
Antoine Joux
Amr Youssef (Eds.)

 123

LN
CS

 8
78

1

21st International Conference
Montreal, QC, Canada, August 14–15, 2014
Revised Selected Papers

Selected Areas
in Cryptography –
SAC 2014

Lecture Notes in Computer Science 8781

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Antoine Joux • Amr Youssef (Eds.)

Selected Areas
in Cryptography –
SAC 2014
21st International Conference
Montreal, QC, Canada, August 14–15, 2014
Revised Selected Papers

123

Editors
Antoine Joux
Fondation Partenariale de l’UPMC
Paris Cedex
France

Amr Youssef
Concordia University
Montreal, QC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-13050-7 ISBN 978-3-319-13051-4 (eBook)
DOI 10.1007/978-3-319-13051-4

Library of Congress Control Number: 2014954580

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

[Springer International Publishing AG Switzerland] is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains revised versions of the papers presented at the 21st conference on
Selected Areas in Cryptography (SAC 2014), held during August 14–15, 2014 at
Concordia University in Montreal, Canada. The conference Selected Areas in Cryp-
tography (SAC) series was initiated in 1994, when SAC 1994 was held at Queen’s
University in Kingston, Ontario, Canada. At that time, it was called the Workshop on
Selected Areas in Cryptography. Since then, SAC has been held annually in various
Canadian cities, including Calgary, Kingston, Montreal, Ottawa, Sackville, St. John’s,
Toronto, Waterloo, and Windsor. SAC is currently the only cryptography conference
series that is held annually in Canada. Information on previous SAC conferences can be
found at the main SAC conferences website: http://sacconference.org/.

There are four areas covered at each SAC conference. The three permanent areas
are:

– Design and analysis of symmetric key primitives and cryptosystems, including block
and stream ciphers, hash function, MAC algorithms, cryptographic permutations,
and authenticated encryption schemes.

– Efficient implementations of symmetric and public key algorithms.
– Mathematical and algorithmic aspects of applied cryptology.

This year, the fourth area for SAC 2014 is: Algorithms for cryptography, crypt-
analysis, and their complexity analysis.

We greatly appreciate the hard work of the SAC 2014 Program Committee. We are
also very grateful to the many others who participated in the review process. This year,
we received a total of 103 submissions (co-authored by 260 authors from 30 countries),
22 of them were accepted for presentations at the conference. The 36 Technical Pro-
gram Committee members were from 13 countries and involved 92 external reviewers.
On average, each submitted paper was reviewed by about 3.8 TPC members.

The program also included three invited talks: Nigel Smart, from the University of
Bristol, UK, presented a talk entitled “Practical Multi-party Computation.” Pierrick
Gaudry, from Université de Lorraine, France, presented a talk entitled “NFS: Simi-
larities and Differences Between Integer Factorization and Discrete Logarithm.” The
Stafford Tavares Lecture was dedicated to the memories of Scott Vanstone and was
given by Alfred Menezes from the University of Waterloo. The talk was entitled “Scott
Vanstone and the Early Years of Elliptic Curve Cryptography.”

SAC 2014 was generously supported by Microsoft Research. We would also like to
thank Springer for publishing the SAC proceedings series since 1998 in the Lecture
Notes in Computer Science series. Last, but not least, we are very grateful to the staff
members at the Concordia Institute for Information Systems Engineering (CIISE) for
their tireless work in taking care of the local arrangements.

August 2014 Antoine Joux
Amr Youssef

http://sacconference.org/

Organization

Program Committee

Jean-Philippe Aumasson Kudelski Security, Switzerland
Daniel J. Bernstein University of Illinois at Chicago, USA

and Technische Universiteit Eindhoven,
The Netherlands

John Black CU Boulder, USA
Céline Blondeau Aalto University School of Science, Finland
Christina Boura Université de Versailles

Saint-Quentin-en-Yvelines, France
Anne Canteaut INRIA, France
Carlos Cid Royal Holloway, University of London, UK
Joan Daemen STMicroelectronics, Belgium
Orr Dunkelman University of Haifa, Israel
Pierre-Alain Fouque University of Rennes 1 and Institut Universitaire

de France, France
Steven Galbraith University of Auckland, New Zealand
Joachim von zur Gathen University of Bonn, Germany
Guang Gong University of Waterloo, Canada
Robert Granger EPFL, Switzerland
Michael Jacobson University of Calgary, Canada
Antoine Joux Fondation Partenariale de l’UPMC, LIP6, France
Pascal Junod HEIG-VD, Switzerland
Gregor Leander Ruhr-Universität Bochum, Germany
Arjen Lenstra EPFL, Switzerland
Stefan Lucks Bauhaus-University Weimar, Germany
David M’Raihi Perzo, USA
Alexander May Ruhr-Universität Bochum, Germany
Shiho Moriai NICT, Japan
María Naya-Plasencia INRIA, France
Kaisa Nyberg Aalto University School of Science, Finland
Christiane Peters European Network for Cyber Security,

The Netherlands
Michaël Quisquater Université de Versailles

Saint-Quentin-en-Yvelines, France
Christian Rechberger Technical University of Denmark, Denmark
Palash Sarkar Indian Statistical Institute, India
Yu Sasaki NTT Corporation, Japan
Douglas Stinson University of Waterloo, Canada
Emmanuel Thomé INRIA, LORIA, France

Frederik Vercauteren KU Leuven – ESAT/COSIC, Belgium
Marion Videau Université de Lorraine, France
Vanessa Vitse Institut Fourier, University of Grenoble, France
Amr Youssef Concordia University, Canada

Additional Reviewers

Abdel Khalek, Ahmed
Abed, Farzaneh
Afshar, Arash
Albrecht, Martin
Altawy, Riham
Aoki, Kazumaro
Aranha, Diego de Freitas
Ashur, Tomer
Babbage, Steve
Bai, Shi
Bauer, Aurélie
Becker, Anja
Bertoni, Guido
Blazy, Olivier
Blömer, Johannes
Bogdanov, Andrey
Bos, Joppe
Castryck, Wouter
Chakraborty, Debrup
Chen, Yao
Chuengsatiansup,
Chitchanok
Derbez, Patrick
Detrey, Jérémie
Dimitrov, Vassil
Dudeanu, Alina
Fan, Xinxin
Feix, Benoit
Forler, Christian
Gama, Nicolas
Granger, Rob
Handschuh, Helena
Hermans, Jens
Isobe, Takanori
Janson, Christian

Jetchev, Dimitar
Jovanovic, Philipp
Järvinen, Kimmo
Karpman, Pierre
Kleinjung, Thorsten
Knellwolf, Simon
Koelbl, Stefan
Krasnova, Anna
Labrande, Hugo
Lallemand, Virginie
Lange, Tanja
Leurent, Gaëtan
List, Eik
Loebenberger, Daniel
Longa, Patrick
Meier, Willi
Mendel, Florian
Mennink, Bart
Miele, Andrea
Murphy, Sean
Naehrig, Michael
Neves, Samuel
Niederhagen, Ruben
Nüsken, Michael
Onete, Cristina
Oswald, Elisabeth
Peeters, Michael
Preneel, Bart
Procter, Gordon
Quedenfeld, Frank
Raddum, Håvard
Ramanna, Somindu
Reparaz, Oscar
Roche, Thomas

Rodríguez-Henríquez,
Francisco
Roy, Arnab
Scheidler, Renate
Seurin, Yannick
Shallue, Andrew
Shibutani, Kyoji
Shimoyama, Takeshi
Sibborn, Dale
Singh, Shashank
Sinha Roy, Sujoy
Soleimany, Hadi
Stehle, Damien
Steinberger, John
Suder, Valentin
Szepieniec, Alan
Takahashi, Junko
Tan, Yin
Thomae, Enrico
Tibouchi, Mehdi
Tiessen, Tyge
Tischhauser, Elmar
Van Assche, Gilles
Wang, Lei
Wenzel, Jakob
Whitnall, Carolyn
Wu, Teng
Yang, Bo-Yin
Yang, Bohan
Yasuda, Kan
Yu, Mandel
Zapalowicz,

Jean-Christophe
Ziegler, Konstantin

VIII Organization

Contents

Malicious Hashing: Eve’s Variant of SHA-1. 1
Ange Albertini, Jean-Philippe Aumasson, Maria Eichlseder,
Florian Mendel, and Martin Schläffer

Binary Elligator Squared . 20
Diego F. Aranha, Pierre-Alain Fouque, Chen Qian, Mehdi Tibouchi,
and Jean-Christophe Zapalowicz

Batch NFS . 38
Daniel J. Bernstein and Tanja Lange

An Improvement of Linear Cryptanalysis with Addition Operations
with Applications to FEAL-8X . 59

Eli Biham and Yaniv Carmeli

Colliding Keys for SC2000-256 . 77
Alex Biryukov and Ivica Nikolić

Faster Binary-Field Multiplication and Faster Binary-Field MACs 92
Daniel J. Bernstein and Tung Chou

OMD: A Compression Function Mode of Operation
for Authenticated Encryption . 112

Simon Cogliani, Diana-Ştefania Maimuţ, David Naccache,
Rodrigo Portella do Canto, Reza Reyhanitabar,
Serge Vaudenay, and Damian Vizár

Security Amplification for the Composition of Block Ciphers:
Simpler Proofs and New Results . 129

Benoit Cogliati, Jacques Patarin, and Yannick Seurin

Improved Differential Cryptanalysis of Round-Reduced Speck 147
Itai Dinur

Differential Cryptanalysis of SipHash . 165
Christoph Dobraunig, Florian Mendel, and Martin Schläffer

Weak Instances of PLWE . 183
Kirsten Eisenträger, Sean Hallgren, and Kristin Lauter

The Usage of Counter Revisited: Second-Preimage Attack
on New Russian Standardized Hash Function . 195

Jian Guo, Jérémy Jean, Gaëtan Leurent, Thomas Peyrin, and Lei Wang

http://dx.doi.org/10.1007/978-3-319-13051-4_1
http://dx.doi.org/10.1007/978-3-319-13051-4_2
http://dx.doi.org/10.1007/978-3-319-13051-4_3
http://dx.doi.org/10.1007/978-3-319-13051-4_4
http://dx.doi.org/10.1007/978-3-319-13051-4_4
http://dx.doi.org/10.1007/978-3-319-13051-4_5
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-319-13051-4_7
http://dx.doi.org/10.1007/978-3-319-13051-4_7
http://dx.doi.org/10.1007/978-3-319-13051-4_8
http://dx.doi.org/10.1007/978-3-319-13051-4_8
http://dx.doi.org/10.1007/978-3-319-13051-4_9
http://dx.doi.org/10.1007/978-3-319-13051-4_10
http://dx.doi.org/10.1007/978-3-319-13051-4_11
http://dx.doi.org/10.1007/978-3-319-13051-4_12
http://dx.doi.org/10.1007/978-3-319-13051-4_12

Side-Channel Analysis of Montgomery’s Representation Randomization 212
Eliane Jaulmes, Emmanuel Prouff, and Justine Wild

Practical Cryptanalysis of PAES . 228
Jérémy Jean, Ivica Nikolić, Yu Sasaki, and Lei Wang

Diffusion Matrices from Algebraic-Geometry Codes with Efficient
SIMD Implementation . 243

Daniel Augot, Pierre-Alain Fouque, and Pierre Karpman

Error-Tolerant Side-Channel Cube Attack Revisited. 261
Zhenqi Li, Bin Zhang, Arnab Roy, and Junfeng Fan

A Generic Algorithm for Small Weight Discrete Logarithms
in Composite Groups. 278

Alexander May and Ilya Ozerov

Linear Biases in AEGIS Keystream. 290
Brice Minaud

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 306
Nicky Mouha, Bart Mennink, Anthony Van Herrewege,
Dai Watanabe, Bart Preneel, and Ingrid Verbauwhede

Fast Point Multiplication Algorithms for Binary Elliptic Curves
with and Without Precomputation . 324

Thomaz Oliveira, Diego F. Aranha, Julio López,
and Francisco Rodríguez-Henríquez

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound . . . 345
Atsushi Takayasu and Noboru Kunihiro

Solving the Discrete Logarithm of a 113-bit Koblitz Curve
with an FPGA Cluster . 363

Erich Wenger and Paul Wolfger

Author Index . 381

X Contents

http://dx.doi.org/10.1007/978-3-319-13051-4_13
http://dx.doi.org/10.1007/978-3-319-13051-4_14
http://dx.doi.org/10.1007/978-3-319-13051-4_14
http://dx.doi.org/10.1007/978-3-319-13051-4_15
http://dx.doi.org/10.1007/978-3-319-13051-4_15
http://dx.doi.org/10.1007/978-3-319-13051-4_16
http://dx.doi.org/10.1007/978-3-319-13051-4_17
http://dx.doi.org/10.1007/978-3-319-13051-4_17
http://dx.doi.org/10.1007/978-3-319-13051-4_18
http://dx.doi.org/10.1007/978-3-319-13051-4_19
http://dx.doi.org/10.1007/978-3-319-13051-4_20
http://dx.doi.org/10.1007/978-3-319-13051-4_20
http://dx.doi.org/10.1007/978-3-319-13051-4_21
http://dx.doi.org/10.1007/978-3-319-13051-4_22
http://dx.doi.org/10.1007/978-3-319-13051-4_22

Malicious Hashing: Eve’s Variant of SHA-1

Ange Albertini1, Jean-Philippe Aumasson2, Maria Eichlseder3(B),
Florian Mendel3, and Martin Schläffer3

1 Corkami, Ravensburg, Germany
ange.albertini@gmail.com

2 Kudelski Security, Cheseaux-sur-Lausanne, Switzerland
jeanphilippe.aumasson@gmail.com

3 Graz University of Technology, Graz, Austria
{maria.eichlseder,florian.mendel,martin.schlaeffer}@iaik.tugraz.at

Abstract. We present collisions for a version of SHA-1 with modified
constants, where the colliding payloads are valid binary files. Exam-
ples are given of colliding executables, archives, and images. Our mali-
cious SHA-1 instances have round constants that differ from the original
ones in only 40 bits (on average). Modified versions of cryptographic stan-
dards are typically used on closed systems (e.g., in pay-TV, media and
gaming platforms) and aim to differentiate cryptographic components
across customers or services. Our proof-of-concept thus demonstrates the
exploitability of custom SHA-1 versions for malicious purposes, such as
the injection of user surveillance features. To encourage further research
on such malicious hash functions, we propose definitions of malicious
hash functions and of associated security notions.

1 Introduction

In 2013, cryptography made the headlines following the revelation that NSA
may not only have compromised cryptographic software and hardware, but also
cryptographic algorithms. The most concrete example is the “key escrow” [11] or
“master key” [5] property of the NSA-designed Dual EC DRBG [27]. The alleged
backdoor is the number e such that eQ = P , where P and Q are two points on
the elliptic curve specified as constants in Dual EC DRBG. Knowing e allows one to
determine the internal state and thus to predict all future outputs. Despite other
issues [7,35] (see also [16,17]), Dual EC DBRG was used as default pseudorandom
number generator in EMC/RSA’s BSAFE library, allegedly following a $10M
deal with NSA [24].

It is also speculated that NSA may have “manipulated constants” [34] of
other algorithms, although no hard evidence has been published. This series of
revelations prompted suspicions that NIST-standardized cryptography may be
compromised by NSA. It also raised serious doubts on the security of commercial
cryptography software, and even of open-source software. Several projects have
been started to address those concerns, like #youbroketheinternet [43] and the
Open Crypto Audit Project [29].

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 1–19, 2014.
DOI: 10.1007/978-3-319-13051-4 1

2 A. Albertini et al.

Research on cryptographic backdoors and malicious cryptography appears
to have been the monopoly of intelligence agencies and of industry. Only a
handful of peer-reviewed articles have been published in the open literature
(see Sect. 2.1), whereas research on related topics like covert-channel communi-
cation (e.g., [26,36]) or hardware trojans (e.g., [2,20]) is published regularly.

Malicious ciphers have been investigated by Young and Yung [44] in their
“cryptovirology” project, and to a lesser extent by Rijmen and Preneel [33]
and Patarin and Goubin [30]. However we are unaware of any research about
malicious hash functions—that is, hash functions designed such that the designer
knows a property that allows her to compromise one or more security notions.
Note that we distinguish backdoors (covert) from trapdoors (overt); for example
VSH [9] is a trapdoor hash function, such that collisions can be found efficiently
if the factorization of the RSA modulus is known.

This paper thus investigates malicious hash functions: first their definition
and potential applications, then a proof-of-concept by constructing a malicious
version of SHA-1 with modified constants, for which two binary files (e.g., exe-
cutables) collide. We have chosen SHA-1 as a target because it is (allegedly) the
most deployed hash function and because of its background as an NSA/NIST
design. We exploit the freedom of the four 32-bit round constants of SHA-1 to
efficiently construct 1-block collisions such that two valid executables collide for
this malicious SHA-1. Such a backdoor could be trivially added if a new constant
is used in every step of the hash function. However, in SHA-1 only four different
32-bit round constants are used within its 80 steps, which significantly reduces
the freedom of adding a backdoor. Actually our attack only modifies at most 80
(or, on average, 40) of the 128 bits of the constants.

Our malicious SHA-1 can readily be exploited in applications that use cus-
tom hash functions (e.g., for customers’ segmentation) to ensure that a legiti-
mate application can surreptitiously be replaced with a malicious one, while still
passing the integrity checks such as secure boot or application code signing.

Outline. Section 2 attempts to formalize intuitive notions of malicious hash
functions. We first define a malicious hash function as a pair of algorithms:
a malicious generator (creating the function and its backdoor) and an exploit
algorithm. Section 3 then presents a novel type of collision attack, exploiting
the freedom degrees of the SHA-1 constants to efficiently construct collisions.
We describe the selection of a dedicated disturbance vector that minimizes the
complexity and show examples of collisions. Section 4 discusses the application
to structured file formats, and whether the constraints imposed by the attack
can be satisfied with common file formats. We present examples of valid binary
files that collide for our malicious SHA-1: executables (e.g., master boot records
or shell scripts), archives (e.g., rar), and images (jpg).

2 Malicious Hashing

We start with an overview of previous work related to malicious cryptography.
Then we formalize intuitive notions of malicious hashing, first with a general
definition of a malicious hash function, and then with specific security notions.

Malicious Hashing: Eve’s Variant of SHA-1 3

2.1 Malicious Cryptography and Backdoors

The open cryptographic literature includes only a handful of works related to
malicious applications of cryptography:

– In 1997, Rijmen and Preneel [33] proposed to hide linear relations in S-boxes
and presented “backdoor versions” of CAST and LOKI. These were broken
in [41] as well as the general strategy proposed. Rijmen and Preneel noted
that “[besides] the obvious use by government agencies to catch dangerous
terrorists and drug dealers, trapdoor block ciphers can also be used for public
key cryptography.” [33]. Indeed, [5] previously argued that a backdoor block
cipher is equivalent to a public key cryptosystem.

– In 1997, Patarin and Goubin [30] proposed an S-box-based asymmetric scheme
constructed as a 2-round SPN but publicly represented as the corresponding
equations – keeping the S-boxes and linear transforms secret. This was broken
independently by Ye et al. and Biham [3,42]. This can be seen as an ancestor
of white-box encryption schemes.

– In 1998 and later, Young and Yung designed backdoor blackbox malicious
ciphers, which assume that the algorithm is not known to an adversary. Such
ciphers exploit low-entropy plaintexts to embed information about the key
in ciphertexts through a covert channel [45,46]. Young and Yung coined the
term cryptovirology [44] and cited various malicious applications of cryptog-
raphy: ransomware, deniable data stealing, etc.

– In 2010, Filiol [15] proposed to use malicious pseudorandom generators to
assist in the creation of executable code difficult to reverse-engineer. Typical
applications are the design of malware that resist detection methods that
search for what looks like obfuscated code (suggesting the hiding of malicious
instructions).

Note that we are concerned with backdoors in algorithms, regardless of its rep-
resentation (pseudocode, assembly, circuit, etc.), as opposed to backdoors in
software implementations (like Wagner and Biondi’s sabotaged RC4 [38]) or in
hardware implementations (like bug attacks [4] and other hardware trojans).

2.2 Definitions

We propose definitions of malicious hash functions as adversaries composed of
a pair of algorithms: a (probabilistic) malicious generator and an exploit algo-
rithm. Based on this formalism, we define intuitive notions of undetectability
and undiscoverability.

Malicious Hash Function. Contrary to typical security definitions, our adver-
sary is not the attacker, so to speak: instead, the adversary Eve creates the
primitive and knows the secret (i.e. the backdoor and how to exploit it), whereas
honest parties (victims) attempt to cryptanalyze Eve’s design. We thus define a
malicious hash function (or adversary) as a pair of efficient algorithms, modeling
the ability to create malicious primitives and to exploit them:

4 A. Albertini et al.

– A malicious generator, i.e. a probabilistic algorithm returning a hash function
and a backdoor;

– An exploit algorithm, i.e. a deterministic or probabilistic algorithm that uses
the knowledge of the backdoor to bypass some security property of the hash
function.

We distinguish two types of backdoors: static, which have a deterministic exploit
algorithm, and dynamic, which have a probabilistic one.

Below, the hash algorithms and backdoors returned as outputs of a mali-
cious generator are assumed to be encoded as bitstring in some normal form
(algorithm program, etc.), and to be of reasonable length. The generator and
exploit algorithms, as well as the backdoor string, are kept secret by the mali-
cious designer.

Static Backdoors Adversaries. Eve is a static collision adversary (SCA) if
she designs a hash function for which she knows one pair of colliding messages.

Definition 1 (SCA). A static collision adversary is a pair (GenSC,ExpSC) such
that

– The malicious generator GenSC is a probabilistic algorithm that returns a pair
(H, b), where H is a hash function and b is a backdoor.

– The exploit algorithm ExpSC is a deterministic algorithm that takes a hash
function H and a backdoor b and that returns distinct m and m′ such that
H(m) = H(m′).

This definition can be generalized to an adversary producing a small number of
collisions, through the definition of severalExpSC algorithms ExpSC1, . . . ,ExpSCn.

As a static second-preimage adversary would not differ from that of static
collision, our next definition relates to (first) preimages:

Definition 2 (SPA). A static preimage adversary is a pair (GenSP,ExpSP) such
that

– The malicious generator GenSP is a probabilistic algorithm that returns a pair
(H, b), where H is a hash function and b is a backdoor.

– The exploit algorithm ExpSP is a deterministic algorithm that takes a hash
function H and a backdoor b and that returns m such that H(m) has low
entropy.

In the above definition “low entropy” is informally defined as digest having a
pattern that will convince a third party that “something is wrong” with the hash
function; for example, the all-zero digest, a digest with all bytes identical, etc.

Dynamic Backdoors. Dynamic backdoors extend static backdoors from one
or a few successful attacks to an arbitrary number. In some sense, dynamic
backdoors are to static backdoors what universal forgery is to existential and
selective forgery for MACs.

Malicious Hashing: Eve’s Variant of SHA-1 5

Definition 3 (DCA). A dynamic collision adversary is a pair (GenDC,ExpDC)
such that

– The malicious generator GenDC is a probabilistic algorithm that returns a pair
(H, b), where H is a hash function and b is a backdoor.

– The exploit algorithm ExpDC is a probabilistic algorithm that takes a hash
function H and a backdoor b and that returns distinct m and m′ such that
H(m) = H(m′).

In this definition, ExpDC should be seen as an efficient sampling algorithm choos-
ing the pair (m,m′) within a large set of colliding pairs, as implicitly defined by
GenDC. The latter may be created in such a way that sampled messages satisfy
a particular property, e.g. have a common prefix.

The definitions of dynamic second-preimage and preimage adversaries follow
naturally:

Definition 4 (DSPA). A dynamic second-preimage adversary is a pair (GenDSP,
ExpDSP) such that

– The malicious generator GenDSP is a probabilistic algorithm that returns a
pair (H, b), where H is a hash function and b is a backdoor.

– The exploit algorithm ExpDSP is a probabilistic algorithm that takes a hash
function H, a backdoor b, and a message m and that returns an m′ distinct
from m such that H(m) = H(m′).

Definition 5 (DPA). A dynamic preimage adversary is a pair (GenDP,ExpDP)
such that

– The malicious generator GenDP is a probabilistic algorithm that returns a pair
(H, b), where H is a hash function and b is a backdoor.

– The exploit algorithm ExpDP is a probabilistic algorithm that takes a hash
function H, a backdoor b, and a digest d and that returns m such that H(m) =
d.

In the definitions of DSPA and DPA, the challenge values m and d are assumed
sampled at random (unrestricted to uniform distributions).

One may consider “subset” versions of (second) preimage backdoors, i.e.
where the backdoor only helps if the challenge value belongs to a specific subset.
For example, one may design a hash for which only preimages of short strings—as
passwords—can be found by the exploit algorithm.

Our last definition is that of a key-recovery backdoor, for some keyed hash
function (e.g. HMAC):

Definition 6 (KRA). A dynamic key-recovery adversary is a pair (GenKR,
ExpKR) such that

– The malicious generator GenKR is a probabilistic algorithm that returns a pair
(H, b), where H is a hash function and b is a backdoor.

6 A. Albertini et al.

– The exploit algorithm ExpKR is a probabilistic algorithm that takes a hash
function H and a backdoor b and that has oracle-access to HK(·) for some
key K and that returns K.

The definition of KRA assumes K to be secret, and may be relaxed to subsets
of “weak keys”. This definition may also be relaxed to model forgery backdoors,
i.e. adversaries that can forge MAC’s (existentially, selectively, or universally)
without recovering K.

Stealth Definitions. We attempt to formalize the intuitive notions of unde-
tectability (“Is there a backdoor?”) and of undiscoverability (“What is the back-
door?”). It is tempting to define undetectability in terms of indistinguishability
between a malicious algorithm and a legit one. However, such a definition does
not lend itself to a practical evaluation of hash algorithms.

We thus relax the notion to define undetectablity as the inability to determine
the exploit algorithm (that is, how the backdoor works, regardless of whether
one knows the necessary information, b). In other words, it should be difficult to
reverse-engineer the backdoor. We thus have the following definition, applying
to both collision and preimage backdoors:

Definition 7. The backdoor in a malicious hash (Gen,Exp) is undetectable if
given a H returned by Gen it is difficult to find Exp.

Subtleties may lie in the specification of H: one can imagine a canonical-form
description that directly reveals the presence of the backdoor, while another
description or implementation would make detection much more difficult. This
issue is directly related to the notion of obfuscation (be it at the level of the
algorithm, source code, intermediate representation, etc.). For example, mal-
ware (such as ransomware, or jailbreak kits) may use obfuscation to dissimulate
malicious features, such as cryptographic components of 0-day exploits.

Furthermore, backdoors may be introduced as sabotaged versions of legiti-
mate designs. In that case, undetectability can take another sense, namely dis-
tinguishability from the original design. For example, in our malicious SHA-1,
it is obvious that the function differs from the original SHA-1, and one may
naturally suspect the existence of “poisonous” inputs, although those should be
hard to determine.

Undiscoverability is more easily defined than undetectability: it is the inabil-
ity to find the backdoor b given the exploit algorithm. A general definition is as
follows:

Definition 8. The backdoor in a malicious hash (Gen,Exp) is undiscoverable if
given Exp and H returned by Gen it is difficult to find b.

In our proof-of-concept of a malicious SHA-1, undiscoverability is the hardness
to recover the colliding pair, given the knowledge that a pair collides (and even
the differential used).

Malicious Hashing: Eve’s Variant of SHA-1 7

3 Eve’s Variant of SHA-1

As a demonstration of the above concepts, we present an example of a static
collision backdoor : Eve constructs a custom variant of SHA-1 that differs from
the standardized specification only in the values of some round constants (up to
80 bits). Eve can use the additional freedom gained from choosing only four
32-bit constants to find a practical collision for the full modified SHA-1 function
during its design. We show that Eve even has enough freedom to construct a
meaningful collision block pair which she can, at a later point, use to build
multiple colliding file pairs of a particular format (e.g., executable or archive
format) with almost arbitrary content.

The backdoor does not exploit any particular “weaknesses” of specific round
constants, nor does it weaken the logical structure of the hash function. Instead,
it only relies on the designer’s freedom to choose the constants during the attack.
This freedom can be used to improve the complexity of previous attacks [37,40]
and thus makes it feasible to find collisions for the full hash function.

For an attacker who only knows the modified constants but cannot choose
them, collisions are as hard to find as for the original SHA-1. Thus, in terms
of the definitions of the previous section, this backdoor is undiscoverable. It is,
however, detectable since constants in hash functions are normally expected to
be identifiable as nothing-up-your-sleeve numbers. This is hardly achievable in
our attack.

Below, we first give a short description of SHA-1 in Sect. 3.1 and briefly
review previous differential collision attacks on SHA-1 in Sect. 3.2. Then, we
build upon these previous differential attacks and describe how the freedom of
choosing constants can be used to improve the attack complexity in Sect. 3.3.

3.1 Short Description of SHA-1

SHA-1 is a hash function designed by the NSA and standardized by NIST in
1995. It is an iterative hash function based on the Merkle-Damg̊ard design prin-
ciple [10,25], processes 512-bit message blocks and produces a 160-bit hash value
by iterating a compression function f . For a detailed description of SHA-1 we
refer to [28].

The compression function f uses the Davies-Meyer construction which con-
sists of two main parts: the message expansion and the state update transforma-
tion. The message expansion of SHA-1 is a linear expansion of the 16 message
words (denoted by Mi) to 80 expanded message words Wi,

Wi =

{
Mi for 0 ≤ i ≤ 15,
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1 for 16 ≤ i ≤ 79 .

The state update transformation of SHA-1 consists of 4 rounds of 20 steps each.
In each step, the expanded message word Wi is used to update the 5 chaining
variables as depicted in Fig. 1. In each round, the step update uses different
Boolean functions fr and additive constants Kr, which are shown in Table 1.

8 A. Albertini et al.

Ai

Ai−1

Bi

Bi−1

Ci

Ci−1

Di

Di−1

Ei

Ei−1

Kr

Wi

fr

≫ 2

≪ 5

Fig. 1. The step function of SHA-1.

Table 1. The round constants Kr and Boolean functions fr used in each step of SHA-1.

Round r Step i Kr fr

1 0 ≤ i ≤ 19 5a827999 fIF(B,C,D) = B ∧ C ⊕ ¬B ∧ D

2 20 ≤ i ≤ 39 6ed9eba1 fXOR(B,C,D) = B ⊕ C ⊕ D

3 40 ≤ i ≤ 59 8f1bbcdc fMAJ(B,C,D) = B ∧ C ⊕ B ∧ D ⊕ C ∧ D

4 60 ≤ i ≤ 79 ca62c1d6 fXOR(B,C,D) = B ⊕ C ⊕ D

For Eve’s modified, malicious hash function, we only change the values of
K2,K3 and K4. The remaining definition is left unchanged. Note that the original
SHA-1 constants are chosen as the square roots of 2, 3, 5 and 10:

K1 =
⌊√

2 · 230
⌋
, K2 =

⌊√
3 · 230

⌋
, K3 =

⌊√
5 · 230

⌋
, K4 =

⌊√
10 · 230

⌋
.

3.2 Differential Attack Strategy for SHA-1

At CRYPTO 2005, Wang et al. presented the first collision attack on full SHA-
1 with a theoretical complexity of about 269 [40]. This was later improved to
263 by the same authors [39]. Since then, several papers on the cryptanalysis of
SHA-1 have been published [1,13,14,19,37]. Nevertheless, no practical collision
has been shown for full SHA-1 to date.

Our practical and meaningful collision attacks on malicious SHA-1 are based
on the differential attacks by Wang et al. in [40] and its improvements. In a dif-
ferential collision attack, we first construct a high-probability differential charac-
teristic that yields a zero output difference, i.e., a collision. In the second stage,
we probabilistically try to find a confirming message pair for this differential
characteristic.

By using a differential characteristic with a lower probability at the beginning
of the hash function (first round of SHA-1), the probability of the remaining

Malicious Hashing: Eve’s Variant of SHA-1 9

characteristic can be further improved. Since the message can be chosen freely
in a hash function attack, we can significantly improve the complexity of finding
confirming message pairs at the beginning of the hash function using message
modification techniques [40]. A high-level overview of such a differential attack
on SHA-1 is given as follows:

1. Find a differential characteristic
(a) Construct the high-probability part
(b) Determine the low-probability part

2. Find a confirming message pair
(a) Use message modification in low-probability part
(b) Perform random trials in high-probability part

The high-probability part of the differential characteristic for SHA-1 covers
round 2 to round 4. It has been shown in [8,21,40] that for SHA-1, the best
way to construct these high-probability characteristics is to interleave so-called
local collisions (one disturbing and a set of correcting differences). These char-
acteristics can be easily constructed by using a linearized variant of the hash
function and tools from coding theory [31,32]. The probability of this character-
istic determines the complexity of the attack on SHA-1.

The low-probability part and message modification take place in round 1
and are typically performed using automated non-linear equation solving tools
[14,22,23]. We stress that the total complexity is still above 260 for all published
collision attacks so far, which is only practical for attackers with large computing
power (NSA, Google, etc.).

3.3 Malicious Collision Attack

In SHA-1, a new 32-bit constant K1, . . . ,K4 is used in each of the four rounds.
In our malicious collision attack, we use the freedom of these four constants to
reduce the complexity of the attack. Similar to message modification, we choose
the constants during the search for a confirming message pair. We modify the
constants in a round-by-round strategy, always selecting a round constant such
that the differential characteristic for the steps of the current round can be
satisfied. Since we have to choose the constants when processing the first block,
we can only improve the complexity of this block. Hence, we need to use a
differential characteristic that results in a single-block collision. Note that all
the collisions attacks on SHA-1 so far use a 2-block characteristic.

To find the high-probability part of a differential characteristic for round 2–4
resulting in a 1-block collision, a linearized variant of the hash function can be
used. However, using algorithms from coding theory, we only find differential
characteristics that maximize the overall probability and do not take the addi-
tional freedom we have in the choice of the constants in SHA-1 into account.
Therefore, to minimize the overall attack complexity, we did not use these dif-
ferential characteristics. Instead, we are interested in a differential characteristic

10 A. Albertini et al.

such that the minimum of the three probabilities for round 2, 3 and 4 is maxi-
mized. To find such a characteristic, we start with the best overall characteristic
and modify it to suit our needs.

In previous attacks on SHA-1, the best differential characteristics for rounds
2–4 have differences only at bit position 2 for some 16 consecutive state words
Ai [21]. We assume that the best differential characteristic has the same property
in our case. Hence, we only need to determine all 216 possible differential charac-
teristics with differences only at bit position 2 in 16 consecutive state words Ai

and linearly expand them backward and forward. A similar approach has also
been used to attack SHA-0 [8] and SHA-1 [21,40].

For each of these 216 differential characteristics, we estimate the cost of find-
ing a malicious single-block collision. These costs are roughly determined by the
number of differences (disturbances) in Ai in each round. For details on the cost
computations, we refer to [31]. The estimated costs for the best differential char-
acteristics suited for our attack are given in Table 2, and the correspond message
differences are given in Table 3.

Table 2. Probabilities for rounds 2–4 of the differential characteristics suitable for our
attack.

Candidate r = 2 r = 3 r = 4 Total

MD1 2−40 2−40 2−15 2−95

MD2 2−39 2−42 2−13 2−94

MD3 2−39 2−42 2−11 2−92

Table 3. List of message differences suitable for our attack

MD1 00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046

88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060

MD2 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046 88000002

00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060 00000003

MD3 88000000 e8000062 c8000043 28000004 40000042 48000046 88000002 00000014

08000002 a0000054 88000002 80000000 a8000003 a8000060 00000003 c0000002

The high-probability differential characteristic with message difference MD1

is best suitable for our intended file formats (see Sect. 4) and used as the starting
point to search for a low-probability differential characteristic for the first round
of SHA-1. We use an automatic search tool [22,23] to find the low-probability
part of the characteristic. The result is shown in Table 5 in the appendix. Overall,
the complexity of finding a colliding message pair using malicious constants for
this differential characteristic in our attack is approximately 248, which is feasible
in practice as demonstrated below and in Sect. 4.

Malicious Hashing: Eve’s Variant of SHA-1 11

After the differential characteristic is fixed, we probabilistically search for a
confirming message pair. We start with only the first constant K1 fixed (e.g., to
the standard value) and search for a message pair that confirms at least the first
round (20 steps) of the characteristic, and is also suitable for our file format.
This is easier than finding a message pair that works for all four rounds (with
fixed constants), since fewer constraints need to be satisfied. The complexity of
this step is negligible.

Now, we can exhaustively search through all 232 options for K2 until we
find one that confirms round 2. Only if no such constant is found, we backtrack
and modify the message words. Since the differential characteristic for message
difference MD1 holds with probability 2−40 in round 2 and we can test 232

options for K2, this step of the attack will only succeed with a probability of
2−8. Hence, completing this step alone has a complexity of approximately 240.

Once we have found a candidate for K2 such that the differential characteris-
tic holds in round 2, we proceed in the same way with K3. Again, the differential
characteristic will hold with only a probability of 2−40 in round 3 and we can
test only 232 options for K3. Therefore, we need to repeat the previous steps of
the attack 28 times to find a solution. Including the expected 28 tries for the
previous step to reach the current one, completing this step has an expected
complexity of roughly 248.

Finally, we need to find K4. Since the last round of the characteristic has a
high probability, such a constant is very likely to exist and this step of the attack
only adds negligible cost to the final attack complexity of about 248.

Normally, with fixed constants, an attacker would have to backtrack in the
case of a contradiction in the later steps. Eve as the designer, on the other hand,
has a chance that choosing a different constant might repair the contradictions
for another round. This significantly improves the complexity of the differential
attack. For predefined constants, the complexity of the attack for this particular
disturbance vector would be roughly 295.

Note that we do not need the whole freedom of all 4 constants. The first
constant in round 1 can be chosen arbitrarily (e.g., we keep it as in the original
SHA-1 specification). For the last constant in round 4, we can fix approximately
16 bits of the constant. That is, 80 bits of the constants need to be changed
compared to the original values. More freedom in choosing the constants is pos-
sible if we increase the attack complexity. An example of a colliding message
pair for our malicious SHA-1 variant with modified constants is given in Table 4.
The constants differ from the original values by 45 (of 128) bits. In the follow-
ing section, we will show how this pair can be used to construct meaningful
collisions.

4 Building Meaningful Collisions

To exploit the malicious SHA-1 described in Sect. 3, we propose several types
of executable, archive and image file formats for which two colliding files can be
created, and such that the behavior of the two files can be fully controlled by
the attacker.

12 A. Albertini et al.

Table 4. Example of a collision for SHA-1 with modified constants K1...4.

K1...4 5a827999 4eb9d7f7 bad18e2f d79e5877

IV 67452301 efcdab89 98badcfe 10325476 c3d2e1f0

m ffd8ffe1 e2001250 b6cef608 34f4fe83 ffae884f afe56e6f fc50fae6 28c40f81

1b1d3283 b48c11bc b1d4b511 a976cb20 a7a929f0 2327f9bb ecde01c0 7dc00852

m∗ ffd8ffe2 c2001224 3ecef608 dcf4fee1 37ae880c 87e56e6b bc50faa4 60c40fc7

931d3281 b48c11a8 b9d4b513 0976cb74 2fa929f2 a327f9bb 44de01c3 d5c00832

Δm 00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046

88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060

h(m) 1896b202 394b0aae 54526cfa e72ec5f2 42b1837e

Below, we first discuss the constraints that the files have to satisfy, in order
to collide with our malicious SHA-1. We then investigate common binary file for-
mats to determine whether they could allow us to construct a malicious SHA-1
for which two valid files collide. Finally, we present actual collisions, and char-
acterize the associated instances of malicious SHA-1.

4.1 Constraints

The attack strategy and the available message differences impose several con-
straints for possible applications. Most importantly, the exact hash function
definition with the final constants is only fixed during the attack. This implies
that the differences between the two final files will be limited to a single block.
In addition, this block must correspond to the first 512 bits of the final files.
After this initial collision block, the file pair can be extended arbitrarily with a
common suffix. Due to this limitation, for example, the method that was used
to find colliding PostScript files for MD5 [12] cannot be applied here.

For the exact values of the first block, the attack allows a certain freedom.
The attacker can fix the values of a few bits in advance. However, fixing too
many bits will increase the attack complexity. Additionally, choosing the bits
is constrained by the fixed message difference. In all our example files, we use
message difference MD1 from Table 3, which offers a slightly better expected
attack complexity than MD2 and MD3. All of the available message differences
have a difference in the first word, as well as the last byte.

4.2 Binary File Format Overview

Binary file formats typically have a predefined structure and in particular a
“magic signature” in their first bytes, which is used to identify the type of binary
and to define diverse metadata. As a preliminary to the construction of colliding
binaries, we provide basic information on binary files so as to understand the
obstacles posed for the construction of colliding files.

We also discuss both our failed and successful attempts to build colliding
binary executables. Note that once a collision can be created—that is, if the

Malicious Hashing: Eve’s Variant of SHA-1 13

block difference can be introduced without fatally altering the file structure—
the programs executed in each of the two colliding files can be fully controlled.
In practice, both programs may execute a legitimate application, but one of
the two colliding files prepends the execution of a trojan that will persistently
compromise the machine.

Magic Signatures. Most binary file formats enforce a “magic signature” at
offset 0, to enable programs to recognize the type of file, its version, etc., in
order to process it according to its specific format. For example, the utilities
file and binwalk rely mostly on magic signatures to identify files and their
type. Some formats, notably most archive formats, also allow the signature to
start later in the file, at a higher offset.

Signatures are typically 4 bytes long. Some are longer, such as that of the PNG
format (89504e470d0a1a0a), or the RAR archive format (526172211a0700), and
some are smaller (PE’s 2-byte “MZ”, TIFF’s 2-byte “MM” and “II”). Note that
none of our colliding blocks offer four unmodified consecutive bytes. This implies
that collisions for our malicious SHA-1 cannot be files with a fixed 4-byte signature
at offset 0.

Executables: PE. The PE (Portable Executable) format is the standard for-
mat for Windows executables (.exe files). The PE format, as defined in 1993,
is based on the older DOS EXE format (from 1981). PE thus retains the MZ
signature (4d5a) from DOS, however in PE it is mostly useless: the only com-
ponents of the header used are the MZ signature and the last component, which
is a pointer to the more modern PE header. This leaves an entirely controllable
buffer of 58 bytes near the top of the file, which is tempting to use to build
colliding PEs.

PE thus seems an interesting candidate for malicious collisions: it is very
commonly used, and its header provides freedom degrees to introduce differences.
The only restrictions in the header are in the first two bytes (which must be set
to the MZ string) and in the four bytes at offset 60, where the 4-byte pointer to
the PE header is encoded.

Unfortunately, the structure of the differential attack forces the most signif-
icant byte of the PE header to be (at least) 40. This gives a minimal pointer
of 40000000, that is, 1 GiB. Such a file, even if syntaxically correct, is not sup-
ported by Windows: it is correctly parsed, but then the OS fails to load it (In
practice, the biggest accepted value for this pointer in a working PE is around
9000000).

Due to this limitation, we could not construct valid compact PE executables
that collide for a malicious SHA-1. Note that the Unix and OS X counterpart of
PEs (ELF and Mach-O files, respectively) fix at least the first 4 bytes, and thus
cannot be exploited for malicious collisions either.

Headerless Executables: MBR and COM. Some older formats like mas-
ter boot records (MBR) and DOS executables (COM) do not include a magic

14 A. Albertini et al.

signature or any header. Instead, code execution starts directly at offset 0. By
introducing a jump instruction to the subsequent block, we can have total con-
trol of the first block and thus create collisions (as long as the difference allows
for the jump instruction with distinct reasonable addresses). Running in 16-bit
x86 code, the block can start with a jump, encoded as eb XX, where XX is a
signed char that should be positive. Both blocks will immediately jump to dif-
ferent pieces of code of colliding MBR or colliding COM. To demonstrate the
feasibility of this approach, example files are given in the appendix.

Compressed Archives: RAR and 7z. Like any other archive file format, the
RAR archive allows to start at any offset. However, unlike the ZIP, it is parsed
top-down. So if a block creates a valid Rar signature that is broken by its twin,
then both files can be valid Rars yet different. We could thus create two colliding
archives, which can each contain arbitrary content. A very similar method can
be used to build colliding 7z archives (and probably other types of compressed
archives).

Images: JPEG. The JPEG file format is organized in a chunk-based manner:
chunks are called segments, and each segment starts with a 2 bytes marker.
The first byte of the marker is always ff, the second is anything but 00 or ff.
A JPEG file must start with a “Start Of Image” (SOI) marker, ffd8. Segments
have a variable size, encoded directly after the marker, on 2 bytes, in little endian
format. Typically, right after the SOI segment starts the APP0 segment, with
marker ffe0. This segment contains the familiar “JFIF” string.

However, most JPEG viewers do not require the second segment to start
right after SOI. Adding megabytes of garbage data between the SOI marker and
the APP0 segment of a JPEG file will still make it valid for most tools – as long
as this data does not contain any valid marker, ff(01-fe).

Not only we can insert almost-random data before the first segment, but we
can insert any dummy segment that has an encoded length – this will enable us
to control the parser, to give it the data we want. If each of our colliding files
contains a valid segment marker with a different size and offset, each of them
can have a valid APP0 segment at a different offset (provided that the sum of
segment size and segment offset differs). To make the bruteforcing phase easier,
we can use any of the following segments:

1. the APPx segments, with marker ffe(0-f)
2. the COM segment, with marker fffe

So, after getting 2 colliding blocks, creating 2 JPEG headers with a suitable
dummy segment, we can start the actual data of file J1 after the second dummy
segment (with larger sum of segment size and offset). Right after the first dummy
segment, we start another dummy segment to cover the actual data of file J1.
After this second dummy segment, the data of the file J2 can start. If the length
of any of the JPEG file cannot fit on 2 bytes, then several dummy segments need
to be written consecutively. Thus, we are able to get a colliding pair of valid files,
on a modern format, still used daily by most computers.

Malicious Hashing: Eve’s Variant of SHA-1 15

Combining Formats: Polyglots. Since the formats discussed above require
their magical signatures at different positions in the file, it is possible to construct
a first block (of 64 bytes) that suits multiple file formats. For instance, JPEG
requires fixed values in the first few words, while archives like RAR can start
their signature at a higher offset. Thus, we can construct colliding block pairs for
a fixed selection of constants that can later be used to construct colliding files
of multiple types with almost arbitrary content. Examples are given in Sect. 4.3
(JPEG-RAR) and in the appendix (MBR-RAR-Script).

4.3 Example Files

We use the attack strategy from Sect. 3 to build a colliding pair of JPEG images
and one of RAR archives, both for the same set of malicious SHA-1 constants.
Since JPEG requires the file to start with ffd8, MD1 is the only one of the
message differences given in Table 3 that is suitable for a collision between two
JPEG files. The following bytes are set to ffe?, where ? differs between the two
files and can be any value. Additionally, the last byte of this first 64-byte-block
is fixed to also allow the block to be used for RAR collisions: It is set to the
first byte of the RAR signature, 52, in one of the blocks, and to a different value
as determined by MD1 in the other block. Using these constraints as a starting
point, we search for a differential characteristic. The result is given in Table 5
in the appendix. Note that at this point, the first round constant K1 is fixed to
an arbitrary value (we use the original constant), while K2,K3,K4 are still free.
They are determined together with the full first 64-byte block in the next phase.
The result is the message pair already given in Table 4. The malicious SHA-1

jpgrar0.jpg

jpgrar1.jpg

good
.txt

“good”

jpgrar0.rar

evil
.txt

“evil”

jpgrar1.rar

collision collision

id
en

ti
ca

l
id

en
ti

ca
l

Fig. 2. Colliding JPEG/RAR polyglot file pair for malicious SHA-1 (cf. Table 4).

16 A. Albertini et al.

T
a
b
le

5
.

C
h
a
ra

ct
er

is
ti

c
co

rr
es

p
o
n
d
in

g
to

m
es

sa
g
e

d
iff

er
en

ce
M
D

1
,

w
it

h
a
d
d
it

io
n
a
l

co
n
st

ra
in

ts
fo

r
co

ll
id

in
g

J
P

E
G

/
R

A
R

p
o
ly

g
lo

t
fi
le

s
(c

f.
S
ec

t.
4
.3

).

Malicious Hashing: Eve’s Variant of SHA-1 17

variant differs from the standardized SHA-1 in the values of 45 bits of the round
constants.

Now, we can append suitable followup blocks to create valid JPEG or RAR
file pairs, both with arbitrary content. As an example, both images in Fig. 2
hash to h(m) = 1896b202 394b0aae 54526cfa e72ec5f2 42b1837e using the
malicious round constants K1 = 5a827999, K2 = 4eb9d7f7, K3 = bad18e2f,
K4 = d79e5877.

In a similar fashion, we were able to construct another example block pair
for a different set of SHA-1 constants that is suitable for master boot records,
shell scripts and RAR archives. All example file pairs and code for verification
can be found online at http://malicioussha1.github.io/.

Acknowledgments. The work has been supported by the Austrian Government
through the research program FIT-IT Trust in IT Systems (Project SePAG, Project
Number 835919).

A Full Characteristic for Malicious SHA-1

Table 5 shows a full differential characteristic corresponding to message difference
MD1 using the notation of generalized conditions of [14]. The message block pair
given in Table 4 is based on this differential characteristic, as is the example file
pair in Sect. 4.3 that uses this block pair as a first block.

The table shows the message expansion words Wi on the right-hand side and
the state words Ai on the left-hand side. Note that the state words Bi, . . . , Ei

can be easily derived from this representation.
The characteristic already specifies the necessary format fragments required

in Sect. 4.3: The first 28 bits of word W0 are set to ffd8ffe to accommodate
the JPEG format, and the last 8 bits of word W15 are fixed as 52 (in one message
m, for the RAR header) or 32 (in the other message m∗). Additionally, the first
round constant is already fixed to the original value K1 = 5a827999, while
K2,K3,K4 are still free to be chosen during message modification.

References

1. Adinetz, A.V., Grechnikov, E.A.: Building a collision for 75-round reduced SHA-1
using GPU clusters. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.)
Euro-Par 2012. LNCS, vol. 7484, pp. 933–944. Springer, Heidelberg (2012)

2. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware trojans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
197–214. Springer, Heidelberg (2013)

3. Biham, E.: Cryptanalysis of Patarin’s 2-round public key system with S boxes (2R).
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408–416. Springer,
Heidelberg (2000)

4. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

http://malicioussha1.github.io/

18 A. Albertini et al.

5. Blaze, M., Feigenbaum, J., Leighton, T.: Master key cryptosystems. CRYPTO 1995
rump session (1995). http://www.crypto.com/papers/mkcs.pdf

6. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
7. Brown, D.R.L., Gjøsteen, K.: A security analysis of the NIST SP 800–90 ellip-

tic curve random number generator. Cryptology ePrint Archive, Report 2007/048
(2007)

8. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

9. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-
resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 165–182. Springer, Heidelberg (2006)

10. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G., [6], pp. 416–
427

11. Daniel R. L. Brown, S.A.V.: Elliptic curve random number generation. Patent. US
8396213 B2 (2006). http://www.google.com/patents/US8396213

12. Daum, M., Lucks, S.: Hash collisions (the poisoned message attack). CRYPTO
2005 rump session (2005). http://th.informatik.uni-mannheim.de/people/lucks/
HashCollisions/

13. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: on the
full cost of collision search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

14. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

15. Filiol, E.: Malicious cryptography techniques for unreversable (malicious or not)
binaries. CoRR abs/1009.4000 (2010)

16. Green, M.: A few more notes on NSA random number generators. Blog post,
December 2013. http://blog.cryptographyengineering.com/2013/12/a-few-more-
notes-on-nsa-random-number.html

17. Green, M.: The many flaws of Dual EC DRBG. Blog post, September 2013. http://
blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html

18. Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881.
Springer, Heidelberg (2013)

19. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer,
Heidelberg (2007)

20. Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009)

21. Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against SHA-1. Des. Codes Crypt. 59(1–3), 247–263 (2011)

22. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

23. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q., [18], pp. 262–278

24. Menn, J.: Exclusive: secret contract tied NSA and security industry pioneer.
Reuters, December 2013. http://www.reuters.com/article/2013/12/20/us-usa-
security-rsa-idUSBRE9BJ1C220131220

25. Merkle, R.C.: One way hash functions and DES. In: Brassard, G., [6], pp. 428–446

http://www.crypto.com/papers/mkcs.pdf
http://www.google.com/patents/US8396213
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://blog.cryptographyengineering.com/2013/12/a-few-more-notes-on-nsa-random-number.html
http://blog.cryptographyengineering.com/2013/12/a-few-more-notes-on-nsa-random-number.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220

Malicious Hashing: Eve’s Variant of SHA-1 19

26. Murdoch, S.J., Lewis, S.: Embedding covert channels into TCP/IP. In: Barni,
M., Herrera-Joancomart́ı, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005.
LNCS, vol. 3727, pp. 247–261. Springer, Heidelberg (2005)

27. NIST: Recommendation for random number generation using deterministic random
bit generators (revised). NIST Special Publication 800–90 (2007)

28. NIST: Secure hash standard (SHS). FIPS PUB 180–4 (2012)
29. Open crypto audit. http://opencryptoaudit.org. Accessed 28 May 2014
30. Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polyno-

mials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368.
Springer, Heidelberg (1997)

31. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision
attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

32. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

33. Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg (1997)

34. Schneier, B.: The NSA is breaking most encryption on the internet. Blog post, Sep-
tember 2013. https://www.schneier.com/blog/archives/2013/09/the nsa is brea.
html

35. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. Cryptology ePrint Archive, Report 2006/190 (2006)

36. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: USENIX
Security Symposium, pp. 59–75 (2006)

37. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In: Johansson, T., Nguyen, P.Q., [18], pp. 245–261

38. Wagner, D., Bionbi, P.: Misimplementation of RC4. Submission for the Third
Underhanded C Contest (2007). http://underhanded.xcott.com/?page id=16

39. Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. NIST - First Cryptographic
Hash Workshop, October 31–November 1 (2005). http://csrc.nist.gov/groups/ST/
hash/documents/Wang SHA1-New-Result.pdf

40. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

41. Wu, H., Bao, F., Deng, R.H., Ye, Q.-Z.: Cryptanalysis of Rijmen-Preneel trapdoor
ciphers. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 126–
132. Springer, Heidelberg (1998)

42. Ding-Feng, Y., Kwok-Yan, L., Zong-Duo, D.: Cryptanalysis of 2R schemes.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 315–325. Springer,
Heidelberg (1999)

43. You broke the internet. http://youbroketheinternet.org. Accessed 28 May 2014
44. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,

Chichester (2004)
45. Young, A., Yung, M.: Monkey: black-box symmetric ciphers designed for

MONopolizing KEYs. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp.
122–133. Springer, Heidelberg (1998)

46. Young, A.L., Yung, M.: Backdoor attacks on black-box ciphers exploiting low-
entropy plaintexts. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727, pp. 297–311. Springer, Heidelberg (2003)

http://opencryptoaudit.org
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html
http://underhanded.xcott.com/?page_id=16
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://youbroketheinternet.org

Binary Elligator Squared

Diego F. Aranha1, Pierre-Alain Fouque2,3, Chen Qian4, Mehdi Tibouchi5,
and Jean-Christophe Zapalowicz6(B)

1 Institute of Computing, University of Campinas, Campinas, Brazil
dfaranha@ic.unicamp.br

2 Université de Rennes 1, Rennes, France
3 Institut Universitaire de France, Paris, France

fouque@irisa.fr
4 ENS Rennes, Bruz, France
chen.qian@ens-rennes.fr

5 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

6 Inria, Paris, France
jean-christophe.zapalowicz@inria.fr

Abstract. Two efficient approaches have been recently proposed to
make random points on elliptic curves representable as uniform ran-
dom strings (a useful property for anonymity and censorship circum-
vention applications): the “Elligator” technique due to Bernstein et al.
(ACM CCS 2013), which is simple but supports a somewhat limited
set of elliptic curves, and its variant “Elligator Squared” suggested by
Tibouchi (FC 2014), which is slightly more complex but supports arbi-
trary curves. Despite that complexity, it was speculated that Elligator
Squared could have an efficiency edge in some contexts, as it avoids a
rejection sampling step necessary for Elligator, and can be used with a
larger class of point encoding functions, some of them very efficient.

In this paper, we show that Elligator Squared can indeed be imple-
mented very efficiently with a suitable choice of point encoding function.
More precisely, we consider the binary curve setting, and implement the
Elligator Squared bit string representation algorithm based on a suit-
ably optimized version of the Shallue–van de Woestijne characteristic 2
encoding. On the fast binary curve of Oliveira et al. (CHES 2013), our
implementation runs in an average of only 22850 Haswell cycles.

We also compare implementations of Elligator and Elligator Squared
on a curve supported by Elligator, namely Curve25519, and find that
generating a random point and its uniform bitstring representation is
around 35–40 % faster with Elligator for protocols using a fixed base
point, but 30–35% faster with Elligator Squared in the case of a variable
base point. Both are significantly slower than our binary curve imple-
mentation.

Keywords: Elligator · Binary elliptic curves · Efficient implementa-
tion · PCLMULQDQ · Anonymity and privacy

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 20–37, 2014.
DOI: 10.1007/978-3-319-13051-4 2

Binary Elligator Squared 21

1 Introduction

Elliptic curves offer many advantages for public-key cryptography compared to
more traditional settings like RSA and finite field discrete logarithms, including
higher efficiency, a much smaller key size that scales gracefully with security
requirements, and a rich geometric structure that enables the construction of
additional primitives like bilinear pairings. On the Internet, adoption of elliptic
curve cryptography is growing in general-purpose protocols like TLS, SSH and
S/MIME, as well as anonymity and privacy-enhancing tools like Tor (which
favors ECDH key exchange in recent versions) and Bitcoin (which is based on
ECDSA).

For censorship circumvention applications, however, ECC presents a weak-
ness: points on a given elliptic curve, when represented in a usual way (even in
compressed form) are easy to distinguish from random bit strings. For exam-
ple, the usual compressed bit string representation of an elliptic curve point
is essentially the x-coordinate of the point, and only about half of all possible
x-coordinates correspond to valid points (the other half being x-coordinates of
points of the quadratic twist). This makes it relatively easy for an attacker to
distinguish ECC traffic (the transcripts of multiple ECDH key exchanges, say)
from random traffic, and then proceed to intercept, block or otherwise tamper
with such traffic.

To alleviate that problem, one possible approach is to modify protocols so
that transmitted points randomly lie either on the given elliptic curve or on its
quadratic twist (and the curve parameters must therefore be chosen to be twist-
secure). This is the approach taken by Möller [24], who constructed a CCA-secure
KEM with uniformly random ciphertexts using an elliptic curve and its twist.
This approach has also been used in the context of kleptography, as considered
by Young and Yung [32,33], and has already been deployed in circumvention
tools, including StegoTorus [30], a camouflage proxy for Tor, and Telex [31],
an anticensorship technology that uses a covert channel in TLS handshakes to
securely communicate with friendly proxy servers. However, since protocols and
security proofs have to be adapted to work on both a curve and its twist, this
approach is not particularly versatile, and it imposes additional security require-
ments (twist-security) on the choice of curve parameters.

A different approach, called “Elligator”, was presented at ACM CCS 2013
by Bernstein, Hamburg, Krasnova and Lange [6]. Their idea is to leverage an
efficiently computable, efficiently invertible algebraic function that maps the
integer interval S = {0, . . . , (p − 1)/2}, p prime, injectively to the group E(Fp)
where E is an elliptic curve over Fp. Bernstein et al. observe that, since ι is
injective, a uniformly random point P in ι(S) ⊂ E(Fp) has a uniformly random
preimage ι−1(P) in S, and use that observation to represent an elliptic curve
point P as the bit string representation of the unique integer ι−1(P) if it exists.
If the prime p is close to a power of 2, a uniform point in ι(S) will have a close
to uniform bit string representation.

This method has numerous advantages over Möller’s twisted curve method:
it is easier to adapt to existing protocols using elliptic curves, since there is

22 D.F. Aranha et al.

no need to modify them to also deal with the quadratic twist; it avoids the
need to publish a twisted curve counterpart of each public key element, hence
allowing a more compact public key; and it doesn’t impose additional security
requirements like twist-security. But it crucially relies on the existence of an
injective encoding ι, only a few examples of which are known [6,13,17], all of
them for elliptic curves of non-prime order over large characteristic fields. This
makes the method inapplicable to implementations based on curves of prime
order or on binary fields, which rules out most standardized ECC parameters [1,
11,15,23], in particular. Moreover, the rejection sampling involved (when a point
P is picked outside ι(S), the protocol has to start over) can impose a significant
performance penalty.

To overcome these limitations, Tibouchi [29] recently proposed a variant of
Elligator, called “Elligator Squared”, in which a point P ∈ E(Fq) is represented
not by a preimage under an injective encoding ι, but by a randomly sampled
preimage under an essentially surjective map F

2
q → E(Fq) with good statistical

properties, known as an admissible encoding following a terminology introduced
by Brier et al. [10]. By results due to Farashahi et al. [14], such admissible encod-
ings are known to exist for all isomorphism classes of elliptic curves, including
curves of prime order and binary curves. Since admissible encodings are essen-
tially surjective, the approach also eliminates the need for rejection sampling at
the protocol level.

Our Contributions. While the Elligator Squared approach is quite versatile,
its efficiency is highly dependent on how fast the underlying admissible encoding
can be computed and sampled, and the same can be said of Elligator in the
settings where it can be used. Since, to the best of our knowledge, no detailed
implementation results or concrete performance numbers have been published so
far for the underlying encodings, one only has some rough estimates to go by. For
Elligator, Bernstein et al. give ballpark Westmere cycle count figures based on
earlier implementation results [7], and for Elligator Squared, Tibouchi provides
some average operation counts in [29] for a few selected encoding functions. No
performance-oriented implementation is available for either approach.

In this paper, we provide the first such implementation for Elligator Squared,
and do so in the binary curve setting, which had not been considered by Tibouchi.
Binary curves provide a major advantage for algorithms like Elligator Squared
due to the existence of a point encoding function, the binary Shallue–van de
Woestijne encoding [27], that can be computed without base field exponentia-
tions. Using the framework of Farashahi et al. [14], one can obtain an admissible
encoding from that function, and hence use it to implement Elligator Squared.

We propose various algorithmic improvements and computation tricks to
obtain a fast evaluation of the binary Shallue–van de Woestijne encoding and of
the associated Elligator Squared sampling algorithm. In particular, our descrip-
tion is much more efficient than the one given in [9, Appendix E].

Based on these algorithmic improvements, we performed software imple-
mentations of Elligator Squared on the record-setting binary GLS curve of

Binary Elligator Squared 23

Oliveira et al., defined over F2254 [25]. We dedicate special attention to optimiz-
ing the performance-critical operations and introduce corresponding novel tech-
niques, namely a new point addition formula in λ-affine coordinates and a faster
approach for constant-time half-trace computation over quadratic extensions of
F2m . Moreover, timings are presented for both variable-time and constant-time
field arithmetic.1 The resulting timings compare very favorably to previously
suggested estimates.

Finally, as a side contribution, we also propose concrete cycle counts on Ivy
Bridge and Haswell for both Elligator and Elligator Squared on the Edwards curve
Curve25519 [4] based on the publicly available implementation of Ed25519 [5].
We find that, on this curve, the Elligator approach is roughly 35–40 % faster than
Elligator Squared for protocols that rely on fixed-base scalar multiplication, but
conversely, for protocols that rely on variable-base scalar multiplication, Elligator
Squared is 30–35 % faster. Both approaches are significantly slower than what we
achieve on the same CPU with our binary curve implementation.

2 Preliminaries

Let E be an elliptic curve over a finite field Fq.

2.1 Well-Bounded Encodings

Some technical definitions are required to describe the conditions under which
an “encoding function” f : Fq → E(Fq) can be used in the Elligator Squared
constructions. See [14,29] for details.

Definition 1. A function f : Fq → E(Fq) is said to be a B-well-distributed
encoding for a certain constant B > 0 if for any nontrivial character χ of E(Fq),
the following holds: ∣∣∣∣ ∑

u∈Fq

χ(f(u))
∣∣∣∣ ≤ B

√
q.

Definition 2. We call a function f : Fq → E(Fq) a (d,B)-well-bounded encod-
ing, for positive constants d,B, when f is B-well-distributed and all points in
E(Fq) have at most d preimages under f .

2.2 Elligator Squared

Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding and let f⊗2 the tensor
square defined by:
1 We point out that using constant-time arithmetic for Elligator Squared is not

required in most realistic adversarial models, but it does offer protection against very
powerful distinguishing attackers, so the paranoid may prefer that option nonethe-
less.

24 D.F. Aranha et al.

f⊗2 : F2
q → E(Fq)

(u, v) �→ f(u) + f(v).

Tibouchi shows in [29] that if we sample a uniformly random preimage under
f⊗2 of a uniformly random point P on the curve, we get a pair (u, v) ∈ F

2
q which

is statistically close to uniform. Moreover he proves that sampling uniformly ran-
dom preimages under f⊗2 can be done efficiently for all points P ∈ E(Fq) except
possibly a negligible fraction of them [29, Theorem 1]. The sampling algorithm
Tibouchi proposed is described as Algorithm 1. The idea is to randomly pick a
random u and then to compute a correct candidate v such that P = f(u)+f(v).
The last steps of the algorithm (step 5 to 7) are also needed in order to ensure
the uniform distribution of the output (u, v).

Algorithm 1. Preimage sampling algorithm for f⊗2.
1: function SamplePreimage(P)
2: repeat

3: u
$← Fq

4: Q ← P − f(u)
5: i ← #f−1(Q)

6: j
$← {1, · · · , d}

7: until j ≤ i
8: {v1, · · · , vt} ← f−1(Q)
9: return (u, vj)

10: end function

2.3 Shallue–van de Woestijne in Characteristic 2

In this section, we recall the Shallue–van de Woestijne algorithm in characteristic
2 [27], following the more explicit presentation given in [9, Appendix E]. An
elliptic curve over a field F2n is a set of points (x, y) ∈ (F2n)2 verifying the
equation:

Ea,b : Y 2 + X · Y = X3 + a · X2 + b

where a, b ∈ (F2n)2. Let g be the rational function x �→ x−2 · (x3 + a · x2 + b).
Letting Z = Y/X, the equation for Ea,b can be rewritten as Z2 + Z = g(X).

Theorem 1. Let g(x) = x−2 · (x3 + a · x2 + b) where a, b ∈ (F2n)2. Let

X1(t, u) =
t · c

1 + t + t2
X2(t, u) = t · X1(t, u) + c X3(t, u) =

X1(t, u) · X2(t, u)

X1(t, u) + X2(t, u)

where c = a+u+u2. Then g(X1(t, u))+g(X2(t, u))+g(X3(t, u)) ∈ h(F2n) where
h is the map h : z �→ z2 + z.

From Theorem 1, we have that at least one of the g(Xi(t, u)) must be in h(F2n),
which leads to a point in Ea,b(F2n). Indeed, we have that h(F2n) = {z ∈
F2n |Tr(z) = 0}, where Tr is the trace operator Tr : F2n → F2 with:

Binary Elligator Squared 25

Tr z =
n−1∑
i=0

z2
i

(one inclusion is obvious and the other one follows from the fact that the kernel
of the F2-linear map h is {0, 1}, hence its image is a hyperplane). As a result,∑3

i=1 Tr(g(Xi)) = 0 and therefore at least one of the Xi must satisfy Tr(g(Xi)) =
0 since Tr is F2-valued. Such an Xi is indeed the abscissa of a point in Ea,b(F2n),
and we can find its y-coordinate by solving the quadratic equation Z2 + Z =
g(Xi). That equation is F2-linear, so finding Z amounts to solve a linear system
over F2. This yields the point-encoding function described in Algorithm 2.

In the description of that algorithm, the solution of the quadratic equation
is expressed in terms of a linear map QS : KerTr → F2n (“quadratic solver”),
which is a right inverse of z �→ z2 + z. It is chosen among such right inverses in
such a way that membership in its image is computed efficiently using a single
trace computation. For example, when n is odd, it is customary to choose QS(x)
as the trace zero solution of z2 +z = x, in which case QS is simply the half-trace
map HTr defined as:

HTr : z �→
(n−1)/2∑

i=0

z2
2i

.

When n = 2m with m odd, we have F2n = F2m [w]/(w2 + w + 1) and we can
define QS(x) as the solution z = z0 + z1w of z2 + z = x such that Tr z0 = 0 (and
this clearly generalizes to extension degrees with higher 2-adic valuation). The
efficient computation of QS in that case is discussed in Sect. 4.

Algorithm 2. Shallue–van de Woestijne algorithm in characteristic 2.
Require: a, b ∈ F2n and t, u ∈ F2n

Ensure: (x, y) ∈ Ea,b

1: c ← a + u + u2

2: X1 ← t · c/(1 + t + t2)
3: X2 ← t · X1 + c
4: X3 ← X1 · X2/(X1 + X2)
5: for j = 1 to 3 do
6: hj ← (X3

j + a · X2
j + b)/X2

j

7: if Tr(hj) = 0 then return (Xj , QS(hj) · Xj)
8: end if
9: end for

Algorithm 2 actually maps two parameters t, u to a rational point on the
curve Ea,b. One can obtain a map f : Fq → Ea,b(Fq) by picking one of the two
parameters as a suitable constant and letting the other one vary. In what follows,
for efficiency reasons, we fix t and use u as the variable parameter.

One can check that the resulting function is well-bounded in the sense of
Sect. 2.1. Indeed, the framework of Farashahi et al. [14] can be used to establish

26 D.F. Aranha et al.

that it is a well-distributed encoding: the proof is easily adapted from the one
given in [18] for the odd characteristic version of the Shallue–van de Woestijne
algorithm. Moreover, each curve point has at most 6 preimages under the corre-
sponding function: there are at most two values of u that yield a given value of
X1, and similarly for X2,X3. Thus, we obtain a (d,B)-well-bounded encoding
for an explicitly computable constant B and d = 6.

