Malicious Hashing: Eve’s Variant of SHA-1

Ange Albertini', Jean-Philippe Aumasson?, Maria Eichlseder3 ™),

Florian Mendel®, and Martin Schlffer?

! Corkami, Ravensburg, Germany
ange.albertini@gmail.com
2 Kudelski Security, Cheseaux-sur-Lausanne, Switzerland
jeanphilippe.aumasson@gmail.com
3 Graz University of Technology, Graz, Austria
{maria.eichlseder,florian.mendel,martin.schlaeffer}@iaik.tugraz.at

Abstract. We present collisions for a version of SHA-1 with modified
constants, where the colliding payloads are valid binary files. Exam-
ples are given of colliding executables, archives, and images. Our mali-
cious SHA-1 instances have round constants that differ from the original
ones in only 40 bits (on average). Modified versions of cryptographic stan-
dards are typically used on closed systems (e.g., in pay-TV, media and
gaming platforms) and aim to differentiate cryptographic components
across customers or services. Our proof-of-concept thus demonstrates the
exploitability of custom SHA-1 versions for malicious purposes, such as
the injection of user surveillance features. To encourage further research
on such malicious hash functions, we propose definitions of malicious
hash functions and of associated security notions.

1 Introduction

In 2013, cryptography made the headlines following the revelation that NSA
may not only have compromised cryptographic software and hardware, but also
cryptographic algorithms. The most concrete example is the “key escrow” [11] or
“master key” [5] property of the NSA-designed Dual EC_DRBG [27]. The alleged
backdoor is the number e such that eQQ = P, where P and (Q are two points on
the elliptic curve specified as constants in Dual_EC_DRBG. Knowing e allows one to
determine the internal state and thus to predict all future outputs. Despite other
issues [7,35] (see also [16,17]), Dual_EC_DBRG was used as default pseudorandom
number generator in EMC/RSA’s BSAFE library, allegedly following a $10M
deal with NSA [24].

It is also speculated that NSA may have “manipulated constants” [34] of
other algorithms, although no hard evidence has been published. This series of
revelations prompted suspicions that NIST-standardized cryptography may be
compromised by NSA. It also raised serious doubts on the security of commercial
cryptography software, and even of open-source software. Several projects have
been started to address those concerns, like #youbroketheinternet [43] and the
Open Crypto Audit Project [29].

© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 1-19, 2014.
DOI: 10.1007/978-3-319-13051-4_1

2 A. Albertini et al.

Research on cryptographic backdoors and malicious cryptography appears
to have been the monopoly of intelligence agencies and of industry. Only a
handful of peer-reviewed articles have been published in the open literature
(see Sect.2.1), whereas research on related topics like covert-channel communi-
cation (e.g., [26,36]) or hardware trojans (e.g., [2,20]) is published regularly.

Malicious ciphers have been investigated by Young and Yung [44] in their
“cryptovirology” project, and to a lesser extent by Rijmen and Preneel [33]
and Patarin and Goubin [30]. However we are unaware of any research about
malicious hash functions—that is, hash functions designed such that the designer
knows a property that allows her to compromise one or more security notions.
Note that we distinguish backdoors (covert) from trapdoors (overt); for example
VSH [9] is a trapdoor hash function, such that collisions can be found efficiently
if the factorization of the RSA modulus is known.

This paper thus investigates malicious hash functions: first their definition
and potential applications, then a proof-of-concept by constructing a malicious
version of SHA-1 with modified constants, for which two binary files (e.g., exe-
cutables) collide. We have chosen SHA-1 as a target because it is (allegedly) the
most deployed hash function and because of its background as an NSA/NIST
design. We exploit the freedom of the four 32-bit round constants of SHA-1 to
efficiently construct 1-block collisions such that two valid executables collide for
this malicious SHA-1. Such a backdoor could be trivially added if a new constant
is used in every step of the hash function. However, in SHA-1 only four different
32-bit round constants are used within its 80 steps, which significantly reduces
the freedom of adding a backdoor. Actually our attack only modifies at most 80
(or, on average, 40) of the 128 bits of the constants.

Our malicious SHA-1 can readily be exploited in applications that use cus-
tom hash functions (e.g., for customers’ segmentation) to ensure that a legiti-
mate application can surreptitiously be replaced with a malicious one, while still
passing the integrity checks such as secure boot or application code signing.

Outline. Section?2 attempts to formalize intuitive notions of malicious hash
functions. We first define a malicious hash function as a pair of algorithms:
a malicious generator (creating the function and its backdoor) and an exploit
algorithm. Section 3 then presents a novel type of collision attack, exploiting
the freedom degrees of the SHA-1 constants to efficiently construct collisions.
We describe the selection of a dedicated disturbance vector that minimizes the
complexity and show examples of collisions. Section 4 discusses the application
to structured file formats, and whether the constraints imposed by the attack
can be satisfied with common file formats. We present examples of valid binary
files that collide for our malicious SHA-1: executables (e.g., master boot records
or shell scripts), archives (e.g., rar), and images (jpg).

2 Malicious Hashing

We start with an overview of previous work related to malicious cryptography.
Then we formalize intuitive notions of malicious hashing, first with a general
definition of a malicious hash function, and then with specific security notions.

Malicious Hashing: Eve’s Variant of SHA-1 3

2.1 Malicious Cryptography and Backdoors

The open cryptographic literature includes only a handful of works related to
malicious applications of cryptography:

— In 1997, Rijmen and Preneel [33] proposed to hide linear relations in S-boxes
and presented “backdoor versions” of CAST and LOKI. These were broken
in [41] as well as the general strategy proposed. Rijmen and Preneel noted
that “[besides] the obvious use by government agencies to catch dangerous
terrorists and drug dealers, trapdoor block ciphers can also be used for public
key cryptography.” [33]. Indeed, [5] previously argued that a backdoor block
cipher is equivalent to a public key cryptosystem.

