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Abstract. In this paper, we study the parameterized complexity of the
problems of partitioning the vertex set of a graph into two parts VA

and VB such that VA induces a graph with degree at most a (resp., an
a-regular graph) and VB induces a graph with degree at most b (resp., a b-
regular graph). These two problems are called Upper-Degree-Bounded

Bipartition and Regular Bipartition respectively. First, we prove
that the two problems are NP-complete with any nonnegative integers
a and b except a = b = 0. Second, we show that the two problems with
parameter k being the size of VA of a bipartition (VA, VB) are fixed-
parameter tractable for fixed integer a or b by deriving some problem
kernels for them.

1 Introduction

In graph algorithms and graph theory, there is a series of important problems
that require us to partition the vertex set of a graph into several parts such that
each part induces a subgraph satisfying some degree constraints. For example,
the k-coloring problem is to partition the graph into k parts each of which
induces an independent set (a 0-regular graph). Most of these kinds of problems
are NP-hard, even if the problems are to partition a given graph into only two
parts, which is called a bipartition.

For bipartition with a degree constraint on each part, we can find many
references related to this topic. Here is a definition of the problem:

Degree-Constrained Bipartition

Instance: A graph G = (V,E) and four integers a, a′, b and b′.
Question: Is there a partition (VA, VB) of V such that

a′ ≤ degVA
(v) ≤ a ∀v ∈ VA and b′ ≤ degVB

(v) ≤ b ∀v ∈ VB,

where degX(v) denotes the degree of a vertex v in the induced subgraph G[X]?
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There are three special cases of Degree-Constrained Bipartition. If
there are no constraints on the upper bounds (resp., lower bounds) of the degree
in Degree-Constrained Bipartition, i.e., a = b = ∞ (resp., a′ = b′ = 0),
we call the problem Lower-Degree-Bounded Bipartition (resp., Upper-

Degree-Bounded Bipartition). We call Degree-Constrained Biparti-

tion with a special case of a = a′ and b = b′
Regular Bipartition.

Lower-Degree-Bounded Bipartition has been extensively studied in
the literature. The problem with 4-regular graphs is NP-complete for a′ = b′ =
3 [7] and linear-time solvable for a′ = b′ = 2 [4]. More polynomial-time solvable
cases with restrictions on the structure of given graphs and constraints on a′

and b′ can be found in [2,3,7,12,16].
For Regular Bipartition, when a = b = 0, the problem becomes a

polynomial-solvable problem of checking whether a given graph is bipartite
or not; when a = 0 and b = 1, the problem becomes Dominating Induced

Matching, a well studied NP-hard problem also known as Efficient Edge

Domination [11,14]. However, not many results are known about Upper-

Degree-Bounded Bipartition and Regular Bipartition with other values
of a and b.

In this paper, we first show that Upper-Degree-Bounded Bipartition

and Regular Bipartition are NP-complete with any nonnegative integers a
and b except a = b = 0. The major contributions of this paper are vertex kernels
for these two problems, which also implies that for constants a and b they are
fixed-parameter tractable (FPT) with parameter k = |VA|. We also discuss the
fixed-parameter intractability of our problems with parameter only k = |VA|
where b is not fixed.

We also note some related problems, in which the degree constraint on one
part of the bipartition changes to a constraint on the size of the part. Bounded-

Degree Deletion asks us to delete at most k vertices from a graph to make the
remaining graph having maximum vertex degree at most a.Maximum Regular

Induced Subgraph asks us to delete at most k vertices from a graph to make
the remaining graph an a-regular graph. These two problems can be regarded as
such a kind of bipartition problems and have been well studied in parameterized
complexity. They are FPT with parameters k and a and W[1]-hard with only
parameter k [10,15,16]. Let tw denote the treewidth of an input graph. Betzler
et. al. also proved that Bounded-Degree Deletion is FPT with parameters
k and tw and W[2]-hard with only parameter tw [6]. The parameterized com-
plexity of some other related problems, such as Minimum Regular Induced