2.4 Lambda Affine Coordinates

In order to have more efficient binary elliptic curve arithmetic, we will use lambda
coordinates [22,25,26]. Given a point P = (x, y) ∈ Ea,b(F2n), with x �= 0, its
λ-affine representation of P is defined as (x, λ) where λ = x + y/x. The λ-affine
equation of the Weierstrass Equation of the curve y2 + xy = x3 + ax2 + b is
(λ2 + λ + a)x2 = x4 + b. Note that the condition x �= 0 is not restrictive in
practice since the only point x = 0 satisfying Weierstrass equation is (0,

√
b).

3 Algorithmic Aspects

We focus on Algorithm 1 proposed by Tibouchi in [29], which we adapt for the
specific characteristic 2 finite field. More precisely, we consider an elliptic curve
over a field F2n that satisfies the equation in λ-coordinates:

Ea,b : (λ2 + λ + a)x2 = x4 + b

where a, b ∈ (F2n)2. The (6, B)-well-bounded encoding we consider for our effi-
cient Elligator Squared implementation is the binary Shallue–van de Woestijne
algorithm recalled in Sect. 2.3.

One of its properties is that among three candidates denoted X1,X2,X3,
either exactly one of them or all three are x-coordinate of a rational point over
the binary elliptic curve Ea,b, and the algorithm outputs the first correct one.
Owing to this property, some additional verifications are needed during preimage
computation, since it is not always true that SWChar2X(SWChar2−1

X (Xi)) =
Xi for i = 2, 3 when it is true for i = 1, where we denote by SWChar2X
the x-coordinate of the binary Shallue–van de Woestijne algorithm, and by
SWChar2−1

X an arbitrary preimage thereof (see the discussion on the subroutine
PreimagesSW in Sect. 3.2 for more details). We also have to consider another
property of this algorithm, concerning the output. Indeed the y-coordinate has a
specific form and thus, before searching for some preimages of the point Q, one
has to test whether this property is verified (see the discussion on the overall
complexity in Sect. 3.3 for more details).

The details of our preimage sampling algorithm in characteristic 2 are des-
cribed in Algorithm 3 with t fixed to a constant such that t(t+1)(t2+ t+1) �= 0,
i.e. t �∈ F4. Note that we make the choice to use the λ-coordinates for efficiency
reasons justified in Sect. 3.2. The rest of the section consists in describing the
two subroutines SWChar2 and PreimagesSW, as well as in evaluating the
overall complexity of Algorithm 3.

Binary Elligator Squared 27

Algorithm 3. Preimage Sampling Algorithm in Characteristic 2
1: Precomputed: t1 = t

1+t+t2
, t2 = 1+t

1+t+t2
, t3 = t(1+t)

1+t+t2

2: function SamplePreimage(Ea,b, P)
3: repeat
4: repeat

5: u
$← F2n

6: R ← SWChar2(Ea,b, u, t1, t2, t3)
7: Q ← P − R
8: until λQ + xQ ∈ ImQS � Test fails by convention for Q at infinity
9: k, S = {v1, · · · , vk} ← PreimagesSW(Ea,b, Q, t1, t2, t3)

10: j
$← {1, · · · , 6}

11: until j ≤ k
12: return (u, vj)
13: end function

3.1 The Subroutine SWCHAR2

The first subroutine represents the binary Shallue–van de Woestijne algorithm
and its pseudocode for our case is given as Algorithm 4. Given a value u ∈ F2n ,
it outputs the lambda coordinates of a point over the binary elliptic curve Ea,b.

Algorithm 4. Efficient Binary Shallue–van de Woestijne Algorithm
1: function SWChar2(Ea,b, u, t1, t2, t3)
2: c ← u2 + u + a
3: c−1 ← 1/c
4: for j = 1 to 3 do � Compute hj and perform a trace test
5: Xj ← tj · c � or X3 ← X1 + X2 + c
6: X−j ← 1/tj · c−1 � 1/tj can also be precomputed
7: hj ← (X−j)

2 · b + Xj + a
8: if Tr(hj) = 0 then � At least one of the three potential tests will succeed
9: x ← Xj

10: λ ← QS(hj) + x
11: break � Only take into account the first correct solution
12: end if
13: end for
14: return (x, λ) � Lambda coordinates of a point over Ea,b

15: end function

Since the field inversion is by far the most expensive field operation (see [25]
for experimental timings and Table 2 below), we have modified Algorithm 2 so
that we have a single inversion of c to perform. Indeed Algorithm 2 requires at
most 4 field inversions: the first one at step 4 and the three others at step 6.
However the parameters Xi and 1/Xi for j = 1, 2, 3 can be expressed using c,
1/c and some constants depending on t which can be precomputed (see Table 1).
Note that X3 can be computed as c · t3, or more efficiently as X1 + X2 + c

28 D.F. Aranha et al.

Table 1. Efficient computation of values Xi and 1/Xi for i = 1, · · · 3. The values

t1 = t
1+t+t2

, 1/t1, t2 = 1+t
1+t+t2

, 1/t2 and 1/t3 = 1+t+t2

t(1+t)
can be precomputed, with t a

constant such that t �∈ F4.

X1 ← t1 · c 1/X1 ← 1/t1 · 1/c

X2 ← t2 · c 1/X2 ← 1/t2 · 1/c

X3 ← X1 + X2 + c 1/X3 ← 1/t3 · 1/c

Table 2. Timings for Elligator Squared and underlying field arithmetic in two Intel
platforms. Results are in clock cycles and were taken as the average of 104 executions
with random inputs. FB/VB results refer to generating a random point with fixed-base
and variable-base scalar multiplication respectively, using the constant-time, timing-
attack protected scalar multiplication from [25], and computing its Elligator Squared
representation with variable-time arithmetic.

Operation Ivy Bridge Haswell

Field squaring 13 15

Sparse multiplication 80 44

Multiplication 94 48

Inversion 959 734

Constant-time inversion 1,783 1,610

Quadratic solver 55 50

Constant-time quadratic solver 1,213 1,245

Point addition 1,500 1,026

Constant-time point addition 2,367 2,137

Elligator Squared 23,680 22,850

Constant-time Elligator Squared 52,850 51,750

FB with Elligator Squared 127,430 80,180

VB with Elligator Squared 138,480 83,680

but this requires to keep in memory X1 and X2. Finally this algorithm requires
a single field inversion, a QS computation and some negligible field operations
(multiplications, squarings and trace computations).

3.2 The Subroutine PREIMAGESSW

The second subroutine is useful to compute the number of preimages of the point
Q = (xQ, λQ) by Algorithm 4. Its pseudocode is detailed as Algorithm 5 and
refers to the steps 5 and 8 of Algorithm 1.

This subroutine is more complex due to the properties of the Shallue–van de
Woestijne algorithm. More precisely, there is an order relation in Algorithm 4:
if X1 corresponds to a x-coordinate of a point over the elliptic curve, then it

Binary Elligator Squared 29

will output this point, even if X2 and X3 also correspond to a possible x-
coordinate. Thus, the equality SWChar2(SWChar2−1(Xj)) = Xj is true for
j = 1 but not necessarily for j = 2, 3. In others words, for j = 2, 3 a solution of
SWChar2−1(Xj) is not necessarily a preimage of Xj by SWChar2.

Starting from the equations xQ = Xj(t, u) = c(u) · tj for j = 1, 2, 3, with
c(u) = u2 +u+a, the main idea of Algorithm 5 consists in testing if there exists
some values of u which satisfy these equations. If one finds some candidates for
u, one also has to verify if they really correspond to preimages by Algorithm 4.
From an equation xQ = Xj(t, u) we can obtain an equation u+u2 = xQ/tj +a =
αj(a, t) which has two solutions if Tr(αj(a, t)) = 0 and no solution otherwise.
As an example α1(a, t) is equal to xQ · (1 + t + t2)/t + a. The solutions are then
u1
0 = QS(αj(a, t)) and u1

1 = u1
0+1. There are thus at most 6 possible solutions for

all values of j. Now for the cases xQ = X2(t, u) and xQ = X3(t, u), it remains
to perform a verification. Actually, denoting u2

0 one of both solutions of the
equation xQ = X2(t, u) if it exists, the computation of SWChar2(u2

0) can result
in X1(t, u2

0) instead of X2(t, u2
0), and this happens with probability 1/2 which

is the probability that Tr(h1) = 0. The same result holds for xQ = X3(t, u),

Algorithm 5. Preimages Computation by Algorithm 4
1: function PreimagesSW(Ea,b, Q = (xQ, λQ), t1, t2, t3)
2: k ← 0
3: S ← {}
4: for j = 1 to 3 do � From xQ = Xj(t, u)...
5: αj ← xQ · 1/tj + a
6: if Tr(αj) = 0 then � ...Test if there are some solutions
7: if j = 1 then � For X1, a solution is a preimage
8: u0 ← QS(αj)
9: u1 ← w0 + 1

10: k ← 2
11: S ← {u0, u1}
12: else � For X2, X3, a solution is not necessarily a preimage
13: X1 ← t1/tj · xQ

14: tmp ← [(λQ + xQ)2 + (λQ + xQ) + xQ + a] · (tj/t1)
2 � tmp = b/X2

1

15: h1 ← tmp + X1 + a
16: if Tr(h1) �= 0 then � Test if X1 would also be a correct

x-coordinate
17: u0 ← QS(αj)
18: u1 ← u0 + 1
19: k ← k + 2
20: S ← S ∪ {u0, u1}
21: end if
22: end if
23: end if
24: end for
25: return k, S � k: number of preimages, S: set of preimages
26: end function

30 D.F. Aranha et al.

however note that if X3 is solution but not X1 then X2 cannot be a solution
since

∑3
i=1 Tr(g(Xi)) = 0 according to Theorem 1. Thus the verification can

focus only on X1.

Naive implementation of the verification. A simple way for implementing the
verification would consist in computing QS(αj(a, t)) for j = 2, 3 and then calling
twice the subroutine SWChar2 (without the steps referring to X2 and X3) for
testing if the test on the trace is true or not. However this would require an
additional inversion per call to compute SWChar2. Moreover, with this naive
implementation we have to compute the half trace before testing if the result
will be a preimage.

Efficient implementation of the verification. Since the verification focuses only
on X1 as explained above, we propose an efficient way to compute b/X2

1 , which
is required in order to perform the test Tr(h1) = Tr(X1+a+b/X2

1), without any
field inversion. This trick is valuable when we are working in lambda coordinates.
Our proposal has another advantage: we do not need to compute the solutions,
i.e. u0 = QS(αj(a, t)) and u1 = u0 + 1, before to be sure that we will get two
preimages. We thus save some quite expensive half trace computations.

Consider the equation:

xQ = X2 = t2 · c = t2 · X1/t1 with c = QS(α2(a, t))2 + QS(α2(a, t)) + a.

X1 can be expressed as t1/t2 · xQ, whose computation is negligible for t1/t2 a
precomputed value. Now starting from the equation of the elliptic curve in affine
coordinates, i.e. Ea,b : Y 2 + X · Y = X3 + a · X2 + b, we divide each term by X2

and we evaluate the equation in the point Q. We then obtain:

(
yQ
xQ

)2

+
yQ
xQ

= xQ + a +
b

x2
Q

,

and finally:

b

X2
1

=
(

t2
t1

)2

·
[(

yQ
xQ

)2

+
yQ
xQ

+ xQ + a

]
.

Assuming that (t2/t1)2 is a precomputed constant, the computation of b/X2
1 is

not costly if yQ/xQ does not require an expensive operation. That is the case
when we are working in λ-coordinates since λQ = yQ/xQ + xQ. The same result
obviously holds for the equation xQ = X3 by replacing t2 with t3.

To conclude, Algorithm 5 requires at most 3 QS computations and some
negligible field operations (multiplications, squarings and trace computations).

3.3 Operation Counts

We conclude this section by evaluating the average number of operations needed
to evaluate Algorithm 3.

Binary Elligator Squared 31

Proposition 1. An evaluation of Algorithm 3 on uniformly random curve points
requires, on average and with an error term of up to O(2−n/2), 6 field inversions,
6 point additions, 9 quadratic solver computations and some negligible operations
such as field multiplications, field squares and trace computations.

Proof. The proof consists in evaluating the probability for exiting the two loops.
First note that the output (x, λ) of Algorithm 4 has a specific property, namely
λ + x is in the image of QS. Since we want to retrieve the preimages of a point
Q, we have to be sure that λQ + xQ is indeed in that image, which we test for
by verifying whether Tr(λQ + xQ) = 0. Indeed, all elements of the form QS(z)
have zero trace by definition, and the converse is true for reasons of dimensions.
The success probability of this test is exactly 1/2 since Q is a uniformly random
curve point. We thus have on average 2 field inversions, 2 point additions and 2
quadratic solver computations for the internal loop (steps 4 to 8).

The complexity of the external loop demands to evaluate the probabilities
for having 0, 2, 4 or 6 preimages of Q. Since all tests on the trace in Algorithm 5
succeed, independently, with probability 1/2+O(2−n/2),2 these probabilities are
then, again with an error term of O(2−n/2), 9/32 for 0 preimage, 15/32 for 2
preimages, 7/32 for 4 preimages, and 1/32 for 6 preimages. Thus, the probability
for exiting the external loop is equal to 0·9/32+1/3·15/32+2/3·7/32+1·1/32 =
1/3. These probabilities also hold for evaluating the average cost of an iteration of
PreimagesSW in term of quadratic computations. With probability 15/32 one
such computation will be performed and so on. As a consequence, one iteration of
PreimagesSW cost on average 15·1+7·2+1·3

32 = 1 quadratic solver computation.
To sum up, Algorithm 3 requires on average 3·2 field inversions, 3·2 additions

of points and 3 · (2 + 1) quadratic solver computations, up to a O(2−n/2) error
term. 	

Note that the efficiency of this algorithm can be improved further by choosing
a sparse value of b and a value of t that yields sparse precomputed constants.
Many of the field multiplications will then be computed faster.

4 Implementation Aspects

Our software implementation targets modern Intel Desktop-based processors,
making extensive use of the recently introduced AVX instruction set [16] acces-
sible through compiler intrinsics. The curve choice is the GLS binary curve
(λ2 + λ + a)x2 = x4 + b represented in λ-coordinates and defined over the
quadratic extension F2254 . The extension is built by choosing the irreducible tri-
nomial g(w) = w2 + w + 1 over the base field F2127 defined with the irreducible
trinomial f(z) = z127 + z63 + 1. In this set of parameters, a field element a is

2 This can be justified rigorously using the fact that the corresponding function field
extensions are pairwise linearly disjoint, exactly as in the image size computations
of [18, Sect. 4]. For simplicity, we do not include the tedious Galois extension com-
putations involved.

32 D.F. Aranha et al.

represented as a = a0 + a1w, with a0, a1 ∈ F2127 . For simplicity, the parameter
t is chosen to be a random subfield element, allowing the computational savings
by sparse multiplications described in the previous section.

Squaring and multiplication. Field squaring closely mirrors the vector formula-
tion proposed in [3], with coefficient expansion implemented by table lookups
performed through byte-shuffling instructions. The table lookups operate on reg-
isters only, allowing a very efficient constant-time implementation. Field multipli-
cation is natively supported by the carry-less multiplier (PCLMULQDQ instruc-
tion), with the number of word multiplications reduced through application of
Karatsuba formulae, as described in [28]. Modular reduction is implemented with
a shift-and-add approach, with careful choice of aligning vector word shifts on
multiples of 8, to explore the faster memory alignment instructions available in
the target platform.

Quadratic solver. For an odd extension degree m, the half-trace function HTr :
F2m → F2m is defined by HTr(c) =

∑(m−1)/2
i=0 c2

2i
and computes a solution

c ∈ F2m to the quadratic equation λ2 + λ = c + Tr(c). Let Tr′ : F22m → F2

denote the trace function in a quadratic extension. The equation λ2 + λ = c
can be solved for a trace zero element c = c0 + c1w ∈ F22m by computing two
half-traces in F2m , as described in [20]. First, solve λ2

1 + λ1 = c1 to obtain λ1,
and then solve λ2

0 + λ0 = c0 + c1 + λ1 + Tr(c0 + c1 + λ1) to obtain the solution
λ = λ0 + (λ1 + Tr(c0 + c1 + λ1))w. This approach is very efficient for variable-
time implementations and only requires two half-trace computations in the base
field, where each half-trace computation employs a large precomputed table of
28 · �m

8 � field elements [25].
A more naive approach evaluates the function by alternating m − 1 consecu-

tive squarings and (m − 1)/2 additions, with the advantage of taking constant-
time (if squaring and addition are also constant-time, as in the case here). We
derive a faster way to compute the half-trace function in constant-time over
quadratic extension fields. Applying the naive approach to a quadratic exten-
sion allows a significant speedup due to the linear property of half-trace, by
reducing the cost to essentially one constant-time half-trace computation over
the base field. Since Tr′(c) = 0, we have Tr(c1) = 0 and Tr(λ1) = 0 for the
choice of λ1 as the half-trace of c1 as solution of λ2

1 +λ1 = c1. This simplifies the
expression above to λ2

0 +λ0 = c0 +c1 +λ1 +Tr(c0). Substituting d = c0 +Tr(c0),
the expression for λ0 becomes:

λ0 =
(m−1)/2∑

i=0

(d + c1 + λ1)2
2i

=
(m−1)/2∑

i=0

⎛
⎝d + c1 +

(m−1)/2∑
j=0

c2
2j

1

⎞
⎠

22i

.

The expansion of the inner sum allows the interleaving of the consecutive
squarings. The analysis can be split in two cases, depending on the format of
the extension degree m:

Binary Elligator Squared 33

λ0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0 +
�m/4�−1∑

i=0

(c160 + d4 + c41 + c81)
24i if m ≡ 1 (mod 4)

�m/4�∑
i=0

(c0 + d4 + c21 + c41)
24i if m ≡ 3 (mod 4).

The value λ1 can then be computed as λ1 = λ2
0 + λ0 + d + c1, for a total

of approximately m squarings and m/4 additions, a cost comparable to a single
constant-time half-trace in the base field.

Inversion. Field inversion is implemented by two different approaches based
on the Itoh-Tsuji algorithm [21]. This algorithm computes a−1 = a(2m−1−1)2, as
proposed in [19], with the cost of m−1 squarings and a number of multiplications
determined by the length of an addition chain for m − 1. For a variable-time
implementation, the squarings for each 2i-power involved can be converted into
multi-squarings [8], implemented as a trade-off between space consumption and
execution time. Each multi-squaring table requires the storage of 24 · �m

4 � field
elements. A constant-time implementation must perform consecutive squarings
and cannot benefit considerably from a precomputed table of field elements
without introducing variance in memory latency, potentially exploitable by an
intrusive attacker.

Point addition. The last performance-critical operation to be described is the
point addition in λ-affine coordinates. A formula for adding points P = (xP , yP)
and Q = (xQ, yQ) on the curve is proposed in [25], with associated cost of 2
inversions, 4 multiplications and 2 squarings:

xP+Q =
xP · xQ(λP + λQ)

(xP + xQ)2
, λP+Q =

xQ · (xP+Q + xP)2

xP+Q · xP
+ λP + 1.

Simple substitution of xP+Q in the computation of λP+Q gives faster new for-
mulas. By unifying the denominators, one field inversion can be traded for 2
multiplications in the formulas below, with associated cost of 1 inversion, 6 mul-
tiplications and 2 squarings:

xP+Q =
xP · xQ(λP + λQ)2

(xP + xQ)2(λP + λQ)

λP+Q =

[
(xP + xQ)2 + xQ · (λP + λQ)

]2
(xP + xQ)2(λP + λQ)

+ λP + 1.

5 Experimental Results

The implementation was completed with help of the latest version of the RELIC
toolkit [2]. Random number generation was implemented with the recently intro-
duced RDRAND instruction [12]. Software was compiled with a prerelease version

34 D.F. Aranha et al.

of GCC 4.9 available in the Arch Linux distribution with flags for loop unrolling,
aggressive optimization (-O3 level) and specific tuning for the Sandy/Ivy Bridge
microarchitectures. Table 2 presents timings in clock cycles for field arithmetic
and Elligator Squared in two different platforms – an Intel Ivy Bridge Core i5
3317U 1.7 GHz and a Haswell Core i7 4770 K 3.5 GHz. The timings were taken
as the average of 104 executions, with TurboBoost and HyperThreading disabled
to reduce randomness in the results.

The constant-time implementation results are mostly for reference: indeed,
since the Elligator Squared operation is efficiently invertible, there is no strong
reason to compute it in constant time: timing information does not leak secret
key data like in the case of a scalar multiplication. However, timing informa-
tion could conceivably help an active distinguishing attacker; the corresponding
attack scenarios are far-fetched, but the paranoid may prefer to choose constant-
time arithmetic as a matter of principle.

6 Comparison of Elligator 2 and Elligator Squared
on Prime Finite Fields

We have implemented Elligator 2 [6] and the corresponding Elligator Squared con-
struction on Curve25519 [4] using the fast arithmetic provided by Bernstein et al.
as part of the publicly available implementation of Curve25519 and Ed25519 [5] in
SUPERCOP, in order to compare the two proposed methods on Edwards curves
in large characteristic (and to see how they both perform compared to our binary
implementation).

To generate a random point and compute the corresponding bitstring repre-
sentation, the Elligator method requires, on average, 2 scalar multiplications, 2
tests for the existence of preimages and 1 preimage computation. On the other
hand, for the same computation, Elligator Squared requires, on average, 1 scalar
multiplication, 2 tests for the existence of preimages, 1 preimage computation
and 2 computations of the Elligator 2 map function. As a result, compared to
the Elligator approach, the Elligator Squared approach requires one scalar mul-
tiplication less, but two map function computations more. Therefore, Elligator
will be faster than Elligator Squared in contexts where a scalar multiplication
is cheaper than two map function evaluations and conversely. Elligator will thus
tend to have an edge for protocols using fixed base point scalar multiplication,
whereas Elligator Squared will perform better for protocols using variable base
point scalar multiplication.

This is confirmed by our implementation results, as reported in Table 3, which
are 35–40 % in favor of Elligator in the fixed-base case (FB) but 30–35 % in favor
of Elligator Squared in the variable-base case (VB). Note that the variable-base
scalar multiplication results are estimates based on the SUPERCOP performance
numbers on haswell and hydra2. A comparison with Table 2 shows that the
binary curve approach is 25 % to 200 % times faster than the fastest Curve25519
implementation. Observe that our results were obtained using a binary GLS
curve with efficient arithmetic implemented in processors with native support

Binary Elligator Squared 35

Table 3. Timings for Elligator Squared and Elligator 2 on Curve25519. Results are
in clock cycles and were taken as the average of 104 executions with random inputs.
FB/VB are as in Table 2.

Operation Ivy Bridge Haswell

Scalar multiplication (fixed-base) 42,570 42,180

Scalar multiplication (variable-base, est.) 182,490 162,460

Map function 38,420 36,590

FB with Elligator Squared 157,500 141,200

FB with Elligator 2 114,800 100,200

VB with Elligator Squared (est.) 297,420 261,480

VB with Elligator 2 (est.) 394,640 340,760

to binary field arithmetic and may not translate directly to different parameter
choices or computing platforms.

References

1. ANSSI: Publication d’un paramétrage de courbe elliptique visant des applications
de passeport électronique et de l’administration électronique française, November
2011. http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/
autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-
des-applications-de.html

2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an efficient library for cryptography.
http://code.google.com/p/relic-toolkit/

3. Aranha, D.F., López, J., Hankerson, D.: Efficient software implementation of
binary field arithmetic using vector instruction sets. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 144–161. Springer,
Heidelberg (2010)

4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

5. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Crypt. Eng. 2(2), 77–89 (2012)

6. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Gligor, V., Yung, Y.
(eds.) ACM CCS (2013)

7. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: software, August
2013. http://elligator.cr.yp.to/software.html

8. Bos, J.W., Kleinjung, T., Niederhagen, R., Schwabe, P.: ECC2K-130 on cell CPUs.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
225–242. Springer, Heidelberg (2010)

9. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. Cryptology ePrint Archive,
Report 2009/340 (2009). http://eprint.iacr.org/. (Full version of [10])

http://www.ssi.gouv.fr/fr/anssi/publications/publications- scientifiques/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-des-applications-de.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications- scientifiques/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-des-applications-de.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications- scientifiques/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-des-applications-de.html
http://code.google.com/p/relic-toolkit/
http://elligator.cr.yp.to/software.html
http://eprint.iacr.org/

36 D.F. Aranha et al.

10. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

11. Certicom Research. SEC 2: recommended elliptic curve domain parameters, version
2.0, January 2010

12. Intel Corporation: Intel Digital Random Number Generator (DRNG).
https://software.intel.com/sites/default/files/managed/4d/91/DRNG Software
Implementation Guide 2.0.pdf

13. Farashahi, R.R.: Hashing into Hessian curves. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278–289. Springer, Heidelberg (2011)

14. Farashahi, R., Fouque, P.-A., Shparlinski, I., Tibouchi, M., Voloch, J.F.: Indiffer-
entiable deterministic hashing to elliptic and hyperelliptic curves. Math. Comput.
82(281), 491–512 (2013)

15. FIPS PUB 186–3. Digital Signature Standard (DSS). NIST, USA (2009)
16. Firasta, N., Buxton, M., Jinbo, P., Nasri, K., Kuo, S.: Intel AVX: new frontiers

in performance improvement and energy efficiency. White paper. http://software.
intel.com/

17. Fouque, P.-A., Joux, A., Tibouchi, M.: Injective encodings to elliptic curves. In:
Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 203–218. Springer,
Heidelberg (2013)

18. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–Naehrig curves.
In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 1–17.
Springer, Heidelberg (2012)

19. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis and its application
in cryptography and codes. Des. Codes Crypt. 25(2), 207–216 (2002)

20. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
point multiplication method for elliptic curves over binary fields. IEEE Trans.
Comput. 58(10), 1411–1420 (2009)

21. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

22. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

23. Lochter, M., Merkle, J.: Elliptic curve cryptography (ECC) Brainpool standard
curves and curve generation. RFC 5639 (Informational), March 2010

24. Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 335–351. Springer, Heidelberg (2004)

25. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Crypt. Eng. 4(1), 3–17
(2014)

26. Schroeppel, R.: Elliptic curves: twice as fast! Presentation at the CRYPTO 2000
Rump Session (2000)

27. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS,
vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

28. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hankerson,
D., López, J.: Speeding scalar multiplication over binary elliptic curves using the new
carry-less multiplication instruction. J. Crypt. Eng. 1(3), 187–199 (2011)

https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Software_Implementation_Guide_2.0.pdf
https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Software_Implementation_Guide_2.0.pdf
http://software.intel.com/
http://software.intel.com/

Binary Elligator Squared 37

29. Tibouchi, M.: Elligator Squared: uniform points on elliptic curves of prime order
as uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) Financial Cryp-
tography. LNCS. Springer, Heidelberg (2014). (To appear)

30. Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Cheung, S., Wang, F.,
Boneh, D.: StegoTorus: a camouflage proxy for the Tor anonymity system. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS, pp. 109–120. ACM (2012)

31. Wustrow, E., Wolchok, S., Goldberg, I., Halderman, J.A.: Telex: anticensorship in
the network infrastructure. In: USENIX Security Symposium. USENIX Association
(2011)

32. Young, A.L., Yung, M.: Space-efficient kleptography without random oracles. In:
Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp.
112–129. Springer, Heidelberg (2008)

33. Young, A., Yung, M.: Kleptography from standard assumptions and applications.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 271–290.
Springer, Heidelberg (2010)

Batch NFS

Daniel J. Bernstein1,2(B) and Tanja Lange2(B)

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

tanja@hyperelliptic.org

Abstract. This paper shows, assuming standard heuristics regarding
the number-field sieve, that a “batch NFS” circuit of area L1.181...+o(1)

factors L0.5+o(1) separate B-bit RSA keys in time L1.022...+o(1). Here L =
exp((log 2B)1/3(log log 2B)2/3). The circuit’s area-time product (price-
performance ratio) is just L1.704...+o(1) per key. For comparison, the best
area-time product known for a single key is L1.976...+o(1).

This paper also introduces new “early-abort” heuristics implying that
“early-abort ECM” improves the performance of batch NFS by a super-
polynomial factor, specifically exp((c + o(1))(log 2B)1/6(log log 2B)5/6)
where c is a positive constant.

Keywords: Integer factorization · Number-field sieve · Price-
performance ratio · Batching · Smooth numbers · Elliptic curves · Early
aborts

1 Introduction

The cryptographic community reached consensus a decade ago that a 1024-bit
RSA key can be broken in a year by an attack machine costing significantly less
than 109 dollars. See [51], [38], [24], and [23]. The attack machine is an optimized
version of the number-field sieve (NFS), a factorization algorithm that has been
intensively studied for twenty years, starting in [36]. The run-time analysis of
NFS relies on various heuristics, but these heuristics have been confirmed in a
broad range of factorization experiments using several independent NFS software
implementations: see, e.g., [29], [30], [31], and [4].

Despite this threat, 1024-bit RSA remains the workhorse of the Internet’s
“DNS Security Extensions” (DNSSEC). For example, at the time of this writing
(September 2014), the IP address of the domain dnssec-deployment.org is

This work was supported by the National Science Foundation under grant 1018836
and by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005. Permanent ID of this document: 4f99b1b911984e501c099f514d8fd2ce.
Date: 2014.09.17.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 38–58, 2014.
DOI: 10.1007/978-3-319-13051-4 3

Batch NFS 39

• signed by that domain’s 1024-bit “zone-signing key”, which in turn is
• signed by that domain’s 2048-bit “key-signing key”, which in turn is
• signed by .org’s 1024-bit zone-signing key, which in turn is
• signed by .org’s 2048-bit key-signing key, which in turn is
• signed by the DNS root’s 1024-bit zone-signing key, which in turn is
• signed by the DNS root’s 2048-bit key-signing key.

An attacker can forge this IP address by factoring any of the three 1024-bit RSA
keys in this chain.

A report [41] last year indicated that, out of the 112 top-level domains using
DNSSEC, 106 used the same key sizes as .org. We performed our own survey
of zone-signing keys in September 2014, after many new top-level domains were
added. We found 286 domains using 1024-bit keys; 4 domains using 1152-bit
keys; 192 domains using 1280-bit keys; and just 22 domains using larger keys.
Almost all of the 1280-bit keys are for obscure domains such as .boutique and
.rocks; high-volume domains practically always use 1024-bit keys.

Evidently DNSSEC users find the attacks against 1024-bit RSA less worri-
some than the obvious costs of moving to larger keys. There are, according to
our informal surveys of these users, three widespread beliefs supporting the use
of 1024-bit RSA:

• A typical RSA key is believed to be worth less than the cost of the attack
machine.

• Building the attack machine means building a huge farm of application-specific
integrated circuits (ASICs). Standard computer clusters costing the same
amount of money are believed to take much longer to perform the same cal-
culations.

• It is believed that switching RSA signature keys after (e.g.) a month will
render the attack machine useless, since the attack machine requires a full
year to run.

Consider, for example, the following quote from the latest “DNSSEC operational
practices” recommendations [32, Sect. 3.4.2], published December 2012:

DNSSEC signing keys should be large enough to avoid all known crypto-
graphic attacks during the effectivity period of the key. To date, despite
huge efforts, no one has broken a regular 1024-bit key; in fact, the best
completed attack is estimated to be the equivalent of a 700-bit key. An
attacker breaking a 1024-bit signing key would need to expend phenom-
enal amounts of networked computing power in a way that would not be
detected in order to break a single key. Because of this, it is estimated
that most zones can safely use 1024-bit keys for at least the next ten
years.

This quote illustrates the first and third beliefs reported above: the attack cost
would be “phenomenal” and would break only “a single key”; furthermore, the
attack would have to be completed “during the effectivity period of the key”.
A typical DNSSEC key is valid for just one month and is then replaced by a
new key.

40 D.J. Bernstein and T. Lange

1.1 Contents of this paper. This paper analyzes the asymptotic cost, specif-
ically the price-performance ratio, of breaking many RSA keys. We emphasize
several words here:

• “Many”: The attacker is faced not with a single target, but with many targets.
The algorithmic task here is not merely to break, e.g., a single 1024-bit RSA
key; it is to break more than one hundred 1024-bit RSA keys for DNSSEC
top-level domains, many more 1024-bit RSA keys at lower levels of DNSSEC,
millions of 1024-bit RSA keys in SSL (as in [25], and [35]; note that upgrading
SSL to 2048-bit RSA does nothing to protect the confidentiality of previously
recorded SSL traffic), etc. This is important if there are ways to share attack
work across the keys.

• “Price-performance ratio”: As in [53], [18], [50], [15], [54], [7], [51], [56], [23], [24],
etc., our main interest is not in the number of “operations” carried out by an
algorithm, but in the actual price and performance of a machine carrying out
those operations. Parallelism increases price but often improves performance;
large storage arrays are a problem for both price and performance. We use
price-performance ratio as our primary cost metric, but we also report time
separately since signature-key rotation puts a limit upon time.

• “Asymptotic”: The cost improvements that we present are superpolynomial
in the size of the numbers being factored. We thus systematically suppress all
polynomial factors in our cost analyses, simplifying the analyses.

This paper presents a new “batch NFS” circuit of area L1.181...+o(1) that,
assuming standard NFS heuristics, factors L0.5+o(1) separate B-bit RSA keys
in total time just L1.022...+o(1). The area-time product is L1.704...+o(1) for each
key; i.e., the price-performance ratio is L1.704...+o(1). Here (as usual for NFS) L
means exp((log N)1/3(log log N)2/3) where N = 2B .

For comparison (see Table 1.4), the best area-time product known for fac-
toring a single key (without quantum computers) is L1.976...+o(1), even if non-
uniform precomputations such as Coppersmith’s “factorization factory” are
allowed. The literature is reviewed below.

This paper also looks more closely at the Lo(1). The main bottleneck in batch
NFS is not traditional sieving, but rather low-memory factorization, motivating
new attention to the complexity of low-memory factorization. Traditional ECM,
the elliptic-curve method of recognizing y-smooth integers, works in low memory
and takes time exp(

√
(2 + o(1))log y log log y). One can reasonably guess that,

compared to traditional ECM, “early-abort ECM” saves a subexponential factor
here, but the complexity of early-abort ECM has never been analyzed. Section 3
of this paper introduces new early-abort heuristics implying that the complex-

ity of early-abort ECM is exp
(√(

8
9 + o(1)

)
log y log log y

)
. Using early aborts

increases somewhat the number of auxiliary integers that need to be factored,
producing a further increase in cost, but the cost is outweighed by the faster
factorization.

The ECM cost is obviously bounded by Lo(1): more precisely, the cost is
exp(Θ((log N)1/6(log log N)5/6)) in the context of batch NFS, since y ∈ LΘ(1).

Batch NFS 41

This cost is invisible at the level of detail of L1.704...+o(1). The speedup from ECM
to early-abort ECM is nevertheless superpolynomial and directly translates into
the same speedup in batch NFS.

1.2 Security consequences. We again emphasize that our results are asymp-
totic. This prevents us from directly drawing any conclusions about 1024-bit
RSA, or 2048-bit RSA, or any other specific RSA key size. Our results are nev-
ertheless sufficient to undermine all three of the beliefs described above:

• Users comparing the value of an RSA key to the cost of an attack machine
need to know the per-key cost of batch NFS. This has not been seriously
studied. What the literature has actually studied in detail is the cost of NFS
attacking one key at a time; this is not the same question. Our asymptotic
results do not rule out the possibility that these costs are the same for 1024-bit
RSA, but there is also no reason to be confident about any such possibility.

• Most of the literature on single-key NFS relies heavily on operations that—for
large key sizes—are not handled efficiently by current CPUs and that become
much more efficient on ASICs: consider, for example, the routing circuit in
[51]. Batch NFS relies much more heavily on massively parallel elliptic-curve
scalar multiplication, exactly the operation that is shown in [12], [11], and
[17] to fit very well into off-the-shelf graphics cards. The literature supports
the view that off-the-shelf hardware is much less cost-effective than ASICs for
single-key NFS, but there is no reason to think that the same is true for batch
NFS.

• The natural machine size for batch NFS (i.e., the circuit area if price-
performance ratio is optimized) is larger than the natural machine size for
single-key NFS, but the natural time is considerably smaller. As above, these
asymptotic results undermine any confidence that one can obtain from com-
paring the natural time for single-key NFS to the rotation interval for sig-
nature keys: there is no reason to think that the latency of batch NFS will
be as large as the latency of single-key NFS. Note that, even though this
paper emphasizes optimal price-performance ratio for simplicity, there are
also techniques to further reduce the time below the natural time, hitting
much lower latency targets without severely compromising price-performance
ratio: in particular, for the core sorting subroutines inside linear algebra, one
can replace time T with T/f at the expense of replacing area A with Af2.

The standard measure of security is the total cost of attacking one key. For
example, this is what NIST is measuring in [6] when it reports “80-bit security”
for 1024-bit RSA, “112-bit security” for 2048-bit RSA, “128-bit security” for
3072-bit RSA, etc. What batch NFS illustrates is that, when there are many
user keys, the attacker’s cost per key can be smaller than the attacker’s total
cost for one key. It is much more informative to measure the attacker’s total
cost of attacking U user keys, as a function of U . It is even more informative
to measure the attacker’s chance of breaking exactly K out of U simultaneously
attacked keys in time T using a machine of cost A, as a function of (K,U, T,A).

42 D.J. Bernstein and T. Lange

There are many other examples of cryptosystems where the attack cost does
not grow linearly with the number of targets. For example, it is well known
that exhaustive search finds preimages for U hash outputs in about the same
time as a preimage for a single hash output; furthermore, the first preimage that
it finds appears after only 1/U of the total time, reducing actual security by
lg U bits. However, most cryptosystems have moved up to at least a “128-bit”
security level, giving them a buffer against losing some bits of security. RSA
is an exception: its poor performance at high security levels has kept it at a
bleeding-edge “80-bit security” level. Even when users can be convinced to move
away from 1024-bit keys, they normally move to ≤2048-bit keys. We question
whether it is appropriate to view 1024-bit keys as “80-bit” security and 2048-bit
keys as “112-bit” security if the attacker’s costs per key are not so high.

1.3 Previous work. In the NFS literature, as in the algorithm literature in
general, there is a split between traditional analyses of “operations” (adding two
64-bit integers is one “operation”; looking up an element of a 264-byte array is one
“operation”) and modern analyses of more realistic models of computation. We
follow the terminology of our paper [14]: the “RAM metric” counts traditional
operations, while the “AT metric” multiplies the area of a circuit by the time
taken by the same circuit.

Buhler, H. Lenstra, and Pomerance showed in [19] (assuming standard NFS
heuristics, which we now stop mentioning) that NFS factors a single key N with
RAM cost L1.922...+o(1). As above, L means exp((log N)1/3(log log N)2/3). This
exponent 1.922 . . . is the most frequently quoted cost exponent for NFS.

Coppersmith in [20] introduced two improvements to NFS. The first, “mul-
tiple number fields”, reduces the exponent 1.922 . . . + o(1) to 1.901 . . . + o(1).
The second, the “factorization factory”, is a non-uniform algorithm that reduces
1.901 . . .+o(1) to just 1.638 . . .+o(1). Recall that (size-)non-uniform algorithms
are free to perform arbitrary amounts of precomputation as functions of the size
of the input, i.e., the number of bits of N . A closer look shows that Coppersmith’s
precomputation costs L2.006...+o(1), so if it is applied to more than L0.368...+o(1)

inputs then the precomputation cost can quite reasonably be ignored.
Essentially all of the subsequent NFS literature has consisted of analysis and

optimization of algorithms that cost L1.922...+o(1), such as the algorithm of [19].
The ideas of [20] have been dismissed for three important reasons:

• The bottleneck in [19] is sieving, while the bottleneck in [20] is ECM. Both
of these algorithms use Lo(1) operations in the RAM metric, but the o(1) is
considerably smaller for sieving than for ECM.

• Even if the o(1) in [20] were as small as the o(1) in [19], there would not be
much benefit in 1.901 . . . + o(1) compared to 1.922 . . . + o(1). For example,
(250)1.922 ≈ 296 while (250)1.901 ≈ 295.

• The change from 1.901 . . . + o(1) to 1.638 . . . + o(1) is much larger, but it
comes at the cost of massive memory consumption. Specifically, [20] requires
space L1.638...+o(1), while [19] uses space just L0.961...+o(1). This is not visible
in the RAM metric but is obviously a huge problem in reality, and it becomes

Batch NFS 43

Table 1.4. Asymptotic exponents for several variants of NFS, assuming standard
heuristics. “Exponent” e means asymptotic cost Le+o(1) per key factored. “Precomp”
2θ means that there is a precomputation involving integer pairs (a, b) up to Lθ+o(1), for
total precomputation cost L2θ+o(1); algorithms without precomputation have 2θ = 0.
“Batch” β means batch size Lβ+o(1); algorithms handling each key separately have
β = 0. See Sect. 2 for further details.

metric exponent precomp batch source

AT 1.976 . . . 0 0 2001 Bernstein [7]

RAM (unrealistic) 1.922 . . . 0 0 1993 Buhler–H. Lenstra–Pomerance [19]

RAM (unrealistic) 1.901 . . . 0 0 1993 Coppersmith [20]

AT 1.900 . . . 0 0.1 batch NFS; this paper

AT 1.829 . . . 0 0.2 batch NFS; this paper

AT 1.763 . . . 0 0.3 batch NFS; this paper

AT 1.710 . . . 0 0.4 batch NFS; this paper

AT 1.704 . . . 0 0.5 batch NFS; this paper

RAM (unrealistic) 1.638 . . . 2.006 . . . 0 1993 Coppersmith [20]

increasingly severe as computations grow larger. As a concrete illustration of
the real-world costs of storage and computation, paying for 270 bytes of slow
storage (about 30 · 109 USD in hard drives) is much more troublesome than
paying for 280 floating-point multiplications (about 0.02 · 109 USD in GPUs
plus 0.005 · 109 USD for a year of electricity).

We quote A. Lenstra, H. Lenstra, Manasse, and Pollard [37]: “There is no indi-
cation that the modification proposed by Coppersmith has any practical value.”

At the time there was already more than a decade of literature showing
how to analyze algorithm asymptotics in more realistic models of computa-
tion that account for memory consumption, communication, etc.; see, e.g., [18].
Bernstein in [7] analyzed the circuit performance of NFS, concluding that an
optimized circuit of area L0.790...+o(1) would factor N in time L1.18...+o(1), for
price-performance ratio L1.976...+o(1). [7] did not analyze the factorization fac-
tory but did analyze multiple number fields, concluding that they did not reduce
AT cost. The gap between the RAM exponent 1.901 . . .+ o(1) from [20] and the
AT exponent 1.976 . . . + o(1) from [7] is explained primarily by communication
overhead inside linear algebra, somewhat moderated by parameter choices that
reduce the cost of linear algebra at the expense of relation collection.

We pointed out in [14] that the factorization factory does not reduce AT cost.
In Sect. 2 we review the reason for this and explain how batch NFS works around
it. We also presented in [14] a superpolynomial improvement to the factorization
factory in the RAM metric, by eliminating ECM in favor of batch trial division,
but this is not useful in the AT metric.

44 D.J. Bernstein and T. Lange

2 Exponents

This section reviews NFS and then explains how to drastically reduce the AT
cost of NFS through batching. The resulting cost exponent, 1.704 . . . in Table 1.4,
is new. All costs in this section are expressed as Le+o(1) for various exponents e.
Section 3 looks more closely at the Lo(1) factor.

2.1 QS: the Quadratic sieve (1982). As a warmup for NFS we briefly
review the general idea of combining congruences, using QS as an example.

QS writes down a large collection of congruences modulo the target integer
N and tries to find a nontrivial subcollection whose product is a congruence of
squares. One can then reasonably hope that the difference of square roots has a
nontrivial factor in common with N .

Specifically, QS computes s ≈ √
N and writes down the congruences s2 ≡

s2 −N , (s+1)2 ≡ (s+1)2 −N , etc. The left side of each congruence is already a
square. The main problem is to find a nontrivial set of integers a such that the
product of (s + a)2 − N is a square.

If (s + a)2 − N is divisible by a very large prime then it is highly unlikely
to participate in a square: the prime would have to appear a second time. QS
therefore focuses on smooth congruences: congruences where (s+a)2−N factors
completely into small primes. Applying linear algebra modulo 2 to the matrix
of exponents in these factorizations is guaranteed to find nonempty subsets of
the congruences with square product once the number of smooth congruences
exceeds the number of small primes.

The integers a such that (s + a)2 − N is divisible by a prime p form a small
number of arithmetic progressions modulo p. “Sieving” means jumping through
these arithmetic progressions to mark divisibility, the same way that the sieve
of Eratosthenes jumps through arithmetic progressions to mark non-primality.

2.2 NFS: the number-field sieve (1993). NFS applies the same idea, but
instead of congruences modulo N it uses congruences modulo a related algebraic
number m − α. This algebraic number is chosen to have norm N (divided by
a certain denominator shown below), and one can reasonably hope to obtain a
factorization of N by obtaining a random factorization of this algebraic number.

Specifically, NFS chooses a positive integer m, and writes N as a polynomial
in radix m: specifically, N = f(m) where f is a degree-d polynomial with coeffi-
cients fd, fd−1, . . . , f0 ∈ {0, 1, . . . ,m − 1}. NFS then takes α as a root of f . The
norm of a − bα is then fda

d + fd−1a
d−1b + · · · + f0b

d (divided by fd), and in
particular the norm of m − α is N (again divided by fd).

It is not difficult to see that optimizing NFS requires d to grow slowly with
N , so m is asymptotically on a much smaller scale than N , although not as small
as L. More precisely, NFS takes

Batch NFS 45

m ∈ exp((μ + o(1))(log N)2/3(log log N)1/3)

where μ is a positive real constant, optimized below. Note that the inequalities
md ≤ N < md+1 imply

d ∈ (1/μ + o(1))(log N)1/3(log log N)−1/3.

NFS uses the congruences a − bm ≡ a − bα modulo m − α. There are now
two numbers, a − bm and a − bα, that both need to be smooth. Smoothness
of the algebraic number a − bα is defined as smoothness of the (scaled) norm
fda

d + fd−1a
d−1b+ · · ·+ f0b

d, and smoothness of an integer is defined as having
no prime divisors larger than y. Here y ∈ Lγ+o(1) is another parameter chosen
by NFS; γ > 1/(6μ) is another real constant, optimized below.

The range of pairs (a, b) searched for smooth congruences is the set of integer
pairs in the rectangle [−H,H] × [1,H]. Here H is chosen so that there will be
enough smooth congruences to produce squares at the end of the algorithm.
Standard heuristics state that a − bm has smoothness probability L−μ/(3γ)+o(1)

if a and b are on much smaller scales than m; in particular, if H ∈ Lθ+o(1) for
some positive real number θ then the number of congruences with a−bm smooth
is Lφ+o(1) with φ = 2θ −μ/(3γ). Standard heuristics also state the simultaneous
smoothness probability of a − bm and a − bα, implying that to obtain enough
smooth congruences one can take H ∈ Lθ+o(1) with θ = (3μγ2 + 2μ2)/(6μγ − 1)
and φ = (18μγ3 +6μ2γ +μ)/(18μγ2 − 3γ). See, e.g., [19]. We henceforth assume
these formulas for θ and φ in terms of μ and γ.

2.3 RAM cost analysis (1993). Sieving for y-smoothness of H2+o(1) poly-
nomial values uses H2+o(1) operations, provided that y is bounded by H2+o(1).
The point here is that the pairs (a, b) with congruences divisible by p form a
small number of shifted lattices of determinant p, usually with basis vectors of
length O(

√
p), making it easy to find all the lattice points inside the rectangle

[−H,H] × [1,H]. The number of operations is thus essentially the number of
points marked, and each point is marked just

∑
p≤y 1/p ≈ log log y times.

Sparse techniques for linear algebra involve y1+o(1) matrix-vector multiplica-
tions, each involving y1+o(1) operations, for a total of y2+o(1) operations. Other
subroutines in NFS take negligible time, so the overall RAM cost of NFS is
Lmax{2θ,2γ}+o(1).

It is not difficult to see that the exponent max{2θ, 2γ} achieves its mini-
mum value (64/9)1/3 = 1.922 . . . with μ = (1/3)1/3 = 0.693 . . . and θ = γ =
(8/9)1/3 = 0.961 This exponent 1.922 . . . is the NFS exponent from [19], and
as mentioned earlier is the most frequently quoted NFS exponent. We do not
review the multiple-number-fields improvement to 1.901 . . . from [20]; as far as
we know, multiple number fields do not improve any of the exponents analyzed
below.

2.4 AT cost analysis (2001). In the AT metric there is an important
obstacle to cost H2+o(1) for sieving: namely, communicating across area H2+o(1)

46 D.J. Bernstein and T. Lange

takes time at least H1+o(1). One can efficiently split the sieving problem into
H2+o(1)/y1+o(1) tasks, running one task after another on a smaller array of size
y1+o(1), but communicating across this array still takes time at least y0.5+o(1),
so AT is at least H2+o(1)y0.5+o(1).

Fortunately, there is a much more efficient alternative to sieving: ECM,
explained in AppendixA of the full version of this paper online. What mat-
ters in this section is that ECM tests y-smoothness in time yo(1) on a circuit
of area yo(1). A parallel array of ECM units, each handling a separate number,
tests y-smoothness of H2+o(1) polynomial values in time H2+o(1)/y1+o(1) on a
circuit of area y1+o(1), achieving AT = H2+o(1).

Unfortunately, the same obstacle shows up again for linear algebra, and this
time there is no efficient alternative. Multiplying a sparse matrix by a vector
requires time y0.5+o(1) on a circuit of area y1+o(1), and must be repeated y1+o(1)

times. The overall AT cost of NFS is Lmax{2θ,2.5γ}+o(1).
The exponent max{2θ, 2.5γ} achieves its minimum value 1.976 . . . with μ =

0.702 . . ., γ = 0.790 . . ., and θ = 0.988 This exponent 1.976 . . . is the NFS
exponent from [7]. Notice that γ is much smaller here than it was in the RAM
optimization: y has been reduced to keep the cost of linear algebra under control,
but this also forced θ to increase.

2.5 The factorization factory (1993). Coppersmith in [20] precomputes
“tables which will be useful for factoring any integers in a large range . . . after
the precomputation, an individual integer can be factored in time L[1/3, 1.639]”,
i.e., L≈1.639+o(1).

Coppersmith’s table is simply the set of (a, b) such that a − bm is smooth.
One reuses m, and thus this table, for any integer N between (e.g.) md and
md+1.

Coppersmith’s method to factor “an individual integer” is to test smoothness
of a − bα for each (a, b) in the table. At this point Coppersmith has found the
same smooth congruences as conventional NFS, and continues with linear algebra
in the usual way.

Coppersmith uses ECM to test smoothness. The problem with sieving here
is not efficiency, as in the (subsequent) paper [7], but functionality: sieving can
handle polynomial values only at regularly spaced inputs, and the pairs (a, b) in
this table are not regularly spaced.

Recall that the size of this table is Lφ+o(1) with φ = 2θ − μ/(3γ). ECM uses
Lo(1) operations per number, for a total smoothness cost of Lφ+o(1), asymptoti-
cally a clear improvement over the L2θ+o(1) for conventional NFS.

The overall RAM cost of the factorization factory is Lmax{φ,2γ}+o(1). The
exponent achieves its minimum value 1.638 . . . with μ = 0.905 . . ., γ = 0.819 . . .,
θ = 1.003 . . ., and φ = 1.638 This is the exponent from [20].

The AT metric tells a completely different story, as we pointed out in [14].
The area required for the table is Lφ+o(1). This area is easy to reuse for very
fast parallel smoothness detection, finishing in time Lo(1). Unfortunately, col-
lecting the smooth results then takes time L0.5φ+o(1), for an AT cost of at least

Batch NFS 47

Generate (a, b). Generate (a, b). Generate (a, b). Generate (a, b).
Is a − bm Is a − bm Is a − bm Is a − bm
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Repeat. Repeat. Repeat. Repeat.

Generate (a, b). Generate (a, b). Generate (a, b). Generate (a, b).
Is a − bm Is a − bm Is a − bm Is a − bm
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Repeat. Repeat. Repeat. Repeat.

Generate (a, b). Generate (a, b). Generate (a, b). Generate (a, b).
Is a − bm Is a − bm Is a − bm Is a − bm
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Repeat. Repeat. Repeat. Repeat.

Generate (a, b). Generate (a, b). Generate (a, b). Generate (a, b).
Is a − bm Is a − bm Is a − bm Is a − bm
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Repeat. Repeat. Repeat. Repeat.

a − bm Is a − bm Is a −
mooth? smooth? smoot
o, store. If so, store. If so, st
epeat. Repeat. Repea

ate (a, b). Generate (a, b). Generate
a − bm Is a − bm Is a −
mooth? smooth? smoot
o, store. If so, store. If so, st
epeat. Repeat. Repea

ate (a, b). Generate (a, b). Generate
a − bm Is a − bm Is a −
mooth? smooth? smoot
o, store. If so, store. If so, st
epeat. Repeat. Repea

ate (a, b). Generate (a, b). Generate
a − bm Is a − bm Is a −

Fig. 2.7. Relation-search mesh finding pairs (a, b) where a − bm is smooth. The
following exponents are optimized for factoring a batch of L0.5+o(1) B-bit inte-
gers: The mesh has height L0.25+o(1), width L0.25+o(1), and area L0.5+o(1). The
mesh consists of L0.5+o(1) small parallel processors (illustration contains 16). Each
processor has area Lo(1). Each processor knows the same m ∈ exp((0.92115 +
o(1))(log 2B)2/3(log log 2B)1/3). Each processor generates its own L0.200484+o(1) pairs
(a, b), where a and b are bounded by L1.077242+o(1). Each processor tests each of its own
a − bm for smoothness using ECM, using smoothness bound L0.681600+o(1). Together
the processors generate L0.700484+o(1) separate pairs (a, b), of which L0.25+o(1) have
a − bm smooth.

Lmax{1.5φ,2.5γ}+o(1), never mind the problem of matching the table area with the
linear-algebra area. The minimum exponent here is above 2.4.

2.6 Batch NFS (new). We drastically reduce AT cost by sharing work
across many N ’s in a different way: we process a batch of N ’s in parallel, rather
than performing precomputation to be used for one N at a time. We dynami-
cally enumerate the pairs (a, b) with a − bm smooth, distribute each pair across
all the N ’s in the batch, and remove each pair as soon as possible, rather than
storing a complete table of the pairs. To avoid excessive communication costs we
completely reorganize data in the middle of the computation: at the beginning
each N is repeated many times to bring N close to the pairs (a, b), while at the
end the pairs (a, b) relevant to each N are moved much closer together. The rest
of this subsection presents the details of the algorithm.

Consider as input a batch of Lβ+o(1) simultaneous targets N within the
large range described above. We require β ≤ min{2φ − 2γ, 4θ − 2φ}; if there are
more targets available at once then we actually process those targets in batches
of size Lmin{2φ−2γ,4θ−2φ}+o(1), storing no data between runs.

Consider a square mesh of Lβ+o(1) small parallel processors. This mesh is
large enough to store all of the targets N . Use each processor in parallel to test

48 D.J. Bernstein and T. Lange

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

mooth? smooth? smoot
o, store. If so, store. If so, st
a, b) right. Send (a, b) right. Send (a, b)
epeat. Repeat. Repea

a − bα5 Is a − bα6 Is a − b
mooth? smooth? smoot
o, store. If so, store. If so, st
(a, b) up. Send (a, b) left. Send (a, b
epeat. Repeat. Repea

a − bα9 Is a − bα10 Is a − b
mooth? smooth? smoot
o, store. If so, store. If so, st
a, b) right. Send (a, b) right. Send (a, b)
epeat. Repeat. Repea

− bα13 Is a − bα14 Is a − b
mooth? smooth? smoot

Fig. 2.8. Relation-search mesh from Fig. 2.7, now finding pairs (a, b) where both a−bm
and a − bαi are smooth. The mesh knows L0.25+o(1) pairs (a, b) with a − bm smooth
from Fig. 2.7. Each (a, b) is copied L0.25+o(1) times (2 times in the illustration) so that
it appears in the first two rows, the next two rows, etc. Each (a, b) visits each mesh
position within L0.25+o(1) steps (8 steps in the illustration). Each processor knows its
own target Ni and the corresponding αi, and in each step tests each a−bαi for smooth-
ness using ECM. Together Figs. 2.7 and 2.8 take time L0.25+o(1) to search L0.700484+o(1)

pairs (a, b).

smoothness of a − bm for L2θ−φ−0.5β+o(1) pairs (a, b) using ECM; by hypothesis
2θ − φ − 0.5β ≥ 0. The total number of pairs here is L2θ−φ+0.5β+o(1). Each
smoothness test takes time Lo(1). Overall the mesh takes time L2θ−φ−0.5β+o(1)

and produces a total of L0.5β+o(1) pairs (a, b) with a−bm smooth, i.e., only Lo(1)

pairs for each column of the mesh. See Fig. 2.7.
Move these pairs to the top row of the mesh (spreading them evenly across

that row) by a standard sorting algorithm, say the Schnorr–Shamir algorithm
from [50], taking time L0.5β+o(1). Then broadcast each pair to its entire column,
taking time L0.5β+o(1). Actually, it will suffice for each pair to appear once
somewhere in the first two rows, once somewhere in the next two rows, etc.

Now consider a pair at the top-left corner. Send this pair to its right until
it reaches the rightmost column, then down one row, then repeatedly to its left,
then back up. In parallel move all the other elements in the first two rows on
the same path. In parallel do the same for the third and fourth rows, the fifth
and sixth rows, etc. Overall this takes time L0.5β+o(1).

Observe that each pair has now visited each position in the mesh. When a
pair (a, b) visits a mesh position holding a target N , use ECM to check whether
a − bα is smooth, taking time Lo(1). The total time to check all L0.5β+o(1) pairs
against all Lβ+o(1) targets is just L0.5β+o(1), plus the time L2θ−φ−0.5β+o(1) to
generate the pairs in the first place. See Fig. 2.8.

Batch NFS 49

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

h? smooth? smooth? s
ore. If so, store. If so, store. If
b) up. Send (a, b) left. Send (a, b) left. Send
t. Repeat. Repeat. R

Is a − bα1 Is a − bα2 Is a − bα3 Is a − bα4

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα5 Is a − bα6 Is a − bα7 Is a − bα8

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα9 Is a − bα10 Is a − bα11 Is a − bα12

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) right. Send (a, b) right. Send (a, b) right. Send (a, b) down.
Repeat. Repeat. Repeat. Repeat.

Is a − bα13 Is a − bα14 Is a − bα15 Is a − bα16

smooth? smooth? smooth? smooth?
If so, store. If so, store. If so, store. If so, store.

Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a − bα2 Is a − bα3

smooth? smooth?

Fig. 2.9. L0.681600+o(1) copies (25 copies in the illustration) of the mesh from Figs. 2.7
and 2.8. Each copy has the same L0.5+o(1) target integers to factor. The total area of
this circuit is L1.181600+o(1). In time L0.25+o(1) this circuit searches L1.382084+o(1) pairs
(a, b). In time L1.022400+o(1) this circuit searches all L2.154484+o(1) pairs (a, b) and finds,
for each target Ni and the corresponding αi, all L0.681600+o(1) pairs (a, b) for which
a − bm and a − bαi are both smooth.

Repeat this entire procedure Lφ−γ−0.5β+o(1) times; by hypothesis φ − γ −
0.5β ≥ 0. This covers a total of L2θ−γ+o(1) pairs (a, b), of which Lφ−γ+o(1) have
a − bm smooth, so for each N there are Lo(1) pairs (a, b) for which a − bm and
a−bα are both smooth. The total number of smooth congruences found this way
across all N is Lβ+o(1). Store each smooth congruence as (N, a, b); all of these
together fit into a mesh of area Lβ+o(1). The time spent is Lmax{φ−γ,2θ−γ−β}+o(1).

Build Lγ+o(1) copies of the same mesh, all operating in parallel, for a total
circuit area of Lβ+γ+o(1). Each copy of the mesh has its own copy of the entire
list of N ’s; distributing the N ’s from an input port through the total circuit area
takes time L0.5β+0.5γ+o(1). The total circuit covers all L2θ+o(1) pairs (a, b) and
obtains, for each N , all of the Lγ+o(1) smooth congruences required to factor
that N . See Fig. 2.9.

We are not done yet: we still need to perform linear algebra for each N .
To keep the communication costs of linear algebra under control we pack the
linear algebra for each N into the smallest possible area. Allocate a separate
square of area Lγ+o(1) to each N , and route each smooth congruence (N, a, b)
in parallel to the corresponding square; this is another standard sorting step,
taking total time L0.5β+0.5γ+o(1) for all Lβ+γ+o(1) smooth congruences. Finally,
perform linear algebra separately in each square, and complete the factorization
of each N as usual. This takes time L1.5γ+o(1). See Fig. 2.10.

The overall time exponent is max{φ − γ, 2θ − γ − β, 0.5β + 0.5γ, 1.5γ}, and
the area exponent is β + γ. The final price-performance ratio, AT per integer
factored, has exponent max{φ, 2θ − β, 0.5β + 1.5γ, 2.5γ}.

50 D.J. Bernstein and T. Lange

Linear algebra for N1 Linear algebra for N2 Linear algebra for N3 Linear algebra for N4

using congruences using congruences using congruences using congruences

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

Linear algebra for N5 Linear algebra for N6 Linear algebra for N7 Linear algebra for N8

using congruences using congruences using congruences using congruences

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

Linear algebra for N9 Linear algebra for N10 Linear algebra for N11 Linear algebra for N12

using congruences using congruences using congruences using congruences

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

Linear algebra for N13 Linear algebra for N14 Linear algebra for N15 Linear algebra for N16

using congruences using congruences using congruences using congruences

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b)

a for N5 Linear algebra for N6 Linear a

uences using congruences using

(a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b)

(a, b) (a, b) (a, b) (a, b) (a, b)

a for N9 Linear algebra for N10 Linear a

uences using congruences using

(a, b) (a, b) (a, b) (a, b) (a, b)

Fig. 2.10. L0.5+o(1) copies (16 copies in the illustration) of a linear-algebra circuit.
Each circuit has area L0.681600+o(1). The total area is L1.181600+o(1). Each circuit has
its own integer Ni to factor and L0.681600+o(1) pairs (a, b) for which a− bm and a− bαi

are smooth. Routing all pairs (a, b) from Fig. 2.9 to an adjacent (or overlapping and
reconfigured) Fig. 2.10 takes time L0.590800+o(1). Each circuit uses L0.681600+o(1) matrix-
vector multiplications, and takes time L0.340800+o(1) for each matrix-vector multiplica-
tion. The total time is L1.022400+o(1).

2.11 Comparison and numerical parameter optimization. Bernstein’s
AT exponent from [7] was max{2θ, 2.5γ}. Batch NFS replaces 2θ with 2θ − β,
allowing γ to be correspondingly reduced, at least until β becomes large enough
for 2.5γ to cross below φ. In principle one should also watch for 2.5γ to cross
below 0.5β + 1.5γ, but Table 2.12 shows that φ is more important.

Of course, even if we ignore the cost of finding the smooth a − bm (the term
2θ − β), our AT exponent is not as small as Coppersmith’s RAM exponent
max{φ, 2γ} from [20]. We have an extra 0.5β + 1.5γ term, reflecting the cost of
communicating smooth congruences across a batch, and, more importantly, 2.5γ
instead of 2γ, reflecting the communication cost of linear algebra.

Table 2.12 shows the smallest exponents that we obtained for various β, in
each case from a brief search through 2500000000 pairs (μ, γ). The exponent
of the price-performance ratio for batch NFS drops below Bernstein’s 1.976 . . .
as soon as β increases past 0, and reaches a minimum of 1.704 . . . as the batch
size increases. (The minimum is actually very slightly below 1.704, but our table
does not include enough precision to show this.) Finding all (a, b) with a − bm
smooth is still a slight bottleneck for β = 0.4 but disappears for β = 0.5. When
there are more inputs we partition them into batches of size L0.5+o(1), preserving
exponent 1.704 . . . for the price-performance ratio.

Our optimal γ = 0.681 . . . is much smaller than Coppersmith’s γ = 0.819 . . .,
for the same reasons that Bernstein’s γ = 0.790 . . . is smaller than the conventional
γ = 0.961 The natural time exponent for batch NFS—as above, this means

Batch NFS 51

Table 2.12. Cost exponents for batch NFS in the AT metric. The batch size
is Lβ+o(1). The AT cost is Le+o(1). The parameter m is chosen as exp((μ +
o(1))(logN)2/3(log logN)1/3). The prime bound y is chosen as Lγ+o(1). The (a, b)
bound H is chosen as Lθ+o(1). The number of a − bα smoothness tests is Lφ+o(1)

per target. The number of a − bm somothness tests is L2θ−β+o(1) per target. The AT
cost of routing is L0.5β+1.5γ+o(1) per target. The AT cost of linear algebra is L2.5γ+o(1)

per target. All operations take place on a circuit of size Lβ+γ+o(1).

batch AT m size primes (a, b) a − bα a − bm route linear

β e μ γ θ φ 2θ − β 0.5β + 1.5γ 2.5γ

0.0 1.976052 0.702860 0.790420 0.988026 1.679645 1.976052 1.185630 1.976050

0.1 1.900575 0.705460 0.760230 1.000287 1.691256 1.900575 1.190345 1.900575

0.2 1.829615 0.712320 0.731840 1.014808 1.705173 1.829615 1.197760 1.829600

0.3 1.763034 0.718160 0.705210 1.031517 1.723580 1.763034 1.207815 1.763025

0.4 1.710375 0.820920 0.684150 1.055172 1.710374 1.710345 1.226225 1.710375

0.5 1.704000 0.921150 0.681600 1.077242 1.704000 1.654484 1.272400 1.704000

the time exponent when price-performance ratio is optimized—is just 1.022 . . .,
considerably smaller than the natural time exponent 1.185 . . . for single-key NFS.
This means that collecting targets into batches produces not merely a drastic
improvement in price-performance ratio, but also a side effect of considerably
reducing latency.

3 Early-abort ECM

Section 2 used ECM as a low-area smoothness test for auxiliary integers c =
fda

d + · · · + f0b
d. Each curve in ECM catches a fraction of the primes p ≤ y

dividing c, and many curves in sequence catch essentially all of the primes p ≤ y.
This section analyzes a much faster smoothness-detection method, “early-

abort ECM”. Not all smooth numbers are detected by early-abort ECM, but
new heuristics introduced in this section imply that this loss is much smaller
than the speedup factor. The overall improvement grows as a superpolynomial
function of log y, and therefore grows as a superpolynomial function of the NFS
input size.

Specifically, it is well known (see, e.g. [21, page 302]) that (assuming standard
conjectures) ECM uses exp(

√
(2 + o(1))log y log log y) multiplications modulo c

to find essentially all primes p ≤ y dividing c. Here o(1) is some function of y
that converges to 0 as y → ∞. Consequently, if a fraction 1/S of the ECM inputs
are smooth, then ECM uses

S · exp(
√

(2 + o(1))log y log log y)

modular multiplications for each smooth integer that it finds. This section’s
heuristics imply that early-abort ECM uses only

52 D.J. Bernstein and T. Lange

S · exp

(√(
8
9

+ o(1)
)

log y log log y

)

modular multiplications for each smooth integer that it finds. Notice the change
from 2 + o(1) to 8/9 + o(1) in the exponent.

We emphasize again that this paper’s analyses are asymptotic. We do not
claim that early-abort ECM is better than ECM for any particular value of y.

The rest of this section uses the word “time” to count simple arithmetic
operations, such as multiplication and division, on integers with O(lg c) bits.
Each of these operations actually takes time (lg c)1+o(1), but this extra factor is
absorbed into other o(1) terms when c is bounded by the usual functions of y.

3.1 Early-abort trial division. Early aborts predate ECM. They became
popular in the 1970s as a component of CFRAC [43], a subexponential-time
factorization method that, like batch NFS, generates many “random” numbers
that need to be tested for smoothness.

The simplest form of early aborts is single-early-abort trial division. Trial
division simply checks divisibility of c by each prime p ≤ y, taking time y1+o(1).
Single-early-abort trial division first checks divisibility of c by each prime p ≤
y1/2; then throws c away (this is the early abort) if the unfactored part of c is
too large; and then, if c has survived the early abort, checks divisibility of c by
each prime p ≤ y.

The definition of “too large” is chosen so that 1/y1/2+o(1) of all inputs survive
the abort, balancing the cost of the stages before and after the abort. In other
words, single-early-abort trial division checks divisibility of each input by each
prime p ≤ √

y; keeps the smallest 1/y1/2+o(1) of all inputs; and, for each of those
inputs, checks divisibility by each prime p ≤ y.

More generally, (k−1)-early-abort trial division removes each prime p ≤ y1/k

from each input (by dividing by factors found); reduces the number of inputs by
a factor of y1/k, keeping the smallest inputs; removes each prime p ≤ y2/k from
each remaining input; reduces the number of inputs by another factor of y1/k,
keeping the smallest inputs; and so on through yk/k = y.

The time per input for (k − 1)-early-abort trial division is only y1/k+o(1),
saving a factor y1−1/k+o(1), if k is limited to a slowly growing function of y. The
method does not detect all smooth numbers, but Pomerance’s analysis in [45,
Sect. 4] shows that the loss factor is only y(1−1/k)/2+o(1), i.e., that the method
detects 1 out of every y(1−1/k)/2+o(1) smooth numbers. The overall improvement
factor in price-performance ratio is y(1−1/k)/2+o(1); if k is chosen so that k → ∞
as y → ∞ then the improvement factor is y1/2+o(1).

3.2 Early aborts in more generality. One can replace trial division with
any method, or combination of methods, of checking for primes ≤ y1/k, primes
≤ y2/k, etc.

Batch NFS 53

In particular, Pomerance considered an early-abort version of Pollard’s rho
method. The original method takes time y1/2+o(1) to find all primes p ≤ y. Early-
abort rho takes time only y1/(2k)+o(1), and Pomerance’s analysis shows that it
has a loss factor of only y(1−1/k)/4+o(1).

Pomerance actually considered a different method by Pollard and Strassen.
The Pollard–Strassen method takes essentially the same amount of time as Pol-
lard’s rho method, and has the advantage of a proof of speed without any con-
jectures, but has the disadvantage of using much more memory.

