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4.1 � Introduction

Antibody-drug conjugates (ADCs) are composed of a cytotoxic agent conjugated 
to a monoclonal antibody (mAb) raised against an antigen that is preferentially 
expressed on cancer cells relative to normal tissues (Fig.  4.1; Lambert 2013). A 
linker provides a covalent bridge between the cytotoxic agent and the antibody, 
which serves to deliver the cytotoxic agent specifically to cancer cells. The function 
of a linker is to keep the cytotoxic molecule stably attached to the antibody during 
formulation and storage of the drug product, and during circulation in plasma fol-
lowing administration. However, a linker must also allow rapid and efficient release 
of the cytotoxic agent upon internalization of the ADC within cancer cells. This 
fine balance of extracellular stability and intracellular release is a necessary starting 
point for the design of a linker for ADCs.

Contemporary linker technologies have taken the linker beyond its basic role as 
a physical bridge between the antibody and a cytotoxic moiety. Linkers have been 
modified to improve the activation of ADCs, thereby allowing ADCs to release the 
cytotoxic agents inside the cells at a faster rate with higher efficiency utilizing dif-
ferent mechanisms for cytotoxin release. Modulation of the linker to effect a change 
in the polarity or charge of the final metabolite has also allowed improved activity 
toward multidrug resistant (MDR) cells owing to better retention of the cytotoxic 
agent inside the cells. Some linker designs have facilitated the generation of ca-
tabolites that are capable of diffusing into proximal tumor cells, inducing bystander 
killing that results in greater in vivo antitumor activity. This chapter reviews various 
linkers that have been designed for ADCs and the impact of linkers on the activity 
and safety of ADCs as cancer therapeutics.
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4.2 � Sites of Attachment and Reactive Chemical Moieties 
on Linkers

Sites of attachment on the antibody and the nature of the chemical groups on link-
ers to effect such attachment are important considerations in ADC design. They not 
only affect the conjugation efficiency and the ease of production of ADCs, but also 
the integrity and stability of the conjugate during production/storage as well as in 
patients. In addition, the linker often remains as an integral part of the metabolites 
and plays a key role in the activity and safety of ADCs in patients.

Lysine and cysteine residues have been utilized as sites of attachment on anti-
bodies. Lysines are abundantly present on the antibody (80–100 lysines per anti-
body), and their primary amine readily reacts with N-hydroxysuccinimide esters, a 
chemical group often incorporated into linkers, to form stable amide bonds. Cys-
teines are present in antibodies in the form of disulfide bonds, which mediate in-
trastrand and interstrand bridges connecting light and heavy chains. For cysteines 
to be used as sites for conjugation, typically the interstrand disulfide bonds need 
to be reduced to generate reactive thiols, which can undergo the Michael reaction 
with a maleimide group commonly utilized in linkers to form thioether bonds. Both 
conjugation sites/methods allow efficient reactions and generate conjugates as a 
heterogeneous mixture with varying number of cytotoxic molecules per antibody. 
The distribution of the cytotoxic molecules per antibody can be highly reproducible 
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from batch to batch, and typically follows a binomial function (Fig. 4.2; Singh and 
Erickson 2009; Wang et al. 2005).

Recent efforts to make homogeneous conjugates have explored diverse sites of 
attachment. An engineered cysteine on heavy and light chains of the antibody has 
been utilized as a site of attachment via maleimide linker chemistry (Junutula et al. 
2008; Kung Sutherland et al. 2013). The reactive thiol of an engineered cysteine is 
not readily available for conjugation, because during antibody production, the sulf-
hydryl group of the engineered cysteine forms a mixed disulfide through exchange 
with cystine in the media. Before conjugation can proceed, a free thiol of the engi-
neered cysteine must be generated by reduction of the antibody. The reduced anti-
body is then subject to partial oxidation to restore the intrachain and interchain di-
sulfides that are important for antibody integrity, while maintaining the engineered 
cysteine in its thiol form. The thiol can then be utilized to react with a maleimide 
group on linkers, a conjugation strategy used to produce ADCs from the Thiomab 
(Junutula et al. 2008) or a similarly engineered antibody (Kung Sutherland et al. 
2013). Alternatively, the free thiol of cysteine within a specific recognition sequence 
can be modified by a formylglycine-generating enzyme posttranslationally to pro-
duce an aldehyde-bearing amino acid, which can be conjugated to a cytotoxic agent 
via a hydrazine linker in a process called “aldehyde tagging” (Rabuka et al. 2012).

Carbohydrate moieties that are naturally present on antibodies have been used 
as sites of conjugation, especially for antibodies that tend to lose binding to antigen 
upon conjugation via lysine residues (Walus et al. 1996). Conjugation via glycans 
involves oxidation of the carbohydrate using sodium periodate, followed by reac-
tion of the resulting aldehyde with a linker bearing a hydrazide group. Although ef-
ficient, this reaction suffered from undesired oxidation of the protein. A new method 
for glycan modification has emerged in recent years. Mannose or galactose contain-
ing an azido substituent is introduced into the endogenous glycosylation at Asp297 

Fig. 4.2   Mass spectrometry profile of an antibody-drug conjugates (ADCs). The profile depicts 
a maytansinoid–ADC made with an average maytansinoid-to-antibody ratio of 3.5. The n of Dn 
refers to the number of cytotoxins attached to the antibody
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of the antibody either by expressing the antibody in the presence of azido-sugar 
(Ac4ManNAz or Ac4GalNAz) or by chemical remodeling using beta(1,4)-galac-
tosyltransferase (Boeggeman et al. 2009). Use of the azido group ushered in the 
development of linkers with strained alkynes (e.g., cycloalkynes) that can react with 
the azide in copper-free click chemistry. The use of click chemistry gained popular-
ity in conjugation to engineered sites, as the chemistry provides specificity without 
affecting the reactivity of the endogenous amino acids on antibodies.

