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Abstract. Elliptic curve cryptography is today widely spread in embed-
ded systems and the protection of their implementation against
side-channel attacks has been largely investigated. At CHES 2012, a
countermeasure has been proposed which adapts Montgomery’s arith-
metic to randomize the intermediate results during scalar point multi-
plications. The approach turned out to be a valuable alternative to the
previous strategies based on hiding and/or masking techniques. It was
argued to be specifically dedicated to hardware implementations and it
aimed to defeat first-order side-channel attacks involving Pearson’s cor-
relation as distinguisher. In this paper however, we exhibit an important
flaw in the countermeasure and we show, through various simulations,
that it leads to efficient first-order correlation-based attacks.

1 Introduction

Elliptic Curves Cryptosystems (ECC) have been introduced by N. Koblitz [22]
and V. Miller [29]. Their security relies on the hardness of the discrete logarithm
problem. Elliptic curve based algorithms usually require keys far smaller than
those involved in other public-key cryptosystems like RSA. This explains the cur-
rent popularity of ECC and their involvement in a large variety of applications
implemented over all kinds of devices: smart-cards, micro-controllers, and so
on. Since such devices are widespread and in the hands of end-users, they are
confronted to a wide range of threats. In particular, physical attacks need to
be taken into account when assessing the overall security of the implementa-
tion. Thus, countermeasures are often conceived and implemented alongside the
algorithms.

Physical attacks are traditionally divided into the two following families:
perturbation analysis and observation analysis. The first one aims to modify
the cryptosystem processing with any physical mean such as laser beams, clock
jitter or voltage perturbation (e.g. fault injection attacks [12,13]). The attacker
then learns information on the secret parameter by observing the response of
the cryptosystem to this perturbation. Such attacks can be prevented by mon-
itoring the device environment with captors and by verifying the result of the
computation before output. The second family of attacks consists in measuring
physical data during the algorithm execution and then in exploiting this informa-
tion to recover the secret. Such leakage sources can be the power consumption or
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the electro-magnetic emanation. Among observation attacks, we can distinguish
several categories. Simple Power Analysis [24] directly deduces the value of the
secret from a single input processing (possibly averaged), while Advanced Power
Analysis exploits observations for several algorithm inputs. The latter kind of
attacks requires the choice of a leakage model to compare predictions based on
key-hypotheses with the measured traces. The comparison is done with a sta-
tistical tool, also called distinguisher. For example, the well-known Differential
Power Analysis (DPA) [25] uses the difference of means whereas the Correlation
Power Analysis (CPA) [10] involves Pearson’s correlation coefficient?.

Countermeasures against observation analysis fall into two categories: hid-
ing techniques aim at reducing the Signal to Noise Ratio (SNR) by increasing
the noise or by equalizing the current in the circuit [35], while masking tech-
niques consists in randomizing the sensitive computations. In practice, mask-
ing is always applied (possibly combined with hiding) since it provides strong
security guaranty. Recently, Lee et al. [26] proposed a new efficient countermea-
sure to overcome first-order CPA? attacks. It assumes that the field operations
are performed in the Montgomery domain [30] and consists in randomizing the
Montgomery representation of the internal results (thus defining a so-called Ran-
domized Montgomery Domain). This countermeasure has been considered as a
very valuable alternative to the previous techniques because it avoids the need
for scalar blinding (see e.g. [5]) and is much more efficient from a hardware
implementation point of view.

Our work. In this paper, we show that the countermeasure proposed in [26] is
flawed and can be efficiently broken by first-order CPA, even in presence of a
large amount of noise in the measurements. After a presentation of the tech-
niques proposed by Lee et al. in Sect.2, the flaw is exhibited in Sect.3.1. The
attack is afterwards detailed in Sect. 3.2 and its efficiency is demonstrated in
Sect. 4 thanks to simulations in various contexts. Finally, Sect.5 analyses the
experiments given in [26] and concludes with a short discussion about possible
countermeasures.

2 On Randomized Implementations of Modular
Operations

In this section, we recall some mathematical background on elliptic curve and the
associated scalar multiplication. The reader may also refer to [3] for a more com-
plete overview. Here, we will focus on the efficient implementation of the scalar
multiplication in embedded devices. In particular we recall the use of the Mont-
gomery domain for efficient modular operations [31].

! The need for a leakage model may be relaxed when using the so-called collision
attacks [40] which look for colliding values during a computation. Such attacks com-
pare only real traces to each other.

