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Abstract. Given a set of sites in the plane, their order-k Voronoi dia-
gram partitions the plane into regions such that all points within one
region have the same k nearest sites. The order-k abstract Voronoi
diagram is defined in terms of bisecting curves satisfying some sim-
ple combinatorial properties, rather than the geometric notions of
sites and distance, and it represents a wide class of order-k concrete
Voronoi diagrams. In this paper we develop a randomized divide-and-
conquer algorithm to compute the order-k abstract Voronoi diagram
in expected O(kn1+ε) operations. For solving small sub-instances in
the divide-and-conquer process, we also give two sub-algorithms with
expected O(k2n log n) and O(n22α(n) logn) time, respectively. This
directly implies an O(kn1+ε)-time algorithm for several concrete order-k
instances such as points in any convex distance, disjoint line segments
and convex polygons of constant size in the Lp norm, and others.

Keywords: Higher-Order Voronoi Diagram · Abstract Voronoi Dia-
gram · Randomized Algorithm · Divide and Conquer

1 Introduction

Given a set S of n geometric sites in the plane, their order-k Voronoi diagram,
Vk(S), is a subdivision of the plane such that every point within an order-k
Voronoi region has the same k nearest sites. The common boundary between
two adjacent Voronoi regions is a Voronoi edge, and the common vertex incident
to more than two Voronoi regions is a Voronoi vertex. The ordinary Voronoi
diagram is the order-1 Voronoi diagram, and the farthest-site Voronoi diagram
is the order-(n−1) Voronoi diagram.
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For point sites in the Euclidean metric, the order-k Voronoi diagram has
been well-studied. Lee [14] showed its structural complexity to be O(k(n−k)),
and proposed an O(k2n log n)-time iterative algorithm. Based on the notions
of arrangements and geometric duality, Chazelle and Edelsbrunner [6] devel-
oped an algorithm with O(n2+k(n−k) log2 n) time complexity. Clarkson [7]
developed an O(kn1+ε)-time randomized divide-and-conquer algorithm, and
Agarwal et al. [1], Chan [5], and Ramos [18] proposed randomized incre-
mental algorithms with O(k(n−k) log n+n log3 n), O(n log n+nk log k), and
O(n log n+nk2O(log∗ k)) time complexities, respectively. Besides, Boissonnat et
al. [4] and Aurenhammer and Schwarzkopf [2] also studied on-line algorithms.

Surprisingly, order-k Voronoi diagrams of sites other than points were only
recently considered [17] illustrating different properties from their counterparts
for points. For simple, even disjoint, line segments, a single order-k Voronoi
region may consist of Ω(n) disjoint faces; nevertheless, the overall structural com-
plexity of the diagram for n non-crossing line segments remains O(k(n−k)) [17].
Abstract Voronoi diagrams were introduced by Klein [10] as a unifying concept
to many instances of concrete Voronoi diagrams. They are defined in terms of a
system of bisecting curves J = {J(p, q) | p, q ∈ S, p �= q} rather than concrete
geometric sites and distance measures. Order-k abstract Voronoi diagrams were
recently considered in [3], providing a unified concept to order-k Voronoi dia-
grams, and showing the number of their faces to be ≤ 2k(n−k). No algorithms
for their construction have been available so far. For non-point sites, such as line
segments, only O(k2n log n)-time algorithms have been available based on the
iterative construction [17] and plane sweep [19]. Other recent works on order-k
Voronoi diagrams of point-sites in generalized metrics include the L1/L∞ met-
ric [16], the city metric [8], and the geodesic order-k Voronoi diagram [15].

In abstract Voronoi diagrams [10], the system of bisecting curves satisfies
axioms (A1)–(A5), given below, for any S′ ⊆ S. Once a concrete bisector system
is shown to satisfy these axioms, combinatorial properties and algorithms to
construct abstract Voronoi diagrams (see e.g., [10]) are directly applicable. A
bisector J(p, q) partitions the plane into two domains D(p, q) and D(q, p), where
D(p, q) are points closer to p than q; a first-order Voronoi region VR1({p}, S) is
defined as

⋂
q∈S,q �=p D(p, q).

