choose
a median function to evaluate the quality of a new location, but the weights assigned
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to clients may differ a lot. The same scenario occurs if one location for different
types of goods has to be found.

Multicriteria analysis of location problems has received considerable attention
within the scope of continuous, network, and discrete models in the last years. For
an overview of general methods as well as for a more bibliographic overview of
the related location literature the reader is referred to Ehrgott (2005) and Nickel
et al. (2005a). Presently, there are several problems that are accepted as classical
ones: the point-objective problem (see, e.g., Wendell and Hurter 1973; Hansen et al.
1980; Carrizosa et al. 1993), the continuous multicriteria min-sum facility location
problem (see, e.g., Hamacher and Nickel 1996; Puerto and Fernandez 1999), the
network multicriteria median location problem (see, for instance, Hamacher et al.
1999; Wendell et al. 1977) and the multicriteria discrete location problem (see, e.g.,
Fernandez and Puerto 2003), among others.

In contrast to problems with only one objective, we do not have a natural ordering
in higher dimensional objective spaces. Therefore, in multicriteria optimization one
has to decide which concept of “optimality” to choose.

The goal in a multicriteria location problem is to optimize simultaneously a set
of objective functions ( f L f Q). Therefore, the formulation of the problem is:

v— min (f'(x),..., %)), 9.1)
XEXCRA

where v — min stands for vectorial optimization. Observe that we get points in a
Q-dimensional objective space where we do not have the canonical order of R
anymore. Accordingly, for this type of problems, different concepts of solution have
been proposed in the literature (the reader is referred to Ehrgott (2005) as a general
reference in multicriteria optimization). A point x € R is called a Pareto location
(or Pareto-optimal) if there exists no y € R? such that f9(y) < f9(x) Vq €
2 = {l,...,0}and f?(y) < fP(x)forsome p € 2. We denote the set of
Pareto solutions by 2% (f1,..., f2) or simply by 2%, if this is possible without
causing confusion. If f9(x) < f9(x')Vq € 2and3q € 2 : fi(x) < fI(x')
we say that x dominates x’ in the decision space and f(x) dominates f(x’) in the
objective space.

Alternative solution concepts are weak Pareto-optimality and strict Pareto-opti-
mality. A point x € R is called a weak Pareto location (or weakly Pareto-optimal)
if there exists no y € R¢, such that fi(y) < fi(x) Vg € 2. We denote the
set of weak Pareto solutions by 2.* . (f1...., f2) or simply by 2Z.* . if this
is possible without causing confusion. A p01nt x € RY is called a strict Pareto
location (or strictly Pareto-optimal) if there exists no y € R?, y # x, such that
f1(y) < f4(x)Vq € 2. Analogously, the set of strict Pareto solutions is denoted
by 2% pa (f1 ey fQ), or simply by Z.*., . if this is possible without causing
confusion. Note that 2%, € Zp. < 3&”\;‘ por and in case we are considering
strictly convex functions these three sets coincide. Finally, we recall that Warburton
(1983) proved the connectedness of the set 2. when the functions are convex.
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In our proofs we use the concept of level sets. For a function f : R — R the
level set for a value p € R is given by L<(f.p) := {x € R? : f(x) < p} (the
strict level setis L_(f. p) := {x € R? : f(x) < p}) and the level curve for a value
p € Risgivenby L_(f.p) :={x € R? : f(x) = p}. For a function f’(-) we use
the notation

(1) = arg min f1(x).

For two points x and y we denote the segment defined by x and y as xy.

In this chapter we focus on some fundamental results in the continuous,
network and discrete cases. We will describe in some detail a complete geometric
characterization for the planar 1-facility case, an optimal time algorithm for the
1-facility network problem as well as the computation of the entire set of Pareto-
optimal solutions of the discrete multicriteria p-median problem. Although we are
concentrating on the median case we will give some outlook to extensions.

9.2 1-Facility Planar/Continuous Location Problems

In this section we study Problem (9.1) where f!(-),..., f2(-) are convex, inf-
compact functions, defined in R?, which represent different criteria or scenarios.
Recall that a real function f(-) is said to be inf-compact if its lower level sets
{x € R : f(x) < p} are compact for any p € IR. The next result states a
useful characterization of the different solution sets defined in the previous section
using level sets and level curves which will be used later.

Theorem 9.1 The following characterizations hold :

o
X €L o (f1 SO & (L fUx) =0 9.2)
q=1
0
x€ Loy (flhenn, ﬂ (f9, f9(x) = ﬂL (f9. f9(x))
q=1 q=1
(9.3)

Dm

x€ X p (f' fO) & (Y L<(f9. fUx) = {x}. (9.4)

B
I
-
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Proof If x & 2% o (f1. ..., f9), there exists z € R? such that f4(z) < f9(x)
for each ¢ € 2, that means,

0
ce () L/ f1x).

q=1

Hence, we obtain that

0
M L<(f. f9x)) # 0.

g=1

Since the implications above can be reversed the proof is concluded. The
remaining results can be proved analogously. (]

Remark 9.1 For the case O = 2 the previous result states that the set
XX o (f1, f?) coincides with tangential cusps between the level curves of
functions £'(-) and f2(-) union with 27* (1) U 2*(f?) (see Example 9.1).

Corollary 9.1 If f', ..., £< are strictly convex functions then

Do e fO) = 2 (1 FO) = 2 (fs - £O).

Example 9.1 (See Fig.9.1) Let us consider the points a; = (0,0), a, = (8,3),
a; = (-3, 5) and the functions f'(x) = [|x —ai |1, f2(x) = |x —a2]leo, f3(x) =
| x — as]|1. By Theorem 9.1, 2. . (f!, f?) is the rectilinear thick path joining a,
and a and 2% ;. (f!, f3) is the dark rectangle with a; and a3 as opposite vertices.

In what follows, since we are dealing with general convex, inf-compact func-
tions, we will focus on providing information about the geometrical structure of
Z¥ oo (Y, £2, £3). This characterization will allow us to obtain a geometrical
description of Zp;, (fl, 12 f3) and 2%, (f1 A f ) in the next section for an
important family of functions. Actually, we will characterize 2.* ;. (f!, f2, f¥) as
a kind of hull delimited by the chains of bicriteria solutions of any pair of functions
S, f? p,q =1,2,3. This result enables us to obtain the set 2% ;. (f1 , fQ)

by union of three-criteria solution sets already characterized. In order to do that, let
Coo(Ry, R?) := {(p | : R — R?, ¢ continuous, tl_i)m le@®) |2 = oo} ,
o0

where ||x||, is the Euclidean norm of the point x. Coo(Ry, R?) is the set of
continuous curves, which map the set of non-negative numbers ]Rg' := [0, 00) into
the two-dimensional space R? and whose image (p(le' ) is unbounded in IR?. These
curves are introduced to characterize the geometrical locus of the points surrounded
by weak-Pareto and Pareto chains.
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X par (1 1)

Xo_pur(f1 %)

Fig. 9.1 Illustration of Example 9.1

For a set S € R? we define the enclosure of S by

encl(S) := {x € R* : 3¢ > 0 with B(x,e) N S =@, 31, € [0, c0) with
p(t,) € Sforallg € Coo(Ry . R?) with(0) = x },

where B(x,e) = {y € R> : ||y — x|l» < &}. Note that S N encl(S) =
Informally, encl (S) contains all the points which are surrounded by S, but do not
belong themselves to S.

We denote the union of the bicriteria chains of weak-Pareto solutions by

e3nglizkir (f f2 U U w—Par fq)
p=lqg=p+1
We use “gen” since this set will generate the set 2% . (/. /2, f*). The next

theorem provides useful geometric information to bu11d Lo (f1 2 3). Tts
proof can be found in Rodriguez-Chia and Puerto (2002).

Theorem 9.2

2o ([ 2 D) = encl (2355, (f 1 f2 1)) U 235, (f1 12 1),
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—Par

defined because the set 25, (', f2. /%) is connected (see Warburton 1983).

w—Par

Remark 9.2 Tt is worth noting that the region encl (% e LSS 3)) is well-

As an illustration of the above result we present the following example.