Recently, nonnatural amino acids have been introduced into specific sites in anti-
bodies either by the use of bacterial strains with orthogonal transfer RNAs (tRNAs) 
that can be charged with the nonnatural amino acid (Hutchins et al. 2011) or by cell-
free extracts containing such tRNA and appropriate aminoacyl tRNA synthetases 
(Zimmerman et al. 2014). Click chemistry, along with oxime ligation, has been used 
for conjugation to these engineered nonnatural amino acids. A nonnatural amino 
acid containing an azido group can react with a linker containing a cycloalkyne, or 
a nonnatural amino acid containing a hydroxylamine can react with linkers contain-
ing an aldehyde. The latter oxime ligation has been used to generate a homogeneous 
anti-Her2 conjugate (Axup et al. 2012).

Glutamine has been used as an acceptor for conjugation when a bacterial en-
zyme, transglutaminase, was employed (Dennler et  al. 2014; Strop et  al. 2013). 
Transglutaminase catalyzes the formation of a covalent bond between the acyl side 
chain of glutamine (e.g., endogenous Q295 of human immunoglobulin G (IgG)) 
and a free amino group (e.g., of lysine) on a linker. An antibody can be engineered 
by introducing a glutamine tag to scan for sites that favor transglutaminase reaction 
anywhere on antibodies (Strop et al. 2013), or the native glutamine residue (Q295) 
can be exposed for conjugation by deglycosylation at N297 that typically hinders 
the accessibility of the glutamine (Dennler et al. 2014).

Conjugation chemistry has become sophisticated in recent years, and different 
sites on antibody and various functional groups on linkers have been explored. As 
a result, many claims have been made regarding the effect of these approaches 
(sites of conjugation and accompanying conjugation chemistry, as well as the con-
sequence of homogeneous vs. heterogeneous conjugates) on the biological activity 
and potential safety of these ADCs (Junutula et al. 2008; Zimmerman et al. 2014). 
Thus far, there are no clinical data to support the various claims, and hence there is 
no clear understanding of the effect of these strategies on the activity and safety of 
ADCs.

4.3 � Types of Linkers

Linkers are generally categorized into noncleavable or cleavable linkers. Noncleav-
able linkers represent linkers which remain intact during intracellular metabolism. 
ADCs with such linkers require lysosomal degradation of the antibody to release 
the cytotoxic agent. The metabolite retains the amino acid residue that served as the 
site of attachment to the antibody. Cleavable linkers are linkers that cleave during 
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intracellular metabolism, generating metabolites that contain the cytotoxic agent 
with or without a portion of the linker. Cleavable linkers may be cleaved by hydro-
lysis, enzymatic reaction, or reduction, and include acid-labile hydrazone linkers, 
peptide-based linkers, and disulfide linkers, respectively.

4.3.1 � Noncleavable Linkers

Thioethers are a widely used format for noncleavable linkers because of the facile 
reaction of maleimides with thiols under mild, neutral aqueous conditions. Thio-
ethers can also be generated by reacting thiols with haloacetamido groups, although 
this reaction needs harsher conditions (e.g., higher pH and excess haloacetamido 
reagents; Alley et al. 2008). Thioether linkage has been used for microtubule-target-
ing agents, e.g., thiol derivatives of maytansine (Fig. 4.3; Singh and Erickson 2009) 
and auristatin (monomethyl auristatin F or MMAF; Alley et al. 2008).

Ado-trastuzumab emtansine (T-DM1 or Kadcyla®) is a conjugate approved 
by the Food and Drug Administration (FDA) for the treatment of human epider-
mal growth factor receptor 2 (HER2)-positive, metastatic breast cancer in patients 
previously treated with trastuzumab and a taxane. T-DM1 is composed of trastu-
zumab and DM1 linked by a heterobifunctional linker, SMCC ( N-succinimidyl-
4-(maleimidomethyl) cyclohexane-1-carboxylate; Fig.  4.4). The SMCC–DM1 
conjugate is prepared by reacting lysine residues on the antibody with the N-hy-
droxysuccinimide ester moiety of SMCC, and linking the thiol of DM1 with the 
maleimide group on SMCC (Fig. 4.4). The antibody–SMCC–DM1 format is cur-
rently used in other ADCs. Epidermal growth factor receptor (EGFR)-targeting 
IMGN289, CD37-targeting IMGN529, and CD70-targeting AMG172 are being 
evaluated in the clinic. The sole metabolite of SMCC–DM1 conjugates is Lys–
SMCC–DM1 (Fig. 4.5; Erickson et al. 2006).

An analogous thioether linker in which a hydrophilic tetraethylene glycol (PEG4) 
replaced the hydrophobic cyclohexyl group of SMCC was developed (Fig.  4.6). 
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When conjugated to an anti-epithelial cell adhesion molecule (EpCAM) antibody, 
the ADC with the hydrophilic linker showed higher potency in cells expressing P-
glycoprotein, which is responsible for the MDR phenotype (Kovtun et al. 2010). 
This PEG4Mal–DM1 conjugate generates a single metabolite, Lys–PEG4Mal–DM1 
(Kovtun et  al. 2010). A similar PEG linker was also used to conjugate DM1 to 
two engineered cysteines in the heavy chain of trastuzumab (Junutula et al. 2010). 
The homo-bifunctional BMPEO (bis-maleimido-trioxyethylene glycol) linker used 
contained a triethylene glycol (PEG3) spacer with two maleimido groups, used for 
conjugating to the thiol of DM1 and the thiol of a reduced free cysteine, to generate 
a homogeneous site-specific conjugate.

A thioether linkage has also been used for conjugation of antibodies to the tubulin 
inhibitor, auristatin. Anti-CD70–maleimidocaproyl (mc)–MMAF was generated by 
reaction of the thiol groups of native cysteines on the antibody with a maleimide-
containing linker (Fig. 4.7). The anti-CD70–mc–MMAF conjugate was evaluated in 
the clinic for the treatment of lymphomas and renal cell carcinomas, and contained 
an average of four MMAF molecules per antibody. The anti-CD70 antibody was 
evaluated preclinically with another noncleavable linker. When a bromoacetamide-
caproyl (bac) group replaced the mc to generate anti-CD70–bac–MMAF, it showed 
an improved plasma stability and 25 % higher intratumoral drug exposure compared 
with a similar conjugate bearing mc–MMAF. However, despite this improvement, 
there was no statistically significant difference in the efficacy of these two conjugates 
in a subcutaneous 786-O renal cell carcinoma xenograft model (Alley et al. 2008).

