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Abstract. This paper presents high-throughput assembly implementa-
tions of PRESENT, PRINCE and KATAN64 ciphers for the ATtiny
family of AVR microcontrollers. We report new throughput records,
achieving the speed of 2967 clock cycles per block encryption for
PRESENT, 1803 cycles for PRINCE and 23671 cycles for KATAN64.
In addition, we offer insight into the ‘slicing’ techniques used for high
throughput and their application to lightweight cryptographic implemen-
tations. We also demonstrate the speed-memory tradeoff by constructing
high-throughput implementations with large memory requirements.
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1 Introduction

During the recent years, our society experienced big changes in the IT land-
scape. Starting from the development of wireless connectivity and embedded
systems, we have observed an extensive deployment of tiny computing devices
in our environment. Everyday objects transform into sophisticated appliances,
enhanced with communication and computation capabilities. Ubiquitous com-
puting is gradually becoming a reality and researchers have already identified a
wide range of security and privacy risks stemming from it.

In this new fully-interconnected, always-online environment, we rely heavily
on a huge number of daily transactions that are carried over a large distrib-
uted infrastructure and can be security-critical or privacy-related. RFID tags
on commercial products, cardiac pacemakers, fire-detecting sensor nodes, traffic
jam detectors and vehicular ad-hoc communication systems have one thing in
common: they need to establish a secure and privacy-friendly modus operandi,
under a particularly restricted environment, e.g. limited processing capabilities,
low energy consumption and/or demanding network protocols.

To provide sufficient security in such a setting, we need security primitives
that have a small footprint (low gate number and construction complexity),
reduced power consumption (since we often rely on a limited battery or on an
external electromagnetic field to supply the required energy) and sufficient speed
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(to be able to communicate in real time). The new pervasive computing require-
ments, in combination with the lack of a suitable candidate (AES is usually
too expensive, despite various approaches that have been proposed to reduce
the costs of hardware and software implementations [32]), has led researchers to
establish new ciphers that are tailor-made for pervasive computing and are often
referred to as lightweight ciphers. Among the best studied algorithms are the
block ciphers CLEFIA [43], Hight [29], KATAN, KTAN-TAN [16], Klein [25],
LED [27], PRESENT [11], the stream ciphers Grain [28], Mickey [7] and Triv-
ium [17] and more recently lightweight hash functions such as SPONGENT [10],
PHOTON [26] and QUARK [6].

Our contribution. This work focuses on the software speed aspect of light-
weight cryptography, usually with CTR mode of encryption. For AVR devices
with the ATtiny RISC architecture [20] (ATtiny85 and ATtiny45), we present
new encryption throughput records for ciphers PRESENT and KATAN64 that
improve the current state of the art ([21,39,41]) and we also present the first
high-throughput implementation of PRINCE cipher. Our main tools for high-
throughput are ‘slicing’ techniques, namely the traditional ‘bitslicing’ for
PRESENT, a variant called ‘nibble-slicing’ for PRINCE and finally, hardware
slices in KATAN64. We note that all these optimization techniques incur a
large overhead in memory requirements. The ATtiny devices are low-power 8-bit
AVR microcontrollers that employ SRAM, flash and EEPROM types of mem-
ory, as well as 32 registers, an ALU1 and other peripherals. In Sects. 2, 3, 4
we explain these techniques and their effects in detail for PRESENT, PRINCE
and KATAN64 respectively and provide comparisons between them. We mea-
sure directly the number of clock cycles, SRAM memory bytes and flash memory
bytes that they require. We conclude in Sect. 5.

2 PRESENT Cipher: Bitslicing with 8-Bit Processors

This section of this work suggests a novel, bitsliced PRESENT cipher implemen-
tation that achieves high throughput performance, namely 2.9× the through-
put of the fastest non-bitsliced implementation (Papagiannopoulos, Verstegen
[38,39]) and 2.1× the throughput of the fastest bitsliced implementation to our
knowledge (Rauzy, Guilley, Najm [41]). The second focal point of this section
is to demonstrate the effects of ‘slicing’ techniques on cipher implementations.
By opting for bitsliced PRESENT, we examine the speedups achieved in the
permutation layer but also the repercussions occurring in the substitution layer
under this non-standard, bitsliced representation.