2 A side channel attack is said to be of first order if it exploits the dependency between
the mean of an instantaneous leakage and a function of the secret parameter. The
original CPA attack in [10] is of first-order.



214 E. Jaulmes et al.

2.1 Background on Elliptic Curves and Montgomery Multiplication

Elliptic Curves. In this paper, we focus on elliptic curves E defined over a
prime field IF,, according to the following short Weierstrass’s Equation:

E:y?=2°+ax+b, (1)

where a and b are elements in F,, satisfying 4a® + 27b? # 0. The set of rational
points of E is denoted by E(F,). It contains all the points whose coordinates
(z,y) € F2 satisfy (1). This set, augmented with a neutral element O called
point at infinity, has an Abelian group structure for the following addition law:
let P = (x1,y1) and @ = (x2,y2) then the coordinates (x3,ys3) of P+ @ satisty;

xr3 = A — r1 — 22 and y3 = A(w1 — 3) — Y1, (2)

where \ equals (y2 —y1)/(z2 — 1) if P # Q and (323 +a)/(2y;) otherwise. The
scalar multiplication (ECSM for short) of a point P € E(F,) by a natural integer &
is denoted by kP. It is the core operation of many cryptographic protocols such
as ECDSA [22] and defining an efficient scalar multiplication arithmetic is hence
a central issue (the interested reader is referred to [16] for a good overview).
The point addition formula (2) is also central in elliptic curve implementations
and several papers have been published on this subject [1,4,14,15,18,27,28,
41]. They aim at proposing sequences of operations over F,, which are optimal
according to some relations between the cost of a field inversion, the cost of
an addition/subtraction and that of a multiplication. To defeat SPA attacks [5]
at the arithmetic level, some works also try to propose sequences that stay
unchanged whether (2) defines an addition (P # Q) or a doubling (P = Q). In
this paper, we make no particular assumption on the type of ECSM algorithm
nor on the sequence of operations which is used to process a point addition
or a doubling. We indeed present a side-channel attack that does not exploit
some particularity of the operations sequence or modus operandi but exploits
information leakage during the manipulation of an intermediate result when the
masking proposed in [26] is used. The latter type of result is likely to appear
whatever the implementation choice.

Montgomery Domain. In order to efficiently perform the field operations
involved in the point addition/doubling, developers often use the well-known
Montgomery arithmetic [31]. This technique allows to replace the divisions occur-
ring during the modular reduction by very efficient binary shifts. The only costly
operation is the transformation to and from the Montgomery domain, but it is
only done twice: at the beginning and at the end of the whole point operation
(e.g. the scalar multiplication).

Let = represent an element in the prime field F, ~ Z, and let R = 2
be defined such that 2™ < p < 2™%! (i.e. m = |logy(p)]). The value T =
z - R mod p is called the Montgomery representation of x and R is called the
Montgomery constant. There is an isomorphism between (Z,,, +, -) and the Mont-
gomery domain MD(p) = ({Z}, +, ®), where @ represents the Montgomery mul-
tiplication T®y = (T-7)- R~ mod p. The result of the multiplication corresponds
to Ty, i.e. the Montgomery representation of xy mod p.

m
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2.2 Randomized Montgomery Domain

Instead of using always R = 2™, the authors of [26] propose to use a randomized
Montgomery constant r = 2* where X is the Hamming Weight of a random m-bit
value. The randomized Montgomery representation (RMR for short) of « € Zj, is
x - 2* mod p. It is denoted Z or just & when there is no ambiguity on A. The
randomized Montgomery domain is denoted by RMD,(p). The multiplication in
RMD,, (p) works as follows: ¥ ®y § = (7 - ¥)2~* mod p. The result of the multipli-
cation corresponds to xy, i.e. the RMR of zy mod p. To ensure that the number
of final subtractions stays upper-bounded by 1 (as in the classical Montgomery
multiplication), the random power A must be chosen in [0..m].

In [26], the idea of RMR is applied to secure the implementation of an elliptic
curve scalar multiplication against first-order side channel attack (e.g. CPA).
The principle of these attacks is to observe the device behaviour during the
processing of several scalar multiplications kP where the secret scalar k € N
stays unchanged and the public point P varies. Such attacks can be applied,
for example, against some implementations of semi-static Diffie-Hellman key
exchange, as found in the IEEE P1363 standard [17]. The main steps of the
secure algorithm proposed in [26] are recalled hereafter, where the point P is
assumed to belong to the set of rational points E(F,) defined as in (1).