O

O
N

O

O

Ab N
H

Ab

n

N
O

O O

N
O

O

S

O

Ab-SMCC-DM1

N
H

n

O

N
O

O

Ab
DM1

SMCC

O
OMeCl

N
O

O

O

NH
O

O

OMe

OH

N

Fig.  4.4   Conjugation scheme for antibody–SMCC–DM1. SMCC N-succinimidyl-
4-(maleimidomethyl) cyclohexane-1-carboxylate

 



4  Linker Design for Antibody-Drug Conjugates 55

Fig. 4.6   Conjugation scheme for antibody–PEG4–Mal–DM1. PEG4 hydrophilic tetraethylene 
glycol
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Fig. 4.5   Antibody–SMCC–DM1 generates a single metabolite Lys–SMCC–DM1. SMCC N-suc-
cinimidyl-4-(maleimidomethyl) cyclohexane-1-carboxylate
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4.3.2 � Cleavable Linkers

4.3.2.1 � Acid-labile Linkers

Hydrazone linkers are designed to be stable in a neutral pH environment, such as in 
plasma, but hydrolyzed to release the cytotoxic agent in an acidic pH environment, 
such as in late endosomes and lysosomes. Potent DNA-targeting cytotoxic agents, 
e.g., calicheamicin or doxorubicin (Fig. 4.8), have been conjugated to antibodies 
via hydrazone linkers.

N-acetyl-γ1
I-calicheamicin is a type of enediyne antibiotics that associates with 

the minor groove of DNA and causes double-strand breaks in a sequence-specific 
manner (Greenberg 2014). Calicheamicin has been evaluated in the context of an-
tibodies to CD33, CD22, and Muc1, all of which were conjugated via hydrazone 
linkers (Ricart 2011; Hamann et al. 2005a).

The first FDA-approved ADC, gemtuzumab ozogamicin (Mylotarg®), was used 
for the treatment of patients with acute myelogenous leukemia (AML). Gemtu-
zumab ozogamicin is composed of an anti-CD33 IgG4 conjugated to calicheamicin 
via a bifunctional linker 4-(4’acetylphenoxy)-butanoic acid. The N-hydroxysuccin-
imide ester of N-acetyl-γ-calicheamicin dimethyl hydrazide 4-(4acetylphenoxy)-
butanoic acid reacts with lysine residues on the antibody, leading to an average 
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loading of 4–6 calicheamicins per antibody, but with 50 % of the antibody remain-
ing unconjugated (Hinman et  al. 1993). In an acidic environment, calicheamicin 
is released from the ADC upon hydrolysis of the hydrazone linker, and undergoes 
thiol-mediated reduction, followed by Masume–Bergman cyclization. This reaction 
generates ρ-benzyne biradicals that abstract hydrogen atoms from the phosphodi-
ester backbone of DNA and leads to single- and double-strand lesions (Fig. 4.9). 
Mylotarg was voluntarily withdrawn from the market when a confirmatory phase 
III clinical trial failed to demonstrate clinical benefit. A new regimen of fractionated 
doses for better efficacy and safety is being evaluated in the clinic (Pilorge et al. 
2014). Anti-CD22 antibody was also conjugated to calicheamicin via the same acid-
labile 4-(4’acetylphenoxy)-butanoic acid linker, generating inotuzumab ozogami-
cin (CMC-544). CMC-544 was evaluated in the clinic for treatment of B-lymphoid 
malignancies (DiJoseph et al. 2004a, 2004b; Jain et al. 2014); however, its evalu-
ation for the treatment of CD22-positive aggressive non-Hodgkin lymphoma was 
halted due to lack of benefit in overall survival. Another example for the hydrazone 
linker is highlighted in the anti-Muc1 antibody, CTM01, which was conjugated to 
calicheamicin via a hydrazone link to periodate oxidized carbohydrates on the anti-
body (Hamann et al. 2005b).

Fig. 4.9   Mechanism of release and action for antibody conjugated to calicheamicin via a hydra-
zone linker
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Similarly, doxorubicin, a DNA intercalator that elicits cytotoxicity by inhibiting 
topoisomerase II, has been conjugated to antibodies via a hydrazone linker. Thiols 
from the reduced interchain disulfides of the anti-CD74 antibody, IMMU-110, are 
conjugated to doxorubicin via a 4-[N-maleimidomethyl] cyclohexane-1 carboxyl-
hydrazide, yielding an average of eight doxorubicin per antibody. This conjugate, 
milatuzumab–dox, was evaluated for the treatment of patients with multiple my-
eloma (Sapra et al. 2005), but was recently withdrawn for lack of efficacy.

4.3.2.2 � Reducible Linkers

Reducible disulfide linkers take advantage of the difference in reduction potential 
in plasma versus the intracellular compartment. They are designed to keep conju-
gates intact during systemic circulation in patients, while efficiently allow reduc-
tion/cleavage of the disulfide bond inside cells. Reducible disulfide linkers gen-
erate neutral metabolites that can freely diffuse into neighboring cells and elicit 
bystander killing aiding the tumor penetration of the cytotoxic anticancer agent (see 
Sect. 4.4.3).

The most abundant low molecular thiol in blood is cysteine, the concentration of 
which is low at ~ 5 µM (Mills and Lang 1996). Serum albumin is another source of 
reducing potential in the blood, and its concentration is higher at ~ 0.6 mM (Turell 
et al. 2009). However, despite its relative abundance, the thiols in albumin are bur-
ied and inaccessible to thiol–disulfide exchange, thus it is not a major source of 
disulfide cleavage (for more discussion, see the linker stability section). In contrast 
to blood, the reduction potential inside cancer cells is much higher. Reduced glu-
tathione is present at 1–10 mM (Wu et al. 2004), and cells also contain enzymes 
of the protein disulfide isomerase family, which may contribute to reduction of the 
disulfide bond in cellular compartments. This differential allows stable circulation 
in plasma, but efficient release inside the cells upon internalization of the ADC.