(A1). Each first-order Voronoi region is pathwise connected.
(A2). Each point in the plane belongs to the closure of some first-order Voronoi

region.
(A3). No first-order Voronoi region is empty.
(A4). Each curve J(p, q), where p �= q, is unbounded. After stereographic pro-

jection to the sphere, it can be completed to be a closed Jordan curve through
the north pole.

(A5). Any two curves J(p, q) and J(s, t) have only finitely many intersection
points, and these intersections are transversal.
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In this paper, we develop a randomized divide-and-conquer algorithm to com-
pute the order-k abstract Voronoi diagram in expected O(kn1+ε) basic opera-
tions, based on Clarkson’s random sampling technique and one additional axiom:

(A6). The number of vertical tangencies of a bisector is O(1).

Our algorithm is applicable to a variety of concrete order-k Voronoi dia-
grams satisfying axioms (A1)-(A6), such as point sites in any convex distance
metric or the Karlsruhe metric, disjoint line segments and disjoint convex poly-
gons of constant size in the Lp norms, or under the Hausdorff metric. In these
instances, all basic operations (see Section 2) can be performed in O(1) time,
thus, our algorithm runs in expected O(kn1+ε) time. For non-point sites, this
is the first algorithm that achieves time complexity different from the standard
O(k2n log n), which is efficient for only small values of k. For point sites in the
Euclidean metric, near-optimal randomized algorithms exist [1],[5],[7],[18]; how-
ever, they are based on powerful geometric transformations, which are non-trivial
to convert to different geometric objects, and/or to the abstract setting, which is
based on topological (non-geometric) properties. Matching the time complexity
of these algorithms in the abstract setting or for concrete non-point instances
remains an open problem.

In order to apply Clarkson’s technique [7], we define a vertical decompo-
sition of the order-k Voronoi diagram. We prove that our vertical trapezoidal
decomposition allows a divide-and-conquer algorithm and an expected time
analysis. When the problem sub-instances are small enough, we propose two
sub-algorithms. The first one combines the standard iterative approach [14]
and the randomized incremental construction for the order-1 abstract Voronoi
diagram [12] and computes the order-k abstract Voronoi diagram in expected
O(k2n log n) operations. For the second one, we adopt Har-Peled’s method [9]
and obtain an O(n22α(n) log n)-operation randomized algorithm, where α(·) is
the inverse of the Ackermann function. Our algorithm follows the essence of
Clarkson’s randomized divide-and-conquer algorithm for the Euclidean order-
k Voronoi diagram [7], however, it bypasses all geometric transformations and
constraints. Instead, our algorithm defines sub-structures and conflict relations
relying on the properties of a bisector system that satisfies the six axioms (A1)–
(A6).

2 Preliminaries

Axioms (A1)-(A5) imply that for a given bisecting system J and a fixed point
x ∈ R2 we can define a linear order on the sites in S.

Definition 1. For a point x ∈ R
2 and two sites p, q ∈ S, p <x q, p =x q, or

p >x q if x ∈ D(p, q), x ∈ J(p, q), or x ∈ D(q, p), respectively.

Since D(p, q) ∩ D(q, r) ⊆ D(p, r) [10,11], we can define an ordered sequence on
S, πS

x = (s1, . . . , sn), given x, satisfying s1 ≤x s2 ≤x . . . ≤x sn. We say that site
s is k-nearest to point x if s occupies the k-th position in the sequence πS

x .
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Definition 2. [3] The order-k Voronoi region associated with H is

VRk(H,S) =
⋂

p∈H,q∈S\H

D(p, q).

The order-k Voronoi diagram is

Vk(S) =
⋃

|H|=k

∂VRk(H,S),

where ∂ denotes the boundary.