— In 1997, Patarin and Goubin [30] proposed an S-box-based asymmetric scheme
constructed as a 2-round SPN but publicly represented as the corresponding
equations — keeping the S-boxes and linear transforms secret. This was broken
independently by Ye et al. and Biham [3,42]. This can be seen as an ancestor
of white-box encryption schemes.

— In 1998 and later, Young and Yung designed backdoor blackbor malicious
ciphers, which assume that the algorithm is not known to an adversary. Such
ciphers exploit low-entropy plaintexts to embed information about the key
in ciphertexts through a covert channel [45,46]. Young and Yung coined the
term cryptovirology [44] and cited various malicious applications of cryptog-
raphy: ransomware, deniable data stealing, etc.

— In 2010, Filiol [15] proposed to use malicious pseudorandom generators to
assist in the creation of executable code difficult to reverse-engineer. Typical
applications are the design of malware that resist detection methods that
search for what looks like obfuscated code (suggesting the hiding of malicious
instructions).

Note that we are concerned with backdoors in algorithms, regardless of its rep-
resentation (pseudocode, assembly, circuit, etc.), as opposed to backdoors in
software implementations (like Wagner and Biondi’s sabotaged RC4 [38]) or in
hardware implementations (like bug attacks [4] and other hardware trojans).

2.2 Definitions

We propose definitions of malicious hash functions as adversaries composed of
a pair of algorithms: a (probabilistic) malicious generator and an exploit algo-
rithm. Based on this formalism, we define intuitive notions of undetectability
and undiscoverability.

Malicious Hash Function. Contrary to typical security definitions, our adver-
sary is not the attacker, so to speak: instead, the adversary Eve creates the
primitive and knows the secret (i.e. the backdoor and how to exploit it), whereas
honest parties (victims) attempt to cryptanalyze Eve’s design. We thus define a
malicious hash function (or adversary) as a pair of efficient algorithms, modeling
the ability to create malicious primitives and to exploit them:

4 A. Albertini et al.

— A malicious generator, i.e. a probabilistic algorithm returning a hash function
and a backdoor;

— An exploit algorithm, i.e. a deterministic or probabilistic algorithm that uses
the knowledge of the backdoor to bypass some security property of the hash
function.

We distinguish two types of backdoors: static, which have a deterministic exploit
algorithm, and dynamic, which have a probabilistic one.

Below, the hash algorithms and backdoors returned as outputs of a mali-
cious generator are assumed to be encoded as bitstring in some normal form
(algorithm program, etc.), and to be of reasonable length. The generator and
exploit algorithms, as well as the backdoor string, are kept secret by the mali-
cious designer.

Static Backdoors Adversaries. Eve is a static collision adversary (SCA) if
she designs a hash function for which she knows one pair of colliding messages.

Definition 1 (SCA). A static collision adversary is a pair (GenSC, ExpSC) such
that

— The malicious generator GenSC is a probabilistic algorithm that returns a pair
(H,b), where H is a hash function and b is a backdoor.

— The exploit algorithm ExpSC is a deterministic algorithm that takes a hash
function H and a backdoor b and that returns distinct m and m’' such that
H(m)=H(m).

This definition can be generalized to an adversary producing a small number of
collisions, through the definition of several ExpSC algorithms ExpSCy, ..., ExpSC,,.

As a static second-preimage adversary would not differ from that of static
collision, our next definition relates to (first) preimages:

Definition 2 (SPA). A static preimage adversary is a pair (GenSP, ExpSP) such
that

— The malicious generator GenSP is a probabilistic algorithm that returns a pair
(H,b), where H is a hash function and b is a backdoor.

— The exploit algorithm ExpSP is a deterministic algorithm that takes a hash
function H and a backdoor b and that returns m such that H(m) has low
entropy.

In the above definition “low entropy” is informally defined as digest having a
pattern that will convince a third party that “something is wrong” with the hash
function; for example, the all-zero digest, a digest with all bytes identical, etc.

Dynamic Backdoors. Dynamic backdoors extend static backdoors from one
or a few successful attacks to an arbitrary number. In some sense, dynamic
backdoors are to static backdoors what universal forgery is to existential and
selective forgery for MACs.

Malicious Hashing: Eve’s Variant of SHA-1 5

Definition 3 (DCA). A dynamic collision adversary is a pair (GenDC, ExpDC)
such that

— The malicious generator GenDC is a probabilistic algorithm that returns a pair
(H,b), where H is a hash function and b is a backdoor.

— The exploit algorithm ExpDC is a probabilistic algorithm that takes a hash
function H and a backdoor b and that returns distinct m and m’' such that
H(m)=H(m').

In this definition, ExpDC should be seen as an efficient sampling algorithm choos-
ing the pair (m,m’) within a large set of colliding pairs, as implicitly defined by
GenDC. The latter may be created in such a way that sampled messages satisfy
a particular property, e.g. have a common prefix.

The definitions of dynamic second-preimage and preimage adversaries follow
naturally:

Definition 4 (DSPA). A dynamic second-preimage adversary is a pair (GenDSP,
ExpDSP) such that

— The malicious generator GenDSP is a probabilistic algorithm that returns a
pair (H,b), where H is a hash function and b is a backdoor.

— The exploit algorithm ExpDSP is a probabilistic algorithm that takes a hash
function H, a backdoor b, and a message m and that returns an m' distinct
from m such that H(m) = H(m').

Definition 5 (DPA). A dynamic preimage adversary is a pair (GenDP, ExpDP)
such that

— The malicious generator GenDP is a probabilistic algorithm that returns a pair
(H,b), where H is a hash function and b is a backdoor.

— The exploit algorithm ExpDP is a probabilistic algorithm that takes a hash
function H, a backdoor b, and a digest d and that returns m such that H(m) =
d.

In the definitions of DSPA and DPA, the challenge values m and d are assumed
sampled at random (unrestricted to uniform distributions).