An important consideration for designing disulfide linkers is the steric hindrance 
of the disulfide bond and its impact on the stability of the linker. The HuC242 an-
tibody has been used as a model system to evaluate the effect of hindrance on the 
reactivity of disulfide linkers to thiol–disulfide exchange in vitro and in plasma 
(Kellogg et al. 2011). The humanized C242 antibody recognizes CanAg, which is 
abundantly expressed in colorectal carcinoma. Various numbers of methyl groups 
were introduced on the carbon atoms bearing the disulfide bond (Fig. 4.10), and 
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the rate of reduction of these disulfide bonds in ADCs by dithiothreitol (DTT) was 
measured. The study led to the conclusion that the stability of the disulfide linker, 
in the presence of reducing agent, increased with the level of steric hindrance. The 
introduction of one methyl group on each side (total two methyl groups) of the 
disulfide bond was shown to confer greater stability than two methyl groups on 
one side of the disulfide. The difference in stability despite the same total number 
of methyl groups/hindrance highlights the importance of the position of hindrance 
(Kellogg et al. 2011).

Where are disulfide linkers reduced? The pKa of the thiol of reduced glutathione 
is 9.65. Hence, it is expected that the reduction will be inefficient in a low pH envi-
ronment such as late endosomes and lysosomes (pH ~ 5). By contrast, the reduction 
is expected to be more efficient in a higher pH environment, as in cytoplasm (pH 
7.4; Fig.  4.11). Consistent with this, no significant amount of reduction was re-
ported to occur in lysosomes when probed with a conjugate linked to a pH-sensitive 
fluorophore via a disulfide linker (Austin et al. 2005; Yang et al. 2006). However, 
it has been demonstrated that in certain cell lines, there is some degree of reduction 
of the disulfide bond in endosomes, allowing an alternative pathway of metabolism 
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before lysosomes and consequential advantage in cytotoxic effect (Maloney et al. 
2009). Accordingly, significant reduction takes place in the endosomes for folate 
conjugated to fluorescence resonance energy transfer (FRET) fluorophores via a 
linker with a disulfide bond (Yang et al. 2006).

4.3.2.3 � Peptide Linkers

Peptide linkers are attractive for several reasons. First, peptide linkers may allow 
easier release of the cytotoxic molecule, as cleavage of one bond within the peptide 
linker is sufficient to free the metabolite within cells, as opposed to noncleavable 
linkers that require a cleavage of two bonds, both the N- and C-termini of the con-
jugated amino acid residue. Second, unlike hydrophobic synthetic linkers, peptide 
linkers, with the appropriate choice of amino acids, can offer hydrophilicity allow-
ing higher cytotoxin loading per antibody, and/or better solubility in combination 
with unusually hydrophobic cytotoxins.

Microtubule-targeting MMAE is often conjugated to an antibody via a link-
er containing a valine–citrulline (Val–Cit) dipeptide and a self-immolative 
ρ-aminobenzylcarbamate (PABC) spacer (Fig.  4.12). Upon hydrolysis of the 
Val–Cit peptide by lysosomal proteases such as cathepsin B, PABC–MMAE is re-
leased and subsequently undergoes self-immolation at the PABC site to generate 
MMAE, which can diffuse into neighboring cells and elicit bystander cytotoxicity 
(Fig. 4.13). When compared with antibodies conjugated to MMAE via the hydra-
zone of 5-benzoylvaleric acid-AE ester (AEVB), the ADC with the Val–Cit dipep-
tide linker showed better stability and greater specificity of ADC activity in vitro 
and in vivo (Doronina et al. 2003). Val–Cit–PABC is the linker used in brentuximab 
vedotin (SGN-35, Adcetris™), a CD30-targeting ADC (Fig. 4.14; Senter and Siev-
ers 2012). Val–Cit with PABC spacer has also been conjugated to the DNA-inter-
acting cytotoxin, doxorubicin, in the context of mAbs c1F6 (anti-CD70) and cAC10 
(anti-CD30) for targeting renal cell carcinoma and anaplastic large cell lymphoma, 
respectively (Jeffrey et al. 2006).

In addition to Val–Cit, variations of the dipeptide have been evaluated. Antibod-
ies recognizing Lewis Y and CD30 on carcinomas were conjugated to MMAE via a 
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linker containing phenylalanine–lysine with a PABC spacer. In a head-to-head com-
parison using the same antibodies, the ADC with the Phe–Lys linker conferred lower 
stability in mouse and human plasma compared to that with a Val–Cit linker as mea-
sured ex vivo, with projected half-lives of 12.5 days versus 30 days in mouse plasma, 
and 80 days versus 230 days in human plasma, respectively (Doronina et al. 2003).

Peptide linkers can be modified to confer hydrophilicity for conjugation of hy-
drophobic drugs such as DNA minor-groove-binding drugs (MGBs). The valine–
lysine–tetraethyleneglycol and valine–lysine–para-aminobenzyl ether self-immola-
tive spacer allowed the conjugation of MGBs to antibodies without forming aggre-
gates (Jeffrey et al. 2005).

4.3.2.4  �β-Glucuronide Linker

A β-glucuronic acid-based linker was used to conjugate MMAE, MMAF, and doxo-
rubicin propyloxazoline individually to antibodies c1F6 (anti-CD70) and cAC10 
(anti-CD30; Jeffrey et al. 2007). β-Glucuronides are hydrolyzed by β-glucuronidase, 
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an enzyme that is abundantly present in lysosomes and is overexpressed in some 
tumors (Fig. 4.15; Albin et al. 1993), and is reported to be the main drug metaboliz-
ing enzyme systems in human breast tumors and peritumoral tissues. The hydro-
philicity of this linker allows the generation of monomeric ADCs with as many 
as eight cytotoxins per antibody. In addition, the hydrophilicity of the glucuronide 
linker afforded conjugation of hydrophobic drugs such as DNA minor-groove bind-
ers (Jeffrey et al. 2005, 2007).