For each point x ∈ VRk(H,S) and πS
x = (s1, . . . , sn), H = {s1, . . . , sk}, and

sk <x sk+1. If VRk(H1, S) and VRk(H2, S) share an edge e, then for any point
x ∈ e,H1 ∩ H2 = {s1, . . . , sk−1} and sk−1 <x sk =x sk+1, see [3, Lemma 5]. For
simplicity, throughout this paper, we make a general position assumption that
the degree of any Voronoi vertex is exactly three.

Definition 3. Let v be a Voronoi vertex among VRk(H1, S), VRk(H2, S), and
VRk(H3, S), and let H = H1 ∩H2 ∩H3 then v can be categorized into two types:
new when |H| = k − 1 and old when |H| = k − 2.

A new Voronoi vertex of Vk(S) is an old Voronoi vertex of Vk+1(S).
Let v be a Voronoi vertex as in Def. 3. Then we can show that H =

{s1, . . . , st} and st <v st+1 =v st+2 =v st+3 <v st+4, where t = |H| and πS
v =

(s1, . . . , sn). Each Voronoi vertex is defined by the three sites st+1, st+2, st+3.

Definition 4. The k-neighborhood of a site p in S, denoted by VNk(p, S), is
the union of closures of VRk(H,S) for all H ⊂ S, such that p ∈ H and |H| = k,
i.e.,

VNk(p, S) =
⋃

p∈H,H⊂S,|H|=k

VRk(H,S),

where X denotes the topological closure of the set X.

Each edge of ∂VNk(p, S) belongs to J(p, q) for a site q ∈ S \ {p}, and each edge
of Vk(S) belongs to ∂VNk(p, S) for a site p ∈ S. The latter condition implies

Vk(S) =
⋃

p∈S

∂VNk(p, S).

Unlike order-k Voronoi regions of point-sites, abstract order-k Voronoi
regions may be disconnected. In fact one region may disconnect into Ω(n) disjoint
faces, for k > 1 (see e.g. [17] for line segments). Nevertheless, the k-neighborhood
is connected, and this is the major property used in Section 5.

Lemma 1. VNk(p, S) is simply connected and there is no finite set of points
whose removal would make VNk(p, S) disconnected.
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Proof. First we show that VNk(p, S) is path connected. The definiton of
VNk(p, S) implies that p is at most k-nearest for every point in VNk(p, S). There-
fore VNk(p, S) =

⋃
p∈H,H⊂S,|H|=k VR1(p, {p} ∪ (S \ H)). VR1(p, {p} ∪ (S \ H))

is path connected, axiom (A1). Thus the connectivity of VNk(p, S) follows.
Next we show that there can be no holes in VNk(p, S). Suppose there is a

face F entirely surrounded by VNk(p, S). Then all edges on the boundary of F
are subsets of ∂VNk(p, S). Let the edges correspond to the bisectors J(p, qi),
i = 1, . . . , m. If one of the bisectors J(p, qi) goes through the interior of F then
consider a face of F ∩D(qi, p), which is not empty, and so on until we have a face
F ′ bounded by edges J(p, q′

1), . . . , J(p, q′
m′) and F ′ ⊂ D(q′

1, p) ∩ · · · ∩ D(q′
m′ , p).

This implies that F ′ is a bounded face of the farthest Voronoi region of p in
{p, q′

1, . . . , q
′
m′}, a contradiction [3, Lemma 7]. 	


Our algorithm, to be described in the sequel, assumes the availability of the
following basic operations. (1) For an arbitrary point x, determine if x is in
D(p, q), J(p, q) or D(q, p); (2) Given a point x on J(p, q), determine the next
vertical tangent point or the next intersection with J(s, t) or a straight line
along one direction of J(p, q); (3) For two points x, y on J(p, q), determine the
in-front/behind relation along one direction of J(p, q); (4) For two points x and
y compare them by x-coordinate, where x and y are intersection points or points
of vertical tangency of the bisectors.