Subgraph are studied in [1].
The remaining parts of the paper are organized as follows: Section 2 intro-

duces a notation system. Section 3 proves the NP-hardness of our problems.
Section 4 gives the problem kernels, and Section 5 shows the fixed-parameter
intractability. Finally, some concluding remarks are given in the last section.
Proofs of some lemmas are omitted due to space limitation.
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2 Preliminaries

In this paper, a graph stands for a simple undirected graph. We may simply use
v to denote the set {v} of a single vertex v. Let G = (V,E) be a graph, and
X ⊆ V be a subset of vertices. The subgraph induced by X is denoted by G[X],
and G[V \X] is also written as G\X. Let E(X) denote the set of edges between
X and V \ X. Let N(X) denote the neighbors of X, i.e., the vertices y ∈ V \ X
adjacent to a vertex x ∈ X, and denote N(X) ∪ X by N [X]. The degree deg(v)
of a vertex v is defined to be |N(v)|. A vertex in X is called an X-vertex, and
a neighbor u ∈ X of a vertex v is called an X-neighbor of v. The number of X-
neighbors of v is denoted by degX(v); i.e., degX(v) = |N(v)∩X|. The vertex set
and edge set of a graph H are denoted by V (H) and E(H), respectively. When
X is equal to V (H) of some subgraph H of G, we may denote V (H)-vertices
by H-vertices, V (H)-neighbors by H-neighbors, and degV (H)(v) by degH(v) for
simplicity. For a subset E′ ⊆ E, let G − E′ denote the subgraph obtained from
G by deleting edges in E′. For an integer p ≥ 1, a star with p + 1 vertices is
called a p-star. The unique vertex of degree > 1 in a p-star with p > 1 is called
the center of the star, and any vertex in a 1-star is a center of the star.

For a graph G and two nonnegative integers a and b, a partition of V (G) into
VA and VB is called (a, b)-bounded if degVA

(v) ≤ a for all vertices in v ∈ VA and
degVB

(v) ≤ b for all vertices in v ∈ VB . An (a, b)-bounded partition (VA, VB) is
called (a, b)-regular if degVA

(v) = a for all vertices in v ∈ VA and degVB
(v) = b for

all vertices in v ∈ VB. An instance I = (G, a, b) of Upper-Degree-Bounded

Bipartition (resp., Regular Bipartition) consists of a graph G and two
nonnegative integers a and b, and asks us to test whether an instance (G, a, b)
admits an (a, b)-bounded partition (resp., (a, b)-regular partition) or not.

3 NP-Hardness

Theorem 1. Upper-Degree-Bounded Bipartition is NP-complete for any
nonnegative integers a and b except a = b = 0.

Before proving Theorem 1, we first provide some properties on complete
graphs in Upper-Degree-Bounded Bipartition. Without loss of generality
we assume that a ≤ b and b ≥ 1 in this section.

An (a+1, b+1, a+1)-complete graph W is defined to be the graph consisting
of two complete graphs of size a+ b+ 2 that share exactly b+ 1 vertices, where
|V (W )| = 2(a + b + 2) − (b + 1) = 2a + b + 3 holds and the set of b + 1 vertices
shared by the two complete graphs is denoted by S(W ).

Lemma 1. Let (G, a, b) admit an (a, b)-bounded partition (VA, VB).

(i) If G contains a clique K of size a + b + 2, then |V (K) ∩ VA| = a + 1 and
|V (K) ∩ VB | = b + 1; and