Pomerance’s paper was published in 1982, so of course it did not analyze
the elliptic-curve method. After seeing early aborts improve trial division from
y to y1/2, and improve Pollard’s rho method from y1/2 to y1/4, one might
guess that early aborts improve ECM from exp(

√
(2 + o(1))log y log log y) to

exp((1/2)
√

(2 + o(1))log y log log y), but our heuristics do not agree with this
guess.

3.3 Performance of early aborts. Recall that ECM takes time T (y)1+o(1)

to find primes p ≤ y, where T (y) = exp(
√

2 log y log log y). We actually consider,
in much more generality, any factorization method M taking time T (y)1+o(1) to
find primes p ≤ y, where T is any sufficiently smooth function.

Our early-abort heuristics state that the price-performance ratio of (k − 1)-
early-abort M is the geometric average

T (y1/k)1/kT (y2/k)1/kT (y3/k)1/k · · · T (y)1/k

to the power 1 + o(1). More generally, cutoffs y1, y2, y3, . . . produce a geomet-
ric average of T (y1), T (y2), T (y3), . . . with weights log y1, log y2 − log y1, log y3 −
log y2,

In particular, for any purely exponential T (y) = yC , the price-performance
ratio is(

T (y1/k)T (y2/k) · · · T (y(k−1)/k)T (y)
)1/k

=
(
yC/ky2C/k · · · y(k−1)C/kyC

)1/k

=
(
yC
∑k

i=1 i/k
)1/k

= yC(k+1)/(2k)

which converges to yC/2 = T (y)1/2 as k increases, matching Pomerance’s analy-
ses of early-abort trial division and early-abort rho. More generally, if T (y) =
exp(C(log y)1/f) then T (yi/k) = T (y)(i/k)1/f so

(
T (y1/k)T (y2/k) · · · T (y(k−1)/k)T (y)

)1/k

= T (y)(
∑k

i=1(i/k)1/f)/k → T (y)f/(f+1).

To prove that (
∑k

i=1(i/k)1/f)/k → f/(f +1) as k → ∞, observe that
∑k

i=1 i1/f

is within k1/f of
∫ k

0
z1/fdz = (f/(f + 1))k(f+1)/f . ECM is essentially the case

f = 2: the geometric average is T (y)2/3+o(1).

54 D.J. Bernstein and T. Lange

3.4 Understanding the heuristics. Let y and u be real numbers larger
than 1, define x = yu, and define S0 = {1, 2, . . . ,
x�}. Define Ψ(x, y) as the
number of y-smooth integers in S0. Then Ψ(x, y) is approximately x/uu. See
[45, Theorem 2.1] for a precise statement. The same approximation is still valid
for Ψ(x, y, z), the number of y-smooth integers in S0 having no prime factor ≤ z,
assuming that z < y1−1/log u; see [45, Theorem 2.2].

Let k be a positive integer. Let y0, y1, y2, . . . , yk be real numbers with 1 =
y0 < y1 < y2 < · · · < yk = y. Let x1, x2, . . . , xk be positive real numbers with
x = x1x2 · · · xk. Define

S1 = {c ∈ S0 : c/(y1-smooth part of c) ≤ x/x1};
S2 = {c ∈ S1 : c/(y2-smooth part of c) ≤ x/(x1x2)};
...
Sk = {c ∈ Sk−1 : c/(yk-smooth part of c) ≤ x/(x1x2 · · · xk)}.

Note that each element c ∈ Sk is y-smooth, since c divided by its y-smooth part
is bounded by x/(x1x2 · · · xk) = 1.

Consider any vector (s1, s2, . . . , sk) such that each si is a yi-smooth positive
integer ≤xi having no prime factors ≤yi−1. For any such (s1, s2, . . . , sk), the
product c = s1s2 · · · sk is a positive integer bounded by x1x2 · · · xk = x, so
c ∈ S0. Dividing c by its y1-smooth part produces s2 · · · sk ≤ x/x1, so c ∈ S1.
Similarly c ∈ S2 and so on through c ∈ Sk.

The map from (s1, s2, . . . , sk) to s1s2 · · · sk ∈ Sk is injective: the y1-smooth
part of s1s2 · · · sk is exactly s1, the y2-smooth part is exactly s1s2, etc. Hence
#Sk is at least the number of such vectors (s1, s2, . . . , sk), which is exactly
Ψ(x1, y1, y0)Ψ(x2, y2, y1)Ψ(x3, y3, y2) · · · Ψ(xk, yk, yk−1). Pomerance’s early-abort
analysis in [45] says, in some cases, that #Sk is not much larger than this. We
heuristically assume that this is true in more generality.

The approximation Ψ(xi, yi, yi−1) ≈ xi/uui
i , where ui = (log xi)/ log yi, now

implies that #Sk is approximately x/(uu1
1 · · · uuk

k). More generally, #Si is approx-
imately x/(uu1

1 · · · uui
i).

Write Ti for the cost of finding the yi-smooth part of an integer. The early-
abort factorization method, applied to a uniform random element of S0, always
takes time T1 to find primes ≤y1; with probability #S1/#S0 ≈ 1/uu1

1 takes addi-
tional time T2 to find primes ≤y2; with probability #S2/#S0 ≈ 1/(uu1

1 uu2
2) takes

additional time T3 to find primes ≤y3; and so on. With probability #Sk/#S0 ≈
1/(uu1

1 · · · uuk

k) an integer survives all aborts and is y-smooth.
Balancing the time for the early-abort stages, i.e., ensuring that each stage

takes time approximately T1, requires choosing x1 (depending on y1) so that
uu1
1 ≈ T2/T1, choosing x2 (depending on y2) so that uu2

2 ≈ T3/T2, and so on
through choosing xk−1 (depending on yk−1) so that u

uk−1
k−1 ≈ Tk/Tk−1. Then

xk is determined as x/(x1 · · · xk−1), and uk is determined as (log xk)/ log yk =
u − (log x1 · · · xk−1)/ log y = u − (θ1u1 + θ2u2 + · · · + θk−1uk−1) where θi =
(log yi)/ log y.

Batch NFS 55

As a special case (including the cases considered by Pomerance), if all ui are
in u1+o(1), then Ti+1/Ti ≈ uui

i is a 1 + o(1) power of uui , so uu1
1 · · · uuk

k is a
1 + o(1) power of uu1+···+uk = uu+u1(1−θ1)+···+uk−1(1−θk−1), which is a 1 + o(1)
power of

uu(T2/T1)1−θ1 · · · (Tk/Tk−1)1−θk−1

= uuT θ1
1 T θ2−θ1

2 T θ3−θ2
3 · · · T θk−1−θk−2

k−1 T
1−θk−1
k /T1.

In other words, compared to the original smoothness probability 1/uu of integers
in S0, the found-by-early-abort-factorization probability is smaller by a factor
T θ1
1 T θ2−θ1

2 · · · T θk−1−θk−2
k−1 T

1−θk−1
k /T1. The time for all stages of early-abort fac-

torization is essentially T1. For example, for θi = i/k, the product of the time
and the loss factor is (T1T2 · · · Tk)1/k.

We see two obstacles to proving the formula (T1T2 · · · Tk)1/k for early-abort
ECM. First, the assumption ui ∈ u1+o(1) is correct for exponential-time smooth-
ness tests for standard ranges of x and y; but ui ∈ u0.5+o(1) for ECM, except for
i = k. Second, the error factor uo(u) in the standard uu approximation is larger
than the entire ECM running time. Despite these caveats we conjecture that the
heuristics apply beyond the case of exponential-time smoothness tests, and in
particular apply to early-abort ECM.

Even when smoothness theorems are available, one should not overstate the
extent to which they constitute rigorous analyses of NFS. There is no proof
that NFS congruences have similar smoothness probability to uniform random
integers; this is one of the NFS heuristics. There is no proof that ECM finds
all small primes at similar speed; this is another heuristic. As mentioned ear-
lier, Pomerance’s analysis in [45] actually uses the provable Pollard–Strassen
smoothness-detection method, and Bernstein’s batch trial-division method [8] is
proven to run in polynomial time per input; but both of these methods perform
poorly in the AT metric. Similarly, Pomerance proved in [45] that Dixon’s ran-
dom squares have similar smoothness probability to uniform random integers;
but Dixon’s method is much slower than NFS, and proving something similar
about NFS is an open problem.

3.5 Impact of early aborts on smoothness probabilities. Because early-
abort ECM does not find all smooth values, it forces batch NFS to consider more
pairs (a, b), and therefore slightly larger pairs (a, b). This increase means that
the auxiliary integers c are larger and less likely to be smooth. We conclude
by showing that this effect does not eliminate the (heuristic) asymptotic gain
produced by early aborts.

Recall that the smoothness probability of c is heuristically 1/vv, where v is
the ratio of the number of bits in (|fd| + · · · + |f0|)Hd and the number of bits
in y. The derivative of v with respect to log H is d/ log y, so the derivative of
log(vv) with respect to log H is d(1 + log v)/ log y ∈ 1/(3γμ) + o(1); here we
have used the asymptotics d ∈ (1/μ + o(1))(log N)1/3(log log N)−1/3, log y ∈
(γ + o(1))(log N)1/3(log log N)2/3, and log v ∈ (1/3 + o(1)) log log N .

56 D.J. Bernstein and T. Lange

Write δ = (2/3)/(2 − 1/(3γμ)). Multiplying H by a factor T δ+o(1) means
multiplying the number of pairs (a, b) by a factor T 2δ+o(1) and thus multiplying
the number of smoothness tests by a factor T 2δ+o(1). Meanwhile it multiplies
vv by a factor T δ/(3γμ)+o(1), and thus multiplies the final number of smooth
congruences by a factor T (2−1/(3γμ))δ+o(1) = T 2/3+o(1). Our heuristics state that
switching from ECM to early-abort ECM reduces the number of smooth congru-
ences found by a factor T 2/3+o(1), producing just enough smooth congruences
for a successful factorization, while decreasing the cost of each smoothness test
by a factor T 1+o(1). The overall speedup factor is T 1−2δ+o(1).

For example, [7] took γ ≈ 0.790420 and μ ≈ 0.702860, so the speedup factor
is T 0.047...+o(1). As another example, batch NFS with β = 0.5 takes γ ≈ 0.681600
and μ ≈ 0.921150, so the speedup factor is T 0.092...+o(1).

A ECM

See [10] and the full version of this paper.

References

[4] Bai, S., Bouvier, C., Filbois, A., Gaudry, P., Imbert, L., Kruppa, A., Morain,
F., Thomé, E., Zimmermann, P.: CADO-NFS—Crible Algébrique: Distribution,
Optimisation—Number Field Sieve (2013). http://cado-nfs.gforge.inria.fr/. Cita-
tions in this document: §1

[6] Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation
for key management—part 1: general (revision 3) (2012). http://csrc.nist.gov/
publications/nistpubs/800-57/sp800-57 part1 rev3 general.pdf. Citations in this
document: §1.2

[7] Bernstein, D.J.: Circuits for integer factorization: a proposal (2001). http://cr.yp.
to/papers.html#nfscircuit. Citations in this document: §1.1, §1.3, §1.3, §1.3, §1.3,
§2.4, §2.5, §2.11, §3.5

[8] Bernstein, D.J.: How to find small factors of integers (2002). http://cr.yp.to/
papers.html#sf. Citations in this document: §3.4

[10] Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves.
Math. Comput. 82, 1139–1179 (2013). Citations in this document: §A

[11] Bernstein, D.J., Chen, H.-C., Chen, M.-S., Cheng, C.-M., Hsiao, C.-H., Lange, T.,
Lin, Z.-C. , Yang, B.-Y.: The billion-mulmod-per-second PC. In: Workshop Record
of SHARCS’09: Special-Purpose Hardware for Attacking Cryptographic Systems,
pp. 131–144 (2009). http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf.
Citations in this document: §1.2

[12] Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on
graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–
501. Springer, Heidelberg (2009). Citations in this document: §1.2

[14] Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 321–340. Springer, Heidelberg (2013). Citations in this document:
§1.2, §1.3, §1.3, §2.5

http://cado-nfs.gforge.inria.fr/
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://cr.yp.to/papers.html#nfscircuit
http://cr.yp.to/papers.html#nfscircuit
http://cr.yp.to/papers.html#sf
http://cr.yp.to/papers.html#sf
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf

Batch NFS 57

[15] Bilardi, G., Preparata, F.P.: Horizons of parallel computation. J. Parallel Distrib.
Comput. 27, 172–182 (1995). Citations in this document: §1.1

[17] Bos, J.W., Kleinjung, T.: ECM at work. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 467–484. Springer, Heidelberg (2012). Cita-
tions in this document: §1.2

[18] Brent, R.P., Kung, H.T.: The area-time complexity of binary multiplication. J.
ACM 28, 521–534 (1981). Citations in this document: §1.1, §1.3

[19] Buhler, J.P., Lenstra Jr., H.W., Pomerance, C.: Factoring integers with the num-
ber field sieve. See [36], pp. 50–94 (1993). Citations in this document: §1.3, §1.3,
§1.3, §1.3, §1.3, §1.3, §2.2, §2.3

[20] Coppersmith, D.: Modifications to the number field sieve. J. Cryptol. 6, 169–180
(1993). Citations in this document: §1.3, §1.3, §1.3, §1.3, §1.3, §1.3, §1.3, §1.3, §2.3,
§2.5, §2.5, §2.11

[21] Crandall, R., Pomerance, C.: Prime numbers: A Computational Perspective.
Springer, New York (2001). Citations in this document: §3

[23] Franke, J., Kleinjung, T., Paar, C., Pelzl, J., Priplata, C., Stahlke, C.: SHARK:
a realizable special hardware sieving device for factoring 1024-bit integers. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 119–130. Springer,
Heidelberg (2005). Citations in this document: §1, §1.1

[24] Geiselmann, W., Shamir, A., Steinwandt, R., Tromer, E.: Scalable hardware for
sparse systems of linear equations, with applications to integer factorization. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 131–146. Springer,
Heidelberg (2005). Citations in this document: §1, §1.1

[25] Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: USENIX Security
Symposium (2012). Citations in this document: §1.1

[29] Kleinjung, T.: On polynomial selection for the general number field sieve. Math.
Comput. 75, 2037–2047 (2006). Citations in this document: §1

[30] Kleinjung, T.: Polynomial selection. Slides presented at the CADO workshop,
Nancy, France (2008). http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf.
Citations in this document: §1

[31] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H.J.J., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). Cita-
tions in this document: §1

[32] Kolkman, O.M., Mekking, M., Gieben, M.: RFC 6781: DNSSEC operational prac-
tices, version 2 (2012). http://tools.ietf.org/html/rfc6781. Citations in this docu-
ment: §1

[35] Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012). Citations in this document: §1.1

[36] Lenstra, A.K., Lenstra Jr., H.W. (eds.): The Development of the Number Field
Sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993). Citations
in this document: §1. See [19]

[37] Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The factorization
of the ninth Fermat number. Math. Comput. 61, 319–349 (1993). Citations in this
document: §1.3

[38] Lenstra, A.K., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J.,
Leyland, P.: Factoring estimates for a 1024-bit RSA modulus. In: Laih, C.-S.

http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf
http://tools.ietf.org/html/rfc6781

58 D.J. Bernstein and T. Lange

(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 55–74. Springer, Heidelberg (2003).
Citations in this document: §1

[40] Lenstra Jr., H.W., Tijdeman, R. (eds.): Computational Methods in Number The-
ory I. Mathematical Centre Tracts, vol. 154. Mathematisch Centrum, Amsterdam
(1982). See [45]

[41] Lewis, E.: DNSSEC at TLDs, start of 4Q 2013 (2013). https://elists.isoc.org/
pipermail/dnssec-coord/2013-October/000172.html. Citations in this document:
§1

[43] Morrison, M.A., Brillhart, J.: A method of factoring and the factorization of F7.
Math. Comput. 29, 183–205 (1975). Citations in this document: §3.1

[45] Pomerance, C.: Analysis and comparison of some integer factoring algorithms. In:
[40], pp. 89–139 (1982). http://cr.yp.to/bib/1982/pomerance.html. Citations in
this document: §3.1, §3.4, §3.4, §3.4, §3.4, §3.4

[50] Schnorr, C.P., Shamir, A.: An optimal sorting algorithm for mesh-connected com-
puters. In: STOC 1986, pp. 255–261 (1986). Citations in this document: §1.1,
§2.6

[51] Shamir, A., Tromer, E.: Factoring large numbers with the TWIRL device. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 1–26. Springer, Heidelberg
(2003). Citations in this document: §1, §1.1, §1.2

[53] Thompson, C.D., Kung, H.T.: Sorting on a mesh-connected parallel computer.
Commun. ACM 20, 263–271 (1977). Citations in this document: §1.1

[54] van Oorschot, P.C., Wiener, M.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12, 1–28 (1999). Citations in this document: §1.1

[56] Wiener, M.J.: The full cost of cryptanalytic attacks. J. Cryptol. 17, 105–124
(2004). Citations in this document: §1.1

https://elists.isoc.org/pipermail/dnssec-coord/2013-October/000172.html
https://elists.isoc.org/pipermail/dnssec-coord/2013-October/000172.html
http://cr.yp.to/bib/1982/pomerance.html

An Improvement of Linear Cryptanalysis
with Addition Operations with Applications

to FEAL-8X

Eli Biham and Yaniv Carmeli(B)

Computer Science Department, Technion - Israel Institute of Technology,
3200003 Haifa, Israel

{biham,yanivca}@cs.technion.ac.il
http://www.cs.technion.ac.il/∼{biham,yanivca}/

Abstract. FEAL is a Feistel cipher that uses addition operations. Since
its introduction 26 years ago it played a key role in the development of
many cryptanalytic techniques, including differential and linear crypt-
analysis. For its 25th anniversary Mitsuru Matsui announced a challenge
for an improved known plaintext attack on FEAL-8X. In this paper we
describe our attack and introduce several improvements to linear crypt-
analysis that allowed us to recover the key given 214 known plaintexts in
about 14 h of computation, and led us to win the challenge. An especially
interesting improvement considers the approximation of addition-based
S-boxes by partitioning into several sets in a way that amplifies the bias,
and therefore allows for a reduction in the number of required known
plaintexts as well as saving computation time. We also describe attacks
that require only a few (even 2 or 3) known plaintexts that recover the
key much faster than exhaustive search.

Keywords: FEAL · Linear cryptanalysis · Partitioning · Meet in the
middle

1 Introduction

FEAL [13] was introduced in 1987 as a fast encryption algorithm which com-
bines the simplicity of software-based operations with an improved security over
prior designs. Over the years FEAL inspired the development of many crypt-
analytic techniques, including differential and linear cryptanalysis [3,7,8]. The
best known attacks on FEAL required (until recently) a few hundreds of chosen
plaintexts [4] or 16 million known plaintexts [2,6].

In CRYPTO 2012 Mitsuru Matsui announced a year-long challenge [6] for
developing improved attacks on FEAL-8X [9], and an award which will be given
to the best attack capable of recovering the key of given sets of known plaintexts
with various amounts of data. The attack recovering the key using the smallest
number of known plaintexts would be declared the winner. In the course of
this year we developed an improved attack capable of recovering the key of
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 59–76, 2014.
DOI: 10.1007/978-3-319-13051-4 4

60 E. Biham and Y. Carmeli

FEAL-8X, and three weeks before the deadline we submitted our solution for
the challenge set with a million known plaintexts, and were the first to submit
a correct solution. A few days later another group submitted a solution for a
smaller set of 215 known plaintexts. It took us another two weeks to finalize our
program with all the additional tricks and to submit the solution for the set
of 214 known plaintexts, which became the winning solution. The secret key is
5681891EEC34CE1241ED0F52C9C23F65.

In this paper we present the cryptanalytic attacks that we developed for this
challenge, and the techniques that we used to improve linear cryptanalysis. We
first describe a linear attack which uses a 6-round approximation and analyzes
both the first and last rounds simultaneously, recovering 37 subkey bits in total.
We then describe how running it a second time with a different approximation
can reduce the number of required plaintexts and find 44 bit of the subkeys.
We describe the rest of the steps needed in order to recover the remaining sub-
keys and show how the FEAL-8X key can be reconstructed from those subkeys.
The above mentioned techniques can find the FEAL-8X key given 215 known
plaintexts in about 26 h on our computer.

We then present our main contribution – a new partitioning method that can
amplify the bias of a linear approximation of addition. The data is partitioned
into two sets such that in one of the sets the bias of the linear approximation
is stronger than it is when all the messages are considered. Interestingly, we
cannot tell in advance which of the two sets is the one with the increased bias,
and therefore we try both of them. The amplified bias allows us to reduce the
number of plaintexts needed for the attack while keeping the analysis time per
plaintext the same. Due to the smaller number of required plaintexts the attack
time when using this method even decreases. Incorporating this technique with
our previous methods allowed us to find the key given 214 known plaintexts in
about 14 h. In the summary of this paper (Sect. 7) we discuss the differences
between our technique and Partitioning Cryptanalysis [5].

In addition to the practical attacks we also discuss attacks that can find the
key with fewer plaintexts faster than exhaustive search. We describe an attack
that can recover the key given 210 known plaintexts in time of 262 FEAL-8X
encryptions. In addition, we describe attacks in which given only 11–21 known
or chosen plaintexts the FEAL-8X key can be recovered with complexity about
280 and given 2 or 3 known plaintexts the FEAL-8X key can be recovered with
complexity about 296. These attacks combine linear cryptanalysis and differential
cryptanalysis with exhaustive search of many subkeys, as well as meet in the
middle attacks. These attacks exploit the fact that the total size of the subkeys
is not sufficiently larger than the size of the key.

The structure of the paper is as follows: In Sect. 2 we describe FEAL-8X,
give two equivalent descriptions of the cipher, and define notations. In Sect. 3
we describe the linear attack that recovers the key given 215 known plaintexts.
In Sect. 4 we present the new partitioning method and how to recover the key
given 214 known plaintexts. In Sect. 5 we extend the methods from the previous
sections, and describe an attack on 210 known plaintexts faster than exhaustive
search. Finally, in Sect. 6 we describe the attacks that require only a few known

An Improvement of Linear Cryptanalysis with Addition Operations 61

ciphertexts or a few chosen plaintexts. In Appendix A we describe an efficient
implementation of our attacks which is able to save a factor of about 26 in
the attack time. Appendix B illustrates the linear approximations used in our
attacks. In the full version of the paper we also show how to find the key of
FEAL-8X given the subkeys that are found by our attacks.

2 The Cipher FEAL-8X

The block size of FEAL-8X is 64 bits and the key size is 128 bits. The key process-
ing algorithm of FEAL-8X takes the 128-bit key and generates 16 subkeys,
denoted by K0–Kf , each of length 16 bits.

FEAL-8X is an 8-round Feistel cipher. Before the first round the plaintext is
mixed with a 64-bit whitening subkey (K89ab) which is followed by XORing the
left half of the data into the right half. The inverse of this operation is performed
after the last round, i.e., the left half of the data is XORed into the right half
and the result is mixed with a 64-bit whitening key (Kcdef). In each round a
function F is computed on the right half of the data and a 16-bit subkey (one of
K0–K7), and the output is XORed into the left half. The two halves are then
swapped.

The function F takes four bytes as input, and starts by XORing the first and
last bytes into the two middle bytes, and then XORs the subkey into the same
bytes. It then applies four S-boxes in the order described in Fig. 1. Each S-box
adds two bytes and an index (0 or 1) and rotates the output by two bits to the
left. FEAL-8X and the F -function are outlined in Fig. 1.

2.1 An Equivalent Description of FEAL-8X

In order to simplify the analysis we prefer to eliminate the whitening keys. This
is possible on one end of the cipher by extending the size of the subkeys to 32 bits
in each round and by XORing the eliminated whitening key information into all
the subkeys. We consider two equivalent descriptions of the cipher. In the first
we eliminate the whitening at the beginning of the cipher, and in the second we
eliminate the whitening at the end (this latter version is outlined in Fig. 2). The
32-bit subkeys of the equivalent description are called actual subkeys. We call
the actual subkeys of the version with eliminated whitening key at beginning
encryption actual subkeys and denote them by EK0–EK7, while we call the
actual subkeys of the version with eliminated whitening key at the end decryption
actual subkeys, and denote them by DK0–DK7. To simplify the description we
define the function

mw(X,Y) = (Y0, Y0 ⊕ Y1 ⊕ X0, Y2 ⊕ Y3 ⊕ X1, Y3)

where X is a 16-bit value, Y is a 32-bit value, and X0,X1, Y0, Y1, Y2, Y3 are their
individual bytes. Note that mw(X,Y) is just the first part of the F -function
before the S-boxes (see Fig. 1). The mapping between the subkeys of all three

62 E. Biham and Y. Carmeli

(K89,Kab)

P

F
K0

A a

F
K1

B b

F
K2

C c

F
K3

D d

F
K4

E e

F
K5

F f

F
K6

G g

F
K7

H h

(Kcd,Kef)

T

S1

S0

S0 S1

F0 F1 F2 F3

f0 f1 f2 f3

w0 w1 w2 w3

Ki0 Ki1

Si(x, y) = ROL2(x + y + i (mod 256))

Fig. 1. The outline of FEAL-8 and of the F -function

descriptions of the cipher (the subkeys of FEAL and the two equivalent descrip-
tions) is summarized in Table 1.

In our attacks when we analyze the last rounds of the cipher we assume the
whitening at the end is zero, and therefore retrieve the bits of the decryption
actual subkeys DK. Similarly, when we analyze the first rounds of the cipher we
retrieve the bits of the encryption actual subkeys EK.

Note that since there is a linear relation between the subkeys of all three
descriptions of FEAL it is possible to target actual subkeys of different descrip-
tions in the same linear attack. For example, the attack presented in Sect. 3.2
targets both EK0 and DK7.

3 First Attack – Finding the Key Using 215 Known
Plaintexts

In this section we describe a linear attack that requires 215 known plaintexts
and finds the key in about 26 h on a server with an Intel(R) Xeon(R) X5650

An Improvement of Linear Cryptanalysis with Addition Operations 63

Table 1. The Subkeys of FEAL-8X and the actual subkeys of the equivalent descrip-
tions

Subkeys of Equivalent description without Equivalent description without

FEAL-8X whitening at the beginning whitening at the end

K89ab 0 (K89 ⊕ Kcd ⊕ Kef,Kab ⊕ Kef)

K0 EK0 = mw(K0,K89 ⊕ Kab) DK0 = mw(K0,Kcd)

K1 EK1 = mw(K1,K89) DK1 = mw(K1,Kcd ⊕ Kef)

K2 EK2 = mw(K2,K89 ⊕ Kab) DK2 = mw(K2,Kcd)

K3 EK3 = mw(K3,K89) DK3 = mw(K3,Kcd ⊕ Kef)

K4 EK4 = mw(K4,K89 ⊕ Kab) DK4 = mw(K4,Kcd)

K5 EK5 = mw(K5,K89) DK5 = mw(K5,Kcd ⊕ Kef)

K6 EK6 = mw(K6,K89 ⊕ Kab) DK6 = mw(K6,Kcd)

K7 EK7 = mw(K7,K89) DK7 = mw(K7,Kcd ⊕ Kef)

Kcdef (K89 ⊕ Kab ⊕ Kcd,Kab ⊕ Kef) 0

2.67 GHz processor with 12 cores. We first describe a 6-round linear approxima-
tion and then the basic attack which performs the analysis on both ends of the
cipher simultaneously. We then describe how to use it with reduced number of
plaintexts, and how to recover the rest of the actual subkeys and the full key.

3.1 The Linear Approximations

In [1,11] eight 7-round linear approximations with a bias of about 2−9 were pre-
sented. The attack we present in this paper uses two 6-round approximations
with bias of about 2−6, which we got by truncating two of the 7-round approx-
imations of [1,11] by one round. These approximations are outlined in Figs. 4
and 5 in Appendix B.

3.2 The Basic Attack

The attack we present targets both the encryption actual subkey of the first
round (EK0), and the decryption actual subkey of the last round (DK7). The
six-round linear approximation covers the six middle rounds of the cipher (rounds
1–6), while the first and last rounds are used for analysis. We found that when
using Approximation 1 there are only 37 bits of EK0 and DK7 that affect the
parity of the bits in the approximation: 22 bits in the last actual subkey (DK7,
given by the mask 03 FF FF 0F), and 15 bits of the first actual subkey (EK0,
given by the mask 00 7F 7F 00 and the parity of the two bits 00 80 80 00).
The remaining 27 bits of EK0 and DK7 have no impact on the parity of the
bits in the linear approximation of the six middle rounds. It is therefore that
this basic attack finds the 37 bits of the two actual subkeys.

64 E. Biham and Y. Carmeli

(DK89,DKab)

P

F
DK0

A a

F
DK1

B b

F
DK2

C c

F
DK3

D d

F
DK4

E e

F
DK5

F f

F
DK6

G g

F
DK7

H h

0

T

S1

S0

S0 S1

F0 F1 F2 F3

f0 f1 f2 f3

w0 w1 w2 w3

DKi0 DKi1 DKi2 DKi3

Si(x, y) = ROL2(x + y + i (mod 256))

Fig. 2. Equivalent description of FEAL-8X without whitening at the end

The attack is as follows:

1. For each of the 215 candidates for the 16 bits of EK0:
(a) For each of the 222 candidates for the 22 bits of DK7:

i. For each known plaintext P,C:
A. Decrypt C by one round using DK7.
B. Encrypt one round of P using EK0.
C. Compute the parity of the approximated bits.

ii. Count the number of messages for which the linear approximation
holds and compute the bias.

2. The correct key is expected to be the one with the highest bias.

We also observed that not all 37 bits of the subkeys have the same impact
on the bias. While some bits completely throw off the observed bias if guessed
incorrectly, others have only a minor impact. We can take advantage of this
observation to reduce the running time of the attack by excluding a few such
bits with a minor impact on the bias, and to search for them only when the rest

An Improvement of Linear Cryptanalysis with Addition Operations 65

of the bits are already known. For example, instead of guessing 15 bits of EK0
with a bias of about 2−6, we may guess only 13 bits (the 12 bits whose mask is
00 6E 7F 00, and the parity of the two bits 00 80 80 00) with a slightly lower
expected bias of 2−6.5, and save a factor of 4 in computation time.

Clearly, the more data we have at our disposal the more accurate the results
are (since it is easier to detect the linear bias). If the available data is a lot
larger than required in order to detect the bias then we have more freedom to
exclude such minor-impact bits (as the measurement of the bias is only slightly
inaccurate). As the number of known plaintexts decreases, the identification of
the correct key becomes harder (as the bias is harder to detect), and in this case
we usually cannot afford to reduce the bias in return for speeding up the attack.

3.3 Matching Subkeys from the Backward and Forward Directions

As noted above, the basic attack does not suffice to find the correct key using
215 known plaintexts. In this section we apply the basic attack twice: once in
the forward direction, and once in the backward direction.

We first generate a list L1 of the N (for some parameter N) keys which
exhibit the highest bias according to Approximation 1 in the forward direction,
as described in Sect. 3.2. Recall that for each such key we get 15 bits of the first
encryption actual subkey EK0, and 22 bits of the last decryption actual subkey
DK7.

We now run the attack again in the backward direction, i.e., we use the
reverse of Approximation 1. In this run we guess 22 bits of EK0 and 15 bits of
DK7. We generate a second list L2 of the N keys that exhibit the highest biases.

There is an overlap of 15 bits between the bits we guess in EK0 in both runs,
and similarly, an overlap of 15 bits in DK7. Seven bits of EK0 are available
only in L2, and seven bits of DK7 are available only in L1. The correct value of
these 30 overlapping bits is expected to be in both lists. In such a case, we can
easily find the correct value of 30 + 7 + 7 = 44 bits of the actual subkeys as the
(usually single) value that has a match in those 30 bits in both lists.

As we noted earlier, some of the bits of the key only have a minor impact
on the measured bias if they are guessed incorrectly. If we cannot find a match
between an entry in L1 and an entry in L2, we can try looking for entries that
have a low Hamming distance in the overlapping bits, and between these prefer
entries that differ in bits that are known to have a minor impact on the bias.

This is the most time-consuming part of our attack. When we ran it1 on the
server mentioned above it found the 44 bits of the actual subkeys within 24 h
using 215 known plaintexts (12 h for each call to the basic attack). The correct
key bits were among the top N = 3200 keys in each list.

3.4 Retrieving the Rest of the Subkeys

In the previous section we found 44 bits of the actual subkeys. In this section we
briefly describe additional steps for finding the rest of the bits of EK0 and DK7,
1 With the implementation improvement described in Appendix A.

66 E. Biham and Y. Carmeli

as well as the rest of the actual subkeys. The steps are described in the order
in which they are performed, as each step assumes knowledge of the subkey bits
that are retrieved in the preceding steps.

Finding 8 additional bits of EK0 and DK7. This step is similar to the
attack presented in Sect. 3.2, but uses Approximation 2 instead of Approxima-
tion 1. Since the linear approximation is different, there are also different bits
of the subkeys of Rounds 0 and 7 that affect the parity. The bits of EK0 that
affect the parity are given by the mask 3F FF FF 00 and the bits of DK7 are
given by the mask 0F FF FF 03. Most of those bits are already known, except
for eight bits. The correct values of these remaining eight bits can be identified
by standard linear cryptanalysis techniques, similarly to the attack of Sect. 3.2.
After this step is performed we know 26 bits in each of EK0, DK7, a total of 52
actual subkey bits.

Finding 4 additional bits of DK7 and 15 bits of DK6. At this point there
are still 6 bits missing in the subkey DK7, which are difficult to retrieve by
analyzing Round 7. We therefore move on to analyze Round 6 by using a shorter
linear Approximation. We use the first five rounds of Approximation 1 with a
bias of 2−3, and use it to cover rounds 1–5. In order to compute the parity of
the approximated bits in Round 5 we need to guess the values of four more bits
of DK72, and 15 bits of DK6. After this step is performed we know a total of
30 bits of DK7 (given by the mask 7F FF FF 7F) and 15 bits of DK6 (given by
the mask 00 7F 7F 00 and in addition the parity of bits 00 80 80 00).

Finding 7 additional bits of DK6. This step is similar to the previous step,
but this time we use a 5-round approximation obtained from the last five rounds
of Approximation 1, which covers Rounds 1–5. There are 22 bits in DK6 that
affect the parity of this linear approximation. We already found 15 of them in
the previous step, and we should now search for the remaining seven.

Finding 4 additional bits of DK6. We use a 5-round approximation com-
prised of the last five rounds of Approximation 2, which covers Rounds 1–5 We
can obtain four more bits of DK6, and get a total of 26 bits of DK6.

Finding the rest of the subkeys DK1–DK7. In a similar way, we can
attack the rest of the rounds until we have all the actual subkeys DK1–DK7.
Note that as we progress in the attack, analyzing each additional round becomes
easier for two main reasons: First, we use shorter approximations with higher
biases, which significantly decrease the chances of errors. Second, since the actual
subkeys DK0, DK2, DK4 and DK6 have 16 bits in common (and similarly for
DK1, DK3, DK5 and DK7) there are only 16 bits to retrieve in each of those
actual subkeys once DK6 and DK7 are fully known.

Finding EK0–EK6. Once we finish recovering the decryption actual subkeys,
we can repeat the entire process in the reverse direction in order to find the
2 The value of the two remaining bits of DK7 can only be determined when we analyze

round 3. Until then those bits have only a linear effect on the parity of the approxi-
mation, and therefore cannot be discovered by methods of linear cryptanalysis.

An Improvement of Linear Cryptanalysis with Addition Operations 67

S1

S0

S0 S1

DK60 DK61 DK62 DK63

11x 55x

02x 11x

44x44x

11x

46x

01x 01x

01x 01x

01x 01x

04x 03x 10x 04x

10x 11x 55x 54x

Fig. 3. The approximation of the seventh round

encryption actual subkeys EK0–EK6.3 These actual subkeys depend on the
whitening key of the plaintext, and are needed in order to retrieve the FEAL-8X
key.

Finding The Key Itself. Given DK1–DK7 and EK0–EK6 we find the FEAL-
8X key within a fraction of a second. The details are omitted here due to space
constraint, but the algorithm is described in the full version of the paper.

4 The Partitioning Technique – Finding the Key Using
214 Known Plaintexts

In this section we describe a technique that can reduce the number of known
plaintexts by a factor of 3.1 compared to the algorithm of Sect. 3.2. In this tech-
nique we partition the data into several sets, such that the bias of the approxi-
mation in some of them is higher than when measured across all the data, with
a ratio that overcomes the smaller number of messages in those sets. Therefore,
fewer messages are required in order to detect the amplified bias.

4.1 A Simplified Example

We apply this technique to Round 6 of the cipher in the inner loop of the
algorithm, after the output of the last F -function is already (partially) computed.
It is therefore that most bits of the inputs to the S-boxes of Round 6 are known
up to an XOR with DK6.
3 We note that instead of searching for EK0–EK6, we can continue the analysis in

the decryption direction and retrieve the actual subkey DK0 and the whitening key.
Once all the decryption actual subkeys DK0–DK7 and the whitening key are known,
the encryption actual subkeys EK0–EK7 can easily be computed (see Table 1).

68 E. Biham and Y. Carmeli

At Round 6 we approximate the first S-box by 11 11 → 44 (see Fig. 3). The
input mask 11 11 is approximated to the output mask 44 through the addition
operations in the S-boxes (and the rotation), and therefore the quality of the
approximation is determined by the carry bits from lower bits into the approxi-
mated bits.

We are interested in improving our control on the carry bits, which in turn
will improve our approximations.

For that we identified that some of the bits in the inputs to this S-box
(denoted by w1 and w2 in Fig. 2) in this round are known to us up to an XOR
with the actual subkey DK6 (as mentioned above).

The approximation 11 11 → 44 approximates two bits through the addition
operations. One of them involves the addition of the least significant bits of
the inputs (mask 01 01 or w1,0 + w2,0 = F1,2, where wi are the input bytes to
the S-boxes and Fi is the output, as denoted in Fig. 2, and wi,j is bit j of wi). The
approximation of this bit has probability 1, as there cannot be a carry into the
LSB. The other approximates Bit 4 of both inputs (mask 10 10), the carry to
which involves Bit 3 of both inputs (w1,3 and w2,3, identified by the mask 08 08).
If we would know in advance that the unknown values of these two bits are both 0
then it is certain that there cannot be any carry into Bit 4, which would ensure
that this approximation will also have probability 1 (bias +0.5). Similarly, when
both bits are 1, a carry from this bit to the next one is guaranteed, and therefore
we would also be able to make the approximation with probability 1 (knowing
that the carry always flips the approximated output, thus the bias is −0.5). In
the other cases (where the bits w1,3 and w2,3 are either 0,1 or 1,0), we have
no idea what the carry is, but we expect that it would occur in about half of
the inputs, which would cause the bias to be much closer to zero. We refer to
the four possible cases by the values of w1,3, w2,3 as cases 00, 11, 01, and 10,
respectively. The bias of the S-box (on all inputs) is close to 0.25, and therefore
the bias of the entire Approximation 1 is 0.25α, for some α that depends on the
other parts of the approximation.

If we could choose only plaintexts of cases 00 and 11 and run the attack
only on these plaintexts, we would need fewer messages due to the larger bias.
Unfortunately, the values of w1,3 and w2,3 are only known up to a XOR with
two missing bits of DK6 (see Fig. 2):

w1,3 = f0,3 ⊕ f1,3 ⊕ DK61,3, w2,3 = f2,3 ⊕ f3,3 ⊕ DK62,3,

and therefore they clearly cannot be chosen or known directly. Nevertheless, the
corresponding bits f0,3, f1,3, f2,3 and f3,3 in the input of the F -function are all
known as a result of the partial guess of the actual subkey DK7. We observe that
we can still partition all the data into the same four sets according to f0,3 ⊕ f1,3
and f2,3 ⊕ f3,3, instead of w1,3 and w2,3, but we do not know which of the four
sets have the amplified biases.

Though we cannot identify the two sets with an amplified bias, we can run
this inner part of the attack four times, once on each of the sets. We expect
the following results: In each set we would have about a quarter of the known

An Improvement of Linear Cryptanalysis with Addition Operations 69

plaintexts but in two of them we would have a bias twice as large as we had
originally (meaning ±0.5α).4 Therefore the number of required plaintexts in
these sets is about 4 times (0.52/0.252) smaller than would have been needed
without applying this technique.

A more careful analysis shows that we can merge the two sets with bias ±0.5
(with an appropriate sign coefficient) and partition the plaintexts only to two
sets. This merges the sets of cases 00 and 11 into one set, and the sets of cases
01 and 10 into another set according to the parity of the two bits f0,3 ⊕ f1,3
and f2,3 ⊕ f3,3. Denote the number of known plaintexts required for the original
attack by m. As discussed above, the amplified bias can be detected with m/4
plaintexts. Since each of the two unified sets has about half of the plaintexts, we
deduce that m/2 known plaintexts suffice for the partitioning technique.

4.2 The Attack

The attack follows the lines of the above example, but considers that the details
of the approximation of the S-boxes are more complicated than described so
far. While for a single S-box and appropriate independence assumptions the
technique would work as described, in practice there is a correlation between
the approximation of the two middle S-boxes of F . We give the combination
of both middle S-boxes the name T-box (marked by a rectangle in Fig. 3). The
joint approximation of the two S-boxes in the T-box cannot be described as
a combination of two independent approximations since the input bits to the
second S-box are all either inputs of the first S-box or its output. Therefore, a
closer examination of the joint distribution is in order.

We computed the joint approximation of the S-boxes (the T-box) with the
approximation 11 55 → 02 11 and observed that the partition to two sets (by the
value of f0,3 ⊕ f1,3 ⊕ f2,3 ⊕ f3,3) has the following effect: In the cases 01 and 10
the bias is increased by a factor of about 2.49 compared to the original bias,
while the absolute value of the bias in the other cases (00 and 11) is halved. It is
therefore that the number of known plaintexts needed by the attack is reduced
by a factor of about 2.492/2 ≈ 3.1.

We also note that there are other possible partitions (by other control bits)
that yield an increased bias in one or more of the sets, that can be used for
alternative implementations of this technique.

We applied this improvement to the attack of Sect. 3 and successfully reduced
the number of required known plaintexts from 215 to 214. Applying this technique
did not add a noticeable overhead to the running time of the attack. In fact, the
time it took to recover the 44 bits of the actual subkeys using 214 plaintexts
was 12 h – which is about half the time that was required using 215 plaintexts
(without using this technique). The rest of the attack took about two more
hours, and the key was found after 14 h of computation. The key that was found
for the challenge with 214 plaintexts is 5681891EEC34CE1241ED0F52C9C23F65.
4 For the purpose of this simplified example we assume that the linear approximation

of this S-box is independent of the rest of Approximation 1. We will see later that
this is not the case.

70 E. Biham and Y. Carmeli

5 Attacking FEAL-8X Using 210 Known Plaintexts
with Complexity 262

The methods we described in the previous sections can be used to break FEAL-
8X with even fewer known plaintexts in time which is still faster than exhaustive
search. In particular, the key can be found given 210 known plaintexts in time
of about 262 FEAL encryptions.

To justify the above claim, we describe an attack on seven rounds of FEAL,
which is based on the attack of Sect. 3.2, and then extend it to 8 rounds by
exhaustively searching for the subkey of the last round.

The attack on seven rounds of FEAL uses the first five rounds of Approxima-
tion 1, with a bias of 2−3. Similarly to the attack of Sect. 3.2, the approximation
covers the five middle rounds and the analysis is performed on the first and last
rounds. In each of the first and last rounds there are 15 bits that we need to
guess in order to compute the parity of the linear approximation, and therefore
the attack requires encrypting/decrypting an equivalent of 215 · 215 · 210 · 2 = 241

rounds of FEAL.
In order to extend the attack to eight rounds, we also guess 30 bits of the

actual subkey DK7 of the last round (recall that two of the 32 bits have no effect
on the parity of the linear approximation). For each candidate for these 30 bits
of DK7 we decrypt the last round of all the inputs, and then apply the above
attack to the remaining seven rounds. The attack on seven rounds is performed
230 times, and therefore the total time complexity is equivalent to computing
230 · 241 = 271 rounds of FEAL (or 268 encryptions of the full cipher), which is
much faster than exhaustively searching for the 128-bit key.

When applying the optimization improvements described in Appendix A we
get an even lower complexity of about 262 FEAL encryptions.5

6 Attacks with a Few Known or Chosen Plaintexts

In this section we describe several attacks that require only a few (even 2 or 3)
known or chosen plaintexts, which are based on linear cryptanalysis or differential
cryptanalysis combined with exhaustive search of most subkeys, as well as meet
in the middle attacks.

6.1 Differential and Linear Exhaustive Search Attacks

During the work on this paper we noticed that the actual subkeys of FEAL-
8X are mixed very slowly through the encryption function. In particular, we
observed that only 112 bits of the actual subkeys are needed in order to decrypt a
ciphertext by 5 rounds and compute the data after the third round of the cipher
from the ciphertext. In addition, we recalled that there are four independent
5 Recall that the key size of FEAL-8X is 128 bit.

An Improvement of Linear Cryptanalysis with Addition Operations 71

3-round linear approximations with probability 1 (creating a total of 15 non-
trivial approximations) and two independent 3-round differential characteristics
with probability 1 (creating a total of 3 characteristics). These approximations
and characteristics can be found in [2,4].

In the case of the linear approximations with probability 1, each allows us to
test one parity bit of the data after the third round and to compare to a parity
bit of the plaintext. Therefore, a total of 4 bits can be tested on each plaintext
(except for the first known plaintext to whose parities we compare). Given 5
known plaintexts the attack would be:

1. For each value of the set of subkeys DK3, DK4, DK5, DK6, DK7 (in total
these 160 bits only contain 112 independent bits).
(a) For each plaintext-ciphertext pair (P,C) decrypt the ciphertext by 5

rounds to D3 and compute the parity of each approximation Pλ3
P ⊕D3λ

3
T ,

where λ3
P → λ3

T is the mask of the linear approximation in use.
(b) Discard any guess for which the five results (each of 4 bits, one for each

approximation) are not the same.
(c) Note that at this point only about 296 of the guesses of the subkeys

remain.
(d) For each value of the subkey DK2 (16 more bits)

i. Note that at this point we have about 2112 guesses of the subkeys.
ii. We will now use four 2-round approximations λ2

P → λ2
T which are

based on the last two rounds of the prior ones.
iii. For each plaintext-ciphertext pair (P,C) decrypt the ciphertext by 6

rounds to D2 and compute the parity of each approximation Pλ2
P ⊕

D2λ
2
T .

iv. Discard any guess for which the five results are not the same.
v. Note that at this point we are left again with only about 296 guesses

of the subkeys.
vi. For each value of the subkey DK1 (16 more bits)

A. Note that at this point we have about 2112 guesses of the subkeys.
B. For each plaintext-ciphertext pair (P,C) decrypt the ciphertext

by 7 rounds to D1 and compute the XOR of both halves of the
whitening key DK89 ⊕ DKab (32 bits in total).

C. Discard any guess for which the five results are not the same.
D. Note that at this point we expect that only the correct values of

all the above guesses remain.
E. Complete the rest of the subkeys by guessing DK0 and compar-

ing the resulting DK89 in 216 time.
F. Recover the original key. The algorithm is described in the full

version of the paper (note that given all the decryption actual
subkeys and the whitening key it is easy to compute the encryp-
tion actual subkeys needed by that algorithm).

The complexity of this attack is 2112, taking into consideration that the various
decryptions need not be computed several times (once by 5 rounds, then by 6,

72 E. Biham and Y. Carmeli

then by 7), but that the intermediate values can be cached to save computation
time. A careful implementation would require an average computation of only
two rounds in each guess for each of the three guessing loops. Thus the total
complexity is about 3 · 2 · 2112 round computations = 0.75 · 2112 encryption of
FEAL-8X.

A similar attack that uses the 3-round differential characteristics with prob-
ability 1 requires only three chosen plaintexts (whose plaintexts differ by the
two plaintext differences of the two characteristics). Since each differential char-
acteristic predicts 64 bits of the intermediate difference, we have a much better
elimination of wrong guesses, and thus we need only three chosen plaintexts.
The complexity of the attack is also 2112.

6.2 Meet in the Middle Attacks

The attack that requires the least number of known plaintexts is a meet in the
middle attack. We observe that the number of (independent) bits of the actual
subkeys that are required to partially encrypt (or decrypt) four rounds of the
cipher is 96. Therefore, a meet in the middle attack using two (or three) known
plaintexts computes 296 4-round partial encryptions of two blocks plus 296 4-
round partial decryptions of two blocks. This attack also requires 296 memory
words of size 128 bits (or even 96 bits). The list of about 264 (or 296) colliding
values should then be checked by auxiliary techniques, and be completed to a
full key with the same known plaintexts.

An improvement of this attack may reduce the complexity to 280, by encrypt-
ing or decrypting only three rounds from each end, using 11 known plaintexts.
This improvement considers that the F -function in the fourth round can be
approximated by the four independent linear approximations with probability 1
(each one is represented by a single parity bit in the output of encryption and
a single parity bit in the output of decryption). The fifth round can be approxi-
mated similarly. This way, each known plaintext contributes 8 bits to the collid-
ing values (except for the first, whose 8 parity bits are XORed into the parity bits
of all the other ones), and thus in order to collide on 80 bits, we need 11 known
plaintexts. Each of the 280 colliding values can then be checked by auxiliary
techniques, and be completed to the full key.

We also note that these meet in the middles attacks can be transformed
to memoryless meet in the middle attacks by standard techniques [10,12]. The
simplest implementation of the former encrypts/decrypts three blocks at a time,
each encrypted or decrypted by four rounds, resulting in a collision on 192 inter-
mediate data bits, which ensures that the real value of the subkeys are easily iden-
tified in time 296. The simplest implementation of the latter encrypts/decrypts
21 blocks at a time, each encrypted or decrypted by three rounds, resulting in a
collision on 160 intermediate data bits, which ensures that the real value of the
subkeys be easily identified in time 21 · (3/8 + 3/8) · 280 ≈ 284.

An Improvement of Linear Cryptanalysis with Addition Operations 73

7 Summary

We presented the techniques which allowed us to break FEAL-8X with only
214 known plaintexts and recover the secret key. This is an improvement of the
best known-plaintext attacks prior to this paper. Our attack is based on a few
improvements and optimizations to linear cryptanalysis, the most important of
which is the new partitioning technique which allowed us to reduce the amount
of known plaintexts needed for the attack.

In addition to the practical attacks on FEAL-8X we also presented a few
attacks which are based on linear and differential cryptanalysis in combination
with meet-in-the-middle techniques. Those attacks can find the secret key given
only a few messages in time which is faster than exhaustive search.

We wish to discuss the similarities and differences between our partition-
ing technique and partitioning cryptanalysis [5]. They both partition the data
into several sets based on functions that take the plaintexts or ciphertexts and
guessed key bits, where each set of the input-partition is related to some linear
approximation and expected biases. In that sense, our technique is a variant of
partitioning cryptanalysis. However, in partitioning cryptanalysis the expected
biases are known in advance for each input block of the partition, and thus the
attacker can select the best block and choose all the chosen plaintexts to be in
that block. In our case we succeed (in the particular case of the addition opera-
tion) to take one step further and divide to partitions such that we do not know
which set should have which bias. The identification of the sets is part of the
attack, and it is therefore that our technique is a known plaintext attack. But
perhaps the most significant improvement of our technique stems directly from
the motivation that is the basis of our partition – we use the partition in order
to discard (or rather ignore) messages that do not contribute to the linear bias.
By doing so the bias in the remaining set is higher, which allows us to reduce the
number of messages needed for the attack. We also note that our technique may
in some cases be applied both on the plaintext side and on the ciphertext side
simultaneously, and gain the extra factor in cases that partitioning cryptanalysis
may not.

Acknowledgements. The authors would like to thank Mitsuru Matsui for initiating
the FEAL 25 Years challenge. We would also like to thank Orr Dunkelman for his
insightful comments and helpful suggestions.

A Efficient Implementation

We describe an optimization to the implementation of the attack of Sect. 3.2
which saves a factor of about 26 in the computation time of the attack. This
optimization can also be applied to other attacks presented in this paper that
are based on the attack of Sect. 3.2.

74 E. Biham and Y. Carmeli

Recall that in the attack of Sect. 3.2 we iterate over 215 possible values for (16
bits of) the encryption actual subkey of the first round (EK0), and 222 possible
values for (22 bits of) the decryption actual subkey of the last round (DK7).
For each of the 237 combinations, two rounds of FEAL are encrypted/decrypted
for each known plaintext. We denote the number of known plaintexts by m.

We observe that given a known plaintext-ciphertext pair P,C, the parity of
the approximated bits can be written as bP ⊕ bC , where bP is a bit that depends
only on the plaintext and the actual subkey of the first round, and bC is a bit
that depends only on the ciphertext and the actual subkey of the last round.
Therefore, we can change the attack as follows:

1. For each of the 215 candidates for the 16 bits of EK0 :
(a) Compute a vector BP of length D bits, where (BP)i = bPi

. Save all the
vectors in a table.

2. For each of the 222 candidates for the 22 bits of DK7:
(a) Compute a vector BC of length m bits, where (BC)i = bCi

.
(b) For each of the 215 candidates for the 16 bits of EK0, get the vector

BP from the table, and compute the number of plaintexts for which
the parity of the Approximations is 1 by H(BP ⊕ BC), where H is the
Hamming weight function.

(c) Compute the bias for approximation.
3. The correct key is expected to be the one with the highest bias.

Assuming a processor with a word size of 64 bits, this optimization lets us
compute the parity of 64 plaintexts at the same time, and therefore saves a factor
of about 26 in the attack.

We note that this optimized implementation also works with the partitioning
technique described in Sect. 4. In Step 2a of the algorithm above, in addition to
generating the vector BC we generate a third vector W . The i-th bit of W deter-
mines to which set of the partition the i-th plaintext belongs. We can compute
the number of plaintexts with a parity of 1 in the bits of the approximation in
each of the sets as H((BP ⊕ BC)&W) and H((BP ⊕ BC)&W), where & is the
bitwise-and operator, and W denotes the binary complement of W .

B The Linear Approximations Used in Our Attacks

The appendix lists the two linear approximations from [1,11] which we use in
our attacks. Approximation 1 is presented in Fig. 4 and Approximation 2 is in
Fig. 5.

An Improvement of Linear Cryptanalysis with Addition Operations 75

λ
(1)
P = 00 01 05 04 04 03 10 04x

00 01 05 04x 00 00 01 00x p = 1/2 ± 2−1

04 03 11 04x 00 01 05 04x p = 1/2 ± 2−2

0 0 p = 1/2 ± 2−1

04 03 11 04x 00 01 05 04x p = 1/2 ± 2−2

00 01 05 04x 00 00 01 00x p = 1/2 ± 2−1

04 03 10 04x 10 11 55 54x p = 1/2 ± 2−4

λ
(1)
T = 04 03 10 04 10 10 50 50x

F

F

F

F

F

F

Fig. 4. Approximation 1 – A six round approximation with bias 2−6

λ
(2)
P = 04 01 00 00 1D 00 04 00x

04 01 00 00x 01 00 00 00x p = 1/2 ± 2−1

1C 00 04 00x 04 01 00 00x p = 1/2 ± 2−2

0 0 p = 1/2 ± 2−1

1C 00 04 00x 04 01 00 00x p = 1/2 ± 2−2

04 01 00 00x 01 00 00 00x p = 1/2 ± 2−1

1D 00 04 00x 54 11 10 10x p = 1/2 ± 2−4

λ
(2)
T = 1D 00 04 00 50 10 10 10x

F

F

F

F

F

F

Fig. 5. Approximation 2 – A six round approximation with a bias 2−6

76 E. Biham and Y. Carmeli

References

1. Aoki, K., Ohta, K., Moriai, S., Matsui, M.: Linear cryptanalysis of FEAL. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E81–A(1), 88–97 (1998)

2. Biham, E.: On matsui’s linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cyptosystems. J.
Cryptol. 4(1), 3–72 (1991)

4. Biham, E., Shamir, A.: Differential cryptanalysis of feal and N-Hash. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 1–16. Springer, Heidelberg
(1991)

5. Harpes, C., Massey, J.L.: Partitioning cryptanalysis. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 13–27. Springer, Heidelberg (1997)

6. Matsui, M.: Celebrating the 25th year of FEAL - A new prize problem, rump
session of CRYPTO’12. http://crypto.2012.rump.cr.yp.to/19997d5a295baee62
c05ba73534745ef.pdf

7. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

8. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

9. Miyaguchi, S.: News on FEAL Cipher, talk at the rump session at CRYPTO’90
(1990)

10. Morita, H., Ohta, K., Miyaguchi, S.: A switching closure test to analyze cryp-
tosystems. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 183–193.
Springer, Heidelberg (1992)

11. Ohta, K., Aoki, K.: Linear cryptanalysis of fast data encipherment algorithm.
Technical Report of IEICE (1994)

12. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search. New results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, Heidelberg (1990)

13. Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Price,
W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278.
Springer, Heidelberg (1988)

http://crypto.2012.rump.cr.yp.to/19997d5a295baee62c05ba73534745ef.pdf
http://crypto.2012.rump.cr.yp.to/19997d5a295baee62c05ba73534745ef.pdf

Colliding Keys for SC2000-256

Alex Biryukov1 and Ivica Nikolić2(B)

1 University of Luxembourg, Walferdange, Luxembourg
alex.biryukov@uni.lu

2 Nanyang Technological University, Singapore, Singapore
inikolic@ntu.edu.sg

Abstract. In this work we present analysis for the block cipher SC2000 ,
which is in the Japanese CRYPTREC portfolio for standardization. In
spite of its very complex and non-linear key-schedule we have found a
property of the full SC2000-256 (with 256-bit keys) which allows the
attacker to find many pairs of keys which generate identical sets of sub-
keys. Such colliding keys result in identical encryptions. We designed an
algorithm that efficiently produces colliding key pairs in 239 time, which
takes a few hours on a PC. We show that there are around 268 collid-
ing pairs, and the whole set can be enumerated in 258 time. This result
shows that SC2000-256 cannot model an ideal cipher. Furthermore we
explain how practical collisions can be produced for both Davies-Meyer
and Hiroses hash function constructions instantiated with SC2000-256 .

Keywords: SC2000 · Block cipher · Key collisions · Equivalent keys ·
CRYPTREC · Hash function

1 Introduction

The block cipher SC2000 [15] was designed by researchers from Fujitsu and the
Science University of Tokyo, and submitted to the open call for 128-bit encryp-
tion standards organized by Cryptography Research and Evaluation Committees
(CRYPTREC). Started in 2000, CRYPTREC is a program of the Japanese gov-
ernment set up to evaluate and recommend cryptographic algorithms for use in
industry and institutions across Japan. An algorithm becomes a CRYPTREC
recommended standard after two stages of evaluations. Unlike AES, eSTREAM
and SHA-3 competitions, the evaluation stages of CRYPTREC do not have
strictly defined time limits, but an algorithm progresses to the next stage (or
becomes a standard), when its security level has been confirmed by a substantial
amount of cryptanalysis. CRYPTREC takes into account all published crypt-
analysis in academia and, as well, hires experts to evaluate the security of the
algorithm. SC2000 has passed the first two stages, and for a decade it was among
the recommended standards.

Cryptanalysis of the full 6.5–7.5 round (depending on the key size) SC2000
is still unknown, however, single-key attacks on round-reduced SC2000 were
presented in several papers: boomerang and rectangle attacks on 3.5 rounds
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 77–91, 2014.
DOI: 10.1007/978-3-319-13051-4 5

78 A. Biryukov and I. Nikolić

by Dunkelman and Keller [7] and Biham et al. [2], high probability 3.5-round
differential characteristics were used in 4.5-round attack by Raddum and
Knudsen [13], iterative differential and linear characteristics resulting in attacks
on 4.5 rounds by Yanami et al. [17], and a differential attack on 5 rounds by
Lu [10].

In spite of considerable evaluation effort by world leading analysts, the crypt-
analytic progress on the cipher was slow. A possible reason is given in one of
the evaluation reports [16] – the authors state that “... the design is compli-
cated and uses components which do not facilitate for easy analysis”. Indeed,
SC2000 uses surprisingly large number of different operations: modular addi-
tions, subtractions and multiplications, bitwise additions (XOR), two S-boxes
of different size (5 bits and 6 bits), diffusion layers based on multiplications by
binary matrices, and rotations. Compared to the widely used design methods
such as substitution-permutations (SP) networks (only S-boxes and diffusion
layers), or ARX (additions, rotations and XOR), SC2000 seems too complex,
which in turn makes the analysis hard to perform. Moreover, in SC2000 there
are more operations in the key schedule than in the state – this may explain the
absence of the key schedule attacks. This paper is the first analysis on the key
schedule – we find a weakness in the complex key schedule that we exploit to find
colliding keys, i.e. two different master keys that result in the same subkeys. Our
result works on the full cipher and independently of the number of its rounds.

In [11] Matsui investigates the behavior of colliding key pairs for the stream
cipher RC4. He shows that even in the case of a key size as small as 24 bytes,
there are related keys that create the same initial state, hence they generate the
same pseudo-random byte stream. In other words, the streams collide. Matsui’s
discovery is rather interesting and unexpected as the number of possible distinct
initial states in RC4 is 256! ≈ 21684 while the number of states generated from
24-byte key is only 2192. No key collisions should occur in any cipher (the key
schedule should be injective), in particular in ciphers that have strictly expand-
able key schedule, where the accumulative size of the subkeys is larger than the
size of the master key. The ratio of the expanded key size/master key size usu-
ally depends on the number of rounds and on the length of subkey input in each
round. For example, in AES-256 this ratio is 7.5 as there are 15 128-bit subkeys
produced from the 256-bit master key. Colliding keys are often called equivalent
keys and the existence of such keys is known for a few ciphers. For instance,
Robshaw [14] has shown that another CRYPTREC candidate, the block cipher
CIPHERUNICORN-A, has equivalent keys. Kelsey et al. [9] found trivial equiv-
alent keys for the Tiny Encryption Algorithm (TEA) block cipher. Furthermore,
Aumasson et al. [1] have discovered that the ISDB Scrambling Algorithm, the
cipher MULTI2, allows such keys as well.

For SC2000-256 , despite the fact that the total size of the subkeys is 8 times
larger than the size of the master key, we show that this cipher does not have
an injective key schedule. There exists a set of 268 pairs of colliding master keys
– each pair is composed of two different master keys that after the key schedule
lead to the same set of subkeys. Therefore encryptions of any plaintext under
the first and under the second key produce the same ciphertext, hence the two

Colliding Keys for SC2000-256 79

master keys are equivalent. We achieve the collisions in the subkeys by exploiting
weaknesses in the two-stage key schedule: in the first stage we efficiently find a
key pair that results in two intermediate keys with a special relation, which in
turn is a sufficient condition for the second stage to produce the same subkeys.

Our algorithm for finding a colliding key pair requires only 239 operations,
and we have tested our analysis in practice by implementing a search on a regular
PC. The produced collisions (see Table 1) confirm the correctness of the analysis
and the complexity of the algorithm. We show how an attacker can use the
colliding key pairs in order to construct practical collisions in hash functions
instantiated with SC2000-256 . In both single-block-length Davies-Meyer hash,
and in the double-block-length Hirose’s hash [8] the level of collisions resistance
drops from 64,128 to only 39 bits, if instantiated with SC2000-256 . This suggests
that SC2000-256 , although possibly secure for encryption, has a serious key-
schedule weakness and cannot model an ideal cipher.

2 Description of SC2000-256

SC2000 is 128-bit block cipher that supports 128, 192, and 256-bit keys. In this
work we focus on 256-bit key cipher, further denoted as SC2000-256 . This cipher
has 7.5 rounds, but our analysis is independent of the number of rounds and the
round function, as it is valid for any number and for any function. Therefore, in
the sequel we describe only the key schedule.

Most of the operations in the key schedule are word-oriented. The only excep-
tion is Sfunc, which is a bijective non-linear operation that applies in parallel
5-bit and 6-bit S-boxes (see Fig. 1). The 32-bit input word is split into six chunks
of sizes 6,5,5,5,5, and 6 bits, respectively, then 6-bit or 5-bit S-boxes (depending
on the size of the chunk) are applied to the chunks, and finally the outputs of the
S-boxes are concatenated to produce the final output of Sfunc.The remaining
operations in the key schedule are all word-oriented, and include:

1. Mfunc : bijective linear transformation which is a multiplication by a 32× 32
matrix. The input is seen as a vector of 32 elements, and it is multiplied by
a binary matrix.

2. +,� : addition mod 232.
3. −,� : subtraction mod 232.
4. ×,� : multiplication mod 232.

Fig. 1. The operation Sfunc used in the key schedule of SC2000-256 .

80 A. Biryukov and I. Nikolić

5. ⊕ : XOR (bitwise addition).
6. ≪1 : rotation by 1 bit to the left of 32-bit words.

The key schedule needs two steps (or phases) to produce the subkey words
(used in the round functions) from the master key. At the beginning, it starts
by dividing the 256-bit master key into eight 32-bit words ukj , j = 0, 1, . . . , 7,
called master key words.

Fig. 2. The intermediate key generation used in SC2000-256 .

The first phase, called intermediate key generation, takes the 8 words ukj and
outputs 12 intermediate key words ai, bi, ci, di, i = 0, 1, 2 (see Fig. 2). It applies
four similar transformations, called branches, to the four pairs of master key
words: the first branch operates on uk0, uk1 and produces a0, a1, a2, the second
branch on uk2, uk3 and outputs b0, b1, b2, etc. Hence each triplet of intermediate
key words depends only on two master key words. In a pseudo code, this phase
can be described as:

for i = 0 → 2 do
ai ← Mf (Sf ((Mf (Sf (uk0)) + Mf (Sf (4i))) ⊕ Mf (Sf (uk1))))
bi ← Mf (Sf ((Mf (Sf (uk2)) + Mf (Sf (4i + 1))) ⊕ Mf (Sf (uk3))))
ci ← Mf (Sf ((Mf (Sf (uk4)) + Mf (Sf (4i + 2))) ⊕ Mf (Sf (uk5))))
di ← Mf (Sf ((Mf (Sf (uk6)) + Mf (Sf (4i + 3))) ⊕ Mf (Sf (uk7))))

end for

The second phase, called extended key generation, takes the 12 intermediate
key words and produces 64 subkey words eki, i = 0, 1, . . . , 63, called extended key
words. Each subkey word is obtained with a non-symmetric transformation (see
Fig. 3) of four intermediate key words that come from different branches, hence
every subkey word depends on all master key words. For each subkey word, to
determine which four intermediate key words should be taken, and in what order,
this phase requires two lookup tables. The first table Order specifies the order
(recall that the transformation is non-symmetric, so the order matters) in which
the words are put into the transformation. The second table Index determines
which word within a branch should be taken. As a result, no two subkey words
depend on the same intermediate key words put in the same order. Refer to Fig. 3

Colliding Keys for SC2000-256 81

Fig. 3. The non-symmetric transformation used in the extended key generation (left),
and the values of the lookup tables (right).

for a pictorial view of the non-symmetric transformation and for the values of
the lookup tables. In a pseudo code, the second phase can be described as:

for i = 0 → 63 do
s ← i (mod 9)
t ← (i + � i

36�) (mod 12)
X ← Order[t][0]
x ← Index[s][0]
Y ← Order[t][1]
y ← Index[s][1]
Z ← Order[t][2]
z ← Index[s][2]
W ← Order[t][3]
w ← Index[s][3]
eki ← (Xh ≪ 1 + Yy) ⊕ ((Zz ≪ 1 − Ww) ≪ 1)

end for

As the description of the key schedule suffices to understand our attack, for a
full specification of the cipher we refer the interested reader to [15].

3 Key Collisions for SC2000-256

For SC2000-256 , we show how to find two distinct master keys that produce
the same subkey words and hence we obtain key collisions. The core idea of
our analysis is a weakness in the second phase (extended key generation) –
it can cancel a particular input difference (i.e. a particular difference in each
pair of intermediate key words), resulting in subkey collisions. If we are able
to deterministically find two master keys that after the first phase produce the
particular difference, then the second phase will cancel the difference, and we
will end up with collisions. Therefore, to present the analysis we focus on:

82 A. Biryukov and I. Nikolić

1. (Second phase) Specify the difference in intermediate key words, and prove
that it leads to collisions after the second phase.

2. (First phase) Give an algorithm that finds two master keys that lead to the
difference in the intermediate key words after the first phase.

This seemingly upside-down approach (at the beginning we analyze the second
phase, and then the first), is taken to understand why the algorithm at step 2
has to target the specific difference (and not some other).

Notations. With superscripts 1 and 2 we denote various master, intermediate
and extended keys for the first and respectively the second master key, e.g.
a20 is the first intermediate key produced from the second master key, ek110 is
the eleventh subkey word produced from the first master key. The subscript h
stands for hexadecimal number, for instance 80000000h is 231. With X we denote
the bitwise negation of the word X, i.e. X = X ⊕ (−1), while ∧ stands for
bitwise AND.

3.1 Specifying the Difference for the Second Phase

Let us start our analysis by focusing on the second phase. The following Lemma
defines the required difference (and the additional conditions) in the intermediate
key words, that plays the main role in the analysis:

Lemma 1. Let each pair (X1,X2) in the set of pairs of intermediate key words
(a1i , a

2
i), (b1i , b

2
i), (c1i , c

2
i), (d1i , d

2
i), i = 0, 1, 2 satisfy the following two conditions:

Condition 1 X2 = X1 + 3,
Condition 2 X1 ∧ 8000000fh = 80000003h.

Then the extended key generation will produce the same extended keys (subkey
words), i.e. ek1i = ek2i , i = 0, . . . , 63.

The Lemma claims that if: (Condition 1) the pairs of intermediate words pro-
duced from the first and the second master key have the special relation, and
(Condition 2) the intermediate key words produced from the first master key
have particular values in five bits (the most significant, and the four least sig-
nificant), then after the second phase they will lead to the same subkeys. The
Condition 2 becomes clear in the proof, and when the five bits have this spe-
cific value, the probability that the subkey words collide is 1, otherwise it is less
than 1.

Proof. To prove the Lemma we focus on the extended key generation function

f(X,Y,Z,W) = (X ≪ 1 + Y) ⊕ [(Z ≪ 1 − W) ≪ 1].