Algorithm outline. PRESENT [11] is an ultra-lightweight, 64-bit symmetric
block cipher, using 80-bit or 128-bit keys. It is based on a substitution/permutation
network and as of 2012, was adopted as a standard for lightweight block ciphers
(ISO/IEC 29192-2:2012 [3]). The full algorithm has been resistant to attempts at

1 Arithmetic Logic Unit.
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Table 1. Substitution layer. The S-box used in PRESENT is a 4-bit to 4-bit function S.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2. Permutation layer. The bit-oriented permutation network used in PRESENT.
Bit in position i of state is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

cryptanalysis, although attacks have shown that up to 15 of its 31 rounds can be
broken with 235.6 plaintext-ciphertext pairs in 220 operations [4,18,36].

PRESENT uses exclusive-or as its round key operation, a 4-bit substitu-
tion layer, a bit permutation network with a 4-bit period, over 31 rounds and
a final round key operation. Key scheduling is a combination of bit rotation,
S-box application and exclusive-or with the round counter. Constructions found
in PRESENT are also encountered in hash functions SPONGENT [10], H-
PRESENT [12] and in ciphers Maya [24] and SMALL PRESENT [33]. Thus
the optimizations presented here are also directly applicable to these algorithms
or to any cipher that uses either a bit-oriented permutation network or the
PRESENT S-box (e.g. the LED cipher [27]).

The cipher’s key register is supplied with the 80-bit cipher key and in every
encryption round the first 64 bits of the 80-bit key register form the round
key. To encrypt a single 64-bit block, during each encryption round, PRESENT
applies an exclusive-or with the current round key followed by a substitution and
a permutation layer. The substitution layer applies nibble-wise (4-bit) S-boxes
to the state (Table 1), while the permutation layer re-arranges the bits in the
state following a 4-bit period (Table 2). Key scheduling is done by rotating the
key register 61 bit positions to the left, applying the S-box to the top nibble of
the key register and XORing bits 15 through 19 with the round counter. There
is a total of 31 such rounds and finally we perform one last exclusive-or with the
round key (Fig. 1).

2.1 Permutation Layer Under Bitslicing

Bitslicing was first introduced by Biham [8] in order to improve the performance
of bit permutations of DES in software. We note that there exist structural
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Fig. 1. Overview schematic of the PRESENT cipher. It consists of 31 rounds, includ-
ing exclusive-or addRoundKey application, nibble-wise substitution (sBoxLayer), bit
position permutation (pLayer) and key update.

similarities between DES and PRESENT; although DES is a Feistel instead of
an SP network, both are hardware-oriented ciphers that rely heavily on bit per-
mutations which are efficient with circuit wirings, yet slow in software. Bitslicing
views our 8-bit microprocessor as a SIMD2 computer with 8 single-bit proces-
sors running in parallel. Thus, we use a non-standard, bitsliced representation
for our 64-bit PRESENT cipher block: 64 SRAM cells (each cell consisting of
8 bits) represent the 64 bit positions of the block. Due to the 8-bit size of our
cells/positions, we are able to permute 8 cipher blocks in parallel. i.e. we achieve
a bitslice factor of 8.

Normally, the permutation layer under this representation would be reduced
to simple memory cell renaming according to the permutation pattern (Table 2)
and should cost zero clock cycles. However, cell renaming for 31 cipher rounds
requires full loop unrolling, resulting in infeasible code size. Thus, we use the
following approach:

1. Load four 8-way-bitsliced cells from the SRAM to four registers.
2. Perform the nibble-based substitution layer (Sect. 2.2).
3. Store the substituted result back to SRAM cells in a permuted fashion

(Table 2).
4. Repeat this for all nibbles in the cipher block.
2 Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn’s

taxonomy [23]. It describes computers with multiple processing elements that per-
form the same operation on multiple data points simultaneously.
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Essentially, the computational cost of the permutation layer drops to 64 mem-
ory loads and 64 memory stores. In order to load cells in a sequential manner
and to store in a permuted fashion, we use direct SRAM addressing (instruc-
tions lds, sts). The bitsliced permutation approach is substantially faster (in
terms of throughput) when compared to LUT approaches like merged SP lookup
tables [39] or permutation lookup tables [9]. Likewise, instruction-set-based
approaches such as bit-level manipulation/masking techniques that employ the
bld, bst instructions [37] or logical shifts [21] are also outperformed. The
ineffectiveness of several ISAs3 w.r.t. permutation operations has also been
addressed by Lee et al. [34,42], who suggested extensions to existing instruc-
tion sets in order to compute arbitrary n-bit permutations.