Example 9.2 Let us consider three points a; = (0,0), a, = (3,—1) and a3 =
(3, 3), and the functions f'(-), f2(-) and f3(-) such that,

2 P
Lo(f'. 1) = {(Xl,xz) : %—f-% < 1}
Lo(f2 ) ={(x1.x2) : (x1 =3+ (2 + 1> <1}

(x1 ;3)2 + (352;3)2 < 1} .

Lo(fo 1) = {(xl,xz) :

We can see that these three functions are convex functions. Therefore by the previ-
ous result we obtain the geometrical characterization of the set 2%, (f', /2%, f?);
this set is the shadowed region in Fig.9.2.

Now we are in the right position to show the main result about the geometrical
structure of 2% . (f1,.... f9).

V\ Pur(f f )

w Pdr(fz f)

w Par(fl f f)

vs Par(fl f)

Fig. 9.2 Illustration of
Example 9.2
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Theorem 9.3

Lr e[ SO = | eSS

Pqre€E2
p<q<r

Proof By Theorem 9.1, x € 2%, (f'..... f9) if and only if (1) L-(f*,
qe2

f9(x)) = @. Furthermore, by Helly’s theorem (see Rockafellar 1970), this

intersection is empty if and only if there exist p,q,r € 2 (p < g < r) such

that Lo (f?, fP(x)NL(f9, f49(x))NL(f", f"(x)) = @ and this is equivalent

tox € Zy b (f7, f9, f7). Since in any case we have that

U 20a(f? 9 ) C 2 (fh fO),

pPgreL
p<q<r

the result follows. O
Remark 9.3 This result extends previous characterizations in the literature:

— Taking f%(x) = ||x—a;| witha; € R*fori = 1,..., Q and ||- || being a strictly
convex norm or a norm derived from a scalar product, we get Proposition 1.3,
Theorem 4.3 and Corollary 4.1 in Durier and Michelot (1986). The set of weakly
efficient locations is the convex hull of the points a; withi = 1,..., Q. In
Example 9.3, we illustrate this result.

— Taking fi(x) = ||x —a;|| witha; € R>fori = 1,...,Q and | - | being
a polyhedral gauge we get Theorem 6.1 in Durier (1990), where the set of
weakly efficient locations is the union of elementary convex sets, (see Durier
and Michelot 1985 for a definition). In Example 9.4, we illustrate this result.

— Taking fi(x) = maxje//{w;ux —a;| witha; € R?, w; >0fori =1,...,0,
j € A = {l1,...,m} and || - || being the {sc-norm, we get Theorem 6.1
in Hamacher and Nickel (1996), where the set of weakly efficient locations is
the union of the sets of weakly efficient locations for all pairs of functions. In
Example 9.5, we illustrate the use of this result.

Example 9.3 (See Fig.9.3) Let us consider the points a; = (0,0), a, = (5,—10),
az = (10,0) and the functions f7(x) = ||x —a;||» fori = 1,2, 3. By Theorem 9.2,

XX o (1, f2, f3) is the dark region, which in this case is the convex hull of aj,
as and as.

Example 9.4 (See Fig.9.4) Let us consider the points a; = (0,0), a; = (8,3),
as = (=3,5) and the functions f!'(x) = |x —ai|l1, f*(x) = ||x — a2]|eo and
F3(x) = ||lx —asl. By Theorem 9.1, 2% ;. (f!, £?) is the thick path joining a;
and ar, 2. 5. (f2, f?) is the thick path joining a, and a3, and 2%, (f', f?)
is the dark rectangle with a; and a3 as opposite extreme points. Therefore, by

Theorem 9.2, 2% ., (f!, f2, f?) is the dark region surrounded by the union of

w—Par
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Ca =y
\\\\ 7\‘\/.‘ \/\// //‘

Fig. 9.3 Illustration of Example 9.3

@ Xv’;fpar(fiﬁ)' -
el £ IR 0
VA NN
X o1, %)

Fig. 9.4 Illustration of Example 9.4

the three previous sets. Note that this region is the union of two full dimensional
elementary convex sets.

Example 9.5 (See Fig.9.5) Let us consider the points a; = (4,16), a, = (10,5),

az = (25,12) and the functions f7(x) = ||x — a;| e fori = 1,2,3. By Theo-

rem 9.1, 25 (1 f?) = Ri, 27 p, (f 1, f7) = Ry U Ry, 205, (2 ) =

R3 U Ry. By Theorem 9.2, 2% , (f', 2, f*) = Ri U Ry U R; U R4. Note

that in this example 2%, (f'. /2. f7) = 20 5 (f 1 U 25 0 (S U
2 pa(f2 ).
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Fig. 9.5 Tllustration of ot
Example 9.5

N
\a

a3

Ry

Ly

9.2.1 Polyhedral Planar Minisum Location Problems

Consider a set of demand points A := {a,,...,ay} € R Let B; C R?, fori €
A= {1,2,..., M}, be a compact, convex set containing the origin in its interior.
The gauge with respect to B; is defined as y; : R> — R, y;(x) :=inf{r > 0: x €
rB; }. Taking this definition into account, the planar minisum location problem is

M

min Zwi)’i (x —a;),

2
x€R i

where w; is a nonnegative weight associated with the demand point a; (i € .#).

In this section we study the particular case where the functions f!,..., /9
are minisum location objective functions and the distances are measured with
polyhedral gauges, i.e., the unit balls associated with these gauges are convex
polytopes. This type of objective function is not strictly convex and for this reason,
the three solutions sets (Pareto, weak Pareto and strict Pareto locations) do not
coincide. Therefore, in this section we focus on the characterization of the Pareto
locations and how it can be extended to the remaining solution sets.

The polar set BY of B; is givenby BY := {p € R*: (p,x) < 1Vx € B;} and the
normal cone to B; at x is given by N(B;,x) := {p € R*: (p.y—x) <0Vy € B;},
where (-, ) denotes the scalar product. In case of polyhedral gauges (i.e., B; is a
polytope), the set of extreme points of B; is denoted by Ext(B;) := {e!, ... ,eiGi} .
The maximal number of extreme points is denoted by G := max{G; : i € .#}.
We define fundamental directions d f, el déj as the half-lines determined by 0 and
ej, ... eg, (seeFig.9.6).

Let 7 = (pi)ie.x be a family of elements of R? such that p; € BY for each
i € # andlet C; = (), ,(ai + N(B?, pi)). According to Durier and Michelot
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dy

. P+ N(B%. 1)

Py
dy da
(0,0)

p2

P2+ N (B, ps)

ds

Fig. 9.6 Tllustration of the unit ball for the £,-norm, its dual ball and two normal cones of this dual
ball

(45

(a1+N (B p1)) N (a2+N (B’ p2))

(¢5)

Fig. 9.7 Illustration of an elementary convex set for the £;-norm

(1985), a nonempty convex set C is called an elementary convex set if there exists
a family  such that C, = C. If the unit balls are polytopes, then we can obtain
the elementary convex sets as intersections of cones generated by fundamental
directions of these balls pointed at each demand point (for details, see Durier and
Michelot 1985). The two-dimensional elementary convex sets are called cells. Let
% denote to the set of these cells. Therefore each cell is a polyhedron whose vertices
are the intersection points, which we denote by .# . Finally, in the case of R? there
exists an upper bound on the number of cells which is O((MGax)?) (see Durier and
Michelot 1985).