1. Inputs: a (public) point P = (z1,y1) € E(F,), a (secret) scalar k € N, a
random number « € [0..2™ — 1] with m = |log,(p)].
2. Conversion to RMD: for A = HW(«), process

71 =1 -2 mod p

and

U1 :y1~2)‘ mod p.

Also convert the curve parameters (a,b) into RMDy(p). The point with coor-
dinates (x71,y1) is denoted by P.
3. Elliptic Curve Scalar Multiplication (ECSM): in RMD, (p), process

Q = (¥2,42) = kP. (3)
4. Conversion to Integer Domain: process
To=Ta®@x1=7275-2"" mod p
and
Yo =G @21 =15-2"" mod p
5. Output: Q = (x2,y2) = kP

The Elliptic Curve Scalar Multiplication (ECSM) may be done with any algo-
rithm (e.g. [31]). The authors of [26] do not recommend any particular one, even
if the resistance tests reported in their paper are applied against an ECSM based
on Montgomery Ladder (see Algorithm 5 in Appendix A). Similarly, our attack
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described in the next section does not exploit any particular feature of the
ECSM and thus applies independently from the choice of algorithm. To allow for
comparisons with [26] we however chose to target an ECSM based on Montgomery
Ladder in our attack simulations.

3 Our Attack

3.1 Core Idea

The goal of our attack is to recover the bits of k£ one after another during the
processing of ECSM in the randomized Montgomery domain (i.e. the processing
of (3)). In this section, we detail how the second MSB (respectively the LSB) of k
is recovered®. Once this bit is obtained, the attack can be applied similarly on
the other bits from left to right (respectively right to left).

We denote by R(u,v) the value of an intermediate point during the processing
of ECSM in the randomized Montgomery domain. We assume that the coordinates
of the point R depend on a small sub part of k (e.g. a bit). This part is denoted
by s. It can for instance correspond to the result of the second point opera-
tion in ECSM with Montgomery Ladder (see (8)) or to the result of the third
point operation in ECSM with double-and-add always method (see (6)—(7)). Our
side channel attack targets the manipulation of the first coordinate @ of this
point by the device: by assumption, it satisfies © = f(Z,y, s) where we recall
that (z,y) denotes the RMR coordinates of the input point P and where f is a
known function that depends on the curve parameters and the algorithm used
to process ECSM (see Appendix A for examples). To simplify the presentation, we
assume that s is reduced to a single bit of k (the MSB or the LSB) but our attack
straightforwardly applies to higher values (the only restriction is that the upper
bound must be small enough to allow for an exhaustive test of all the elements).
Our attack is based on the following statement which essentially means that a
RMR representation leaks information on the un-blinded coordinate and that this
information can be exploited by a first-order side-channel attack:

Statement: the function f :z — E[HW()?)\) | X = x| is not constant.

Remark 1. Taking into account the specificities of the randomized Montgomery
representation recalled in Sect. 2.2, the mean is computed over the random vari-
able A defined such that A = HW(«) with a having a uniform distribution on
[0..2™m —1].

To argue on the statement above, we evaluated f on 1000 different values
x for m = 256 and m = 384 (these parameters are recommended for instance
by the American National Security Agency when ECSM is used to process an
ECDSA). The results are plotted in Fig.1(a) and (b). For comparison, we also

3 To easy the explanation of the attack against left-to-right implementations of ECSM,
we make the classical assumption that the MSB of k equals 1.
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plotted in Fig.2(a) and (b) the value HW(z) for 1000 values x in [0..p), which
corresponds to the case of non blinded values. Finally, in Fig.3(a) and (b) we
plotted E [HW()\-X mod p) | X = x] where A is a random uniformly distributed
16-bit value. The latter corresponds to the case where ECSM is protected by
blinding the projective coordinates of the point P.