We claim that if X,Y,Z,W are randomly chosen words with the MSB fixed to
1 and the four LSBs fixed to 3, then

f(X,Y,Z,W) = f(X + 3, Y + 3, Z + 3,W + 3).

Colliding Keys for SC2000-256 83

Let us rewrite f as an XOR of two functions g, h, i.e.

f(X,Y,Z,W) = g(X,Y) ⊕ h(Z,W),
g(X,Y) = X ≪ 1 + Y,

h(Z,W) = (Z ≪ 1 − W) ≪ 1.

We will prove that

g(X,Y) ⊕ g(X + 3, Y + 3) = fffffff7h, (1)

h(Z, Y) ⊕ h(Z + 3,W + 3) = fffffff7h, (2)

and thus

f(X,Y,Z,W) ⊕ f(X + 3, Y + 3, Z + 3,W + 3) =

g(X,Y) ⊕ h(Z,W) ⊕ g(X + 3, Y + 3) ⊕ h(Z + 3,W + 3) = 0.

We need to following supplementary facts:

Fact 1 Let X,Y be 32-bit words. If X ∧7fffffffh +Y ∧7fffffffh < 231 then

(X + Y) ≪ 1 = X ≪ 1 + Y ≪ 1.

Proof. The fact can be seen as corollary of Theorem 4.11 from [5]. 	

Fact 2 For any values X,Y

X + Y = X + Y + 1.

Proof. Note that for any value V , V ⊕V = V +V = −1, and thus V = −1 −V .
Therefore:

X + Y = −1 − (X + Y) = (−1 − X) + (−1 − Y) + 1 = X + Y + 1

	

Fact 3 If U ∧ m = 0 then U ⊕ (U + m) = ffffffffh ⊕ m.

Proof. When U ∧ m = 0, then U + m = U ⊕ m. Therefore

U ⊕ (U + m) = U ⊕ U ⊕ m = ffffffffh ⊕ m.

	

Now we are ready to present the proof of the Lemma. We will prove only the
part for g – the part for h is similar and instead of modular addition we have to
work with modular subtraction. Let us focus on (1). We get:

g(X,Y) ⊕ g(X + 3, Y + 3) = (3)

= (X ≪ 1 + Y) ⊕ ((X + 3) ≪ 1 + Y + 3) = (4)

= (X ≪ 1 + Y) ⊕ ((X) ≪ 1 + 3 ≪ 1 + Y + 3) = (5)

= (X ≪ 1 + Y) ⊕ ((X ≪ 1 + Y) + 9) = (6)

= (X ≪ 1 + Y) ⊕ ((X ≪ 1 + Y) + 8) = (7)

= U ⊕ (U + 8), (8)

84 A. Biryukov and I. Nikolić

where U = X ≪ 1 + Y . The transition (4) to (5) is due to Fact 1 – the two
least significant bits of X are 00 thus X ∧ 7fffffffh + 3 < 231. Note, this is
where we actually use the requirement of Condition 2: the two least significant
bits of X must be ‘11’. The transition (6) to (7) is due to Fact 2. Finally, the
four least significant bits of U are 0101 (again use of Condition 2!) and thus by
Fact 3, g(X,Y) ⊕ g(X + 3, Y + 3) = fffffff7h. This concludes the proof. 	

We have discovered the strange conditions of the Lemma (and then provided
a formal proof), when we analyzed the behavior of the non-symmetric function
f – it became clear that f cancels some modular differences. The similarity
of the left and the right side (the function g and the function h without the
final rotation) of f , and the fact that the rotations are only on 1 bit, suggested
that there may exist a universal difference for the intermediate words, such
that cancellation in f would occur when all four words have this difference. We
started experimenting with various differences between X and X, and various
values for the two most significant bit (as in h we have twice rotation on 1 to
the left, we took 2 bits), and several least significant bits. The experiments were
implemented as an exhaustive computer search that tries all such differences and
bit values, and for each combination checks the probability that f cancels the
difference. The results of our experiment led to the actual Conditions 1,2.

3.2 Finding Pairs in the First Phase

Let us focus on the first phase and produce a pair of master key words that after
this phase result in pairs of intermediate key words that comply with Conditions
1 and 2 of the Lemma. For the sake of simplicity, first we take into account only
Condition 1, and later we consider Condition 2.

Let u1
i , i = 0, . . . , 7 be the words of the first master key K1, and u2

i , i =
0, . . . , 7 be the words of the second master key K2. Let Ui be the corresponding
words of the master keys after the application of Sfunc and Mfunc, i.e. U j

i =
Mfunc(Sfunc(u

j
i))), i = 0, . . . , 7, j = 1, 2. Also, let Ii be the constants Ii+1 =

Mfunc(Sfunc(4 · i)), i = 0, 1, 2. Then, taking into account the intermediate key
generation procedure, Condition 1 for the pairs (a1i , a

2
i), i = 0, 1, 2 is equivalent

to solving the following system of equations (refer to Fig. 4):

(U1
0 + I1) ⊕ U1

1 = A1 (9)

(U1
0 + I2) ⊕ 2 · U1

1 = B1 (10)

(U1
0 + I3) ⊕ 3 · U1

1 = C1 (11)

(U2
0 + I1) ⊕ U2

1 = A2 (12)

(U2
0 + I2) ⊕ 2 · U2

1 = B2 (13)

(U2
0 + I3) ⊕ 3 · U2

1 = C2 (14)

A2 = S−1
func(M

−1
func(Mfunc(Sfunc(A1)) + 3)) (15)

B2 = S−1
func(M

−1
func(Mfunc(Sfunc(B1)) + 3)) (16)

C2 = S−1
func(M

−1
func(Mfunc(Sfunc(C1)) + 3)) (17)

Colliding Keys for SC2000-256 85

Fig. 4. The intermediate values used to describe the algorithm in the first branch (with
outputs a0, a1, a2). The values produced from the first master key are on the left and
have a dark red color, while from the second are on the right and have blue color.
R,S, T are 32-bit words that do not have specified values (Color figure online).

Let G(x) = S−1
func(M

−1
func(Mfunc(Sfunc(x)) + 3)). Then the system can be

rewritten as:

(U1
0 + I1) ⊕ U1

1 = G((U2
0 + I1) ⊕ U2

1)
(U1

0 + I2) ⊕ 2 · U1
1 = G((U2

0 + I2) ⊕ 2 · U2
1)

(U1
0 + I3) ⊕ 3 · U1

1 = G((U2
0 + I3) ⊕ 3 · U2

1)

The system has three equations and four unknowns (U1
0 , U

1
1 , U

2
0 , U

2
1) – theoreti-

cally, for any values of I1, I2, I3 and a bijective function G1, it has 232 solutions.
To produce one solution, we find a good pair of master keys for the first two
intermediate words (the first two equations of the system), and then we check if
the pair is good as well for the third. The algorithm is as follows:

1. Fix random A1, B1.
2. Find U1

0 , U
1
1 that satisfy Eqs. (9) and (10).

3. Compute C1 from U1
0 , U

1
1 with (11).

4. Produce A2, B2 from A1, B1 with the function G by (15),(16).
5. Find U2

0 , U
2
1 that satisfy Eqs. (12) and (13).

6. Compute C2 from U2
0 , U

2
1 with (14).

7. Compute C̃2 from C1 with the function G by (17).
8. If C2 is not equal to C̃2 go to Step 1.
9. The quartet (U1

0 , U
1
1 , U

2
0 , U

2
1) is the solution for the system.

1 This is not always the case as the authors have tried to launch a much simpler attack
with A1 = A2, B1 = B2, C1 = C2 and failed due to the fact that no solutions exist
for such system.

86 A. Biryukov and I. Nikolić

The values of C2 and C̃2 coincide with probability 2−32, hence to find a solution,
we need to repeat around 232 times the Steps 1–7. The complexity of each step
is constant (just an application of a formula), with the exception of Steps 2 and
5 – here, we need to find the unknown (U0, U1) given the two equations:

(U0 + I1) ⊕ U1 = A

(U0 + I2) ⊕ 2 · U1 = B

After basic algebraic transformations, they are reduced to the form:

U1 = ((2 · U1 ⊕ B) + (I1 − I2)) ⊕ A (18)
U0 = (A ⊕ U1) − I1 (19)

Thus we want to efficiently solve Eq. (18)2. The complexity of finding the value
of U1 is given by the following Lemma. We note that the algorithm relies on
solving a word equation and to a certain extend is similar to the algorithms
from [3].

Lemma 2. There is an algorithm that, with complexity linear in the size of the
words, finds the unique solution of the equation:

X = ((2 · X ⊕ B) + C) ⊕ A, (20)

where A,B,C are some word constants.

Proof. Let us use subscripts to denote the bits of a word, e.g. X5 is the sixth
least significant bit of the word X. The multiplication 2 · X is a shift to the
left of X by one position, and therefore the (s + 1)-th bit of 2 · X is indeed the
s-th bit of X, or in our notation (2 · X)s = Xs−1. We solve the above Eq. (20)
bit by bit, starting from the least significant bit, and moving towards the most
significant bit. In other words, we use a recursive algorithm: first show how to
find the least significant (i.e. 0-th) bit, and assuming that we have found the t-th
bit, describe how we can find the (t + 1)-th bit. The equation involves modular
addition, therefore for each bit we should keep track of the carry – with cri we
denote the carry bit of (2 · X ⊕ B) + C at i-th bit position.

– Bit 0. For the least significant bit, Eq. (20) takes the form:

X0 = B0 ⊕ C0 ⊕ A0,

hence the least significant bit of X0 can be uniquely determined with a simple
XOR of three bits, while cr0 = B0 · C0.

– Bit t + 1. We assume we have the previous carry crt, and we have found the
value for Xt. Then for the bit t + 1, we have:

Xt+1 = Xt ⊕ Bt+1 ⊕ Ct+1 ⊕ crt ⊕ At+1

and for the carry we get crt+1 = m(Xt ⊕ Bt+1, Ct+1, crt), where m(x, y, z) =
xy ⊕ xz ⊕ yz. Again, Xt+1, crt+1 are determined uniquely with a constant
number of operations.

2 Once we have the value of U1, we can easily find U0 by (19).

Colliding Keys for SC2000-256 87

As each step of the algorithm requires constant number of operations, and there
are n steps in total (n is the word size), we can claim that the complexity of
finding the unique solution is linear in the size of the words. 	

The Lemma gives us the complexity for the Steps 2 and 5 of the algorithm, i.e.
we can solve the system for any A,B with a constant complexity (since n = 32).
As a result, the total complexity of the algorithm is 232.

Now we are ready to consider Condition 2. To satisfy this condition (as well
as Condition 1), we have to slightly tweak our algorithm and make sure that
we have the precise value in the 5 bits of each intermediate key word produced
from the first master key. Further we present the full algorithm for computing
the pair of master key words that produces the required intermediate key words
in the first branch:

1. Fix random R,S such that the most significant bits of R,S are 1, and the val-
ues of the four least significant bits equal 3. Compute A1 = S−1

func(M
−1
func(R)),

B1 = S−1
func(M

−1
func(S)).

2. Find U1
0 , U

1
1 that satisfy Eqs. (9) and (10).

3. Compute C1 from U1
0 , U

1
1 with (11).

4. Produce A2, B2 from A1, B1 with the function G by (15),(16).
5. Find U2

0 , U
2
1 that satisfy Eqs. (12) and (13).

6. Compute C2 from U2
0 , U

2
1 with (14).

7. Compute C̃2 from C1 with the function G by (17).
8. If C2 is not equal to C̃2, or in the word T such that T = Mfunc(Sfunc(C2)),

the most significant bit of T is not 1, or the value of the four least significant
bits is not 3, go to Step 1.

9. The quartet (U1
0 , U

1
1 , U

2
0 , U

2
1) is the solution for the system.

The new method of defining the values of A1, B1 introduced at Step 1, does
not change the complexity of the algorithm (compared to the previous). On the
other hand, the additional filter at Step 8 (condition on 5 bits) increases the
frequency of repeating Steps 1–7 by a factor of 25. Hence, the total complexity
of the algorithm is 232 · 25 = 237.

The above complexity is required to find the values of U1
0 , U

1
1 , U

2
0 , U

2
1 , which

are the 4 words produced from a pair of two master key words in the first
branch only. To find the precise value of the pair of two master key words,
i.e. to find (u1

0, u
1
1), (u

1
1, u

2
1), we just need to invert Sfunc,Mfunc (see Fig. 4),

hence uj
i = S−1

func(M
−1
func(U

j
i)), i = 0, 1, j = 1, 2. Computing the values of the

master key words for all four branches can be done similarly, and with complexity
4 · 237 = 239. Therefore, in 239 we can find a pair of master key words, that after
the first phase result in a pair of intermediate key words that comply with the
conditions of Lemma 1, and thus after the second phase lead to colliding subkey
words. Therefore, encryption of any plaintext under the first, and under the
second key, produces the same ciphertext.

88 A. Biryukov and I. Nikolić

4 Results and Applications

We have implemented the above search for colliding keys on a PC and, in a
matter of hours, we were able to find a pair of master keys (K1,K2) that produces
the same subkeys. The words of the master keys are given in Table 1. These
practical results confirm our analysis and the complexity of the algorithm.

Table 1. Example of colliding pair of master keys for SC2000-256

K1 0x59d0d459 0x4473d8dd 0xcc7d3064 0xd3bbda93

0x8ff60b58 0xe9dc073d 0x8776c115 0x743c9cfe

K2 0x10672240 0xb94214ff 0x2bc72c50 0x539cdd3e

0xf9e9f251 0x921811fa 0x35bf5b7f 0x82ab8bdd

ek1, ek2 0xff582ab3 0x4d261f23 0xcb9f9ad3 0x7c81f9c2

0x0997d523 0xc42fc563 0x2172df72 0x95d8dcb3

0x18121223 0x9d034e02 0x1baa1423 0xe9190113

0x4d148522 0xd9247b13 0xb49e6723 0xa393b3e3

0x3953dbc3 0xb2f85ee2 0x0c17c0a2 0x29d7a162

0x45ba8593 0x14eb6423 0xe4780213 0xdf8f8b23

0xd7b48013 0xb5a368a3 0xc47fffc3 0xdee3ff23

0x4f279343 0xb4a34873 0xe2881a63 0x0c1b8372

0xae1a47e3 0x3285cd02 0x96418533 0x8a904d03

0xf1633b43 0x0664d382 0x35fb0a83 0xe246b6c2

0x8fc44d93 0x2fe1e763 0xd2823073 0x530dffc2

0xe7dd8fe3 0xe4503972 0xad5f9022 0xdebed232

0x10a9a642 0x9db60612 0x3ea3de03 0x5ed728a2

0x3941d142 0xd961e823 0x43df53b2 0x7d7f7a82

0x766512c3 0x6d9e3863 0xaacccc73 0xf74a2b92

0x9ca25a32 0xd6a613e2 0x94819ca3 0xc98a4542

Our next task is to find the number of colliding key pairs. A careful look at
the proposed algorithm reveals the number. At Step 1, we can choose 232−5 = 227

possible values for A1, and the same number for B1. The equations at Steps 2
and 5 can be solved always, thus there are 22·27 = 254 different values for the
tuple (U1

0 , U
1
1 , C

1, A2, B2, U2
0 , U

2
1 , C

2, C̃2) obtained at Steps 2–7. The condition
at Step 8 filters 232+5 = 237 tuples, therefore we end up with 254−37 = 217

possible different values for (U1
0 , U

1
1 , U

2
0 , U

2
1), and thus there are 217 values for

(uk10, uk
1
1, uk

2
0, uk

2
1). This is for the first branch only – if we take into account

the four branches, in total there are 24·17 = 268 colliding key pairs in SC2000-
256 . It is interesting to note that the collisions are found independently for each
branch. Thus, to find all 268 colliding key pairs we need only around 4 ·254 = 256

operations.

Colliding Keys for SC2000-256 89

Application to hash functions. The key collision attack on SC2000-256 leads
to practical collisions for single-block-length hash function instantiated with
SC2000-256 . Assume that the compression function C(M,H) is based on the
Davies-Meyer construction3, i.e. C(M,H) = EM (H)⊕H. For the cipher EM (H),
we find two colliding keys M1,M2,M1 �= M2, such that for any plaintext H, it
holds EM1(H) = EM2(H). Therefore, in 239 time we can find collisions for the
compression function as

C(M1,H) ⊕ C(M2,H) = EM1(H) ⊕ H ⊕ EM2(H) ⊕ H = 0.

The collisions do not depend on the chaining value H, hence the above result
holds for the hash function as well.

Double-block-length hash constructions based on SC2000-256 , are not col-
lision resistant as well. Let us take Hirose’s construction [8], where the 256-bit
compression function C(g, h,M) (here g, h are two 128-bit chaining values, M
is 128-bit message block) is based upon a cipher EK(P) with 256-bit key K and
128-bit state, and it is defined as

C(g, h,M) = Eh||M (g) ⊕ g||Eh||M (g ⊕ c) ⊕ g ⊕ c,

where || is concatenation of two 128-bit words, and c is some non-zero constant.
Hirose proved the collision resistance level of this construction to be around 2128,
when the underlying cipher is ideal. However, if we use SC2000-256 , and two
colliding keys h1||M1, h2||M2, then for any 128-bit chaining value g we obtain

C(g, h1,M1) ⊕ C(g, h2,M2) =

= [Eh1||M1 (g) ⊕ g||Eh1||M1 (g ⊕ c) ⊕ g ⊕ c] ⊕ [Eh2||M2 (g) ⊕ g||Eh2||M2 (g ⊕ c) ⊕ g ⊕ c] =

= Eh1||M1 (g) ⊕ g ⊕ Eh2||M2 (g) ⊕ g||Eh1||M1 (g ⊕ c) ⊕ g ⊕ c ⊕ Eh2||M2 (g ⊕ c) ⊕ g ⊕ c =

= 0128||0128.

Therefore, instead of 128-bit collision level achieved when using an ideal cipher,
we obtain only 39 bits in the case of SC2000-256 .

Application to SC2000 -128 and SC2000 -192. For the cases of 128-bit and 192-
bit key SC2000 , the last four, respectively two, words entering the intermediate
key generation are copies of the original master key words. Hence in these cases
two, respectively one, branches of the intermediate key generation has to be sat-
isfied probabilistically. As there are 96 conditions per branch, and the remaining
freedom per branch is 232, and the branches are cross dependent, i.e. for 128-bit
key, the third branch depends on the keys of the first branch, and for 128-bit
and 192-bit keys, the fourth branch depends on the second branch, the analysis
for SC2000-256 cannot be extended to SC2000 with 128-bit and 192-bit keys.
3 Among the analyzed by Preneel-Govaerts-Vandewalle [12] secure single- block-length

modes, only Davies-Meyer mode, i.e. C(M,H) = EM (H)⊕H allows 256-bit messages
inputs and 128-bit chaining values.

90 A. Biryukov and I. Nikolić

5 Conclusion

We have shown that the key schedule of SC2000-256 is not injective, and the
cipher has 268 pairs of colliding keys. These pairs are due to the two weak-
nesses in the key schedule: the non-symmetric function used in the second phase
easily cancels a particular difference, and the four branches in the first phase
are independent and can be attacked separately. Based on the combination of
the two weaknesses, we have derived an algorithm that in 239 operations finds
one pair of colliding keys, and in 256 finds all of them. As a proof of concept
we have produced colliding keys in a matter of a few hours on a PC. Thus the
collision resistance level of hash functions based on SC2000-256 is very low.

SC2000-256 suffers from a practically exploitable security weakness and can-
not model an ideal cipher. In spite of the SC2000-256 cipher being in the CRYP-
TREC portfolio for more than 10 years and in spite of considerable previous
evaluation, this paper is the first to discover this design flaw. This is probably
due to complexity of the design and is an example in favor of clean and easy to
analyze design strategies.

Acknowledgement. The authors would like to thank Jérémy Jean for proposing
improvements to the results and the anonymous reviewers of SAC 2014 for their helpful
comments. Ivica Nikolić is supported by the Singapore National Research Foundation
Fellowship 2012 NRF-NRFF2012-06.

References

1. Aumasson, J.-P., Nakahara Jr., J., Sepehrdad, P.: Cryptanalysis of the ISDB scram-
bling algorithm (MULTI2). In: Dunkelman [6], pp. 296–307

2. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen and Rijmen [4], pp. 1–16

3. Biryukov, A., Gauravaram, P., Guo, J., Khovratovich, D., Ling, S., Matusiewicz,
K., Nikolić, I., Pieprzyk, J., Wang, H.: Cryptanalysis of the LAKE hash family. In:
Dunkelman [6], pp. 156–179

4. Daemen, J., Rijmen, V. (eds.): FSE 2002. LNCS, vol. 2365. Springer, Heidelberg
(2002)

5. Daum, M.: Cryptanalysis of hash functions of the MD4-Family. Ph.D. Thesis,
Ruhr-Universität Bochum, May 2005

6. Dunkelman, O. (ed.): FSE 2009. LNCS, vol. 5665. Springer, Heidelberg (2009)
7. Dunkelman, O., Keller, N.: Boomerang and rectangle attacks on SC2000. In:

NESSIE 2nd Workshop (London) (2001)
8. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:

Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg
(2006)

9. Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 237–251. Springer, Heidelberg (1996)

10. Lu, J.: Differential attack on five rounds of the SC2000 block cipher. In: Bao,
F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 50–59.
Springer, Heidelberg (2010)

Colliding Keys for SC2000-256 91

11. Matsui, M.: Key collisions of the RC4 stream cipher. In: Dunkelman [6], pp. 38–50
12. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:

A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

13. Raddum, H., Knudsen, L.R.: A differential attack on reduced-round SC2000. In:
Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 190–198.
Springer, Heidelberg (2001)

14. Robshaw, M.: A cryptographic review of Cipherunicorn-A. Technical Report,
CRYPTRECT Technical report (2001)

15. Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K., Yajima, J.,
Torii, N., Tanaka, H.: The block cipher SC2000. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg (2002)

16. Technical Report 1087. Analysis of SC2000 (2000). http://www.ipa.go.jp/security/
enc/CRYPTREC/fy15/doc/1087 sc2000.pdf

17. Yanami, H., Shimoyama, T., Dunkelman, O.: Differential and linear cryptanalysis
of a reduced-round SC2000. In: Daemen and Rijmen [4], pp. 34–48

http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1087_sc2000.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1087_sc2000.pdf

Faster Binary-Field Multiplication
and Faster Binary-Field MACs

Daniel J. Bernstein1,2 and Tung Chou2

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

blueprint@crypto.tw

Abstract. This paper shows how to securely authenticate messages
using just 29 bit operations per authenticated bit, plus a constant over-
head per message. The authenticator is a standard type of “universal”
hash function providing information-theoretic security; what is new is
computing this type of hash function at very high speed.

At a lower level, this paper shows how to multiply two elements of a
field of size 2128 using just 9062 ≈ 71 · 128 bit operations, and how to
multiply two elements of a field of size 2256 using just 22164 ≈ 87 · 256
bit operations. This performance relies on a new representation of field
elements and new FFT-based multiplication techniques.

This paper’s constant-time software uses just 1.89 Core 2 cycles per
byte to authenticate very long messages. On a Sandy Bridge it takes
1.43 cycles per byte, without using Intel’s PCLMULQDQ polynomial-
multiplication hardware. This is much faster than the speed records for
constant-time implementations of GHASH without PCLMULQDQ (over
10 cycles/byte), even faster than Intel’s best Sandy Bridge implementa-
tion of GHASH with PCLMULQDQ (1.79 cycles/byte), and almost as
fast as state-of-the-art 128-bit prime-field MACs using Intel’s integer-
multiplication hardware (around 1 cycle/byte).

Keywords: Performance · FFTs · Polynomial multiplication · Univer-
sal hashing · Message authentication

1 Introduction

NIST’s standard AES-GCM authenticated-encryption scheme uses GHASH to
authenticate ciphertext (produced by AES in counter mode) and to authenticate

This work was supported by the National Science Foundation under grant 1018836
and by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005. Permanent ID of this document: 393655eb413348f4e17c7ec451b9e159.
Date: 2014.09.14.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 92–111, 2014.
DOI: 10.1007/978-3-319-13051-4 6

Faster Binary-Field Multiplication and Faster Binary-Field MACs 93

additional data. GHASH converts its inputs into a polynomial and evaluates that
polynomial at a secret element of F2128 = F2[x]/(x128+x7+x2+x+1), using one
multiplication in F2128 for each 128-bit input block. The cost of GHASH is an
important part of the cost of GCM, and it becomes almost the entire cost when
large amounts of non-confidential data are being authenticated without being
encrypted, or when a denial-of-service attack is sending a flood of forgeries to
consume all available processing time.

Most AES-GCM software implementations rely heavily on table lookups and
presumably leak their keys to cache-timing attacks. Käsper and Schwabe [35]
(CHES 2009) addressed this problem by introducing a constant-time implemen-
tation of AES-GCM using 128-bit vector instructions. Their GHASH implemen-
tation takes 14.4 cycles/byte on one core of an Intel Core 2 processor. On a
newer Intel Sandy Bridge processor the same software takes 13.1 cycles/byte.
For comparison, HMAC-SHA1, which is widely used in Internet applications,
takes 6.74 Core 2 cycles/byte and 5.18 Sandy Bridge cycles/byte.

1.1 Integer-Multiplication Hardware

Much better speeds than GHASH were already provided by constant-time MACs
that used integer multiplication rather than multiplication of polynomials mod 2.
Examples include UMAC [15], Poly1305 [5], and VMAC [36]. Current Poly1305
software from [22] runs at 1.89 Core 2 cycles/byte and 1.22 Sandy Bridge cycles/
byte. VMAC, which uses “pseudo dot products” (see Sect. 4), is even faster than
Poly1305.

CPUs include large integer-multiplication units to support many different
applications, so it is not a surprise that these MACs are much faster in soft-
ware than GHASH (including non-constant-time GHASH software; see [35]).
However, integer multiplication uses many more bit operations than multipli-
cation of polynomials mod 2, so for hardware designers these MACs are much
less attractive. MAC choice is a continuing source of tension between software
designers and hardware designers.

1.2 New Speeds for Binary-Field MACs

This paper introduces Auth256, an F2256-based MAC at a 2255 security level;
and a constant-time software implementation of Auth256 running at just 1.89
cycles/byte on a Core 2. We also tried our software on a Sandy Bridge; it runs
at just 1.43 cycles/byte. We also have a preliminary Cortex-A8 implementation
below 14 cycles/byte.

This new binary-field MAC is not quite as fast as integer-multiplication
MACs. However, the gap is quite small, while the hardware advantages of binary
fields are quite important. We plan to put our software into the public domain.

Caveat: All of the above performance figures ignore short-message overhead,
and in particular our software has very large overhead, tens of thousands of
cycles. For 32-, 64-, 128-kilobyte messages, our software takes 3.07, 2.44, 2.14
Core 2 cycles per byte, and 2.85, 2.09, 1.74 Sandy Bridge cycles per byte. This

94 D.J. Bernstein and T. Chou

software is designed primarily for authenticating large files, not for authenti-
cating network packets. However, a variant of Auth256 (b = 1 in Sect. 6) takes
only 0.81 additional cycles/byte and has much smaller overhead. We also expect
that, compared to previous MAC designs, this variant will allow significantly
lower area for high-throughput hardware, as explained below.

1.3 New Bit-Operation Records for Binary-Field Multiplication

The software speed advantage of Auth256 over GHASH, despite the much higher
security level of Auth256, is easily explained by the following comparison. School-
book multiplication would take 1282 ANDs and approximately 1282 XORs for
each 128 bits of GHASH input, i.e., approximately 256 bit operations per authen-
ticated bit. Computing a 256-bit authenticator in the same way would use
approximately 512 bit operations per authenticated bit. Auth256 uses just 29
bit operations per authenticated bit.

Of course, Karatsuba’s method saves many bit operations at this size. See,
e.g., [4,8,9,18,21,41,42,45,48]. Bernstein’s Karatsuba/Toom combination in [9]
multiplies 256-bit polynomials using only about 133 · 256 bit operations. Multi-
plying 256-bit field elements has only a small overhead. However, 133 bit oper-
ations is still much larger than 29 bit operations.

Our improved number of bit operations is a combination of four factors.
The first factor is faster multiplication: we reduce the cost of multiplication in
F2256 from 133 · 256 bit operations to just 22292 ≈ 87 · 256 bit operations.
The second factor, which we do not take credit for, is the use of pseudo dot
products to reduce the number of multiplications by a factor of 2, reducing 87
below 44. The third factor, which reduces 44 to 32, is an extra speedup from an
interaction between the structure of pseudo dot products and the structure of
the multiplication algorithms that we use. The fourth factor, which reduces 32
to just 29, is to use a different field representation for the input to favor the fast
multiplication algorithm we use.

Specifically, we use a fast Fourier transform (FFT) to multiply polynomials
in F28 [x]. The FFT is advertised in algorithm courses as using an essentially
linear number of field additions and multiplications but is generally believed
to be much slower than other multiplication methods for cryptographic sizes.
Bernstein, Chou, and Schwabe showed at CHES 2013 [11] that a new “additive
FFT” saves time for decryption in McEliece’s code-based public-key cryptosys-
tem, but the smallest FFT sizes in [11] were above 10000 bits (evaluation at
every element in F2m , where m ≥ 11). We introduce an improved additive FFT
that uses fewer bit operations than any previously known multiplier for fields as
small as F264 , provided that the fields contain F28 . Our additive FFT, like many
AES hardware implementations, relies heavily on a tower-field representation of
F28 , but benefits from this representation in different ways from AES. The extra
speedup inside pseudo dot products comes from merging inverse FFTs, which
requires breaking the standard encapsulation of polynomial multiplication; see
Sect. 4.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 95

The fact that we are optimizing bit operations is also the reason that we
expect our techniques to produce low area for high-throughput hardware. Opti-
mizing the area of a fully unrolled hardware multiplier is highly correlated with
optimizing the number of bit operations. We do not claim relevance to very small
serial multipliers.

1.4 Polynomial-Multiplication Hardware: PCLMULQDQ

Soon after [35], in response to the performance and security problems of AES-
GCM software, Intel added “AES New Instructions” to some of its CPUs. These
instructions include PCLMULQDQ, which computes a 64-bit polynomial mul-
tiplication in F2[x].

Krovetz and Rogaway reported in [37] that GHASH takes 2 Westmere cycles/
byte using PCLMULQDQ. Intel’s Shay Gueron reported in [26] that heavily opti-
mized GHASH implementations using PCLMULQDQ take 1.79 Sandy Bridge
cycles/byte. Our results are faster at a higher security level, although they do
require switching to a different authenticator.

Of course, putting sufficient resources into a hardware implementation will
beat any software implementation. To quantify this, consider what is required
for GHASH to run faster than 1.43 cycles/byte using PCLMULQDQ. GHASH
performs one multiplication for every 16 bytes of input, so it cannot afford more
than 22.88 cycles for each multiplication. If PCLMULQDQ takes t cycles and t is
not very small then presumably Karatsuba is the best approach to multiplication
in F2128 , taking 3t cycles plus some cycles for latency, additions, and reductions.

The latest version of Fog’s well-known performance survey [23] indicates that
t = 7 for AMD Bulldozer, Piledriver, and Steamroller and that t = 8 for Intel
Sandy Bridge and Ivy Bridge; on the other hand, t = 2 for Intel Haswell and
t = 1 for AMD Jaguar. Gueron, in line with this analysis, reported 0.40 Haswell
cycles/byte for GHASH.

It is quite unclear what to expect from future CPUs. Intel did not put
PCLMULQDQ hardware into its low-cost “Core i3” lines of Sandy Bridge, Ivy
Bridge, and Haswell CPUs; and obviously Intel is under pressure from other
manufacturers of small, low-cost CPUs. To emphasize the applicability of our
techniques to a broad range of CPUs, we have avoided PCLMULQDQ in our
software.

2 Field Arithmetic in F28

This section reports optimized circuits for field arithmetic in F28 . We write
“circuit” here to mean a fully unrolled combinatorial circuit consisting of AND
gates and XOR gates. Our main cost metric is the total number of bit operations,
i.e., the total number of AND gates and XOR gates, although as a secondary
metric we try to reduce the number of registers required in our software.

Subsequent sections use these circuits as building blocks. The techniques also
apply to larger F2s , but F28 is large enough to support the FFTs that we use in
this paper.

96 D.J. Bernstein and T. Chou

2.1 Review of Tower Fields

We first construct F22 in the usual way as F2[x2]/(x2
2 + x2 + 1). We write α2

for the image of x2 in F22 , so α2
2 + α2 + 1 = 0. We represent elements of F22 as

linear combinations of 1 and α2, where the coefficients are in F2. Additions in
F22 use 2 bit operations, namely 2 XORs.

We construct F24 as F22 [x4]/(x2
4 + x4 + α2), rather than using a polynomial

basis for F24 over F2. We write α4 for the image of x4 in F24 . We represent
elements of F24 as linear combinations of 1 and α4, where the coefficients are in
F22 . Additions in F24 use 4 bit operations.

Finally, we construct F28 as F24 [x8]/(x2
8 +x8 +α2α4); write α8 for the image

of x8 in F28 ; and represent elements of F28 as F24 -linear combinations of 1 and
α8. Additions in F28 use 8 bit operations.

2.2 Variable Multiplications

A variable multiplication is the computation of ab given a, b ∈ F2s as input. We
say “variable multiplication” to distinguish this operation from multiplication
by a constant; we will optimize constant multiplication later.

For variable multiplication in F22 , we perform a multiplication of a0+a1x, b0+
b1x ∈ F2[x] and reduction modulo x2 +x+1. Here is a straightforward sequence
of 7 operations using schoolbook polynomial multiplication: c0 ← a0 ⊗ b0; c1 ←
a0 ⊗ b1; c2 ← a1 ⊗ b0; c3 ← a1 ⊗ b1; c4 ← c1 ⊕ c2; c5 ← c0 ⊕ c3; c6 ← c4 ⊕ c3. The
result is c5, c6.

For F24 and F28 we use 2-way Karatsuba. Note that since the irreducible
polynomials are of the form x2 + x + α the reductions involve a different type of
multiplication described below: multiplication of a field element with a constant.

We end up with just 110 bit operations for variable multiplication in F28 . For
comparison, Bernstein [9] reported 100 bit operations to multiply 8-bit polyno-
mials in F2[x], but reducing modulo an irreducible polynomial costs many extra
operations. A team led by NIST [19], improving upon various previous results
such as [31], reported 117 bit operations to multiply in F2[x] modulo the AES
polynomial x8 + x4 + x3 + x + 1.

2.3 Constant Multiplications

A constant multiplication in F2s is the computation of αb given b ∈ F2s as
input for some constant α ∈ F2s . This is trivial for α ∈ F2 so we focus on
α ∈ F2s\F2. One can substitute a specific α into our 110-gate circuit for variable
multiplication to obtain a circuit for constant multiplication, and then shorten
the circuit by eliminating multiplications by 0, multiplications by 1, additions of
0, etc.; but for small fields it is much better to use generic techniques to optimize
the cost of multiplying by a constant matrix.

Our linear-map circuit generator combines various features of Paar’s greedy
additive common-subexpression elimination algorithm [40] and Bernstein’s two-
operand “xor-largest” algorithm [10]. For α ∈ F28\F2 our constant-multiplication

Faster Binary-Field Multiplication and Faster Binary-Field MACs 97

circuits use 14.83 gates on average. Compared to Paar’s results, this is slightly
more gates but is much better in register use; compared to Bernstein’s results,
it is considerably fewer gates.

The real importance of the tower-field construction for us is that constant
multiplications become much faster when the constants are in subfields. Mul-
tiplying an element of F28 by a constant α ∈ F24\F2 takes only 7.43 gates on
average, and multiplying an element of F28 by a constant α ∈ F22\F2 takes only
4 gates on average. The constant multiplications in our FFT-based multiplica-
tion algorithms for F2256 (see Sect. 3) are often in subfields of F28 , and end up
using only 9.02 gates on average.

2.4 Subfields and Decomposability

A further advantage of the tower-field construction, beyond the number of bit
operations, is that it allows constant multiplications by subfield elements to
be decomposed into independent subcomputations. For example, when an F28

element in this representation is multiplied by a constant in F22 , the computation
decomposes naturally into 4 independent subcomputations, each of which takes
2 input bits to 2 output bits.

Decomposability is a nice feature for software designers; it guarantees a
smaller working set, which in general implies easier optimization, fewer memory
operations and cache misses, etc. The ideal case is when the working set can
fit into registers; in this case the computation can be done using the minimum
number of memory accesses. Section 5 gives an example of how decomposability
can be exploited to help optimization of a software implementation.

The decomposition of multiplication by a constant in a subfield has the extra
feature that the subcomputations are identical. This allows extra possibilities for
efficient vectorization in software, and can also be useful in hardware implemen-
tations that reuse the same circuit several times. Even when subcomputations
are not identical, decomposability increases flexibility of design and is desirable
in general.

3 Faster Additive FFTs

Given a 2m−1-coefficient polynomial f with coefficients in F28 , a size-2m addi-
tive FFT computes f(0), f(βm), f(βm−1), f(βm + βm−1), f(βm−2), etc., where
βm, . . . , β2, β1 are F2-linearly independent elements of F28 specified by the algo-
rithm. We always choose a “Cantor basis”, i.e., elements βm, . . . , β2, β1 satisfying
β2

i+1 + βi+1 = βi and β1 = 1; specifically, we take β1 = 1, β2 = α2, β3 = α4 + 1,
β4 = α2α4, β5 = α8, and β6 = α2α8 + α2α4 + α2 + 1. We do not need larger
FFT sizes in this paper.

Our additive FFT is an improvement of the Bernstein–Chou–Schwabe [11]
additive FFT, which in turn is an improvement of the Gao–Mateer [24] additive
FFT. This section presents details of our size-4, size-8, and size-16 additive FFTs
over F28 . All of our improvements are already visible for size 16. At the end of the

98 D.J. Bernstein and T. Chou

section gate counts for all sizes are collected and compared with state-of-the-art
Karatsuba/Toom-based methods.

3.1 Size-4 FFTs: The Lowest Level of Recursion

Given a polynomial f = a + bx ∈ F28 [x], the size-4 FFT computes f(0) =
a, f(β2) = a + β2b, f(1) = a + b, f(β2 + 1) = a + (β2 + 1)b. Recall that β2 = α2

so β2
2 + β2 + 1 = 0. The size-4 FFT is of interest because it serves as the lowest

level of recursion for larger-size FFTs.
As mentioned in Sect. 2, since β2 ∈ F22 , the size-4 FFT can be viewed as a

collection of 4 independent pieces, each dealing with only 2 out of the 8 bits.
Let a0, a1 be the first 2 bits of a; similarly for b. Then a0, a1 and b0, b1

represent a0 + a1β2, b0 + b1β2 ∈ F22 . Since β2(a0 + a1β2) = a1 + (a0 + a1)β2,
a 6-gate circuit that carries out the size-4 FFTs operations on the first 2 bits
is c00 ← a0; c01 ← a1; c20 ← a0 ⊕ b0; c21 ← a1 ⊕ b1; c10 ← a0 ⊕ b1; c31 ←
a1⊕b0; c11 ← c31⊕b1; c30 ← c10⊕b0. Then c00, c01 is the 2-bit result of a; c10, c11
is the 2-bit result of a + β2b; similarly for c20, c21 and c30, c31. In conclusion, a
size-4 FFT can be carried out using a 6 · 4 = 24-gate circuit.

The whole computation costs the same as merely 3 additions in F28 . This
is the result of having evaluation points to be in the smallest possible subfield,
namely F22 , and the use of tower field construction for F28 .

3.2 The Size-8 FFTs: The First Recursive Case

Given a polynomial f = f0+f1x+f2x
2+f3x

3 ∈ F28 [x], the size-8 FFT computes
f(0), f(β3), f(β2), f(β2 + β3), f(1), f(β3 + 1), f(β2 + 1), f(β2 + β3 + 1). Recall
that β3 = α4 + 1 so β2

3 + β3 + β2 = 0. The size-8 FFT is of interest because it is
the smallest FFT that involves recursion.

In general, a recursive size-2m FFT starts with a radix conversion that com-
putes f (0) and f (1) such that f = f (0)(x2 + x) + xf (1)(x2 + x). When f is a
2m−1-coefficient polynomial we call this a size-2m−1 radix conversion. Since the
size-4 radix conversion can be viewed as a change of basis in F

4
2, each coefficient

in f (0) and f (1) is a subset sum of f0, f1, f2, and f3. In fact, f (0) = f0+(f2+f3)x
and f (1) = (f1 + f2 + f3) + f3x can be computed using exactly 2 additions.

After the radix conversion, 2 size-4 FFTs are invoked to evaluate f (0), f (1)

at 02 + 0 = 0, β2
3 + β3 = β2, β2

2 + β2 = 1, and (β2 + β3)2 + (β2 + β3) = β2 + 1.
Each of these size-4 FFTs takes 24 bit operations.

Note that we have

f(α) = f (0)(α2 + α) + αf (1)(α2 + α),

f(α + 1) = f (0)(α2 + α) + (α + 1)f (1)(α2 + α).

Starting from f (0)(α2+α) and f (1)(α2+α), Gao and Mateer multiply f (1)(α2+α)
by α and add f (0)(α2 + α) to obtain f(α), and then add f (1)(α2 + α) with f(α)
to obtain f(α + 1). We call this a muladdadd operation.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 99

The additive FFT thus computes all the pairs f(α), f(α + 1) at once: given
f (0)(0) and f (1)(0) apply muladdadd to obtain f(0) and f(1), given f (0)(β2) and
f (1)(β2) apply muladdadd operation to obtain f(β3) and f(β3 + 1), and so on.

The way that the output elements form pairs is a result of having 1 as the
last basis element. In general the Gao–Mateer FFT is able to handle the case
where 1 is not in the basis with some added cost, but here we avoid the cost by
making 1 the last basis element.

Generalizing this to the case of size-2m FFTs implies that the i-th output
element of f (0) and f (1) work together to form the ith and (i + 2m−1)th output
element for f . We call the collection of muladdadds that are used to combine
2 size-2m−1 FFT outputs to form a size-2m FFT output a size-2m combine
routine.

We use our circuit generator introduced in Sect. 2 to generate the circuits
for all the constant multiplications. The muladdadds take a total of 76 gates.
Therefore, a size-8 FFT can be carried out using 2 · 8 + 2 · 24 + 76 = 140 gates.

Note that for a size-8 FFT we again benefit from the special basis and the F28

construction. The recursive calls still use the good basis β2, 1 so that there are
only constant multiplications by F22 elements. The combine routine, although
not having only constant multiplications by F22 elements, at least has only con-
stant multiplications by F24 elements.

3.3 The Size-16 FFTs: Saving Additions for Radix Conversions

The size-16 FFT is the smallest FFT in which non-trivial radix conversions
happen in recursive calls. Gao and Mateer presented an algorithm performing a
size-2n radix conversion using (n−1)2n−1 additions. We do better by combining
additions across levels of recursion.

The size-8 radix conversion finds f (0), f (1) such that f = f (0)(x2 + x) +
xf (1)(x2 + x). The two size-4 radix conversion in size-8 FFT subroutines find
f (i0), f (i1) such that f (i) = f (i0)(x2+x)+xf (i1)(x2+x) for i ∈ {0, 1}. Combining
all these leads to f = f (00)(x4 + x) + (x2 + x)f (01)(x4 + x) + xf (10)(x4 + x) +
x(x2 + x)f (11)(x4 + x).

In the end the size-8 and the two size-4 radix conversions together compute
from f the following: f (00) = f0+(f4+f7)x, f (01) = (f2+f3+f5+f6)+(f6+f7)x,
f (10) = (f1+f2+f3+f4+f5+f6+f7)+(f5+f6+f7)x, and f (11) = (f3+f6)+f7x.
The Gao–Mateer algorithm takes 12 additions for this computation, but one sees
by hand that 8 additions suffice. One can also obtain this result by applying the
circuit generator introduced in Sect. 2. Here is an 8-addition sequence generated
by the circuit generator: f

(00)
0 ← f0; f

(11)
1 ← f7; f

(00)
1 ← f4 + f7; f

(01)
0 ← f2 +

f5; f
(11)
0 ← f3+f6; f

(01)
1 ← f6+f7; f

(10)
0 ← f1+f

(00)
1 ; f (10)

1 ← f5+f
(01)
1 ; f (01)

0 ←
f
(01)
0 + f

(11)
0 ; f (10)

0 ← f
(10)
0 + f

(01)
0 .

We applied the circuit generator for larger FFTs and found larger gains.
A size-32 FFT, in which the input is a size-16 polynomial, requires 31 rather
than 48 additions for radix conversions. A size-64 FFT, in which the input is a
size-32 polynomial, requires 82 rather than 160 additions for radix conversions.

100 D.J. Bernstein and T. Chou

We also applied our circuit generator to the muladdadds, obtaining a 170-
gate circuit for the size-16 combined routine and thus a size-16 FFT circuit using
8 · 8 + 4 · 24 + 2 · 76 + 170 = 482 gates.

3.4 Size-16 FFTs Continued: Decomposition at Field-Element Level

The size-16 FFT also illustrates the decomposability of the combine routines of
a FFT. Consider the size-16 and size-8 combine routines; the computation takes
as input the FFT outputs for the f (ij)’s to compute the FFT output for f .

Let the output for f be a0, a1, . . . , a15, the output for f (i) be a
(i)
0 , a

(i)
1 , . . . , a

(i)
7 ,

and similarly for f (ij). For k ∈ {0, 1, 2, 3}, ak, ak+8 are functions of a
(0)
k and

a
(1)
k , which in turn are functions of a

(00)
k , a

(01)
k , a

(10)
k , and a

(11)
k ; ak+4, ak+12 are

functions of a
(0)
k+4 and a

(1)
k+4, which in turn are functions of the same 4 elements.

We conclude that ak, ak+4, ak+8, ak+12 depend only on a
(00)
k , a

(01)
k , a

(10)
k , and

a
(11)
k . In this way, the computation is decomposed into 4 independent parts;

each takes as input 4 field elements and outputs 4 field elements. Note that
here the decomposition is at the field-element level, while Sect. 2 considered
decomposability at the bit level.

More generally, for size-2m FFTs we suggest decomposing k levels of combine
routines into 2m−k independent pieces, each taking 2k

F28 elements as input and
producing 2k

F28 elements as output.

3.5 Improvements: A Summary

We have two main improvements to the additive FFT: reducing the cost of
multiplications and reducing the number of additions in radix conversion. We
also use these ideas to accelerate size-32 and size-64 FFTs, and obviously they
would also save time for larger FFTs.

The reduction in the cost of multiplications is a result of (1) choosing a
“good” basis for which constant multiplications use constants in the smallest
possible subfield; (2) using a tower-field representation to accelerate those con-
stant multiplications; and (3) searching for short sequences of additions. The
reduction of additions for radix conversion is a result of (1) merging radix con-
version at different levels of recursion and again (2) searching for short sequences
of additions.

3.6 Polynomial Multiplications: A Comparison with Karatsuba
and Toom

Just like other FFT algorithms, any additive FFT can be used to multiply poly-
nomials. Given two 2m−1-coefficient polynomials in F2s , we apply a size-2m addi-
tive FFT to each polynomial, a pointwise multiplication consisting of 2m variable
multiplications in F2s , and a size-2m inverse additive FFT, i.e., the inverse of an
FFT with both input and output size 2m. An FFT (or inverse FFT) with input

Faster Binary-Field Multiplication and Faster Binary-Field MACs 101

Table 1. Cost of multiplying b/8-coefficient polynomials over F28 . “Forward” is the
cost of two size-b/4 FFTs with size-b/8 inputs. “Pointwise” is the cost of pointwise
multiplication. “Inverse” is the cost of an inverse size-b/4 FFT. “Total” is the sum of
forward, pointwise, and inverse. “Competition” is the cost from [9] of an optimized
Karatsuba/Toom multiplication of b-coefficient polynomials over F2; note that slight
improvements appear in [21].

b forward pointwise inverse total competition

16 2 · 24 4 · 110 60 448 ≈ 14 · 2 · 16 350 ≈ 10.9 · 2 · 16
32 2 · 140 8 · 110 228 1388 ≈ 21.7 · 2 · 32 1158 ≈ 18.1 · 2 · 32
64 2 · 482 16 · 110 746 3470 ≈ 27.1 · 2 · 64 3682 ≈ 28.8 · 2 · 64

128 2 · 1498 32 · 110 2066 8582 ≈ 33.5 · 2 · 128 11486 ≈ 44.9 · 2 · 128
256 2 · 4068 64 · 110 5996 21172 ≈ 41.4 · 2 · 256 34079 ≈ 66.6 · 2 · 256

and output size 2m is slightly more expensive than an FFT with input size 2m−1

and output size 2m: input size 2m−1 is essentially input size 2m with various 0
computations suppressed.

Table 1 summarizes the number of bit operations required for multiplying
b-bit (i.e., b/8-coefficient) polynomials in F28 [x]. Field multiplication is slightly
more expensive than polynomial multiplication. For F2256 we use the polynomial
x32 +x17 +x2 +α8; reduction costs 992 bit operations. However, as explained in
Sect. 4, in the context of Auth256 we can almost eliminate the inverse FFT and
the reduction, and eliminate many operations in the forward FFTs, making the
additive FFT even more favorable than Karatsuba.

4 The Auth256 Message-Authentication Code:
Major Features

Auth256, like GCM’s GHASH, follows the well-known Wegman–Carter [47]
recipe for building an MAC with (provably) information-theoretic security. The
recipe is to apply a (provably) “δ-xor-universal hash” to the message and encrypt
the result with a one-time pad. Every forgery attempt then (provably) has suc-
cess probability at most δ, no matter how much computer power the attacker
used.

Of course, real attackers do not have unlimited computer power, so GCM
actually replaces the one-time pad with counter-mode AES output to reduce
key size. This is safe against any attacker who cannot distinguish AES output
from uniform random; see, e.g., [33, comments after Corollary3]. Similarly, it is
safe to replace the one-time pad in Auth256 with cipher output.

This section presents two important design decisions for Hash256, the
hash function inside Auth256. Section 4.1 describes the advantages of the
Hash256 output size. Section 4.2 describes the choice of pseudo dot products
inside Hash256, and the important interaction between FFTs and pseudo dot
products. Section 4.3 describes the use of a special field representation for inputs
to reduce the cost of FFTs.

102 D.J. Bernstein and T. Chou

Section 6 presents, for completeness, various details of Hash256 and Auth256
that are not relevant to this paper’s performance evaluation.

4.1 Output Size: Bigger-Birthday-Bound Security

Hash256 produces 256-bit outputs, as its name suggests, and Auth256 produces
256-bit authenticators. Our multiplication techniques are only slightly slower per
bit for F2256 than for F2128 , so Auth256 is only slightly slower than an analogous
Auth128 would be. An important advantage of an increased output size is that
one can safely eliminate nonces.

Encrypting a hash with a one-time pad, or with a stream cipher such as AES
in counter mode, requires a nonce, and becomes insecure if the user accidentally
repeats a nonce; see, e.g., [30]. Directly applying a PRF (as in HMAC) or PRP
(as in WMAC) to the hash, without using a nonce, is much more resilient against
misuse but becomes insecure if hashes collide, so b-bit hashes are expected to be
broken within 2b/2 messages (even with an optimal δ = 2−b) and already provide
a noticeable attack probability within somewhat fewer messages.

This problem has motivated some research into “beyond-birthday-bound”
mechanisms for authentication and encryption that can safely be used for more
than 2b/2 messages. See, e.g., [38]. Hash256 takes a different approach, which
we call “bigger-birthday-bound” security: simply increasing b to 256 (and cor-
respondingly reducing δ) eliminates all risk of collisions. For the same reason,
Hash256 provides extra strength inside other universal-hash applications, such
as wide-block disk encryption; see, e.g., [28].

In applications with space for only 128-bit authenticators, it is safe to sim-
ply truncate the Hash256 and Auth256 output from 256 bits to 128 bits. This
increases δ from 2−255 to 2−127.

4.2 Pseudo Dot Products and FFT Addition

Hash256 uses the same basic construction as NMH [29, Sect. 5], UMAC [15], Bad-
ger [16], and VMAC [36]: the hash of a message with blocks m1,m2,m3,m4, . . .
is (m1+r1)(m2+r2)+(m3+r3)(m4+r4)+ · · · . Halevi and Krawczyk [29] credit
this hash to Carter and Wegman; Bernstein [6] credits it to Winograd and calls
it the “pseudo dot product”. The pseudo-dot-product construction of Hash256
gives δ < 2−255; see Appendix A for the proof.

A simple dot product m1r1+m2r2+m3r3+m4r4+· · · uses one multiplication
per block. The same is true for GHASH and many other polynomial-evaluation
hashes. The basic advantage of (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·
is that there are only 0.5 multiplications per block.

For Auth256 each block contains 256 bits, viewed as an element of the finite
field F2256 . Our cost of Auth256 per 512 authenticated bits is 29 · 512 = 58 · 256
bit operations, while the our cost for a multiplication in F2256 is 87 · 256 bit
operations. We now explain one of the two sources of this gap.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 103

m1 k1 m2 k2

+ +

FFT FFT

×

m3 k3 m4 k4

+ +

FFT FFT

×

+

m5 k5 m6 k6

+ +

FFT FFT

×

+

m7 k7 m8 k8

+ +

FFT FFT

×

+

IFFT, reduction

Hash256k(m)

Fig. 1. Hash256 flowchart

FFT-based multiplication of two polynomials f1f2 has several steps: apply an
FFT to evaluate f1 at many points; apply an FFT to evaluate f2 at many points;
compute the corresponding values of the product f1f2 by pointwise multiplica-
tion; and apply an inverse FFT to reconstruct the coefficients of f1f2. FFT-based
multiplication of field elements has the same steps plus a final reduction step.

These steps for F2256 , with our optimizations from Sect. 3, cost 4068 bit oper-
ations for each forward FFT, 64 · 110 bit operations for pointwise multiplication,
5996 bit operations for the inverse FFT (the forward FFT is less expensive since
more polynomial coefficients are known to be 0), and 992 bit operations for
the final reduction. Applying these steps to each 512 bits of input would cost
approximately 15.89 bit operations per bit for the two forward FFTs, 13.75 bit
operations per bit for pointwise multiplication, 11.71 bit operations per bit for
the inverse FFT, and 1.94 bit operations per bit for the final reduction, plus 1.5
bit operations per bit for the three additions in the pseudo dot product.

We do better by exploiting the structure of the pseudo dot product as a sum
of the form f1f2+f3f4+f5f6+ · · · . Optimizing this computation is not the same
problem as optimizing the computation of f1f2. Specifically, we apply an FFT
to each fi and compute the corresponding values of f1f2, f3f4, etc., but we then
add these values before applying an inverse FFT. See Fig. 1. There is now only
one inverse FFT (and one final reduction) per message, rather than one inverse
FFT for every two blocks. Our costs are now 15.89 bit operations per bit for the
two forward FFTs, 13.75 bit operations per bit for pointwise multiplication, 1
bit operation per bit for the input additions in the pseudo dot product, and 1 bit
operation per bit for the pointwise additions, for a total of 31.64 bit operations
per bit, plus a constant (not very large) overhead per message.

This idea is well known in the FFT literature (see, e.g., [7, Sect. 2]) but
we have never seen it applied to message authentication. It reduces the cost of

104 D.J. Bernstein and T. Chou

FFT-based message authentication by a factor of nearly 1.5. Note that this also
reduces the cutoff between FFT and Karatsuba.

UMAC and VMAC actually limit the lengths of their pseudo dot products,
to limit key size. This means that longer messages produce two or more hashes;
these hashes are then further hashed in a different way (which takes more time
per byte but is applied to far fewer bytes). For simplicity we instead use a key
as long as the maximum message length. We have also considered the small-key
hashes from [6] but those hashes obtain less benefit from merging inverse FFTs.

4.3 Embedding Invertible Linear Operations into FFT Inputs

Section 4.2 shows how to achieve 31.64 bit operations per message bit by skipping
the inverse FFTs for almost all multiplications in the pseudo dot product. Now
we show how Auth256 achieves 29 bit operations per message bit by skipping
operations in the forward FFTs.

Section 3.3 shows that the radix conversions can be merged into one invertible
F28 -linear (actually F2-linear) map, which takes place before all other operations
in the FFT. The input is a F2256 element which is represented as coefficients in
F28 with respect to a polynomial basis. Applying an invertible linear map on
the coefficients implies a change of basis. In other words, the radix conversions
convert the input into another 256-bit representation. If we define the input to
be elements in this new representation, all the radix conversions can simply be
skipped. Note that the authenticator still uses the original representation. See
Sect. 6.2 for a definition of the new representation.

This technique saves a significant fraction of the operations in the forward
FFT. As shown in Sect. 3, one forward FFT takes 4068 bit operations, where
82 · 8 = 656 of them are spent on radix conversions. Eliminating all radix
conversions then gives the 29 bit operations per message bit.

The additive FFTs described so far are “2-way split” FFTs since they require
writing the input polynomial f(x) in the form f (0)(x2 + x) + xf (1)(x2 + x).
It is easy to generalize this to a “2k-way split” in which f(x) is written as∑2k−1

i=0 xif (i)(ψk(x)), where ψ(x) = x2+x. In particular, Gao and Mateer showed
how to perform 22

k−1
-way-split FFTs for polynomials in F22k [x]. The technique

of changing input representation works for any 2k-way split. In fact we found
that with 8-way-split FFTs, the number of bit operations per message bit can
be slightly better than 29. However, for simplicity, Auth256 is defined in a way
that favors 2-way-split FFTs.

5 Software Implementation

Our software implementation uses bitslicing. This means that we convert each
bit in previous sections into w bits, where w is the register width on the machine;
we convert each AND into a bitwise w-bit AND instruction; and we convert each
XOR into a bitwise w-bit XOR instruction.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 105

Bitslicing is efficient only if there is adequate parallelism in the algorithm.
Fortunately, the pseudo-dot-product computation is naturally parallelizable: we
let the jth bit position compute the sum of all products (m2i+1+r2i+1)(m2i+2+
r2i+2) where i ≡ j (mod w). After all the products are processed, the results in
all bit positions are summed up to get the final value.

The detailed definition of Auth256 (see Sect. 6) has a parameter b. Our soft-
ware takes b = w, allowing it to simply pick up message blocks as vectors. If
b is instead chosen as 1 then converting to bitsliced form requires a transpo-
sition of message blocks; in our software this transposition costs an extra 0.81
cycles/byte.

5.1 Minimizing Memory Operations in Radix Conversions

We exploit the decomposability of additions to minimize memory operations for
a radix conversion. When dealing with size-2k radix conversions with k ≤ 4,
we decompose at bit level the computation into 2k parts, each of which deals
with 16/2k bit positions. This minimizes the number of loads and stores. The
same technique applies for a radix conversion combined with smaller-size radix
conversions in the FFT subroutines.

Our implementation uses the size-16 FFT as a subroutine. Inside a size-16
FFT the size-8 radix conversion is combined with the 2 size-4 radix conversions
in FFT subroutines. Our bit-operation counts handle larger radix conversions
in the same way, but in our software we sacrifice some of the bit operations
saved here to improve instruction-level parallelism and register utilization. For
size-16 radix conversion the decomposition method is adopted. For size-32 radix
conversion the decomposition method is used only for the size-16 recursive calls.

5.2 Minimizing Memory Operations in Muladdadd Operations

For a single muladdadd operation a ← a + αb; b ← b + a, each of a and b
consumes 8 vectors; evidently at least 16 loads and 16 stores are required. While
we showed how the sequence of bit operations can be generated, it does not
necessarily mean that there are enough registers to carry out the bit operations
using the minimum number of loads and stores.

Here is one strategy to maintain both the number of bit operations and the
lower bound on number of loads and stores. First load the 8 bits of b into 8
registers t0, t1, . . . , t7. Use the sequence of XORs generated by the code gener-
ator, starting from the ti’s, to compute the 8 bits of αb, placing them in the
other 8 registers s0, s1, . . . , s7. Then perform si ← si ⊕ a[i], where a[i] is the
corresponding bit of a in memory, to obtain a + αb. After that overwrite a with
the si’s. Finally, perform ti ← ti ⊕si to obtain a+(α+1)b, and overwrite b with
the ti’s.

In our software muladdadd operations are handled one by one in size-64 and
size-32 combine routines. See below for details about how muladdadds in smaller
size combine routines are handled.

106 D.J. Bernstein and T. Chou

5.3 Implementing the Size-16 Additive FFT

In our size-16 FFT implementation the size-8 radix conversion is combined with
the two size-4 ones in the FFT subroutines using the decomposition method
described earlier in this section. Since the size-4 FFTs deal with constants in
F22 , we further combine the radix conversions with size-4 FFTs.

At the beginning of one of the 4 rounds of the whole computation, the 2 ·
8 = 16 bits of the input for size-8 radix conversion are loaded. Then the logic
operations are carried out in registers, and eventually the result is stored in
2 · 16 = 32 bits of the output elements. The same routine is repeated 4 times to
cover all the bit positions.

The size-16 and size-32 combine routines are also merged as shown in Sect. 3.
The field-level decomposition is used together with a bit-level decomposition:
in size-16 FFT all the constants are in F24 , so it is possible to decompose any
computation that works on field elements into a 2-round procedure and handle 4
bit positions in each round. In conclusion, the field-level decomposition turns the
computation into 4 pieces, and the bit-level decomposition further decomposes
each of these into 2 smaller pieces. In the end, we have an 8-round procedure.

At the beginning of one of the 8 rounds of the whole computation, the 4 · 4 =
16 bits of the outputs of the size-4 FFTs are loaded. Then the logic operations
are carried out in registers, and eventually the result is stored in 4 · 4 = 16 bits
of the output elements. The same routine is repeated 8 times to cover all the bit
positions.

6 Auth256: Minor Details

To close we fill in, for completeness, the remaining details of Hash256 and
Auth256.

6.1 Review of Wegman–Carter MACs

Wegman–Carter MACs work as follows. The authenticator of the nth message m
is H(r,m)⊕sn. The key consists of independent uniform random r, s1, s2, s3, . . .;
the pad is s1, s2, s3,

The hash function H is designed to be “δ-xor-universal”, i.e., to have “dif-
ferential probability at most δ”. This means that, for every message m, every
message m′
= m, and every difference Δ, a uniform random r has H(r,m) ⊕
H(r,m′) = Δ with probability at most δ.

6.2 Field Representation

We represent an element of F2s as a sequence of s bits. If we construct F2s as
F2t [x]/φ then we recursively represent the element c0 + c1x + · · · + ct/s−1x

t/s−1

as the concatenation of the representations of c0, c1, . . . , ct/s−1. At the bottom
of the recursion, we represent an element of F2 as 1 bit in the usual way. See
Sects. 2 and 3.6 for the definition of φ for F22 , F24 , F28 , and F2256 .

Faster Binary-Field Multiplication and Faster Binary-Field MACs 107

As mentioned in Sect. 4.3, we do not use the polynomial basis 1, x, . . . , x31 for
F2256 inputs. Here we define the representation for them. Let y(bk−1bk−2···b0)2 =∏k−1

i=0 (ψi(x))bi , where ψ(x) follows the definition in Sect. 4.3. Then each F2256

input c0y0 + c1y1 + · · · + c31y31 is defined as the concatenation of the represen-
tations of c0, c1, . . . , c31. One can verify that y0, y1, . . . , y31 is the desired basis
by writing down the equation between f(x) and f (00000)(x), f (00001)(x), . . . ,
f (111111)(x) as in Sect. 3.3.

If s ≥ 8 then we also represent an element of F2s as a sequence of s/8
bytes, i.e., s/8 elements of {0, 1, . . . , 255}. The 8-bit sequence b0, b1, . . . , b7 is
represented as the byte b =

∑
i 2ibi.

6.3 Hash256 Padding and Conversion

Hash256 views messages as elements of K0 ∪ K2 ∪ K4 ∪ · · · , i.e., even-length
strings of elements of K, where K is the finite field F2256 . It is safe to use a
single key with messages of different lengths.

In real applications, messages are strings of bytes, so strings of bytes need
to be encoded invertibly as strings of elements of K. The simplest encoding is
standard “10∗” padding, where a message is padded with a 1 byte and then as
many 0 bytes as necessary to obtain a multiple of 64 bytes. Each 32-byte block
is then viewed as an element of K.

We define a more general encoding parametrized by a positive integer b; the
encoding of the previous paragraph has b = 1. The message is padded with a 1
byte and then as many 0 bytes as necessary to obtain a multiple of 64b bytes, say
64bN bytes. These bytes are split into 2N segments M0,M

′
0,M1,M

′
1, . . . , MN−1,

M ′
N−1, where each segment contains 32b consecutive bytes. Each segment is then

transposed into b elements of K: segment Mi is viewed as a column-major bit
matrix with b rows and 256 columns, and row j of this matrix is labeled cbi+j ,
while c′

bi+j is defined similarly using M ′
i . This produces 2bN elements of K,

namely m0,m
′
0,m1,m

′
1,m2,m

′
2, . . . , mbN−1,m

′
bN−1.

The point of this encoding is to allow a simple bitsliced vectorized imple-
mentation; see Sect. 5. Our 1.59 cycle/byte implementation uses b = 256. We
have also implemented b = 1, which costs 0.81 cycles/byte extra for transpo-
sition and is compatible with efficient handling of much shorter messages. An
interesting intermediate possibility is to take, e.g., b = 8, eliminating the most
expensive (non-bytewise) transposition steps while still remaining suitable for
authentication of typical network packets.

6.4 Hash256 and Auth256 Keys and Authenticators

The Hash256 key is a uniform random byte string of the same length as a
maximum-length padded message, representing elements r0, r

′
0, r1, r

′
1, . . . of K.

If the key is actually defined as, e.g., counter-mode AES output then the maxi-
mum length does not need to be specified in advance: extra key elements can be
computed on demand and cached for subsequent use.

108 D.J. Bernstein and T. Chou

The Hash256 output is (m0 + r0)(m′
0 + r′

0) + (m1 + r1)(m′
1 + r′

1) + · · · . This
is an element of K.

The Auth256 key is a Hash256 key together with independent uniform ran-
dom elements s1, s2, . . . of K. The Auth256 authenticator of the nth message
mn is Auth256(r,mn) ⊕ sn.