In Fig.9.7 we show an elementary convex set for the £;-norm for two points
ai, az. In this example the dual norm is the {o-norm where its unit ball BO has
the extreme points {(1, 1), (=1,1), (=1—, 1), (1, —1)}. The normal cones to B® at
p1 = (1,—1)and p, = (—1, 1) are given by N(B°, p) = cone((1,0), (0, —1)) and
N(B°, py) = cone((—1,0), (0, 1)), respectively, where cone stands for the conical
hull of its argument. Thus, the elementary convex set C,, with 7 = (py, p») is the
rectangle defined by a; and a, with sides parallel to the coordinates axes.
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9.2.1.1 Bicriteria Case

In this section we restrict ourselves to the bicriteria case, which, as will be seen later,
is the basis for solving the Q-criteria case. To this end, we are looking for the Pareto
solutions of the vector optimization problem in R?,

M M
min (fl(X) =Y wirix—a), f7(x) =) winix —af)) ,

i=1 i=1

where the weights w? are non negative (i = 1,...,M; g = 1,2). The following
theorem provides a geometric characterization of the set %y .

Theorem 9.4 2. (fl, f2) is a connected chain from Z*(f') to 2*(f?)

consisting of faces or vertices of cells, or complete cells.

Proof First, we note that 27*(f9) # @ for ¢ = 1,2 (see Puerto and Ferndndez
2000). Moreover, Zpe. N X *(f9) # @ for ¢ = 1,2. Therefore, we know that
Zon: # 0, s0 we can choose x € Zpr.. There exists at least one cell C € ¢ with
x € C. We can assume without loss of generality that C is bounded. We also note
that the functions f! and f? are linear within each cell (see Rodriguez-Chia et al.
2000). Given a set A, in what follows, conv(A), bd(A) and int(A) will denote the
convex hull, the boundary and the interior of the set A, respectively. Hence three
cases may occur:

Case 1: x € int(C). Since x € Zp;, we obtain

2
ﬂ (f9. f4(x) = ﬂL (f9. f9(x))

g=1 q=1

and by linearity of the median problem in each cell we have

2
ﬂ <(f1. f1(y) = ﬂL (f1. () VyecC

q=1

which means y € 257 ¥V y € C, hence C € 2y .
Case2: x € ab := conv({a,b}) C bd(C) and a,b € Ext(C). We can choose
y € int(C) and two cases can occur:

Case 2.1: y € 2. Hence we can continue as in Case 1.

Case 2.2: y ¢ Zpr,. Therefore using the linearity we first obtain

2

ﬂ (f7. f1@R) # ﬂL (f9. f9@) VYzeint(C).

qg=1 qg=1
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Second, since x € Zp;,., we have

2 2
N L<(/% f1@) = (L=(f*. /() Yzeab.
q=1

q=1

Hence, we have that C ¢ 2% and ab € 2% .
Case 3: x € Ext(C). We can choose y € int(C) and two cases can occur

Case 3.1: If y € Zpi,, we can continue as in Case 1.
Case3.2: If y ¢ Z,., we choose zi,22 € Ext(C) such that Xzj,Xz, are

faces of C,

— If z; or zp are in 2, we can continue as in Case 2.
— If z; and z, are not in Zp,, then using the linearity in the same way as

before we obtain that (C \ {x}) N 2, = 0.

Hence, we conclude that the set of Pareto solutions consists of complete cells,
complete faces, and vertices of these cells. Since we know that the set 25, is
connected, the proof is completed.

In the following we develop an algorithm to solve the bicriteria planar minisum
location problem. The idea of this algorithm is to start in a vertex x of the cell
structure which belongs to Zp;, say x € 2% 1= argmin,e g (s1 f2(x) (set of
optimal lexicographical locations, see Nickel 1995). Then, using the connectivity of
Zons» the algorithm proceeds by moving from vertex x to another Pareto-optimal
vertex y of the cell structure which is connected with the previous one by an
elementary convex set. This procedure is repeated until the end of the chain reaches
25 1= argmin,e g+ 2y f1(x).

Let C be a cell and y, x and z three vertices of C enumerated counterclockwise
(see Fig. 9.8). By the linearity of the level sets in each cell we can distinguish the
following disjoint situations, if x € 24,

(S1) CC %’; , 1.e., C is contained in the chain.

(S2) Xy and X7 are candidates for 23} and int(C) ¢ 2.
(S3) Xy is candidate for 2, and X7 is not contained in 2.
(S4) Xz is candidate for 27 and Xy is not contained in 2.
(S5)  Neither Xy nor ¥Z are contained in 27 .

We denote by sit(C, x) the situations (S1-S4 or S5) in which the cell C is
classified according to the extreme point x of C. The following lemma, whose proof
is based on an exhaustive case analysis of the different relative positions of x within
C, can be found in Weissler (1999). It states when a given segment belongs to the
Pareto-set in terms of the sit(+, -) function.

Lemma 9.1 Let Cy,...,Cp_ be the cells containing the intersection point X,
considered in counterclockwise order, and yi,...,yp, the intersection points
adjacent to x, considered in counterclockwise order (see Fig.9.9). If x € Zpi.
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z
Yy
T

Fig. 9.8 Illustration to y, x,z € Ext(C) in counterclockwise order

Fig. 9.9 Illustration to Lemma 9.1 with P, = 6

andi € {l,..., P}, then the following holds (assume that i + 1 = 1 whenever
i = Py):

sit(C;, x) = S1
or sit(Ci41,x) = S1
sit(Cy, x) € {S2,83}
sit(C,-+1,x) S {SZ, S4}

—_— *
XYi+1 - ‘Q’/Par —

These results validate the following algorithm for finding 2, (/. /2).
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Algorithm 9.1 Step 1. Compute the planar graph generated by the cells and the
two sets of lexicographical locations 2%, , 27 .

Step 2. If 2\ N 25" # @ then set 2y, = conv(Z\%) (trivial case Z*(fHn
L *(f?) # 0). Otherwise set X%, = 275U 25 (non trivial case Z*(fHn
2" =9)

Step 3. Choose x € 27% N I L.

Step 4. Scan the list of cells adjacent to x until we get situation S1 for a cell C
or two consecutive cells, C, C, in situations Ce {S2,83} and C € {S2,S4},
respectively.

Step 5. If situation A occurs then 25, := Zpr. U C (we have found a bounded
cell.) Otherwise Zpy, = Zp, UXy where y is a vertex of C defined in situations
S2 and S4 (we have found a bounded face.)

Step 6. Let C be the last scanned cell. Choose y € . & N C and, such that, y is
connected to x. If y € 23" stop. Otherwise, set x 1=y and go to Step 4.

Output: 2% (. f?). O

Edelsbrunner (1987) proved that the computation of a planar graph induced by
n lines in the plane can be done in O(n?) time. This implies that in the case of
the minisum location problem the computation of the planar graph generated by the
fundamental direction lines is doable in O(M2G?2, ) time.

The evaluation of the minisum location function needs O(M log(Gmax)) for
one point, therefore we obtain O(M3G2, 10g (Gmax)) time for the computation
of lexicographic solutions. At the end, the complexity for computing the chain is
O(M3G2 102 (Gmax)), since we have to consider at most O(M>G2 ) cells and the
determination of sit( ., .) can be done in O(M log(G,,,,)) time. Hence, the overall
complexity is O(M>*G2, 10g (Gmax)). Notice that the polynomial complexity of

max
this algorithm allows an efficient computation of the solution set.

Example 9.6 Consider a three-criteria median problem with nine existing facilities
A = {ay,...,aq} (see Fig.9.10). The coordinates a; = (x;,y;) of the existing
facilities are given by the set: {(—3,0), (3,0), (0, —4), (11, -6), (17,—6), (14, =2),
(11,2), (17,2),(14,6)}, and the weights w?,q = 1,2,3 are given by
w = (2,2,1,0,0,0,0,0,0), w* = (0,0,0,2,2,1,0,0,0) and w*® =
(0,0,0,0,0,0,2,2,1).