(ii) Assume that G contains an (a + 1, b + 1, a + 1)-complete graph W . Then
{V (W )∩VA, V (W )∩VB} = {S(W ), V (W )\S(W )} (or V (W )∩VA = V (W )\
S(W ) and V (W ) ∩ VB = S(W ) when a 
= b), N(VA ∩ V (W )) \ V (W ) ⊆ VB

and N(VB ∩ V (W )) \ V (W ) ⊆ VB.
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We here construct a special graph that consists of an (a + 1, b + 1, a + 1)-
complete graph, several complete graphs with size a + b + 2 and some edges
joining them. Given two positive integers n and m, we first construct an (a +
1, b + 1, a + 1)-complete graph W and (n + m) complete graphs X1,X2, . . . , Xn

and C1, C2, . . . , Cm with size a + b + 2. Next we choose a vertex vA ∈ V (W ) \
S(W ) and a vertex vB ∈ S(W ) arbitrarily, and add edges between {vA, vB} and
{X1, . . . , Xi, . . . , Xn} ∪ {C1, . . . , Cj , . . . , Cm} as follows:

1. For each Xi, join vB to arbitrary a vertices u1, . . . , ua ∈ V (Xi) via new
edges, and join vA to arbitrary b vertices u′

1, . . . , u
′
b ∈ V (Xi) \ {u1, . . . , ua}

via new edges;
2. For each Cj , join vB to arbitrary a vertices u1, . . . , ua ∈ V (Cj) via new edges,

and join vA to arbitrary (b − 1) vertices u′
1, . . . , u

′
b−1 ∈ V (Cj) \ {u1, . . . , ua}

via new edges, where b − 1 ≥ 0 since b ≥ 1 is assumed; and
3. Let Gn,m denote the resulting graph.

Vertices in Xi (i = 1, 2, . . . , n) or Cj (j = 1, 2, . . . ,m) not adjacent to vA or
vB are called free. Each Xi contains exactly two free vertices, denoted by vi and
v′
i, and each Cj contains exactly three free vertices, denoted by v1

j , v
2
j and v3

j .

Fig. 1. Constructing graph Gn,m + E0

Let E0 be an arbitrary set of new edges between free vertices in ∪1≤i≤nXi

and free vertices in ∪1≤j≤mCj in Gn,m. Let Gn,m + E0 be the graph obtained
from Gn,m by adding the edges in E0. See Figure 1. We have

Lemma 2. Let (VA, VB) be a partition of V (Gn,m + E0), where if a = b then
we assume without loss of generality that vA ∈ VA. Then (VA, VB) is an (a, b)-
bounded partition of Gn,m + E0 if and only if the following hold:
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(i) Every subgraph H ∈ {W,X1, . . . , Xn, C1, . . . , Cm} satisfies that
degV (H)∩VA

(v) = a for all vertices v ∈ V (H) ∩ VA and degV (H)∩VB
(v) = b

for all vertices v ∈ V (H) ∩ VB;
(ii) S(W ) ⊆ VB, V (W ) \ S(W ) ⊆ VA, N(vB) \ V (W ) ⊆ VA, and N(vA) \

V (W ) ⊆ VB;
(iii) For each Xi, exactly one of the two free vertices in Xi is contained in VA

and the other is in VB; and
(iv) For each Cj, exactly one of the three free vertices in Cj is contained in VA

and the other two are in VB; and (v) For each uv ∈ E0, |{u, v} ∩ VA| =
|{u, v} ∩ VB | = 1.

Now we are ready to prove Theorem 1. Clearly Upper-Degree-Bounded

Bipartition is in NP. In what follows, we construct a polynomial reduction
from the NP-complete problem One-In-Three 3SAT [12].

One-In-Three 3SAT

Instance: A set C ofm clauses c1, c2, . . . , cm on a setX ofn variables x1, x2, . . . , xn

such that each clause cj consists of exactly three literals �1j , �2j and �3j .
Question: Is there a truth assignment X → {true, false}n such that each
clause cj has exactly one true literal?