4.4 � Effect of Linkers on the Activity and Safety of ADC

4.4.1 � Linker and Intracellular Processing/Activation

Ideally, ADCs behave as prodrugs: They are designed to be inactive during sys-
temic circulation in plasma, but become activated upon internalization inside cells 
(Fig. 4.16). In the first step, ADCs bind to antigens on the cell surface, and undergo 
endocytosis. Upon clathrin-mediated vesicle formation, ADCs are transported to 
endosomes (pH ~ 5–6). Subsequently, endosomes fuse with lysosomes (pH ~ 4), the 
compartment that is rich in enzymes responsible for degradation of proteins, e.g., 
proteases and esterases. Inside lysosomes, ADCs are degraded to generate metabo-
lites that consist of the cytotoxic agent covalently linked to the amino acid site of 
conjugation (Erickson et  al. 2006). For example, T-DM1 generates Lys–SMCC–
DM1, as the conjugation occurred between the primary amine of lysine and N-
hydroxysuccinimide ester of SMCC (Fig. 4.5; Erickson et al. 2012).
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Linkers can be modified to take advantage of different modes of activation/me-
tabolism. For example, conjugates containing peptide linkers may allow a faster 
rate of activation, as cleavage of one bond in the peptide linker is sufficient to 
release the cytotoxic agent, as opposed to ADCs with a noncleavable linker, which 
necessitates cleavage of two bonds at both N- and C-termini of the amino acid of 
attachment. Peptide linkers may also be designed so that the conjugates are metabo-
lized in both endosomes and lysosomes, by altering the peptide sequence to match 
the substrate specificity of enzymes that are present in both compartments. For ex-
ample, conjugates containing a peptide linker that can be cleaved by cathepsin B 
may be metabolized in both endosomes and lysosomes since cathepsin B is present 
in both compartments (Diederich et al. 2012). This may or may not be advantageous 
for the activity of ADC for the following reasons. Metabolism in both endosomes 
and lysosomes may allow faster activation that may afford an advantage in activity. 
However, if the linker is cleaved in the endosomes, it may also be susceptible to 
cleavage in the endosomal compartment during Fc recycling. Antibodies are re-
cycled via neonatal Fc receptor (FcRN) binding in endosomes and are transported 
back to the cell surface thereby avoiding degradation in lysosomes. Such recycling 
of antibodies via FcRN is responsible for their long half-life in plasma (Lencer and 
Blumberg 2005). If the linker is cleaved in endosomes during recycling, the number 
of molecules of cytotoxic agent linked per antibody will decrease, which leads to 
(i) delivery of a lower amount of cytotoxic agent per antibody to cancer cells and 
(ii) toxicity caused by early release of free cytotoxin in normal tissues, with the de-
gree of toxicity correlating to membrane permeability of the free cytotoxic agent. A 
similar activity and toxicity concern may apply to the acid-labile hydrazone linker, 
with an added concern for the lack of specificity; rather than relying on the enzyme 
specificity and its localized compartments (e.g., endosome), hydrazone linkers can 
be cleaved in any acidic environment.

Fig. 4.16   Intracellular processing of antibody-drug conjugates
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4.4.2 � Linkers to Overcome MDR

Treatment of cancer patients with chemotherapeutic reagents often leads ultimately 
to an MDR phenotype. The mechanism of the MDR phenotype varies, but overex-
pression of multidrug transporter MDR1 (also called P-glycoprotein) is the most 
commonly observed phenotype in the clinic. MDR1 is a membrane-associated 
transporter that confers drug resistance by mediating efflux of cytotoxic com-
pounds. Many compounds used for ADCs, including calicheamicin (Matsui et al. 
2002; Walter et al. 2003), doxorubicin, taxanes (Szakacs et al. 2006), maytansinoids 
(Tang et al. 2009), and analogs of dolastatin (Toppmeyer et al. 1994), are substrates 
of multidrug transporter MDR1, which poses a barrier to effective treatment of 
cancer patients with an ADC.

Linkers can be designed to evade the MDR1-mediated drug resistance. In a study 
to understand the effect of linkers on MDR1-dependent drug resistance, cell lines 
ranging from those naturally expressing a high level of MDR1, e.g., the colon ad-
enocarcinoma HCT-15 and the renal adenocarcinoma UO-31, to an engineered cell 
line that mimics the high expression of MDR1, COLO 205MDR (MDR positive; 
parental COLO 205 is MDR negative), were used (Kovtun et al. 2010). The pres-
ence of MDR1 led to a 6–18-fold reduction in sensitivity to tubulin inhibitors in-
cluding maytansine, paclitaxel, and vinblastine. Similarly, cells became resistant to 
anti-EpCAM–SMCC–DM1 compared to those co-treated with cyclosporin A that 
inhibits MDR1, indicating that MDR1 is also effective against the metabolite of the 
ADC, Lys–SMCC–DM1. The replacement of SMCC with PEG4Mal (Fig. 4.6) in 
an anti-EpCAM ADC led to enhanced cytotoxic activity in vitro and in HCT-15 and 
COLO 205MDR xenograft models in vivo. The sole metabolite generated by anti-
EpCAM–PEG4Mal–DM1 was Lys–PEG4Mal–DM1, suggesting that the evasion of 
MDR phenotype is due to the hydrophilicity of the linker. The potency of the metab-
olites is expected to be the same for Lys–SMCC–DM1 and Lys–PEG4Mal–DM1, 
as anti-EpCAM–SMCC–DM1 and anti-EpCAM–PEG4Mal–DM1 display similar 
cytotoxic potency in non-MDR cell lines (Kovtun et al. 2010).

Evasion of MDR1-mediated drug resistance is not limited to noncleavable link-
ers. Recently, a hydrophilic disulfide linker was generated by modifying N-suc-
cinimidyl-4-(2-pyridyldithio) butanoate, SPDB, with a sulfonate group positioned 
distal to the disulfide bond (Fig. 4.17). When evaluated as an anti-EpCAM–sulfo-
SPDB–DM4 conjugate, it showed better activity in the COLO 205MDR cell line and 
xenograft model than anti-EpCAM–SPDB–DM4, suggesting that the sulfo-SPDB 
linker is effective in overcoming MDR1-mediated drug resistance. A similar en-
hanced activity in MDR1-positive cell lines was also observed for huC242–sulfo-
SPDB–DM4 targeting CanAg, a novel glycoform of Muc1 (Zhao et al. 2011).