The optimal solutions of the location problems associated with the median
functions f', f2and f3 with f4 =M™ w! | x —a; |1, ¢ = 1,2,3, are unique
and given by 21" = {(0,0)}, 25" = {(14,—6)} and 27" = {(14,2)}, respectively,
all of them with the (optimal) objective value 16. The bicriteria chains (consisting
of cells and edges with respect to the fundamental directions drawn in Fig. 9.10) are
given by

T (f1 £3) = (0.0)(3,0) U conv({(3,0). (3.2), (11,2), (11,0)}) U (11,2)(14,2),

Zow (2. f7) = (14,2)(14,-6),



9 Location Problems with Multiple Criteria 219

Fig. 9.10 Illustration to Example 9.6

2 (f' £?) =0,003,00 U (3,0)3,—2) U
conv({(3,-2), (3, —4), (11,—4), (11,-2)}) U
(11, —4)(14, —4) U (14, —4)(14, —6).

9.2.1.2 Three-Criteria Case

In this section we consider the three-criteria case and develop an efficient algorithm
for computing Zpr, ( L3 ) using the results for the bicriteria case. In
particular, we obtain a characterization of the Pareto solution set for the three criteria
case using the region surrounded by the chains of bicriteria Pareto solutions. We
denote the union of the bicriteria chains including the one-criterion solutions by

3 2 3
Lo (LA =2l U 2t fo.

q=1 q=1p=q+1

We use “gen” since this set will generate the set Zpt (f'. /2, f?) (see
Fig.9.11).

The next lemma provides useful geometric information to build
Zoe (f1. f2, f3). Foraset A, let cl(A4) denote the topological closure of A.
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encl (XIO‘:Z? (fl«, 12 fd))

Fig. 9.11 The enclosure of 2p (1, f2. f3)

Lemma 9.2 The following inclusion of sets holds:
cl(encl (Zp (f1. 2 1) © Zpa (f1 F2 ).

The interested reader is referred to Nickel et al. (2005b) for a detailed proof of this
result.

Remark 9.4 Since Zpk, (1. f7) = X o (f7, f7) forany i, j € {1,2,3}, we
have that:

encl (Ze (' f2 7)) = encl (2555, (f1. f2. 1))

Finally we obtain the following theorem which provides a subset as well as a
superset of 2t (/1. /2, f3).
Theorem 9.5 The following inclusions of sets hold:

encl (Zme (f'. f2 ) € 2o (F1 2 1)
€ ZE (1,1 L) Uendd (227 (1, 1 1))

= %—;—Par (fl’fz’fS)'

Proof Using Lemma 9.2 and Theorem 9.2 we have the following chain of inclusions
that proves the thesis of the theorem.

encl (255" (f1. 2 f) € 220 (1. £2. 1)
S 2o (fL ) S 2rpa (FL SR
C Zp (L2 ) Uenel (257 (f1 /2 1), D
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Now it remains to consider the Pareto-optimality of the set Zp ( VAN AN 3)
with respect to the three objective functions f!, f2, . Foracell C € € we define
the collapsing and the remaining part of C with respect to Q-criteria optimality by

colg(C):={xeC :x¢ 2o (f'r. f9)}
remg(C) :={xeC : xe Zm (f'..... f9)}.

Summing up the preceding results we get a complete geometric characteriza-
tion of the set of Pareto solutions for the three criteria case. For each cell C,
colg(C) Uremg(C) = C and, as shown by Nickel et al. (2005b), determining both
sets can be done with the gradients of the objective functions with a complexity of

0(Qlog Q).

Theorem 9.6 The set of Pareto solutions satisfies:

Lo (L L2 17) = (X (FL 2 F3) Uenel (2" (£ 2 17)))
\{x eR? 1 3C €%,C C 2y, (f'. f2 f7) x € cols(C)}.

Proof Let y € Zpi (fl,fz, f3) Then we have, by Theorem 9.5, that y €
o (S f2 ) Uenel (2 (£, f2, f?)) . Moreover for C € € with y € C
we have y € rem3(C), i. e., y ¢ col3(C). This implies

y e (Zom (fY f2 ) Uencl (Zp (£ 12 f2)))
\{x €R?:3C €%.C S 2y, (f1. f2. f7) x € col3(O)}

We distinguish the following cases :
Case 1: y € encl(Zpy (f'. /2 f?)). Then y € Zpi (/' /2. f?) by Theo-
rem 9.5.
Case2: y € Zpe (f1. 2 13).
Case2.1: 3C €%, CC 25 (f1fAf3) withyeC
= y¢colz3(C) = yerem3(C) = ye 2 (f1f413).
Case2.2: AC €€, C C Zpy (S f2 f3) withyeC

= L(f7. fPO)NL<(f4, f9(y)={y} forsome p.q € {1,2,3},p <gq
= Mot L<(F4 1) = ) = v € 20, (fL /A f7) <
Loy (f1. 12 13).0
In the case of median functions the gradients V f9(x), ¢ € {1,2,3}, (in
those points where they are well-defined) can be computed in O(M log(Gmax))

time (analogous to the evaluation of the function). Therefore, we can test in
O(M 10g(Gma)) time if a cell C € ¢, C € Zpw (', f2 f?) collapses. We
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Fig. 9.12 Tllustration of 25" ( VAN AN 3) and Zpr, (f LS 3) for the problem introduced in
Example 9.6

obtain the following algorithm for the three-criteria median problem with time
complexity O(M G2, 10g(Gumax)) (see Nickel et al. 2005b for more details).

Algorithm 9.2 Step 1.  Compute the subdivision of the plane generated €, the
famlly of elementary convex sets. Compute X\, . (f1 f ) o par (fl f )
X o (f2 f ) using Algorithm 9.1.
St€p2 Set ‘%’iﬁn (fl’fz’fS) = w— ar (f1 fz) U ‘%/'\:—Pdr (fl’f3) U
(f2 ) and Zpi (f1 f2 3): %gen(fl 2 f?)Uencl (2 (!
W—Pdr ) ) Par ’ ’ Par ’ Par ’
12 1)

Step 3. Forany C € € with C € Zp" (fl, 12 f3) compute col3(C) and set

Lo (1 2. 17) 1= 2 (12, 17) \ eols ().
Output: 2% (11,12, 1) O

Figure 9.12 illustrates the preceding results using the data introduced in Exam-
ple 9.6. The dashed path joining 2" and 2" in the picture represents the set

Zor par ( fLf ) after removing the col3(C). In the same way, the path joining 2*
and Z* represents the set 2.7 p,. ( fLf ) after removing the col3(C). Finally, the
dotted segment joining 2,* and 2% is 2.} p,. ( A f 3) (in this case there are not
cells to be collapsed).

9.2.1.3 Case Where Q >3

In this section we consider the general Q-Criteria case (Q > 3). We prove that
the Pareto solution set can be obtained from the Pareto solution sets of all the three
criteria problems. This construction requires the removal of the dominated points
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from the union of all the three criteria Pareto solution sets. The reader may notice
that all this process reduces to obtaining the bicriteria Pareto chains as proved in
Theorem 9.6.

Theorem 9.7 The following inclusions hold:
Lo cllencl (25" (f7. f9. /7)) S Zi(f'oo O,

pP4greL2
pP<gqg<r

i 2o (f' . f9)
< U '%rpgain(fpqusfr) U U encl(f%’},gai“(f{fq’fr))

PYreE2 P4 rE2
p<q<r p<q<r

= ‘Q’/\:—Pdr (fl’ R fQ)
Proof (I) Letx € | cl(encl( Do (fP, f4, fT ))) This is equivalent to

P4re€2
p<q<r

x € cl(encl (Zpy (f7. £, f7))) forsome p.q.re 2.,p<q<r.

Then, by Lemma 9.2, x e 2%, (f?, f9, f") forsome p,q,r €
2,p < q < r. Applying characterization (9.4), this is equivalent to
L<(fP, fP(x) N L<(f9, f9(x)) N L<(f". f"(x)) = {x}j for some
p.q,r € 2,p < g < rand since x € L<(f9, fi(x)) forallg € 2
it follows that ﬂqQ=1 L-(f?, f4(x)) = {x}. Finally, again by (9.4),
x € ZXpu (f1 ..., £2), which implies that x € 235 (f'..... f9).