Given an instance F = (C,X ) of One-In-Three 3SAT and nonnegative
integers a ≤ b (≥ 1), we will construct an instance IF = (GF , a, b) of Upper-

Degree-Bounded Bipartition such that IF has an (a, b)-bounded partition if
and only if F is feasible. Such an instance IF is constructed on the graph Gn,m by
setting GF = Gn,m +E0, where a set E0 of edges between {X1, . . . , Xi, . . . , Xn}
and {C1, . . . , Cj , . . . , Cm} according to the relationship between X and C in F
as follows:

For each clause cj = (�1j , �
2
j , �

3
j ) ∈ C and the k-th literal �kj , k = 1, 2, 3, if

�kj is a positive (resp., negative) literal of a variable xi, then join free vertex
vk
j ∈ V (Cj) to free vertex vi ∈ V (Xi) (resp., v′

i ∈ V (Xi)) via a new edge.
Let GF = Gn,m +E0 be the resulting graph. We remark that Xi serves as a

gadget for variable xi ∈ X and Cj serves as a gadget for clause cj ∈ C.
This completes the construction of instance IF = (GF , a, b). We interpret

conditions (iii) and (iv) on free vertices in Lemma 2 as follows:

vi ∈ VB (resp., vi ∈ VA) ⇔ true (resp., false) is assigned to xi, and

vk
j ∈ VA (resp., vk

j ∈ VB) ⇔ �kj = true (resp., �kj = false).

Hence we see by Lemma 2 that IF = (GF = Gn,m + E0, a, b) admits an (a, b)-
bounded partition if and only if F is feasible. This completes a proof of Theo-
rem 1.

By Lemma 2, F is feasible if and only if IF = (GF = Gn,m+E0, a, b) admits
an (a, b)-regular partition. Hence the problem of testing whether an instance
(G, a, b) admits an (a, b)-regular partition is also NP-complete for any nonnega-
tive integers a and b except a = b = 0.
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Corollary 1. Regular Bipartition is NP-complete for any nonnegative inte-
gers a and b except a = b = 0.

4 Kernelization

This section studies the parameterized complexity and kernels of our problems.
For this, we introduce the following constrained versions of the problems.

Constrained Upper-Degree-Bounded Bipartition

Instance: A graph G, two subsets A,B ⊆ V (G), and nonnegative integers a, b
and k.
Question: Is there an (a, b)-bounded partition (VA, VB) of V (G) such that A ⊆
VA, B ⊆ VB , and |VA| ≤ k?

In the same way, we can define Constrained Regular Bipartition by
replacing “(a, b)-bounded partition” with “(a, b)-regular partition” in the above
definition. Note that we do not assume a ≤ b in this section. We call a partition
(VA, VB) satisfying the condition in the definitions of Constrained Upper-

Degree-Bounded Bipartition and Constrained Regular Bipartition a
solution to the problem instance. An instance (G,A,B, a, b, k) is called feasible
if it admits a solution. A vertex in V (G) \ (A ∪ B) is called undecided, and we
always denote V (G) \ (A ∪ B) by U . Clearly each of the two problems can be
solved in 2|U ||V |O(1) time. We say that an instance (G,A,B, a, b, k) is reduced
to an instance (G,A′, B′, a, b, k) such that (G,A,B, a, b, k) is feasible if and only
if so is (G,A′, B′, a, b, k). Note that when it turns out that (G,A,B, a, b, k) is
infeasible we can say that it is reduced to an infeasible instance (G,A′, B′, a, b, k)
such as one with A′ ∩ B′ 
= ∅.

In this paper, we say that a problem admits a kernel of size O(f(k)) if any
instance of the problem can be reduced in polynomial time in n into an instance
(G,A,B, a, b, k) with |V (G)| = O(f(k)) for a function f(k) of k. The main results
in this section are the following.

Theorem 2. Constrained Upper-Degree-Bounded Bipartition admits
a kernel of size O((b+1)2(b+k)k), and is fixed-parameter tractable with param-
eter k for a constant b.

Theorem 3. Constrained Regular Bipartition admits a kernel of size
O((b + 1)(b + k)k2) for a ≤ b or of size O((b + 1)(b + k)k2 + (ak)(a−b+1)k) for
a > b, and is fixed-parameter tractable with parameter k for constants a and b.