2.2 Substitution Layer Under Bitslicing

Despite the large throughput boost on the permutation layer, bitslicing increases
the complexity of the substitution operation and has even led to bitslicing-
oriented compilers [40]. When assuming 4-bit S-boxes, a cipher block size of
64 bits and an 8-bit architecture, performing a substitution directly via lookup
tables becomes impossible; the LUT size and addressing mode is infeasible for
the AVR ATtiny. A more viable alternative would be to first extract the bits
required out of the bitsliced representation, i.e. temporarily revert to the origi-
nal form (un-bitslicing), perform a lookup and then store back in the bitsliced
representation. Still, this procedure also implies a large performance overhead.

The best solution that has been identified so far for computing efficiently
the substitution layer of a cipher in bitsliced representation is by interpreting
the S-box as a boolean function. Bitslicing uses 8-bit cells (Sect. 2.1), each per-
taining to a position withing the cipher block. When implementing any boolean
function under bitslicing, we still maintain the SIMD parallelization, i.e. any
logical operation between two 8-way-bitsliced cells performs 8 single-bit logical
operations in parallel.

Efficient software implementation of boolean functions. In order to effi-
ciently implement a boolean function in software we point out its close resem-
blance to hardware construction of optimal circuits; in fact, we will demonstrate
that boolean function implementation in software can be solved using the same
techniques, albeit with slightly different constraints. Constructing optimal com-
binational circuits and ‘technology mapping’ in general is an intractable problem
under almost any meaningful metric (gate count, depth, energy consumption,
etc.). In practice, even a boolean function with as few as 8 inputs and a sin-
gle output would require searching over a space of 2256 such outputs and this
naturally leads us to heuristic methods.

Boyar-Peralta heuristic and Courtois extension. In 2008, Boyar and Per-
alta introduced an efficient new heuristic methodology to minimize the complex-
ity of digital circuits [2,14,15]. Their focal point was to construct efficient cipher

3 Instruction Set Architectures.
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implementations based on the notion of Multiplicative Complexity (number of
AND gates) and they produced a 2-stage methodology to optimize the circuit
over the basis {⊕,∧, 1} by first minimizing the non-linear (AND) components
and consequently the linear (XOR) components.

Courtois, Hulme and Mourouzis [19] extended this conjecture and applied
the heuristic to several S-boxes modeled by GF (2)4 → GF (2)4 boolean functions
(including the PRESENT cipher S-box). In addition to the existing multiplica-
tive complexity metric, Courtois et al. introduced the notion of Bitslice Gate
complexity as the minimum number of 2-input gates of types XOR, OR, AND
and single-input gates of type NOT needed to construct the circuit. For a silicon
implementation this notion is helpful but definitely non-optimal: certain gates
are more costly to implement, given the fact that silicon mapping often tries to
minimize the number of the cheap NAND gates. Still, we observe a case where
software-efficient boolean functions differentiate from hardware-efficient boolean
functions. AVR ATtiny instructions for XOR, OR, AND, NOT operations cost a
single clock cycle whereas there exists no native NAND operation. Consequently,
mapping the PRESENT S-boxes to XOR, OR, AND, NOT gates and translating
to software instructions outperforms any hardware-oriented mapping to NAND
gates and subsequent translation to software operations. In the ‘technology map-
ping’ context, we can view these two approaches as mappings to different cell
libraries, where the different component cost indicates the difference between
hardware and software implementation.

The results of the Courtois form the basis of an efficient software-based bit-
sliced implementation of the PRESENT cipher, both for the AVR architecture
(this work) and C-based implementations [35]. Courtois applied the 2-stage
Boyar-Peralta heuristic in combination with SAT solvers, resulting in the fol-
lowing representation for the PRESENT Sbox that has very low bitsliced gate
complexity.