As expected, we can see in Fig.2(a) and (b) that the Hamming weight of

x varies with  when no blinding is involved; this implies that a first-order
CPA is possible if z is sensitive. On the contrary, Fig.3(a) and (b) show that
coordinate blinding cancels any leakage on z since the average Hamming weight
of the blinded coordinate is almost constant (even in our case where we limited
A to 16-bits words which can be considered as too limited in practice). Between
the two previous extreme cases, Fig. 1(a) and (b) show that f(z) varies with x
(not with a high variance as in Fig.2(a) and (b) but visibly much more than in
Fig.3(a) and (b)): this implies that the countermeasure in [26] can be attacked
with a first-order CPA involving f to process the predictions on z. In the following
section, we detail the latter attack.
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3.2 Attack Description

As explained in the previous section, our attack recovers the secret piece by piece.
Here, we detail how it allows for the recovery of the second MSB or the LSB s of the
secret scalar k (the principle can then be repeated to recover the other bits one
after another). The intermediate result/point R(u,v) exploited by the attack
differs with the algorithm used to process the scalar multiplication. We give
some examples below but our first-order side-channel attack also applies in other
contexts (e.g. against atomic implementations or implementations applying the
window principle [21]) as long as the point is blinded with the RMR representation
proposed in [26] and the scalar is not blinded.

Several scalar multiplication algorithms are recalled in Appendix A. We
recall that, for left-to-right versions, we make the (classical) assumption that
the MSB equals 1. Our attack targets the manipulation of the first coordinate u
of the intermediate result/point R(w,v) corresponding to:

— [left-to-right double-and-add ECSM] the second point operation
R=3P+(1-s)P. (4)
— [right-to-left double-and-add ECSM] the first point operation
R=P+(1-s)P. (5)
— [left-to-right double-and-add-always ECSVM] the third point operation
R =2(P+ sP). (6)
— [right-to-left double-and-add-always ECSM] the third point operation
R =2P +sP. (7)
— [Montgomery Ladder ECSVM] the second point operation
R=2(P+ sP). (8)
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— [Joye ECSV] the second point operation
R=P+(1—-s)P. 9)

Following the classical outlines of a first-order side-channel attack, our attack
starts by the observation of the device behaviour for several executions of the
algorithm ECSM parametrized by different public inputs P but a same secret
scalar k. Note that only the part of the observation corresponding to the manip-
ulation of the coordinate u of R is used in the attack described hereafter. Since
the i*" observation (e.g. the power consumption or the electromagnetic emana-
tion) is algorithmically related to the i*" input point P; and the secret bit s,
it is denoted by L(s, P;) in the following. At the end of this measurement step
of the attack, the adversary is assumed to be provided with a sample of pairs
(P;, L(s, P;)),. The size of this sample is denoted by N.

To underline the functional dependency between % and (s, P;), we use the
notation u(s, P;) in the following. For testing an hypothesis § on s, the attack
continues with the computation of the values u($, P;) for ¢ € [1..N]. These values
correspond to the unmasked version of the u-coordinates under the hypothesis
§ = s. Then applying the strategy already used in [6,36] and argued in [38],
we choose a device model m (usually the Hamming weight) and we compute the
sample of predictions (h;);<n defined such that:

hi(8) = Ex[m(u(8, P;) - 2* mod p)| = Z m(u(3, P;) - 2" mod p) x p[A = i].

i=1

By construction A is defined as the Hamming weight of an m-bit random ele-
ment. Its distribution is therefore binomial with parameters m and 1/2 and the
equation above can be developed as follows:

hi(3) = QLm Z m(u(s, P;) - 2° mod p) x <”Z> (10)

Eventually, the absolute value of the correlation p; between the samples
(hi(8)); and (L(s, P;)); is computed for § € {0,1} and the attack returns the
hypothesis with the greatest correlation.

4 Simulations

Setting. In this section, we assume that the ECSM is implemented on a 32-bit
architecture and according to the Montgomery ladder (Algorithm 5 in Appen-
dix A). In such environment which corresponds to a classical context, data will
only be manipulated through 32-bit registers. Without loss of generality, we
hence assume that the leakage exploited in our attacks is the Hamming weight
of the 32 least significant bits of & (namely HW (2 mod 23?)) instead of the Ham-
ming weight of the whole 256 or 384 bit value?. The described attack aims at

4 The attack applies similarly whether the attacker chose any 32-bit part of the tar-
geted value.
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recovering the most significant bit s of the secret k& and, according to (8), the
observations are hence assumed to be related to the manipulation of the coordi-
nate u of the point R(w,v) = 2(P+sP). The latter observations are simulated in
the classical Hamming weight model with Gaussian Noise. Namely, the leakage
observation L(s, P;) corresponding to the ‘" scalar multiplication is simulated
such that:

L(s, P;) = HW (% mod 2%%) + N, (11)

where % = u - 2% mod p is the first coordinate of 2(P; + sP;) represented in the
randomized Montgomery domain RMDy,(p) (with A; generated at random in
its definition set) and where N is a Gaussian random variable with mean 0 and
standard deviation o.