In addition to MDR1-resistance, the hydrophilicity of PEG4Mal and sulfo-SPDB 
affords conjugation of a higher number of maytansinoid molecules per antibody 
(8–9 drugs per antibody; (Zhao et al. 2011)). Thus, these linkers may be particu-
larly beneficial in conjugation of hydrophobic cytotoxins that may not have been 
previously feasible using other linkers. The ADC targeting the folate receptor 
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(IMGN853) using DM4 linked to the antibody via a sulfo-SPDB linker is currently 
undergoing clinical evaluation in patients with ovarian carcinoma and nonsmall cell 
lung cancer.

4.4.3 � Linkers to Improve Activity in Solid Tumors

Solid tumors are architecturally complex, often heterogeneous, and composed of 
different tissue types. These inherent properties of solid tumors can lead to hetero-
geneous expression of the target antigen, which limits the population of cancer cells 
that can be targeted by ADC. Even for tumors expressing the target antigen homo-
geneously, it has been documented that tumor penetration is not efficient due in 
part to the large molecular size of antibody-based therapies and uneven vasculature 
within tumors. When anti-Her2 antibody penetration was monitored in a MDA-435/
LCC6HER2 xenograft model, despite homogeneous expression and immunohisto-
chemical (IHC) staining of Her2, the fraction of Her2 bound by anti-Her2 antibody 
was patchy and localized (Baker et al. 2008). Thus, even solid tumors with homo-
geneous expression of the target antigen suffer from incomplete tumor penetration, 
which could limit the effectiveness of ADCs.

Linkers can be designed to help compensate for this. Thus far, two types of link-
ers have been designed to release cell-permeable free cytotoxic agents that can dif-
fuse into neighboring cells and cause “bystander killing,” irrespective of whether 
these neighboring cells express target antigen. ADCs with bystander killing have 
often shown better activity in vivo compared with those without a bystander effect. 
This advantage in vivo has not always been apparent in vitro, where the bystander 
killing cannot be sufficiently recapitulated due to a difference in the architecture of 
two-dimensional tissue culture versus three-dimensional tumors.

N
O

S
S

O

SO3
-

O

O

Sulfo-SPDB

N
H

S
S

O

SO3
- O

May

Ab-Sulfo-SPDB-DM4

N

Ab + DM4

Ab

Fig. 4.17   Sulfo-SPDB linker 
that evades MDR resistance. 
SPDB N-succinimidyl-4-(2-
pyridyldithio) butanoate, 
MDR multidrug resistant

 



E. E. Hong and R. Chari66

One type of linker that can elicit bystander killing are disulfide linkers (Kel-
logg et al. 2011). The disulfide bonds in ADCs of the maytansinoid DM4 can be 
reduced by intracellular thiols to generate DM4 that can freely diffuse into neigh-
boring cells, and if dividing, kill them. Furthermore, it has been demonstrated that 
DM4 undergoes methylation to form S-methyl DM4 in vitro and in vivo (Fig. 4.11; 
Erickson et al. 2006, 2010). Capping of DM4 through methylation may lead to an 
improved bystander effect: (i) methylation leads to formation of a noncharged com-
pound that is readily membrane permeable and (ii) capping the free thiol of DM4 by 
methylation prevents possible disulfide exchange with endogenous disulfides such 
as cystine, which creates a hydrophilic charged compound, cysteinyl-DM4, that is 
not as membrane permeable. The ADC, huC242–N-succinimidyl 4-(2-pyridyldi-
thio)pentanoate (SPP)–DM1, wherein DM1 is linked via a disulfide bond using the 
SPP linker, displayed bystander killing as a result of the reduction of the disulfide to 
release DM1. This ADC showed better efficacy than the conjugate with a noncleav-
able linker, huC242–SMCC–DM1 in COLO 205 and HT-29 xenograft models ex-
pressing the CanAg antigen, suggesting that the bystander effect plays an important 
role in the antitumor activity in vivo (Kellogg et al. 2011).

Peptide linkers have been utilized to generate free cytotoxins that can elicit by-
stander killing. Conjugates containing Val–Cit–PABC–MMAE are cleaved at Val–
Cit dipeptide and release p-aminobenzyloxycarbonyl (PABC)–MMAE, which can 
undergoes self-immolation to generate a noncharged MMAE molecule that can 
penetrate neighboring cells (Fig. 4.13; Sievers and Senter 2013).

4.4.4 � Linker Stability in Plasma

Noncleavable linkers often employ a thioether bond formed by a Michael reaction 
between free sulfhydryl and maleimide groups, the examples of which are evident 
in maytansinoid and auristatin conjugates. Noncleavable linkers are considered 
relatively stable during circulation in plasma. However, recent data suggest that the 
stability of the thioether bond may vary for different linkages.

1F6-C4v2-mc–MMAF, an ADC targeting the CD70 antigen on lymphomas and 
renal cell carcinoma, is generated by reacting a maleimido group of mc–MMAF 
with the reduced thiol of cysteines that normally form interchain disulfides in IgG. 
When compared with IF6-C4v2–bac–MMAF, an ADC that uses a haloacetamido 
group instead of a maleimide, the IF6–C4v2–mc–MMAF conjugate showed a re-
duced serum concentration and drug exposure, and it was found that a portion of 
mc–MMAF becomes conjugated to cysteine 34 of serum albumin during incubation 
in plasma. It is speculated that IF6–C4v2–mc–MMAF undergoes a retro-Michael 
reaction, which releases the maleimide drug that subsequently reacts with cysteine 
of serum albumin (Alley et al. 2008).

A similar retro-Michael reaction has been implicated for the instability of site-
specific conjugate with a Thiomab that utilizes engineered cysteine as a reaction 
site for maleimide. Interestingly, a conjugation site-dependent instability of the thi-
ol–maleimide bond was observed. When conjugated to a solvent-exposed cysteine 
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residue S396C of Fc, mc–vc–MMAE or mc-Alexa488 was released from the anti-
body at a higher rate than the same chemical moiety conjugated to V205C on a light 
chain that is located in a positively charged environment. This site-dependent loss 
of conjugated moiety from the antibody was accompanied by conjugation of the re-
leased “payload” to serum albumin, as modeled utilizing mc–Alexa488 conjugates, 
suggesting that a maleimide exchange has occurred between antibody and albumin. 
It was speculated that the thiol–maleimide bond in a solvent-exposed environment 
readily undergoes maleimide exchange in plasma, whereas maleimide in a posi-
tively charged environment undergoes succinimidyl ring opening, which prevents 
maleimide exchange (Shen et al. 2012b).