4.1 Kernels for Constrained Upper-Degree-Bounded Bipartition

In this subsection, an instance always means the one of Constrained Upper-

Degree-Bounded Bipartition. We have only five simple reduction rules to
get a kernel to this problem.
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Rule 1. Conclude that an instance is infeasible if one of the following holds:
A ∩ B 
= ∅; |A| > k; degA(v) > a for some vertex v ∈ A; and degB(u) > b for
some vertex u ∈ B.

Rule 2. Move to B any U -vertex v with degA(v) > a, and move to A any
U -vertex u with degB(u) > b.

If we include to B a U -vertex v with deg(v) > b+k, then the instance cannot
have a solution, because at least k + 1 neighbors of v need to be included to A,
implying that |VA| cannot be bounded by k.

Rule 3. Move to A any U -vertex v with deg(v) > b + k.

Lemma 3. Let v be a U ∪ B-vertex in an instance I = (G,A,B, a, b, k) such
that deg(u) ≤ b for all vertices u ∈ N [v]. Let I ′ = (G − {v}, A,B′, a, b, k) be the
instance obtained from I by deleting the vertex v, where B′ = B if v ∈ U and
B′ = B − {v} if v ∈ B. The instance I is feasible if and only if so is I ′.

Proof. It is clear that if I has a solution then I ′ also has a solution, because
deleting a vertex never increases the degree of any of the remaining vertices.
Assume that I ′ admits a solution (VA, VB). We show that (VA, VB ∪ {v}) is a
solution to I. Note that adding v to VB may increase the degree of a vertex only
in N [v]. However, by the choice of the vertex v, for any vertex u ∈ N [v] it holds
b ≥ deg(u) ≥ degVB∪{v}(u). Hence (VA, VB ∪ {v}) is a solution to I. ��
Rule 4. Remove from the graph of an instance any U ∪ B-vertex v such that
deg(u) ≤ b for all vertices u ∈ N [v].

Lemma 4. An instance I = (G,A,B, a, b, k) is infeasible if G contains more
than k vertex-disjoint (b + 1)-stars.

Proof. For a solution (VA, VB) to I, if there is a (b + 1)-star disjoint with VA,
then a center v of the star would satisfy degVB

(v) ≥ b+1. Hence VA must contain
at least one from each of more than k vertex-disjoint (b+1)-stars. This, however,
contradicts |VA| ≤ k. ��
Rule 5. Compute a maximal set S of vertex-disjoint (b + 1)-stars in G of an
instance I = (G,A,B, a, b, k) (not only in G[U ]). Conclude that the instance is
infeasible if |S| > k.

Now we analyze the size |V (G)| of an instance I = (G,A,B, a, b, k) where
none of the above five rules can be applied anymore. Assume that when Rule 4
is applied to a maximal set of vertex-disjoint (b + 1)-stars S in G, it holds
|S| ≤ k now. Let S0 be the set of all vertices in S, S1 = N(S0) and S2 =
N(S1 ∪ S0) = N(S1) \ S0. We first show that V (G) = A ∪ S0 ∪ S1 ∪ S2. By
the maximality of S, we know that there is no vertex of degree ≥ b + 1 in the
graph after deleting S0. Then all vertices u with deg(u) ≥ b + 1 are in S0 ∪ S1,
and |S2| ≤ b|S1| holds. Since Rule 4 is no longer applicable, each U ∪ B-vertex
v with deg(v) ≤ b is adjacent to a vertex u with deg(u) ≥ b + 1 that is in
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S0 ∪ S1. Then all U ∪ B-vertices u with deg(u) ≤ b are in S1 ∪ S2. Hence
V (G) = A ∪ S0 ∪ S1 ∪ S2. We have that |A| ≤ k, |S0| ≤ (b + 2)|S| ≤ (b + 2)k,
|S1| ≤ (b+k)|S0| ≤ (b+k)(b+2)k by Rule 3 and |S2| ≤ b|S1| ≤ b(b+k)(b+2)k.
Therefore |V (G)| ≤ |A| + |S0| + |S1| + |S2| = O((b + 1)2(b + k)k). This proves
Theorem 2.