References

1. — (no editor): Information Theory Workshop, 2006. ITW ’06 Chengdu. IEEE
(2006). See [45]

2. — (no editor): Design, Automation & Test in Europe Conference & Exhibition,
2007. DATE ’07. IEEE (2007). See [41]

3. — (no editor): Proceedings of the 6th WSEAS World Congress: Applied Computing
Conference (ACC 2013). WSEAS (2013). See [21]

4. Bernstein, D.J.: Fast multiplication (2000). http://cr.yp.to/talks.html#2000.08.
14. Citations in this document: §1.3

5. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: FSE 2005
[25], pp. 32–49 (2005). http://cr.yp.to/papers.html#poly1305. Citations in this
document: §1.1

6. Bernstein, D.J.: Polynomial evaluation and message authentication (2007). http://
cr.yp.to/papers.html#pema. Citations in this document: §4.2, §4.2

7. Bernstein, D.J.: Fast multiplication and its applications. In: [17], pp. 325–384
(2008). http://cr.yp.to/papers.html#multapps. Citations in this document: §4.2

8. Bernstein, D.J.: Batch binary Edwards. In: Crypto 2009 [27], pp. 317–336 (2009).
http://cr.yp.to/papers.html#bbe. Citations in this document: §1.3

9. Bernstein, D.J.: Minimum number of bit operations for multiplication (2009).
http://binary.cr.yp.to/m.html. Citations in this document: §1.3, §1.3, §2.2, §1, §1

10. Bernstein, D.J.: Optimizing linear maps modulo 2. In: Workshop Record of
SPEED-CC: Software Performance Enhancement for Encryption and Decryp-
tion and Cryptographic Compilers, pp. 3–18 (2009). http://cr.yp.to/papers.html#
linearmod2. Citations in this document: §2.3

11. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based
cryptography. In: CHES 2013 [12], pp. 250–272 (2013). Citations in this document:
§1.3, §1.3, §3

12. Bertoni, G., Coron, J.-S. (eds.): CHES’13. LNCS, vol. 8086. Springer, Heidelberg
(2013). ISBN 978-3-642-40348-4. See [11]

13. Biham, E. (ed.): FSE 1997. LNCS, vol. 1267. Springer, Heidelberg (1997). ISBN
3-540-63247-6. See [29]

14. Biham, E., Youssef, A.M. (eds.): SAC 2006. LNCS, vol. 4356. Springer, Heidelberg
(2007). ISBN 978-3-540-74461-0. See [36]

15. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Crypto 1999 [49], pp. 216–233 (1999). http://
www.cs.ucdavis.edu/∼rogaway/umac/. Citations in this document: §1.1, §4.2

16. Boesgaard, M., Scavenius, O., Pedersen, T., Christensen, T., Zenner, E.: Badger—
a fast and provably secure MAC. In: [32], pp. 176–191 (2005). Citations in this
document: §4.2

17. Buhler, J.P., Stevenhagen, P. (eds.): Surveys in Algorithmic Number Theory. Math-
ematical Sciences Research Institute Publications, vol. 44. Cambridge University
Press, New York (2008). See [7]

http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#bbe
http://binary.cr.yp.to/m.html
http://cr.yp.to/papers.html#linearmod2
http://cr.yp.to/papers.html#linearmod2
http://www.cs.ucdavis.edu/~rogaway/umac/
http://www.cs.ucdavis.edu/~rogaway/umac/

Faster Binary-Field Multiplication and Faster Binary-Field MACs 109

18. Chang, N.S., Kim, C.H., Park, Y.-H., Lim, J.: A non-redundant and efficient archi-
tecture for Karatsuba-Ofman algorithm. In: [50], pp. 288–299 (2005). Citations in
this document: §1.3

19. Circuit Minimization Team.: Multiplication circuit for GF(256) with irreducible
polynomial X8 + X4 + X3 + X + 1 (2010). http://cs-www.cs.yale.edu/homes/
peralta/CircuitStuff/slp 84310.txt. Citations in this document: §2.2

20. Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg
(2009). ISBN 978-3-642-04137-2. See [35]

21. D’Angella, D., Schiavo, C.V., Visconti, A.: Tight upper bounds for polynomial
multiplication. In: [3] (2013). http://www.wseas.us/e-library/conferences/2013/
Nanjing/ACCIS/ACCIS-03.pdf. Citations in this document: §1.3, §1, §1

22. Andrew, M. “Floodyberry”. Optimized implementations of Poly1305, a fast
message-authentication-code (2014). https://github.com/floodyberry/poly1305-
opt. Citations in this document: §1.1

23. Fog, A.: Instruction tables (2014). http://www.agner.org/optimize/instruction
tables.pdf. Citations in this document: §1.4

24. Gao, S., Mateer, T.: Additive fast Fourier transforms over finite fields. IEEE
Trans. Inf. Theory 56, 6265–6272 (2010). http://www.math.clemson.edu/∼sgao/
pub.html. Citations in this document: §3

25. Gilbert, H., Handschuh, H. (eds.): FSE 2005. LNCS, vol. 3557. Springer, Heidelberg
(2005). ISBN 3-540-26541-4. See [5]

26. Gueron, S.: AES-GCM software performance on the current high end CPUs
as a performance baseline for CAESAR (2013). http://2013.diac.cr.yp.to/slides/
gueron.pdf. Citations in this document: §1.4

27. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009).
See [8]

28. Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Crypto
2007 [39], pp. 412–429 (2007). http://eprint.iacr.org/2007/014. Citations in this
document: §4.1

29. Halevi, S., Krawczyk, H.: MMH: software message authentication in the
Gbit/second rates. In: FSE 1997 [13], pp. 172–189 (1997). http://www.research.
ibm.com/people/s/shaih/pubs/mmh.html. Citations in this document: §4.2, §4.2

30. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: [46], pp. 144–161 (2008). Citations in this document: §4.1

31. Imaña, J.L., Hermida, R., Tirado, F.: Low-complexity bit-parallel multipliers based
on a class of irreducible pentanomials. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 14, 1388–1393 (2006). Citations in this document: §2.2

32. Ioannidis, J., Keromytis, A.D., Yung, M. (eds.): ACNS 2005. LNCS, vol. 3531.
Springer, Heidelberg (2005). ISBN 3-540-26223-7. See [16]

33. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Crypto 2012 [44], pp. 31–49 (2012). http://eprint.iacr.org/2012/438.
Citations in this document: §4

34. Joux, A. (ed.): FSE 2011. LNCS, vol. 6733. Springer, Heidelberg (2011). ISBN
978-3-642-21701-2. See [37]

35. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: CHES
2009 [20], pp. 1–17 (2009). http://eprint.iacr.org/2009/129. Citations in this doc-
ument: §1, §1.1, §1.4

36. Krovetz, T.: Message authentication on 64-bit architectures. In: SAC 2006 [14],
pp. 327–341 (2007). Citations in this document: §1.1, §4.2

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt
http://www.wseas.us/e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf
http://www.wseas.us/e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf
https://github.com/floodyberry/poly1305-opt
https://github.com/floodyberry/poly1305-opt
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.math.clemson.edu/~sgao/pub.html
http://www.math.clemson.edu/~sgao/pub.html
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://eprint.iacr.org/2007/014
http://www.research.ibm.com/people/s/shaih/pubs/mmh.html
http://www.research.ibm.com/people/s/shaih/pubs/mmh.html
http://eprint.iacr.org/2012/438
http://eprint.iacr.org/2009/129

110 D.J. Bernstein and T. Chou

37. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: FSE 2011 [34], pp. 306–327 (2011). http://www.cs.ucdavis.edu/
∼rogaway/papers/ae.pdf. Citations in this document: §1.4

38. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Crypto 2012 [44], pp. 14–30 (2012). Citations
in this document: §4.1

39. Menezes, A. (ed.): CRYPTO 2007. LNCS, vol. 4622. Springer, Heidelberg (2007).
ISBN 978-3-540-74142-8. See [28]

40. Paar, C.: Optimized arithmetic for Reed-Solomon encoders (1997). http://www.
emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps. Citations in
this document: §2.3

41. Peter, S., Langendörfer, P.: An efficient polynomial multiplier in GF(2m) and its
application to ECC designs. In: DATE 2007 [2] (2007). http://ieeexplore.ieee.
org/xpl/freeabs all.jsp?isnumber=4211749&arnumber=4211979&count=305&
index=229. Citations in this document: §1.3

42. Rodŕıguez-Henŕıquez, F., Koç, Ç.K.: On fully parallel Karatsuba multipliers for
GF(2m). In: [43], pp. 405–410 (2003). Citations in this document: §1.3

43. Sahni, S. (ed.): Proceedings of the International Conference on Computer Science
and Technology. Acta Press, Crete (2003). See [42]

44. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer,
Heidelberg (2012). ISBN 978-3-642-32008-8. See [33,38]

45. von zur Gathen, J., Shokrollahi, J.: Fast arithmetic for polynomials over F2 in
hardware. In: ITW 2006 [1], pp. 107–111 (2006). Citations in this document: §1.3

46. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008).
ISBN 978-3-540-85173-8. See [30]

47. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981). ISSN 0022-0000, MR
82i:68017. Citations in this document: §4

48. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm for effi-
cient implementations (2006). http://eprint.iacr.org/2006/224. Citations in this
document: §1.3

49. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999).
ISBN 3-5540-66347-9, MR 2000h:94003. See [15]

50. Zhou, J., López, J., Deng, R.H., Bao, F. (eds.): ISC 2005. LNCS, vol. 3650.
Springer, Heidelberg (2005). ISBN 3-540-29001-X. See [18]

A Security Proof

This appendix proves that Hash256 has differential probability smaller than
2−255. This is not exactly the same as the proofs for the pseudo-dot-product
portions of UMAC and VMAC: UMAC and VMAC specify fixed lengths for
their pseudo dot products, whereas we allow variable lengths.

Theorem 1. Let K be a finite field. Let �, �′, k be nonnegative integers with
� ≤ k and �′ ≤ k. Let m1,m2, . . . , m2�−1,m2� be elements of K. Let m′

1,m
′
2, . . . ,

m′
2�′−1, m′

2�′ be elements of K. Assume that (m1,m2, . . . , m2�)
= (m′
1,m

′
2, . . . ,

http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://eprint.iacr.org/2006/224

Faster Binary-Field Multiplication and Faster Binary-Field MACs 111

m′
2�′). Let Δ be an element of K. Let r1, r2, . . . , r2k be independent uniform

random elements of k. Let p be the probability that h = h′ + Δ, where

h = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·
+ (m2�−1 + r2�−1)(m2� + r2�),

h′ = (m′
1 + r1)(m′

2 + r2) + (m′
3 + r3)(m′

4 + r4) + · · ·
+ (m′

2�′−1 + r2�′−1)(m′
2�′ + r2�′).

Then p < 2/#K. If � = �′ then p ≤ 1/#K, and if �
= �′ then p < 1/#K +
1/#K|�−�′|.
Proof. Case 1: � = �′. Then h = h′ + Δ if and only if

r1(m2 − m′
2) + r2(m1 − m′

1) + r3(m4 − m′
4) + r4(m3 − m′

3) + · · ·
= Δ + m′

1m
′
2 − m1m2 + m′

3m
′
4 − m3m4 + · · · .

This is a linear equation in r1, r2, . . . , r2k. This linear equation is nontrivial:
by hypothesis (m1,m2, . . . , m2�)
= (m′

1,m
′
2, . . . , m

′
2�′), so there must be some i

for which mi − m′
i
= 0. Consequently there are most #K2k−1 solutions to the

equation out of the #K2k possibilities for r; i.e., p ≤ 1/#K as claimed.
Case 2: � < �′ and (m1, . . . , m�)
= (m′

1, . . . , m
′
�). Define

f = (m′
2�+1 + r2�+1)(m2�+2 + r2�+2) + · · · + (m′

2�′−1 + r2�′−1)(m′
2�′ + r2�′).

Then h = h′ + Δ if and only if

r1(m2 − m′
2) + r2(m1 − m′

1) + r3(m4 − m′
4) + r4(m3 − m′

3) + · · ·
+ r2�−1(m2� − m′

2�) + r2�(m2�−1 − m′
2�−1)

= f + Δ + m′
1m

′
2 − m1m2 + m′

3m
′
4 − m3m4 + · · · + m′

2�−1m
′
2� − m2�−1m2�.

This is a linear equation in r1, . . . , r2�, since f is independent of r1, . . . , r2�.
For each choice of (r2�+1, r2�+2, . . . , r2k), there are at most #K2�−1 choices of
(r1, . . . , r2�) satisfying this linear equation. Consequently p ≤ 1/#K as above.

Case 3: � < �′ and (m1, . . . , m�) = (m′
1, . . . , m

′
�). Then h = h′ + Δ if and

only if 0 = f + Δ, where f is defined as above. This is a linear equation in
r2�+2, r2�+4, . . . , r2�′ for each choice of r2�+1, r2�+3, . . . , r2�′−1. The linear equa-
tion is nontrivial except when r2�+1 = −m′

2�+1, r2�+3 = −m′
2�+3, and so on

through r2�′−1 = −m′
2�′−1. The linear equation thus has at most #K�′−�−1 solu-

tions (r2�+2, r2�+4, . . . , r2�′) for #K�′−� − 1 choices of (r2�+1, r2�+3, . . . , r2�′−1),
plus at most #K�′−� solutions (r2�+2, r2�+4, . . . , r2�′) for 1 exceptional choice
of (r2�+1, r2�+3, . . . , r2�′−1), for a total of #K2�′−2�−1 − #K�′−�−1 + #K�′−� <
#K2�′−2�(1/#K + 1/#K�′−�) solutions. Consequently p < 1/#K + 1/#K�′−�

as claimed.
Case 4: �′ < �. Exchanging �,m with �′,m′ produces Case 2 or Case 3. �

OMD: A Compression Function Mode
of Operation for Authenticated Encryption

Simon Cogliani1, Diana-Ştefania Maimuţ1, David Naccache1,
Rodrigo Portella do Canto2, Reza Reyhanitabar3(B),

Serge Vaudenay3, and Damian Vizár3

1 ENS, Paris, France
Diana.Maimut@ens.fr

2 Université Paris II - Panthéon-Assas, Paris, France
3 EPFL, Lausanne, Switzerland
reza.reyhanitabar@epfl.ch

Abstract. We propose the Offset Merkle-Damg̊ard (OMD) scheme, a
mode of operation to use a compression function for building a nonce-
based authenticated encryption with associated data. In OMD, the parts
responsible for privacy and authenticity are tightly coupled to minimize
the total number of compression function calls: for processing a message
of � blocks and associated data of a blocks, OMD needs �+a+2 calls to
the compression function (plus a single call during the whole lifetime of
the key). OMD is provably secure based on the standard pseudorandom
function (PRF) property of the compression function. Instantiations of
OMD using the compression functions of SHA-256 and SHA-512, called
OMD-SHA256 and OMD-SHA512, respectively, provide much higher
quantitative level of security compared to the AES-based schemes. OMD-
SHA256 can benefit from the new Intel SHA Extensions on next-generation
processors.

Keywords: Authenticated encryption · Provable security · Standard
model · Intel SHA Extensions

1 Introduction

An authenticated encryption (AE) scheme delivers on two complementary data
security goals: confidentiality (privacy) and integrity (authenticity). Historically,
these goals were achieved by combining two separate cryptographic primitives, an
encryption scheme to ensure privacy and a message authentication code (MAC)
to guarantee authenticity [4,5]. This generic composition paradigm is neither
most efficient (for instance, it requires processing the input stream at least twice)
nor most robust to implementation errors [8,21,27]. The notion of AE, as a
desirable primitive in its own right, was originally formalized in [4,6,17] (as a
probabilistic algorithm) and later developed to include notions of nonce-based
AE [25], nonce-based AE with associated data (AEAD) [22,24], deterministic AE

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 112–128, 2014.
DOI: 10.1007/978-3-319-13051-4 7

OMD: A Compression Function Mode of Operation 113

(DAE) [26] (providing a solution to nonce-misuse resistance) and online DAE
(online nonce-misuse resistant AE) [11].

Importance of useable AE to practice, and to some extent, difficulty of get-
ting it right, is evident from the number of standards that were developed over
the years, specifying different methods; for instance, the CCM method is spec-
ified in IEEE 802.11i, IPsec ESP and IKEv2 and NIST SP 800-38C; the GCM
method is specified in NIST SP 800-38D; the EAX method is specified in ANSI
C12.22; and ISO/IEC 19772:2009 defines six methods including five dedicated
AE designs and one generic composition method, namely Encrypt-then-MAC.
Surprisingly, the way that the latter generic method is specified in ISO/IEC
19772:2009 was very recently shown to be flawed, opening way for incorrect and
insecure implementations [21].

AE schemes have been studied for over a decade, yet the topic remains a
highly active and interesting area of research as evidenced by the recently initi-
ated CAESAR competition by the cryptographic community. The competition
aims to boost public discussions towards a better understanding of AE designs
and to identify a portfolio of efficient and secure AE schemes by mid-December
2017 [7].

In this paper, we present a new nonce-based AEAD, called Offset Merkle-
Damg̊ard (OMD), offering several attractive features. Unlike the mainstream
schemes which are either blockcipher-based or permutation-based schemes, OMD
is designed as a mode of operation for a compression function. The motiva-
tion for this is manifold: (1) the cryptographic community has spent more than
two decades on public research and standardization activities on hash functions
resulting to development of a rich source of secure and efficient compression func-
tions; (2) the standard SHA family of algorithms is heavily employed in many
of the most common cryptographic applications and one can easily use off-the-
shelf highly optimized implementations of these functions [12,13]; (3) Intel has
recently introduced new instructions that support performance acceleration of
SHA-1 and SHA-256 on next-generation processors [14]; (4) we believe that
having a diverse set of AE schemes based on different primitives can be inter-
esting from a practical viewpoint, providing the opportunity to choose among
the AE algorithms based on what primitives have already been available and
implemented and to reuse them.

Some of the interesting features of OMD, and its instantiations OMD-SHA256
and OMD-SHA512, are as follows:

Provable Security in the Standard Model. OMD achieves its security goals (pri-
vacy and authenticity) provably, based on the standard assumption that its
underlying keyed compression function is PRF, an assumption which is among
the most well-known and widely-used assumptions [2]. From a theoretical point
of view, this is an advantage compared to permutation-based AE schemes whose
security proofs rely on the ideal permutation assumption.

High Quantitative Security Level. When implemented with an off-the-shelf com-
pression function such as those of the standard SHA family [1], OMD can achieve

114 S. Cogliani et al.

much higher security level compare to AES-based schemes. For example, the
proven security of OMD-SHA256 and OMD-SHA512 falls off in about σ2

2256 and
σ2

2512 , respectively, where σ is the total number of calls to the compression func-
tion. In comparison, for the same key size and tag size, the proven security of
all the standardized blockcipher-based AE schemes using AES (e.g. all five ded-
icated schemes specified in ISO/IEC 19772:2009) falls off in about σ′2

2128 where σ′

is the total number of calls to AES. We note that it is possible to get blockcipher-
based AE schemes with (high) beyond birthday-bound security, but the exist-
ing schemes with beyond birthday-bound security have a degraded efficiency
[15,16,19,20].

Online. OMD encryption is online; that is, it outputs a stream of ciphertext as a
stream of plaintext arrives with a constant latency and using constant memory.
After receiving an indication that the plaintext is over, the final part of ciphertext
together with the tag is output. OMD decryption is internally online: one can
generate a stream of plaintext bits as the stream of ciphertext bits comes in,
but no part of the plaintext stream will be returned before the whole ciphertext
stream is decrypted and the tag is verified to be correct.

Flexible Parameters. OMD-SHA256 can support any key length up to 256 bits,
tag length up to 256 bits, and nonce length up to 255 bits. OMD-SHA512 can
support any key length up to 512 bits, tag length up to 512 bits, and nonce
length up to 511 bits. These upper bounds on the parameters’ length will satisfy
the required security level of almost any imaginable application today and well
beyond. The lower bounds on the parameters’ lengths should be selected based
on the specific security level sought by an application; for instance, most appli-
cations would not use keys shorter than 128 bits, tags shorter than 32 bits and
nonce shorter than 64 bits.

Organization of the paper. Notations and preliminary concepts are pre-
sented in Sect. 2. Security goals are defined in Sect. 3. Section 4 provides the speci-
fication of the OMD mode of operation. In Sect. 5, we provide the security analysis
of OMD. Section 6 describes our recommended instantiations OMD-SHA256 and
OMD-SHA512.

2 Preliminaries

Notations. If S is a finite set, x
$← S means that x is chosen from S uniformly

at random. X ← Y is used for denoting the assignment statement where the
value of Y is assigned to X. The set of all binary strings of length n bits (for
some positive integer n) is denoted as {0, 1}n, the set of all binary strings whose
lengths are variable but upper-bounded by L is denoted by {0, 1}≤L and the set
of all binary strings of arbitrary but finite length is denoted by {0, 1}∗. For two
strings X and Y we use X||Y and XY analogously to denote the string obtained
by concatenating Y to X. For an m-bit binary string X = Xm−1 · · · X0 we denote

OMD: A Compression Function Mode of Operation 115

the left-most bit by msb(X) = Xm−1 and the right-most bit by lsb(X) = X0;
let X[i · · · j] = Xi · · · Xj denote a substring of X, for 0 ≤ j ≤ i ≤ (m − 1).
Let 1n0m denote concatenation of n ones by m zeros. For a non-negative integer
i let 〈i〉m denote binary representation of i by an m-bit string.

For a binary string X = Xm−1 · · · X0, let X � n denote the left-shift oper-
ation, where the n left-most bits are discarded and the n vacated right bits are
set to 0. We let X � n denote the (unsigned) right-shift operation where the
n right-most bits are discarded and the n vacated left bits are set to 0. We let
X �s n denote the signed right-shift operation where the n right-most bits are
discarded and the n vacated left bits are filled with the left-most bit (which is
considered as the sign bit); for example, 1001100 �s 3 = 1111001. If the left-
most bit of X is 0 then we have X �s n = X � n. Let ntz(i) denote the
number of trailing zeros (i.e. the number of rightmost bits that are zero) in the
binary representation of a positive integer i.

The special symbol ⊥ means that the value of a variable is undefined; we also
overload this symbol and use it to signify an error. Let |Z| denote the number
of elements of Z if Z is a set, and the length of Z in bits if Z is a binary string.
For X ∈ {0, 1}∗ let X[1]||X[2] · · · ||X[m] b← X denote partitioning X into blocks
X[i] such that |X[i]| = b for 1 ≤ i ≤ m − 1 and |X[m]| ≤ b; let m = |X|b denote
length of X in b-bit blocks.

For two binary strings X = Xm−1 · · · X0 and Y = Yn−1 · · · Y0, the notation
X ⊕ Y denotes bitwise xor of Xm−1 · · · Xm−1−� and Yn−1 · · · Yn−1−� where � =
min {m − 1, n − 1}. Clearly, if X and Y have the same length then X ⊕ Y
simply means their usual bitwise xor. The empty string is denoted by ε and we
let |ε| = 0. For any string X, define X ⊕ ε = ε ⊕ X = ε.

The Finite Field with 2n Points. Let (GF (2n),⊕, ·) denote the Galois Field
with 2n points. When considering a point α in GF (2n) it can be represented in
any of the following equivalent ways: (1) as an integer between 0 and 2n, (2)
as a binary string αn−1 · · · α0 ∈ {0, 1}n, or (3) as a formal polynomial α(X) =
αn−1X

n−1 + · · · + α1X + α0 with binary coefficients. The addition “⊕” and
multiplication “·” of two field elements in GF (2n) are defined as usual (e.g., see
[25]). For GF (2256) we use P256(X) = X256+X10+X5+X2+1, and for GF (2512)
we use P512(X) = X512 +X8 +X5 +X2 +1 as the irreducible polynomials used
in the field multiplications. It is easy to multiply an arbitrary field element α
by the element 2 (i.e. X). For example, in GF (2256) using P256(X) the doubling
operation can be described as follows:

2 · α =
{

α � 1 if msb (α) = 0
(α � 1) ⊕ 024510000100101 if msb (α) = 1 (1)

= (α � 1) ⊕ ((α �s 255) ∧ 024510000100101) (2)

We note that the results computed in (1) and (2) are the same but an implemen-
tation using (2) will not be susceptible to the timing attacks unlike one which
uses (1).

116 S. Cogliani et al.

3 Definitions and Security Goals

As usual in the concrete-security definitions, we measure the insecurity of a
scheme Π using the resource parametrized function Advxxx

Π (r), denoting the
maximal value of the adversarial advantage, Advxxx

Π (r) = maxA {Advxxx
Π (A)},

over all adversaries A, against the xxx property of a primitive or scheme Π, that
use resources bounded by r. Let A be an adversary that returns a binary value;
by Af(.)(X) ⇒ 1 we refer to the event that A on input X and access to an
oracle function f(.) returns 1.

Pseudorandom Functions (PRFs) and Tweakable PRFs. Let Func(m,n)
be the set of all functions from m-bit strings to n-bit strings; i.e., Func(m,n) =
{f : {0, 1}m → {0, 1}n}. A random function (RF) R with m-bit input and n-bit
output is a function selected uniformly at random from Func(m,n). We denote

this by R
$← Func(m,n).

Let FuncT (m,n) be the set of all functions
{

f̃ : T × {0, 1}m → {0, 1}n
}

,
where T is a set of tweaks. A tweakable RF with the tweak space T , m-bit
input and n-bit output is a map R̃ : T × {0, 1}m → {0, 1}n selected uniformly

at random from FuncT (m,n); i.e. R̃
$← FuncT (m,n). Clearly, if T = {0, 1}t

then |FuncT (m,n)| = |Func(m + t, n)|, and hence, R̃ can be instantiated using
a random function R with (m + t)-bit input and n-bit output. We use R̃〈T 〉(.)
and R̃(T, .) interchangeably, for every T ∈ T . Notice that each tweak T names
a random function R̃〈T 〉 : {0, 1}m → {0, 1}n and distinct tweaks name distinct
(independent) random functions.

Let F : K × {0, 1}m → {0, 1}n be a keyed function and let F̃ : K × T ×
{0, 1}m → {0, 1}n be a keyed and tweakable function, where the key space K is
some nonempty set. Let FK(.) = F (K, .) and F̃

〈T 〉
K (.) = F̃ (K,T, .). Let A be an

adversary. Then:

Advprf
F (A) = Pr

[
K

$← K : AFK(.) ⇒ 1
]

− Pr
[
R

$← Func(m, n) : AR(.) ⇒ 1
]

Advp̃rf

F̃
(A) = Pr

[
K

$← K : AF̃
〈.〉
K

(.) ⇒ 1

]
− Pr

[
R̃

$← FuncT (m, n) : AR̃〈.〉(.) ⇒ 1
]

The resource parametrized advantage functions are defined accordingly, consid-
ering that the adversarial resources of interest here are the time complexity (t) of
the adversary and the total number of queries (q) asked by the adversary (note
that we just consider fixed-input-length functions, so the lengths of queries are
fixed and known). We say that F is (t, q; ε)-PRF if Advprf

F (t, q) ≤ ε. We say that

F̃ is (t, q; ε)-tweakable PRF if Advp̃rf

F̃
(t, q) ≤ ε.

Syntax of an AEAD Scheme. A nonce-based authenticated encryption with
associated data, AEAD for short, is a symmetric key scheme Π = (K, E ,D).
The key space K is some non-empty finite set. The encryption algorithm E :
K × N × A × M → C ∪ {⊥} takes four arguments, a secret key K ∈ K, a nonce
N ∈ N , an associated data (a.k.a. header data) A ∈ A and a message M ∈ M,

OMD: A Compression Function Mode of Operation 117

and returns either a ciphertext C ∈ C or a special symbol ⊥ indicating an error.
The decryption algorithm D : K × N × A × C → M ∪ {⊥} takes four arguments
(K,N,A,C) and either outputs a message M ∈ M or an error indicator ⊥.

For correctness of the scheme, it is required that D(K,N,A,C) = M for any
C such that C = E(K,N,A,M). It is also assumed that if algorithms E and D
receive parameter not belonging to their specified domain of arguments they will
output ⊥. We write EK(N,A,M) = E(K,N,A,M) and similarly DK(N,A,C) =
D(K,N,A,C).

We assume that the message and associated data can be any binary string
of arbitrary but finite length; i.e. M = {0, 1}∗ and A = {0, 1}∗, but the key and
nonce are some fixed-length binary strings, i.e. N = {0, 1}|N | and K = {0, 1}k,
where the positive integers |N | and k are respectively the nonce length and the
key length of the scheme in bits. We assume that |EK(N,A,M)| = |M | + τ for
some positive fixed constant τ ; that is, we will have C = C||Tag where |C| = |M |
and |Tag| = τ . We call C the core ciphertext and Tag the tag.

Nonce Respecting Adversaries. Let A be an adversary. We say that A is
nonce-respecting if it never repeats a nonce in its encryption queries. That is, if
A queries the encryption oracle EK(·, ·, ·) on (N1, A1,M1) · · · (Nq, Aq,Mq) then
N1, · · · , Nq must be distinct.

Privacy of AEAD Schemes. Let Π = (K, E ,D) be a nonce-based AEAD
scheme. Let A be a nonce-respecting adversary. A is provided with an ora-
cle which can be either a real encryption oracle EK(·, ·, ·) such that on input
(N,A,M) returns C = EK(N,A,M), or a fake encryption oracle $(·, ·, ·) which
on any input (N,A,M) returns |C| fresh random bits. The advantage of A in
mounting a chosen plaintext attack (CPA) against the privacy property of Π is
measured as follows:

Advpriv
Π (A) = Pr[K $←− K : AEK(·,·,·) ⇒ 1] − Pr[A$(·,·,·) ⇒ 1].

This privacy notion, also called indistinguishability of ciphertext from random
bits under CPA (IND$-CPA), is defined originally in [25] and is a stronger variant
of the classical IND-CPA notion [3,4] for conventional symmetric-key encryption
schemes.

Authenticity of AEAD Schemes. Let Π = (K, E ,D) be a nonce-based
AEAD scheme. Let A be a nonce-respecting adversary. We stress that nonce-
respecting is only regarded for the encryption queries; that is, A can repeat
nonces during its decryption queries and it can also ask an encryption query with
a nonce that was already used in a decryption query. Let A be provided with the
encryption oracle EK(·, ·, ·) and the decryption oracle DK(·, ·, ·); that is, we con-
sider adversaries that can mount chosen ciphertext attacks (CCA). We say that
A forges if it makes a decryption query (N,A,C) such that DK(N,A,C) �= ⊥
and no previous encryption query EK(N,A,M) returned C.

Advauth
Π (A) = Pr[K $←− K : AEK(·,·,·), DK(·,·,·) forges].

118 S. Cogliani et al.

This authenticity notion, also called integrity of ciphertext (INT-CTXT) under
CCA attacks, is defined originally in [4].

Resource parameters for the adversary. Let an adversary A make
encryption queries (N1, A1,M1) · · · (Nqe , Aqe ,Mqe) and decryption queries
(N ′1, A′1,C′1) · · · (N ′qv , A′qv ,C′qv). We define the resource parameters of A as
(t, qe, qv, σA, σM , σA′ , σC′ , Lmax), where t is the time complexity, qe and qv are
respectively the total number of encryption queries and decryption queries, Lmax

is the maximum length of each query in bits, σA =
∑qe

i=1 |Ai|, σM =
∑qe

i=1 |M i|,
σA′ =

∑qv
i=1 |A′i| and σC′ =

∑qv
i=1(|C′i| − τ).

We remind that absence of a resource parameter means that the parameter
is irrelevant in the context and hence omitted.

The use of the aforementioned privacy (IND$-CPA) and authenticity (INT-
CTXT) goals to define security of AE schemes dates back to [4] where it was
shown that if an AE scheme satisfies the combination of IND-CPA and INT-
CTXT properties then it will also fulfill indistinguishability under the strongest
form of chosen-ciphertext attack (IND-CCA) which, in turn, is equivalent to
non-malleability under chosen-ciphertext attack (NM-CCA).

4 The OMD Mode of Operation

To use OMD one must specify a keyed compression function F : K × ({0, 1}n ×
{0, 1}m) → {0, 1}n and fix a tag length τ ≤ n; where the key space K = {0, 1}k

and m ≤ n. We let OMD[F, τ] denote the OMD mode of operation using the
keyed compression function FK and the fixed tag length τ .

At first glance, imposing m ≤ n may look a bit odd as usually a compression
function has a larger input block length than its output length, but we note that
in practice, the compression function of standard hash functions (e.g. SHA-1 or
the SHA-2 family) are keyless, therefore one will need to use k bits of their b-bit
message block to get a keyed function. So, there will be no waste in each call to
the compression function if m = n and b = n + k; for example, when the key
length is 256 bits and the compression function of SHA-256 is used.

Figure 1 depicts the encryption algorithm of OMD[F, τ]. The construction of
the decryption algorithm is straightforward and almost the same as the encryp-
tion algorithm except a tag comparison (verification) at the end of the decryption
process. An algorithmic description of OMD[F, τ] is provided in Fig. 2.

The encryption algorithm of OMD[F, τ] inputs four arguments (secret key
K ∈ {0, 1}k, nonce N ∈ {0, 1}|N |, associated data A ∈ {0, 1}∗, message M ∈
{0, 1}∗) and outputs C = C||Tag ∈ {0, 1}|M |+τ . The decryption algorithm of
OMD[F, τ] inputs four arguments (secret key K ∈ {0, 1}k, nonce N ∈ {0, 1}|N |,
associated data A ∈ {0, 1}∗, ciphertext C||Tag ∈ {0, 1}∗) and either outputs the
whole M ∈ {0, 1}|C|−τ at once or an error message (⊥). Note that we have either
C = C1 · · · C� or C = C1 · · · C�−1C∗ depending on whether the message length
in bits is a multiple of the block length m or not, respectively.

OMD: A Compression Function Mode of Operation 119

FK FK FK FK0n

τ m M1 M −1 M

C1 C2 C

ΔN,1,0 ΔN,2,0 Δ 0 Δ 1M1 MM2

n bits
Tage

FK FK FK FK0n

τ m M1 M −1

C1 C2 C

ΔN,1,0 ΔN,2,0 Δ 0M1 M2

n bits
Tage

Encrypting a message whose length is a multiple of the block length. No padding is
needed.

M∗ ΔN 2

M∗||10m−|M∗|−1

Encrypting a message whose length is not a multiple of the block length. The final

message block is padded to make it a full block

FK

n + m
mn

FK

n + m
mn

FK

n + m
mn

FK

n + m
mn

A1 A2 Aa−1 Aa

Δ̄1,0 Δ̄2,0 Δ̄a−1,0 Δ̄a,0

Δ̄a−1,1

Taga
n bits

Computing Taga for an associate data whose length is a multiple of the input length
(i.e |Aa| = n + m).

FK

n + m
mn

FK

n + m
mn

FK

n + m
mn

FK

n + m
mn

A1 A2 Aa−1 A∗||10n+m−|A∗|−1

Δ̄1,0 Δ̄2,0 Δ̄a−1,0

Taga
n bits

Computing Taga for an associate data whose length is not a multiple of the input length.
The final block is padded to make it a full block .

Tage
Taga

trunc
n bits τ bits

Tag
The Tag is computed as XOR of Tage
and Taga truncated to τ bits.

Fig. 1. The encryption process of OMD[F, τ] using a keyed compression function FK :
({0, 1}n × {0, 1}m) → {0, 1}n and a fixed tag length τ .

120 S. Cogliani et al.

Computing the masking values. As seen from the description of OMD in
Fig. 1, before each call to the underlying keyed compression function we xor a
masking value denoted as ΔN,i,j (the top and middle parts of Fig. 1) and Δ̄i,j

(the bottom part of Fig. 1). In the following, we describe how these masks are
generated.

There are different ways to compute the masking values to satisfy both the
security and efficiency criteria; for example, we refer to [9,18,23]. We use the
method proposed in [18]. In the following, all multiplications (denoted by “·”)
are in GF (2n).

Initialization:
ΔN,0,0 = FK(N ||10n−1−|N |, 0m); Δ̄0,0 = 0n; L∗ = FK(0n, 0m); L(0) = 4·L∗, and
L(i) = 2 · L(i − 1) for i ≥ 1. We note that the values L(i) can be preprocessed
and stored (for a fast implementation) in a table for 0 ≤ i ≤ �log2(�max)�, where
�max is the bound on the maximum number of blocks in any input that can be
encrypted or decrypted. Alternatively, (if there is a memory restriction) they
can be computed on-the-fly for i ≥ 1. It is also possible to precompute and store
some values and then compute the others as needed on-the-fly.

Masking sequence for processing the message:
For i ≥ 1: ΔN,i,0 = ΔN,i−1,0 ⊕ L(ntz(i)); ΔN,i,1 = ΔN,i,0 ⊕ 2 · L∗; and ΔN,i,2 =
ΔN,i,0 ⊕ 3 · L∗.

Masking sequence for processing the associated data:
Δ̄i,0 = Δ̄i−1,0 ⊕ L(ntz(i)) for i ≥ 1; and Δ̄i,1 = Δ̄i,0 ⊕ L∗ for i ≥ 0.

5 Security Analysis

Theorem 1 provides the security bounds of OMD.

Theorem 1. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K×({0, 1}n ×{0, 1}m) →
{0, 1}n be a PRF, where the key space K = {0, 1}k for k ≥ 1 and 1 ≤ m ≤ n.
Then

Advpriv
OMD[F,τ](t, qe, σe, �max) ≤ Advprf

F (t′, 2σe) +
3σ2

e

2n

Advauth
OMD[F,τ](t, qe, qv, σ, �max) ≤ Advprf

F (t′, 2σ) +
3σ2

2n
+

qv�max

2n
+

qv

2τ

where qe and qv are, respectively, the number of encryption and decryption
queries, �max denotes the maximum number of m-bit blocks in an encryption
or decryption query, t′ = t+cnσ for some constant c, and σe and σ are the total
number of calls to the underlying compression function F in all queries asked
by the CPA and CCA adversaries against the privacy and authenticity of the
scheme, respectively.

The proof is obtained by combing Lemma 1 in Subsect. 5.1 with Lemmas 2 and 3
in Subsect. 5.2.

OMD: A Compression Function Mode of Operation 121

Fig. 2. Definition of OMD[F, τ]. The function F : K × ({0, 1}n × {0, 1}m) → {0, 1}n

is a keyed compression function with K = {0, 1}k and m ≤ n. The tag length is
τ ∈ {0, 1, · · · , n}. Algorithms E and D can be called with arguments K ∈ K, N ∈
{0, 1}≤n−1, and A, M,C ∈ {0, 1}∗. �max is the bound on the maximum number of
blocks in any input to the encryption or decryption algorithms.

122 S. Cogliani et al.

Remark 1. Referring to Subsect. 3 for definitions of the resource parameters, it
can be seen that: σe = �σM/m� + �σA/(n + m)� + 2qe; σ = �(σM + σC′)/m� +
�(σA + σA′)/(n + m)� + 2q; and �max = �Lmax/m�.

5.1 Generalized OMD Using a Tweakable Random Function

Figure 3 shows the G-OMD[R̃, τ] scheme which is a generalization of OMD[F, τ]
using a tweakable random function R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n. The
tweak space T consists of five mutually exclusive sets of tweaks; namely, T =
N × N × {0} ∪ N × N × {1} ∪ N × N × {2} ∪ N × {0} ∪ N × {1}, where
N = {0, 1}|N | is the set of nonces and N is the set of positive integers.

Lemma 1. Let G-OMD[R̃, τ] be the scheme shown in Fig. 3. Then

Advpriv

G-OMD[R̃,τ]
(qe, σe, �max) = 0

Advauth
G-OMD[R̃,τ]

(qe, qv, σ, �max) ≤ qv�max

2n
+

qv

2τ

where qe and qv are, respectively, the number of encryption and decryption
queries, �max denotes the maximum number of m-bit blocks in an encryption
or decryption query, and σe and σ are the total number of calls to the under-
lying tweakable random function R̃ in all queries asked by the CPA and CCA
adversaries against the privacy and authenticity of the scheme, respectively.

The proof is provided in the full version of this paper [10].

5.2 Instantiating Tweakable RFs with PRFs

Step 1. Replace the tweakable RF R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n in
G-OMD with a tweakable PRF F̃ : K×T × ({0, 1}n ×{0, 1}m) → {0, 1}n, where
K = {0, 1}k. The following lemma states the classical bound on the security loss
induced by this replacement step. The proof is a straightforward reduction and
omitted here.

Lemma 2. Let R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n be a tweakable RF and
F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be a tweakable PRF. Then

Advpriv

G-OMD[F̃ ,τ]
(t, qe, σe, �max) ≤ Advpriv

G-OMD[R̃,τ]
(qe, σe, �max) + Advp̃rf

F̃
(t′, σe)

Advauth
G-OMD[F̃ ,τ]

(t, qe, qv, σ, �max) ≤ Advauth
G-OMD[R̃,τ]

(qe, qv, σ, �max) + Advp̃rf

F̃
(t′′, σ)

where qe and qv are, respectively, the number of encryption and decryption
queries, q = qe + qv, �max denotes the maximum number of m-bit blocks in
an encryption or decryption query, t′ = t + cnσe and t′′ = t + c′nσ for some
constants c, c′, and σe and σ are the total number of calls to the underlying
compression function F in all queries asked by the CPA and CCA adversaries
against the privacy and authenticity of the scheme, respectively.

OMD: A Compression Function Mode of Operation 123

0n

τ m M1 M −1 M

C1 C2 C

R N,1,0

M1 MM2

n bits
Tage

0n

τ m M1 M −1

C1 C2 C

M1 M2

n bits
Tage

Encrypting a message whose length is a multiple of the block length. No padding is
needed.

M∗

M∗||10m−|M∗|−1

Encrypting a message whose length is not a multiple of the block length. The final

message block is padded to make it a full block

n + m
mn

n + m
mn

n + m
mn

n + m
mn

A1 A2 Aa−1 Aa

Taga
n bits

Computing Taga for an associate data whose length is a multiple of the input length
(i.e |Aa| = n + m).

n + m
mn

n + m
mn

n + m
mn

n + m
mn

A1 A2 Aa−1 A∗||10n+m−|A∗|−1

Taga
n bits

Computing Taga for an associate data whose length is not a multiple of the input length.
The final block is padded to make it a full block .

Tage
Taga

trunc
n bits τ bits

Tag
The Tag is computed as XOR of Tage
and Taga truncated to τ bits.

R N,2,0 R 0 R 1

R N,1,0 R N,2,0 R 0 R 2

R 1,0 R 2,0 R a−1,0 R a,0

R 1,0 R 2,0 R a−1,0 R a−1,1

Fig. 3. The G-OMD[R̃, τ] scheme using a tweakable random function R̃ : T ×({0, 1}n×
{0, 1}m) → {0, 1}n (i.e. R̃

$← FuncT (n + m, n)).

124 S. Cogliani et al.

Step 2. We instantiate a tweakable PRF using a PRF by means of XORing
(part of) the input by a mask generated as a function of the key and tweak as
shown in Fig. 4. This method to tweak a PRF is (essentially) the XE method
of [23]. In OMD the tweaks are of the form T = (α, i, j) where α ∈ N ∪ {ε},
1 ≤ i ≤ 2n−8 and j ∈ {0, 1, 2}. We note that not all combinations are used;
for example, if α = ε (empty) which corresponds to processing of the associate
data in Fig. 1 then j �= 2. The masking function ΔK(T) = ΔK(α, i, j) outputs
an n-bit mask such that the following two properties hold for any fixed string
H ∈ {0, 1}n:

1. Pr[ΔK(α, i, j) = H] ≤ 2−n for any (α, i, j)
2. Pr[ΔK(α, i, j) ⊕ ΔK(α′, i′, j′) = H] ≤ 2−n for (α, i, j) �= (α′, i′, j′)

where the probabilities are taken over random selection of the key.
It is easy to verify that these two properties are satisfied by the specific

masking scheme of OMD as described in Sect. 4.

FK

Y

F̃
〈T 〉
K

Y

X X

m m

n n nn n

ΔK(T)

Fig. 4. Building a tweakable PRF F̃
〈T 〉
K : {0, 1}n × {0, 1}m → {0, 1}n using a PRF

FK : {0, 1}n ×{0, 1}m → {0, 1}n. There are several efficient ways to define the masking
function ΔK(T) [9,18,23]; we use the method of [18].

Lemma 3. Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a function family
with key space K. Let F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be defined by
F̃

〈T 〉
K (X,Y) = FK((X ⊕ ΔK(T)), Y) for every T ∈ T ,K ∈ K, X ∈ {0, 1}n

, Y ∈
{0, 1}m and ΔK(T) is the masking function of OMD as defined in Sect. 4. If F

is PRF then F̃ is tweakable PRF; more precisely

Advp̃rf

F̃
(t, q) ≤ Advprf

F (t′, 2q) +
3q2

2n
.

The proof is a simple adaptation of a similar result on the security of the XE
construction (to tweak a blockcipher) in [18]. As we use a PRF rather than PRP,
our bound has two main terms. The first term is a single birthday bound loss
of 0.5q2

2n to take care of the case that a collision might happen when computing
the initial mask ΔN,0,0 = FK(N ||10n−1−|N |, 0m) using a PRF (F) rather than
a PRP (as in [18]). The analysis of the remaining term (i.e. 2.5q2

2n) is essentially

OMD: A Compression Function Mode of Operation 125

the same as the similar part in [18], but we note that in the context of our
construction as we are directly dealing with PRFs unlike [18] in which PRPs
are used, the bound obtained here does not have any loss terms caused by the
switching (PRF–PRP) lemma. Therefore, instead of the 6q2

2n bound in [18] (from
which 3.5q2

2n is due to using the switching lemma) our bound has only 2.5q2

2n .

6 Instantiations

6.1 OMD-SHA256

Our primary recommendation to instantiate OMD, called OMD-SHA256,
uses the underlying compression function of SHA-256 [1]. This is intended to
be the appropriate choice for next-generation processors supporting Intel SHA
Extensions.

The compression function of SHA-256 is a map SHA-256 :{0, 1}256×{0, 1}512
→ {0, 1}256. On input a 256-bit chaining block X and a 512-bit message block
Y , it outputs a 256-bit digest Z, i.e. let Z = SHA-256(X,Y).

To use OMD with SHA-256, we use the first 256-bit argument X for chaining
values as usual. We use the 512-bit argument Y (the message block in SHA-256)
to input both a 256-bit message block and the key K which can be of any length
k ≤ 256 bits. If k < 256 then let the key be K||0256−k. That is, we define
the keyed compression function FK : {0, 1}256 × {0, 1}256 → {0, 1}256 needed in
OMD as FK(H,M) = SHA-256(H,K||0256−k||M).

The parameters of OMD-SHA256 are as follows:

– The message block length in bits is m = 256; i.e. |Mi| = 256. If needed, we
pad the final block of the message with 10∗ (i.e., a single 1 followed by the
minimal number of 0’s needed) to make its length exactly 256 bits.

– The key length in bits can be 80 ≤ k ≤ 256; but k < 128 is not recommended.
If needed, we pad the key K with 0256−k to make its length exactly 256 bits.

– The nonce (public message number) length in bits can be 96 ≤ |N | ≤ 255.
We always pad the nonce with 10255−|N | to make its length exactly 256 bits.

– The secret message number length in bits is 0; that is, our scheme does not
support secret message numbers.

– The associated data block length in bits is 2n = 512; i.e. |Ai| = 512. If needed,
we pad the final block of the associated data with 10∗ (i.e., a single 1 followed
by the minimal number of 0’s needed) to make its length exactly 512 bits.

– The tag length in bits can be 32 ≤ τ ≤ 256; but it must be noted that the
selection of the tag length directly affects the security level.

6.2 OMD-SHA512

Our second recommendation to instantiate OMD, called OMD-SHA512, uses
the underlying compression function of SHA-512 [1]. This is intended to be the
appropriate choice for implementations on 64-bit machines.

126 S. Cogliani et al.

The compression function of SHA-512 is a map SHA-512 : {0, 1}512×{0, 1}1024
→ {0, 1}512. On input a 512-bit chaining block X and a 1024-bit message block
Y , it outputs a 512-bit digest Z, i.e. let Z = SHA-512(X,Y).

To use OMD with SHA-512, we use the first 512-bit argument X for chaining
values as usual. In our notation (see Fig. 1) this means that n = 512. We use
the 1024-bit argument Y (the message block in SHA-512) to input both a 512-
bit message block and the key K which can be of any length k ≤ 512 bits. If
k < 512 then let the key be K||0512−k. That is, we define the keyed compression
function FK : {0, 1}512 × {0, 1}512 → {0, 1}512 needed in OMD as FK(H,M) =
SHA-512(H,K||0512−k||M).

The parameters of OMD-SHA512 are set as follows:

– The message block length in bits is m = 512; i.e. |Mi| = 512. If needed, we
pad the final block of the message with 10∗ (i.e., a single 1 followed by the
minimal number of 0’s needed) to make its length exactly 512 bits.

– The key length in bits can be 80 ≤ k ≤ 512; but k < 128 is not recommended.
If needed, we pad the key K with 0512−k to make its length exactly 512 bits.

– The nonce (public message number) length in bits can be 96 ≤ |N | ≤ 511.
We always pad the nonce with 10511−|N | to make its length exactly 512 bits.

– The secret message number length in bits is 0; that is, our scheme does not
support secret message numbers.

– The associated data block length in bits is 2n = 1024; i.e. |Ai| = 1024. If
needed, we pad the final block of the associated data with 10∗ (i.e., a single
1 followed by the minimal number of 0’s needed) to make its length exactly
1024 bits.

– The tag length in bits can be 32 ≤ τ ≤ 512.

6.3 Instantiating G-OMD with a Native Tweakable PRF

Considering the proof steps of Theorem 1, it can be seen that the security bound
for the core of OMD, called G-OMD (Fig. 3), is free from the quadratic degrada-
tion (birthday term) in the total number of blocks in queries; namely, 3σ2

2n . This
term is introduced only in Lemma 3, when we instantiated a tweakable PRF F̃ :
K×T × ({0, 1}n ×{0, 1}m) → {0, 1}n from a PRF F : K× ({0, 1}n ×{0, 1}m) →
{0, 1}n using the XE masking method; i.e., F̃

〈T 〉
K (X,Y) = FK(X ⊕ ΔK(T), Y).

This instantiation aimed to provide a large range for the allowed key length and
the nonce length in instantiations of OMD using practical compression functions,
regarding that most practical compression functions (e.g. those of the SHA fam-
ily) do not have a dedicated key input and must be keyed by allocating some
part of their input for the key.

To avoid such a degradation in the security bound, caused by the XE method,
one can directly instantiate the tweakable PRF F̃ from a PRF F ′ : K×({0, 1}n×
{0, 1}m′

) → {0, 1}n, where m′ = m+|T |, by defining F̃
〈T 〉
K (X,Y) = F ′

K(X,T ||Y).
In practice, using an off-the-shelf (keyless) compression function with fixed input
and output sizes, this will imply supporting a more restricted range of parame-
ters’ sizes (key length and nonce length) compared to OMD. Fortunately, the

OMD: A Compression Function Mode of Operation 127

allowed parameter sizes for would be still large enough for most of applications
today, if one simply use the compression functions of SHA-256 or SHA-512. Let’s
call the G-OMD instantiated with these compression functions, G-OMD-SHA256
and G-OMD-SHA512, respectively.

For G-OMD-SHA256 and G-OMD-SHA512, we can define the tweakable
function F̃

〈T 〉
K (X,Y) by F̃

〈T 〉
K (X,Y) = SHA-256(X,K||T ||0256−k−|T |||M)

and F̃
〈T 〉
K (X,Y) = SHA-512(X,K||T ||0512−k−|T |||M), respectively. Considering

that T = (N, i, j), where N is the nonce, i is the block number, and j ∈
{0, 1, 2}, G-OMD-SHA256 and G-OMD-SHA512 will allow k-bit keys, |N |-bit
nonce, �-block messages and a-block associated data, subject to the constraints
k + |N | + max(log �, log a) + 2 ≤ 256 and k + |N | + max(log �, log a) + 2 ≤ 512,
respectively.

Acknowledgments. We would like to thank the anonymous reviewers of SAC 2014
for their constructive comments. The EPFL team was partially supported by Microsoft
Research under MRL Contract No. 2014-006 (DP1061305).

References

1. Secure Hash Standard (SHS). NIST FIPS PUB 180–4, Mar 2012
2. Bellare, M.: New proofs for NMAC and HMAC: security without collision-

resistance. IACR Cryptology ePrint Archive 2006, 43 (2006)
3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of

symmetric encryption. In: FOCS, pp. 394–403 (1997)
4. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions

and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

6. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

7. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.cr.
yp.to

8. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

9. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and
different modes of operations. IEEE Trans. Inf. Theory 54(5), 1991–2006 (2008)

10. Cogliani, S., Maimut, D., Naccache1, D., do Canto, R.P., Reyhanitabar, R.,
Vaudenay, S., Vizár, D.: Offset Merkle-Damg̊ard (OMD) version 1.0: A CAESAR
Proposal, Mar 2014. http://competitions.cr.yp.to/round1/omdv10.pdf

11. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012)

http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://competitions.cr.yp.to/round1/omdv10.pdf

128 S. Cogliani et al.

12. Guilford, J., Cote, D., Gopal, V.: Fast SHA512 Implementations on Intel�

Architecture Processors, Nov 2012. http://www.intel.com/content/www/us/en/
intelligent-systems/intel-technology/fast-sha512-implementations-ia-processors-
paper.html

13. Guilford, J., Yap, K., Gopal, V.: Fast SHA-256 Implementations on Intel�

Architecture Processors, May 2012. http://www.intel.com/content/www/us/en/
intelligent-systems/intel-technology/sha-256-implementations-paper.html

14. Gulley, S., Gopal, V., Yap, K., Feghali, W., Guilford, J., Wolrich, G.: Intel� SHA
Extensions: New Instructions Supporting the Secure Hash Algorithm on Intel�

Architecture Processors, Jul 2013. https://software.intel.com/sites/default/files/
article/402097/intel-sha-extensions-white-paper.pdf

15. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

16. Iwata, T.: Authenticated encryption mode for beyond the birthday bound secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008)

17. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

18. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

19. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012)

20. Lefranc, D., Painchault, P., Rouat, V., Mayer, E.: A generic method to design
modes of operation beyond the birthday bound. In: Adams, C., Miri, A., Wiener,
M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 328–343. Springer, Heidelberg (2007)

21. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014)

22. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security, pp. 98–107 (2002)

23. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

24. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

25. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security, pp. 196–205 (2001)

26. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

27. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-sha512-implementations-ia-processors-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-sha512-implementations-ia-processors-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-sha512-implementations-ia-processors-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.html
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf

Security Amplification
for the Composition of Block Ciphers:

Simpler Proofs and New Results

Benoit Cogliati1, Jacques Patarin1, and Yannick Seurin2(B)

1 University of Versailles, Versailles, France
benoit.cogliati@ens.uvsq.fr, jacques.patarin@uvsq.fr

2 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. Security amplification results for block ciphers typically state
that cascading (i.e., composing with independent keys) two (or more)
block ciphers yields a new block cipher that offers better security against
some class of adversaries and/or that resists stronger adversaries than
each of its components. One of the most important results in this respect
is the so-called “two weak make one strong” theorem, first established
up to logarithmic terms by Maurer and Pietrzak (TCC 2004), and later
optimally tightened by Maurer, Pietrzak, and Renner (CRYPTO 2007),
which states that, in the information-theoretic setting, cascading F and
G−1, where F and G are respectively (q, εF)-secure and (q, εG)-secure
against non-adaptive chosen-plaintext (NCPA) attacks, yields a block
cipher which is (q, εF +εG)-secure against adaptive chosen-plaintext and
ciphertext (CCA) attacks. The first contribution of this work is a sur-
prisingly simple proof of this theorem, relying on Patarin’s H-coefficient
method. We then extend our new proof to obtain new results (still in the
information-theoretic setting). In particular, we prove a new composition
theorem (which can be seen as the generalization of the “two weak make
one strong” theorem to the composition of n > 2 block ciphers) which
provides both amplification of the advantage and strengthening of the
distinguisher’s class in some optimal way (indeed we prove that our new
composition theorem is tight up to some constant).

Keywords: Block cipher · Security amplification · Cascade · Composi-
tion · Provable security

1 Introduction

Security Amplification for Block Ciphers. The usual security notion
for a block cipher E is pseudorandomness, which measures the (in-)ability of

The author ‘Y. Seurin’ was partially supported by the French National Agency of
Research through the BLOC project (contract ANR-11-INS-011).

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 129–146, 2014.
DOI: 10.1007/978-3-319-13051-4 8

130 B. Cogliati et al.

an adversary (the distinguisher) which is given oracle access to a permutation
(and potentially its inverse) to tell whether it is interacting with the block cipher
EK for some randomly drawn key K or with a truly random permutation. One
usually classifies distinguishers according to the way they can issue their queries.
A distinguisher which can only make direct (plaintext) queries to the permuta-
tion oracle is called a CPA-distinguisher, whereas it is called a CCA-distinguisher
when it can make both direct and inverse (ciphertext) queries. Both types come
in a non-adaptive variant (NCPA and NCCA respectively), i.e., the adversary
must choose all its queries before receiving any answer from the permutation
oracle. A block cipher is said to be (q, ε)-ATK secure when no distinguisher in
the attack class ATK (for instance NCPA, etc.) making at most q oracle queries
can distinguish EK from a truly random permutation with advantage better
than ε.

The security amplification problem is to determine whether adequately com-
bining some mildly secure block ciphers E1, . . . , En can yield a block cipher F
with stronger security guarantees than each of its components. (This question
naturally extends to other cryptographic primitives such as pseudorandom gener-
ators or pseudorandom functions, but in this paper we focus on pseudorandom
permutations, i.e., block ciphers.) Here, “stronger” security guarantees might
mean either that F has a smaller distinguishing advantage in face of some fixed
class of distinguishers than each component Ei (something we will informally
refer to as ε-amplification), or that F can withstand attacks from a stronger
class of adversaries than each of its components (something we will call class-
amplification). We clarify this distinction with a prominent example of each type
of result.

The classical example of an ε-amplification result states that cascading two
block ciphers F and G which are respectively (q, εF)- and (q, εG)-NCPA (resp.
CPA) secure yields a block cipher which is (q, 2εF εG)-NCPA (resp. CPA) secure.
Hence, when εF , εG < 1/2, the new block cipher is indeed strictly more
secure than each of its components. This was proved (in the information-theoretic
setting, i.e., when considering computationally unbounded adversaries) by
Vaudenay (see [Vau98] for the non-adaptive case and [Vau99] for the adaptive
case) using the decorrelation theory framework [Vau03]. (See also [KNR09, The-
orem 3.8] for a different proof for self-composition in the non-adaptive case.)
A computational analogue of this result was later proved by Maurer and Tessaro
[MT09].

For the class-amplification type of results, one of the most notable exam-
ples is what we will refer to as the “two weak make one strong” (2W1S for
short) theorem, which states that if F and G are resp. (q, εF)- and (q, εG)-
NCPA secure, then the composition G−1 ◦ F is (q, εF + εG)-CCA secure (a
result which is tight in general). Note that here, the resulting cipher withstands
much stronger attacks than each component F and G, but its CCA advantage
is strictly larger than each of the NCPA advantages of F and G. This theorem
was first proved up to logarithmic terms by Maurer and Pietrzak [MP04], while
the tight version was later proved by Maurer, Pietrzak, and Renner [MPR07]

Security Amplification for the Composition of Block Ciphers 131

using the framework of random systems [Mau02]. We stress that this result only
holds in the information-theoretic setting. In the computational setting, the com-
position of non-adaptively secure block ciphers does not, in general, yield an
adaptively secure one [Mye04,Pie05a], though some partial positive results are
known [LR86,Pie06].

Our Contribution. The starting point of our work is a surprisingly simple
proof of the 2W1S theorem. Our new technique relies on simple manipulations
of transition probabilities (which are nothing else, up to some normalization
factors, than the H-coefficients of Patarin [Pat08]) and eschews completely the
heavy machinery of the random systems framework [Mau02] on which the only
previously known proof was based [MPR07]. We think that having an elemen-
tary proof of an important result (on which a number of subsequent papers
rely, notably in coupling-based security proofs [MRS09,HR10,LPS12,LS14]) is
an interesting contribution in itself. To emphasize our point, we stress that a cru-
cial lemma of the random systems framework (namely Theorem 2 of [Mau02]),
to which the proof of the 2W1S theorem of [MPR07] appeals, was later found
to be incorrectly stated (and also that the only known proof of this lemma
in [Pie05b] was flawed) by Jetchev et al. [JÖS12]. Hence, the 2W1S theorem can
only be considered formally proven by combining results from three different
papers [Mau02,MPR07,JÖS12], a somehow unsatisfying state of affairs.

Motivated by our findings, we consider the following problem: given three
(or more) block ciphers which are (q, ε)-NCPA secure, can we get both ε-
amplification and class-amplification at the same time, i.e., a composed block
cipher which is (q, ε′)-CCA secure for ε′ < ε, in some optimal manner?1 Focusing
on self-composition for simplicity, consider a block cipher E such that both E and
E−1 are (q, ε)-NCPA secure.2 What can we say about the CCA-security of the
n-fold composition En? Using known results, a straightforward answer (assum-
ing n even) can be obtained by first (recursively) applying the ε-amplification
theorem for NCPA-secure block ciphers to each half of the cascade, thereby
getting

Advncpa
En/2(q) ≤ 2

n
2 −1ε

n
2 and Advncpa

(En/2)−1(q) ≤ 2
n
2 −1ε

n
2 ,

and then the 2W1S theorem to obtain

Advcca
En(q) ≤ Advncpa

En/2(q) + Advncpa
(En/2)−1(q) ≤ (2ε)

n
2 .

For n odd, a similar reasoning yields (by cutting En into two unbalanced halves)

Advcca
En(q) ≤ Advncpa

E(n+1)/2(q) + Advncpa
(E(n−1)/2)−1(q) ≤ 2

n−1
2 ε

n+1
2 + 2

n−3
2 ε

n−1
2 .

1 This requires at least three block ciphers since the 2W1S theorem is tight. Hence, in
general, from two (q, ε)-NCPA secure block ciphers F and G, one can at best obtain
a (q, 2ε)-CCA secure one.

2 A larger number of block cipher designs have similar provable security in the direct
and inverse direction because of their involution-like structure, for example balanced
Feistel schemes.

132 B. Cogliati et al.

In particular, for n = 3, the best one can prove from previous results is that

Advcca
E3 ≤ ε + 2ε2.

Hence, one gets (provable) ε-amplification only for n ≥ 4, assuming ε < 1/4.
In this paper, we prove that the CCA-security of En is actually much better,

namely
Advcca

En(q) ≤ (2ε)n−1.

Hence, for n ≥ 3, this provides both ε-amplification and class-amplification as
soon as

ε <
1

2 · 21/(n−2)

(hence, in particular as soon as ε < 1/4 for any n ≥ 3). In fact we prove a more
general theorem (see Theorem 2) which also implies the following interesting
corollary. Let E, F , G be three block ciphers such that E, F , F−1 and G−1 are
(q, ε)-NCPA secure. Then the composition G ◦ F ◦ E is (q, 4ε2)-CCA secure.

A Word of Interpretation. Our new result has some interesting impli-
cations regarding the superiority of triple- versus double-encryption. This fact
has already been widely analyzed in the ideal cipher model [ABCV98,BR06].
Our new theorem may be seen as yet another expression of this phenomenon
in the standard, information-theoretic setting. For concreteness, assume that we
have at hand a block cipher E such that E and E−1 are only, say, (240, 2−30)-
NCPA secure, a mild security insurance by current standards. Using double-
encryption, one “restores” NCPA-security (since E2 and (E2)−1 are ensured to
be (240, 2−59)-NCPA secure) but in general one cannot exclude that a CCA-
attack will break E2 with 240 queries and advantage 2−30. On the other hand,
triple-encryption is good enough here, since our new result shows that E3 is
(240, 2−58)-CCA secure.

Related Work. The topic of security amplification is too broad to be entirely
covered here. Restricting our attention to block cipher security amplification, we
mention that a long line of work considered provable security results for cascade
encryption in the ideal cipher model [ABCV98,BR06,GM09,Lee13], which is
quite orthogonal to our setting: working in the ideal cipher model is in some sense
equivalent to upper bounding the knowledge of the adversary on the underlying
block cipher(s) (since it can only make a limited number of ideal cipher queries),
whereas we consider computationally unbounded adversaries, in the standard,
non-idealized model (in particular, the adversary has complete knowledge of
the underlying block cipher(s), and may, e.g., represent them as a huge look-up
table).

Organization. We start with useful definitions and the necessary background
on transition probabilities and how these quantities are related to the advan-
tage against different classes of distinguishers in Sect. 2. In Sect. 3, we give our
new and substantially simpler proof of the 2W1S theorem. Then, in Sect. 4, we

Security Amplification for the Composition of Block Ciphers 133

extend this result to the general case of the composition of n ≥ 2 non-adaptively
secure block ciphers (we treat the special case n = 3 in the full version of the
paper [CPS14]). Finally, in Sect. 5, we show that our new result is tight up to
some constant.

2 Preliminaries

2.1 Notation and Definitions

Given a non-empty set S, the set of all permutations of S is denoted Perm(S).
We write s ←$ S to mean that a value is sampled uniformly at random from S
and assigned to s.

Definition 1 (Statistical Distance). Let Ω be a finite event space and let μ
and ν be two probability distributions defined on Ω. The statistical distance (or
total variation distance) between μ and ν, denoted ‖μ − ν‖ is defined as:

‖μ − ν‖ =
1
2

∑
ω∈Ω

|μ(ω) − ν(ω)|.

The following definitions can easily be seen equivalent:

‖μ − ν‖ = max
S⊆Ω

{μ(S) − ν(S)} = max
S⊆Ω

{ν(S) − μ(S)} = max
S⊆Ω

{|μ(S) − ν(S)|} .

Composition of Block Ciphers. Let M and K be two sets. A block cipher
with message space M and key space K is a mapping E : K × M → M such
that for any K ∈ K, the partial mapping E(K, ·) is a permutation of M. We
interchangeably use the notation EK(x) for E(K,x), the inverse of EK being
denoted E−1

K . Given two block ciphers E and F with the same message space
M and respective key spaces KE and KF , we denote F ◦E the block cipher with
message space M and key space KE × KF defined as

F ◦ E(KE ,KF)(x) = FKF
(EKE

(x)).

We call F ◦ E interchangeably the composition or the cascade of E and F . This
definition extends straightforwardly to the composition of n > 2 block ciphers.
We denote En the n-fold self-composition of E (with independent keys).

2.2 Security Definitions and Classical Lemmas

Fix some message space M and denote M = |M|. We denote (M)q the set of
all q-tuple of pairwise distinct elements of M. Let E be a block cipher with
message space M and key space KE . Given an integer q ≥ 1 and two q-tuples
x = (x1, . . . , xq) ∈ (M)q and y = (y1, . . . , yq) ∈ (M)q of pairwise distinct
elements of M, we denote

pE(x, y) = Pr [K ←$ KE : EK(x) = y] =
|{K ∈ KE : EK(x) = y}|

|KE | ,

134 B. Cogliati et al.

where the notation EK(x) = y is a shorthand meaning that EK(xi) = yi for all
1 ≤ i ≤ q. We also denote

p∗ = Pr [P ←$ Perm(M) : P (x) = y] =
1

M(M − 1) · · · (M − q + 1)
.

When x is fixed,
pE,x : y 	→ pE(x, y)

is the probability distribution (over the choice of a uniformly random key K ←$

KE) of the q-tuple of ciphertexts when E receives the q-tuple of plaintexts x.
Similarly, when y is fixed,

pE−1,y : x 	→ pE(x, y)

is the probability distribution of the q-tuples of plaintexts when E−1 receives the
q-tuple of ciphertexts y. Overloading the notation, p∗ will also denote the uniform
probability distribution over (M)q. Note that for any x = (x1, . . . , xq) ∈ (M)q

and any y = (y1, . . . , yq) ∈ (M)q,∑
z∈(M)q

(pE(x, z) − p∗) =
∑

z∈(M)q

(pE(z, y) − p∗) = 0. (1)

Let D be a distinguisher with (potentially two-sided) oracle access to some
permutation P ∈ Perm(M), whose goal is to distinguish whether it is interact-
ing with EK(·) for some random key K ←$ K, or with a uniformly random
permutation P ←$ Perm(M). We classify distinguishers according to the type
of attacks they can perform:

– chosen-plaintext attacks (CPA), where D can only make direct (i.e., plaintext)
queries to the permutation oracle,

– and chosen-plaintext and ciphertext attacks (CCA), where D can make both
direct and inverse (i.e., ciphertext) queries to the permutation oracle.

Additionally, we also consider the non-adaptive variants of these two types of
attacks, namely NCPA and NCCA, where the distinguisher must choose all its
queries before receiving any answer from the permutation oracle. We consider
computationally unbounded distinguishers, and we assume wlog that the distin-
guisher is deterministic and never makes redundant queries.

The distinguishing advantage of D is defined as

Adv(D) =
∣∣Pr

[
K ←$ K : DEK = 1

] − Pr
[
P ←$ Perm(M) : DP = 1

]∣∣ ,

where, depending on the type of the distinguisher, D can make one-sided or two-
sided queries to the permutation oracle. For q a non-negative integer, the insecu-
rity (or advantage) of E against ATK-attacks, where ATK ∈ {(N)CPA, (N)CCA}
is defined as

Advatk
E (q) = max

D
Adv(D),

Security Amplification for the Composition of Block Ciphers 135

where the maximum is taken over all distinguishers D of type ATK making at
most q oracle queries. We say that E is (q, ε)-ATK secure if Advatk

E (q) ≤ ε.
Our analysis will rely on the H-coefficient method, first introduced by

Patarin to prove the strong pseudorandomness of the 4-round Feistel scheme
[Pat90,Pat91,Pat08]. We recall the two fundamental results of the H-coefficient
method, regarding NCPA and CCA distinguishers respectively. For complete-
ness, we give a proof of these results in Appendix A.

Lemma 1 (NCPA security). Let E be a block cipher with message space M.
Then

Advncpa
E (q) = max

x∈(M)q
‖pE,x − p∗‖.

Lemma 2 (CCA security). Let E be a block cipher with message space M.
Assume that there exists ε such that for any q-tuples x, y ∈ (M)q, one has

pE(x, y) ≥ (1 − ε)p∗.

Then
Advcca

E (q) ≤ ε.

3 A Simple Proof of the “Two Weak Make One Strong”
Theorem

In this section, we derive in a straightforward manner the “two weak make one
strong” theorem [MP04,MPR07]. We start by giving a handful expression for
the quantity pF◦E(x, y).

Lemma 3. Let E and F be two block ciphers with the same message space M
and respective key spaces KE and KF . Then for any q-tuples x and y of pairwise
distinct elements of M, one has

pF◦E(x, y) = p∗ +
∑

z∈(M)q

(pE(x, z) − p∗)(pF (z, y) − p∗). (2)

Proof. One has

pF◦E(x, y) =
∑

z∈(M)q

pE(x, z)pF (z, y)

=
∑

z

(pE(x, z) − p∗ + p∗)(pF (z, y) − p∗ + p∗)

=
∑

z

(pE(x, z) − p∗)(pF (z, y) − p∗)

+ p∗ ∑
z

(pE(x, z) − p∗)

︸ ︷︷ ︸
=0 by (1)

+p∗ ∑
z

(pF (z, y) − p∗)

︸ ︷︷ ︸
=0 by (1)

+
∑

z

(p∗)2

︸ ︷︷ ︸
=p∗

= p∗ +
∑

z

(pE(x, z) − p∗)(pF (z, y) − p∗),

from which the result follows.
�

136 B. Cogliati et al.

The next step is to lower bound the sum appearing in the right hand-side of (2).
Note that this term is exactly a covariance term. In particular, one could use
the Cauchy-Schwarz inequality to get∣∣∣∣∣∣

∑
z∈(M)q

(pE(x, z) − p∗)(pF (z, y) − p∗)

∣∣∣∣∣∣
≤

√ ∑
z∈(M)q

(pE(x, z) − p∗)2
√ ∑

z∈(M)q

(pF (z, y) − p∗)2.

However, the quantities appearing in the right hand-side involve the Euclidean
distance between pE,x (resp. pF −1,y) and p∗, which to the best of our knowledge
is not related to any standard attack. Hence we prove in the next lemma a
different bound which involves the statistical distance instead, which, as recalled
in Lemma 1, is related to NCPA attacks.

Lemma 4. Let E and F be two block ciphers with the same message space M
and respective key spaces KE and KF . Then for any q-tuples x and y of pairwise
distinct elements of M, one has∑

z∈(M)q

(pE(x, z) − p∗)(pF (z, y) − p∗) ≥ −p∗ (‖pE,x − p∗‖ + ‖pF −1,y − p∗‖)
.

Proof. Let

S
def=

∑
z∈(M)q

(pE(x, z)−p∗)(pF (z, y)−p∗) =
∑

z∈(M)q

(pE,x(z)−p∗)(pF −1,y(z)−p∗).

To simplify notation, we rename the probability distributions as μ := pE,x and
ν := pF −1,y. Then, keeping only the negative terms in the sum, we have

S ≥
∑

z∈(M)q :

{
μ(z)>p∗

ν(z)<p∗

(μ(z) − p∗)(ν(z) − p∗)

+
∑

z∈(M)q :

{
μ(z)<p∗

ν(z)>p∗

(μ(z) − p∗)(ν(z) − p∗)

≥
∑

z∈(M)q :

{
μ(z)>p∗

ν(z)<p∗

(μ(z) − p∗)(−p∗) +
∑

z∈(M)q:

{
μ(z)<p∗

ν(z)>p∗

(−p∗)(ν(z) − p∗)

= −p∗

⎛
⎜⎜⎜⎝

∑
z∈(M)q :

{
μ(z)>p∗

ν(z)<p∗

(μ(z) − p∗) +
∑

z∈(M)q:

{
μ(z)<p∗

ν(z)>p∗

(ν(z) − p∗)

⎞
⎟⎟⎟⎠

≥ −p∗(‖μ − p∗‖ + ‖ν − p∗‖),

where for the last inequality we used that

Security Amplification for the Composition of Block Ciphers 137

‖μ − p∗‖ = max
S⊆(M)q

∑
z∈S

(μ(z) − p∗)

(and the analogue equality for ν). This proves the result.
�
We can finally prove the “two weak make one strong” composition theorem.