Since the leakage is assumed to satisfy (11), the model function m in Eq. (10)
has been simply chosen to be the Hamming weight of the 32 least significant
bits of the input. The predictions h;(§) associated to the binary hypothesis § on
s hence satisfy:

he(3) = — zm:HW((u -2" mod p) mod 2°2) x <’l”> (12)
=1

where w is the first coordinate of 2(P; + $F;) in the standard integer domain and
where m equals 256 or 384.

To sum-up, the simulations reported in this section are split in two parts. The
first part aims to show that the CPA (i.e. the correlation coefficient) succeeds in
distinguishing the correct hypothesis from the wrong one. The second part serves
to estimate the success rate in recovering the first secret bit in a Montgomery
ladder implementation of ECSM. The latter success rate is estimated for different
noise levels ¢ and different number of observations.

Pearson Correlation Coefficient. First, we are comparing the correlation
values for the correct and the wrong predictions. Following the attack description
in Sect. 3.2, we compute the set of hypotheses (h;(§ = 1));<n according to (12),
and the two sets of leakages (L£(1, P;)):<n and (£(0, P;));<n, according to (11),
where we recall that NV represents the total number of randomly chosen points
P;. The first set corresponds to leakages that match the chosen hypotheses and
the second one to leakages that do not match the hypotheses. These experiments
have been repeated for different values of N € [500..10000] and different noise
standard deviation o € [0..30]. Then, we compute the two correlation coefficients
Peorrect = P((hi(8 = 1)), (L(1, F;)):) and pwrong = p((hi(8 = 1));, (L£(0, F;));).
The obtained correlation values are then averaged over the execution of 100 such
attacks and the standard deviation of the correlation values is also computed to
measure how much the mean is informative.

Results of this first set of experiments are presented in Fig. 4. It represents the
average and the standard deviation cone for the correlation coefficients obtained
with the correct and wrong predictions. It may be seen that the correlation
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Fig. 4. Correlation for 256-bit curve attacking with known messages

coefficient allows us to distinguish a correct key bit hypothesis from a wrong one
with high probability as long as the number of observations satisfies:

N >500 if =0

N > 1500 if o =10
N >3000 if 0 =20"
N > 6000 if o =30

Success Rate. We then proceed to test the attack efficiency. For such a pur-
pose, we randomly choose the secret s we are trying to recover. We then simulate
the leakage observations according to (11) for N pairs (P;, A;) of values gener-
ated at random in their respective definition set. This step provides us with a set
(L(s, P;))i<n playing the role of the registered traces in a real attack scenario.
We then compute the two sets of predictions (h;(§ = 0));<n and (h;(§ = 1))i<n,
and we process the absolute value of the two corresponding correlation coeffi-
cients po = p((L(s, Po)i, (hi(3 = 0));) and p1 = p((L(s, Po)i, (hi(3 = 1));). The
prediction § such that |ps| has the highest value is set as the most likely one.
If § = s the attack succeeds, else it fails. In our experiments we repeated each
attack 1000 times with different random values to build a success rate.
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Figure 5 represents the success rate in percentage when trying to guess the bit
s. In abscissa is the number of different inputs used for the computation of the
correlation coefficient. Several noise standard deviation values have been used.
It may be checked that even for o = 40 (i.e. SNR= 0,005) the attack succeeds
with probability greater than 80 % if the number N of observations used by the
attacker is greater than 5500 for curves of size 256 bits, respectively greater than
7000 for 384-bit curves.

5 Analysis and Conclusion

In this paper, we have argued that the countermeasure proposed in [26] is flawed
and does not defeat first-order CPA. Actually, through attack simulations con-
ducted under reasonable and classical assumptions on the execution environment
we have shown that a CPA is likely to be very efficient even when the noise is
huge. The problem identified in the countermeasure under study is that the dis-
tribution of the masking values A is binomial (and not uniform). This choice,
which has been done for efficiency reason, is in fact dramatic from a security
point of view. It must be mentioned that the authors of [26] tested a school-
book CPA against their implementation and used the failure of this attack to
argue on the resistance of their countermeasure. As we have shown here, the
failure of the CPA performed in [26] is not a consequence of the countermeasure
quality but of a wrong attack parametrization. By adapting to a first-order con-
text the argumentation given in [38] for second-order attacks, we were indeed
able to use a much better parametrization for the CPA. Our work demonstrates
once again that countermeasures must not be only validated by performing some
ad-hoc attacks (even classical) but must be formally analysed, for instance by
following the approaches proposed in [7,9,37].