Maytansinoid conjugates have proven to be an exception. Although the thiol-
containing maytansinoid, DM1, utilizes the same thiol–maleimide chemistry, it is 
much more resistant to the retro-Michael reaction, likely owing to the higher pKa 
of the thiol donor, compared to cysteine residues on the antibody. A study to further 
understand the stability of the SMCC–DM1 thioether linkage led to the observation 
that free DM1 is released only by β-elimination following oxidation of the thioether 
bond to sulfoxide, which likely occurs in ex vivo conditions (Fishkin et al. 2011). 
It is suggested that the thioether oxidation is a potential ex vivo artifact that is less 
likely to occur in vivo where the redox potential of plasma is more tightly regulated.

The stability of the disulfide linkers depends on hindrance of the disulfide. As dis-
cussed previously (see Sect. 4.3.2.2.), the greater the degree of hindrance around the 
disulfide bond, the lower the propensity to reduction in vitro by DTT, and this stability 
correlates well with pharmacokinetics (PK) of the ADCs in vivo. HuC242–SPDB–
DM4 (two methyl groups at the carbon next to the disulfide bond) shows a longer half-
life in mouse plasma than huC242–SPDB–DM3 or huC242–SPP–DM1 (both contain 
one methyl group at the carbon adjoining the disulfide bond; Kellogg et al. 2011).

4.4.5 � Linker Stability and Activity of ADCs

Do stable linkers provide better activity for ADCs? Preclinical findings suggest that 
although stable linkers may increase exposure of tumors to ADC, it is the careful 
balance between the resistance to extracellular cleavage (e.g., in plasma) and facil-
ity of intracellular cleavage (upon cellular internalization) of linkers that provides 
the maximal activity.

The study of reducible linkers demonstrates this point elegantly. First, an ADC 
with SPP–DM4 with three methyl groups around the disulfide bond shows better 
stability against the thiol–disulfide exchange in vitro and longer half-life in plasma 
of 218 h compared with a SPP–DM1 conjugate, which has only one methyl group 
on the carbon atom adjacent to the disulfide bond (half-life at 47 h). Accordingly, 
the exposure for SPP–DM4 conjugate is greater than that of SPP–DM1, with AUC 
being 22,712 and 5186 h µg/mL, respectively. Yet, the huC242–SPP–DM1 shows 
better efficacy compared with huC242 antibody conjugated to SPP–DM4 in subcu-
taneous COLO 205 and HT-29 xenograft models. It is hypothesized that SPP–DM1 
releases catabolites more readily than SPP–DM4 inside cells, such that the higher 
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exposure of SPP–DM4 cannot compensate for the faster intracellular activation of 
SPP–DM1 (Kellogg et al. 2011).

Similar results were observed for αv integrin-targeting conjugates. CNTO365, 
using SPDB–DM4 with two methyl groups hindering thiol–disulfide exchange, 
showed better efficacy than CNTO366, using SPP–DM4 with three methyl groups 
hindering thiol–disulfide exchange, in HT-29 colon cancer and A-549 human lung 
cancer xenograft models (Chen et al. 2007).

Recent studies with T-DM1 illustrates that the linker stability alone does not pre-
dict efficacy. When compared against trastuzumab–SPP–DM1 (or T–SPP–DM1), 
T-DM1 (T–SMCC–DM1) showed better stability in plasma and longer half-life 
(Fig. 4.18). However, despite faster clearance and less total conjugate localization to 
tumors, T–SPP–DM1 showed a similar amount of metabolites generated at tumors 
(Fig. 4.18). As such, T-SPP-DM1 demonstrated similar efficacy as T–SMCC–DM1 
in the BT474-EEI xenograft model (Erickson et al. 2012). It is clear that rate of ac-
tivation inside the tumors and the total amount of metabolites are important predic-
tive factors in antitumor activity. Moreover, different mechanisms of action for cell 
killing, i.e., bystander activity for T–SPP–DM1, but not for T-DM1, should also be 
considered in interpreting the efficacy data.

Fig. 4.18   Pharmacokinet-
ics of trastuzumab-SPP-
DM1 (T-SPP-DM1) and 
T-DM1 (T-SMCC-DM1) 
and accumulation of the 
metabolites in the BT474 
EEI-derived tumor xenograft 
model. SMCC N-succinimi-
dyl-4-(maleimidomethyl) 
cyclohexane-1-carboxylate
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In conclusion, efficacy conferred by the linker cannot be predicted based on one 
aspect of ADC behavior, such as PK, as a number of different factors can contrib-
ute to the activity of ADC. Thus, each ADC with different linkers must be tested 
empirically to determine the combined effect of PK, exposure, rate of intracellular 
activation, and mode of killing (e.g., bystander, etc.) in the context of each target.

4.4.6 � Linker Stability and Safety

4.4.6.1 � Effect of Linker on Liver Detoxification of ADC and Biodistribution

The liver is the primary site of antibody metabolism, and indeed, a significant 
amount of metabolites from ADCs are found in the liver. The anti-CD56 antibody, 
huN901, conjugated to maytansinoid via various linkers was used to study the effect 
of a linker on detoxification of ADC (Sun et al. 2011). A radioactive tracer, tritium, 
was incorporated at the C-20 methoxy group of maytansinoid to allow for the de-
tection of metabolites. HuN901-SMCC-[3H]DM1 with a noncleavable linker was 
metabolized in liver to Lys–SMCC–[3H]DM1, which is more than 50-fold less cyto-
toxic than the parental compound due to poor cell penetration. Both huN901–SPP–
[3H]DM1 and huN901–SPDB–[3H]DM4 containing disulfide linkers also generate 
initially the analogous lysine-linked maytansinoid. However, subsequent reduction, 
S-methylation, and nicotinamide adenine dinucleotide phosphate (NADPH)-depen-
dent oxidation in the liver leads to the formation of S-methyl sulfoxide and S-methyl 
sulfone derivatives of maytansinoid (Fig. 4.19). When tested in vitro, these oxidized 
maytansinoids were found to be 5- to 50-fold less cytotoxic than parental maytan-
sine in many human cancer cell lines, illustrating efficient detoxification of ADCs 
in liver (Sun et al. 2011).