One may consider “subset” versions of (second) preimage backdoors, i.e.
where the backdoor only helps if the challenge value belongs to a specific subset.
For example, one may design a hash for which only preimages of short strings—as
passwords—can be found by the exploit algorithm.

Our last definition is that of a key-recovery backdoor, for some keyed hash
function (e.g. HMAC):

Definition 6 (KRA). A dynamic key-recovery adversary is a pair (GenKR,
ExpKR) such that

— The malicious generator GenKR is a probabilistic algorithm that returns a pair
(H,b), where H is a hash function and b is a backdoor.

6 A. Albertini et al.

— The exploit algorithm ExpKR is a probabilistic algorithm that takes a hash
function H and a backdoor b and that has oracle-access to Hk () for some
key K and that returns K.

The definition of KRA assumes K to be secret, and may be relaxed to subsets
of “weak keys”. This definition may also be relaxed to model forgery backdoors,
i.e. adversaries that can forge MAC’s (existentially, selectively, or universally)
without recovering K.

Stealth Definitions. We attempt to formalize the intuitive notions of unde-
tectability (“Is there a backdoor?”) and of undiscoverability (“What is the back-
door?”). Tt is tempting to define undetectability in terms of indistinguishability
between a malicious algorithm and a legit one. However, such a definition does
not lend itself to a practical evaluation of hash algorithms.

We thus relax the notion to define undetectablity as the inability to determine
the exploit algorithm (that is, how the backdoor works, regardless of whether
one knows the necessary information, b). In other words, it should be difficult to
reverse-engineer the backdoor. We thus have the following definition, applying
to both collision and preimage backdoors:

Definition 7. The backdoor in a malicious hash (Gen, Exp) is undetectable if
given a H returned by Gen it is difficult to find Exp.

Subtleties may lie in the specification of H: one can imagine a canonical-form
description that directly reveals the presence of the backdoor, while another
description or implementation would make detection much more difficult. This
issue is directly related to the notion of obfuscation (be it at the level of the
algorithm, source code, intermediate representation, etc.). For example, mal-
ware (such as ransomware, or jailbreak kits) may use obfuscation to dissimulate
malicious features, such as cryptographic components of 0-day exploits.

Furthermore, backdoors may be introduced as sabotaged versions of legiti-
mate designs. In that case, undetectability can take another sense, namely dis-
tinguishability from the original design. For example, in our malicious SHA-1,
it is obvious that the function differs from the original SHA-1, and one may
naturally suspect the existence of “poisonous” inputs, although those should be
hard to determine.

Undiscoverability is more easily defined than undetectability: it is the inabil-
ity to find the backdoor b given the exploit algorithm. A general definition is as
follows:

Definition 8. The backdoor in a malicious hash (Gen, Exp) is undiscoverable if
given Exp and H returned by Gen it is difficult to find b.

In our proof-of-concept of a malicious SHA-1, undiscoverability is the hardness
to recover the colliding pair, given the knowledge that a pair collides (and even
the differential used).

Malicious Hashing: Eve’s Variant of SHA-1 7

3 Eve’s Variant of SHA-1

As a demonstration of the above concepts, we present an example of a static
collision backdoor: Eve constructs a custom variant of SHA-1 that differs from
the standardized specification only in the values of some round constants (up to
80 bits). Eve can use the additional freedom gained from choosing only four
32-bit constants to find a practical collision for the full modified SHA-1 function
during its design. We show that Eve even has enough freedom to construct a
meaningful collision block pair which she can, at a later point, use to build
multiple colliding file pairs of a particular format (e.g., executable or archive
format) with almost arbitrary content.

The backdoor does not exploit any particular “weaknesses” of specific round
constants, nor does it weaken the logical structure of the hash function. Instead,
it only relies on the designer’s freedom to choose the constants during the attack.
This freedom can be used to improve the complexity of previous attacks [37,40]
and thus makes it feasible to find collisions for the full hash function.

For an attacker who only knows the modified constants but cannot choose
them, collisions are as hard to find as for the original SHA-1. Thus, in terms
of the definitions of the previous section, this backdoor is undiscoverable. It is,
however, detectable since constants in hash functions are normally expected to
be identifiable as nothing-up-your-sleeve numbers. This is hardly achievable in
our attack.

Below, we first give a short description of SHA-1 in Sect.3.1 and briefly
review previous differential collision attacks on SHA-1 in Sect.3.2. Then, we
build upon these previous differential attacks and describe how the freedom of
choosing constants can be used to improve the attack complexity in Sect. 3.3.

3.1 Short Description of SHA-1

SHA-1 is a hash function designed by the NSA and standardized by NIST in
1995. It is an iterative hash function based on the Merkle-Damgard design prin-
ciple [10,25], processes 512-bit message blocks and produces a 160-bit hash value
by iterating a compression function f. For a detailed description of SHA-1 we
refer to [28].

The compression function f uses the Davies-Meyer construction which con-
sists of two main parts: the message expansion and the state update transforma-
tion. The message expansion of SHA-1 is a linear expansion of the 16 message
words (denoted by M;) to 80 expanded message words W;,

W — M; for 0 <1 <15,

) Wiz @Wis @ Wii1a ® Wisge) < 1 for 16 <i < 79.
The state update transformation of SHA-1 consists of 4 rounds of 20 steps each.
In each step, the expanded message word W; is used to update the 5 chaining

variables as depicted in Fig.1. In each round, the step update uses different
Boolean functions f, and additive constants K., which are shown in Table 1.

8 A. Albertini et al.

(=5 s
m=ipY

=l
> 2 - w,

Fig. 1. The step function of SHA-1.

Table 1. The round constants K, and Boolean functions f, used in each step of SHA-1.