T1=X2^X1; T2=X1&T1; T3=X0^T2; Y3=X3^T3; T2=T1&T3; T1^=Y3; T2^=X1;
T4=X3|T2; Y2=T1^T4; X3=~X3; T2^=X3; Y0=Y2^T2; T2|=T1; Y1=T3^T2;

where Xi=input, Yi=output and Ti=intermediate values.

This is the final form that we use for computing the PRESENT substitution layer
in the AVR ATtiny architecture and it requires 14 gates. Note that the set of
operations uses the ‘operator destination, sourceA, sourceB’ instruction
format instead of the native ATtiny ‘operator destination, source’ format.
The inherent problem is that it is not possible to reuse a computed value, unless
we store it temporarily elsewhere. With careful register usage, we maintain this
penalty to a minimum and our final implementation requires 19 clock cycles
to compute the output of a single PRESENT S-box. As a result, the 16 S-box
operations used in the bitsliced representation require 19 · 16 = 304 clock cycles
for 8 cipher blocks in parallel.
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Table 3. Size (pertaining to flash and SRAM bytes) and throughput (clock cycles per
block) of AES (row 1) and PRESENT (rows 2 to 5) cipher implementations.

Implementation Flash SRAM Throughput Bitsliced

(bytes) (bytes) (cc/block)

AES, [1] 3098 - 2474 no

Eisenbarth et al. [21] 1000 18 10723 no

Papag. [38,39] ATtiny45 1794 0 8721 no

Rauzy et al., ATtiny45 [41] 1194 144 6473 yes

This work, ATtiny85 3816 256 2967 yes
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Fig. 2. Throughput vs. Size diagram for various implementations of the PRESENT
cipher.

2.3 PRESENT Performance

The suggested implementation manages to outperform all existing implementa-
tions with respect to throughput. Comparing this work with the non-bitsliced
work by Eisenbarth et al. [21], we can draw several conclusions regarding bitsliced
representations. Eisenbarth’s substitution layer is extremely efficient, consisting
of a single flash memory lookup (4 clock cycles) per 8 bits (0.5 cc4 per bit). Our
boolean-function-oriented implementation requires 19 clock cycles for an S-box
computation, i.e. 0.59 cc per bit, so slightly slower. However, this hindrance
is unimportant when considering the very slow permutation layer of Eisenbarth
et al. (154 cc per round) compared to ours (32 cc per round). We also outperform
Papagiannopoulos and Verstegen [39] due to the fact that they replace the whole

4 Clock cycles.
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SP network with lookup tables and this results in a large number of flash memory
accesses (1 memory access per 2 bits of state). However, we must stress the fact
that the bitsliced version of PRESENT increased the memory requirements by a
factor of 4, when compared to straightforward implementations [21]. Comparing
our bitsliced version with Rauzy et al. [41], we observe that we achieve a 2.1×
boost in throughput. Since the authors do not elaborate on the implementation
of the boolean function in use, memory accesses or other secondary operations
(addRoundKey, keyUpdate etc.) we cannot identify the source of this speed-up,
although we note that the authors were more efficient in terms of code size.
When examining latency, we note that all bitsliced implementations perform
inherently multiple blocks in parallel (equal to the bitslice factor). In our case,
we perform 8 block encryptions in parallel within 23736 clock cycles, resulting
in poor latency performance. It is also worth pointing out that AES [1] can out-
perform PRESENT in terms of both latency and throughput, since it encrypts
a 128-bit block (twice the PRESENT block) in fewer cycles (Fig. 2 and Table 3).

3 PRINCE: Nibble-Slicing in 8-Bit Microprocessors

In this section, we present the first (to our knowledge) ‘sliced’ implementation
of the PRINCE cipher [13] for the ATtiny architecture. Our focal points are
the substitution and the nibble (4 bits) permutation operations of the cipher.
We suggest a novel idea, namely a variation of the bitslicing technique called
nibble-slicing, in order to efficiently compute these operations. We also offer
insight w.r.t. the effects of slicing on the permutation and substitution layer and
provide a comparison between bitslicing (used in PRESENT) and nibble-slicing
(used in PRINCE).