(D) Letx € Zpt (1 ... fQ) thenx € 2%, (f1...., f9) and, by (9.2), this
is equivalent to m(?=1 L_(f4, f4(x)) = @. By Helly’s theorem, there exists
p.q, v € 2,p < q < r,such that, L.(f?, f7(x)) N L.(f?, f4(x)) N
L_(f", f"(x)) = @. By characterization (9.2), this is equivalent to x €

Lo pae (P, f4, f7) forsome p,q,r € 2, p < g < r and, by Theorem 3.2 in
Rodriguez-Chfa and Puerto (2002), this implies that x € 2 (7. f49. f7)U
encl (Zpe (7, f9, f7)) for some p,q.r € 2, p < q < r. Finally, this can
be equivalently written as

xe U 2 r i v ened (25 (. 11 0)).
PYre€EL parea
P p<q<r

In the Q-criteria case the crucial region is now given by the cells C € % with

ce U 2 urstsn N U end (250711 7)
(e i

U Ly (F7 1)\ U encl Q}iﬁ“(fﬂ 74, f))

P4E2 Pqr€E2
P<q p<q<r
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Similar to the situation in the previous section one can test whether the cell C € ¥
collapses with respect to f!,..., f¢ by comparing the gradients of the objective
functions in int(C). Finally we obtain the following theorem, which can be proven
using the same reasoning as in the three-criteria case (see proof of Theorem 9.6).

Theorem 9.8

PgreEL PgreEL
p<q<r p<q<r

Lo (1o .fQ)=( U 2w (f7.f4 /) U U end(%ﬁi“(.f”,.f",f’)))

\{nE]R2 AC €€, C CUZ 5 (f7, f) \Uencl (2 (fP, f9, f7)) xECOIQ(C)}

PYEL Pqre2
p<q p<q<r

For the Q-criteria median problem we obtain the following algorithm.

Algorithm 9.3 Step 1. Compute the subdivision of the plane generated €, the

family of elementary convex sets. Compute 2.5 o, (f?, f9), p.q € 2,p <q,
using Algorithm 9.1.

Step 2. Set forany p, qandr withp <q <r

L ST = 2 o (F7 S U 2 e ST U 2 (f ),

and

Lo (f1 o 0=z (7. £ Ul encl (255 (f7. f9, £1).
P4re2 P4re2
p<gq<r p<q<r

Step 3. ForeverycellC C | 2 o (S, fO\ U encl(Zpe (f7. f4.

PYEL PGTEL
P<q p<q<r

f7)) compute colg(C) and set %”Pjr(fl,...,fQ) = %”Pjr(fl,...,fQ) \
colp (C).

Output: 255 (f'..... f9). O

The complexity of Algorithm 9.3 can be determined as follows. For each
cell C, colp(C) can be computed in O(Q log(Q)) time. Algorithm 9.3 needs
to solve O(Q?) three-criteria problems which dominates all other elementary
operations of the algorithm. Each one of them has the same complexity as the
two-criteria problem. Thus, the overall complexity is O(M>G2,, O3 (10g Gmax) +
M?2G2, Qlog Q) = O(M3*G},, 03(1og Giax)-

We would like to conclude this section pointing that the multi-facility versions
of the problems analyzed in this section have been hardly studied in the literature,
although an exception is the paper by Nickel (1997).



9 Location Problems with Multiple Criteria 225

9.3 Network Location Problems

9.3.1 1-Facility Median Problems
9.3.1.1 Pareto Locations in General Networks

Let G = (V, E) be a connected graph with node set V' = {vy,...,v,} and edge
set E = {ej,...,ey}. Each edge e € E has a positive length £(e), and is assumed
to be rectifiable. Let P(G) denote the continuum set of points on edges of G. We
denote a point x € e = {u, v} as a pair x = (e,t), where t (0 < ¢ < 1) gives
the relative distance of x from node u along edge e. For the sake of readability, we
identify P(G) with G and P(e) with e for e € E. We also define (e, (¢, 1)) =
{x = (e,t) : t € (t1,1)}; (e, [t1,12]), (e, (t1,12]), and (e, [t1,12)) are used in an
analogous way.

We denote by d(x, y) the length of the shortest path connecting two points
x,y€G.Letv; € Vand x = ({vr,v},f) € G. The distance from v; to x
entering the edge {v,, vs} through v, (vs) is given as Dl.Jr (x) =d(, x)+d(v,,v;)
(D; (x) = d(vs,x) + d(vs,v;)). Hence, the length of a shortest path from v;
to x is given by D;(x) = min{DiJr(x), D7 (x)}. As d(vr,,x) = t - {(e) and
d(vg, x) = (1 —t)-£(e), the functions Dl.Jr (x) and D; (x) are linear in x and D; (x)
is piecewise linear and concave in x (cf. Drezner 1995). The distance from v; to a
facility located at x is finally defined as d(v;, x) = D;(x) = min{DiJr (x), D (x)}.

We consider the objective function f(x) = (f'(x)...., f2(x)), where each
f1(x), g € 2,is a median function defined as:

1) =Y wld(vi.x).

v, EV

More formally, we assign a vector of weights
wi=| i | #0toevery vertex v; € V, withw! >0, g € 2:={1,...,0}.

The quality of a point x € P(G) in this multicriteria setting is defined by
f1(x) Yuer wid(x.v:)

f(x) = : = :
o) ey wld(x,v)
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in the undirected case and

1) > ev Wi (d(x,v;) + d(vi. x))
f(x) = : = :
o) ey wE (d(x, v) + d (v, x))

in the directed case.

Let S € P(G) and W C R2. We define Wy, = {f(x) € W : 3f(y) € W such
that f(y) dominates f(x) in the objective space} and 3&;:;, ={xeS: f(x) e
Woar}. It S = P(G) we simply write Z7,. A point x € 27.(S) is called a Pareto
location with respect to S, and the elements of 2,7, (V') are called Pareto nodes or
Pareto vertices.

Computing 27, (V') can simply be done by pairwise comparison of the nodes.
For 2, we first have to check if a multicriteria version of Hakimi’s node domi-
nance result holds (Hakimi 1964). For the directed case we even have 2,7 (V) =
3&;:;,. The proof relies on the concavity of the distance functions among the edges
and also on the fact that in the directed case we have no choice on which side to
exit or enter an edge. This implies that the objective function is strictly concave and
therefore the nodes always dominate the edges. For the technical details and the
proofs the reader is referred to Hamacher et al. (1999). In the case of undirected
networks, this aspect is slightly more complicated as shown in the next example

(Fig.9.13).

Example 9.7 Consider the following network N = (G, £) with n = 6 nodes and a

distance matrix D = (djj); j=1,..6 given by
011432
102341
120323
433052
342503
213230

Fig. 9.13 Network of Example 9.7
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Assume that the weight vectors are

N N RS )

Using this information we get

Uy VU VU3 Vs Vs Vg
FO1Go) G () Go) (7) GD)
By pairwise comparison we get

Zoer (V) = {03} Ulug} = 27 (1 (V) U 27 (f2(V)).

Now we look at the points on the edges and get (by using concavity in the objective
functions):

* v3 dominates all points on the edges {vs, vs}, {vs, v4}, {v3,v1}
* ve dominates all points on the edges {ve, v2}, {ve, v5}, {Ve, 4}
¢ v, dominates all points on the edge {v,, v4}
¢ v dominates all points on the edge {v;, vs}

We also observe that no vertex can dominate a point with both objective functions
smaller than 21. The only edge left is now {v;, v,} (Fig.9.14).
We see that

I. For all points x € P ({v1,v,}) with x # vy, x # v, we have f'(x) < 21,
f2(x) < 21.
II. No point on {v;, v} dominates another point on {v, v2}

= 2o = {v3} U {ve} U ({1, v2}, (0,1)).

par

22+ T22

Fig. 9.14 Objective
functions on the edge {v;, vo}
in Example 9.7 0 1
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We conclude that we have no node dominance and that even on edges with
endnodes not in 27, (V) we can find elements of 2 7,.