Round r | Step 4 K, fr

1 0<i<19|5a827999 | fir(B,C,D)=BAC®-BAD

2 20 < i< 39| 6ed9ebal | fxor(B,C,D)=Ba&C oD

3 40 < i < 59 | 8f1bbedc | fmas(B,C,D)=BAC&®BAD®CAD
4 60 < i< 79| ca62cld6 | fxor(B,C,D)=B&C&D

For Eve’s modified, malicious hash function, we only change the values of
K5, K3 and K4. The remaining definition is left unchanged. Note that the original
SHA-1 constants are chosen as the square roots of 2, 3, 5 and 10:

Ki= [VB-20), Ko= |VE-2|, Ko [VB-29), K= |VID-29).

3.2 Differential Attack Strategy for SHA-1

At CRYPTO 2005, Wang et al. presented the first collision attack on full SHA-
1 with a theoretical complexity of about 269 [40]. This was later improved to
263 by the same authors [39]. Since then, several papers on the cryptanalysis of
SHA-1 have been published [1,13,14,19,37]. Nevertheless, no practical collision
has been shown for full SHA-1 to date.

Our practical and meaningful collision attacks on malicious SHA-1 are based
on the differential attacks by Wang et al. in [40] and its improvements. In a dif-
ferential collision attack, we first construct a high-probability differential charac-
teristic that yields a zero output difference, i.e., a collision. In the second stage,
we probabilistically try to find a confirming message pair for this differential
characteristic.

By using a differential characteristic with a lower probability at the beginning
of the hash function (first round of SHA-1), the probability of the remaining

Malicious Hashing: Eve’s Variant of SHA-1 9

characteristic can be further improved. Since the message can be chosen freely
in a hash function attack, we can significantly improve the complexity of finding
confirming message pairs at the beginning of the hash function using message
modification techniques [40]. A high-level overview of such a differential attack
on SHA-1 is given as follows:

1. Find a differential characteristic
(a) Construct the high-probability part
(b) Determine the low-probability part
2. Find a confirming message pair
(a) Use message modification in low-probability part
(b) Perform random trials in high-probability part

The high-probability part of the differential characteristic for SHA-1 covers
round 2 to round 4. It has been shown in [8,21,40] that for SHA-1, the best
way to construct these high-probability characteristics is to interleave so-called
local collisions (one disturbing and a set of correcting differences). These char-
acteristics can be easily constructed by using a linearized variant of the hash
function and tools from coding theory [31,32]. The probability of this character-
istic determines the complexity of the attack on SHA-1.

The low-probability part and message modification take place in round 1
and are typically performed using automated non-linear equation solving tools
[14,22,23]. We stress that the total complexity is still above 250 for all published
collision attacks so far, which is only practical for attackers with large computing
power (NSA, Google, etc.).

3.3 Malicious Collision Attack

In SHA-1, a new 32-bit constant K7, ..., Ky is used in each of the four rounds.
In our malicious collision attack, we use the freedom of these four constants to
reduce the complexity of the attack. Similar to message modification, we choose
the constants during the search for a confirming message pair. We modify the
constants in a round-by-round strategy, always selecting a round constant such
that the differential characteristic for the steps of the current round can be
satisfied. Since we have to choose the constants when processing the first block,
we can only improve the complexity of this block. Hence, we need to use a
differential characteristic that results in a single-block collision. Note that all
the collisions attacks on SHA-1 so far use a 2-block characteristic.

To find the high-probability part of a differential characteristic for round 2—4
resulting in a 1-block collision, a linearized variant of the hash function can be
used. However, using algorithms from coding theory, we only find differential
characteristics that maximize the overall probability and do not take the addi-
tional freedom we have in the choice of the constants in SHA-1 into account.
Therefore, to minimize the overall attack complexity, we did not use these dif-
ferential characteristics. Instead, we are interested in a differential characteristic

10 A. Albertini et al.

such that the minimum of the three probabilities for round 2, 3 and 4 is maxi-
mized. To find such a characteristic, we start with the best overall characteristic
and modify it to suit our needs.

In previous attacks on SHA-1, the best differential characteristics for rounds
2—4 have differences only at bit position 2 for some 16 consecutive state words
A; [21]. We assume that the best differential characteristic has the same property
in our case. Hence, we only need to determine all 216 possible differential charac-
teristics with differences only at bit position 2 in 16 consecutive state words A;
and linearly expand them backward and forward. A similar approach has also
been used to attack SHA-0 [8] and SHA-1 [21,40].

For each of these 2'6 differential characteristics, we estimate the cost of find-
ing a malicious single-block collision. These costs are roughly determined by the
number of differences (disturbances) in A; in each round. For details on the cost
computations, we refer to [31]. The estimated costs for the best differential char-
acteristics suited for our attack are given in Table 2, and the correspond message
differences are given in Table 3.

Table 2. Probabilities for rounds 2—4 of the differential characteristics suitable for our
attack.

Candidate |r =2 |r =3 |r =4 | Total
MD, 5—10 | 5—40 | 9-15 | 9—95
MD, 930 |g—d2 | 9-13 | 9—94
MDg) 2—39 2—42 2—11 2—92

Table 3. List of message differences suitable for our attack

MD; 00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046
88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060
MDjy 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046 88000002
00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060 00000003
MDg3 88000000 e8000062 c8000043 28000004 40000042 48000046 88000002 00000014
08000002 a0000054 88000002 80000000 a8000003 a8000060 00000003 c0000002

The high-probability differential characteristic with message difference MD,
is best suitable for our intended file formats (see Sect. 4) and used as the starting
point to search for a low-probability differential characteristic for the first round
of SHA-1. We use an automatic search tool [22,23] to find the low-probability
part of the characteristic. The result is shown in Table 5 in the appendix. Overall,
the complexity of finding a colliding message pair using malicious constants for
this differential characteristic in our attack is approximately 248, which is feasible
in practice as demonstrated below and in Sect. 4.