Algorithm outline. PRINCE is a 64-bit block cipher with a 128-bit keys, based
on the F–X construction [13,31]. The key k is split into two parts of 64 bits each,
i.e. k = k1||k2 and extended to 192 bits via the following mapping:

k0||k1 → k0||k′
0||k1 = (k0||k0 >>> 1) ⊕ (k0 >> 63||k1) (1)

Now, k0 and k′
0 are used as whitening keys, while k1 is the main 64-bit used

by the 12 rounds of the cipher without any key updates. Figure 3 shows the
12 rounds of encryption. The encryption consists of a nibble-based substitution
layer S, a Shift Rows operation (SR) and a matrix multiplication M’. Operations
M’ and SR (in this order) construct the operation M (Tables 4, 5).

Fig. 3. The 12 rounds of the PRINCE cipher. k1 denotes the core cipher key, RCis are
constants, S the substitution layer and M the diffusion layer.
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Table 4. The S-Box of the PRINCE cipher, used for the S operation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Table 5. Nibble permutation of the PRINCE cipher in the SR operation (from old
nibble position to new nibble position).

Old 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

New 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

3.1 Diffusion Layer Under Nibble-Slicing

Shift Rows. When comparing the substitution-permutation network of PRE-
SENT with that of PRINCE we can observe similarities and differences. The sub-
stitution operation is fairly identical in nature and similarities do exist between
the Shift Rows operation (nibble permutation) and the PRESENT bit permuta-
tion network; the SR operation is a permutation with fewer degrees of freedom
when compared to single-bit permutations. Based on this observation, we have
identified a technique stemming from bitslicing (we call it nibble-slicing) that is
custom-made for nibble-oriented permutation layers and manages to avoid mem-
ory accesses, despite the fact that we operate on a 64-bit cipher state (Fig. 4).

M ′ =

⎛
⎜⎝

Ma 0 0 0
0 Mb 0 0
0 0 Mb 0
0 0 0 Ma

⎞
⎟⎠

Ma =

⎛
⎜⎝

M0 M1 M2 M3
M1 M2 M3 M0
M2 M3 M0 M1
M3 M0 M1 M2

⎞
⎟⎠ Mb =

⎛
⎜⎝

M1 M2 M3 M0
M2 M3 M0 M1
M3 M0 M1 M2
M0 M1 M2 M3

⎞
⎟⎠

M0 =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ M1 =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ M2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ M3 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠

Fig. 4. The M ′ operation, analyzed from top to bottom.

Nibble-slicing uses the following representation: every 8-bit register is split
into two parts (high and low, 4 bits each) and we use a total of 16 registers (thus
avoiding SRAM usage, something impossible for bitsliced representations on
ATtiny). The whole representation consists of 128 bits, i.e. two separate cipher
states (we refer to them as block 1 and block 2 – see Fig. 5). Block 1 is stored in
all high parts of the 16 registers and block 2 in all low parts of the corresponding
registers. Nibble-slicing presents similarities with vectorized computations on
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larger processors and to digit-slicing or byte-slicing techniques used to improve
speed of AES [30]. In our context, nibble-slicing essentially removes the need to
compute the SR operation and could be of similar usage for other lightweight
ciphers with a nibble-oriented permutation network (e.g. KLEIN or LED).

Fig. 5. Nibble-sliced representation of two PRINCE cipher blocks.

Matrix multiplication. Matrix multiplication (M’) is the most computation-
ally expensive operation of the PRINCE cipher. To increase speed, we try to
exploit the diagonal structure of the matrix: we view the matrix as a set of 4
by 4 matrices, then we multiply with the state nibbles with the main diagonal
of every 4 by 4 matrix. This approach works well under the nibble-sliced repre-
sentation; both high and low parts of the register are multiplied with the same
diagonal.