Since we do not have node dominance in the undirected case, we have to
explicitly solve a multicriteria global optimization problem. First we will identify
local Pareto locations with respect to an edge e = {v;,v;} for all edges of the
network. In a second step we will compare all local Pareto locations to get 3&;:;,.
Due to the limited space and a possible overload of technicalities, we will describe
the main ideas which allow the reader to understand the final algorithm. For the

technical details and the proofs the reader is referred to Hamacher et al. (1999).

9.3.1.2 Bi-criteria Case

We will first deal with the bi-criteria case, since here we can derive a geometrical
solution method. The main property of the objective functions we are using is the
concavity on an edge e = {v;,v;}. In addition we have also piecewise linearity
but this is not really needed. Suppose that f(v;) > f(v;) or f(v;) > f(v;). In
the first situation we say that v; dominates v; and in the latter v; dominates v;.
Both situations do not allow any location on the edge, which is not dominated by an
endnode due to concavity.

Now assume that for an edge e = {v;, v;} with v; and v; not dominating each
other one of the functions f' or f? is constant. It is easy to see that this is only
the case if f(v;) = f(v;). If for an edge e only one of the objective functions
is constant then 27 (¢) = {v;} U {v;}. If both objective functions are constant
then %;Zr(e) = ({v,-, v}, [0, 1]). Again this is due to the concavity of the objective
functions and can be seen in Fig. 9.15.

Now we have only one situation left (the most typical one), where the endnodes
do not dominate each other and none of the two objective functions is constant.
Without loss of generality we can assume f'(v;) > f'(v;) and f2(v;) < f*(v})
(otherwise exchange the roles of v; and v; ). The behaviour of the objective functions
can be seen in Fig.9.16. First, both objectives functions are increasing (maybe for

a small or zero interval only) and all points are dominated by the left endnode.

f!

Fig. 9.15 Concavity on an
edge with one objective
function constant 0 1
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Fig. 9.16 Derivation of ¢!
and ¢?

A

Only after the first objective function is already decreasing and smaller than the
left endnode value, the endnode cannot dominate the points of the edge. The same
argument can be applied by starting from the right endnode. More formally we can
define

t'i=max{r € [0,1]: /' (v) = ' (({vi.v;}.10))}

and

2 := min{t € [0, 1] : fz(vj) = f? (({v,-,vj},t))}

Then

‘Q//[)Zr(e) = {U,‘} U {vj} U ({vivvj}v (tlvtz)) .

Overall we have that for each e € E in (G,{), 27, (e) is a (possibly empty)
single subedge of e plus one or both endnodes. Now we can combine these results
to get an efficient algorithm for determining 2 7, ().

Algorithm 9.4 (Computation of e%”pjr(e))
Input:  edge e = {v;,v;} € E, undirected network (G, 1), distance matrix D

Step 1. IF v; dominates v; then %;Zr(e) = {v;}, goto Step 7

Step 2. IF v; dominates v; then %;Zr(e) :={v;}, gotoStep 7
Step 3. IF f(vi) = f(v;) then

A IF f (({vi.v;}. 3)) = f(v;) then Zoer(€) := P({vi,v;}), goto Step 7
B. IF f (({v,-, v}, %)) # f(ui) then 25, (e) := {vi} U{v;}, goto Step 7

Step4. IF f'(v;) < f'(v;) and f?(v;) > f2(v;) then exchange v; and v,
Step 5. Compute t' and t* as defined above
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Step 6. IFt' <¢?
THEN 2%,(e) = {v;} U {v;} U ({vi,v;}, (', 1%))

ELSE Z,.(e) := {vi} U {v;}
Output: 27 (e)

To analyze the complexity of this algorithm, we need the following definition: A
point x = ({vi, v}, t), t € [0,1] on one edge e = {v;,v,} is called a bottleneck
point for £ if there exists a vertex vy with wZ > 0, such that

d(vi, x) = d(vg,v;) + d(vi, x) = d(vg,v;) +d(vj, x).

Let Bj; denote the set of bottleneck points on the edge {v;, v; }. Note that | B;;| < [V].

If D is given, the only non constant operation in Algorithm 9.4 is the com-
putation of ¢! and ¢2. To plot f¢ we have to determine the breakpoints of f¢
which is piecewise linear on an edge. Since these breakpoints correspond to the
bottleneck points on this edge we have to compute Bj for e = {v;,v;}. This
can be done in O (|V|log|V|) (see Hansen et al. 1991). Then ¢' and #*> can be
determined by exploring the sorted list of bottleneck points two times. The total
complexity for finding %Zr(e) is O (|[V]log|V|) and the total complexity for
finding e Z,u-(e) is O (|E[|V|log|V]) (Fig.9.17).

Example 9.8 Consider the network in Fig. 9.17 with distance matrix

0122
1021
2201
2110

Fig. 9.17 Network of {2} v3)
Example 9.8
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We first compute

V1 U2 V3 Uy
1107 8 6
f27 899

and obtain %,’Z,(V) = {v1, vz, v4}. Now we have to determine the set %,’Z,(e) for

everye € E:

e ¢ = {v1,vy}. vy and v, do not dominate each other and f!, f 2 are not constant,
i.e., we need to plot f!', 2 and therefore we have to find B},

)

f1(bl) =95 and f?(b},) =85
So the objective function can be drawn as shown in Figs. 9.18 and 9.19.

t'=max{re[0,1]: f'(v) = f' ({vi.va}.0)} =0
> = min {z €[0,1]: f2(v2) = f2 ({vl,vz},t)} = %

1 1
(in [O’E]’ fz(x)z7+3t,7+3t=8©t=§)

27%€) = {01} U {2} U ({vl, v}, (o, %))

7

0 3 3 1

Fig. 9.18 Computing 2% ({v1, v2})

par
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7 2 /1

=
EN|
[PAFS

1
0 3

Fig. 9.19 Computing 2% ({v1, v3})

“par

o e ={v,u) flvs)) =7> fl(vs) = 6and f2(v2) = 8 < f*(vs) = 9 and
By =0=1t =0, lzzlﬁf%;;r(e)zp(e).
* e = {v3, v4}. v4 dominates v = Z 7.(e) = {va}.

« e={vv3}. Bis=1{ | {vrvs}. 1| [ {vrivsh 3
SN—— ——
bis bis
11.5 10.5
bly) = L f(h) =
t 4 h = !
1 = 57 2 = 2

Zpar(€) = {v1} U {vs}

In a second step we have to compare all local Pareto locations %,’Z,(e), eeck
to get %,Z,. With two objective functions we can map everything to the objective
space where dominance can easily be computed. In the case of median objective
functions on a network, we know that f! and f? are piecewise linear with the same
potential breakpoints. This leads to the following mapping in the (z', z?)-space (or
objective space) as shown in Fig. 9.20. Essentially, this plot shows all pairs (z1, z2) of
the objective function values fi(x) and f,(x) for all points x on the edge. Again we
would like to skip the technical details and proofs and refer the reader to Hamacher

et al. (1999).
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Zpar(@\ (i} U }) ¢ 6 7 8 9 =z

Fig. 9.20 Mapping 2°* (e) to the objective space

par

Fig. 9.21 w, is dominating w;, and w3

In the objective space, a point w dominates all other points in w + Ri\{O} =
{w+y:yeR3\{0}} (see Fig.9.21).

In order to obtain %’;r we draw IM( /) which is defined as the set of all images
of Z,.(e) for e € E in the objective space. The lower envelope for a set P of

points in R? is defined as

U{(x,y) € P:y<yforal(x,y) e P}.

Algorithm 9.5 (Combining the Local Pareto Locations)
Input:  Z,;.(e) foralle € E

Step 1. Let 2}, :=max { f1(x) : x € U,ep Zmr(e)}

Step 2. Build IM(f) = Uyeg [ (Zpir(©))

Step 3. For each connected component | in IM(f), let (z,l, le) be the right-most
point (largest 7 value) and add to IM(f) the horizontal segment going from
(2] 27) 10 (Zhaxs Z7)-
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. lower . : .
— :
envelope

Fig. 9.22 Using the lower envelope to delete dominated solutions

Step 4.  Compute the lower envelope L of IM(f), which is the lower envelope of
O(|E||V]) line segments.