3 Randomized Divide and Conquer Algorithm

3.1 Refined Diagram

We first refine Vk(S) and partition it into vertical trapezoids.

Definition 5. The refined order-k Voronoi diagram Vk(S) of S is derived by
superimposing Vk(S) and Vk+1(S). It is defined as:

Vk(S) = Vk(S) ∪
⋃

H⊂S,|H|=k

V1(S \ H) ∩ VRk(H,S).

A region VRk(p,H, S) of Vk(S) is associated with a site p ∈ S, which is called
the dominator, and a k-element subset H ⊂ S. For any point x ∈ VRk(p,H, S),
H is the set of k nearest sites to x and p is the (k+1)-nearest site to x.

Definition 6. The vertical decomposition of Vk(S), denoted by V�
k (S), is the

subdivision of the plane into (pseudo-)trapezoids obtained by shooting vertical
rays up and down from each vertex in Vk(S) and each vertical tangent point of
each edge in Vk(S), until the intersection with an edge or all the way to infinity.

Lemma 2. V�
k (S) can be constructed from Vk(S) in expected O(k(n − k) log n)

operations.
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Fig. 1. Trapezoid � of V�
k (S). Vk(S) is depicted in bold.

A trapezoid � of V�
k (S) in VRk(p,H, S) is defined by the dominator p and

1-4 other sites. Vertical boundaries of the trapezoid may be defined either by an
intersection point or by a point of vertical tangency. Moreover, one of the vertical
boundaries may be degenerate. Let d(�) be the dominator of the trapezoid and
B(�) be the set of sites that together with the dominator define the boundaries
of the trapezoid �. Then 1 ≤ |B(�)| ≤ 4 and for any point x ∈ �, H \ B(�)
are the k − |H ∩ B(�)| nearest sites to x.

In Fig. 1, the top and bottom edges of � are defined by J(p, q) and J(p, h),
respectively, and the left and right edges are defined by a vertical tangent point
of J(p, h) and an intersection between J(p, q) and J(p, s), respectively. In other
words, B(�) = {q, h, s} and d(�) = p.

Definition 7. For a trapezoid � of V�
k (S), a site s �∈ B(�) strongly conflicts

with �, if � ⊂ D(s, d(�)). A site s �∈ B(�) weakly conflicts with �, if � ∩
D(s, d(�)) �= ∅. The set of sites X ⊆ S that strongly, resp. weakly conflict with
� is denoted by X ∧s �, resp. X ∧w �.

In general, the set of strong conflicts is different from the set of weak conflicts,
and X ∧s � ⊆ X ∧w �. In Figure 2, set S = {p1, . . . , p7, s1, . . . , s4} is the set of
line segments in Euclidean space. R = {p1, . . . , p7} is the subset of S and � is
the trapezoid of V�

3 (R) in VR3(p1, {p2, p3, p4}, R). The dominator d(�) of the
trapezoid � is p1. The set of the sites B(�) that define the boundaries of the
trapezoid � is {p2, p3, p5, p6}. Since the sites p2, p3, p5, p6 define the boundary
of the trapezoid they cannot conflict with the trapezoid. However, the site p4
strongly conflicts with �, since � ⊂ D(p4, p1). Sites that do not belong to R
can also conflict with the trapezoid. Here, site s1 strongly conflicts with �,
since � ⊂ D(s1, p1). However, site s2 weakly conflicts with �, because the
dominance region D(s2, p1) does not enclose �, but only intersects �. Thus,
S ∧s � = {p4, s1}, S ∧w � = {p4, s1, s2}. In Lemmata 3, 4 we use weak and
strong conflicts for the upper and lower bounds, respectively.

Lemma 3. Let R be a subset of S and β be a positive integer. Then for any
trapezoid � of V�

β (R), β − 4 ≤ |R ∧s �| and |R ∧w �| ≤ β.