3.2 Substitution Layer Under Nibble-Slicing

A negative effect of nibble-slicing is the following: under this non-standard rep-
resentation, we have lost our maximum parallel processing capability; instead of
storing 8 different cipher states within a single register (bitslice factor of 8) we
store only two (bitslice factor of 2). However, this novel representation is faster
when implementing PRINCE in the AVR context compared to the original bit-
slicing method for the following reasons:

1. As mentioned, nibble-slicing in 16 registers results in an implementation that
fully avoids usage of SRAM and the penalty associated with it. Storing two
separate cipher states in such a way fits into registers and thus avoids spills
to SRAM.

2. Second, although it is still possible, we no longer have to compute the S-box
via a boolean function and we can use LUTs which are more efficient in the
ATtiny context.

Although we demonstrated in Sect. 2.2 that boolean functions are fairly effi-
cient for S-box computation, we remind that they are still slower than direct
flash memory lookups. Bitsliced PRESENT could not use lookup tables for the
substitution layer, but that is not the case for nibble-sliced PRINCE. Each reg-
ister contains two separate 4-bit values. Based on the guidelines by Eisenbarth
et al. [21] and Papagiannopoulos and Verstegen [39], we use a ‘squared’, byte-
oriented lookup table for S-box computation. During the lookup, each one of
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Table 6. Performance of the high-throughput of the AES (row 1) and PRINCE (rows
2 to 4) ciphers.

Implementation Flash (bytes) SRAM (bytes) Throughput (cc/block)

AES [1] 3098 - 2474

Shahverdi et al., T-box 1990 232 4292

Shahverdi et al., parallel 1574 24 3253

This work, ATtiny85 2382 220 1803

the 4-bit halves is substituted separately. The whole process is carried out effi-
ciently via 8-bit flash memory lookups from 256-byte tables in flash memory. In
fact, we merge the S operation with the SR operation; every time we perform a
lookup, we take into account that values need to be stored back in registers in a
permuted fashion.

3.3 PRINCE Performance

Nibble-slicing lacks in terms of throughput compared to the ‘traditional’ bitslic-
ing approach. However, the fact that LUTs are a viable option for the substi-
tution layer compensates to some extent. Our PRINCE cipher implementation
encrypts two 64-bit blocks in 3606 cc, i.e. a throughput of 1803 cc per block.
Comparing to a straightforward implementation that uses T-tables (Shahverdi
et al. [5]), we observe a throughput increase of 2.3, while memory consumption
increased by a factor of 1.16. Comparing to a parallel PRINCE implementation
(Shahverdi et al. [5]), we achieve throughput increase by a factor of 1.8 and
memory requirements increase by a factor of 1.61. AES [1] still outperforms
PRINCE (0.051 bits/cc vs. 0.035 bits/cc) (Table 6).

4 KATAN64: Hardware Parallelism Translated
to Software Slices

The third section of this work examines a different type of cipher that is not
related to SP networks and resembles a stream cipher. However, as we will point
out, certain parallel constructs in hardware can also lead us to a non-standard
representation in software that taps into parallelism – not unlike bitslicing. We
identify these cases as ‘hardware slices’.

Algorithm outline. The outline is provided in Fig. 6. The KATAN cipher [16]
was designed as a secure 80-bit block cipher with a minimal number of hard-
ware gates, while it demonstrates very slow software performance. Following the
design of KeeLoq [22], the designers chose a structure similar to a stream cipher,
resembling the two-register variant of Trivium [17], known as Bivium.

The cipher’s plaintext is loaded into two linear feedback shift registers (LFSRs)
L1 and L2. Each round several bits are taken from the registers and the cipher
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key. Those bits enter two non-linear boolean functions (fa and fb), while the out-
put of the boolean functions is loaded to the least-significant bits of the regis-
ters after they are shifted (or ‘clocked’). Computing the two boolean functions
fa, fb requires AND and XOR operations between the state bits, the cipher keys
and a constant value IR (irregular update) that increases diffusion. The KATAN
cipher executes a fairly large number of rounds (254) and comes in three variants:
KATAN32, KATAN48 and KATAN64 (the suffix denotes the size of the cipher
state – the key size is always 80 bits). Our implementation focuses solely on the
64-bit version, which presents additional interest w.r.t. slicing.