Step 5. Eliminate every horizontal line segment of L, except its left-most point.

Step 6.  Set Z* = f~I(L).

par
Output: 2%

par

In order to get the same result from the dominance relation we have to add an
artificial line segment and delete it from the solution (see Fig. 9.22).

Steps 1 and 3 are necessary to modify IM(f) such that we can get 2,
form the lower envelope. These steps as well as Step 2 can be done in linear
time. Step 4 can be done in a naive way in O (|E|2|V|2) or in optimal time of
O (JE||V|log (max (| E||V|))) by an algorithm of Hershberger (1989). Since Step
5 can be done in linear time the complexity of Step 4 determines the overall
complexity. For easier handling of the segments, note that we may use instead
of an open subedge ({v,-, v}, (t, tz)) the closed subedge ({v,-, v}, [tl,tz]). After
applying the algorithm we then have to test if we deleted a point directly above the
left-most point.

Example 9.9 (Example 9.8 cont.) We first draw IM( /) and add the horizontal line
segments. Finally, we get 2 * = P ({v2,v4}) U ({vl, U2}, [0, %)) (Fig.9.23).

par

9.3.1.3 Q-Criteria Case

We will now briefly explain how this approach generalizes to the Q-criteria case.
Also in this situation we easily see that if for an edge e = {v;,v;} one endnode
dominates the other one, there are no Pareto locations in the interior of e. From now
on assume that neither v; dominates v; nor v; dominates v;. Let 2, and 2, be a
partition of 2, such that f9(v;) > f9(v;) forallg € 2, and f9(v;) < f9(v;)
forall ¢ € 2,. Of course, 21 # 0, 21N 2, = Pand 2, U 2, = 2. Also in case
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Fig. 9.23 Computing 2%, k)
for Example 9.8

10 +

of constant functions we get a similar result as in the bi-criteria case. Accordingly,
assume that f(v;) # f(v;) for an edge e = {v;,v;} and let

t'(f7) ;= max {t efo,1]: fiw;) = f¢ (({v,-,vj},t))} for g € 2
and
(f7) :=min{r € [0.1]: f9(v;) = f9((vi,v;}.1))} for g € 25.

Then (see Hamacher et al. 1999 for the details)
250 = 103 Uto3 U (1wn0d (min (100} max (20 ) )

For comparing the local Pareto locations, the mapping to the objective space
becomes rather involved especially when we have to compute lower envelopes.

In order to compare 2 7, (e) forall e € E pairwise, we use the following iterative
procedure: Let ({v;, v}, [t 1,+1]) be a subedge of 2% (e1), e/ = {v;, v} (to have
closed subedges we neglect the vertices and handle first only the Pareto parts in the
interior) where (¢, f,41) are assumed to not include any further bottleneck points
of e; (if this is not true we subdivide the subedge further). This leads to

f (({vj,v/}, t)) =bl+mlt forall qe 2 telt, tryil
ie., all f9 are affine linear on ({vj, v}, [t t,.+1]). Take now a closed linear
subedge from another edge ¢, = {vi, v}, then we get ({vk, U}, [Sp, s,,+1]) C

Z par(€k). This leads to

SU(Qve, vm}, 5)) = b% +mis  forall g€ 2, s5€[sp,sp41],
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If we apply the definition of a Pareto location to these two subedges, we get that
a point ({vj, v}, t), t € [ty, ty41] is dominated by some point ({vk, v}, §), s €
[sps Sp+1]

< bl +mis <bl +mit forall qe 2,

where at least one inequality is strict. Now we define the polyhedron
F = {(s,t) L mit —mis > b9 —bl, Vg € g} O ([5p Sp1] X [t r41]) -

We have two cases: If . % = @, then ({vj, v}, [t t,.+1]) contains no point which is
dominated by a point from ({vk, U}, [Sp, sp+1]). Otherwise, . # 0 is taken as a
feasible solution of the two 2-variable linear programs

LB = min{t : (s,t) € &}, UB =max{t: (s,t) € F}.

Let s;p and syp be the optimal values for s corresponding to LB and UB,
respectively. Now we still have to check if one inequality is strict: If bg + m;],sLB =
b +m?LB and bg +m(stUB = bl +m]UBforall g € 2, then there is no dominance.
Otherwise 27 (e)) := 25, (e) \ ({vj, v}, [LB, UB])). Note that this procedure
works also if #, = f, 1 or 5, = 5,41 (in this case, we are testing a single point).

Algorithm 9.6 (Combining Local Pareto Location in the Q-Criteria Case)
Input:  Network as in Algorithm 9.4

Step 1. Determine %y, (e) for all e € E and set 2y, := U, e Z - (€)

Step 2. Compare all v; and all edges, where all f1, q € 2 are constant

Step 3. For all Pareto linear subedges do a pairwise comparison as described
above and reduce 2, accordingly.

Output: 2 *

par

The complexity of this algorithm is O(|E|*|V |2 Q).

9.3.1.4 Multicriteria Median Problems on a Tree

Many difficult problems on general networks become easier to solve if the under-
lying graph has a tree structure. We will show that this is also true for multicriteria
problems. We relate our results with the research that has previously been done on
trees and end up with a generalization of Goldman’s algorithm (see Goldman 1971).
The major concept which makes the analysis easier on trees is convexity. We first
introduce this concept based on Dearing et al. (1976).
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Let N = (T, %) be a tree network, with T = (V, E). For two points a, b € P(T)
we define the line segment L[a, b] between a and b as

Lla,b] :={x e P(T): d(a,x)+d(x,b) =d(a,b)},

which contains all points on the unique path between a and b. A subset C € P(T)
is called convex, if and only if for alla,b € C, L[a,b] € C.

Now let C € P(T) be convex and let & : P(T') — R be a real valued function.
This function 4 is called convex on C, if and only if for all a,b € C,

h(xy) < Ah(a) + (1 —A)h(b), YA €[0,1],
where x; is uniquely defined by
d(x;,b) = Ad(a,b) and d(xy,a) = (1 —A)d(a,b) . 9.5)

A functionis called convex on 7 if it is convex on C = P(T'). Note that it is possible
to define convexity also on general networks. Then one can show that d(x, ¢) for
¢ € P(T) fixed is convex if and only if the underlying graph is a tree. Median and
Center objective functions are convex functions on a tree (see Dearing et al. 1976).

Now let L(a,b) := Lla,b]\{a,b}, L(a,b] := Lla,b]\{a} and L[a,b) :=
Lla, b]\{b}. We have now the following important property (a proof can be found
in Hamacher et al. 1999).

Theorem 9.9 Let a,b € P(T) and h := (h',...,h9) be a vector of Q objective
Sfunctions, with h? convex on T, forall ¢ € 2 = {1,..., Q}. Then the following
holds:

{a,b}y € 2, ifandonlyif Lla,b] € Z,,

par *

ForT = (V,E)and V' C V let

wl(V")
2 /
W’ = v (_V)

wQéV’)

where w? (V') := 3" oo wi, Vg € 2.

Proposition 9.1 Let T be partitioned in such a way that T = T; U T, U {e} (and
TiNT, = @). Then W(V(T)) dominates W(V(T3)) if and only if for all x € P(T)
there exists some y € P(T,) which dominates x.

Now we can state a multicriteria version of Goldman’s dominance algorithm
(see Goldman 1971). We start with a subtree containing only one leaf of the tree
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(check for dominance) and enlarge this subtree until we get a Pareto location using
the criterion established in Proposition 9.1. This procedure is then repeated for all
leaves and we end up with a subtree of all Pareto locations by using Theorem 9.9.

Algorithm 9.7 (Solving Q-Criteria Median Problems on a Tree)
Input: T = (V, E), with length function £ and node weight vectors wi, g € 2.