Concerning the proposed countermeasure, a possible patching could consist in
generating A uniformly in [0..m] but a careful security analysis is needed to assess
on the pertinence of this patch. The proposal of Dupaquis and Venelli in [8] may
offer an interesting alternative in the case where efficiency is required. Otherwise,
well-studied approaches such as classical exponent and message blinding seem
to offer better security garanties.
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A Examples of Algorithms for Elliptic Curve Scalar
Multiplication

We recall hereafter two basic algorithms (see Algorithms 1 and 2) to calculate
the scalar multiplication either from left-to-right or from right-to-left®.

Algorithm 1. Left-to-Right Binary ECSM

Input : a point P on E and a secret scalar k = (1, kp—2,- -+ , ko)
Output: the point Q = kP

Ry — P

R+~ P

fori=n—2to 0 do
Ry «— 2Ry
if k; =1 then
LR0<—R0+R1

[ B N N VN

~

return R

Algorithm 2. Right-to-Left Binary ECSM

Input :a point P on E(F,) and a secret scalar k = (ky,—1,--- ,ko)2
Output: the point QQ = kP

1 Ro —~ 0O

2 R1 — P

3 fori=0ton—1do

4 if k; =1 then

5 L Ry «— Ry + Ry

6 R1 — 2R1

7 return R,

The previous algorithms are simple and relatively efficient (n additions and
n/2 doublings in average). However, they are not regular and can hence induce
an information leakage exploitable by SPA. As for instance explained in [39], reg-
ularity can be achieved by using unified formulae for point addition and point
doubling [11] or by the mean of side-channel atomicity whose principle is to build
point addition and point doubling algorithms from the same atomic pattern of
field operations [2]. Another possibility is to render the scalar multiplication
algorithm itself regular, independently of the field operation flows in each point
operation. Namely, one designs a scalar multiplication with a constant flow of
point operations. This approach was first followed by Coron in [5] who proposed
to perform a dummy addition in the binary algorithm loop whenever the scalar

5 To simplify the attacks description, and because it has no impact on their feasibility,
it is assumed for the left-to-right versions that the most significant bit of k& always
equals 1, i.e. that the bit-length is exactly n.
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bit equals 0 or not. The obtained double-and-add-always algorithm (see Algo-
rithms 3 and 4) performs a point doubling and a point addition at every loop
iteration and the scalar bits are no more distinguishable by SPA.

Algorithm 3. Left-to-Right double-and-add always ECSM [5]

Input : a point P on E(F,) and a secret scalar k = (1, kp—2,- - , ko)2
Output: the point Q = kP

1 RQ<—P

2 fori=n—-2to0do
3 Ry — 2Ry

Ry — Ry+ P
RO‘_Rki

6 return R,

EES

Algorithm 4. Right-to-Left double-and-add always ECSM [19]

Input : a point P on E(F,) and a secret scalar k = (ky—1,--- ,ko)2
Output: the point Q = kP

RO‘*P

R1<—O

fori=0ton—1do
Ry — Ry + Ry
Ry <+ 2Ry
Ry «— Riqy,

S s W N -

~

return R,

Other regular binary algorithms exist such as the Montgomery ladder [32] (see
Algorithm 5) and the double-and-add algorithm proposed by Joye in [20] (see
Algorithm 6). These algorithms which are recalled hereafter not only counteract
SPA but also some fault attacks (such that the safe-error ones).

Algorithm 5. Montgomery Ladder ECSM [32]

Input : a point P on E(F,) and a secret scalar k = (1, k,—2,--- , ko)2
Output: the point Q = kP

1R0<—P
2R1<*2P

3 fori=n—-—2to 0do
4 b<—k’1

5 Ri_p — Ry + Ry
6 Ry — 2Ry

~

return Ry
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Algorithm 6. Joye double-and-add always ECSM [20]

Input :a point P on E(F,) and a secret scalar k = (ky,—1,--- ,ko)2
Output: the point @ = kP

1 Ryg— O

2 R1 — P

g fori=0ton—1do

4 b «— k‘l

5 Ry p 2Ry + Ry

6 return Ry
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