As mentioned, KATAN64 uses two non-linear function fa and fb in each
round which are computed as follows.

fa(L1) = L1[24] ⊕ L1[15] ⊕ (L1[20] · L1[11]) ⊕ (L1[9] · IR) ⊕ ka (2)

fb(L2) = L2[38] ⊕ L2[25] ⊕ (L2[33] · L2[21]) ⊕ (L2[14] · L2[9]) ⊕ kb (3)

where L1[i] and L2[i] denote bit positions on the two LFSR registers, IR denotes
the irregular update (constant) and ka, kb denote the two subkey bits of every
KATAN64 round. After the computation of the non-linear functions, the registers
L1 and L2 are shifted. The MSB falls off into the corresponding non-linear
function and the LSB is loaded with the output of the second non-linear function,
i.e., after the round, the LSB of L1 is the output of fb and the LSB of L2 is the
output of fa.

A specific feature of the KATAN64 construction with respect to the non-
linear functions is the following. In KATAN64, each round applies fa and fb
three times with the same key bits ka, kb. An efficient hardware implementation
can implement these three steps in parallel, a fact that will also lead us to
software parallelism.

Fig. 6. The core operation of the KATAN cipher. The two LFSR L1, L2 store the
cipher state. Several bits are extracted from L1, L2, from the cipher key (ka, kb) and
from IR in order to compute the non-linear functions fa, fb (via XOR/AND operations)
and to update the cipher state.
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The key schedule of the KATAN64 cipher loads the 80-bit key into an LFSR
(the least significant bit of the key is loaded to position 0 of the LFSR). Every
round, positions 0 and 1 of the LFSR are used as the round’s subkey k2i and
k2i+1, and the LFSR is clocked twice according to the following feedback poly-
nomial:

x80 + x61 + x50 + x13 + 1 (4)

The subkey of round i can be described as ka||kb = k2i||k2i+1 where ki = Ki for
i ∈ {0, 1, . . . , 79} (K being the 80-bit input key) or alternatively ki = ki−80 ⊕
ki−61 ⊕ ki−50 ⊕ ki−13.

4.1 KATAN64 Non-linear Functions Under Slicing

The KATAN cipher has an interesting hardware-related property that has not
been yet translated to software implementations. During each cipher round, the
64-bit version of KATAN applies the non-linear functions fa, fb three times and
these computations can be carried out in parallel (if the extra hardware gates
are available). Eisenbarth et al. suggest that implementing this property may
result in complicated shifting/masking that will increase the code size with little
or no performance gain, yet we attempt to rebut this statement.

Computing the functions fa, fb sequentially via the bld,bst bit-level instruc-
tions is very time-consuming. A single run of fb would require 7 extract (bld),
7 deposit (blst), 2 AND, 3 XOR operations and as a result 3 · 19 · 254 = 14478
clock cycles for a full encryption (the factor 3 due to the 3-way parallelizable step
being done sequentially). Analogously, fa also costs roughly the same amount.
Bitslicing would solve this issue but it would entail a huge SRAM transfer over-
head due to the large number of rounds. Thus, we turn to register-oriented
approaches.

Achieving 3-way parallelizability involves using masking and instructions that
operate on register level and not bit-level operations. In addition, it involves a
slightly different representation of the cipher state: instead of storing the 64 bit
state in 8 registers (each containing 8 bits), we employ 9 registers that store
the representation in a slid fashion (see Fig. 7). First, observe that there exist
several triadic bit groups that contribute to the computation of the next cipher
state. For instance, KATAN64 uses (among others) bit 9 of the the L2 LFSR
to compute a single bit of the next state and since this operation has to be
carried out 3 times within a KATAN64 round, the same procedure is applied to
bits 8 and 7 correspondingly. There exist 6 such triads in the L2 LFSR (9/8/7,
14/13/12, 21/20/19, 25/24/23, 33/32/31, 38/37/36) and 5 such triads in the
L1 LFSR (9/8/7, 11/10/9, 15/14/13, 20/19/18, 24/23/22). This non-standard
representation displayed in Fig. 7 attempts to arrange all bit triads used for the
new state computation in a way that never splits a triad between two separate
registers. Having established that, we can use register-level operations that carry
out the new state computations, while maintaining 3-way parallelizability. We
have essentially created 3 slices in our representation.