Proof. Let � be in VRβ(H,R). We want to prove that H \ B(�) ⊆ R ∧s � and
R ∧w � ⊆ H. Since for each point x ∈ �, H are the β nearest sites of x and
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Fig. 2. Trapezoid � ∈ VR3(p1, {p2, p3, p4}), where p1, . . . , p7 are line segments

d(�) is the (β+1)-nearest site, for each site p ∈ H \ B(�), � ⊂ D(p, d(�)),
implying that H \ B(�) ⊆ R ∧s �. For each site p ∈ R ∧w �, D(p, d(�)) must
include �; otherwise, d(�) is not the (β+1)-nearest site for all points in �. By
Def. 2, p must belong to H, implying that R ∧w � ⊆ H. 	


Lemma 3 and [7, Corollaries 4.3 and 4.4] imply the following.

Lemma 4. Let R be an r-element random sample of S. Then with probability at
least 1/2, as r → ∞, for any � ∈ V�

β (R), |S|/(r−5) ≤ |S ∧s �| and |S ∧w �| ≤
α|S|, where β = O(log r/ log log r) and α = O(log r/r).

Lemma 5. Let R be a subset of S such that for any trapezoid � ∈ V�
β (R),

|S ∧s �| > k. Let v be a Voronoi vertex of Vk(S). Then there exists a trapezoid
� ∈ V�

β (R) such that v is also a Voronoi vertex of Vk(S ∧w �).

Proof. (Sketch) Let v be a Voronoi vertex incident to Voronoi regions
VRk(H1, S), VRk(H2, S) and VRk(H3, S), and let � be a trapezoid of V�

β (R)
such that v ∈ �. We want to prove that H1 ∪ H2 ∪ H3 ⊆ S ∧w �, which leads
to this lemma.

Let H be H1 ∪ H2 ∪ H3 and t = |H|. By Definition 1 and Definition 3, t is
k + 1 or k + 2, and in πS

v , s1 ≤v . . . ≤v st−3 <v st−2 =v st−1 =v st <v st+1 . . .,
and H = {s1, . . . , st}.

Let k′ be |S ∧s �|. By Definition 7, for each site p ∈ S ∧s �, p <v d(�).
Therefore, there exists k′′ ≥ k′ such that in πS

v , sk′′−1 <v sk′′ and either sk′′ =
d(�) or sk′′ ≤v d(�), implying that {s1, . . . , sk′′−1} ⊆ S ∧w �.

Since k′′ > k and t = k + 1 or k + 2, we have k′′ > t; otherwise, k′′ = t or
t − 1, contradicting either sk′′−1 <v sk′′ or st−2 =v st−1 =v st.

To conclude, H = {s1, . . . , st} ⊆ {s1, . . . , sk′′−1} ⊆ S ∧w �. Thus v is a
Voronoi vertex of Vk(S ∧w �). 	
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3.2 Computing the Voronoi Vertices of Vk(S)

Lemma 5 indicates that if for any � ∈ V�
β (R), |S ∧s �| > k, then computing the

Voronoi vertices of Vk(S) can be transformed into computing the Voronoi vertices
of Vk(S ∧w �) for each �. Lemma 4 states that on average it takes two trials
to generate a sample R such that |S ∧s �| ≥ |S|/(r − 5), where the size r of the
random sample R is any sufficiently large constant. Therefore, if |S|/(r−5) > k,
then we need two trials on average to generate a random sample that satisfies
the conditions of Lemma 5. The condition |S ∧w �| ≤ α|S| in Lemma 4 bounds
the depth of the recursion. Following Clarkson [7], the algorithm to compute the
Voronoi vertices of Vk(S) is summarized as follows:

– If |S|/(r−5) ≤ k, compute the vertices of Vk(S) by the algorithm in Section 5.
– Otherwise (|S|/(r − 5) > k)

1. Choose R ⊂ S of size r until R satisfies the conditions of Lemma 4
(a) Construct Vβ(R) by the algorithm in Section 4 and Compute V�

β (R)
from Vβ(R) (Lemma 2).

(b) Check each trapezoid in V�
β (R) to satisfy the conditions of Lemma 4.