Theorem 1. Let E and F be two block ciphers with the same message space
M. For any integer q, one has

Advcca
F◦E(q) ≤ Advncpa

E (q) + Advncpa
F −1 (q).

Proof. Fix any q-tuples x, y ∈ (M)q. Then

pF◦E(x, y) = p∗ +
∑

z∈(M)q

(pE(x, z) − p∗)(pF (z, y) − p∗) (Lemma 3)

≥ p∗ − p∗ (‖pE,x − p∗‖ + ‖pF −1,y − p∗‖)
(Lemma 4)

≥ p∗(1 − Advncpa
E (q) − Advncpa

F −1 (q)). (Lemma 1)

The result follows by Lemma 2.
�
To illustrate the usefulness of Eq. (2), we give a simple proof of the ε-amplification
theorem for NCPA-secure ciphers [Vau98], as well as an amplification theorem
for security against known-plaintext attacks (KPA), in the full version of this
paper [CPS14].

4 Many Weak Make One Even Stronger

Let n ≥ 1 be an integer. In this section, we extend Theorem 1 to the composition
of n block ciphers (the special case n = 3 is treated in details in the full version
of this paper [CPS14]).

We start by generalizing Lemma 3.

Lemma 5. Let E1, . . . , En be n block ciphers with the same message space M.
Then for any q-tuples x and y of pairwise distinct elements of M, one has

pEn◦···◦E1(x, y) = p∗ +
∑

x1,...,xn−1∈(M)q

(
n∏

i=1

(pEi
(xi−1, xi) − p∗)

)
(3)

where x0 := x and xn := y.

Proof. This result can be shown by induction. For i ≥ 1, let (Hi) be the following
proposition: for any j ∈ {1, . . . , i}, for any block ciphers E1, . . . , Ej with the same
message space M and for any q-tuples x0 and xj of pairwise distinct elements
of M, one has

138 B. Cogliati et al.

pEj◦···◦E1(x0, xj) = p∗ +
∑

x1,...,xj−1∈(M)q

(
j∏

i=1

(pEi
(xi−1, xi) − p∗)

)
.

Lemma 3 corresponds to (H2).
Assume that (Hk) holds for an integer k ≥ 2. Let E1, . . . , Ek+1 be block

ciphers with the same message space M and x0, xk+1 ∈ (M)q. Then

pEk+1◦···◦E1(x0, xk+1)

= p∗ +
∑

x1∈(M)q

(pE1(x0, x1) − p∗)(pEk+1◦···◦E2(x1, xk+1) − p∗) (H2)

= p∗ +
∑

x1∈(M)q

(pE1(x0, x1) − p∗)
∑

x2,...,xk

∈(M)q

k+1∏
i=2

(pEi
(xi−1, xi) − p∗) (Hk)

from which the result follows.
�
We now have to study the sum appearing in the right hand-side of (3) in the
same way as in the proof of Lemma 4, i.e., by splitting the sum according to the
sign of each term of the product. In order to have a more compact notation, for
a tuple (t0, . . . , tn) ∈ ((M)q)n+1 and for each i ∈ {1, . . . , n} we denote:

– C0,i the inequality pEi
(ti−1, ti) − p∗ > 0 and

– C1,i the inequality pEi
(ti−1, ti) − p∗ < 0.

Then every part of the sum can be parametrized with a n-tuple k = (k1, . . . , kn)
of integers in {0, 1}, the product being positive if and only if k1 + . . . + kn ≡
0 mod 2. Of course, the cases which have to be dealt carefully with are the ones
where the product is negative (i.e., k1 + . . . + kn ≡ 1 mod 2). This is what is
done in the following lemma.

Lemma 6. Let E1, . . . , En be n block ciphers with the same message space M
and k = (k1, . . . , kn) ∈ {0, 1}n such that k1 + . . . + kn ≡ 1 mod 2. For any fixed
q-tuples t0, tn in (M)q, denote

Ak(t0, tn) := {(t1, . . . , tn−1) ∈ ((M)q)n−1 | ∀i ∈ {1, . . . , n}, Cki,i holds}.

Then ∑
t∈Ak(t0,tn)

∏
1≤i≤n

(pEi
(ti−1, ti) − p∗)

≥ −p∗ max
1≤i≤n

⎛
⎝ ∏

1≤j≤i−1

Advncpa
Ej

(q) ×
∏

i+1≤j≤n

Advncpa

E−1
j

(q)

⎞
⎠ .

Security Amplification for the Composition of Block Ciphers 139

Proof. Since k1 + . . . + kn ≡ 1 mod 2, one can find an index j such that kj = 1,
i.e., pEj

(tj−1, tj) − p∗ < 0. Then, one has

∑
t∈Ak(t0,tn)

∏
1≤i≤n

(pEi
(ti−1, ti) − p∗) ≥ −p∗ ∑

t∈Ak(t0,tn)

∏
1≤i≤n

i	=j

(pEi
(ti−1, ti) − p∗).

In the sum appearing in the right hand-side, every term is positive since there
is an even number of negative terms in each product. Hence,∑

t∈Ak(t0,tn)

∏
1≤i≤n

(pEi
(ti−1, ti) − p∗) ≥ −p∗ ∑

t∈Ak(t0,tn)

∏
1≤i≤n

i	=j

|pEi
(ti−1, ti) − p∗|.

Let

B := {(t1, . . . , tj−1) ∈ ((M)q)j−1 | ∀i ∈ {1, . . . , j − 1}, Cki,i holds} and

C := {(tj , . . . , tn−1) ∈ ((M)q)n−j | ∀i ∈ {j + 1, . . . , n}, Cki,i holds}.

One has Ak(t0, tn) ⊆ B × C since the only difference between the sets is that in
B×C we dropped the requirement that Ckj ,j (i.e., inequality pEj

(tj−1, tj) < p∗)
holds. Hence,∑

t∈Ak(t0,tn)

∏
1≤i≤n

(pEi
(ti−1, ti) − p∗) ≥ −p∗ ∑

t∈B×C

∏
1≤i≤n

i	=j

|pEi
(ti−1, ti) − p∗|

≥ −p∗

⎛
⎝ ∑

(t1,...,tj−1)∈B

∏
1≤i≤j−1

|pEi
(ti−1, ti) − p∗|

⎞
⎠

︸ ︷︷ ︸
S1

×
⎛
⎝ ∑

(tj ,...,tn−1)∈C

∏
j+1≤i≤n

|pEi
(ti−1, ti) − p∗|

⎞
⎠

︸ ︷︷ ︸
S2

.

These sums S1 and S2 should be studied independently. For S1, we have

S1 =
∑

t1∈(M)q:
Ck1,1

|pE1(t0, t1) − p∗|
∑

t2∈(M)q :
Ck2,2

|pE2(t1, t2) − p∗| . . .

×
∑

tj−1∈(M)q :
Ckj−1,j−1

|pEj−1(tj−2, tj−1) − p∗|

≤
∑

t1∈(M)q:
Ck1,1

|pE1(t0, t1) − p∗| . . .

140 B. Cogliati et al.

×
∑

tj−2∈(M)q:
Ckj−2,j−2

|pEj−2(tj−3, tj−2) − p∗| × ‖pEj−1,tj−2 − p∗‖

≤ Advncpa
Ej−1

(q)
∑

t1∈(M)q :
Ck1,1

|pE1(t0, t1) − p∗| . . .
∑

tj−2∈(M)q :
Ckj−2,j−2

|pEj−2(tj−3, tj−2) − p∗|

...

≤
∏

2≤i≤j−1

Advncpa
Ei

(q)
∑

t1∈(M)q:
Ck1,1

|pE1(t0, t1) − p∗|

≤
∏

2≤i≤j−1

Advncpa
Ei

(q) × ‖pE1,t0 − p∗‖

≤
∏

1≤i≤j−1

Advncpa
Ei

(q).

Similarly one has:

S2 =
∑

tn−1∈(M)q :
Ckn,n

|pEn
(tn−1, tn) − p∗| . . .

∑
tj∈(M)q :
Ckj+1,j+1

|pEj+1(tj , tj+1) − p∗|

≤
∑

tn−1∈(M)q :
Ckn,n

|pEn
(tn−1, tn) − p∗| . . .

×
∑

tj+1∈(M)q :
Ckj+2,j+2

|pEj+2(tj+1, tj+2) − p∗| × ‖pE−1
j+1,tj+1

− p∗‖

≤ Advncpa

E−1
j+1

(q)

×
∑

tn−1∈(M)q :
Ckn,n

|pEn
(tn−1, tn) − p∗| . . .

∑
tj+1∈(M)q :
Ckj+2,j+2

|pEj+2(tj+1, tj+2) − p∗|

...

≤
∏

j+1≤i≤n

Advncpa

E−1
i

(q),

from which the result follows.
�
We can now prove the extension of Theorem 1.

Theorem 2. Let E1, . . . , En be n block ciphers with the same message space
M. For any integer q, one has

Advcca
En◦···◦E1

(q) ≤ 2n−1 max
1≤i≤n

⎛
⎝ ∏

1≤j≤i−1

Advncpa
Ej

(q) ×
∏

i+1≤j≤n

Advncpa

E−1
j

(q)

⎞
⎠ .

Security Amplification for the Composition of Block Ciphers 141

Proof. Fix any q-tuples x0, xn ∈ (M)q. Then

pEn◦···◦E1(x, y)

= p∗ +
∑

(x1,...,xn−1)∈((M)q)n−1

⎛
⎝ ∏

1≤i≤n

(pEi
(xi−1, xi) − p∗)

⎞
⎠ (Lemma 5)

= p∗ +
∑

k∈{0,1}n

∑
(x1,...,xn−1)∈

Ak(x0,xn)

⎛
⎝ ∏

1≤i≤n

(pEi
(xi−1, xi) − p∗)

⎞
⎠

≥ p∗ +
∑

k∈{0,1}n:
k1+...+kn≡1 mod 2

∑
(x1,...,xn−1)∈

Ak(x0,xn)

⎛
⎝ ∏

1≤i≤n

(pEi
(xi−1, xi) − p∗)

⎞
⎠

≥ p∗ − 2n−1p∗ max
1≤i≤n

⎛
⎝ ∏

1≤j≤i−1

Advncpa
Ej

(q)
∏

i+1≤j≤n

Advncpa

E−1
j

(q)

⎞
⎠ . (Lemma 6)

The result follows by Lemma 2.
�
Remark 1. The upper bound of Theorem2 is not tight in general already for
n = 2. Indeed it is not hard to verify that Theorem1 yields a better bound (at
least when E1 and E−1

2 have different levels of NCPA-security).

Corollary 1. Let E1, . . . , En be n block ciphers with the same message space
M. Fix q ≥ 1. For i = 1, . . . , n, let εi = max{Advncpa

Ei
(q),Advncpa

E−1
i

(q)}. Then
one has

Advcca
En◦···◦E1

(q) ≤ 2n−1 max
1≤i≤n

∏
1≤j≤n

j 	=i

εi.

Remark 2. It is actually not hard to see that Corollary 1 also holds with ε1 =
Advncpa

E1
(q) and εn = Advncpa

E−1
n

, i.e., E1 and En need only be secure in one
direction. Only the “internal” components E2, . . . , En−1 are required to be secure
in both directions.

In the case of self-composition, we obtain the following corollary.

Corollary 2. Let E be a block cipher and q ≥ 1. Denote

ε = max{Advncpa
E (q),Advncpa

E−1 (q)}.

Then, for any integer n ≥ 1,

Advcca
En(q) ≤ (2ε)n−1.

Remark 3. The assumption required for Corollary 2, namely that both E and
E−1 are (q, ε)-NCPA secure, might seem much stronger than simply assuming

142 B. Cogliati et al.

that E is (q, ε)-NCPA secure. However, the schemes used in block ciphers are
often involutions or close to involutions (for example balanced Feistel schemes).
Then one needs to determine only one of these upper bounds. We stress that
there exists block cipher designs such that the NCPA-security of E−1 is much
worse than the NCPA-security of E, the prominent example being type-1 general-
ized Feistel schemes [ZMI89,MV00], which is the basis for example of CAST-256.

5 On the Tightness of the Bound

The 2W1S theorem was shown to be tight in [MPR07] (see Appendix A of the
full version of [MPR07]). In this section, we generalize the proof of tightness
of [MPR07] to show that the bound of Theorem2 is tight up to some constant.

As in [MPR07], denote G the family of all permutations of M such that 0
lies on a cycle of length 2 (i.e., ∀g ∈ G, g(g(0)) = 0). Seeing G as a block cipher3,
it can be shown that Advncpa

G (q) ≤ 2q
|M| and Advcca

G (2) ≥ 1 − 2
|M| . Then let us

define the block cipher F such that:

– with probability ε, F is the identity function I,
– with probability 1 − ε, F is uniformly randomly chosen in G.

Fix any constants δ, δ′, δ′′ > 0. Then

Advncpa
F (q) = εAdvncpa

I (q) + (1 − ε)Advncpa
G (q) ≤ ε +

2q

|M| ≤ (1 + δ)ε, (4)

where for the last inequality we assumed |M| sufficiently large.
Now consider the block cipher Fn for a fixed integer n ≥ 2. Consider the

adaptive distinguisher D making two queries to its permutation oracle P , P (0)
and then P (P (0)), and outputs 1 iff P (P (0)) = 0. When interacting with
a random permutation, D outputs 1 with probability exactly4 2/|M|, while
when it is interacting with Fn, it outputs 1 (at least) whenever n − 1 among
the n instances of F are the identity function, which happens with probability
n(1 − ε)εn−1. Hence, for any q ≥ 2, one has

Advcca
Fn(q) ≥ n(1 − ε)εn−1 − 2

|M| ≥ n

(1 + δ′)(1 + δ′′)
εn−1,

where for the last inequality we assumed ε sufficiently small and |M| sufficiently
large. Using (4), we finally obtain

Advcca
Fn(q) ≥ n

(1 + δ)n−1(1 + δ′)(1 + δ′′)
(Advncpa

F)n−1.

3 Ignoring efficiency considerations, this simply means that one defines the set of keys
as K = G.

4 This can be seen as follows: with probability 1/|M|, 0 is a fixed point of P , and
with probability (|M|− 1)/(M|(|M|− 1)), one has P (0) = y and P (y) = 0 for some
y �= 0.

Security Amplification for the Composition of Block Ciphers 143

Since δ, δ′, and δ′′ can be made arbitrarily close to zero, this essentially shows
that the best upper bound one can hope for in Corollary 2 is nεn−1. Closing
the gap between the proven upper bound 2n−1εn−1 and nεn−1 remains as an
interesting open problem.

A Omitted Proofs

Proof. (of Lemma 1). Fix some NCPA-distinguisher D. Since we consider deter-
ministic distinguishers, D is completely characterized by its q-tuple of queries
x = (x1 . . . , xq) and its decision function φD : (M)q → {0, 1}, where φD(y) is
the output of D when receiving y = (y1, . . . , yq) as answers to its queries. By
definition of the advantage,

Adv(D) =
∣∣∣ ∑

y∈(M)q:φD(y)=1

Pr [K ←$ K : EK(x) = y]

−
∑

y∈(M)q:φD(y)=1

Pr [P ←$ Perm(M) : P (x) = y]
∣∣∣

=
∣∣∣ ∑

y∈(M)q:φD(y)=1

(pE,x(y) − p∗)
∣∣∣

≤ ‖pE,x − p∗‖.

By maximizing over x ∈ (M)q, we obtain

Advncpa
E (q) ≤ max

x∈(M)q
‖pE,x − p∗‖.

To prove the equality of the two quantities, consider the distinguisher which
queries the q-tuple x which maximizes ‖pE,x −p∗‖, and outputs 1 iff the answer
y satisfies pE(x, y) ≥ p∗. Then the advantage of this distinguisher is exactly
‖pE,x − p∗‖, which concludes the proof.
�
Proof. (of Lemma 2). Fix some CCA-distinguisher D. Let τ be the transcript
of the interaction of D with its permutation oracle, i.e., the ordered q-tuple
of queries and answers (bi, zi, z

′
i) where bi is a bit indicating whether the i-th

query is direct or inverse, zi is the value queried to the oracle and z′
i the answer.

From this transcript, we define the directionless transcript τ ′ = (x, y), with
x = (x1, . . . , xq) and y = (y1, . . . , yq) as follows: if the i-th query was a direct
query, we let xi = zi and yi = z′

i, and if it was an inverse query we let xi = z′
i

and yi = zi. We say that a transcript τ is attainable if there exists a permutation
P ∈ Perm(M) such that the interaction of D with P produces τ (in other words,
the probability to obtain τ when D interacts with a random permutation is non-
zero). Since the distinguisher is deterministic, there is a one-to-one mapping
between attainable transcripts and attainable directionless transcripts. Let T
denote the set of attainable directionless transcripts. Note that the interaction

144 B. Cogliati et al.

of D with some permutation P ∈ Perm(M) produces the directionless transcript
τ ′ = (x, y) iff P (x) = y. Note also that∑

(x,y)∈T
pE(x, y) =

∑
(x,y)∈T

p∗ = 1.

The output of the distinguisher is a function of the transcript τ , or equivalently
of the directionless transcript τ ′. Let T0 (resp. T1) be the set of attainable direc-
tionless transcripts τ ′ such that D outputs 0 (resp. 1) when obtaining τ ′ = (x, y).
Then, by definition of the advantage,

Adv(D) =
∣∣∣ ∑
(x,y)∈T1

Pr [P ←$ Perm(M) : P (x) = y]

−
∑

(x,y)∈T1

Pr [K ←$ K : EK(x) = y]
∣∣∣

=
∣∣∣ ∑
(x,y)∈T1

p∗ − pE(x, y)
∣∣∣

Using the assumption of the lemma, we have∑
(x,y)∈T1

(p∗ − pE(x, y)) ≤
∑

(x,y)∈T1

εp∗ ≤ ε
∑

(x,y)∈T1

p∗ ≤ ε,

and similarly

−
∑

(x,y)∈T1

(p∗ − pE(x, y)) =
∑

(x,y)∈T0

(p∗ − pE(x, y))

≤
∑

(x,y)∈T0

εp∗ ≤ ε
∑

(x,y)∈T0

p∗ ≤ ε,

from which the result follows.
�

References

[ABCV98] Aiello, W., Bellare, M., Di Crescenzo, G., Venkatesan, R.: Security ampli-
fication by composition: the case of doubly-iterated, ideal ciphers. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 390–407. Springer,
Heidelberg (1998)

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

[CPS14] Cogliati, B., Patarin, J., Seurin, Y.: Security amplification for the compo-
sition of block ciphers: simpler proofs and new results. Full version of this
paper. Available from the authors of at http://eprint.iacr.org/

[GM09] Gaži, P., Maurer, U.: Cascade encryption revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 37–51. Springer, Heidelberg
(2009)

http://eprint.iacr.org/

Security Amplification for the Composition of Block Ciphers 145

[HR10] Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg
(2010)

[JÖS12] Jetchev, D., Özen, O., Stam, M.: Understanding adaptivity: random sys-
tems revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 313–330. Springer, Heidelberg (2012)

[KNR09] Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise
(almost) independent permutations. Algorithmica 55(1), 113–133 (2009)

[Lee13] Lee, J.: Towards key-length extension with optimal security: cascade
encryption and xor-cascade encryption. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 405–425. Springer,
Heidelberg (2013)

[LPS12] Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analy-
sis of the iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

[LR86] Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryp-
tographic composition. In: Symposium on Theory of Computing - STOC
’86, pp. 356–363. ACM (1986)

[LS14] Lampe, R., Seurin, Y.: Security analysis of key-alternating Feistel ciphers.
In: Fast Software Encryption - FSE 2014 (2014, to appear)

[Mau02] Maurer, U.M.: Indistinguishability of random systems. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer,
Heidelberg (2002)

[MP04] Maurer, U.M., Pietrzak, K.: Composition of random systems: when two
weak make one strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
410–427. Springer, Heidelberg (2004)

[MPR07] Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability amplifica-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149.
Springer, Heidelberg (2007). Full version available at http://eprint.iacr.
org/2006/456

[MRS09] Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small
domain. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302.
Springer, Heidelberg (2009)

[MT09] Maurer, U., Tessaro, S.: Computational indistinguishability amplifica-
tion: tight product theorems for system composition. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 355–373. Springer, Heidelberg (2009)

[MV00] Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of
block ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 289–302. Springer, Heidelberg (2000)

[Mye04] Myers, S.: Black-box composition does not imply adaptive security. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 189–206. Springer, Heidelberg (2004)

[Pat90] Patarin, J.: Pseudorandom permutations based on the D.E.S. scheme. In:
Cohen, G., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–
204. Springer, Heidelberg (1991)

[Pat91] Patarin, J.: New results on pseudorandom permutation generators based
on the DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 301–312. Springer, Heidelberg (1992)

[Pat08] Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer,
Heidelberg (2009)

http://eprint.iacr.org/2006/456
http://eprint.iacr.org/2006/456

146 B. Cogliati et al.

[Pie05a] Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg
(2005)

[Pie05b] Pietrzak, K.: Indistinguishability and composition of random systems.
Ph.D. thesis, ETH Zurich, Switzerland (2005)

[Pie06] Pietrzak, K.: Composition implies adaptive security in minicrypt. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338.
Springer, Heidelberg (2006)

[Vau98] Vaudenay, S.: Provable security for block ciphers by decorrelation. In:
Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373,
pp. 249–275. Springer, Heidelberg (1998)

[Vau99] Vaudenay, S.: Adaptive-attack norm for decorrelation and super-
pseudorandomness. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 49–61. Springer, Heidelberg (2000)

[Vau03] Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryptol.
16(4), 249–286 (2003)

[ZMI89] Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers
provably secure and not relying on any unproved hypotheses. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg
(1990)

Improved Differential Cryptanalysis
of Round-Reduced Speck

Itai Dinur(B)

Département d’Informatique, École Normale Supérieure, Paris, France
dinur@di.ens.fr

Abstract. Simon and Speck are families of lightweight block ciphers
designed by the U.S. National Security Agency and published in 2013.
Each of the families contains 10 variants, supporting a wide range of
block and key sizes. Since the publication of Simon and Speck, sev-
eral research papers analyzed their security using various cryptanalytic
techniques. The best previously published attacks on all the 20 round-
reduced ciphers are differential attacks, and are described in two papers
(presented at FSE 2014) by Abed et al. and Biryukov et al.

In this paper, we focus on the software-optimized block cipher fam-
ily Speck, and describe significantly improved attacks on all of its 10
variants. In particular, we increase the number of rounds which can
be attacked by 1, 2, or 3, for 9 out of 10 round-reduced members of
the family, while significantly improving the complexity of the previous
best attack on the remaining round-reduced member. Our attacks use an
untraditional key recovery technique for differential attacks, whose main
ideas were published by Albrecht and Cid at FSE 2009 in the cryptanaly-
sis of the block cipher PRESENT.

Despite our improved attacks, they do not seem to threaten the secu-
rity of any member of Speck.

Keywords: Lightweight block cipher · Speck · Cryptanalysis · Differ-
ential attack · Key recovery

1 Introduction

In 2013 the U.S. National Security Agency published the Simon and Speck fami-
lies of lightweight block ciphers [7]. Each block cipher family contains 10 variants
and supports block sizes ranging from 32 to 128 and key sizes ranging from 64 to
256 bits. Both families of block ciphers have a simple and compact Feistel-like1

design, but are optimized for different applications, where Simon is optimized
for hardware and Speck is optimized for software implementations. Thus, Simon
uses the basic hardware-friendly arithmetic operations of XOR, bitwise AND and
1 Simon is a Feistel structure, while Speck can be represented as a composition of two

Feistel maps [7].

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 147–164, 2014.
DOI: 10.1007/978-3-319-13051-4 9

148 I. Dinur

bit rotation, whereas Speck is a pure ARX cipher (i.e., it uses modular addition,
bit rotation and XOR operations).

Since their publication, Simon and Speck received significant media atten-
tion, and were also subjects of extensive research in the cryptographic commu-
nity, as several papers analyzed their security and performance [1,4,5,9,21]. In
general, the best published attacks on all 20 round-reduced ciphers are differ-
ential attacks, described in the two papers [1,9]. However, despite the extensive
analysis, all 20 variants seem to have a sufficiently large security margin, and
the current attacks do not threaten their security.

In this paper, we present improved attacks on all 10 members of the Speck
family of block ciphers. In particular, we increase the number of rounds which can
be attacked by 1, 2, or 3, for 9 out of 10 members of the family, while significantly
improving the complexity of the previous attack on the remaining member. More
specifically, we increase the number of rounds which can be attacked by 1 for
4 members, by 2 for 2 members, and by 3 for 3 members. In 3 of these cases,
not only do we attack more rounds, but we also improve the complexity of the
best previous attacks, which were applied to a weaker cipher. Moreover, in all
of these cases, our attacks use less data than the previous attacks, and all of
them require only a few megabytes of memory (typically improving the previous
attack with respect to this parameter as well).

Surprisingly, our attacks do not exploit any newly found differential charac-
teristic of Speck. In fact, our attacks completely reuse the characteristics pre-
sented in [1,9], but are based on a significantly improved key recovery frame-
work. As the basic idea behind this framework in very simple, at first, it seems
quite strange that it was missed by the previous analysis. However, a closer look
reveals that our key recovery technique is quite different from traditional tech-
niques used in differential cryptanalysis. These key recovery techniques (called
counting techniques) were published with the introduction of differential crypt-
analysis [8]. Counting techniques remain, by far, the most common techniques
to recover the key in differential attacks, and were thus naturally applied in the
previous differential attacks on Speck [1,9].

One of the main features of counting techniques in differential attacks is
that the key material is typically recovered in chunks (i.e., in a divide-and-
conquer manner) using statistical analysis. In order to recover a chunk of key
material (e.g., some bits of the first and last round-keys), we analyze encrypted
input pairs, each pair suggesting a value (or a few values) for this chunk. Right
pairs (conforming to the characteristic) always suggest the correct value for the
chunk, while wrong pairs suggest an arbitrary value. In order to be able to
distinguish the correct suggestions from the incorrect ones, we require strong
filtering which eliminates a large fraction of the wrong pairs (and the arbitrary
key suggestions). Such a strong filtering requirement places a restriction on the
number of rounds of the iterated block cipher which we can attack with a given
differential characteristic. Namely, in order to attack an (r + a)-round cipher
with an r-round characteristic, a needs to be sufficiently small such that the
characteristic can be extended to deduce some linear constraints on the output

Improved Differential Cryptanalysis of Round-Reduced Speck 149

of the cipher (e.g., some bits of the output difference are zero), allowing us to
filter many of the wrong pairs.

In contrast to standard key recovery techniques (in particular, the ones used
in previous attacks on Speck), in this paper we extend a differential character-
istic by a (relatively) large number of rounds, and thus simple linear filtering
can eliminate only a small fraction of the data. Consequently, we remain with
too many suggestions for the key to mount an efficient attack using counting.
On the other hand, this situation resembles some self-similarity attacks (such as
reflection-based attacks [12–14]), in which the attacker does not have any char-
acteristic that allows simple filtering. In such self-similarity attacks, the attacker
encrypts multiple plaintexts and awaits a special event to occur (such as a reflec-
tion). The internal properties of the cipher assure that once this event occurs, the
problem of attacking the full cipher is reduced to a simpler problem of attacking
a sub-cipher with fewer rounds. The sub-cipher attack calculates suggestions for
the full secret key, which the attacker tests using trial encryptions on the full
cipher.2 Since the attacker cannot detect the occurrence of the special event, the
sub-cipher attack is executed for each plaintext (or plaintext structure). Thus,
the complexity of the full attack is determined by the probability of the awaited
event (which determines how many sub-cipher attacks we need to execute), and
the average complexity of the sub-cipher attack.

In the scenario presented above for self-similarity attacks, the key is recovered
in one chunk by a sub-cipher attack. However, there is nothing that prevents us
from applying similar techniques in differential attacks. In fact, the last a rounds
of the cipher in differential attacks can be viewed as a sub-cipher, and assuming
the event that an encrypted pair conforms to the r-round characteristic (i.e.,
it is a right pair), we can mount a sub-cipher attack to obtain key suggestions
for each encrypted pair, and enumerate each one of them, testing it using trial
encryptions. As a right pair will always suggest the correct key value, the attack
succeeds as soon as we finish executing the sub-cipher attack on this pair.

This generic key recovery framework for differential cryptanalysis was first
proposed by Albrecht and Cid in [2], where it was applied to the block cipher
PRESENT (and was further used in followup publications such as [3,22]).
Albrecht and Cid used algebraic techniques to enhance differential cryptanalysis,
and specifically, devised Attack-C which formulates the sub-cipher as a system of
non-linear equations, and solves it using algebraic tools (e.g., SAGE [20]). On the
other hand, the sub-cipher attack can use various methods which do not neces-
sarily exploit algebraic tools. Indeed, while we use the same framework as [2], our
sub-cipher attack on Speck applies guess-and-determine techniques, and does not
directly solve any system of non-linear equations. Furthermore, in [6] the generic
framework was (implicitly) applied to the block cipher Zorro using a complex
two-phase sub-cipher attack (in which the only equation systems directly solved
are linear).

We stress that the only difference between our approach and the algebraic
approach of Attack-C [2], is in the details of the sub-cipher attack. While this
2 Examples of sub-cipher attacks include the meet-in-the-middle and guess-and-

determine attacks on round-reduced GOST, described in [12,13].

150 I. Dinur

is a subtle difference, we believe that part of the reason that Attack-C was not
considered in the previous attacks on Speck [1,9], is that it promoted the use of
black-box algebraic tools to perform the sub-cipher attack. As such black-box
algorithms are often highly heuristic, and their running time is not very well
understood, they have not become mainstream analysis tools. In this paper, we
show that the sub-cipher attack can sometimes be performed by a simple algo-
rithm with a better understood running time, and we hope that cryptanalysts
will consider similar attacks in the future.

In order to generalize Attack-C of [2] to a broader key recovery framework
for differential attacks, we call it an enumeration framework, as it enumerates
suggestions for the full key proposed by a sub-cipher attack. This should be
contrasted with counting techniques which extract partial key material from a
few rounds of the cipher using statistical analysis (e.g., the 1, 2 and 3-round
attacks of [8]).

In most cases, counting techniques for differential attacks seem to give the
best results. This is perhaps due to the reason that when we extend the char-
acteristic beyond the reach of these techniques, the sub-cipher attack becomes
too expensive (as it needs to analyze dependent round-keys according to the key
schedule), making the full differential attack inefficient.3 However, as we show
in this paper, in the case of Speck, the sub-cipher attack can be performed very
efficiently, and results in significantly improved differential attacks (as in the
case of Zorro [6]).

As previously mentioned, our sub-cipher attack on Speck is a guess-and-
determine attack, and it is related to the similar attack of [12]. Furthermore, since
Speck is an ARX cipher, we use techniques that were developed in the analysis
of ARX cryptosystems and similar designs. In particular, our tools are related
to several search algorithms for differential characteristics on these designs, such
as [10,15,16,18,23].

The rest of this paper is organized as follows. We introduce our notation in
Sect. 2, and provide a brief description of Speck in Sect. 3. The previous and our
new results on the 10 Speck variants are summarized in Sect. 4. In Sect. 5, we
describe the auxiliary algorithms used in our attacks (and in particular, overview
the specific sub-cipher attack on Speck), while our full differential attacks in the
enumeration framework are described in Sect. 6. Finally, we give the details of
the sub-cipher attack in Sect. 7, and conclude the paper in Sect. 8.

2 Notations and Conventions

In this section, we describe the notations and conventions used in the rest of the
paper.

Given a positive integer r, we denote by x ≫ i the n-bit word obtained by
rotating x by i bits to the right, and by x ≪ i the word obtained by rotating x by
3 We note that analysis of dependent round-keys can sometimes be performed effi-

ciently using algebraic tools, as claimed in [2].

Improved Differential Cryptanalysis of Round-Reduced Speck 151

i bits to the left. Similarly, x � i and x � i denote a bitwise shift of x by i bits to
the right and left, respectively. We denote by ¬x the bitwise negation of x.

Given two n-bit words x and y, we denote by x⊕y their n-bit XOR, by x�y
their n-bit addition over GF (2n), and by x � y their difference over GF (2n).
We further denote by x ∧ y the bitwise AND of x and y.

Given an n-bit word x, we denote its i’th bit for i ∈ {0, 1, . . . n − 1} by
x[i]. We note that operations on the bit indexes are performed modulo n, e.g.
x[n+5] ≡ x[5].

Conventions. Throughout this paper, we use the standard conventions and
calculate the time complexity of our attacks in terms of evaluations of the full
cipher. The memory complexity of the attacks is calculated in terms of bytes.

3 Description of Speck

In this section, we give a short description of Speck. More details can be found
in [7].

Speck is a family of block ciphers containing 10 variants. The variants are
characterized by a block size of 2n bits (where n is the internal word size), and
a key size of mn bits. The 10 variants are identified with a 2n/mn label, and
defined with rotation constants α and β and a number of rounds T , as shown in
Table 1.

The key schedule of Speck expands the initial m-word master key (�m−2, ...,
�0, k0) into T round-key words k0, k1, ..., kT−1 according to the following
algorithm:

for i = 0 . . . T − 2 do
�i+m−1 ← (ki � (�i ≫ α)) ⊕ i
ki+1 ← (ki ≪ β) ⊕ �i+m−1

end for

The encryption function of Speck encrypts a plaintext of two n-bit words
P = (x0, y0), into a ciphertext C = (xT , yT), using a sequence of T rounds
according to the following algorithm (see Fig. 1 for the round function):

for i = 0 . . . T − 1 do
xi+1 ← ((xi ≫ α) � yi) ⊕ ki

yi+1 ← (yi ≪ β) ⊕ xi+1

end for

4 Summary of Previous and New Attacks on Speck

In this section, we summarize the previous and our new attacks on Speck, refer-
ring to Table 2. As the Speck family contains 10 variants, and each variant was
analyzed by several papers, exhaustively listing all the dozens of previous attacks
is too tedious. Instead, for each Speck variant, we first choose the attacks which

152 I. Dinur

Table 1. The Speck family of block ciphers

Variant 2n/mn Word size n Key words M Rounds T α β

32/64 16 4 22 7 2

48/72 24 3 22 8 3

48/96 24 4 23 8 3

64/96 32 3 26 8 3

64/128 32 4 27 8 3

96/96 48 2 28 8 3

96/144 48 3 29 8 3

128/128 64 2 32 8 3

128/192 64 3 33 8 3

128/256 64 4 34 8 3

xi yi

≫ α

�
≪ β

⊕
⊕ki

xi+1 yi+1

Fig. 1. The round-function of Speck

break the most number of rounds, and among these, we only refer to the attack
with the best time complexity. As shown in Table 2, all the best previous attacks
were described in the two papers [1,9], and we additionally note that all of them
are based on differential cryptanalysis and related techniques (such as rectangle
attacks).

For each variant of Speck, Table 2 summarizes our attack which breaks the
most number of rounds. We note that for each variant, we can also use our tech-
niques to attack fewer rounds (using a shorter differential characteristic), but
once again, we do not explicitly refer to these numerous attacks in this paper
(with the exception of the 32/64 variant). As our attacks reuse the differen-
tial characteristics of [1,9], we refer to these characteristics in the table, while
describing them in more detail in Table 3. We note that since the internal differ-
ential transitions in each characteristic are not relevant for our attacks, Table 3
only gives the input and output differences for each characteristic, while their
complete specification is described in [1,9].

We now highlight some interesting features of the attacks summarized in
Table 2. We first look at the 32/64 variant, on which the best previous attack
could break 11 out of its 22 rounds, with data complexity of about a quarter

Improved Differential Cryptanalysis of Round-Reduced Speck 153

Table 2. Previous attacks and our new attacks on Speck

Variant 2n/mn Rounds attacked/ Time Data Memory Reference Characteristic

Total rounds (CP) ID

32/64 11/22 246.7 230.1 237.1 [1] -

32/64 11/22 246 214 222 This paper 1

32/64 12/22 251 219 222 This paper 2

32/64 13/22 257 225 222 This paper 3

32/64 14/22 263 231 222 This paper 4

48/72 12/22 243 243 NA [9] -

48/72 14/22 265 241 222 This paper 5

48/96 12/23 243 243 NA [9] -

48/96 15/23 289 241 222 This paper 5

64/96 16/26 263 263 NA [9] -

64/96 18/26 293 261 222 This paper 6

64/128 16/27 263 263 NA [9] -

64/128 19/27 2125 261 222 This paper 6

96/96 15/28 289.1 289 248 [1] -

96/96 16/28 285 285 222 This paper 7

96/144 16/29 2135.9 290.9 294.5 [1] -

96/144 17/29 2133 285 222 This paper 7

128/128 16/32 2116 2116 264 [1] -

128/128 17/32 2113 2113 222 This paper 8

128/192 18/33 2182.7 2126.9 2121.9 [1] -

128/192 18/33 2177 2113 222 This paper 8

128/256 18/34 2182.7 2126.9 2121.9 [1] -

128/256 19/34 2241 2113 222 This paper 8

The “Characteristic ID” column refers to the IDs of the characteristics in Table 3,
which are used in our attacks. The data is given in chosen plaintexts (CP).

of the entire code-book. Compared to this attack, our attack on 11 rounds uses
less than a square root of the code-book (214 plaintexts), requires less memory
and has a slightly better time complexity. Furthermore, we can attack up to 13
rounds in time complexity which is significantly faster than exhaustive search,
and up to 14 rounds with a marginal attack. For additional 2 variants (48/96
and 64/128), we can attack 3 more rounds than the best previous attack. For
the 2 variants 48/72 and 48/96, we increase the number of rounds that can be
attacked by 2. For 4 variants (96/96, 96/144, 128/128 and 128/256), we can
attack 1 more round than the best previous attack. Note that for the 3 variants
96/96, 96/144 and 128/128, our attacks are also more efficient than the previous
attacks in all complexity parameters (and particularly use much less memory).
Finally, for the 128/192 variant, we attack the same number of rounds as the best
previous attack, but improve it in all complexity parameters, and in particular
use much less memory.

154 I. Dinur

Table 3. Differential characteristics used in our attacks

ID Variant 2n Rounds Probability Reference Input/Output differences

1 32 7 2−13 [1] 211 a04/850a 9520

2 32 8 2−18 [1] a60 a205/850a 9520

3 32 9 2−24 [1] a60 a205/802a d4a8

4 32 10 2−30 [9] 8054 a900/40 542

5 48 11 2−40 [9] 202040 82921/80a0 2085a4

6 64 15 2−60 [9] 9 1000000/40024 4200d01

7 96 14 2−84 [1] 2a20200800a2 322320680801/

1008004c804 c0180228c61

8 128 15 2−112 [1] 144304280c010420 6402400040024/

180208402886884 80248012c96c80

The n-bit halves in each input/ouput difference are separated by a space.

5 Auxiliary Algorithms Used by Our Attacks

In this section, we describe the two auxiliary algorithms that are used by our
attacks on Speck.

5.1 Key-Schedule Inversion

Given a sequence of m key words kj−m, . . . , kj−1 for any j ∈ {m,m + 1, . . . , T},
we can efficiently invert the key schedule and calculate the master key: first, we
determine kj−m−1 using the following key schedule equalities

�j+m−3 = kj−1 ⊕ (kj−2 ≪ β)

�j−2 = ((�j+m−3 ⊕ (j − 2)) � kj−2) ≪ α

kj−m−1 = (kj−m ⊕ �j−2) ≫ β.

Next, given kj−m−1, . . . , kj−2, we iteratively continue the inversion of the key
schedule and derive the master key.

5.2 Overview of the 2-Round Attack on Speck

In our basic attacks on Speck, we use an r-round differential characteristic with
an initial difference, denoted by (Δx0,Δy0), and a final difference, denoted by
(Δxr,Δyr). We devise an attack on r + 2 rounds using a 2-round attack.

The enumeration framework poses the following problem: the 2n-bit input
difference (Δxr,Δyr) to the last 2 rounds is fixed by the final difference of the
differential characteristic, and the output difference (Δxr+2,Δyr+2) is known
from the output. Furthermore, we are given actual output values (xr+2, yr+2)
and (xr+2 ⊕ Δxr+2, yr+2 ⊕ Δyr+2). Our objective is to find all the possible

Improved Differential Cryptanalysis of Round-Reduced Speck 155

independent round keys kr and kr+1, under which the difference of the 2-round
partial decryptions of the pair (xr+2, yr+2) and (xr+2 ⊕ Δxr+2, yr+2 ⊕ Δyr+2)
is equal to (Δxr,Δyr). In general, we have 2n bits of variables and 2n bits of
constraints (derived from the difference (Δxr,Δyr)). Thus, the problem can be
formulated using an equation system, which has an average of one solution for
an arbitrary pair of outputs (xr+2, yr+2) and (xr+2⊕Δxr+2, yr+2⊕Δyr+2). The
goal of the 2-round attack is to enumerate all the possible solutions for each
given output pair as efficiently as possible.4

We note that it is not trivial that the equation system has an average of
one solution, as the pairs of outputs are ciphertexts, whose corresponding plain-
texts have the fixed initial difference (Δx0,Δy0) to the characteristic. If such a
plaintext pair diverges from the characteristic at its later rounds, then the dif-
ference after r rounds can potentially be close to (Δxr,Δyr), which may result
in non-random behavior. In fact, our experiments show that the average num-
ber of solutions is about 4 for characteristic 1 in Table 3, which has a relatively
high probability of 2−13. However, for the lower probability characteristics which
we could test experimentally, the average number of solutions was only slightly
higher than 1 (and lower than 2).

Our 2-round attack is given in Sect. 7. This attack exploits the (relative)
simplicity of the Speck round function in order to recover the 2 final round
keys of Speck with very low average time complexity. Indeed, our experiments
show that for an output pair (xr+2, yr+2) and (xr+2 ⊕ Δxr+2, yr+2 ⊕ Δyr+2)
(generated by plaintexts with the fixed initial difference (Δx0,Δy0)), the 2-
round attack requires an average time which is smaller than 2 time units (i.e.,
2 full encryptions of round-reduced Speck) for any characteristic that we use in
the full differential attacks on Speck.

6 Details of the Full Differential Attacks

In this section, we describe the details of our full differential attacks on Speck
in the enumeration framework. In all the attacks, we assume that we have a
differential characteristic that covers r rounds of the cipher with probability p >
2 ·2−2n. The attacks recover the mn-bit secret key of a variant with r+m rounds
using 2 · p−1 chosen plaintexts, in expected time complexity of 2 · p−1 · 2(m−2)n.
In other words, our attacks are faster than exhaustive search by a factor5 of
p · 22n−1. For example, our attack on 11-round Speck 32/64 (with m = 4) uses
a characteristic for 11 − 4 = 7 rounds with p = 2−13. Thus, its time complexity
is 2 · 213 · 2(4−2)16 = 246, i.e. it is faster than exhaustive search for the 64-bit key
by a factor of p · 22n−1 = 2−13 · 231 = 218.
4 Recall that we have essentially no (linear) filtering conditions, and thus we must

execute the sub-cipher attack for each encrypted input pair. Consequently, we are
interested in the average time complexity of the algorithm.

5 Note that information theoretically, without considering the internal transitions of
the differential characteristic, p · 22n−1 is the best improvement factor that one can
hope for, given 2 · p−1 data.

156 I. Dinur

The Full Differential Attack for m = 2. We first present the details of our
attack for the Speck instances with m = 2 key words (and m + 2 rounds), and
then extend the attack to the remaining instances, in which m = 3 or m = 4.
We denote the initial difference of the characteristic (at the input of the cipher)
by (Δx0,Δy0), and its final difference (after r rounds) by (Δxr,Δyr).

1. Request the encryptions of p−1 plaintext pairs P and P ′ = P ⊕ (Δx0,Δy0),
and denote the ciphertexts by C and C ′, respectively. For each plaintext pair
P and P ′:
(a) Execute the 2-round attack of Sect. 7 using (Δxr,Δyr), C and C ′.
(b) For each returned value of kr and kr+1, iteratively calculate kr−1, . . . , k0

(as described in Sect. 5.1), and finally recover the master key. Test the
master key using trial encryptions, and return it if the trial encryptions
succeed.6

The attack requires 2 · p−1 chosen plaintexts, and given that the r-round
characteristic has probability p, we expect one plaintext pair P, P ′ to be a right
pair (i.e., to follow the characteristic, and have a difference of (Δxr,Δyr) after r
rounds). Given the ciphertexts C,C ′, corresponding to the right pair, the 2-round
attack will find the correct key, which will be returned by the full attack.

According to the analysis of Sect. 7, the 2-round attack has an average time
complexity which is smaller than 2 time units, and thus the average processing
time for each analyzed plaintext pair remains about 2. This implies that the
total time complexity of the attack is about 2 · p−1.

The Full Differential Attack for m = 3 and m = 4. For m = 3 and
m = 4, we attack variants with r +3 and r +4 rounds, respectively. The attacks
on m = 3 and m = 4 are trivial extensions of the attack on the m = 2 variants,
and work by guessing the last 1 and 2 round keys, respectively. Then, for each
guess we apply a similar attack to the one applied for m = 2.

The data complexity of the attacks remain 2 ·p−1, while the time complexity
increases to 2 · p−1 · 2n and 2 · p−1 · 22n for m = 3 and m = 4, respectively.

7 The 2-Round Attack

In this section, we present the details of our 2-round attack on Speck. As described
in Sect. 5.2, we have an input difference (Δxr,Δyr) to the two rounds (which is
fixed by a differential characteristic), and we are given the actual output values
(xr+2, yr+2) and (xr+2 ⊕ Δxr+2, yr+2 ⊕ Δyr+2). Our goal is to enumerate all the
possible independent round keys kr and kr+1, under which the difference of the
6 This step can be slightly optimized to replace many of the full trial encryptions by

lighter Speck round evaluations, if we consider the internal transitions of the differ-
ential characteristic: while iteratively calculating kr−1, . . . , k0, we partially decrypt
C and C′, and verify that they satisfy the differential characteristic for each round.
If the verification fails for some round, we discard the key and continue.

Improved Differential Cryptanalysis of Round-Reduced Speck 157

2-round partial decryptions of the pair (xr+2, yr+2) and (xr+2 ⊕ Δxr+2, yr+2 ⊕
Δyr+2) is equal to (Δxr,Δyr).

The notation we use in our analysis is given in Fig. 2, where the XOR
differential notation is given on the left, and the notation of the intermedi-
ate encryption values for (xr+2, yr+2) is given on the right. We further define
(x′

i, y
′
i) = (xi ⊕ Δxi, yi ⊕ Δyi).

Note that Δyr+1 = (Δxr+2⊕Δyr+2) ≫ β and Δxr+1 = Δyr+1⊕(Δyr ≪ β)
are independent of the keys and can be calculated immediately. Thus, all the
XOR differences in the scheme are completely determined. Similarly, the value
yr+1 = (xr+2 ⊕ yr+2) ≫ β can be calculated from the known (xr+2, yr+2),
whereas (xr, yr) and xr+1 remain unknown. We further note that deriving the
two round-keys is equivalent to deriving xr and xr+1, as their values allow us to
calculate kr+1 = (yr+1 � (xr+1 ≫ α)) ⊕ xr+2, and as yr = (xr+1 ⊕ yr+1) ≫ β,
then kr = (yr � (xr ≫ α)) ⊕ xr+1 can be calculated as well. Thus, in the
following, we concentrate on deriving the intermediate values xr and xr+1.

Δxr Δyr

≫ α

�
≪ β

⊕
⊕kr

Δxr+1 Δyr+1

Δxr+2 Δyr+2

≫ α

�
≪ β

⊕
⊕kr+1

xr yr

≫ α

�
≪ β

⊕
⊕kr

xr+1 yr+1

xr+2 yr+2

≫ α

�
≪ β

⊕
⊕kr+1

Our notation of differences is given on the left, whereas our notation of values is given
on the right.

Fig. 2. Two rounds of speck

7.1 A Basic 2-Round Attack

The problem of solving differential equations of addition (DEA) of the form
(x⊕ δ1)� (y ⊕ δ2) = (x�y)⊕ δ3 (where δ1, δ2, δ3 are given and x, y are unknown
variables) is a basic problem in the analysis of ARX cryptosystems, and was
extensively studied in several papers. In particular, [19] described an algorithm
for solving such equations in time complexity which is linear in the total num-
ber of solutions. However, the previous algorithm is not directly applicable in
our case, as we actually have two dependant equation systems (generated by

158 I. Dinur

two addition operations), and we want to efficiently solve them simultaneously.
Moreover, the value of y in the DEA is fixed to yr+1 for one of the addition
operations, and since the solutions vary according to this fixed value, the second
equation system is of a different type than the one analyzed in [19]. Note that a
standard DEA has an average of 2n solutions, whereas our equation system has
an average of only 1 solution.

Given the complications above, it seems difficult to construct a generic algo-
rithm that efficiently solves our type of equation systems for an arbitrarily large
word size n. Thus, we concentrate on the word sizes n ∈ {16, 24, 32, 48, 64}
defined by the Speck family, and describe an algorithm whose complexity is
estimated by experiments (rather than by a rigorous theoretical proof). As the
full key recovery attack of Sect. 6 calls the 2-round attack with a fixed value of
(Δxr,Δyr) and many values of (xr+2, yr+2), (x′

r+2, y
′
r+2), we are interested in

the average complexity of the 2-round attack, where (xr+2, yr+2), (x′
r+2, y

′
r+2)

are chosen at random according to the procedure of the full key recovery attack.
In Appendix A, we devise a basic guess-and-determine algorithm which

exploits the limited carry propagation of the addition operation in order to com-
pute xr and xr+1 bit by bit. It is related to several previous guess-and-determine
algorithms such as the one of [12]. The analysis described in Appendix A shows
that given some randomness assumptions on the problem, its average execution
time is comparable to the execution time of a full Speck encryption.

The problem with this analysis is that the randomness assumptions do not
hold in our case (as in many cases of DEA). In fact (as we show next), although
we expect one solution on average, for almost any value of (Δxr,Δyr), the
distribution of solutions across the various instances is very far from uniform, and
greatly depends on the values of the output pairs (xr+2, yr+2) and (x′

r+2, y
′
r+2).

More specifically, the solutions are distributed among a small fraction of the
output pairs, whereas for the remaining output pairs, there are no solutions at
all. Such non-randomness properties have a negative effect of the performance
of our basic guess-and-determine algorithm, as it can potentially make a large
number of guesses for some bits of xr+1 and xr (i.e., guess partial solutions),
while discarding all (or a large fraction) of them at a later stage.7 Nevertheless,
the theoretical analysis based on randomness assumptions strongly indicates that
an optimized variant of the attack can perform very efficiently.

7.2 Optimizing the Basic 2-Round Attack Using Filters

In order to optimize the basic algorithm, we notice that we can filter out very
quickly a large fraction of the non-useful instances (with no solutions). The idea is
to use efficient “look-ahead” (non-linear) filters that try to find a contradiction in
the equation constraints before actually computing the solutions. The techniques
7 For example, assume that we want to solve the standard DEA over 16-bit words

(given in hexadecimal) (x ⊕ 0000) � (y ⊕ 0000) = (x � y) ⊕ 8000. If we solve the
system from the LSB to the MSB, then we consider all 230 partial solutions to the
15 LSBs of x and y, and then discard all of them at the MSB.

Improved Differential Cryptanalysis of Round-Reduced Speck 159

we use to implement the filters are closely related to various search algorithms
for differential characteristics for ARX-based and related cryptosystems (e.g.,
[10,15,16,18,23]).

These filtering techniques allow us to concentrate our efforts on a small frac-
tion of “interesting” instances, and obtain an algorithm whose average time
complexity is estimated (according to our simulations) to be smaller than 2
encryptions of Speck.8

One-Bit Filter. This filter can be applied to any standard DEA (x⊕δ1)� (y⊕
δ2) = (x � y) ⊕ δ3. It was first described in [17], and it checks whether

eq(δ1 � 1, δ2 � 1, δ3 � 1) ∧ (δ1 ⊕ δ2 ⊕ δ3 ⊕ (δ1 � 1)) = 0,

where eq(a, b, c) = (¬a ⊕ b) ∧ (¬a ⊕ c) equals one at position i if and only if
a[i] = b[i] = c[i]. As shown in [17], a DEA for which the n-bit value of the filter
is non-zero has no solutions and can be filtered out immediately.

This filter is called a 1-bit filter since for each bit position i + 1, it only
depends the single bit position i + 1 of the input words (in addition to a 1-bit
XOR difference δ1 ⊕ δ2 ⊕ δ3 at the previous position i). As applying the 1-bit
filter involves only a few simple word operations, it requires much less time than
a full Speck encryption, and given that it immediately filters out a large fraction
of instances with no solutions, it can significantly reduce the running time of the
algorithm.

In order to get an estimation of how the filter performs, we assume that all the
values of δ1, δ2, δ3 are chosen at random. In this case, using the formula of [17],
an instance of a DEA will have a solution with probability of q = 1/2 · (7/8)n−1.
Specifically, for n = 16, we have q ≈ 2−4, and for n = 24, 32, 48, 64 we have
q ≈ 2−5.5, 2−7, 2−10, 2−13, respectively.

In the case of Speck, we can immediately apply the filter once for round r
and once for round r+1 (since all the XOR differences at the inputs and outputs
of the addition operations are known). However, as there are clear dependencies
between the various input and output XOR differences in 2 rounds of Speck
(in fact, the input differences Δxr,Δyr are fixed by the characteristic), the for-
mula does not apply. Nevertheless, our experiments show that for the values
of Δxr,Δyr used in our attacks, the filters actually give slightly better results
than expected from a random instance. This can be partially explained since
Δxr,Δyr have a relatively low hamming weight, as they are outputs of a high
probability differential characteristic. As a result, the equality predicate in the
filter of round r, eq(δ1 � 1, δ2 � 1, δ3 � 1) = 0, holds with a probability which
is lower than the expected 1/4.

As described above, our simulations show that we remain with less than
a 2−8, 2−11, 2−14, 2−20, 2−26 fraction of the instances for n = 16, 24, 32, 38, 64,
8 We note that after applying the filters, one can try to apply standard counting

techniques to recover some key bits in few first rounds of Speck. However, as we can
solve the full equation system and test each suggested key efficiently, the counting
techniques are not likely to significantly improve the complexity of the attacks.

160 I. Dinur

respectively, after applying the two 1-bit filters on rounds r and r +1. Although
the fraction of remaining instances is small, our experiments indicate that when
executing the basic algorithm on this small fraction, there are still instances on
which we waste a lot of time computing partial solutions that are later discarded.
For the smaller values of n = 16 and n = 24, the effect of these wasteful instances
on the average complexity of the algorithm seems to be limited. However, for
n ∈ {32, 48, 64}, their effect seems to be more significant, and is also more
difficult to predict, as we can sample only a small fraction of the possible output
pairs after r+2 rounds. Consequently, we use additional filters in order to further
reduce the number of wasted partial solutions.

Multiple-Bit Filters. These filters are generalizations of the 1-bit filters to
larger blocks. They are built by breaking a system of n constraints into b-bit
blocks of constraints with a relatively small number of parameters (e.g., a few
bits of δ1, δ2, δ3 in a standard DEA), and analyzing each block independently.
Obviously, if we encounter an equation system instance for which a block (with
a certain value of the parameters) has no solutions for any possible values of its
variables (e.g., a few bits of x and y in a standard DEA), then the full system has
no solutions, and we can stop analyzing it. Given that the number of parameters
that appear in a block is sufficiently small, we can exhaustively precompute and
store for each of their possible values, a bit that specifies whether the block can
potentially have a solution of not (by checking if the equations are satisfied for
all possible values of its variables).

For a general system of equations, each block will contain many parameters
and variables even for a small value of b, and thus the approach is useless.
However, in our case, we can efficiently implement the b-bit filters, as it is easy
to break simple equation systems based on ARX into blocks which are almost
independent (the only dependency between the blocks are a few bits of carry).

The details of the b-bit filters that we use for our attacks are given in the full
version of this paper [11]. As described in the full version, we select b = 6, and
constructing the filters requires negligible precomputation time (compared to
the time complexity of the full differential attacks), while their storage requires
only a few megabytes of memory.

7.3 The Optimized 2-Round Attack

The details of our optimized 2-round attack are given in the full version of
this paper [11]. We implemented the optimized 2-round attack and estimated
its average complexity by running the differential attack of Sect. 5.2 for all the
analyzed 10 Speck variants. For Speck variants with m > 2, we ran 2 types of
tests: one type in which we arbitrarily guessed the values of round keys kr+3, kr+2

(or only kr+2 for m = 3), and one type in which we assumed that their correct
value is known. In each test, we executed the optimized 2-round attack for a
few randomly chosen keys with 230 arbitrary input pairs that have the fixed
input difference of the corresponding characteristic (Δx0,Δy0). In all the tests,

Improved Differential Cryptanalysis of Round-Reduced Speck 161

the average number of discarded partial solutions for an analyzed pair (which
determines the average running time of the algorithm, as the expected number of
solutions is close to 1) was smaller than 4, and we estimate that the average time
complexity of the 2-round attack is smaller than 2 full encryptions of Speck. We
note that we are somewhat less confident in the results for Speck instances with
larger word sizes of n ∈ {32, 48, 64}, as we can only sample a small fraction of
the possible input pairs. However, given the very good results obtained for n ∈
{16, 24}, it seems reasonable to believe that the quality of our approximations
does not degrade significantly, and the performance of the algorithm is close to
what is claimed.

8 Conclusions

In this paper, we presented significantly improved attacks on all 10 variants
of the lightweight block cipher Speck, based on an enumeration framework for
differential cryptanalysis. This framework tests suggestions for the key that are
calculated by a sub-cipher attack, generalizing the algebraic-based framework of
Albrecht and Cid [2]. The type of attacks presented in this paper can potentially
break a cipher with many more rounds than the number covered by a differential
characteristic, especially when the cipher uses a secret key which is larger than
the block size (e.g., in our attack on 14-round Speck 32/64, we used a 10-round
characteristic to attack 14 rounds of the cipher). Consequently, such sub-cipher
attacks should be considered by designers when proposing new cryptosystems.

Since the framework is generic, finding any improved differential character-
istic for a Speck variant would (almost) immediately give an improved attack
on the full cipher (without the need to perform the low-level statistical analy-
sis, typically required in key recovery attacks based on counting techniques).
Furthermore, designing efficient sub-cipher attacks on more rounds of a Speck
variant, could also lead to improved attacks. However, such an attack would need
to analyze dependencies in the round keys due to the key schedule.

Additional future work items include applying the enumeration framework
to improve the best known attacks on more ciphers, and perhaps extending it to
other types of attacks, which are different from attacks based on self-similarity
and differential attacks.

A Details of the Basic 2-Round Attack

In this section, we give the details of our basic 2-round attack, which computes
xr and xr+1 bit by bit given (xr+2, yr+2), (x′

r+2, y
′
r+2), assuming the knowledge

of (Δxr,Δyr).
In general, we have (for any round r̂)

((xr̂ ≫ α) � yr̂) ⊕ ((x′
r̂ ≫ α) � y′

r̂) = Δxr̂+1,

and we denote by zr̂ the n-bit carry word generated by the addition operation
(xr̂ ≫ α) � yr̂, and by z′

r̂ the carry word generated by (x′
r̂ ≫ α) � y′

r̂.

162 I. Dinur

The basic procedure 1RProcedure(r̂, i) analyzes round r̂ of Speck at bit
index i ∈ {0, 1, 2, . . . , n − 1}, and is given below. The procedure assumes that
we know the XOR input/output differences of round r̂ (we actually need only
a few bits of these differences), and requires the additional 1-bit value y

[i]
r̂ , and

the values of the 2 carry bits z
[i]
r̂ , z

′[i]
r̂ . The procedure guesses the value of the

bit x
[i+α]
r̂ , and computes the next 2 carry bits z

[i+1]
r̂ , z

′[i+1]
r̂ .

1. For of the 2 possible values of x
[i+α]
r̂ :

(a) Compute x
[i+α]
r̂ � y

[i]
r̂ � z

[i]
r̂ and determine the next carry bit z

[i+1]
r̂ .

(b) Compute x
′[i+α]
r̂ = x

[i+α]
r̂ ⊕ Δx

[i+α]
r̂ .

(c) Compute x
′[i+α]
r̂ � y

′[i]
r̂ � z

′[i]
r̂ and determine the next carry bit z

′[i+1]
r̂ .

(d) Check whether z
[i+1]
r̂ ⊕ z

′[i+1]
r̂ ⊕ Δx

[i+1+α]
r̂ ⊕ Δy

[i+1]
r̂ = Δx

[i+1]
r̂+1 , and if

equality does not hold, discard the guess. Otherwise, output the current
value of x

[i+α]
r̂ and the computed carry bits z

[i+1]
r̂ , z

′[i+1]
r̂ .

In order to analyze 2-rounds, we assume the we know the values of the XOR
input/output differences of rounds r̂, r̂ − 1, and require the 2 additional 1-bit
values y

[i]
r̂ , y

[i+α]
r̂ , and the values of the 4 carry bits z

[i]
r̂ , z

′[i]
r̂ , z

[i+α−β]
r̂−1 , z

′[i+α−β]
r̂−1 .

The procedure guesses the value of the bits x
[i+α]
r̂ , x

[i+2α−β]
r̂−1 , and computes the

next 4 carry bits z
[i+1]
r̂ , z

′[i+1]
r̂ , z

[i+1+α−β]
r̂−1 , z

′[i+1+α−β]
r̂−1 . The 2RProcedure(r̂, i)

algorithm is given below.

1. Run 1RProcedure(r̂, i) and for each returned solution:
(a) Compute y

[i+α−β]
r̂−1 = x

[i+α]
r̂ ⊕ y

[i+α]
r̂ .

(b) Run 1RProcedure(r̂ − 1, i + α − β)

The guess-and-determine algorithm calls 2RProcedure(r̂, i) with r̂ = r + 1
for various indexes i in order to recover the full values of xr+1 and xr. Note that
all the input/output XOR differences to the last 2 rounds of Speck are known,
and the full yr̂ = yr+1 is known as well, and thus we are only missing the value
of the carry bits.

As the carries computed by index j are input to procedure j +1, we perform
calls to 2RProcedure(r+1, i) with sequential labels i, i+1, . . . , n−1, 0, . . . , i−1
(from LSB to MSB) in order to recover xr+1 and xr. As a result, we only have
to guess the carries required by the initial procedure. Since there is no carry into
the LSB (i.e., z

[0]
r+1 = z

′[0]
r+1 = 0), then we start with procedure i = 0 to minimize

the number of carry guesses. Furthermore, the value of zr ⊕ z′
r can be computed

from (Δxr ≫ a) ⊕ Δyr ⊕ Δxr+1, and thus we actually need to guess only one
carry bit before executing the first procedure. Finally, after the execution of the
last procedure (with index n − 1), we can derive the actual value of this guessed
carry bit and obtain an additional filtering condition.

As the time complexity of the guess-and-determine algorithm is proportional
to the number of guesses it makes, we need to carefully analyze the ratio between

Improved Differential Cryptanalysis of Round-Reduced Speck 163

the number of guessed bits, and the number of filtering conditions used to
filter the guesses. The algorithm 2RProcedure(r̂, i) guesses the values of the
two bits x

[i+α]
r̂ , x

[i+2α−β]
r̂−1 and uses two filtering conditions (one in each call to

1RProcedure(r̂, i) at Step 1.(d)). Thus, assuming that the analyzed instance
behaves randomly, we expect the number of guesses at each stage of the exe-
cution of the algorithm to remain constant. Such randomness assumptions lead
to the conclusion that the average execution time of the algorithm is compa-
rable to the execution time of a full Speck encryption (perhaps even smaller,
as we analyze only 2 rounds). However, as noted in Sect. 7.1, these randomness
assumptions do not hold in our case.

References

1. Abed, F., List, E., Wenzel, J., Lucks, S.: Differential Cryptanalysis of round-
reduced Simon and Speck. Presented at FSE 2014. To Appear in Lecture Notes in
Computer Science (2014)

2. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg
(2009)

3. Albrecht, M., Cid, C., Dullien, T., Faugère, J.-C., Perret, L.: Algebraic precom-
putations in differential and integral cryptanalysis. In: Lai, X., Yung, M., Lin, D.
(eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 387–403. Springer, Heidelberg (2011)

4. Alizadeh, J., Bagheri, N., Gauravaram, P., Kumar, A., Sanadhya, S.K.: Lin-
ear cryptanalysis of round reduced SIMON. Cryptology ePrint Archive, Report
2013/663 (2013). http://eprint.iacr.org/

5. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON family of
block ciphers. Cryptology ePrint Archive, Report 2013/543 (2013). http://eprint.
iacr.org/

6. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Tsaban, B.: Improved analy-
sis of Zorro-like ciphers. IACR Cryptology ePrint Archive (2014)

7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

8. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

9. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. Presented at FSE 2014. To Appear in Lecture Notes in Computer
Science (2014)

10. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

11. Dinur, I.: Improved differential cryptanalysis of round-reduced Speck. IACR Cryp-
tology ePrint Archive (2014)

12. Dinur, I., Dunkelman, O., Shamir, A.: Improved attacks on full GOST. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 9–28. Springer, Heidelberg
(2012)

13. Isobe, T.: A single-key attack on the full GOST block cipher. J. Cryptol. 26(1),
172–189 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

164 I. Dinur

14. Kara, O.: Reflection cryptanalysis of some ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008)

15. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer,
Heidelberg (2012)

16. Leurent, G.: Construction of differential characteristics in ARX designs application
to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 241–258. Springer, Heidelberg (2013)

17. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

18. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

19. Paul, S., Preneel, B.: Solving systems of differential equations of addition. In: Boyd,
C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 75–88. Springer,
Heidelberg (2005)

20. Stein, W.A., et al.: Sage Mathematics Software. The Sage Development Team.
http://www.sagemath.org

21. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on
the families of SIMON and SPECK ciphers. Cryptology ePrint Archive, Report
2014/267 (2014). http://eprint.iacr.org/

22. Wang, M., Sun, Y., Mouha, N., Preneel, B.: Algebraic techniques in differential
cryptanalysis revisited. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 120–141. Springer, Heidelberg (2011)

23. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://www.sagemath.org
http://eprint.iacr.org/

Differential Cryptanalysis of SipHash

Christoph Dobraunig(B), Florian Mendel, and Martin Schläffer

IAIK, Graz University of Technology, Graz, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. SipHash is an ARX based message authentication code devel-
oped by Aumasson and Bernstein. SipHash was designed to be fast on
short messages. Already, a lot of implementations and applications for
SipHash exist, whereas the cryptanalysis of SipHash lacks behind. In
this paper, we provide the first published third-party cryptanalysis of
SipHash regarding differential cryptanalysis. We use existing automatic
tools to find differential characteristics for SipHash. To improve the qual-
ity of the results, we propose several extensions for these tools to find
differential characteristics. For instance, to get a good probability estima-
tion for differential characteristics in SipHash, we generalize the concepts
presented by Mouha et al. and Velichkov et al. to calculate the proba-
bility of ARX functions. Our results are a characteristic for SipHash-2-4
with a probability of 2−236.3 and a distinguisher for the Finalization
of SipHash-2-4 with practical complexity. Even though our results do
not pose any threat to the security of SipHash-2-4, they significantly
improve the results of the designers and give new insights in the security
of SipHash-2-4.

Keywords: Message authentication code · MAC · Cryptanalysis ·
Differential cryptanalysis · SipHash · S-functions · Cyclic S-functions

1 Introduction

A message authentication code (MAC) is a cryptographic primitive, which is
used to ensure the integrity and the origin of messages. Normally, a MAC takes
a secret key K and a message M as input and produces a fixed size tag T .
A receiver of such a message-tag-pair verifies the authenticity of the message by
simply recalculating the tag T for the message and compare it with the received
one. If the two tags are the same, the origin of the message and its integrity are
ensured.

SipHash [1] was proposed by Aumasson and Bernstein due to the lack of
MACs, which are fast on short inputs. Aumasson and Bernstein suggest two
main fields of application for SipHash. The first application is as replacement for
non-cryptographic hash functions used in hash-tables and the second application
is to authenticate network traffic. The need for a fast MAC used in hash-tables
arises from the existence of a denial-of-service attack called “hash flooding” [1].
This attack uses the fact, that is easy to find collisions for non-cryptographic
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 165–182, 2014.
DOI: 10.1007/978-3-319-13051-4 10

166 C. Dobraunig et al.

hash functions. With the help of these collision producing inputs, an attacker is
able to degenerate hash-tables to e.g. linked lists. Such a degeneration increases
the time to perform operations like searching and inserting elements drastically
and can lead to denial of service attacks.

So far, SipHash is already implemented in many applications. For example,
SipHash is used as hash() in Python on all major platforms, in the dnschache
instances of OpenDNS resolvers and in the hash-table implementation of Ruby.
Besides these mentioned applications, other applications and dozens of third-
party implementations of SipHash can be found on the SipHash website1.

In this paper, we provide the first external security analysis regarding dif-
ferential cryptanalysis. To find differential characteristics, we adapt techniques
originally developed for the analysis of hash functions to SipHash. Using differ-
ential cryptanalysis to find collisions for hash functions has become very popular
since the attacks on MD5 and SHA-1 by Wang et al. [15,16]. As a result, a num-
ber of automated tools have been developed to aid cryptographers in their search
for valid characteristics [6–8]. For hash functions, the probability of a character-
istic does not play an important role since message modification can be used to
improve the probability and create collisions. However, this is not possible for
keyed primitives like MACs. Therefore, we have to modify existing search tools
to take the probability of a characteristic into account. With the help of these
modified tools, we are able to improve the quality of the results for SipHash.