4.2 Kernels for Constrained Regular Bipartition

In this subsection, an instance always stands for the one in Constrained Reg-

ular Bipartition. When we introduce a reduction rule, we assume that all
previous reduction rules cannot be applied anymore.

We see that an instance I = (G,A,B, a, b) is infeasible if one of the following
conditions holds:

(i) A ∩ B 
= ∅ or |A| > k;
(ii) There is a vertex v ∈ V (G) with deg(v) < min{a, b};
(iii) There is a vertex v ∈ A with degV (G)\B(v) < a or degA(v) > a; and
(iv) There is a vertex v ∈ B with degV (G)\A(v) < b or degB(v) > b.

Rule 6. Conclude that an instance is infeasible if one of the above four condi-
tions holds.

Rule 7. Move to B any U -vertex v with degV (G)\B(v) < a or degA(v) > a or
adjacent to a B-vertex u with degB(u) + degU (u) = b. Move to A any U -vertex
v with degV (G)\A(v) < b or degB(v) > b or adjacent to an A-vertex u with
degA(u) + degU (u) = a.

Rule 8. Remove from the graph of an instance any edges between A and B.
Delete the set V (H) of vertices in any b-regular component H of G such that
V (H) ⊆ U ∪ B.

Rule 9. Move to A any U -vertex v with deg(v) > b + k.

We say that a vertex v is tightly-connected from a U -vertex u if there is
a path P from u to v such that each vertex w ∈ V (P ) \ {u} is a U -vertex
with degV (G)\A(w) = b. For each U -vertex u, let T (u) denote the set U -vertices
tightly-connected from u, which has the following property: when we include a
U -vertex u to A, all the vertices T (u) need to be included to A, because the
degree of each vertex v ∈ T (u) \ {u} in G[U ∪ B] will be less than b. Hence if we
include a U -vertex u with |T (u)| > k, then |A| will increase by |T (u)| > k and
the resulting instance cannot have a solution.

Rule 10. Move to B any U -vertex u with |T (u)| > k.

Rule 11. Conclude that an instance is infeasible if |B∩N(U)| > bk or |E(B)| >
b(b + 1)k.

In what follows, we assume that b(b+1)k > |E(B)| ≥ |N(B)|. By Rule 10, it
holds that |T (u)| ≤ k for each vertex u ∈ N(B). Let T ∗ = N(B)∪(∪u∈N(B)T (u)).
Then |T ∗| ≤ |N(B)|(k + 1) ≤ b(b + 1)k(k + 1). We have
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Lemma 5. When none of Rule 6-Rule 11 is applicable, it holds that |T ∗| =
O(b2k2).

We compute a maximal set S of vertex-disjoint (b + 1)-stars in the induced
graph G[U ]. We see that an instance I = (G,A,B, a, b) is infeasible if G[U ]
contains more than k vertex-disjoint (b + 1)-stars. This is because |VA| ≤ k
means that at least one (b + 1)-star must become disjoint with VA and a center
v of the star would satisfy degVB

(v) ≥ b + 1.

Rule 12. Conclude that an instance is infeasible if |S| > k.

Let S0 be the set of all vertices in the (b + 1)-stars in S. For each integer
i > 0, we denote by Si the set U ∩N(Si−1) \ (T ∗ ∪ (∪i−1

j=0Sj)). Let S∗ = ∪i≥0Si.

Lemma 6. When none of Rule 6-Rule 12 is applicable, every U -vertex u with
degU (u) ≥ b + 1 is in S0 ∪ S1. For each vertex v ∈ U \ (T ∗ ∪ S0 ∪ S1), it holds
degV (G)\A(v) = degU (v) = b.

Lemma 7. When none of Rule 6-Rule 12 is applicable, it holds that |S∗| =
O((b + 1)(b + k)k2).

Lemma 8. When none of Rule 6-Rule 12 is applicable, any U \ (T ∗ ∪ S∗)-
vertex is in a component H of G[U ] such that V (H) ⊆ U \ (T ∗ ∪ S∗) and
V (H) ∩ N(A) 
= ∅.