Step 0.  Set W := W(V)
Step 1.  Choose a leaf vy of T, which was not yet considered and give it the status
“considered”.
Step 2. IFV = {v;}
Set Z,or (f (V) 1= Z,0,(f(T)) := {vi} and go 1o Step 6
Step 3. Let v; be the only node adjacent to vy

IF(W}(...WkQ)T<%W

THEN
e wlii=wl+wl, ¢g=1....0
o T:=T\ {v}

Step 4. IF there are any leaves left in T give them status “not considered”
and go to Step 1
Step 5. Set 275(f(V)) = V(T), Z5(f(T) =T

Step 6.  STOP
Output:  2,%.(f(V)) and 2%, (f(T))

The complexity of this algorithm is O(Q|V]). To illustrate the algorithm consider
the following example:

Example 9.10 Consider the tree depicted in Fig.9.24. We solve the following
instance of a three-criteria median problem. Let /(e) := 1, Ve € E. The weights of
the nodes are given in the following table:

Vi U2 U3 V4 Us V6 V7 Ug V9 V10 V11
w! 14 6 8 4 1 2 1 3 2 2 7
w? 11 3 3 24 5 3 2 2 5
w3 16 2 1 2 3 3 6 4 21
50 25
Therefore W = | 62 | and 3W = | 31
60 30

The adjacency structure of the tree is also given in Fig. 9.24. Now we check every
leaf till there is none left with status “not considered”.
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Fig. 9.24 Tree of

Example 9.10. The bold
edges and nodes indicate the
set of Pareto locations

14 25
e Take vi;:w; = | 11 | dominates % =1 31
16 30
64 14 20
Thereforew, := | 34+ 11 | = | 14
2+ 16 18
By following the algorithm we delete vs, v7, vg, v5 and v4. The actual value of wj is
13
32
4
13
e Take v3: w3 = | 32 | does not dominate %
4
7 9
e Takevi;:wip = | 5 | dominates % Therefore wg := | 7
21 27
2 11
e Take vip: wio = | 2 | dominates % Therefore wg := | 9
4 31
11
e Take vg: wg = | 9 | does not dominate %

31
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Since we delete after every domination step the corresponding node from the tree
according to Algorithm 9.7 and no leaf with status not considered is left we end up
with

Xk = L[U9, U3] .

par

9.3.2 Other Multicriteria Location Problems on Networks

In the previous two subsections we presented optimal time algorithms for one
facility median problems when looking for Pareto locations. We chose these two
problems because the reader gets some insight into the needed properties. In
addition, the simplification on trees caused by the uniqueness of paths can be seen.
In the recent survey Nickel et al. (2005a) an overview on other location problems
can be found. In Hamacher et al. (2002) an extension to 1-facility center problems
as well as to positive and negative weight vectors on the nodes is developed.
Those ideas have been further extended to problems with criteria dependent lengths
in Skriver et al. (2004). A unified framework for multicriteria ordered median
functions can be found in Nickel and Puerto (2005). In Colebrook and Sicilia
(2007b) the location of undesirable facilities on multicriteria networks is looked
at by using convex combinations of two objective functions. Some complexity
analysis for the cent-dian location problem has been developed by Colebrook and
Sicilia (2007a). Most approaches to the (in general NP-hard) multi-facility case are
treated as discrete location problems (see Sect. 9.4). Only recently Kalcsics et al.
(2014) started looking into polynomial cases of multi-facility multicriteria location
problems on networks.

9.4 Discrete Location Problems

The previous sections show that planar and network multicriteria location problems
have been widely developed from a methodological point of view so that important
structural results and algorithms are known to determine solution sets. On the
contrary, multicriteria analysis of discrete location problems has attracted less
attention. In spite of that, several authors have dealt with problems and applications
of multicriteria decision analysis in this field. An annotated bibliography with
many references up to 2005 can be found in Nickel et al. (2005a). In general,
very few papers focus in the complete determination of the whole set of Pareto-
optimal solutions. Nevertheless, there are some exceptions, such as the paper by
Ross and Soland (1980) that gives a theoretical characterization but does not exploit
its algorithmic possibilities, as well as the work by Ferndndez and Puerto (2003)
that addresses the computation of the entire set of Pareto-optimal solutions of the
multiobjective uncapacitated plant location problem.
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Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see Ehrgott
and Gandibleux 2000; Ulungu and Teghem 1994) provides an adequate framework
to tackle various types of discrete multicriteria problems as, for instance, the
p-Median Problem (p-MP). Within this emergent research area, several methods
are known to handle different problems. It is worth noting that most of MOCO
problems are NP-hard and intractable (see Ehrgott and Gandibleux 2000, for
further details). Even in most of the cases where the single objective problem
is polynomially solvable the multiobjective version becomes NP-hard. This is
the case of spanning tree problems and min-cost flow problems, among others.
In the case of the p-MP, the single objective version is already NP-hard. This
ensures that the multiobjective formulation is not solvable in polynomial time unless
P=NP. In this context, when time and efficiency become a real issue, different
alternatives can be used to approximate the Pareto-optimal set. One of them is
the use of general-purpose MOCO heuristics (Gandibleux et al. 2000). Another
possibility is the design of “ad hoc” methods based on one of the following
strategies: (1) computing supported non-dominated solutions; and (2) performing
partial enumerations of the solutions space. Obviously, the second strategy does not
guarantee the non-dominated character of all the generated solutions although the
reduction in computation time can be remarkable.

The aim of this section is to present methods to obtain the Pareto-optimal set for
the multiobjective p-median problem ( p-MP). In all cases, our approach to solve the
multicriteria p-MP takes advantage of the problem’s structure. The first method is
exact and it determines the whole set of Pareto-optimal solutions based on new tools
borrowed from the theory of short rational generating functions. The second method
is an “ad hoc” approximate method that generates supported Pareto locations.

9.4.1 Model and Notation

Let/ = {1,...,M}and J = {l,..., N} respectively denote the sets of indices
for demand points and for plants, and £ = {1,..., O} denote the set of indices
for the considered criteria. For each criterion ¢ € 2, let (cg)ie 1jeJ € QM*N pe
the allocation costs of demand points to plants. The multicriteria p-median location
problem is:

M N M N
L 1 q
v-Minimize E E CiiXijs - - - » E E CijXij (9.6)

i=1j=1 i=1j=1
N

subjectto » xy=1, i€l 9.7)
j=1

xj<yj, i€l jelJ, 9.8)



242 S. Nickel et al.

N
Y vi=p 9.9)
=1

x;€{0.1}, y; €{0,1}, iel, jel. (9.10)

As it is usual, v-min stands for vector minimum of the considered objective
functions. Here variable y; takes the value 1 if plant j is open and O otherwise. The
binary variable x;; is 1 if the demand point i is assigned to plant j and O otherwise.
Constraints (9.7), together with integrality conditions on the x variables, ensure
that each demand point is assigned to exactly one plant, while constraints (9.8)
guarantee that no demand point is assigned to a non-open plant. Finally, constraint
(9.9) ensures that exactly p plants are opened.

Recall that in the single criterion case the integrality conditions on the x variables
need not be explicitly stated. The reason is that when the x;; represent the proportion
of demand of client i satisfied by plant j (i.e. 0 < x;; < 1), there exists an optimal
solution with x; = 0,1,7 € I, j € J This property is not necessarily true when
multiple criteria are considered because, in general, there might be undominated
solutions with non-integer values and even non-supported undominated integer
solutions.

9.4.2 Determining the Entire Set of Pareto-Optimal Solutions

In order to characterize the set of Pareto locations of the p-MP we shall use
rational generating functions. Short rational generating functions were used by
Barvinok (1994) as a tool to develop an algorithm for counting the number of integer
points inside convex polytopes, based on the previous geometrical paper by Brion
(1988). The main idea is to encode those integer points in a rational function of
as many variables as the dimension of the space where the polytope is defined.