Biodistribution of ADC and the effect of linkers on the tissue distribution was 
assessed using the huC242 antibody targeting CanAg antigen. The unconjugated 
antibody, antibody–SPP–DM1, and antibody–SPDB–DM4 were labeled with 125I 
on the antibody backbone to track the localization of ADC to various tissues. Fol-
lowing a single bolus injection of 4.16 mg/kg, it was found that the biodistribution 
profile is similar among all conjugates and the unconjugated antibody, demonstrat-
ing that ADC distribution is dictated by the antibody component (Xie et al. 2004; 
Xie and Blattler 2006). A closer look at huC242–SPDB–DM4 with a tritium label 
at the C-20 methoxy group of maytansinoid to follow the drug portion of ADC led 
to the finding that 30–50 % of injected dose/gram was recovered in the gall bladder 
from 2 h to 2 days post dosing, which is consistent with hepatobiliary elimination 
of maytansinoid (Erickson and Lambert 2012). Similar observations were made 
when rats were administered with a single bolus injection of T-[3H]DM1; up to 
80 % of the radioactivity was recovered in the feces over 7 days, consistent with 
hepatobiliary elimination of maytansinoid (Shen et al. 2012a). The biodistribution 
profile of huC242–SMCC–[3H]DM1 resembled the profile of huC242–SPDB–[3H]
DM4 (Erickson and Lambert 2012), suggesting a lack of significant contribution of 
linkers on biodistribution for the linkers tested. Thus, different degrees of toxicity 
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conferred by SPP, SPDB, and SMCC linkers in mice may be due to the cell per-
meability and subsequent potency of the metabolites, rather than linker-dependent 
distribution of the ADCs.

4.4.6.2 � Effect of Linkers on Safety in Clinic: Inverse Correlation of Stability 
and Safety

There are many ADCs with different linkers in the clinic today. The PK of the ADC 
in humans has been a reflection of both stability of the linker and antigen-mediated 
clearance. For maytansinoid conjugates containing disulfide linkers, the PK in hu-
mans has been consistent with the susceptibility of the linker to reduction by DTT 
and the PK observed in preclinical animals. Cantuzumab or anti-huC242 targeting 
CanAg antigen provides an ideal example, in which the same antibody has been 
conjugated with two linkers and the resulting conjugates have been evaluated in 
phase I clinical trials. Cantuzumab mertansine (huC242–SPP–DM1), which con-
tains mildly hindered disulfide, has a half-life of 2 days in human plasma (Rodon 
et  al. 2008). Cantuzumab ravtansine (huC242–SPDB–DM4), which contains a 
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highly hindered disulfide, shows a half-life of 4.6 days (Qin et al. 2008). The PK 
of these conjugates in humans reflects the difference in the linker stability of SPP–
DM1 and SPDB–DM4 in the context of CanAg. SAR3419 (huB4–SPDB–DM4) 
targeting CD19 shows 7.9 days of half-life in human plasma (Younes et al. 2009; 
Ribrag et  al. 2014), indicating that the faster clearance of huC242–SPDB–DM4 
(half-life of 4.6 days) is likely due to some contribution of antigen-mediated clear-
ance rather than the inherent instability of the SPDB–DM4 linker–drug combina-
tion. Ado-trastuzumab emtansine has a half-life of 4.4 days in human plasma (Krop 
et al. 2010), reflecting largely the antigen-mediated clearance.

The maximum tolerated dose (MTD) can be affected by target-dependent toxic-
ity, i.e., target expression on normal tissues could contribute to the final tolerable 
level of dose. However, different ADCs with the same linker-cytotoxic agent pair-
ing directed against unrelated targets with diverse expression in tissues demonstrate 
that pairings can create an upper limit for the highest administered dose. For ex-
ample, the MTD for auristatin conjugates containing dipeptide Val–Cit linker is 
typically close to 2 mg/kg (Younes et al. 2010) due to neutropenia and/or peripheral 
neuropathy. Maytansinoid conjugates also show a strong linker impact on tolerabili-
ty. T-DM1 and AMG595, which use the SMCC–DM1 pairing, both have dose-limit-
ing toxicity (DLT) of reversible thrombocytopenia; the MTD for T-DM1 is 3.6 mg/
kg (Q3W; Krop et al. 2010) and AMG595 has been dosed to 3.0 mg/kg (Q3W). 
SAR3419 or huB4–SPDB–DM4 with a cleavable disulfide linker shows an MTD 
of 4.3 mg/kg (Q3W) with the DLT of reversible ocular toxicity (Younes et al. 2009). 
Cantuzumab mertansine or anti-huC242–SPP–DM1 with the most readily cleavable 
disulfide linker had an MTD of 6.4 mg/kg (Q3W) with the DLT of reversible eleva-
tion of liver transaminases (Rodon et al. 2008). Interestingly, there is an inverse 
correlation of the tolerability and the stability of linkers (Fig. 4.20). The chemical 
stability of the linkers in plasma (in vivo) can be ranked as SMCC > SPDB > SPP, 
with SMCC being the most stable linker and SPP being the least stable linker. In 
contrast to the chemical stability in plasma, the tolerability as demonstrated by the 
MTDs in the clinic for the maytansinoid conjugates listed above can be ranked as 
SPP > SPDB > SMCC. More clinical data are needed to determine whether (i) this 
stands true for all maytansinoid conjugates that may yield different small molecular 
weight metabolites during their eventual elimination and (ii) whether a similar trend 

Fig. 4.20   Inverse correlation of the linker stability and MTD in human. Number of compounds 
refers to those that have been evaluated in the clinic. MTD maximum tolerated dose
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can be found for other cytotoxin payloads. These findings suggest that it should 
not be hastily concluded that the most stable linker is the best linker for clinical 
development, and as has discussed above, stability, efficacy, and safety must be all 
factored in for consideration of the optimal linker for ADCs.
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