We call a component H of G[U ] residual if V (H) ⊆ U \ (T ∗ ∪ S∗) and
V (H) ∩ N(A) 
= ∅. For a vertex u in a residual component H, it holds that
degV (G)\A(u) = degU (u) = b for u ∈ V (H) ∩ N(A), and deg(u) = degU (u) = b
for u ∈ V (H) \ N(A) by Lemma 6.

Lemma 9. Let H be a residual component in G[U ] of an instance. Then any
(a, b)-regular partition (VA, VB) satisfies either V (H) ⊆ VA or V (H) ⊆ VB.

Hence if a residual component H contains a vertex u ∈ V (H) ∩ N(A) with
deg(u) 
= a or is adjacent to an A-vertex v with degH(v) > a, then V (H) cannot
be contained in a set VA of any (a, b)-regular partition (VA, VB).

Rule 13. Move to B all vertices in a residual component H that satisfies one
of the following:

(i) There is a vertex u ∈ V (H) ∩ N(A) with deg(u) 
= a; and
(ii) There is an A-vertex v with degH(v) > a.

By Lemma 8, we know that each U -vertex is either in T ∗ ∪ S∗ or a residual
component. Note that for any vertex u ∈ V (H)∩N(A) in a residual component
H, it holds deg(u) = degU (u) + degA(u) ≥ b+ 1, which indicates that deg(u) ≥
b+1 > a if a ≤ b. Hence when a ≤ b, after Rule 13 is applied, there is no residual
component. We get the following lemma by Lemma 5 and Lemma 7.
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Lemma 10. If a ≤ b, then the number |U | of undecided vertices in the instance
after applying all above rules is O((b + 1)(b + k)k2).

Lemma 11. Assume that there is a residual component H in G[U ]. Then a > b,
V (H) ⊆ N(A), |V (H)| ≤ k, and every vertex in u ∈ V (H) satisfies degU (u) = b
and degA(u) = a − b.

Next we consider the case that a > b. Let all the vertices in A be indexed by
w1, w2, . . . , w|A|, and define the code c(H) of a residual component H in G[U ]
to be a vector

(degH(w1),degH(w2), . . . ,degH(w|A|)),

where 0 ≤ degH(wi) ≤ a for each i. We say that two residual components H
and H ′ are equivalent if they have the same code c(H) = c(H ′), where we see
that |V (H)| = |V (H ′)| since each vertex u in a residual component has the
same degrees in A and U by Lemma 11. Hence the feasibility of the instance
is independent of the current graph structure among equivalent components.
Moreover, if there are more than a equivalent components, then one of them is
not contained in VA of some (a, b)-regular partition when the instance is feasible.

Rule 14. If there are more than a equivalent residual components for some code,
choose arbitrarily one of them and include the vertices of the component to B.

Lemma 12. The number of vertices in all residual components isO((ak)(a−b+1)k).

By Lemma 5, Lemma 7, and Lemma 12, we have the following.

Lemma 13. If a > b, the number |U | of undecided vertices in any instance after
applying all above rules is O((b + 1)(b + k)k2 + (ak)(a−b+1)k).

We finally derive an upper bound on the size of B in an instance I. Let
B1 = B ∩ N(U) and B2 = B \ B1, where degB(u) < b for each vertex u ∈ B1

by Rule 6, and degB(u) = b for each vertex u ∈ B2. Note that if b ≤ 1 then
B2 = ∅ by Rule 8, and that if |E(B1, B2)| is odd then b is also odd since
b|B2| − |E(B1, B2)| = 2|E(G[B2])|. Observe that the feasibility of I will not
change even if we replace the subgraph G[B2] with a smaller graph G′ of degree-
b B-vertices as long as each vertex u ∈ B1 has the same degree degV (G′)(u) =
degB2

(u) as before. The next lemma ensures that there is such a graph G′ with
O(|B1| + b2) vertices.