2. For each trapezoid � ∈ V�
β (R)

(a) Recursively compute the Voronoi vertices of Vk(S ∧w �).
(b) Select vertices of Vk(S ∧w �) that are vertices of Vk(S).

3.3 Analysis

Lemma 6. Vk(S) can be computed from its Voronoi vertices in O(k(n−k) log n)
operations.

Proof. For points-sites, a vertex is uniquely defined by three sites [14]. Also for
point-sites two vertices are adjacent iff their corresponding triples of sites have
two sites in common. However, in the abstract setting, three sites may define one
or two vertices and the adjacency property does not hold. Therefore, we cannot
solve this problem by just using radix sort as it was done for point-sites [7].

Here, in the abstract setting, we use radix sort to extract for each bisector
all Voronoi vertices that lie on it, in total O(|V |) operations, where V is the set
of vertices in Vk(S). We also assume the existence of a sufficiently large closed
curve Γ such that no two bisectors intersect outside Γ .

Consider a set of mJ > 0 Voronoi vertices that belong to bisector J (including
the artificial Voronoi vertices formed by the intersection between Vk(S) and Γ ).
mJ must be even; otherwise, at least one Voronoi vertex has no Voronoi edge.
We can sort the mJ Voronoi vertices along one direction of J as v1, v2, . . . , vmJ

in O(mJ log mJ) operations, and then link v2i−1v2i for 1 ≤ i ≤ mJ/2 as Voronoi
edges in O(mJ ) operations. Therefore, we can compute all the Voronoi edges
on J in O(mJ log mJ) operations. Since |V | is O(k(n − k)), the total num-
ber of operations is O (|V |) +

∑
J∈J ,mJ>0 O(mJ log mJ) = O (|V | log |V |) =

O (k(n − k) log n). 	
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Theorem 1. Vk(S) can be computed in expected O(kn1+ε) operations, where
ε > 0, and the constant factor of the asymptotic bound depends on ε.

Proof. Recall that r is a sufficiently large constant, α = O(log r/r) and β =
O(log r/ log log r). There are two cases: (1) If |S|/(r − 5) ≤ k, then we use
the algorithm from Section 5 to compute the vertices of the order-k Voronoi
diagram in expected O(n22α(n) log n) operations, i.e. O(r2k2 log2 r log2 k); (2) If
|S|/(r − 5) > k then the algorithm proceeds as follows:

1. Choose a random sample that satisfies the conditions of Lemma 4. Do the
check by constructing Vβ(R) and computing V�

β (R) from Vβ(R). The con-
struction of Vβ(R) takes expected O(rβ2 log r) operations (see Section 4), and
computing V�

β (R) takes additional expected O(β(r − β) log r) operations.
The number of the trapezoids in V�

β (R) is O(rβ), and the number of oper-
ations required to check the sample is O(nrβ) ⊂ O(nr log r).

2. For each trapezoid in V�
β (R) compute the order-k vertices using recursion.

The number of recursive calls is O(rβ) ⊂ O(r log r). Each recursive call
inputs O(αn) = O(n log r/r) sites and outputs O(αnk) vertices. Therefore,
the expected total number of operations required to validate each vertex of
each recursive call is O(αnkr log r) which is O(nk log2 r).

Therefore, the expected number t(n) of operations for computing the Vononoi
vertices of Vk(S) is

t(n) ≤ O
(
r2k2 log2 r log2 k

)
, n ≤ k(r − 5)

t(n) ≤ O (nr log r) + O
(
nk log2 r

)
+ O(r log r)t (O(n log r/r)) , n > k(r − 5),

and the depth of the recursion is O(log(n/k)/ log(r/ log r)).
Following [7, Lemma 6.4], if n tends to infinity, t(n) is O(kn1+ε). Since Vk(S)

can be constructed from the Voronoi vertices of Vk(S) in expected O(k(n −
k) log n) operations (Lemma 2), Vk(S) can be constructed in expected O(kn1+ε)
operations. 	