In cryptographic primitives consisting solely out of modular additions, rota-
tions and xors (like SipHash), only the modular addition might contribute to the
probability of a differential characteristic, if xor differences are considered for
representation. A method to calculate the exact differential probability of mod-
ular additions is presented by Mouha et al. [9]. In constructions like SipHash,
modular additions, rotations and xors interact together. Hence, the characteris-
tic uses many intermediate values of the single rounds and is therefore divided
into many small sections. To get a more exact prediction of the probability for
the characteristic, it would be nice to calculate the probability of subfunctions
combining modular additions, rotations and xors. Therefore, we introduce the
concept of cyclic S-functions. This concept is a generalization of the work done by
Mouha et al. [9] and Velichkov et al. [13] for generalized conditions [3]. Although
all the basic concepts needed to create cyclic S-functions are already included
in the work of Velichkov et al. [13], we do not think that the generalization to
generalized conditions is trivial, since we have not seen a single use of it. Cyclic
S-functions will help analysts and designers of ARX based cryptographic primi-
tives to provide closer bounds for the probability of differential characteristics.

With the help of the extended search strategies and the probability calcula-
tion, we are able to find the first published collision producing characteristics for
SipHash-1-x and SipHash-2-x (see Table 1). The characteristic for SipHash-2-x
is also the best known characteristic for SipHash-2-4. Moreover, we are able to
present a distinguisher for the Finalization (4 SipRounds) of SipHash-2-4.

1 https://131002.net/siphash/

https://131002.net/siphash/

Differential Cryptanalysis of SipHash 167

Table 1. Best found characteristics.

Instance Type Probability Reference

SipHash-2-4 High probability 2−498 [1]

SipHash-2-4 High probability 2−236.3 Sect. 5.1

SipHash-2-x Internal collision 2−236.3 Sect. 5.1

SipHash-1-x Internal collision 2−167 Sect. 5.1

4 Round Finalization High probability 2−35 Sect. 5.2

The paper starts with a description of SipHash in Sect. 2. The following
Sect. 3 explains the basic concepts and strategies used by us to search for dif-
ferential characteristics. Section 4 deals with improvements of automatic search
techniques to find suitable characteristics for SipHash. Finally, the most signifi-
cant differential characteristics for SipHash found by us are presented in Sect. 5.
Further results on SipHash are given in AppendixA.

2 Description of SipHash

SipHash is a cryptographic MAC consisting solely of modular additions, rota-
tions and xors (ARX). SipHash has an internal state size of 256 bits, uses a
128-bit key and produces a 64-bit tag. The process of authenticating a single
message can be split into three stages: Initialization, Compression and Finaliza-
tion.

– Initialization. The internal state V of SipHash consists of the four 64-bit
words Va, Vb, Vc and Vd. The initial value consists of the ASCII representa-
tion of the string “somepseudorandomlygeneratedbytes” and is written to the
internal state first. Then, the 128-bit key K = K1 ‖ K0 is xored to the state
words Va ‖ Vb ‖ Vc ‖ Vd = Va ‖ Vb ‖ Vc ‖ Vd ⊕ K0 ‖ K1 ‖ K0 ‖ K1.

– Compression. The message M is padded with as many zeros as needed to
reach multiple block length minus 1 byte. Then, one byte, which encodes the
length of the message modulo 256 is added to get a multiple of the block
length. Afterwards, the message is split into t 8-byte blocks M1 to Mt. The
blocks Mi are in little-endian encoding. For each block Mi, starting with block
M1, the following is performed. The block Mi is xored to Vd. After that the
SipRound function is performed c times on the internal state. Then the block
Mi is xored to Va.

– Finalization. After all message blocks have been processed, the constant ff16

is xored to Vc. Subsequently, d iterations of SipRound are performed. Finally,
Va ⊕ Vb ⊕ Vc ⊕ Vd is used as the MAC value hK = SipHash-c-d(K,M).

As shown above, SipHash is parameterizable using c SipRounds in the Com-
pression and d SipRounds in the Finalization. Such a specific instantiation of
SipHash is called SipHash-c-d. Aumasson and Bernstein propose two specific
versions for use, which are SipHash-2-4 and SipHash-4-8.

168 C. Dobraunig et al.

Next, we describe one SipRound. As SipHash is an ARX based MAC, the
SipRound network shown in Fig. 1 consists only of modular additions, xors and
rotations. Every operation is an operation on 64-bit.

≪ 13

≪ 16

≪ 32

≪ 17

≪ 21

≪ 32

Vb

Va

Vc

Vd
Ad

Vb

Va

Vc

Vd

Ac

Ab

Aa

Fig. 1. One SipRound [1].

Now, we will discuss our naming scheme for the different variables involved
in SipHash. In Fig. 1 one SipRound is shown. We will indicate a specific bit of
a word by Va,m,r[i], where i = {0, ..., 63} denotes the specific bit position of a
word, m denotes the message block index, and r denotes the specific SipRound.
Hence, to process the first message block, the input to the first SipRound is
denoted by Va,1,1, the intermediate variables by Aa,1,1, and the output by Va,1,2.
Words, which take part in the Finalization, are indicated with m = f .

3 Automatic Search for Differential Characteristics

For the search for differential characteristics, we have used an automatic search
tool. To make use of such a tool, several key aspects have to be considered.

– The representation of the differential characteristic (Sect. 3.1).
– The description of the cryptographic primitive to perform propagation

(Sect. 3.2).
– The used search strategy to search for characteristics (Sect. 3.3).

3.1 Generalized Conditions

We use generalized (one-bit) conditions introduced by De Cannière and Rech-
berger [3] to represent the differential characteristics within the automatic search
tool. With the help of the 16 generalized conditions, we are able to express every
possible condition on a pair of bits. For instance the generalized condition x
denotes unequal values, - denotes equal values and ? denotes that every value
for a pair of bits is possible.

Differential Cryptanalysis of SipHash 169

In addition, we also use generalized two-bit conditions [6]. Using these
conditions, every possible combination of a pair of two bits |Δx,Δy| can be
represented. In the most general form, these two bits can be any two bits of
a characteristic. In our case, such two-bit conditions are used to describe dif-
ferential information on carries, when computing the probability using cyclic
S-functions.

3.2 Propagation of Conditions

Single conditions of a differential characteristic are connected via functions (addi-
tions, rotations, xors). Thus, the concrete value of a single condition affects other
conditions. To be more precise, the information that certain values on a condi-
tion are allowed may lead to the effect, that certain values on other conditions
are impossible. Therefore, we are able to remove impossible values on those
conditions to refine their values. We can say that information propagates.

Within the automatic search tool, we do this propagation in a bitsliced man-
ner like it is shown in [7]. This means, that we split the functions into single
bitslices and brute force them by trying all possible combinations allowed by the
generalized conditions. In this way, we are able to remove impossible combina-
tions.

For the performance of the whole search for characteristics, it is crucial to find
a suitable “size” of the subfunctions of a specific cryptographic primitive, which
are used to perform propagation. The “size” of such a subfunction determines
how many different conditions are involved during brute forcing a single bitslice.
On one hand, “big” functions (many conditions involved in one bitslice) make
the propagation slower. On the other hand, the amount of information that
propagates is usually enhanced by using a few “big” subfunctions instead of many
“small” ones. Generalized conditions are not able to represent every information
that is gathered during propagation(mainly due to effects regarding the carry of
the modular addition) [6]. So we loose information between single subfunctions.
Usually, less information is lost if the subfunctions are “bigger”. In fact, finding
a good trade-off between speed and quality of propagation is not trivial.

3.3 Basic Search Strategy

For analyzing unkeyed primitives, especially when trying to find collisions for
hash functions, the following search method, as used by Mendel et al. [7] has
turned out to be a viable strategy.

– Find a good starting point for the search.
– Search for a good characteristic.
– Use message modification to find a colliding message pair.

The starting point describes the target problem to be solved and a good
starting point can greatly reduce the complexity of a search. In the start charac-
teristic, bits where no differences are allowed are represented by the condition -
and bits where the characteristic may contain differences are represented by ?.

170 C. Dobraunig et al.

The search algorithm refines the conditions represented by a ? to - and x to
get a valid differential characteristic in the end. An example of a search strategy
can be found in [7]. Here, the search algorithm is split in three main parts:

– Decision (Guessing). In the guessing phase, a bit is selected, which condi-
tion is refined. This bit can be selected randomly or according to a heuristic.

– Deduction (Propagation). In this stage, the effects of the previous guess
on other conditions is determined (see Sect. 3.2).

– Backtracking (Correction). If a contradiction is determined during the
deduction stage the contradiction is tried to be resolved in this stage. A way
to do this is to jump back to earlier stages of the search until the contradiction
can be resolved.

There exist several message modification techniques [5,12,14]. The one used
by us (in AppendixA) is refining a valid characteristic further until the colliding
message pair is fixed [7]. For keyed primitives like SipHash, message modification
to enhance the probability is usually out of reach, since the key is unknown.
Hence, we need to stop the search at the characteristic and need an adapted
search algorithm to find characteristics, which have a high probability.

4 Improvements in the Automatic Search for SipHash

We have used existing automatic search tools to analyze SipHash. Those tools
use the search strategy describe in Sect. 3.3. This strategy has been developed
to find collisions for hash functions. It turns out that this strategy is unsuitable
for keyed primitives like MACs. Therefore, we extend the search strategy to the
greedy strategy described in Sect. 4.1. This greedy strategy uses information on
the probability of characteristics, or on the impact of one guess during the search
for characteristics. We have created all the results of Sect. 5 with the help of this
greedy strategy. To get closer bounds on the probability of the characteristic, we
generalize the concepts presented by Mouha et al. [9] and Velichkov et al. [13]
to cyclic S-functions (Sect. 4.2).

Another important point in the automatic search for differential characteris-
tics is the representation of the cryptographic primitives within the search tool.
We have evaluated dozens of different descriptions and present the most suitable
in Sect. 4.3.

4.1 Extended Search Strategy

Our search strategy extends the strategy used in [7]. The search algorithm of
Sect. 3.3 is split in three main parts decision (guessing), deduction (propagation),
and backtracking (correction). We have extended this strategy to perform greedy
searches using quality criteria like the probability. In short, we perform the
guessing and propagation phase several times on the same characteristic. After
that, we evaluate the resulting characteristics and take the characteristic with

Differential Cryptanalysis of SipHash 171

the best probability. Then, the next iteration of the search starts. The upcoming
algorithm describes the search in more detail:

Let U be a set of bits with condition ? in the current characteristic A. In
H we store all characteristics, which have been visited during the search. L is a
set of candidate characteristics for A. n is the number of guesses. B- and Bx are
characteristics.

Preparation

1. Generate U from A. Clear L. Set i to 0.

Decision (Guessing)

2. Pick a bit from U .
3. Restrict this bit in A to - to get B- and to x to get Bx.

Deduction (Propagation)

4. Perform propagation on B- and Bx.
5. If B- and Bx are inconsistent, mark bit as critical and go to Step 13, else

continue.
6. If B- is not inconsistent and not in H, add it to L. Do the same for Bx.
7. Increment i.
8. If i equals n, continue with Evaluation. Else go to Step 2.

Evaluation

9. Set A to the characteristic with the highest probability in L.
10. Add A to H.
11. If there are no ? in A, output A. Then set A to a characteristic of H.
12. Continue with Step 1.

Backtracking (Correction)

13. Jump back until the critical bit can be resolved.
14. Continue with Step 1.

To generate the set U , we use the following variables of SipHash Aa, Ac, Va,
and Vc. Except for Va,m,1, Vc,m,1, Va,f,1, and Vc,f,1, since they are only connected
via an xor to their predecessors, or are even the same variable. We guess solely
on those variables, since a guess on them always affects the probability of the
differential characteristic. Experiments have shown that setting the number of
guesses n to 25 leads to the best results.

Due to performance reasons, we store hash values of characteristics in H.
In addition, we maintain a second list H∗. In this list, we store the next best
characteristics of L according to a certain heuristic. The characteristics of H∗

are also used for backtracking. If a characteristic is found and U is empty, we
take a characteristic out of H∗ instead of H in Step 11. After a while, we perform
a soft restart, where everything is set to the initial values (also H∗ is cleared)
except for H.

172 C. Dobraunig et al.

This search strategy turns out to be good if we search for high probability
characteristics, which do not lead to collisions. When searching for colliding
characteristics, we have to adapt the given algorithm and perform a best impact
strategy similar to Eichlseder et al. [4].

The best impact strategy differs in the following points from the strategy
described above. In the best impact strategy, we do not calculate the charac-
teristic Bx. Instead of taking the probability of B- as a quality criterion for
the selection, we use the variant of B- of the candidate list L, where the most
information propagates. As a figure of merit for the amount of information that
propagates, we take the number of conditions with value ?, which have changed
their value due to the propagation.

This best impact strategy has several advantages. The first one lies in the fact
that mostly guesses will be made, which have a big impact on the characteristic.
This ensures that no guesses are made, where nothing propagates. Such guesses
often imply additional restrictions on the characteristic, which are not necessary.
In addition, the big impact criterion also leads to rather sparse characteristics,
which usually have a better probability than dense ones.

4.2 Calculating the Probability Using Cyclic S-Functions

In this section, we show a method to extend the use of S-functions [9] by intro-
ducing state mapping functions mi and making the relationship between the
states cyclic. For instance such cyclic states occur if rotations work together
with modular additions. Velichkov et al. showed in [13] how to calculate the
additive differential probability of ARX based functions. The method of cyclic
S-functions is closely related to the methods shown in [13].

Concept of Cyclic S-Functions. According to Mouha et al. [9], a state func-
tion (S-function) is a function, where the output s[i] can be computed using
only the input bits a1[i], a2[i],... ak[i] and the finite state S[i − 1]. This compu-
tation also leads to a next state S[i]. An example of such an S-function is the
modular addition a + b = s. In ARX systems, we can discover the same behav-
ior as for additions, except that the first state S[0] depends on the outcome of
the last operation and is therefore related to S[n]. We picture this relation by
introducing so called state mapping functions mi and making the state cyclic as
it is shown in Fig. 2. The state mapping function mi is a function, which maps
distinct state values of So[i] to Si[i]. It is possible and often the case that more
values of So[i] map to the same value of Si[i]. If mi is the identity function, then
the states So[i] and Si[i] are the same state and we only write S[i] in this case.

Note that every classic S-function can be transformed into a cyclic S-function
by defining every mi as the identity function except for mn. The function mn

maps every value of So[n] to the state Si[0] = 0.
To give an example, we describe the function ((a + b) ≪ 1) + c = sb with

the help of S-functions. In this example, we use 4-bit words. We picture the
system as it is shown in Fig. 3. The carry ca and cb serve as state S together.

Differential Cryptanalysis of SipHash 173

f
Si[0]

ak[1]a1[1]

So[1]
f

ak[2]a1[2]

So[2]
f

Si[n − 1]

ak[n]a1[n]

So[n]

s[1]s[2]s[n]

m1

Si[1]
m2mn

Si[n]

Fig. 2. Concept of cyclic S-functions.

They can be considered as a two-bit condition |ca, cb|. The black vertical lines in
Fig. 3 mark transitions, where the state mapping function mi is not the identity
function. As ca[0] and cb[0] can only be 0, the state mapping functions perform
the following mapping for any value va of ca and vb of cb:

– So[1] ⇒ Si[1] : |va, vb| ⇒ |0, vb|
– So[4] ⇒ Si[0] : |va, vb| ⇒ |va, 0|.
So the states in case of the system in Fig. 3 are:

– Si[0] = |ca[3], 0|
– So[1] = |ca[4], cb[1]|

– Si[1] = |0, cb[1]|
– S[2] = |ca[1], cb[2]|

– S[3] = |ca[2], cb[3]|
– So[4] = |ca[3], cb[4]|

a[4]a[3] a[2] a[1]

b[4]b[3] b[2] b[1]

ca[4]ca[3] ca[2] ca[1] ca[0]

sb[4] sb[3] sb[2] sb[1]

c[4] c[3] c[2] c[1]

cb[4] cb[3] cb[2] cb[1] cb[0]

ca[3]

Si[0]S[2]S[3]So[4] So[1]Si[1]

Fig. 3. Rewritten system to do ((a + b) ≪ 1) + c = sb in one step.

For a word length of n and a general rotation to the left by r, the state is
S[i] = |ca[(i − r) mod n], cb[i]|, except for states, where mi is not the identity
function. These are the states So[r] = |ca[n], cb[r]|, Si[r] = |ca[0], cb[r]|, So[n] =
|ca[n − r], cb[n]| and Si[0] = |ca[n − r], cb[0]|. The realization of additions with
multiple rotations in between leads to more mapping functions mi, which are not
the identity function. Using additions with more inputs leads to bigger carries
and bigger states.

Using Graphs for Description. Similar to S-functions [9], we can build a
graph representing the respective cyclic S-function. The vertices in the graph
stand for the single distinct states and the circles in the graph represent valid

174 C. Dobraunig et al.

solutions. Such a graph can be used to either propagate conditions, or to calcu-
late the differential probability. An illustrative example for propagation and the
probability calculation can be found in AppendixB.

The whole cyclic graph consists of subgraphs i. Each subgraph i consists of
vertices representing Si[i − 1], and So[i] and single edges connecting them. So
each subgraph represents a single bitslice of the whole function. For the system
in Fig. 3, the edges of each subgraph are calculated by trying every possible pair
of input bits for a[((i − r − 1) mod n) + 1], b[((i − r − 1) mod n) + 1] and c[i],
which is given by their generalized conditions and using every possible carry of
the set of Si[i − 1] to get an output sb[i] and a carry which belongs to So[i].
If the output is valid (with respect to the generalized conditions, which describe
the possible values for sb), an edge can be drawn from the respective value of the
input vertex of Si[i−1] to the output vertex belonging to So[i]. Such a subgraph
can be created for every bitslice.

Now, we have to form a graph out of these subgraphs. Subgraphs connected
over a state mapping function mi, which is the identity, stay the same. There
exist two ways for connecting subgraphs i and i + 1, which are separated by
a state mapping function. Either the edges of graph i can be redrawn, so that
they follow the mapping from So[i] to Si[i], or the edges of graph i + 1 can be
redrawn so that they follow the inverse mapping from Si[i] to So[i]. We call
the so gathered set of subgraphs “transformed subgraphs”. After all subgraphs
are connected, we can read out the valid input output combinations. These
combinations are minimal circles in the directed graph. Since we are aware of
the size of the minimal circles and of the shape of the graph, we can transform
the search for those circle in a search for paths.

Probability Calculation Using Matrix Multiplication. To calculate the
differential probability, we only need to divide the number of valid minimal
circles of the graph by the number of total possible combinations of the input.
The number of valid minimal circles can be calculated with the help of matrix
multiplications. Similar to S-functions [9], we have to calculate the biadjacency
matrix A[i] = [xkj] for each “transformed subgraph”. xkj stands for the number
of edges, which connect vertex j of the group Si[i−1] with vertex k of the group
Si[i]. We define the 1 × N matrices Li and the N × 1 matrices Ci.

L1 =
[
1 0 0 ... 0

]
L2 =

[
0 1 0 ... 0

]
...

Ln =
[
0 0 0 ... 1

]

C1 =
[
1 0 0 ... 0

]T
C2 =

[
0 1 0 ... 0

]T
...

Cn =
[
0 0 0 ... 1

]T

Here, N is the number of distinct states of S[i]. As Si[n] (this is So[n] after
applying the mapping) and Si[0] are in fact the same states, we can calculate

Differential Cryptanalysis of SipHash 175

the number of circles by summing up all paths which lead from a vertex in Si[0]
to the same vertex in Si[n]:

#Circles =
n∑

i=1

(Li · A[n] · · · A[2] · A[1] · Ci) (1)

The formula shown above basically sums the numbers in the diagonal of the
resulting matrix when all A[i] are multiplied together. This sum divided by all
possible input combinations gives us the exact differential probability of one
step.

We consider the presented method based on cyclic S-functions to be equiv-
alent to brute force and therefore to be optimal. The equivalence is only given
if the words of the input and the output are independent of each other. For
example, if the same input is used twice in the same function f , we do not have
the required independence. Such a case is the calculation of s = a + (a ≪ 10).

Probability Calculation of SipHash. To calculate the probability of SipHash
we group two subsequent additions together, considering also the intermediate
outputs. In contrast to the propagation (Sect. 4.3), we do not do this overlap-
ping, since we would calculate the probability twice. So we get two subfunctions
per SipRound to calculate the probability (2). In the case of SipHash, we also
consider the intermediate values of the additions, but they are omitted in the
formulas.

Va,m,r+1 = ((Va,m,r + Vb,m,r) ≪ 32) + Ad,m,r

Vc,m,r+1 = (Vc,m,r + Vd,m,r + Ab,m,r) ≪ 32
(2)

In addition, we also consider the differential probability introduced by xors.
Since we use generalized conditions, xors might contribute to the probability
as well. To calculate the differential probability connected with xors, a simple
bitsliced approach is used.

4.3 Bitsliced Description of SipHash

For SipHash, we have evaluated dozens of different descriptions. Because of sev-
eral searches and other evaluations, we have chosen the following description.
We combine every two subsequent two input modular additions to one subfunc-
tion, regardless if they are separated by a rotation. The resulting subfunctions
overlap each other. This means, that every two input addition as shown in Fig. 1
takes part in two subfunctions. This results in the following subfunctions (the
intermediate output is also considered, but not given in the formulas):

Va,m,r+1 = ((Va,m,r + Vb,m,r) ≪ 32) + Ad,m,r

Vc,m,r+1 = (Vc,m,r + Vd,m,r + Ab,m,r) ≪ 32
Aa,m,r+1 = (Aa,m,r ≪ 32) + Ad,m,r + Vb,m,r+1

Ac,m,r+1 = ((Ac,m,r + Ab,m,r) ≪ 32) + Vd,m,r+1

176 C. Dobraunig et al.

The xor operations are represented using only three variables (two inputs).
We do this, since there is no information loss due to the representation capability
of the generalized conditions.

5 Results

In this section, we give some results using the presented search strategies and
the new probability calculation. At first, we start with characteristics, which
lead to internal collisions. This type of characteristic can be used to create forg-
eries as described in [10,11]. To improve this attack, characteristics are needed,
which have a probability higher than 2−128 (in the case of SipHash). Other-
wise, a birthday attack should be preferred to find collisions. We are able to
present characteristics that lead to an internal collision for SipHash-1-x (2−167)
and SipHash-2-x (2−236.3). The characteristic for SipHash-2-x is also the best
published characteristic for full SipHash-2-4.

The last part of this section deals with a characteristic for the Finalization
of SipHash-2-4. This characteristic has a considerable high probability of 2−35.
Due to this high probability, this characteristic can be used as a distinguisher
for the Finalization.

5.1 Colliding Characteristics for SipHash-1-x and SipHash-2-x

First, we want to start with an internal collision producing characteristic for
SipHash-1-x. We have achieved the best result with the biggest impact strategy
by using a starting point consisting of 7 message blocks. The bits of the first
message block, the key, and the last state values are set to -. The rest of the
characteristic is set to ?. We introduce one difference in a random way by picking
a bit out of all Aa, Ac, Va, and Vc. This strategy results in a characteristic with
an estimated probability of 2−169. The characteristic leads to an internal collision
within 3 message blocks.

In the second stage of the search, we fix the values of the 3 message blocks
to the values found before and set the internal state variables to ?. By using
the so gotten starting point, we perform a high probability greedy search. This
high probability greedy search results in the characteristic given in Table 2. This
characteristic has an estimated probability of 2−167.

Next, we handle the search for a characteristic, which results in an internal
collision for SipHash-2-x. The collision with the best probability has been found
by setting only the bits of one Compression iteration (including the correspond-
ing message block) to ? and everything else to -. The difference is introduced
in the most significant bit of the message block. The best characteristic we have
found using this starting point and the best impact strategy has an estimated
probability of 2−238.9. In a second stage, we use the value for the message block
of this found characteristic to perform a high probability greedy search. With
this method, we are able to get the characteristic of Table 3. This characteristic
has an estimated probability of 2−236.3.

Differential Cryptanalysis of SipHash 177

Table 2. Characteristic for SipHash-1-x, which leads to an internal collision (proba-
bility 2−167).

M1 -- K0 --

M2 -------------------------------------x-------------------------- K1 --

M3 -xx-xxxx--------x----xxxx-------xxxxx-----x--x-x----------------

M4 xxx-------------xxx-------------------xxxxx----------------xxxxx

Va,1,1 -- Vb,1,1 --

Vc,1,1 -- Vd,1,1 --

Va,1,2 -- Vb,1,2 --

Vc,1,2 -- Vd,1,2 --

Va,2,1 -- Vd,2,1 -------------------------------------x--------------------------

Va,2,2 ---------------------x---------------x-------------------------- Vb,2,2 -------------------------------------x--------------------------

Vc,2,2 -----x-- Vd,2,2 x---------------x----x---------------x--------------------------

Va,3,1 ---------------------x-- Vd,3,1 xxx-xxxx--------------xxx-------xxxxxx----x--x-x----------------

Va,3,2 -x-x-x--x-xxxxxx-xx--x--x-xxxx-x---xxx--xxxxx-x----x-xxx-------- Vb,3,2 -x-xx--------------xxx-x-------1------xxxxx--x-x----------------

Vc,3,2 ------xxxxx--x-x-----------------x-x---x-------------x-x-------- Vd,3,2 xxx--------xxxxxxxx-------------xxxxxx--xxx----------xxx---xxxxx

Va,4,1 --xxx-xxx-xxxxxxxxx---xx--xxxx-xxxx--x--xx-xxxxx---x-xxx-------- Vd,4,1 -----------xxxxx----------------xxxxxxxx-------------xxx--------

Va,4,2 xxx-------------xxx-------------------xxxxx----------------xxxxx Vb,4,2 --

Vc,4,2 -- Vd,4,2 --

Va,f,1 -- Vc,f,1 --

hK --

Table 3. Characteristic for SipHash-2-x, which leads to an internal collision (proba-
bility of 2−236.3). This is also the best characteristic for SipHash-2-4.

M1 x--xxx--x--xxx---xxxxxxx---xx-xxx-x--xx-xx-xxxx---xx----x---xx-- K0 --

K1 --

Va,1,1 -- Vb,1,1 --

Vc,1,1 -- Vd,1,1 x--xxx--x--xxx---xxxxxxx---xx-xxx-x--xx-xx-xxxx---xx----x---xx--

Va,1,2 xxx--xxxx----x-x-x---xx--x-x-x-xxxx--xx-xxxxxxxxx---xx-----x---- Vb,1,2 x-x--x--x-x--x---xx--xxx----x---xxx--x-x-x-x-xx----x----x----x--

Vc,1,2 xxx--x-x-x-x-xx----x----x----x--x-x--x--x-x--x---xx--xxx----x--- Vd,1,2 xx-xxx-x--xx-xx-xxxx---xx----x---xx--x--xxx--x--xxx---xxxxxxx---

Va,1,3 x--xxx--x--xxx---xxxxxxx---xx-xxx-x--xx-xx-xxxx---xx----x---xx-- Vb,1,3 --

Vc,1,3 -- Vd,1,3 --

Va,f,1 -- Vc,f,1 --

hK --

Although both characteristics do not have a probability higher than 2−128,
they are the best collision producing characteristics published for SipHash so far.
Especially the characteristic for SipHash-1-x (Table 2) is not far away from the
bound of 2−128, where it gets useful in an attack. Moreover, the characteristic
for SipHash-2-x (Table 3) is the best published characteristic for full SipHash-2-
4, with a probability of 2−236.3. The previous best published characteristic for
SipHash-2-4 has a probability of 2−498 [1]. Nevertheless, SipHash-2-4 still has a
huge security margin.

5.2 Characteristic for Finalization of SipHash-2-4

Now, we want to present a distinguisher for the full four SipRound Finalization of
SipHash-2-4. For this result, we have used the greedy search algorithm presented
in Sect. 4 considering solely the probability. With the help of this algorithm, we
have found the distinguisher shown in Table 4. By using this characteristic, four
rounds of the Finalization can be distinguished from a pseudo-random function
with a complexity of 235.

Considering this new result, we are able to distinguish both building blocks
of SipHash-2-4, the Compression and the Finalization from idealized versions (It
is already shown in [1] that two rounds of the Compression are distinguishable).
However, these two results do not endanger the full SipHash-2-4 function, which
is still indistinguishable from a pseudo-random function.

178 C. Dobraunig et al.

Table 4. Distinguisher for 4 finalization rounds (probability 2−35).

Va,f,1 x----------x---------x----x--------------------x---------------- Vb,f,1 -----------x-x------------x-------x------------x----------------

Vc,f,1 -----x--------x---x---x- Vd,f,1 -----x--------x---x---

Va,f,2 --------------------------------x------------x------------------ Vb,f,2 ---x------------------

Vc,f,2 -- Vd,f,2 --

Va,f,3 x--- Vb,f,3 --

Vc,f,3 -- Vd,f,3 x---

Va,f,4 x-------------------------------x---------------x--------------- Vb,f,4 ---x----------------

Vc,f,4 -- Vd,f,4 x--------------------------x----x----------x----x---------------

Va,f,5 -----------x--------------------x----------x-------------------- Vb,f,5 ---------------x-x---------x---x--x--------x---x----------------

Vc,f,5 --x--------x---x---- Vd,f,5 -----------x----------x---------x---------------------x----x----

6 Conclusion

This work deals with the differential cryptanalysis of SipHash. To be able to find
good results, we had to introduce new search strategies. Those search strategies
extend previously published strategies, which have solely been used in the search
for collisions for hash functions. With the new presented concepts, also attacks on
other primitives like MACs, block-ciphers and stream-ciphers are within reach.

Furthermore, we generalized the concept of S-functions to the concept of
cyclic S-functions. With the help of cyclic S-functions, cryptanalysts will be able
to get more exact results regarding the probability of differential characteristics
for ARX based primitives.

With these new methods, we were able to improve upon the existing results on
SipHash. Our results include the first published characteristics resulting in inter-
nal collisions, the first published distinguisher for the Finalization of SipHash
and the best published characteristic for full SipHash-2-4.

Future work includes to apply the greedy search strategies to other ARX
based primitives. Such cryptographic primitives may be for instance block ciphers
or authenticated encryption schemes. Also, the further improvement of the used
automatic search tools is part of future work.

Acknowledgments. The work has been supported by the Austrian Government
through the research program FIT-IT Trust in IT Systems (Project SePAG, Project
Number 835919).

A Results Without Secret Key

In this section, we present results for SipHash without considering the secret
key. This allows us to create semi-free-start collisions for the Compression as
well as an internal collision using chosen related keys. Despite the fact that
these attacks do not lie within the specified use of SipHash, the following results
give at least some insight in the strength of the MAC. In addition, the existence
of the semi-free-start collisions are a strong indicator that the characteristics
given in Tables 2 and 3 are valid and that the estimated probability is at least
somewhat realistic.

With the help of the characteristic of Table 2, we can produce a semi-free-
start collision. Furthermore, we are able to fix the value of Va,i,1 and Vb,i,1 to

Differential Cryptanalysis of SipHash 179

0 in advance of the search. The values for the semi-free-start collision are given
in Table 5. The message pair can be created out of the characteristic in seconds.
However, we cannot state a time it takes to create the characteristic, since the
best characteristic out of many searches has been selected.

Table 5. Message pair and state values for semi-free-start collision for SipHash-1-x
using three message blocks.

Va,i,1: 0000000000000000 Vb,i,1: 0000000000000000 Vc,i,1: 0C42F127F5B7A160 Vd,i-1,2: 8D8FA9B18E275ED4

Va,i+3,1: 00747ADAB4A268A8 Vb,i+2,2: CD49C9A065B1F2AE Vc,i+2,2: 6045CA3667F1A304 Vd,i+2,2: 94ED96D23F686622

Mi: CAE3C8DF846F8D00 Mi+1: 18701B50E5EABA01 Mi+2: 21027F74580E0EE8

M′
i: CAE3C8DF806F8D00 M′

i+1: 77709CD01DCFBA01 M′
i+2: C1029F745BEE0EF7

The same can be done for SipHash-2-x by using the characteristic of Table 3.
Here, we are able to produce the semi-free-start collision for SipHash-2-x shown
in Table 6 within 10 s. Due to the rather low probability of 2−236.3 of the charac-
teristic given in Table 3, we are not able to fix any values in advance of a search
for a semi-free-start collision.

Table 6. Message pair and state values for semi-free-start collision for SipHash-2-x
using one message block.

Va,i,1: 992E9AA7D76CEF0E Vb,i,1: A17197FCAADF73D4 Vc,i,1: 33E9CBC3EB8E4E32 Vd,i-1,3: 3B5E30192818D15C

Va,i+1,1: 8255CD3D3A2B4213 Vb,i,3: 783B1ADCD7BC413C Vc,i,3: FA5B40A895829C5B Vd,i,3: 230701332727C050

Mi: C7DCDE77723E8AD8

M′
i : 5B40A16CD4E0BA54

Now, we want to present internal collision using chosen related keys for
SipHash-2-4. For the creation of the best found characteristic for a Compression

Table 7. Message pair, key, state values after internal collision, and MAC value
(SipHash-2-4) for internal collision of SipHash-2-x using chosen related keys and a
fixed IV.

Key 1: 7F166B32181D1FE4041FA4A0DBCD3927

Key 2: 7D1EEB2218055CEE041724415BA73CA7

Message 1: 0C40E5F8510C351DBA045A72064A83

Message 2: 0C40E5F8510CF198BA045A72064A83

MAC value: 20A26EAD9B9855BE

Va: 6B2FCACBF912BB2B

Vb: 4CB34F2A06657837

Vc: 6260226FF75DCB88

Vd: 45F20251CF5EC6CD

180 C. Dobraunig et al.

consisting of 2 SipRounds per iteration, we use a starting point, where we place
the difference in the most significant bit of the first message. The rest of the mes-
sage, as well as the key can be chosen completely free. The best characteristic we
have found by using the impact oriented strategy has an estimated probability of
2−169. By using this characteristic, we are able to create the pairs in Table 7. To
be easier to verify, we have included the MAC value for SipHash-2-4. In addition,
we give the state after the collision happens in the first message block. Again,
we cannot state the time it takes to create the characteristic, because it is the
best characteristic out of many searches. The collision producing message and
key pair can be created within seconds out of the characteristic.

B An Example for Cyclic S-Functions

In this section, we want to clarify the use of cyclic S-functions with the help
of an example. We use ((a + b) ≪ 1) + c = sb (Fig. 3) as cyclic S-function.
Throughout this example, we use the following values for inputs and outputs.

a = 1x11 b = AEn5 c = 15nx sb = 11Ax (3)

Before we start an explanation how to calculate the probability, we first show
how the propagation is done by using the graph shown in Fig. 4. To represent
the graph in Fig. 4 clearly, we use information, which can be gathered using a
bitslice propagation to narrow the value for the carries and therefore decrease
the amount of edges and vertices in the graph. This precomputation is only
done to produce a graph with few edges. The concept also works if this bitslice
precomputation is omitted.

Now, we want to describe the concept of propagation by looking at first at
the state mapping. Performing a state mapping function for doing addition with
rotations in between is in principle merging a set of vertices together. After this
merging, some edges, which have led to separated vertices, may lead to the same
vertex. In case of the example in Fig. 4 this means that the vertices |u, n| and
|1, n| of So[1] are mapped both on vertex |0, n| of Si[1]. Vertex |1, 0| of So[1] is
mapped on vertex |0, 0| of Si[1]. The vertex |u, n| of So[4] is mapped on vertex
|u, 0| of Si[0], vertex |1, 0| of So[4] is mapped on vertex |1, 0| of Si[0] and vertex
|n, n| of So[4] is mapped on vertex |n, 0| of Si[0]. The vertices of Si[0] and So[4]
are in fact the same. Therefore, we can reduce the problem of finding circles
to the problem of finding paths from a vertex |v, 0| of state Si[0] to the in fact
same vertex |v, 0| of state Si[4] (this is So[4] after applying the mapping), where
v stands for any value of a state. Edges, which do not belong to a path can be
deleted. These are the dashed edges in Fig. 4. So we get following values after
propagation:

a = 1u11 b = AAn5 c = 15nn sb = 11Au (4)

Note that that this result is optimal with respect to the limited representation
capability of generalized conditions (The graph of Fig. 4 shows that in fact only
two valid solutions exist).

Differential Cryptanalysis of SipHash 181

|u,0|

|1,0|

|n,0|

|u,n|

|1,n|

|1,0|

1,u,n,u

1,1,n,u

1,u,u,u

1,u,n,n

|0,n|

|n,0|

|n,n|

1,0,n,u |0,0|
1,0,n,1

1,
n,
n,
1

1,
n,
n,
u

|n,0|

|n,n|

|u,n|

|n,n|

1,n,0,1

1,n,0,1

1,n,n,1n,
n,
1,
1

u,
1,
1,
1

u,u,1,1

So[4] S[3] S[2] Si[1] So[1] Si[0]

|0,n||1,0|

Fig. 4. Graph for ((a + b) ≪ 1) + c = sb. States of the same color can be considered
as equivalent (except for the black ones). The values on the edges represent a[i], b[i],
c[i] and sb[i].

Now we show, how the probability calculation is done. Because of space
constraints, we only give the biadjacency matrix A[1] (5) out of the set of
transformed subgraphs. The matrix A[1] corresponds to the rightmost subgraph
shown in Fig. 4.

A[1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

After doing matrix multiplication and adding the elements of the diagonal
together, we get two valid circles in the graph (1). This result can also be verified
by looking at the graph of Fig. 4. The number of valid solutions divided by all
possible input combinations gives us the exact differential probability of this
subfunction. Here, we have to distinguish if we consider the input values given
before (3) or after propagation (4). In the case of (3), we have 96 possible input
pairs resulting in a probability of 2−5.58. For (4), we only have 16 possible input
pairs and get a probability of 2−3. Both results are exact.

182 C. Dobraunig et al.

References

1. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012)

2. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

3. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

4. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential col-
lision search with applications to SHA-512. IACR Cryptology ePrint Archive
2014:302 (2014)

5. Klima, V.: Tunnels in hash functions: MD5 collisions within a minute. IACR Cryp-
tology ePrint Archive 2006:105 (2006)

6. Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 241–258. Springer, Heidelberg (2013)

7. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

8. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

9. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The differential analysis
of S-functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 36–56. Springer, Heidelberg (2011)

10. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

11. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-
tion Codes. IEEE Trans. Inf. Theory 45(1), 188–199 (1999)

12. Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic cryptanalysis of 58-Round
SHA-1. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 349–365. Springer,
Heidelberg (2007)

13. Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: The additive differential
probability of ARX. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 342–358.
Springer, Heidelberg (2011)

14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. [2], pp. 1–18

15. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

16. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
[2], pp. 19–35

Weak Instances of PLWE

Kirsten Eisenträger1,2(B), Sean Hallgren3, and Kristin Lauter4

1 Department of Mathematics, The Pennsylvania State University,
University Park, State College, PA 16802, USA

eisentra@math.psu.edu
2 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

3 Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, State College, PA 16802, USA

hallgren@cse.psu.edu
4 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

klauter@microsoft.com

Abstract. In this paper we present a new attack on the polynomial
version of the Ring-LWE assumption, for certain carefully chosen number
fields. This variant of RLWE, introduced in [BV11] and called the PLWE
assumption, is known to be as hard as the RLWE assumption for 2-power
cyclotomic number fields, and for cyclotomic number fields in general
with a small cost in terms of error growth. For general number fields,
we articulate the relevant properties and prove security reductions for
number fields with those properties. We then present an attack on PLWE
for number fields satisfying certain properties.

1 Introduction

Lattice-based cryptography has been an active area of study for at least two
decades. The Ajtai-Dwork [AD99] public-key cryptosystem was based on the
worst-case hardness of a variant of the Shortest Vector Problem (SVP). The
NTRU family of cryptosystems [HPS98] were defined in particularly efficient
lattices connected to number theory and were standardized in the IEEE P1363.1
Lattice-Based Public Key Cryptography standard [IEEE]. Recently, a new
assumption has been introduced, Learning-With-Errors (LWE) [Reg09] and the
Ring-Learning-With-Errors (RLWE) variant [LPR10], which is related via var-
ious security reductions from hard lattice problems such as (Gap-)SVP and
Bounded Distance Decoding (BDD) [LPR10,Reg09,BLP+13]. NTRUEncrypt

Kirsten Eisenträger - Partially supported by National Science Foundation grant
DMS-1056703 and by the National Security Agency (NSA) under Army Research
Office (ARO) contract number W911NF-12-1-0522. Part of this work was done while
the first author was visiting Microsoft, Harvard University and MIT.
Sean Hallgren - Partially supported by National Science Foundation awards CCF-
0747274 and CCF- 1218721, and by the National Security Agency (NSA) under Army
Research Office (ARO) contract number W911NF-12-1-0522. Part of this work was
done while visiting Microsoft and MIT.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 183–194, 2014.
DOI: 10.1007/978-3-319-13051-4 11

184 K. Eisenträger et al.

and NTRUSign can be slightly modified so that their security also based on the
hardness of a variant of the RLWE problem [SS11], and applications to Homo-
morphic Encryption were proposed in [BV11] and extended in [BGV11] and
[GHS12].

The advantage of RLWE over LWE is better efficiency and functionality for
cryptosystems based on this hardness assumption, but with extra structure in
the ring variant of the assumption comes the possibility of special attacks which
take advantage of this structure. So far, we have not seen special attacks which
take advantage of the extra structure.

The PLWE decisional hardness assumption was proposed in [BV11] as the
basis for a fully homomorphic encryption scheme, and was introduced as “a
variant of the RLWE assumption”. But the worst-case to average-case reduction
from the shortest vector problem on ideal lattices to the PLWE problem was
only proved for the special case of 2-power cyclotomic fields and the proof of
the reduction was cited from [LPR10]. A clear explanation of why this reduction
works in the 2-power cyclotomic case was given in [DD12], which identified the
necessary properties of the 2-power cyclotomic ring, and extended the proof to
work for general cyclotomic fields, with minimal loss in the growth of the error
bounds.

On the other hand, we can ask about the hardness of the PLWE assump-
tion for general number rings, and its relationship to the hardness of the RLWE
assumption. The key point is the distortion in the error distribution which occurs
when passing between the Gaussian error distribution in the continuous complex
space, where the ring is embedded via the Minkowski (or “canonical”) embed-
ding, and the error distribution when sampling error vectors coefficient-wise.

In this paper, we investigate the extent to which the hardness of these prob-
lems holds in more general number rings, that is, when the number field is not
necessarily a cyclotomic field generated by roots of unity. We present an attack
on the PLWE problem in certain carefully constructed examples of number fields.
We also give a sequence of reductions between the Search and Decision versions
of RLWE and the PLWE assumptions, under various conditions on the number
field. An intuitive way to explain our results is that, for number fields satisfying
our conditions, our attack on PLWE works by “guessing” one of q possibilities
for the value of the secret polynomial evaluated at 1, and distinguishing PLWE
samples with non-negligible probability when the error vectors are sampled from
Gaussian distributions coefficient-wise in the polynomial ring.

Practical encryption schemes based on PLWE all work based on the assump-
tion that the error distribution is sampled coefficient-wise in the polynomial
ring. For 2-power cyclotomic fields, this is equivalent to sampling from the usual
Gaussian error distribution for the ring embedded in a real vector space, but our
attack does not work for these fields. On the other hand, our attack shows that
it is not safe to work directly with the PLWE assumption in arbitrary number
fields. So for the purpose of constructing secure and efficient cryptosystems, it is
a reasonable conclusion that one should stick to cyclotomic number fields, until
the class of fields for which there exists a reduction to RLWE is enlarged.

Weak Instances of PLWE 185

More specifically, for a degree n number field K = Q[x]/(f(x)) and an integer
modulus q, if f(1) is congruent to zero modulo q, then our attack runs in time
Õ(q). For all current recommendations on parameter selection for RLWE, our
attack runs much faster than the known distinguishing attacks based on solu-
tions to the shortest vector problem, or decoding attacks based on computing a
reduced basis for a lattice, which run in time exponential in n. For example, rec-
ommended high security parameters for LWE and RLWE-based cryptosystems
given in [LP11, Figure 4] specify n = 320 and q = 4093. While the distinguish-
ing and decoding attacks, estimated to run in time 2122 and 2119 seconds, are
impractical, an attack which runs in time Õ(q) is certainly feasible.

We emphasize that this does not constitute a practical attack on existing
PLWE/RLWE-based cryptosystems. First of all, all practical systems known to
us are based on the RLWE problem in a cyclotomic ring, normally a 2-power
cyclotomic ring, R = Z[x]/(Φm(x)) where m is a power of 2. Our attack does not
apply to f = Φm because f(1) = Φm(1) cannot be zero modulo q when q is much
larger than m. Secondly, our attack runs in time proportional to q. While this is
an improvement over algorithms which need to find a short vector or compute a
reduced basis and run in time O(2n), it is still far from a practical attack when
q is taken to be of size 2128, (with n = 212), which is the minimum size required
for homomorphic computations in [GLN12] and [BLN14], for example.

2 Background

2.1 Distances and Distributions

For the definition of the RLWE and PLWE hardness assumptions and for the
implementation of related cryptosystems, it is necessary to define certain distri-
butions, which will be used in particular for error distributions.

Adopting the notation from [LPR10], we will let H ⊆ R
s1 × C

2s2 denote the
space

H = {(x1, . . . , xn) ∈ R
s1 × C

2s2 | xs1+s2+j = xs1+j , j = 1, . . . , s2},

where s1 and s2 are non-negative integers and n = s1 + 2s2. Since the last s2

complex coordinates depend on the previous s2 coordinates, as they are just the
complex conjugates of them, H is isomorphic to R

n. It inherits the usual inner
product 〈(xi), (yi)〉 :=

∑n
i=1 xi · yi.

There are several natural notions of distance on an inner product space, and
we will primarily need the �2-norm, given by ‖x‖2 := (

∑n
i=1 x2

i)
1/2 =

√〈x, x〉
for x ∈ H, and the �∞-norm, given by ‖x‖∞ := max |xi|.

For a real number σ > 0, the Gaussian function ρσ : H → (0, 1] is given by

ρσ(x) := exp(−π〈x, x〉/σ2).

The continuous Gaussian probability distribution Dσ is given by Dσ(x) = ρσ(x)
σn .

As in [LPR10, Definition 5] we now define the family of LWE error distribu-
tions to which the results apply.

186 K. Eisenträger et al.

Definition 1. For a positive real α > 0, the family Ψ≤α is the set of all elliptical
Gaussian distributions Dr (over K ⊗Q R) where each parameter ri ≤ α.

2.2 Lattices

A lattice is a discrete subgroup of a continuous space. For example, in R
n, the

real vector space of dimension n, a lattice can be specified by a set of n linearly
independent vectors, and the lattice is the integral span of those vectors. An
orthogonal basis for a lattice, if one exists, is a basis such that the basis vectors
are pairwise orthogonal, with respect to the given inner product.

For a lattice Λ ⊂ H, define the dual lattice as

Λ∨ = {y ∈ H | ∀x ∈ Λ, 〈x, y〉 =
n∑

i=1

xiyi ∈ Z}.

We will also need to refer to the smoothing parameter of a lattice, ηε(Λ)
introduced by Micciancio and Regev [MR07], which for a lattice Λ and a positive
real number ε is defined to be the smallest s such that ρ1/s(Λ∨ \ {0}) ≤ ε.

2.3 Number Fields

A number field is a finite algebraic extension of the field of rational numbers Q.
It is a field which contains Q and is a finite dimensional vector space over Q.
The degree of the number field is its dimension as a vector space. A number field
K is Galois if K/Q is a Galois extension, which means it is both separable and
normal. An extension is separable if every element in the extension is separable,
which means that its minimal polynomial has distinct roots. An extension K/Q

is normal if every irreducible polynomial with rational coefficients which has
one root in K has all of its roots in K. In particular, this means that every
isomorphism of the field K into its algebraic closure which fixes Q actually maps
into K, and thus is an automorphism of K. For a Galois extension K/Q, the
set of automorphisms of K which fix Q forms a group, and is called the Galois
group, Gal(K/Q), of K/Q.

The ring of integers in a number field K is the set of all algebraic integers
in the number field, which means the elements which satisfy a monic irreducible
polynomial with integer coefficients. This set is a ring, called a number ring, and
is usually denoted by OK . If the ring R = OK is generated over Z by (sums
and powers of multiples of) a single element, R = Z[β], then we say that R is
monogenic.

The mth cyclotomic field is the number field generated by the mth roots of
unity. Let ζm be a primitive mth root of 1, i.e. ζm

m = 1 but no smaller power
is 1. Then K = Q(ζm) = Q[x]/(Φm(x)), where Φm(x) is the m-th cyclotomic
polynomial Φm(x) =

∏
k∈(Z/mZ)×(x−ζk

m) with degree equal to n = ϕ(m). When
m is an odd prime we have Φm(x) = 1 + x + x2 + · · · + xm−1, and when m is a
power of 2, Φm(x) = xm/2 + 1.

Weak Instances of PLWE 187

For a finite algebraic extension K/Q, the Trace and Norm maps from K to
Q are defined as the sum (resp. the product) of all the algebraic conjugates of
an element. The Trace map induces a non-degenerate bilinear form Tr(xy) on
K. The dual or the codifferent of the ring of integers, R, with respect to this
bilinear form is the collection of elements

R∨ = {y ∈ K | Tr(xy) ∈ Z,∀x ∈ R}.

This is often denoted D−1
K in algebraic number theory.

It is known that if R = OK = Z[β] = Z[x]/(f(x)) is monogenic, then the
codifferent is generated by the single element (1/f ′(β)) [Ser79, p. 56, Cor 2].
In that case, there is a simple isomorphism between R∨ and R which scales
elements by multiplication by f ′(β). For K = Q(ζm), we have OK = Z[ζm].

The ring of integers R is embedded in H via the Minkowski embedding (called
the canonical embedding in [LPR10]) which sends any x ∈ K to (σ1(x), . . . σn(x)),
where σi are the real and complex embeddings of K, ordered to coincide with
the definition of H. Under this embedding, the notions of duality and codifferent
coincide. In particular, we can define an ideal lattice to be the image under this
embedding of any fractional ideal of R by taking the lattice generated by the
image of the n basis elements of the Z-basis for the ideal.

An ideal I in a commutative ring R is an additive subgroup which is closed
under multiplication by elements of R. A prime ideal I �= R is an ideal with the
property that if the product of two elements a, b ∈ R is such that ab ∈ I, then
either a or b is in I. Ideals in the ring of integers of number fields have unique
factorization into products of prime ideals. We say that a prime ideal (p) = pZ

splits completely in an extension of number fields K/Q if the ideal pOK factors
into the product of n distinct ideals of degree 1, where n = [K : Q] is the degree
of the extension K/Q.

2.4 Definition of the Ring-LWE Distribution and Problem

The Ring-LWE distribution and hardness assumptions were introduced in
[LPR10, Section 3] using the notation KR = K ⊗ R and T = KR/R∨. For an
integer q, let Rq denote R/qR.

Definition 2. (Ring-LWE Distribution) For s ∈ R∨
q a secret, and an error

distribution ψ over KR, the Ring-LWE distribution As,ψ over Rq × T consists of
samples generated as follows: choose a uniformly at random from Rq and choose
the error vector e from the error distribution ψ, then the samples are pairs of
the form (a, (a · s)/q + e).

Definition 3. (Ring-LWE Search Problem) Let Ψ be a family of distributions
over KR. The Ring-LWE Search problem (R − LWEq,Ψ), for some s ∈ R∨

q and
ψ ∈ Ψ , is to find s, given arbitrarily many independent samples from As,ψ.

Definition 4. (Ring-LWE Average-Case Decision Problem) Let Υ be a family
of error distributions over KR. The Ring-LWE Average-Case Decision problem

188 K. Eisenträger et al.

(R − DLWEq,Υ) is to distinguish with non-negligible advantage between arbitrar-
ily many independent samples from As,ψ, for a random choice of s ∈ R∨

q and
ψ ∈ Υ, and the same number of samples chosen independently and uniformly at
random from Rq × T.

2.5 Worst-Case Hardness of Search Version of Ring-LWE

Theorem 1. ([LPR10]) Let K be an arbitrary number field of degree n, with
R = OK , α = σ/q ∈ (0, 1), and q ≥ 2 ∈ N such that α · q ≥ ω(

√
log n). Then

there is a probabilistic polynomial-time quantum reduction from the Õ(
√

n/α)-
approximate SIVP problem on ideal lattices in K to R − LWEq,Ψ≤α

. For K a
cyclotomic number field, this gives a reduction from the Õ(

√
n/α)-approximate

SVP problem.

2.6 Known Attacks

When selecting secure parameters for cryptographic applications of the hardness
of RLWE, the following known attacks are currently taken into account. The
distinguishing attack considered in [MR09,RS10] for LWE requires the adversary
to find a short vector in the scaled dual of the LWE lattice. The distinguishing
advantage is then given in terms of the length of the vector found. According to
[LP11], the vector should be of length less than q/(2σ). Writing q in terms of n,
this amounts to solving a short-vector problem in an n-dimensional lattice, and
if q is too large with respect to n, this problem will be easy. This gives some
insight as to why q cannot be too large with respect to n.

Concrete security estimates given in [LP11, Figure 4] against this attack lead
to suggested parameters, for example at the “high security” level, of n = 320,
q ≈ 212, and σ = 8 (however recall that for 2-power cyclotomic fields, n should be
a power of 2). For those parameter choices, the distinguishing attack is estimated
to run in time 2122 (seconds) to obtain a distinguishing advantage of 2−64.

The decoding attack presented in [LP11] is an attack which actually recovers
the secret error vector in the ciphertext. To run the attack requires a reduced
basis, and the estimated time to compute the reduced basis when n = 320 and
q ≈ 212 is 2119 seconds for decoding probability 2−64.

3 Overview of Results

We work with the ring of integers R = OK in a number field K of degree n and
a prime number q and consider the following properties:

1. (q) splits completely in K, and q � [R : Z[β]];
2. K is Galois over Q;
3. the ring of integers of K is generated over Z by β, OK = Z[β] = Z[x]/(f(x))

with f ′(β) mod q “small”;
4. the transformation between the Minkowski embedding of K and the power

basis representation of K is given by a scaled orthogonal matrix.

Weak Instances of PLWE 189

5. let f ∈ Z[x] be the minimal polynomial for β. Then f(1) ≡ 0 (mod q);
6. q can be chosen suitably large.

Note that by the Chebotarev Density Theorem, there are infinitely many
choices for q satisfying this and only finitely many exclusions.

In Sect. 4 we will show that for pairs (K, q) satisfying conditions (1) and (2)
we have a search-to-decision reduction from R − LWEq to R − DLWEq.

In Sect. 5 we will consider a second reduction, from R − DLWEq to PLWE,
which is essentially a slightly more general version of the reduction given in
[LPR10] and [DD12]. For that step we require that K satisfies conditions (3)
and (4).

In Sect. 6 we will then give an attack which breaks instances of the PLWE
decision problem whenever (K, q) satisfy conditions (5) and (6), and we will
consider possible extensions of our attack.

4 Search to Decision Reduction for the Ring-LWE
Problem

In this section we will prove the following theorem.

Theorem 2. Let K be a number field such that K/Q is Galois of degree n and
let R = OK be its ring of integers. Let R∨ be the dual (the codifferent ideal) of
R. Let β be an algebraic integer such that K = Q(β), and let f(x) ∈ Z[x] be the
minimal polynomial of β over Q. Let q be a prime such that (q) splits completely
in K and such that q � [R : Z[β]]. Let α be such that α · q ≥ ηε(R∨) for some
negligible ε = ε(n). Then there is a randomized polynomial-time reduction from
R − LWEq,Ψ≤α

to R − DLWEq,Υα
.

Proof. Let n denote the degree of K over Q. Since K/Q is Galois, f factors
completely in K as f(x) = (x − β) · (x − β2) · · · (x − βm). Let q be a prime as in
the theorem statement, which factors as (q) = q1 . . . qn.

The field K has n embeddings, and since K/Q is Galois either all of these
embeddings are real or they are all complex.

Let β1 := β, and for i = 1, . . . , n, let σi : K ↪→ C (i = 1, . . . , n) be the
embedding which sends β1 to βi. Let σ : K ↪→ C × · · · × C be the Minkowski
embedding sending x ∈ K to (σ1(x) = x, σ2(x), . . . , σn(x)).

Before we can finish the proof we need two lemmas:

Lemma 1. Let K = Q(β1) be as above. For any α > 0, the family Ψ≤α is closed
under every automorphism τ of K, i.e. ψ ∈ Ψ≤α implies that τ(ψ) ∈ Ψ≤α.

Proof. Let τ be an automorphism of K. Then τ(β1) = βj for some 1 ≤ j ≤ n.
Let x ∈ K. Then x =

∑n−1
i=0 kiβ

i
1 for ki ∈ Q and

σ(x) =

(
n−1∑
i=0

kiβ
i
1,

n−1∑
i=0

kiβ
i
2, . . . ,

n−1∑
i=0

kiβ
i
n

)
.

190 K. Eisenträger et al.

On the other hand, σ(τ(β1)) is a vector whose entries are simply a permutation
of β1, . . . , βn and whose first entry is βj , and so for any x ∈ K, the coordinates
of σ(x) and σ(τ(x)) are simply a rearrangement of each other.

Hence for any ψ = Dr ∈ Ψ≤α, we have τ(Dr) = Dr′ ∈ Ψ≤α, where the
entries of r′ are simply a rearrangement of the entries of r and hence are all at
most α. ��

Worst-Case Search to Worst-Case Decision

Definition 5. The qi-LWEq,Ψ problem is: given access to As,ψ for some arbi-
trary s ∈ R∨

q and ψ ∈ Ψ , find s mod qiR
∨.

Lemma 2. (LWE to qi-LWE) Suppose that the family Ψ is closed under all auto-
morphisms of K. Then for every 1 ≤ i ≤ n there is a deterministic polynomial-time
reduction from LWEq,ψ to qi-LWEq,ψ.

Proof. The proof proceeds almost word for word as the proof in [LPR10]. Given
two prime ideals qi and qj above q, [LPR10] uses the explicit automorphism τk

with τk(ζ) = ζk where k = j/i ∈ Z
∗
m that maps qj to qi. Instead we use the fact

that the Galois group of K over Q acts transitively on the prime ideals above
q. Hence in our situation, given qi, qj there is also an automorphism τ of K
such that τ(qi) = qj . The rest of the argument is identical to the argument in
[LPR10]. ��
Conclusion of the proof of Theorem 2: To finish the proof based on these
Lemmas, we argue as in [LPR13a, Lemma 5.9] and the proof given there goes
through for Galois fields exactly as stated. ��

5 Reduction from R − DLWEq to PLWE

This section essentially summarizes and slightly generalizes one of the main
results from [DD12]. The reduction for general cyclotomic fields is also covered
in [LPR13b].

5.1 The PLWE Problem

The PLWE problem was first defined in [LPR10] and [BV11].

Definition 6. (The PLWE assumption). For all κ ∈ N, let f(x) = fκ(x) be
a polynomial of degree n = n(κ), and let q = q(κ) be a prime integer. Let
R = Z[x]/(f), let Rq = R/qR and let χ denote a distribution over R.

The PLWE assumption PLWEf,q,χ states that for any � = poly(κ) it holds
that

{(ai, ai · s + ei)}i∈[�] is computationally indistinguishable from {ai, ui}i∈[�],

where s is sampled from the noise distribution χ, the ai are uniform in Rq,
the error polynomials ei are sampled from the error distribution χ and the ring
elements ui are uniformly random over Rq.

The PLWE assumption is a decisional assumption.

Weak Instances of PLWE 191

5.2 Reduction

In [DD12, p. 39], the authors explain the reduction in the 2-power cyclotomic
case in terms of the two key properties of the ring R = OK which are used:

1. When R = Z[ζm] with m a power of 2, then nR∨ = R, for n = m/2.
2. The transformation between the embedding of R in the continuous real vector

space H and the representation of R as a Z-vector space with the power basis
consisting of powers of ζm is an orthogonal linear map.

Their argument shows that one can slightly generalize those conditions to
our Properties (3) and (4) and obtain the reduction for general number fields
with those properties. Note that the claim is that these conditions are sufficient
to obtain the reduction, not that they are necessary. There may be a reduction
which works for an even more general class of number fields.

Step 1 of the reduction uses the property that R = Z[β] = Z[x]/(f(x)) is
monogenic to transform the ring-LWE samples between distributions on R∨ and
R, at the cost of a scaling by f ′(β), where f ′(β) is “small” modulo q.

When reducing RLWE to PLWE we take samples from the Minkowski embed-
ding and consider them in the coefficient embedding. The main point is whether
vectors that are short in the Minkowski embedding have small coefficients in the
coefficient embedding.

Step 2 uses the fact that the matrix which transforms between the embed-
ding of R in H and the power basis representation of R is a scaled orthogonal
matrix, so it transforms the spherical Gaussian distribution in H into a spher-
ical Gaussian distribution in the power basis representation. Thus the error
distribuition can be sampled directly from small values coefficient-wise in the
polynomial ring.

Note that a different reduction is given in [DD12] for general cyclotomic
fields because of the fact that ζm potentially does not satisfy the requirement
that Φ′

m(ζm) is small modulo q compared to n. As noted there, according to a
result of Erdős [Erd46], the coefficients of Φm can be superpolynomial in size.
In any case, even for m prime, Φ′

m has coefficients of size up to roughly m.

6 Breaking Certain Instances of PLWE

6.1 The Attack

Let K be a number field such that f(1) ≡ 0 (mod q), and such that q can be
chosen large enough. Let R := OK , and let Rq := R/qR.

Now, given samples, (ai, bi) ∈ Rq × Rq, we have to decide whether the sam-
ples are uniform or come from a PLWE distribution. To do this we take the
representatives of ai and bi in R, call them ai and bi again, and evaluate them
at 1. This gives us elements ai(1), bi(1) ∈ Fq. If (ai, bi) are PLWE samples, then
by fdefinition,

bi = ai · s + ei,

192 K. Eisenträger et al.

and so
bi(1) ≡ (ai · s)(1) + ei(1) (mod q).

Since f(1) ≡ 0 (mod q), the Chinese Remainder Theorem gives us that

bi(1) ≡ ai(1) · s(1) + ei(1) (mod q).

Now we can guess s(1), and we have q choices. For each of our guesses we
compute bi(1)−ai(1) ·s(1). If (ai, bi) are PLWE samples and our guess for s(1) is
correct, then bi(1)−ai(1) ·s(1) = ei(1), and we will detect that it is non-uniform,
because ei is taken from χ. (For example, if ei is taken from a Gaussian with
small radius, then ei(1) will be “small” for all i and hence not uniform.) If (ai, bi)
are uniform samples, then bi(1)−ai(1) · s(1) for any fixed choice of s(1) will still
be uniform, since ai(1), bi(1) are both uniform modulo q.

6.2 A Family of Examples

Let f(x) = Xn + (k − 1)pX + p, where p is a prime less than n, and k is chosen
such that 1 + kp = q with q prime and q > n. This polynomial is Eisenstein
at p and hence irreducible. By Dirichlet’s theorem about primes in arithmetic
progressions, there are infinitely many values of k that give a prime q.

Also, by construction

f(1) = 1 + (k − 1)p + p = 1 + kp = 1 ≡ 0 (mod q).

Moreover, f ′(1) is not zero modulo q since

f ′(1) = n + (k − 1)p = (1 + kp) + (n − 1 − p) = q + a,

with a a number which, by construction is < n. Hence f has 1 as a simple root
modulo q, and by the Chinese Remainder Theorem

Z[X]/(f(X)) ∼= Z[X]/(X − 1) × Z[X]/(h(X))

with h(X) coprime to (X−1). As explained in the previous section, this allows us
to guess s(1), since (ai · s)(1) = ai(1) · s(1). Hence for this choice of polynomials
and choice of q, we can distinguish uniform samples from PLWE samples and
break PLWE.

6.3 Extension of the Attack on PLWE

The attack we presented in Sect. 6.1 above on PLWE for number fields satisfying
property (5) can be extended to a more general class of number fields as follows:

Suppose that f(x) has a root β modulo q which has small order in (Z/qZ)∗.
If q is a prime, then this is equivalent to β having small order modulo q − 1. If
f(β) ≡ 0 mod q, then the same attack above will work by evaluating samples
at β, instead of at 1. Now unfortunately, the value of the error polynomials ei(β)
are harder to distinguish from random ones than in the case β = 1: although

Weak Instances of PLWE 193

the ei(x) have small coefficients modulo q, the powers of β may grow large and
also may wrap around modulo q. However, if β has small order in (Z/qZ)∗, then
the set {βi}i=0,...,n−1 takes on only a small number values, and this can be used
to distinguish samples arising from ei(β) from random ones with non-negligible
advantage.

6.4 Security Implications for RLWE and PLWE-based
Cryptosystems

Putting all the results of this paper together, if there exist number fields satisfy-
ing all 6 properties, then for those number fields we would also have an attack on
RLWE. A toy example of a field satisfying the first five conditions listed above
is K = Q(

√
11), β =

√
11, f(x) = x2 − 11, and q = 5.

In general, for a given degree n, it is not hard to generate irreducible poly-
nomials f(x) of degree n, such that, letting q = f(1), q is sufficiently large. Each
such polynomial f(x) gives rise to a weak instance of PLWE, according to our
attack. However, to obtain an attack on RLWE, we would need to check that
the first 4 properties are also satisfied. The first two properties are easy to check,
but not necessarily easy to assure by construction. Properties (3) and (4) are
not as easy to check, and harder to assure by construction.

The security of RLWE in general and its reduction to hard lattice problems
is an interesting theoretical question and thus the construction of a number field
satisfying all 6 properties would be a significant result. But from the point of
view of practical applications to cryptography and homomorphic encryption, the
security of the proposed cryptosystems is based on the hardness of the PLWE
assumption. Thus the attack presented here and the results of this section are
of interest in themselves.

References

[IEEE] P1363.1: Standard specifications for public-key cryptographic techniques
based on hard problems over lattices, December 2008. http://grouper.ieee.
org/groups/1363/

[AD99] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: STOC ’97: Proceedings of the Twenty-ninth Annual
ACM Symposium on Theory of Computing, pp. 284–293. ACM, New York
(1999)

[BLN14] Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted
medical data. J. Biomed. Inform. (2014). doi:10.1016/j.jbi.2014.04.003

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC’13: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM,
New York (2013)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
http://dx.doi.org/10.1016/j.jbi.2014.04.003

194 K. Eisenträger et al.

[BGV11] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryp-
tion without bootstrapping. In: Innovations in Theoretical Computer
Science–ITCS 2012, pp. 309–325. ACM (2012)

[DD12] Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51.
Springer, Heidelberg (2012)

[Erd46] Erdős, P.: On the coefficients of the cyclotomic polynomial. Bull. Am. Math.
Soc. 52, 179–184 (1946)

[GHS12] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

[GLN12] Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998)

[LP11] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[LPR13a] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM 60(6(Art. 43)), 35 (2013)

[LPR13b] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). (electronic)

[MR09] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–
191. Springer, Heidelberg (2009)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 1–40 (2009)

[RS10] Rückert, M., Schneider, M.: Selecting secure parameters for lattice-based
cryptography. Cryptology ePrint Archive, Report 2010/137 (2010)

[Ser79] Serre, J.-P.: Local Fields. Graduate Texts in Mathematics, vol. 67. Springer,
New York (1979)

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 27–47. Springer, Heidelberg (2011)

The Usage of Counter Revisited:
Second-Preimage Attack on New Russian

Standardized Hash Function

Jian Guo1, Jérémy Jean1(B), Gaëtan Leurent2, Thomas Peyrin1,
and Lei Wang1

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore
{GuoJian,JJean,Thomas.Peyrin,Wang.Lei}@ntu.edu.sg

2 INRIA, Paris, France
Gaetan.Leurent@inria.fr

Abstract. Streebog is a new Russian hash function standard. It follows
the HAIFA framework as domain extension algorithm and claims to resist
recent generic second-preimage attacks with long messages. However, we
demonstrate in this article that the specific instantiation of the HAIFA
framework used in Streebog makes it weak against such attacks. More
precisely, we observe that Streebog makes a rather poor usage of the
HAIFA counter input in the compression function, which allows to con-
struct second-preimages on the full Streebog-512 with a complexity as
low as n × 2n/2 (namely 2266) compression function evaluations for long
messages. This complexity has to be compared with the expected 2512

computations bound that an ideal hash function should provide. Our
work is a good example that one must be careful when using a design
framework for which not all instances are secure. HAIFA helps designers
to build a secure hash function, but one should pay attention to the way
the counter is handled inside the compression function.

Keywords: Streebog · Cryptanalysis · Second-preimage attack ·
Diamond structure · Expandable message · HAIFA

1 Introduction

Hash functions are among the most fundamental primitives in modern cryp-
tography. Informally, a cryptographic hash function maps an arbitrarily long
message into a short random looking digest, which acts as the fingerprint of the
original message. As for any cryptographic primitive, one expects some security
properties to be fulfilled and in the case of hash functions we can point to three
classical notions:

• Collision Resistance: it should be computationally infeasible for an adver-
sary to find a pair of distinct messages that have the same hash digest.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 195–211, 2014.
DOI: 10.1007/978-3-319-13051-4 12

196 J. Guo et al.

• Second-Preimage Resistance: for any given message M , it should be com-
putationally infeasible for an adversary to find a distinct message M ′ that
leads to the same hash digest than M .

• Preimage Resistance: for any given hash digest h, it should be computa-
tionally infeasible for an adversary to find a message M that leads to the hash
digest h.

By “computationally infeasible”, we mean that an attacker should not be able
to break that property with less than a certain number of computations that
depends on n, the bit length of the hash digest. More precisely, we expect that
the best attacks on a cryptographic hash function are generic attacks. In the
case of an ideal hash function, one expects to find a (second)-preimage only
after trying about 2n distinct messages, and to find a collision only after trying
about 2n/2 distinct messages (due to the birthday paradox).

A cryptographic hash function is commonly built by iterating a fixed input-
length function called compression function in order to handle arbitrarily long
messages, and the iteration algorithm is referred to as domain extension. In this
article, we mainly discuss the domain extension schemes for cryptographic hash
functions, and consider the compression function as an ideal component.