Lemma 14. Let b ≥ 2 be an integer, V1 = {u1, u2, . . . , un} be a set of n vertices,
and δ = (d1, d2, . . . , dn) be a sequence of nonnegative integers at most b− 1 such
that b is odd if d =

∑
1≤i≤n di is odd. Then there is a graph G′ = (V2, E2) with

|V2| ≤ n+ b2 + b+1 and a set E(V1, V2) of d edges between V1 and V2 such that
after adding E(V1, V2) between V1 and V2, it holds that degV2

(ui) = di for each
ui ∈ V1 and degV1∪V2

(vi) = b for each vi ∈ V2. Such a pair of graph G′ and edge
set E(V1, V2) can be constructed in polynomial time in n.
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Rule 15. When b ≥ 2, remove the subgraph G[B2], and add a graph G′ =
(V2, E2) with edge set E(V1 = B1, V2) according to Lemma 14, where n = |B1|,
V1 = B1 = {u1, u2, . . . , un} and δ = (degB2

(u1),degB2
(u2), . . . ,degB2

(un)).

Lemma 15. After applying all above rules, the number of vertices in A is at
most k and the number of vertices in B is O(bk + b2).

Proof. After Rule 6, the number of vertices in A is at most k. After Rule 15,
all new vertices added in Rule 15 will form the new vertex set B2. Then |B| =
|B1| + |B2| = |B1| + |V2| ≤ 2|B1| + b2 + b + 1 = 2bk + b2 + b + 1. ��

Lemma 10, Lemma 13, and Lemma 15 establish Theorem 3.

5 Fixed-Parameter Intractability

This section discusses the fixed-parameter intractability of our problems.

Theorem 4. Upper-Degree-Bounded Bipartition is W[2]-hard with
parameter k = |VA|.

ForUpper-Degree-BoundedBipartition, we give a reduction fromDom-

inating Set, a well-knownW[2]-hard problem.Dominating Set asks us to test
whether a graph G admits a vertex subset D ⊆ V (G) of size k such that each
vertex in V (G) \ D is adjacent to at least one vertex in D. Given an instance
I = (G, k) of Dominating Set with a graph G of maximum degree d ≥ 2,
we augment G to G′ = (V (G) ∪ V1, E(G) ∪ E1) so that each vertex v ∈ V (G)
will be of degree d by adding d − deg(v) new vertices adjacent to only v, where
V1 and E1 are the sets of new added degree-1 vertices and edges, respectively. Let
I ′ = (G′, a = d, b = d−1, k) be an instance of Upper-Degree-BoundedBipar-

tition. We prove that I is a yes-instance if and only if I ′ is feasible. If G has a
dominating set D of size at most k, then (VA = D,V (G′) \ D) is a solution to
I ′, because each degree-d vertex in G′ is adjacent to at least one vertex in D, and
degV (G′)\D(u) ≤ max{1, d − 1} holds for each vertex u ∈ V (G′) \ D. When I ′ is
feasible, we claim that I ′ always admits a solution (VA, VB) such that VA ⊆ V (G).
The reason is that any vertex v ∈ VA\V (G) must be a degree-1 vertex in G′ whose
unique neighbor u is in V (G), and thereby we can replace v with u in VA to get
another solution to I ′. For a solution (VA ⊆ V (G), VB) to I ′, we see that VA is a
dominating set in the original graph G.

For Regular Bipartition, we will show that a special case of this problem
is equivalent to Perfect Code in d-regular graphs. Perfect Code asks us
to test whether G admits a set S ⊆ V (G) of at most k vertices such that for
each vertex v ∈ V (G) there is precisely one vertex in N [v] ∩ S. It is W[1]-hard
when k is taken as the parameter [9]. It is easy to see that an instance (G, k)
of Perfect Code in a d-regular graph G is yes if and only if the instance
(G, 0, d − 1, k) of Regular Bipartition is feasible. It is quite possible that
Perfect Code with parameter k remains W[1]-hard even if input graphs are
restricted to regular graphs.
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