4 First Sub-Algorithm: Iterative Construction

The order-k abstract Voronoi diagram can be computed iteratively similarly to
point sites in the Euclidean metric [14]. The following lemma proves the main
property used in the iterative construction.

Lemma 7. Let F be a face of VRj(H,S) and let VRj(Hi, S), 1 ≤ i ≤ 	 be the
adjacent regions. Then Vj+1(S) ∩ F = V1(Q) ∩ F , where Q =

⋃
1≤i≤� Hi \ H.

Proof. We want to show V1(Q)∩F = Vj+1(S)∩F which is equal to V1(S\H)∩F .
Let x ∈ VR1(s, S \ H) ∩ F . For the sake of a contradiction assume s /∈

Q. This means s <x q, for any q ∈ Q and thus x ∈ VRj+1(H ∪ {s}). Let
F ′ be the face of VRj+1(H ∪ {s}) that contains x. Since s /∈ Q, F ′ does not
intersect ∂F , implying that F ′ ∩ Vj(S) is empty. This leads to a contradiction
since F ′ ∩ Vj(S) = F ′ ∩ Vn−1(H ∪ {s}) and this is nonempty [3, Lemmata 12
and 13]. Hence V1(S \ H) ∩ F = V1(Q) ∩ F which finishes the proof. 	
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Lemma 7 implies that we can compute Vj+1(S) by partitioning each face of
Vj(S) with the nearest-neighbor Voronoi diagram, which in turn can be com-
puted using the algorithm in [12].

Theorem 2. Vk(S) can be computed in expected O(k2n log n) operations.

5 Second Sub-Algorithm: Random Walk Method

We construct Vk(S) by computing ∂VNk(p, S) for every p ∈ S, i.e., all the
Voronoi edges of Vk(S) belonging to J(p, q). Chazelle and Edelsbrunner [6] com-
puted ∂VNk(p, S) based on dynamic convex hulls and the fact that VNk(p, S)
is simply connected. However, dynamic convex hulls are not applicable in
the abstract setting. Since VNk(p, S) is simply connected, we can adopt Har-
Peled’s [9] random walk algorithm to compute ∂VNk(S).

∂VNk(p, S) is a substructure of the arrangement of n−1 bisectors J (p) =
{J(p, q) | q ∈ S \ {p}}, where the bisectors in J (p) are not x-monotone, but
they have constant number of vertical tangency points. Therefore, the structural
complexities of the arrangement and its vertical decomposition are of the same
asymptotic magnitude. We construct ∂VNk(p, S) in the following way: (1) For
each connected component of ∂VNk(p, S) compute a starting point; (2) For each
starting point, traverse the corresponding part of ∂VNk(p, S).

Lemma 8 states that starting points can be computed in O(n log n) expected
time. As we walk we can determine the next direction in O(1) time.

Lemma 8. The starting points of ∂VNk(p, S) for each of its connected compo-
nents can be computed in total O(n log n) expected time.

Following [9], the expected number of operation required to compute the
boundary of the k-neighborhood by the random walk is O(λt+2(n + m) log n),
where t is the maximum number of intersections between two bisectors, and m
is the complexity of ∂VNk(p, S). In the abstract case, we can show that t = 2,
i.e. each pair of bisectors J(p, q) and J(p, r) in J (p) intersect at most twice.
Consider V1({p, q, r}). Axiom (A1) implies that each region in this diagram is
connected, therefore V1({p, q, r}) has at most two vertices. Thus, J(p, q) and
J(p, r) intersect at most twice and t = 2.

The main difference between computing the zone in the original version of
the algorithm [9] and computing ∂VNk(p, S) is that the latter is additionally
augmented by the vertical rays from the points of vertical tangency. However,
since each bisector allows only a constant number of points of vertical tangency,
the expected number of operations increases only by a constant factor.

Theorem 3. Vk(S) can be computed in expected O(n22α(n) log n) operations.
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