Under the new representation, computing 3 parallel output bits costs 19 clock
cycles for function fb and 19 clock cycles for function fa. Compared to the
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sequential approach of the previous paragraph, we observe a 3× performance
boost when parallelizing the operations in software; fa and fb used to cost 57 =
3·19 cycles each for a 3 bit output. Note also that the new representation does not
fully utilize all registers, since registers r0, r5 and r8 have bits indicated as null
(i.e. non-relevant in our representation). A side-effect is that bit rotation (also
denoted as LFSR clocking) becomes slightly slower; it costs us 39 clock cycles in
order to carry out 3 bit rotations to all 9 registers that are transparent to the null
register positions, i.e. sliding all registers to the right and transferring overflow
bits from L2 to L1 and L1 to L2 correspondingly while taking into account the
null bits. A standard representation (using 8 registers without null bit elements)
would rotate in 24 clock cycles (24 = 3 · 8, i.e. 3 single bit rotations carried on
8 registers) Fig. 8.

Fig. 7. Cipher state of KATAN64, stored in a slid manner, using 9 registers. The bit
triads required for computing the new cipher state are highlighted in bold.

4.2 KATAN64 Performance

The only known implementation of KATAN64 in AVR architecture is presented
by Eisenbarth et al. [21] and it focuses on low size, not high throughput. Our
implementation manages a full KATAN64 encryption in 23671 clock cycles, while
Eisenbarth et al. manages a full encryption in 72063 clock cycles, i.e. we improve
the throughput by a factor of 3. Although the two implementations are not
directly comparable (due to different implementation objectives) it is still useful
to compare and observe the tradeoffs. Specifically, we disagree with the state-
ment that the 3-way KATAN64 parallelizability cannot be sufficiently exploited
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function fb function fa

mov t1,s1 mov t3,s6

swap t1 lsr t3

lsr t1 eor t3,s8

and t1,s1

mov t2,s2 eor t3,s8

swap t2 lsr t3

and t2,s4 eor t3,s7

eor t1,t2 mov t4,s7

eor t1,s3 lsr t4

and t4,s6

swap t1 swap t4

lsl t1 eor t4,t3

eor t1, s4

Fig. 8. Register-oriented code to compute fa, fb, while performing operations in parallel
(excluding key XOR operations and irregular update XORing). Variables si denote
cipher state (Fig. 7 register i corresponds to si), and variable tj denotes temporary
values.

in software; with the penalty of a single extra register, we manage to increase
the throughput of the non-linear layer threefold. Although we exploit a form
of parallelizability, we do not compute many blocks in parallel; thus, through-
put improvement translates automatically to latency improvement. Finally, our
implementation precomputes the cipher round key and requires extra SRAM
space for lowering the latency (Table 7).

Table 7. Throughput of KATAN64 cipher implementations for AVR architecture, i.e.,
clock cycles required for a single encryption round.

KATAN64 implementation Throughput (cc) Size (bytes)

Eisenbarth et al. [21] 72063 338 flash, 18 SRAM

This work, ATtiny45 23671 380 flash, 96 SRAM

5 Conclusion

Summarizing, this work has managed to improve the throughput aspect of three
lightweight ciphers (PRESENT, PRINCE, KATAN64). We displayed the ‘slic-
ing’ techniques, then determined which is applicable for each cipher and finally,
we investigated their effects on substitution, permutation and other operations.
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Our results demonstrate a 2.1× improvement for PRESENT throughput, 3×
improvement for KATAN64 (throughput and latency) and the first high-speed
implementation of PRINCE for ATtiny devices. Code is available online here:
https://github.com/kostaspap88?tab=repositories. Future directions include
high-throughput implementations for ciphers or hash functions that present
structural similarities with the three ciphers discussed in this paper. Finally, an
interesting direction would be an attempt to analytically model the behavior of
e.g. SP networks and rigidly link computational efficiency in software with other
important properties such as cryptanalysis resistance, power consumption and
hardware performance. Establishing trade-offs between these design parameters
in a analytic manner could link to more efficient designs in the future.
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