Malicious Hashing: Eve’s Variant of SHA-1 11

After the differential characteristic is fixed, we probabilistically search for a
confirming message pair. We start with only the first constant K fixed (e.g., to
the standard value) and search for a message pair that confirms at least the first
round (20 steps) of the characteristic, and is also suitable for our file format.
This is easier than finding a message pair that works for all four rounds (with
fixed constants), since fewer constraints need to be satisfied. The complexity of
this step is negligible.

Now, we can exhaustively search through all 232 options for K, until we
find one that confirms round 2. Only if no such constant is found, we backtrack
and modify the message words. Since the differential characteristic for message
difference MD; holds with probability 274° in round 2 and we can test 232
options for Ko, this step of the attack will only succeed with a probability of
278, Hence, completing this step alone has a complexity of approximately 24°.

Once we have found a candidate for K5 such that the differential characteris-
tic holds in round 2, we proceed in the same way with K3. Again, the differential
characteristic will hold with only a probability of 274% in round 3 and we can
test only 232 options for K3. Therefore, we need to repeat the previous steps of
the attack 2% times to find a solution. Including the expected 2% tries for the
previous step to reach the current one, completing this step has an expected
complexity of roughly 248,

Finally, we need to find K. Since the last round of the characteristic has a
high probability, such a constant is very likely to exist and this step of the attack
only adds negligible cost to the final attack complexity of about 248.

Normally, with fixed constants, an attacker would have to backtrack in the
case of a contradiction in the later steps. Eve as the designer, on the other hand,
has a chance that choosing a different constant might repair the contradictions
for another round. This significantly improves the complexity of the differential
attack. For predefined constants, the complexity of the attack for this particular
disturbance vector would be roughly 295,

Note that we do not need the whole freedom of all 4 constants. The first
constant in round 1 can be chosen arbitrarily (e.g., we keep it as in the original
SHA-1 specification). For the last constant in round 4, we can fix approximately
16 bits of the constant. That is, 80 bits of the constants need to be changed
compared to the original values. More freedom in choosing the constants is pos-
sible if we increase the attack complexity. An example of a colliding message
pair for our malicious SHA-1 variant with modified constants is given in Table 4.
The constants differ from the original values by 45 (of 128) bits. In the follow-
ing section, we will show how this pair can be used to construct meaningful
collisions.

4 Building Meaningful Collisions

To exploit the malicious SHA-1 described in Sect. 3, we propose several types
of executable, archive and image file formats for which two colliding files can be
created, and such that the behavior of the two files can be fully controlled by
the attacker.

12 A. Albertini et al.

Table 4. Example of a collision for SHA-1 with modified constants K1 4.

Ki...4|5a827999 4eb9d7f7 bad18e2f d79e5877

v 67452301 efcdab89 98badcfe 10325476 c3d2elf0

m ffd8ffel 2001250 b6cef608 34f4fe83 ffae884f afeb6e6f fc50fae6 28c40f81
1b1d3283 b48cllbc bld4b511 a976cb20 a7a929f0 2327f9bb ecde01cO 7dc00852
m* ffd8ffe2 c2001224 3ecef608 dcf4feel 37ae880c 87eb56e6b bcb0faad 60c40fc7
931d3281 b48c11a8 b9d4b513 0976cb74 2fa929f2 a327f9bb 44de01c3 d5c00832
Am 00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046
88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060
h(m) | 1896b202 394blaae 54526cfa e72ec5f2 42b1837e

Below, we first discuss the constraints that the files have to satisfy, in order
to collide with our malicious SHA-1. We then investigate common binary file for-
mats to determine whether they could allow us to construct a malicious SHA-1
for which two wvalid files collide. Finally, we present actual collisions, and char-
acterize the associated instances of malicious SHA-1.

4.1 Constraints

The attack strategy and the available message differences impose several con-
straints for possible applications. Most importantly, the exact hash function
definition with the final constants is only fixed during the attack. This implies
that the differences between the two final files will be limited to a single block.
In addition, this block must correspond to the first 512 bits of the final files.
After this initial collision block, the file pair can be extended arbitrarily with a
common suffix. Due to this limitation, for example, the method that was used
to find colliding PostScript files for MD5 [12] cannot be applied here.

For the exact values of the first block, the attack allows a certain freedom.
The attacker can fix the values of a few bits in advance. However, fixing too
many bits will increase the attack complexity. Additionally, choosing the bits
is constrained by the fixed message difference. In all our example files, we use
message difference MD; from Table 3, which offers a slightly better expected
attack complexity than MDs and MD3. All of the available message differences
have a difference in the first word, as well as the last byte.

4.2 Binary File Format Overview

Binary file formats typically have a predefined structure and in particular a
“magic signature” in their first bytes, which is used to identify the type of binary
and to define diverse metadata. As a preliminary to the construction of colliding
binaries, we provide basic information on binary files so as to understand the
obstacles posed for the construction of colliding files.

We also discuss both our failed and successful attempts to build colliding
binary executables. Note that once a collision can be created—that is, if the

Malicious Hashing: Eve’s Variant of SHA-1 13

block difference can be introduced without fatally altering the file structure—
the programs executed in each of the two colliding files can be fully controlled.
In practice, both programs may execute a legitimate application, but one of
the two colliding files prepends the execution of a trojan that will persistently
compromise the machine.

Magic Signatures. Most binary file formats enforce a “magic signature” at
offset 0, to enable programs to recognize the type of file, its version, etc., in
order to process it according to its specific format. For example, the utilities
file and binwalk rely mostly on magic signatures to identify files and their
type. Some formats, notably most archive formats, also allow the signature to
start later in the file, at a higher offset.

Signatures are typically 4 bytes long. Some are longer, such as that of the PNG
format (89504e470d0ala0a), or the RAR archive format (526172211a0700), and
some are smaller (PE’s 2-byte “MZ”, TIFF’s 2-byte “MM” and “II”). Note that
none of our colliding blocks offer four unmodified consecutive bytes. This implies
that collisions for our malicious SHA-1 cannot be files with a fixed 4-byte signature
at offset 0.

Executables: PE. The PE (Portable Executable) format is the standard for-
mat for Windows executables (.exe files). The PE format, as defined in 1993,
is based on the older DOS EXE format (from 1981). PE thus retains the MZ
signature (4d5a) from DOS, however in PE it is mostly useless: the only com-
ponents of the header used are the MZ signature and the last component, which
is a pointer to the more modern PE header. This leaves an entirely controllable
buffer of 58 bytes near the top of the file, which is tempting to use to build
colliding PEs.

PE thus seems an interesting candidate for malicious collisions: it is very
commonly used, and its header provides freedom degrees to introduce differences.
The only restrictions in the header are in the first two bytes (which must be set
to the MZ string) and in the four bytes at offset 60, where the 4-byte pointer to
the PE header is encoded.

Unfortunately, the structure of the differential attack forces the most signif-
icant byte of the PE header to be (at least) 40. This gives a minimal pointer
of 40000000, that is, 1 GiB. Such a file, even if syntaxically correct, is not sup-
ported by Windows: it is correctly parsed, but then the OS fails to load it (In
practice, the biggest accepted value for this pointer in a working PE is around
9000000).

Due to this limitation, we could not construct valid compact PE executables
that collide for a malicious SHA-1. Note that the Unix and OS X counterpart of
PEs (ELF and Mach-O files, respectively) fix at least the first 4 bytes, and thus
cannot be exploited for malicious collisions either.

Headerless Executables: MBR and COM. Some older formats like mas-
ter boot records (MBR) and DOS executables (COM) do not include a magic

14 A. Albertini et al.

signature or any header. Instead, code execution starts directly at offset 0. By
introducing a jump instruction to the subsequent block, we can have total con-
trol of the first block and thus create collisions (as long as the difference allows
for the jump instruction with distinct reasonable addresses). Running in 16-bit
x86 code, the block can start with a jump, encoded as eb XX, where XX is a
signed char that should be positive. Both blocks will immediately jump to dif-
ferent pieces of code of colliding MBR or colliding COM. To demonstrate the
feasibility of this approach, example files are given in the appendix.

Compressed Archives: RAR and 7z. Like any other archive file format, the
RAR archive allows to start at any offset. However, unlike the ZIP, it is parsed
top-down. So if a block creates a valid Rar signature that is broken by its twin,
then both files can be valid Rars yet different. We could thus create two colliding
archives, which can each contain arbitrary content. A very similar method can
be used to build colliding 7z archives (and probably other types of compressed
archives).

Images: JPEG. The JPEG file format is organized in a chunk-based manner:
chunks are called segments, and each segment starts with a 2 bytes marker.
The first byte of the marker is always f£f, the second is anything but 00 or ff.
A JPEG file must start with a “Start Of Image” (SOI) marker, ££d8. Segments
have a variable size, encoded directly after the marker, on 2 bytes, in little endian
format. Typically, right after the SOI segment starts the APPO segment, with
marker £fe0. This segment contains the familiar “JFIF” string.

However, most JPEG viewers do not require the second segment to start
right after SOI. Adding megabytes of garbage data between the SOI marker and
the APPO segment of a JPEG file will still make it valid for most tools — as long
as this data does not contain any valid marker, £f (01-fe).

Not only we can insert almost-random data before the first segment, but we
can insert any dummy segment that has an encoded length — this will enable us
to control the parser, to give it the data we want. If each of our colliding files
contains a valid segment marker with a different size and offset, each of them
can have a valid APP0 segment at a different offset (provided that the sum of
segment size and segment offset differs). To make the bruteforcing phase easier,
we can use any of the following segments:

1. the APPx segments, with marker ffe (0-f)
2. the COM segment, with marker fffe

So, after getting 2 colliding blocks, creating 2 JPEG headers with a suitable
dummy segment, we can start the actual data of file J; after the second dummy
segment (with larger sum of segment size and offset). Right after the first dummy
segment, we start another dummy segment to cover the actual data of file Jj.
After this second dummy segment, the data of the file Jo can start. If the length
of any of the JPEG file cannot fit on 2 bytes, then several dummy segments need
to be written consecutively. Thus, we are able to get a colliding pair of valid files,
on a modern format, still used daily by most computers.

Malicious Hashing: Eve’s Variant of SHA-1 15

Combining Formats: Polyglots. Since the formats discussed above require
their magical signatures at different positions in the file, it is possible to construct
a first block (of 64 bytes) that suits multiple file formats. For instance, JPEG
requires fixed values in the first few words, while archives like RAR can start
their signature at a higher offset. Thus, we can construct colliding block pairs for
a fixed selection of constants that can later be used to construct colliding files
of multiple types with almost arbitrary content. Examples are given in Sect. 4.3
(JPEG-RAR) and in the appendix (MBR-RAR-Script).

4.3 Example Files

We use the attack strategy from Sect. 3 to build a colliding pair of JPEG images
and one of RAR archives, both for the same set of malicious SHA-1 constants.
Since JPEG requires the file to start with ££d8, M D; is the only one of the
message differences given in Table 3 that is suitable for a collision between two
JPEG files. The following bytes are set to £fe?, where ? differs between the two
files and can be any value. Additionally, the last byte of this first 64-byte-block
is fixed to also allow the block to be used for RAR collisions: It is set to the
first byte of the RAR signature, 52, in one of the blocks, and to a different value
as determined by M D; in the other block. Using these constraints as a starting
point, we search for a differential characteristic. The result is given in Table5
in the appendix. Note that at this point, the first round constant K is fixed to
an arbitrary value (we use the original constant), while Ko, K3, K4 are still free.
They are determined together with the full first 64-byte block in the next phase.
The result is the message pair already given in Table4. The malicious SHA-1

\SECUer;,
Y 7,

N
‘ﬁ@‘ Y,
S

jpgrar0. jpg jpgrarQ.rar

‘ 09
(o]
; 1)
| 2.
. 09
+ 0
< O
ct o
identical

=
[
‘evil” evil 'g
SECURITY .txt 3
jpgrarl. jpg jpgrarl.rar
— —
collision collision

Fig. 2. Colliding JPEG/RAR polyglot file pair for malicious SHA-1 (cf. Table4).

A. Albertini et al.

16

T1T0T0UO0T T

--T0T000TTT L
-T0TTT0000 L
1--000T0T LL
—-TT000TTT 9L
TOTTTOU000! GL
--T1T10T 12
TTOTTTUTTO T €L
OTTT: L
-00TTOU00TT 1L
TOTTIOTTT T-1] L
0T0000UT0 | 69
00T000TT0:
00T00T1OTT mn
TUTT0000-0 11T
TT10T000TTTT G
070000070 T-070| 79|
OnTTTONTT- Ton| 9|
TUTTIONOT T--ut 9
0000700 Tun 19
00001 T 10T
TUT00NUQT onu| S
u10T0 Ty 4
OnTTOTUTT: T
nnrTo 00T S
000111071 001
T00TTOT 11|
TOTOTTOTO: 10T
0QUOOTTT: 01
0T000TUTO: 0T
0T000T0-T (U1 S
00T0TOUTT 00T i3
00TTOTOT 001 i
010000U0T- LY |
T 9V
TuTTT onu i 4
TUO000T Ty ad
0T00UNUTY 3
T 01T ay
TOOTNT: 10T 4
0U0000T: Ton ¥
M 'V !

100077 3
0n00TT LE
0UTTTO! T 9¢
TUTTUTOOT 93
MUQOTOT T Ve
10000MU0T 10 €€
UnOTT0T 10 3
OnT0TTT e
0nTonT Tut 0¢
0UTOT0 T 6T
01007 T 10T
01 LT
unoTT 110
(0UTO0TT: Tut e
MO0 T T VT
Tut T C
MUQQTT 0 4
TUOTTTO T0m0 it4
Ut 124 02
TUITE T T
nuQT T00uY| T
11701 T LT
unpoot 1338 T T
0T00T T T-|¢T
TI0000- T s
11011 T0U|00TT T--—-|€T
0U00T 100 T-00: 100-|21
00UQUT T0000TT: 00-|TT
TU00-0- 1107 (070 0UTT 0T
T00unT0000000000000000010T0TOT-0|6
T0000--—========————————— -] NTO0U| TRONUTTT0000T0000000TTO0T-FTTTOT (8
TUU000" 0O TUO| TUOO poulL
ONTO0-TN——==—-mmmmmm—mmmomee TTI0T[TT0000U00-T0TO0T-T--000TOUTUTUTL|9
-=--T0N0T00UONTUOT-TOTOUN-0--00UTUTTOTTOO0|S
MMIT00m00! ===-0-100(0UT00TT00N--~====U-Tl-=-0T T TNTOUT |}
T UuTIUno-0; Trinnnng g
0007000 91 T---00UTTTU(Z
007QNUNO0TO- -~~~ 0000000007000 T T{00UONFFTTO0~~~~=~~~ 00TTO0TOTTNOO(T
NUQQ0TTTTTTTTTTTO00TTOTTTITTTITTIT|U0T0T00T000TTO0TTOTTO00TTTTITT00T |0
‘M v i

so[y 10[3410d Yy Y/OHJL SUIPI[0D 10] SHUTRIISUOD [RUOIIPPER M ‘T(TJ 9OULISJIp oSessowl 0) SUrpuodsaliod JIYsLIdlORIRY)) G I[qe],

Malicious Hashing: Eve’s Variant of SHA-1 17

variant differs from the standardized SHA-1 in the values of 45 bits of the round
constants.

Now, we can append suitable followup blocks to create valid JPEG or RAR
file pairs, both with arbitrary content. As an example, both images in Fig.2
hash to h(m) = 1896b202 394b0aae 54526cfa e72ecbf2 42b1837e using the
malicious round constants K; = 5a827999, Ky = 4eb9d7£f7, K3 = bad18e2f,
K4 = d79e5877.

In a similar fashion, we were able to construct another example block pair
for a different set of SHA-1 constants that is suitable for master boot records,
shell scripts and RAR archives. All example file pairs and code for verification
can be found online at http://maliciousshal.github.io/.

Acknowledgments. The work has been supported by the Austrian Government
through the research program FIT-IT Trust in IT Systems (Project SePAG, Project
Number 835919).

A Full Characteristic for Malicious SHA-1

Table 5 shows a full differential characteristic corresponding to message difference
MD; using the notation of generalized conditions of [14]. The message block pair
given in Table4 is based on this differential characteristic, as is the example file
pair in Sect. 4.3 that uses this block pair as a first block.

The table shows the message expansion words W; on the right-hand side and
the state words A; on the left-hand side. Note that the state words B;, ..., E;
can be easily derived from this representation.

The characteristic already specifies the necessary format fragments required
in Sect.4.3: The first 28 bits of word W, are set to £fd8ffe to accommodate
the JPEG format, and the last 8 bits of word W5 are fixed as 52 (in one message
m, for the RAR header) or 32 (in the other message m*). Additionally, the first
round constant is already fixed to the original value K; = 5a827999, while
Ky, K3, K, are still free to be chosen during message modification.

References

1. Adinetz, A.V., Grechnikov, E.A.: Building a collision for 75-round reduced SHA-1
using GPU clusters. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.)
Euro-Par 2012. LNCS, vol. 7484, pp. 933-944. Springer, Heidelberg (2012)

2. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware trojans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
197-214. Springer, Heidelberg (2013)

3. Biham, E.: Cryptanalysis of Patarin’s 2-round public key system with S boxes (2R).
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408-416. Springer,
Heidelberg (2000)

4. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221-240. Springer, Heidelberg (2008)

http://malicioussha1.github.io/

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Albertini et al.

Blaze, M., Feigenbaum, J., Leighton, T.: Master key cryptosystems. CRYPTO 1995
rump session (1995). http://www.crypto.com/papers/mkes.pdf

Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
Brown, D.R.L., Gjgsteen, K.: A security analysis of the NIST SP 800-90 ellip-
tic curve random number generator. Cryptology ePrint Archive, Report 2007,/048
(2007)

Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56-71. Springer, Heidelberg (1998)
Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-
resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 165-182. Springer, Heidelberg (2006)

Damgard, I.: A design principle for hash functions. In: Brassard, G., [6], pp. 416—
427

Daniel R. L. Brown, S.A.V.: Elliptic curve random number generation. Patent. US
8396213 B2 (2006). http://www.google.com/patents/US8396213

Daum, M., Lucks, S.: Hash collisions (the poisoned message attack). CRYPTO
2005 rump session (2005). http://th.informatik.uni-mannheim.de/people/lucks/
HashCollisions/

De Canniere, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: on the
full cost of collision search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 56—73. Springer, Heidelberg (2007)

De Canniere, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp. 1-20. Springer, Heidelberg (2006)

Filiol, E.: Malicious cryptography techniques for unreversable (malicious or not)
binaries. CoRR abs/1009.4000 (2010)

Green, M.: A few more notes on NSA random number generators. Blog post,
December 2013. http://blog.cryptographyengineering.com/2013/12/a-few-more-
notes-on-nsa-random-number.html

Green, M.: The many flaws of Dual EC_DRBG. Blog post, September 2013. http://
blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881.
Springer, Heidelberg (2013)

Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244-263. Springer,
Heidelberg (2007)

Lin, L., Kasper, M., Giineysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382-395. Springer, Heidelberg (2009)
Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against SHA-1. Des. Codes Crypt. 59(1-3), 247-263 (2011)

Mendel, F., Nad, T., Schlaffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT
2011. LNCS, vol. 7073, pp. 288-307. Springer, Heidelberg (2011)

Mendel, F., Nad, T., Schlaffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q., [18], pp. 262-278

Menn, J.: Exclusive: secret contract tied NSA and security industry pioneer.
Reuters, December 2013. http://www.reuters.com/article/2013/12/20/us-usa~
security-rsa-idUSBRE9BJ1C220131220

Merkle, R.C.: One way hash functions and DES. In: Brassard, G., [6], pp. 428-446

http://www.crypto.com/papers/mkcs.pdf
http://www.google.com/patents/US8396213
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://blog.cryptographyengineering.com/2013/12/a-few-more-notes-on-nsa-random-number.html
http://blog.cryptographyengineering.com/2013/12/a-few-more-notes-on-nsa-random-number.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220

26.

27.
28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Malicious Hashing: Eve’s Variant of SHA-1 19

Murdoch, S.J., Lewis, S.: Embedding covert channels into TCP/IP. In: Barni,
M., Herrera-Joancomarti, J., Katzenbeisser, S., Pérez-Gonzalez, F. (eds.) ITH 2005.
LNCS, vol. 3727, pp. 247-261. Springer, Heidelberg (2005)

NIST: Recommendation for random number generation using deterministic random
bit generators (revised). NIST Special Publication 800-90 (2007)

NIST: Secure hash standard (SHS). FIPS PUB 1804 (2012)

Open crypto audit. http://opencryptoaudit.org. Accessed 28 May 2014

Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polyno-
mials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356-368.
Springer, Heidelberg (1997)

Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision
attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 78-95. Springer, Heidelberg (2005)

Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58-71. Springer, Heidelberg (2005)

Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 139-148. Springer, Heidelberg (1997)

Schneier, B.: The NSA is breaking most encryption on the internet. Blog post, Sep-
tember 2013. https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.
html

Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. Cryptology ePrint Archive, Report 2006/190 (2006)

Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: USENIX
Security Symposium, pp. 59-75 (2006)

Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In: Johansson, T., Nguyen, P.Q., [18], pp. 245-261

Wagner, D., Bionbi, P.: Misimplementation of RC4. Submission for the Third
Underhanded C Contest (2007). http://underhanded.xcott.com/?page_id=16
Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. NIST - First Cryptographic
Hash Workshop, October 31-November 1 (2005). http://csrc.nist.gov/groups/ST/
hash/documents/Wang_SHA1-New-Result.pdf

Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17-36. Springer, Heidelberg (2005)
Wu, H., Bao, F., Deng, R.H., Ye, Q.-Z.: Cryptanalysis of Rijmen-Preneel trapdoor
ciphers. In: Ohta, K., Pei, D. (eds.) ASTACRYPT 1998. LNCS, vol. 1514, pp. 126—
132. Springer, Heidelberg (1998)

Ding-Feng, Y., Kwok-Yan, L., Zong-Duo, D.: Cryptanalysis of 2R schemes.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 315-325. Springer,
Heidelberg (1999)

You broke the internet. http://youbroketheinternet.org. Accessed 28 May 2014
Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,
Chichester (2004)

Young, A., Yung, M.: Monkey: black-box symmetric ciphers designed for
MONopolizing KEYs. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp.
122-133. Springer, Heidelberg (1998)

Young, A.L., Yung, M.: Backdoor attacks on black-box ciphers exploiting low-
entropy plaintexts. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727, pp. 297-311. Springer, Heidelberg (2003)

http://opencryptoaudit.org
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html
http://underhanded.xcott.com/?page_id=16
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://youbroketheinternet.org

	Malicious Hashing: Eve's Variant of SHA-1
	1 Introduction
	2 Malicious Hashing
	2.1 Malicious Cryptography and Backdoors
	2.2 Definitions

	3 Eve's Variant of SHA-1
	3.1 Short Description of SHA-1
	3.2 Differential Attack Strategy for SHA-1
	3.3 Malicious Collision Attack

	4 Building Meaningful Collisions
	4.1 Constraints
	4.2 Binary File Format Overview
	4.3 Example Files

	A Full Characteristic for Malicious SHA-1
	References