Generic Attacks. The well-known Merkle-Damg̊ard scheme [13,26] has been
the most popular domain extension scheme in order to build a hash function,
e.g., MD5, SHA-1 and SHA-2 are built upon such design strategy. However, since
2004, several weaknesses of Merkle-Damg̊ard scheme have been discovered. In
particular, Kelsey and Schneier published a generic second-preimage attack for
long messages against the Merkle-Damg̊ard scheme [23] in 2005. The attack com-
plexity is roughly 2n−k compression function calls if the original given message
is 2k-block long, with k ≤ n/2. Later, Andreeva et al. gave an alternative attack
using a diamond structure [3]. Their attack also require 2n−k compression func-
tion calls if the original given message is 2k-block long, but only for k ≤ n/3. On
the other hand, it is applicable to a wider range of designs; in particular it can
accommodate a small dithering input in the compression function. It also gives
some more freedom to the adversary: as mentioned in [3], this variant allows “the
attacker to leave most of the target message intact in the second preimage, or to
arbitrarily choose the contents of roughly the first half of the second preimage,
while leaving the remainder identical to the target message.”

Therefore, regardless of how the compression function is designed, a Merkle-
Damg̊ard hash function can simply not achieve the security of 2n with respect to
second-preimage resistance. Consequently, the research community designed new
domain extension schemes in order to overcome the inherent weaknesses of the
original Merkle-Damg̊ard construction. In their original second-preimage attack,
Kelsey and Schneier already suggest this approach, and mention that “XORing
in a monotomic counter as part of the round function would resist the attacks”.
Later, Biham and Dunkelman proposed the HAIFA domain extension scheme [7],
which became quite popular. The main feature of HAIFA is that it adds a counter
(which corresponds to the number of previously hashed message bits) as an extra

The Usage of Counter Revisited 197

input parameter to the compression function during the iteration process, in
order to make each compression function call different. On the one hand, this
is widely believed to provide resistance against second-preimage attacks, and
this can be proved under strong randomness assumptions for the compression
function [10]. On the other hand, this means the compression function must
accept an extra input, which must be processed securely to avoid security issues.
In particular, compression function attacks can take advantage of this input [4,9,
16,19], even though the effect on the iterated function is not obvious. Recently,
many new dedicated hash functions have been designed following the HAIFA
framework, including some SHA-3 candidates (BLAKE [5], ECHO [6], Shavite-3 [8],
Shabal [12], Skein [14]), as well as Streebog, which has been standardized by the
Russian government as GOST R 34.11-2012 [27] and by IETF as RFC 6896 [20].

Our Contributions. In this article, we focus on the security of Streebog
hash function with respect to the second-preimage resistance. According to the
designers, Streebog is based on the HAIFA framework, and is explicitly claimed
to resist second-preimage attacks with long message [17,30]1.

While we are not aware of any generic second-preimage attack on the HAIFA
framework, we emphasize that HAIFA acts as a generic framework, without
explicitly specifying how the counter should be involved in the compression
function computation. On the other hand, Streebog, as an instantiation of the
HAIFA framework, has fully specified the way how the counter is used inside the
compression function. This instantiation is quite provocative as the counter is
simply XORed to the internal state variable of the compression function. Thus,
it is necessary to evaluate whether this simple approach is sound or not (at least
with respect to the second-preimage resistance). This analysis will also shed some
light on the statement of Kelsey and Schneier that “XORing in a monotomic
counter” is sufficient to avoid those attacks.

Unfortunately, we show in this article that Streebog’s method to incorpo-
rate the counter does not strengthen its security with respect to second-preimage
resistance. More precisely, we observe that during the sequential iteration of
the compression function, the counter injection at block i interacts with the
counter injection at next block i + 1. The iteration of the compression func-
tion in Streebog can then be transformed into an equivalent form, for which a
counter-independent function is used multiple times during the hashing process.
This behavior reduces to almost zero the extra security brought by the HAIFA
framework over the regular Merkle-Damg̊ard construction. Thanks to our find-
ings, we describe two second-preimage attacks on the full Streebog-512. In
Sect. 4, we give an attack using a diamond structure, similar to the attack of [3].
It requires about 2342 compression function evaluations for long messages with
at least 2179 blocks. In Sect. 5, we give attack using an expandable message, sim-
ilar to the attack of [23]. It requires only 2266 compression function evaluations

1 These documents also claim that Streebog is resistant to the herding attack from
Kerlsey and Kohno [22], but it is well known that this attack is applicable to HAIFA
if no salt is used [7].

198 J. Guo et al.

for long messages with at least 2259 blocks. For short messages of 2x blocks, the
first attack gives a complexity of about 2x · 2512−x when x < 179, while the
second attack gives a complexity of about 2523−x when x < 259. Note that this
increases linearly with the decrease of the message block length (ignoring the
logarithmic factor).

The rest of the article is organized as follows. In Sect. 2, we provide a descrip-
tion of the Streebog hash function, and then discuss our main observation on
the usage of the counter value in Sect. 3. We detail how this observation can
be used in order to mount second-preimage attacks of the full Streebog-512
hash function in Sect. 4 (using a diamond structure), and in Sect. 5 (using an
expandable message). Finally, we draw conclusions in Sect. 6.

2 Specifications of Streebog

2.1 Domain Extension of Streebog

Streebog is a family of two hash functions, Streebog-256 and Streebog-512
that has hash output sizes 256 and 512 bits respectively [20,27]. In this article,
we only consider the large version Streebog-512 and we simply refer to it as
Streebog.

During the computation process, Streebog updates the internal state h as
well as two other internal variables: Σ that denotes the checksum of the message
blocks already processed, and the counter N that refers to the number of already
hashed bits. Both the message block size and the intermediate hash variable
size are 512 bits. The dedicated domain extension consists of three stages that
we describe below (see also Fig. 1). Let M be the input message, and we denote
|M | its bit length. In the rest of the article, we also denote hi the internal state
variable h after the i-th application of the compression function g, which is
defined in more details in Sect. 2.2.

Stage 1. This phase initializes the hash state. The three variables Σ, N and
h are assigned to 0, 0 and IV respectively, where IV refers to the initialization
vector of Streebog, and has been publicly defined by the designers.

Stage 2. The input message M is divided into 512-bit blocks m1||m2|| · · · ||mt,
where t =

⌈
|M |
512

⌉
. The block mi, 1 ≤ i ≤ t, is processed according to the following

operations:

hi ←−g(N,hi−1,mi); N ←−N + 512; Σ ←−Σ + mi.

Stage 3. Pad the last block with 10 · · · 0 so that it becomes full, and we denote
this padded block m. Then, process this padded last block with:

ht+1 ←−g(N,ht,m); N ←−N + (|M | mod 512); Σ ←−Σ + m.

The Usage of Counter Revisited 199

g

m1

h0 = IV

512

N

Σ

h1 g

m2

512

. . .

. . .

h2 . . . g

mt

ht−1

512

g

m

ht

|M |

g
ht+1

0

g
ht+2

0

h

Stage 1 Stage 2 Stage 3

Fig. 1. The domain extension algorithm of Streebog.

After all the message blocks have been processed, two extra compression
function calls are applied:

ht+2 ←−g(0, ht+1, |M |); ht+3 ←−g(0, ht+2, Σ).

Finally, ht+3 is the hash digest for Streebog-512. In the case of Streebog-256,
the 256 MSBs of ht+3 are outputted as hash digest.

2.2 The Compression Function of Streebog

As described in the introduction, the designers of Streebog have chosen to adopt
the HAIFA model in the design of the compression function g. This framework
has been initially introduced to differentiate the successive applications of the
compression function calls by adding a counter as additional input parameter.
Here, we mainly focus on how the counter N is used in the compression function
g(N,hi−1,mi), which is described in Fig. 2. Particularly, we emphasize that f
is a deterministic function independent of the counter N . Since the detailed
algorithm of f is not related to our attack, we omit its description in this paper,
and refer the interested reader to the original document [20,27]. Yet we would
like to point out that f shares high similarity with the compression function of
Whirlpool hash function [28], which leads to the analysis results on Streebog
[1,2,31] that share similarity with the attacks on Whirlpool [25,29].

For the sake of simplicity, we consider that the counter value equals the num-
ber of compression calls rather than the number of processed bits. Practically,
this only consists in performing a right-shift operations of 9 bit positions on the
counter value. This simplification does not change any of the results described
in this article, while easing the reading of the technical contents.

3 Our Observation

In this section, we propose an equivalent representation of the domain extension
algorithm of Streebog, which we use in the next section to launch a second-
preimage attack on the full hash function.

200 J. Guo et al.

i

hi−1

mi

hif

Fig. 2. The compression function g(N, hi−1, mi) of Streebog produces the new chain-
ing variable hi.

First of all, we describe this equivalent description of the compression func-
tion, which is depicted in Fig. 3. The counter variable N coming from the HAIFA
design is simply XORed to the internal state hi−1 prior to the application of the
function f (but after the feed-forward branching, see Fig. 2), which makes it
possible to linearly shift the addition before and after the feed-forward in the
original compression function. Formally, we have the following equivalence:

hi = hi−1 ⊕ f(hi−1 ⊕ i,mi) ⇐⇒
{

hi = F (hi−1 ⊕ i,mi) ⊕ i,

F (x,mi) = f(x,mi) ⊕ x.

Note that the counter value i is now XORed to both the input hash variable
and the output hash variable of F (see Fig. 3), while F itself is a deterministic
function which is independent of the counter parameter i.

i i

hi−1

mi

hif

F

Fig. 3. An equivalent representation of Streebog’s compression function: the internal
function F has been made independent of the counter value.

We now pay attention to the sequential iteration of the above equivalent com-
pression function in Stage 2 of the domain extension. For the sake of simplicity,
we detail here the case of two consecutive blocks (see Fig. 4).

As we can see, during the end of the i-th message block computation until
the beginning of the (i + 1)-th message block computation, the output of F is
updated twice by XORing consecutively the counter values i and i+1. We define

Δ(i) def= i ⊕ (i + 1),

FΔ(i)(X,Y) def= F (X,Y) ⊕ Δ(i).

From this observation, we get yet another equivalent representation of the con-
secutive compression function iterations during Stage 2 of Streebog, as shown
in Fig. 5.

The Usage of Counter Revisited 201

i i

hi−1

mi

f

F

i + 1 i + 1mi+1

hi+1f

F

Fig. 4. Two consecutive compression function calls in the equivalent representation:
the counter addition in between the two calls can be combined and controlled.

i⊕(i+1)

F

i i i + 1

hi

FΔ(i)

(i+1)⊕(i+2)

F

i + 1 i + 2

hi+2

FΔ(i+1)

Fig. 5. Two consecutive compression function blocks in the equivalent representation.

Next, we investigate the relation between the functions FΔ(i), 1 ≤ i ≤ t. In
the most simple case, we can easily see that Δ(i) = i ⊕ (i + 1) = 1 always holds
as long as i is an even integer. Consequently, the very same function F1 is used
every even integer index during the iterations in Fig. 5. We list the first values
of Δ(i) in Table 1, and one can see that there is a lot of structure: sequences
of length 2s − 1 seem to repeat every 2s steps. More formally, we compare the
functions FΔ(i) and FΔ(i+2s) for any 0 ≤ i < 2s − 1, where s can be any positive
integer smaller than 512. Let 〈i〉 denote the s-bit binary representation of that
integer i. We have:

Δ(i) = 〈i〉 ⊕ 〈i + 1〉
Δ(i + 2s) = (1||〈i〉) ⊕ (1||〈i + 1〉) = 〈i〉 ⊕ 〈i + 1〉.

Thus, we conclude that FΔ(i) and FΔ(i+2s) are the same function for any 0 ≤ i <
2s − 1. By extending this simple reasoning, we can generalize and demonstrate
that FΔ(i) and FΔ(i+j×2s) are the same function for any 0 ≤ i < 2s − 1 and any
integer j. This is illustrated in Fig. 6.

Table 1. First values of Δ(i).

i: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Δ(i): 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31 1 3 1 7 1 3 1 15

Finally, we present an equivalent representation of the sequential iteration
in Stage 2 of the domain extension of Streebog in Fig. 7, where Fi denotes
the function for FΔ(j×2s+i) with 0 ≤ i ≤ 2s − 2, and Gj denotes the functions
FΔ(j×2s−1), where j is any integer. Let l be

⌊
t
2s

⌋
and p be the reminder of

t mod 2s.

202 J. Guo et al.

512 − s bits s bits

0 < i >

0 < i + 1 >

= 0 < i ⊕ (i + 1) >

Δ(i)

512 − s bits s bits

j < i >

j < i + 1 >

= 0 < i ⊕ (i + 1) >

Δ(i + j · 2s)

Fig. 6. Functions FΔ(i) and FΔ(j×2s+i) are the same

F0 F1
. . . F2s−2 G1IV

0

...
...

...
...

F0 F1
. . . F2s−2 Gl

F0 F1
. . . Fp ht

t + 1

F2s−2 ◦ · · · F1 ◦ F0

Fig. 7. The equivalent representation of Stage 2

4 Second-Preimage Attack on Full Streebog

with a Diamond

Based on the equivalent description of the Stage 2 computation of Streebog
presented in the previous section, we now describe a second-preimage attack on
the full Streebog-512 hash function with time complexity equivalent to 2342

compression function evaluations for an original message of at least 2179 blocks.
Our main observation provides a way to remove the security benefits brought

by the counter of the HAIFA design in the Streebog hash function. This is due to
a poor usage of this counter, which allows an adversary to reuse previously known
second-preimage techniques on the classical Merkle-Darmg̊ard construction. In
particular, we can use the diamond structure introduced by Kelsey and Kohno
[22] on the function F2s−2 ◦· · · F1 ◦F0, which is reused several times. Indeed, this
technique allows to construct a large multicollision set of 2d d-block messages, all
hashing to a single chaining variable h�. This is similar to the second-preimage
attack on dithered hash functions by Andreeva et al. [3].

We first give in Sect. 4.1 a detailed explanation concerning the construction
of this structure with 2(n+d)/2 computations, and we later describe in Sect. 4.2
how to use it inside a second-preimage attack for the full Streebog-512.

The Usage of Counter Revisited 203

4.1 The Diamond Structure

As depicted in Fig. 8, a 2d-diamond construction refers to a complete binary tree
of depth d, i.e., the distance from the leaves to the root is d. There are exactly
2d−l nodes at level l, for 0 ≤ l ≤ d, where l = 0 refers to the leaf level and l = d
to the root level. All nodes except the leaves have two children from lower level.
In [22], Kelsey and Kohno introduced this structure to launch herding attacks.
In this diamond, a node refers to a chaining value, and an edge represents a
message connecting one chaining value to another.

h�

h0
1

m0
1

h1
1

m1
1

22s−1

F2s−2F2s−3◦···◦F1F0

Fig. 8. The diamond structure of depth 2s − 1 used in our second-preimage attack.

Given the leaves, i.e., 2d chaining values at level 0, one can construct the
diamond in 2(n+d)/2 compression function evaluations. The construction algo-
rithm was initially proposed by Kelsey and Kohno [22] and later refined by
Kortelainen and Kortelainen [24] and verified in [18]. The algorithm works level
by level recursively and independently. Below in Algorithm 1, we show how the
next level of 2d−1 chaining values are computed given the current level of 2d

nodes and compression function f = F0 as input. The output Lout of the cur-
rent level is then fed into the algorithm as input Lin for next level, until root is
reached. The overall complexity has been estimated as 2(n+d)/2 in [24].

4.2 Details of the Attack

At this point, we are able to build a diamond structure, and we would like to
use it for a second-preimage attack. An overview of our attack is given in Fig. 9,

204 J. Guo et al.

Algorithm 1. Construction of one level of a diamond
Input: input chaining value list Lin of size 2d

Input: compression function f
Output: next layer chaining values list Lout of size 2d−1

1: initialize an empty hash table T , a message list LM .
2: while Lin is not empty do
3: pick random message block M , add to LM .
4: for all hin ∈ Lin do
5: evaluate hout = f(hin, M)
6: if T [hout] is not empty then
7: fetch the pair (h′

in, M ′) in entry T [hout]
8: add hout to Lout, along with (hin, M), (h′

in, M ′) as the connecting edges.
9: remove f(hin, m) and f(h′

in, m) from T for all m ∈ LM .
10: remove hin and h′

in from Lin.
11: else
12: add (hin, M) to T [hout].

where one can see that we use d = 2s − 1 in order to fully control the effect
of the counter. The diamond structure is constructed with the function F2s−1 ◦
· · · F1 ◦ F0. Then, as in the original second-preimage attack using the diamond
structure, we use a single message block m↘

� to connect the root chaining value
h� to the known message we are attacking. The connection is done after the
next F function, but before the addition of the counter, i.e. we match of set of
values {F (h�,m) |m ← $}, and {hi ⊕ i | i ≡ 0 mod 2s}. If the original message m
consists of t 2s-bit blocks, we have l =

⌊
t
2s

⌋
possible connecting points, meaning

that we expect to pick about 2n/l random message blocks m↘
� before hitting a

known point h′
�.

This point of connection gives the value l′ × 2s − 1 of the counter N used in
Streebog at that position. Once we have found the 1-block connecting message
m↘

� at the end of the diamond structure, we need to connect one of the 2d leaves
of the diamond structure to the IV of the hash function.

Before finding a valid second-preimage, there are two additional points that
we need to consider. First, the second-preimage needs to have the exact same
length |M | as the first message since Streebog processes the length of the mes-
sage at the end of the hashing process. Second, the additive checksum computed
over the new blocks of the second-preimage needs to match the targeted one Σ
of the original message.

In order to overcome both of these two points, we first construct a 2512-
multicollision (with a technique similar to the one from Joux [21]) over the first
2 × 512 = 1024 message blocks so as to handle the checksum issue. This step
can be performed efficiently with 512 × 2n/2 computations using the technique
described in [15]. The idea is that, at each step i of the multicollision search, we
compute two sets of 2-block messages: {(Ai)||(−Ai)}, for 2n/2 random choices
of Ai, and {(Bi + 2i)||(−Bi)}, for 2n/2 random choices of Bi, in order to find a
collision between the two sets.

The Usage of Counter Revisited 205

IV h
G1 ◦ (F2s−2 ◦ · · · ◦ F0) G2 ◦ (F2s−2 ◦ · · · ◦ F0) F2s−2 ◦ · · · F0 F Fp−1 ◦ · · · ◦ F0 |M | Σ

2s 2s
.

p 1 1

l′ × 2s t − l′ × 2s

d = 2s − 1 11024 L 1

h�

2d-diamond

h′
�

m↘
�

L random blocks

. . .

h̃′

m↗
�

IV

h0

h′
0

h1

h′
1

h511

h′
511

h̃
20 21 2511

Fig. 9. Overview of the second-preimage attack.

Then, starting from the IV , we reach a chaining value h̃, such that we can
find a 1024-block message that verifies any given additive checksum value σ.
Indeed, the binary decomposition of σ gives precisely the path to follow (and
incidentally the message blocks to use) in the multicollision graph we just built
in order to reach σ.

We would like now to match the correct message length |M |. For that task,
we first evaluate the number of blocks already fixed by the attack. The diamond
uses d = 2s − 1 blocks, the multicollision uses 1024 blocks, and we use one
block for m↗

� to connect to h′
� in the original message chain. After the collision

on h′
�, we use the same values as in the original message, such that we want

to use exactly l′ × 2s blocks between the IV and h′
�. We use an additional

message block m↗
� to connect to one leaf of the diamond, so that in total there

are L = l′ × 2s − 1024− 1− 2s − 1 blocks left between h̃ and h̃′. We pick random
values for all those blocks, obtain the value of h̃′, and then pick about 2n−d

random blocks m↗
� to hit one of the 2d leaves of the diamond.

Finally, we compute the reduced checksum value σ of all the message blocks
except the 1024 first ones, and we choose the correct 1024 message blocks in the
graph so as to match the local checksum Σ −σ. At this point, the attack is over:
all the message blocks are fixed, and the second-preimage is constructed.

Overall, the total complexity of this attack requires 2(n+d)/2 computations
to construct the diamond, 2n/l computations to connect the root of the dia-
mond to the original message chain, and 512× 2n/2 computations for the Joux’s
multicollision. The time complexity

512 × 2n/2 + 2n−d + 2(n+d)/2 + 2n−log2(l)

can be minimized by fixing d = n/3 and l ≥ 2n/3, which reaches an overall
time complexity of about 22n/3 computations for the second-preimage attack.
With the parameters of Streebog-512, n = 512 gives the integer value s = 8
and d = n/3, and a total time complexity equivalent to about 2342 compression
function evaluations. We note that our attack imposes a certain length on the
original message as n − log2(l) ≤ 341 imposes l ≥ 2171, which constraints M to
have at least 2171+8 = 2179 message blocks.

206 J. Guo et al.

For shorter messages with 2x blocks and x < 179, the complexity is mainly
dominated by the complexity of linking IV to one leaf node of the diamond
structure, which is 2n−d, and the complexity of linking h� to h′

�, which is
2n−x+�log2(d)�. Let x = d, and we get the complexity is upper bounded by
2x·2n−x. Thus the complexity increases linearly with the decrease of the message
block length (ignoring logarithmic factors).

5 Second-Preimage Attack on Full Streebog

with an Expandable Message

The equivalent description of Streebog given in the previous sections can also be
used to mount a variant of the attack of Kelsey and Schneier using an expandable
message [23]. This gives a second-preimage attack on the full Streebog-512 hash
function with time complexity equivalent to 2266 compression function calls for
an original message of at least 2259 blocks.

We first give in Sect. 5.1 a detailed explanation concerning the construction
of this structure with n/2×2n/2 computations, and we later describe in Sect. 5.2
how to use it inside a second-preimage attack for the full Streebog-512.

5.1 The Expandable Message

In order to build an expandable message, we use the technique of [23], i.e. we
build a multicollision where the messages in each colliding pair have a different
length, as shown by Algorithm 2. If we have colliding pairs with length (1, 2k+1),
for 0 ≤ k < t, this implicitly defines a set of 2t messages with length in the range
[t, 2t + t− 1], that all reach the same final chaining value x∗. More precisely, one
can build a message of length t + L using the binary expression of L to select a
message in each pair.

IV

1 bl.

27 + 1 bl.

m7/m′
7

1 bl.

26 + 1 bl.

m6/m′
6

1 bl.

25 + 1 bl.

m5/m′
5

1 bl.

24 + 1 bl.

m4/m′
4

1 bl.

23 + 1 bl.

m3/m′
3

1 bl.

22 + 1 bl.

m2/m′
2

1 bl.

21 + 1 bl.

m1/m′
1 x∗

In a second-preimage attack, we hash random blocks starting from x∗ until
we find a link to one of the intermediate values reached when hashing the chal-
lenge message. This gives the required length for the expandable message, and
we build the second preimage using the expandable message, the linking block,
and the end of the challenge message.

However, this does not work for a HAIFA compression function: depending
on which message is selected in the pair k (mk or m′

k), the message length before
the following block will be different, and the counter will have a different value.
Therefore, the collision (mk−1,m

′
k−1) will only be valid in one case.

In the case, of Streebog, the weak use of the counter makes this attack still
possible thanks to the equivalent representation of Sect. 3. Indeed, the sequence

The Usage of Counter Revisited 207

Algorithm 2. Construction of an expandable message (Merkle-Damg̊ard)
Input: Initial chaining value x
Input: Compression function f
Output: Message pairs (mi, m

′
i), final chaining value x

1: for 0 ≤ i < n/2 do
2: Initialize an empty hash table T
3: for 0 ≤ r < 2n/2 do
4: T [f(x, r)] ← r
5: y ← x
6: for 0 ≤ j < 2i do
7: y ← f(y, 0)
8: repeat r ← $
9: until T [f(y, r)] not empty

10: mi ← [0]2
i‖r

11: m′
i ← T [f(y, r)]

12: x ← f(y, r)

Δ(i) has a lot of regularity and repetitions (as seen in Table 1), and with a
careful construction, we can ensure that the message pairs (mi,m

′
i) are only

used at positions with same sequences of Δ(i). More precisely, we must build
pairs with large difference first, and use differences that are powers of two, while
more general constructions can be used for plain Merkle-Damg̊ard. We must also
stop the construction a few steps before reaching a difference of 1 (as explained
later, the smallest difference is O(n)). This means that we can only use a fraction
of the intermediate states reached by the challenge message.

In the following, we call an expandable message that can reach lengths
between a and b by increment of c an (a, b, c)-expandable message. Let us
assume we have built an (l, l + L, 2i)-expandable message for Streebog, with
l < 2i−1 − 1. Since l < 2i − 1, we have Δ(l + x) = Δ(l + x + j · 2i), for all
0 ≤ x < 2i − l − 1 and j ≥ 0. In particular, if we append a new message pair
(m,m′) with |m| = 2i−1 + 1, |m′| = 1 to the expandable message, the sequence
of Δ(i) used for the messages will be same for every choice of the (l, l + L, 2i)-
expandable message. This allows to extend the (l, l + L, 2i)-expandable message
into a (l + 1, l + L + 1 + 2i−1, 2i−1)-expandable message. If we iterate this con-
struction, starting from a single message of length l and a maximal increment
of 2t, we can build a (l + t − s, l + t − s + 2t+1 − 2s, 2s)-expandable message for
Streebog, assuming that l + t − s < 2s − 1 (Fig. 10).

5.2 Details of the Attack

The second preimage attack on full Streebog-512 uses an initial multicollision
with 1024 blocks in order to adjust the checksum, like the attack of Sect. 4. Then,
we build the expandable message starting for the final value of the multicollision.
With the parameters of Streebog-512, we use l = 1024, s = 11, t = 258,
i.e. we build a (1271, 2259 − 777, 2048)-expandable message. After building the

208 J. Guo et al.

IV 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 . . .31

m′
3

m3

m′
2

m2

m′
2

m2x3 x3x2 x2 x2 x2

m′
3‖m′

2

m′
3‖m2

m3‖m′
2

m3‖m2

Fig. 10. Construction of a (2, 14, 4)-expandable message for Streebog. Note that m2

and m′
2 have the same Δ indices in both positions, and the Δ for the block after

m′
3‖m′

2, m′
3‖m2, m3‖m′

2, or m3‖m2 is the same (here, Δ = 1).

expandable message, the attack mostly follows the procedure given by Kelsey
and Schenier. An overview of our attack is given in Fig. 11.

We first use a message block m∗ to connect the final chaining value h∗ to
the known message we are attacking. More precisely, if the original message m
consists of t 2s-bit blocks, we have l =

⌊
t
2s

⌋
possible connecting points, meaning

that we expect to pick about 2n/l random message blocks m∗ before hitting a
known point h′

∗. With the parameters used for Streebog-512, we use connecting
points2 with i ≡ 1272 mod 2048. This point of connection gives the value of the
counter N used in Streebog at that position, and the length L = N − 1024 − 1
required for the expandable message. In order to build the second preimage, we
select the message with the correct length L in the expandable message, and we
select a message in the initial multicollision to adjust the checksum.

IV h
Fp−1 ◦ · · · ◦ F0 |M | Σ

2s 2s
.

p 1 1

N

11024 L

h∗

h′
∗

m∗

expandable message: length L

. . .IV

h0

h′
0

h1

h′
1

h511

h′
511

h̃
20 21 2511

Fig. 11. Overview of the second-preimage attack.

2 This correspond to the set of positions such that i+1 can be reached by a (1271, 2259−
777, 2048)-expandable message.

The Usage of Counter Revisited 209

Overall, the attack requires about 512 × 2n/2 computations for the Joux’s
multicollision, 256×2n/2 for the expandable message, and 2n/l computations to
connect the end of the expandable message to the original message chain. The
time complexity

768 × 2n/2 + 2n/l

can be minimized with l > 2n/2/n, and reaches an overall time complexity in the
order of n ·2n/2 computations for the second-preimage attack. With the parame-
ters of Streebog-512, we have n = 512 and s = 11, and a total time complexity
equivalent to about 2266 compression function evaluations, if the message has
more than 2259 blocks (so that 2n/l ≤ 256 × 2n/2).

6 Open Discussion and Conclusion

In this article, we have studied the security of the Russian hash function standard
Streebog. We showed that an attacker can find second-preimages much faster
than what is expected from an ideal hash function, even though Streebog uses
HAIFA as the domain extension algorithm. Our main observation is that the
counter is not very well handled in Streebog and this enables the attacker to
apply a more complex variation of the now classical generic second-preimage
attacks. As a result, Streebog is only marginally stronger than a plain Merkle-
Damg̊ad iteration.

This analysis also contradicts the remark by Kelsey and Schneier that “XOR-
ing in a monotomic counter” would be sufficient to avoid the second-preimage
attacks with long messages: there is at least one way to XOR the counter that
do not provide any extra security.

Our work is a good example why one should be careful when using a design
framework: problems might arise if bad instances in that framework exist. In
the particular case of HAIFA, it is crucial to make sure the counter is properly
handled. We have the intuition that the security property that a compression
function in HAIFA has to follow with regards to the counter input is quite
strong (even if the counter might controlled by the adversary, he must not be
able to distinguish the output). Clearly, Streebog would not meet that criteria
(inserting a difference δ in both the counter and the chaining variable input, one
always get δ on the output). It would be interesting to study what is exactly the
minimal security assumption that is required on the counter input for HAIFA in
order to ensure only secure instances.

Acknowledgment. We would like to thank the anonymous reviewers for their
detailed feedback and comments. Jian Guo, Jérémy Jean, Thomas Peyrin and Lei
Wang were supported by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06).

210 J. Guo et al.

References

1. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound attacks on Stribog. IACR
Cryptology ePrint Archive 2013, 539 (2013)

2. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 109–
125. Springer, Heidelberg (2014)

3. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In: Smart, N.P.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

4. Aumasson, J.-P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential
and invertibility properties of BLAKE. In: Hong, S., Iwata, T. (eds.) FSE 2010.
LNCS, vol. 6147, pp. 318–332. Springer, Heidelberg (2010)

5. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (Round 3) (2010)

6. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (updated) (2009)

7. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007)

8. Biham, E., Dunkelman, O.: The SHAvite-3 hash function. Submission to NIST
(Round 2) (2009)

9. Biryukov, A., Gauravaram, P., Guo, J., Khovratovich, D., Ling, S., Matusiewicz,
K., Nikolić, I., Pieprzyk, J., Wang, H.: Cryptanalysis of the LAKE hash family. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 156–179. Springer, Heidelberg
(2009)

10. Bouillaguet, C., Fouque, P.A.: Practical hash functions constructions resistant to
generic second preimage attacks beyond the birthday bound. Submitted to Infor-
mation Processing Letters (2010)

11. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
12. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,

A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,
J.R., Thuillet, C., Videau, M.: Shabal, a submission to NIST’s cryptographic hash
algorithm competition. Submission to NIST (2008)

13. Damg̊ard, I.: A design principle for hash functions. In: [11], pp. 416–427
14. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,

J., Walker, J.: The skein hash function family. Submission to NIST (Round 3)
(2010)

15. Gauravaram, P., Kelsey, J.: Linear-XOR and additive checksums don’t protect
Damg̊ard-Merkle hashes from generic attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

16. Gauravaram, P., Leurent, G., Mendel, F., Naya-Plasencia, M., Peyrin, T., Rech-
berger, C., Schläffer, M.: Cryptanalysis of the 10-round hash and full compression
function of SHAvite-3-512. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT
2010. LNCS, vol. 6055, pp. 419–436. Springer, Heidelberg (2010)

17. Grebnev, S., Dmukh, A., Dygin, D., Matyukhin, D., Rudskoy, V., Shishkin, V.:
Asymmetrical reply to SHA-3: Russian hash function draft standard. CTCrypt
2012, abstract available from http://agora.guru.ru/csr2012/files/6.pdf

18. Guo, J.: A program confirmation of the diamond construction by Kortelainen and
Kortelainen (Feburary 2014). http://guo.crypto.sg/diamond.zip

http://agora.guru.ru/csr2012/files/6.pdf
http://guo.crypto.sg/diamond.zip

The Usage of Counter Revisited 211

19. Guo, J., Karpman, P., Nikolic, I., Wang, L., Wu, S.: Analysis of BLAKE2.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 402–423. Springer,
Heidelberg (2014)

20. IETF: GOST R 34.11-2012: Hash Function. RFC6896 (2013)
21. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-

structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

22. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

23. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

24. Kortelainen, T., Kortelainen, J.: On diamond structures and trojan message
attacks. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 524–539. Springer, Heidelberg (2013)

25. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

26. Merkle, R.C.: One way hash functions and DES. In: [11], pp. 428–446
27. REGULATION, F.A.O.T., METROLOGY: Information technology - CRYPTO-

GRAPHIC DATA SECURITY - Hash-function. GOST R 34.11-2012 (2012)
28. Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL hashing function. Submitted to

NISSIE, September 2000
29. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-

ments on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

30. GOST R 34.11-2012: Streebog Hash Function. https://www.streebog.net/
31. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R hash function. Cryptology

ePrint Archive, Report 2013/584 (2013). http://eprint.iacr.org/

https://www.streebog.net/
http://eprint.iacr.org/

Side-Channel Analysis of Montgomery’s
Representation Randomization

Eliane Jaulmes(B), Emmanuel Prouff, and Justine Wild

ANSSI, 51, Bd de la Tour-Maubourg, 75700 Paris 07 SP, France
{eliane.jaulmes,emmanuel.prouff,justine.wild}@ssi.gouv.fr

Abstract. Elliptic curve cryptography is today widely spread in embed-
ded systems and the protection of their implementation against
side-channel attacks has been largely investigated. At CHES 2012, a
countermeasure has been proposed which adapts Montgomery’s arith-
metic to randomize the intermediate results during scalar point multi-
plications. The approach turned out to be a valuable alternative to the
previous strategies based on hiding and/or masking techniques. It was
argued to be specifically dedicated to hardware implementations and it
aimed to defeat first-order side-channel attacks involving Pearson’s cor-
relation as distinguisher. In this paper however, we exhibit an important
flaw in the countermeasure and we show, through various simulations,
that it leads to efficient first-order correlation-based attacks.

1 Introduction

Elliptic Curves Cryptosystems (ECC) have been introduced by N. Koblitz [22]
and V. Miller [29]. Their security relies on the hardness of the discrete logarithm
problem. Elliptic curve based algorithms usually require keys far smaller than
those involved in other public-key cryptosystems like RSA. This explains the cur-
rent popularity of ECC and their involvement in a large variety of applications
implemented over all kinds of devices: smart-cards, micro-controllers, and so
on. Since such devices are widespread and in the hands of end-users, they are
confronted to a wide range of threats. In particular, physical attacks need to
be taken into account when assessing the overall security of the implementa-
tion. Thus, countermeasures are often conceived and implemented alongside the
algorithms.

Physical attacks are traditionally divided into the two following families:
perturbation analysis and observation analysis. The first one aims to modify
the cryptosystem processing with any physical mean such as laser beams, clock
jitter or voltage perturbation (e.g. fault injection attacks [12,13]). The attacker
then learns information on the secret parameter by observing the response of
the cryptosystem to this perturbation. Such attacks can be prevented by mon-
itoring the device environment with captors and by verifying the result of the
computation before output. The second family of attacks consists in measuring
physical data during the algorithm execution and then in exploiting this informa-
tion to recover the secret. Such leakage sources can be the power consumption or
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 212–227, 2014.
DOI: 10.1007/978-3-319-13051-4 13

Side-Channel Analysis of Montgomery’s Representation Randomization 213

the electro-magnetic emanation. Among observation attacks, we can distinguish
several categories. Simple Power Analysis [24] directly deduces the value of the
secret from a single input processing (possibly averaged), while Advanced Power
Analysis exploits observations for several algorithm inputs. The latter kind of
attacks requires the choice of a leakage model to compare predictions based on
key-hypotheses with the measured traces. The comparison is done with a sta-
tistical tool, also called distinguisher. For example, the well-known Differential
Power Analysis (DPA) [25] uses the difference of means whereas the Correlation
Power Analysis (CPA) [10] involves Pearson’s correlation coefficient1.

Countermeasures against observation analysis fall into two categories: hid-
ing techniques aim at reducing the Signal to Noise Ratio (SNR) by increasing
the noise or by equalizing the current in the circuit [35], while masking tech-
niques consists in randomizing the sensitive computations. In practice, mask-
ing is always applied (possibly combined with hiding) since it provides strong
security guaranty. Recently, Lee et al. [26] proposed a new efficient countermea-
sure to overcome first-order CPA2 attacks. It assumes that the field operations
are performed in the Montgomery domain [30] and consists in randomizing the
Montgomery representation of the internal results (thus defining a so-called Ran-
domized Montgomery Domain). This countermeasure has been considered as a
very valuable alternative to the previous techniques because it avoids the need
for scalar blinding (see e.g. [5]) and is much more efficient from a hardware
implementation point of view.

Our work. In this paper, we show that the countermeasure proposed in [26] is
flawed and can be efficiently broken by first-order CPA, even in presence of a
large amount of noise in the measurements. After a presentation of the tech-
niques proposed by Lee et al. in Sect. 2, the flaw is exhibited in Sect. 3.1. The
attack is afterwards detailed in Sect. 3.2 and its efficiency is demonstrated in
Sect. 4 thanks to simulations in various contexts. Finally, Sect. 5 analyses the
experiments given in [26] and concludes with a short discussion about possible
countermeasures.

2 On Randomized Implementations of Modular
Operations

In this section, we recall some mathematical background on elliptic curve and the
associated scalar multiplication. The reader may also refer to [3] for a more com-
plete overview. Here, we will focus on the efficient implementation of the scalar
multiplication in embedded devices. In particular we recall the use of the Mont-
gomery domain for efficient modular operations [31].
1 The need for a leakage model may be relaxed when using the so-called collision
attacks [40] which look for colliding values during a computation. Such attacks com-
pare only real traces to each other.

2 A side channel attack is said to be of first order if it exploits the dependency between
the mean of an instantaneous leakage and a function of the secret parameter. The
original CPA attack in [10] is of first-order.

214 E. Jaulmes et al.

2.1 Background on Elliptic Curves and Montgomery Multiplication

Elliptic Curves. In this paper, we focus on elliptic curves E defined over a
prime field Fp according to the following short Weierstrass’s Equation:

E : y2 = x3 + ax + b, (1)

where a and b are elements in Fp satisfying 4a3 + 27b2 �= 0. The set of rational
points of E is denoted by E(Fp). It contains all the points whose coordinates
(x, y) ∈ F

2
p satisfy (1). This set, augmented with a neutral element O called

point at infinity, has an Abelian group structure for the following addition law:
let P = (x1, y1) and Q = (x2, y2) then the coordinates (x3, y3) of P + Q satisfy;

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1, (2)

where λ equals (y2 − y1)/(x2 − x1) if P �= Q and (3x2
1 + a)/(2y1) otherwise. The

scalar multiplication (ECSM for short) of a point P ∈ E(Fp) by a natural integer k
is denoted by kP . It is the core operation of many cryptographic protocols such
as ECDSA [22] and defining an efficient scalar multiplication arithmetic is hence
a central issue (the interested reader is referred to [16] for a good overview).
The point addition formula (2) is also central in elliptic curve implementations
and several papers have been published on this subject [1,4,14,15,18,27,28,
41]. They aim at proposing sequences of operations over Fp which are optimal
according to some relations between the cost of a field inversion, the cost of
an addition/subtraction and that of a multiplication. To defeat SPA attacks [5]
at the arithmetic level, some works also try to propose sequences that stay
unchanged whether (2) defines an addition (P �= Q) or a doubling (P = Q). In
this paper, we make no particular assumption on the type of ECSM algorithm
nor on the sequence of operations which is used to process a point addition
or a doubling. We indeed present a side-channel attack that does not exploit
some particularity of the operations sequence or modus operandi but exploits
information leakage during the manipulation of an intermediate result when the
masking proposed in [26] is used. The latter type of result is likely to appear
whatever the implementation choice.

Montgomery Domain. In order to efficiently perform the field operations
involved in the point addition/doubling, developers often use the well-known
Montgomery arithmetic [31]. This technique allows to replace the divisions occur-
ring during the modular reduction by very efficient binary shifts. The only costly
operation is the transformation to and from the Montgomery domain, but it is
only done twice: at the beginning and at the end of the whole point operation
(e.g. the scalar multiplication).

Let x represent an element in the prime field Fp � Zp and let R = 2m

be defined such that 2m < p < 2m+1 (i.e. m = �log2(p)�). The value x =
x · R mod p is called the Montgomery representation of x and R is called the
Montgomery constant. There is an isomorphism between (Zp,+, ·) and the Mont-
gomery domain MD(p) = ({x},+,⊗), where ⊗ represents the Montgomery mul-
tiplication x⊗y = (x·y)·R−1 mod p. The result of the multiplication corresponds
to xy, i.e. the Montgomery representation of xy mod p.

Side-Channel Analysis of Montgomery’s Representation Randomization 215

2.2 Randomized Montgomery Domain

Instead of using always R = 2m, the authors of [26] propose to use a randomized
Montgomery constant r = 2λ where λ is the Hamming Weight of a random m-bit
value. The randomized Montgomery representation (RMR for short) of x ∈ Zp is
x · 2λ mod p. It is denoted x̃λ or just x̃ when there is no ambiguity on λ. The
randomized Montgomery domain is denoted by RMDλ(p). The multiplication in
RMDλ(p) works as follows: x̃ ⊗λ ỹ = (x̃ · ỹ)2−λ mod p. The result of the multipli-
cation corresponds to x̃y, i.e. the RMR of xy mod p. To ensure that the number
of final subtractions stays upper-bounded by 1 (as in the classical Montgomery
multiplication), the random power λ must be chosen in [0..m].

In [26], the idea of RMR is applied to secure the implementation of an elliptic
curve scalar multiplication against first-order side channel attack (e.g. CPA).
The principle of these attacks is to observe the device behaviour during the
processing of several scalar multiplications kP where the secret scalar k ∈ N

stays unchanged and the public point P varies. Such attacks can be applied,
for example, against some implementations of semi-static Diffie-Hellman key
exchange, as found in the IEEE P1363 standard [17]. The main steps of the
secure algorithm proposed in [26] are recalled hereafter, where the point P is
assumed to belong to the set of rational points E(Fp) defined as in (1).

1. Inputs: a (public) point P = (x1, y1) ∈ E(Fp), a (secret) scalar k ∈ N, a
random number α ∈ [0..2m − 1] with m = �log2(p)�.

2. Conversion to RMD: for λ = HW(α), process

x̃1 = x1 · 2λ mod p

and
ỹ1 = y1 · 2λ mod p.

Also convert the curve parameters (a, b) into RMDλ(p). The point with coor-
dinates (x̃1, ỹ1) is denoted by P̃ .

3. Elliptic Curve Scalar Multiplication (ECSM): in RMDλ(p), process

Q̃ = (x̃2, ỹ2) = kP̃ . (3)

4. Conversion to Integer Domain: process

x2 = x̃2 ⊗λ 1 = x̃2 · 2−λ mod p

and
y2 = ỹ2 ⊗λ 1 = ỹ2 · 2−λ mod p

5. Output: Q = (x2, y2) = kP

The Elliptic Curve Scalar Multiplication (ECSM) may be done with any algo-
rithm (e.g. [31]). The authors of [26] do not recommend any particular one, even
if the resistance tests reported in their paper are applied against an ECSM based
on Montgomery Ladder (see Algorithm 5 in Appendix A). Similarly, our attack

216 E. Jaulmes et al.

described in the next section does not exploit any particular feature of the
ECSM and thus applies independently from the choice of algorithm. To allow for
comparisons with [26] we however chose to target an ECSM based on Montgomery
Ladder in our attack simulations.

3 Our Attack

3.1 Core Idea

The goal of our attack is to recover the bits of k one after another during the
processing of ECSM in the randomized Montgomery domain (i.e. the processing
of (3)). In this section, we detail how the second MSB (respectively the LSB) of k
is recovered3. Once this bit is obtained, the attack can be applied similarly on
the other bits from left to right (respectively right to left).

We denote by R(ũ, ṽ) the value of an intermediate point during the processing
of ECSM in the randomized Montgomery domain. We assume that the coordinates
of the point R depend on a small sub part of k (e.g. a bit). This part is denoted
by s. It can for instance correspond to the result of the second point opera-
tion in ECSM with Montgomery Ladder (see (8)) or to the result of the third
point operation in ECSM with double-and-add always method (see (6)–(7)). Our
side channel attack targets the manipulation of the first coordinate ũ of this
point by the device: by assumption, it satisfies ũ = f(x̃, ỹ, s) where we recall
that (x̃, ỹ) denotes the RMR coordinates of the input point P and where f is a
known function that depends on the curve parameters and the algorithm used
to process ECSM (see Appendix A for examples). To simplify the presentation, we
assume that s is reduced to a single bit of k (the MSB or the LSB) but our attack
straightforwardly applies to higher values (the only restriction is that the upper
bound must be small enough to allow for an exhaustive test of all the elements).
Our attack is based on the following statement which essentially means that a
RMR representation leaks information on the un-blinded coordinate and that this
information can be exploited by a first-order side-channel attack:

Statement: the function f : x �→ E
[
HW(X̃λ) | X = x

]
is not constant.

Remark 1. Taking into account the specificities of the randomized Montgomery
representation recalled in Sect. 2.2, the mean is computed over the random vari-
able λ defined such that λ = HW(α) with α having a uniform distribution on
[0..2m − 1].

To argue on the statement above, we evaluated f on 1000 different values
x for m = 256 and m = 384 (these parameters are recommended for instance
by the American National Security Agency when ECSM is used to process an
ECDSA). The results are plotted in Fig. 1(a) and (b). For comparison, we also

3 To easy the explanation of the attack against left-to-right implementations of ECSM,
we make the classical assumption that the MSB of k equals 1.

Side-Channel Analysis of Montgomery’s Representation Randomization 217

(a) Curves of size 256 bits (b) Curves of size 384 bits

Fig. 1. Values of f : x �→ E
[
HW(X̃) | X = x

]
for 1000 random values x

(a) Curves of size 256 bits (b) Curves of size 384 bits

Fig. 2. Values of f : x �→ HW(x) for 1000 random values x

plotted in Fig. 2(a) and (b) the value HW(x) for 1000 values x in [0..p), which
corresponds to the case of non blinded values. Finally, in Fig. 3(a) and (b) we
plotted E

[
HW(λ ·X mod p) | X = x

]
where λ is a random uniformly distributed

16-bit value. The latter corresponds to the case where ECSM is protected by
blinding the projective coordinates of the point P .

As expected, we can see in Fig. 2(a) and (b) that the Hamming weight of
x varies with x when no blinding is involved; this implies that a first-order
CPA is possible if x is sensitive. On the contrary, Fig. 3(a) and (b) show that
coordinate blinding cancels any leakage on x since the average Hamming weight
of the blinded coordinate is almost constant (even in our case where we limited
λ to 16-bits words which can be considered as too limited in practice). Between
the two previous extreme cases, Fig. 1(a) and (b) show that f(x) varies with x
(not with a high variance as in Fig. 2(a) and (b) but visibly much more than in
Fig. 3(a) and (b)): this implies that the countermeasure in [26] can be attacked
with a first-order CPA involving f to process the predictions on x̃. In the following
section, we detail the latter attack.

218 E. Jaulmes et al.

(a) Curves of size 256 bits (b) Curves of size 384 bits

Fig. 3. Values of f : x �→ E
[
HW(λ · X mod p) | X = x

]
for 1000 random values x

3.2 Attack Description

As explained in the previous section, our attack recovers the secret piece by piece.
Here, we detail how it allows for the recovery of the second MSB or the LSB s of the
secret scalar k (the principle can then be repeated to recover the other bits one
after another). The intermediate result/point R(ũ, ṽ) exploited by the attack
differs with the algorithm used to process the scalar multiplication. We give
some examples below but our first-order side-channel attack also applies in other
contexts (e.g. against atomic implementations or implementations applying the
window principle [21]) as long as the point is blinded with the RMR representation
proposed in [26] and the scalar is not blinded.

Several scalar multiplication algorithms are recalled in Appendix A. We
recall that, for left-to-right versions, we make the (classical) assumption that
the MSB equals 1. Our attack targets the manipulation of the first coordinate ũ
of the intermediate result/point R(ũ, ṽ) corresponding to:

– [left-to-right double-and-add ECSM] the second point operation

R = 3P + (1 − s)P. (4)

– [right-to-left double-and-add ECSM] the first point operation

R = P + (1 − s)P. (5)

– [left-to-right double-and-add-always ECSM] the third point operation

R = 2(P + sP). (6)

– [right-to-left double-and-add-always ECSM] the third point operation

R = 2P + sP. (7)

– [Montgomery Ladder ECSM] the second point operation

R = 2(P + sP). (8)

Side-Channel Analysis of Montgomery’s Representation Randomization 219

– [Joye ECSM] the second point operation

R = P + (1 − s)P. (9)

Following the classical outlines of a first-order side-channel attack, our attack
starts by the observation of the device behaviour for several executions of the
algorithm ECSM parametrized by different public inputs P but a same secret
scalar k. Note that only the part of the observation corresponding to the manip-
ulation of the coordinate ũ of R is used in the attack described hereafter. Since
the ith observation (e.g. the power consumption or the electromagnetic emana-
tion) is algorithmically related to the ith input point Pi and the secret bit s,
it is denoted by L(s, Pi) in the following. At the end of this measurement step
of the attack, the adversary is assumed to be provided with a sample of pairs
(Pi,L(s, Pi))i. The size of this sample is denoted by N .

To underline the functional dependency between ũ and (s, Pi), we use the
notation ũ(s, Pi) in the following. For testing an hypothesis ŝ on s, the attack
continues with the computation of the values u(ŝ, Pi) for i ∈ [1..N]. These values
correspond to the unmasked version of the u-coordinates under the hypothesis
ŝ = s. Then applying the strategy already used in [6,36] and argued in [38],
we choose a device model m (usually the Hamming weight) and we compute the
sample of predictions (hi)i�N defined such that:

hi(ŝ) = Eλ

[
m(u(ŝ, Pi) · 2λ mod p)

]
=

m∑
i=1

m(u(ŝ, Pi) · 2i mod p) × p[λ = i].

By construction λ is defined as the Hamming weight of an m-bit random ele-
ment. Its distribution is therefore binomial with parameters m and 1/2 and the
equation above can be developed as follows:

hi(ŝ) =
1

2m

m∑
i=1

m(u(ŝ, Pi) · 2i mod p) ×
(

m

i

)
. (10)

Eventually, the absolute value of the correlation ρŝ between the samples
(hi(ŝ))i and (L(s, Pi))i is computed for ŝ ∈ {0, 1} and the attack returns the
hypothesis with the greatest correlation.

4 Simulations

Setting. In this section, we assume that the ECSM is implemented on a 32-bit
architecture and according to the Montgomery ladder (Algorithm 5 in Appen-
dix A). In such environment which corresponds to a classical context, data will
only be manipulated through 32-bit registers. Without loss of generality, we
hence assume that the leakage exploited in our attacks is the Hamming weight
of the 32 least significant bits of ũ (namely HW(ũ mod 232)) instead of the Ham-
ming weight of the whole 256 or 384 bit value4. The described attack aims at
4 The attack applies similarly whether the attacker chose any 32-bit part of the tar-

geted value.

220 E. Jaulmes et al.

recovering the most significant bit s of the secret k and, according to (8), the
observations are hence assumed to be related to the manipulation of the coordi-
nate ũ of the point R(ũ, ṽ) = 2(P +sP). The latter observations are simulated in
the classical Hamming weight model with Gaussian Noise. Namely, the leakage
observation L(s, Pi) corresponding to the ith scalar multiplication is simulated
such that:

L(s, Pi) = HW(ũ mod 232) + N , (11)

where ũ = u · 2λi mod p is the first coordinate of 2(Pi + sPi) represented in the
randomized Montgomery domain RMDλi

(p) (with λi generated at random in
its definition set) and where N is a Gaussian random variable with mean 0 and
standard deviation σ.

Since the leakage is assumed to satisfy (11), the model function m in Eq. (10)
has been simply chosen to be the Hamming weight of the 32 least significant
bits of the input. The predictions hi(ŝ) associated to the binary hypothesis ŝ on
s hence satisfy:

hi(ŝ) =
1

2m

m∑
i=1

HW((u · 2i mod p) mod 232) ×
(

m

i

)
, (12)

where u is the first coordinate of 2(Pi + ŝPi) in the standard integer domain and
where m equals 256 or 384.

To sum-up, the simulations reported in this section are split in two parts. The
first part aims to show that the CPA (i.e. the correlation coefficient) succeeds in
distinguishing the correct hypothesis from the wrong one. The second part serves
to estimate the success rate in recovering the first secret bit in a Montgomery
ladder implementation of ECSM. The latter success rate is estimated for different
noise levels σ and different number of observations.

Pearson Correlation Coefficient. First, we are comparing the correlation
values for the correct and the wrong predictions. Following the attack description
in Sect. 3.2, we compute the set of hypotheses (hi(ŝ = 1))i�N according to (12),
and the two sets of leakages (L(1, Pi))i�N and (L(0, Pi))i�N , according to (11),
where we recall that N represents the total number of randomly chosen points
Pi. The first set corresponds to leakages that match the chosen hypotheses and
the second one to leakages that do not match the hypotheses. These experiments
have been repeated for different values of N ∈ [500..10000] and different noise
standard deviation σ ∈ [0..30]. Then, we compute the two correlation coefficients
ρcorrect = ρ((hi(ŝ = 1))i, (L(1, Pi))i) and ρwrong = ρ((hi(ŝ = 1))i, (L(0, Pi))i).
The obtained correlation values are then averaged over the execution of 100 such
attacks and the standard deviation of the correlation values is also computed to
measure how much the mean is informative.

Results of this first set of experiments are presented in Fig. 4. It represents the
average and the standard deviation cone for the correlation coefficients obtained
with the correct and wrong predictions. It may be seen that the correlation

Side-Channel Analysis of Montgomery’s Representation Randomization 221

(a) Noise = 0 (b) Noise = 10

(c) Noise = 20 (d) Noise = 30

Fig. 4. Correlation for 256-bit curve attacking with known messages

coefficient allows us to distinguish a correct key bit hypothesis from a wrong one
with high probability as long as the number of observations satisfies:⎧⎪⎪⎨

⎪⎪⎩
N ≥ 500 if σ = 0
N ≥ 1500 if σ = 10
N ≥ 3000 if σ = 20
N ≥ 6000 if σ = 30

.

Success Rate. We then proceed to test the attack efficiency. For such a pur-
pose, we randomly choose the secret s we are trying to recover. We then simulate
the leakage observations according to (11) for N pairs (Pi, λi) of values gener-
ated at random in their respective definition set. This step provides us with a set
(L(s, Pi))i�N playing the role of the registered traces in a real attack scenario.
We then compute the two sets of predictions (hi(ŝ = 0))i�N and (hi(ŝ = 1))i�N ,
and we process the absolute value of the two corresponding correlation coeffi-
cients ρ0 = ρ((L(s, Pi)i, (hi(ŝ = 0))i) and ρ1 = ρ((L(s, Pi)i, (hi(ŝ = 1))i). The
prediction ŝ such that |ρŝ| has the highest value is set as the most likely one.
If ŝ = s the attack succeeds, else it fails. In our experiments we repeated each
attack 1000 times with different random values to build a success rate.

222 E. Jaulmes et al.

(a) Curves of size 256 bits (b) Curves of size 384 bits

Fig. 5. Success rate for several noise values

Figure 5 represents the success rate in percentage when trying to guess the bit
s. In abscissa is the number of different inputs used for the computation of the
correlation coefficient. Several noise standard deviation values have been used.
It may be checked that even for σ = 40 (i.e. SNR= 0, 005) the attack succeeds
with probability greater than 80% if the number N of observations used by the
attacker is greater than 5500 for curves of size 256 bits, respectively greater than
7000 for 384-bit curves.

5 Analysis and Conclusion

In this paper, we have argued that the countermeasure proposed in [26] is flawed
and does not defeat first-order CPA. Actually, through attack simulations con-
ducted under reasonable and classical assumptions on the execution environment
we have shown that a CPA is likely to be very efficient even when the noise is
huge. The problem identified in the countermeasure under study is that the dis-
tribution of the masking values λ is binomial (and not uniform). This choice,
which has been done for efficiency reason, is in fact dramatic from a security
point of view. It must be mentioned that the authors of [26] tested a school-
book CPA against their implementation and used the failure of this attack to
argue on the resistance of their countermeasure. As we have shown here, the
failure of the CPA performed in [26] is not a consequence of the countermeasure
quality but of a wrong attack parametrization. By adapting to a first-order con-
text the argumentation given in [38] for second-order attacks, we were indeed
able to use a much better parametrization for the CPA. Our work demonstrates
once again that countermeasures must not be only validated by performing some
ad-hoc attacks (even classical) but must be formally analysed, for instance by
following the approaches proposed in [7,9,37].

Concerning the proposed countermeasure, a possible patching could consist in
generating λ uniformly in [0..m] but a careful security analysis is needed to assess
on the pertinence of this patch. The proposal of Dupaquis and Venelli in [8] may
offer an interesting alternative in the case where efficiency is required. Otherwise,
well-studied approaches such as classical exponent and message blinding seem
to offer better security garanties.

Side-Channel Analysis of Montgomery’s Representation Randomization 223

A Examples of Algorithms for Elliptic Curve Scalar
Multiplication

We recall hereafter two basic algorithms (see Algorithms 1 and 2) to calculate
the scalar multiplication either from left-to-right or from right-to-left5.

Algorithm 1. Left-to-Right Binary ECSM
Input : a point P on E and a secret scalar k = (1, kn−2, · · · , k0)2
Output: the point Q = kP

1 R0 ← P
2 R1 ← P
3 for i = n − 2 to 0 do
4 R0 ← 2R0

5 if ki = 1 then
6 R0 ← R0 + R1

7 return R0

Algorithm 2. Right-to-Left Binary ECSM
Input : a point P on E(Fp) and a secret scalar k = (kn−1, · · · , k0)2
Output: the point Q = kP

1 R0 ← O
2 R1 ← P
3 for i = 0 to n − 1 do
4 if ki = 1 then
5 R0 ← R0 + R1

6 R1 ← 2R1

7 return R1

The previous algorithms are simple and relatively efficient (n additions and
n/2 doublings in average). However, they are not regular and can hence induce
an information leakage exploitable by SPA. As for instance explained in [39], reg-
ularity can be achieved by using unified formulae for point addition and point
doubling [11] or by the mean of side-channel atomicity whose principle is to build
point addition and point doubling algorithms from the same atomic pattern of
field operations [2]. Another possibility is to render the scalar multiplication
algorithm itself regular, independently of the field operation flows in each point
operation. Namely, one designs a scalar multiplication with a constant flow of
point operations. This approach was first followed by Coron in [5] who proposed
to perform a dummy addition in the binary algorithm loop whenever the scalar
5 To simplify the attacks description, and because it has no impact on their feasibility,

it is assumed for the left-to-right versions that the most significant bit of k always
equals 1, i.e. that the bit-length is exactly n.

224 E. Jaulmes et al.

bit equals 0 or not. The obtained double-and-add-always algorithm (see Algo-
rithms 3 and 4) performs a point doubling and a point addition at every loop
iteration and the scalar bits are no more distinguishable by SPA.

Algorithm 3. Left-to-Right double-and-add always ECSM [5]
Input : a point P on E(Fp) and a secret scalar k = (1, kn−2, · · · , k0)2
Output: the point Q = kP

1 R0 ← P
2 for i = n − 2 to 0 do
3 R0 ← 2R0

4 R1 ← R0 + P
5 R0 ← Rki

6 return R0

Algorithm 4. Right-to-Left double-and-add always ECSM [19]
Input : a point P on E(Fp) and a secret scalar k = (kn−1, · · · , k0)2
Output: the point Q = kP

1 R0 ← P
2 R1 ← O
3 for i = 0 to n − 1 do
4 R2 ← R0 + R1

5 R0 ← 2R0

6 R1 ← R1+ki

7 return R1

Other regular binary algorithms exist such as the Montgomery ladder [32] (see
Algorithm 5) and the double-and-add algorithm proposed by Joye in [20] (see
Algorithm 6). These algorithms which are recalled hereafter not only counteract
SPA but also some fault attacks (such that the safe-error ones).

Algorithm 5. Montgomery Ladder ECSM [32]
Input : a point P on E(Fp) and a secret scalar k = (1, kn−2, · · · , k0)2
Output: the point Q = kP

1 R0 ← P
2 R1 ← 2P
3 for i = n − 2 to 0 do
4 b ← ki

5 R1−b ← R0 + R1

6 Rb ← 2Rb

7 return R0

Side-Channel Analysis of Montgomery’s Representation Randomization 225

Algorithm 6. Joye double-and-add always ECSM [20]
Input : a point P on E(Fp) and a secret scalar k = (kn−1, · · · , k0)2
Output: the point Q = kP

1 R0 ← O
2 R1 ← P
3 for i = 0 to n − 1 do
4 b ← ki

5 R1−b ← 2R1−b + Rb

6 return R0

References

1. Baldwin, B., Goundar, R.R., Hamilton, M., Marnane, W.P.: Co-z ecc scalar mul-
tiplications for hardware, software and hardware-software co-design on embedded
systems. J. Crypt. Eng. 2(4), 221–240 (2012)

2. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

3. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. CRC Press, Boca Raton (2005)

4. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

5. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. [23], pp. 292–302

6. Coron, J.-S., Prouff, E., Roche, T.: On the use of shamir’s secret sharing against
side-channel analysis. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp.
77–90. Springer, Heidelberg (2013)

7. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. [34], pp. 423–440

8. Dupaquis, V., Venelli, A.: Redundant modular reduction algorithms. In: Prouff, E.
(ed.) CARDIS 2011. LNCS, vol. 7079, pp. 102–114. Springer, Heidelberg (2011)

9. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. [34], pp. 459–476

10. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

11. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In:
Naccache, D., Paillier, P. [33], pp. 335–345

12. Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Quisquater, J.-J.,
Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS 2004. LNCS, vol.
153, pp. 159–176. Springer, Heidelberg (2004)

13. Giraud, C., Thiebeauld, H.: Basics of fault attacks. In: Breveglieri, L., Koren, I.
(eds.) Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC’04,
pp. 343–347. IEEE Computer Society (2004)

14. Goundar, R.R., Joye, M., Miyaji, A.: Co-Z addition formulæ and binary ladders
on elliptic curves. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 65–79. Springer, Heidelberg (2010)

226 E. Jaulmes et al.

15. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstraß elliptic curves from co-z arithmetic. J. Crypt. Eng. 1(2), 161–176
(2011)

16. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer Professional Computing Series. Springer, New York (2003)

17. IEEE Std 1363–2000. IEEE Standard Specifications for Public Key Cryptography.
IEEE Computer Society, January 2000

18. Itoh, K., Takenaka, M., Torii, N., Temma, S., Kurihara, Y.: Fast implementation
of public-key cryptography ona DSP TMS320C6201. In: Koç, Ç.K., Paar, C. [23],
pp. 61–72

19. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against
side channel attacks. In: Naccache, D., Paillier, P. [33], pp. 280–296

20. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147.
Springer, Heidelberg (2007)

21. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison Wesley,
Reading (1988)

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
23. Koç, Ç.K., Paar, C. (eds.): CHES 1999. LNCS, vol. 1717. Springer, Heidelberg

(1999)
24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

25. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

26. Lee, J.-W., Chung, S.-C., Chang, H.-C., Lee, C.-Y.: An efficient countermeasure
against correlation power-analysis attacks with randomized montgomery opera-
tions for DF-ECC processor. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 548–564. Springer, Heidelberg (2012)

27. Longa, P., Miri, A.: New composite operations and precomputation scheme for
elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

28. Meloni, N.: New point addition formulae for ECC applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg
(2007)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

30. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via
Lucas chains 1983, Revised (1992). ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz

31. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

32. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

33. Naccache, D., Paillier, P. (eds.): PKC 2002. LNCS, vol. 2274. Springer, Heidelberg
(2002)

34. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014)

35. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without
routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005)

ftp://ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz

Side-Channel Analysis of Montgomery’s Representation Randomization 227

36. Prouff, E., McEvoy, R.: First-order side-channel attacks on the permutation tables
countermeasure. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
81–96. Springer, Heidelberg (2009)

37. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

38. Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

39. Rivain, M.: Fast and regular algorithms for scalar multiplication over elliptic curves.
IACR Cryptology ePrint Arch. 2011, 338 (2011)

40. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

41. Venelli, A., Dassance, F.: Faster side-channel resistant elliptic curve scalar multipli-
cation. In: Kohel, D., Rolland, R. (eds.) Arithmetic, Geometry, Cryptography and
Coding Theory 2009, Contemporary Mathematics, vol. 521, pp. 29–40. American
Mathematical Society (2010)

Practical Cryptanalysis of PAES

Jérémy Jean1, Ivica Nikolić1(B), Yu Sasaki2, and Lei Wang1

1 Nanyang Technological University, Singapore, Singapore
{JJean,INikolic,Wang.Lei}@ntu.edu.sg

2 NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

Abstract. We present two practical attacks on the CAESAR candidate
PAES. The first attack is a universal forgery for any plaintext with at
least 240 bytes. It works for the nonce-repeating variant of PAES and in a
nutshell it is a state recovery based on solving differential equations for
the S-box leaked throught the ciphertext that arise when the plaintext
has a certain difference. We show that to produce the forgery based
on this method the attacker needs only 211 time and data. The second
attack is a distinguisher for 264 out of 2128 keys that requires negligible
complexity and only one pair of known plaintext-ciphertext. The attack
is based on the lack of constants in the initialization of the PAES which
allows to exploit the symmetric properties of the keyless AES round. Both
of our attacks contradict the security goals of PAES.

Keywords: PAES · Universal forgery · Distinguisher · Symmetric prop-
erty · Authenticated encryption

1 Introduction

The CAESAR competition [2] (Competition for Authenticated Encryption:
Security, Applicability, and Robustness) has started in March 2014, and its
goal is to improve the understanding of the crypto community in the area of
authenticated ciphers through a public competition for submitting authenticated
encryption schemes that offer advantages over the widely used AES-GCM [8]. In
total, 58 ciphers were submitted to the open call, and in the following three years,
through security analysis and investigation of the implementations advantages,
it is expected that among these ciphers, a few to be selected in a portfolio of
recommended authenticated schemes that are suitable for widespread adoption.

A number of the proposed CAESAR candidates (as well as the benchmark
AES-GCM) are based on the current encryption standard: the AES family of block
ciphers. The reason for this is twofold. First, the AES has undergone an exten-
sive analysis and is assumed that its security is well understood (or at least
better understood compared to all of the remaining unbroken ciphers). Second,

J. Jean, I. Nikolić and L. Wang are supported by the Singapore National Research
Foundation Fellowship 2012 NRF-NRFF2012-06.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 228–242, 2014.
DOI: 10.1007/978-3-319-13051-4 14

Practical Cryptanalysis of PAES 229

AES offers a large software implementation advantage on the latest processor
through the so-called AES-NI instruction set, i.e., modern processors have ded-
icated instructions that allow to reduce the execution time of the AES cipher
calls.

In general, the CAESAR candidates based on the AES use the block cipher in
two ways: either as a whole (or a variant consisting of at least a certain num-
ber of rounds), or only its round function. The first type of candidates (OCB [6],
AES-COPA [1], etc., and AES-GCM) are constructions that require calls to the full
10-round AES-128 (or at least 4-round variants with independent round keys,
e.g., SHELL [11]). Usually, they are provable modes based on security reduction
to the security of AES, and thus benefit from the current state-of-the-art crypt-
analysis of AES-128 [4,5]. The second type uses only the AES round function
and has no strict security proof, i.e., the mode is not provably secure, however,
the resistance against common attacks is provided through ad-hoc techniques.
Such candidates (see AEGIS [12], PAES [13], Tiaoxin-346 [9]) benefit from the
good security properties and the software performance of the AES round func-
tion. They tend to use less than 10 AES round calls per message blocks, and as
such are extremely fast.

Our Contributions. We provide a cryptanalysis of the CAESAR candidate
PAES [13] and show two attacks that contradict the security claims given by the
designers. Common for both of the attacks are the low complexity requirements
and misuse of the AES round function in PAES.

The first attack targets the nonce-repeating mode of PAES (called PAES-8)
and is a universal forgery attack of any plaintext with at least 240 bytes. It
requires 211 time and data complexity to fully recover the internal state and
produce forgery. To launch the attack, we use a special differential trail that
can take two different paths. By analyzing the ciphertext difference, the path is
uniquely determined and allows state recovery based on the differential property
of the AES S-Box. Our attack shows that a mere differential analysis (often given
by providing the best differential characteristic of a construction) is insufficient
for proving security in the nonce-repeating mode, even when the candidates
guarantees multiple applications of AES round function.

The second attack comes in a form of a distinguisher for a class of 264 weak
keys among the total 2128 keys of PAES. We show that if the attacker can control
the nonce, then a single pair of known plaintext and corresponding ciphertext is
sufficient to distinguish PAES from an ideal authenticated encryption scheme. The
attack relies on the initialization phase of PAES that does not use constants, while
the AES round function preserves certain symmetric properties when constants
are absent. The results of this paper are summarized in Table 1.

Organization of the Paper. We recall the design details of the PAES submis-
sions in Sect. 2 and present the universal forgery attack on PAES-8 in Sect. 3.
Then, in Sect. 4 we introduce the distinguisher for PAES in the context of weak
keys, and we conclude the paper in Sect. 5.

230 J. Jean et al.

Table 1. Attacks on PAES.

Design Supported Attack Attack mode Key class size Time

nonce modes (out of 2128) complexity

PAES-4 respecting distinguisher respecting 264 1

PAES-8 respecting+repeating universal forgery repeating 2128 211

PAES-8 respecting+repeating distinguisher respecting+repeating 264 1

2 Description of PAES

The family of authenticated encryption (AE) algorithms PAES has been submit-
ted to the ongoing CAESAR competition and consists of two concrete proposals:
PAES-4 and PAES-8. As the name suggests, they both use the AES design strat-
egy [3], and take as input a variable-length plaintext, a 128-bit key, a 128-bit
nonce and produce a variable-length ciphertext and a 128-bit authentication tag.
The difference between PAES-4 and PAES-8 lies in the size of the internal state,
which amounts to four 128-bit blocks for the former, and eight 128-bit blocks
for the latter. A functional difference between these two variants is in the mode:
PAES-4 has security claims only in the nonce-respecting mode, while PAES-8 in
both, the nonce-respecting and nonce-repeating modes.

To simplify the presentation, we describe only PAES-8 in the sequel, and
only as authenticated encryption. The design resembles a stream cipher: it
has an initialization (where the key and the nonce are loaded into the state),
then it processes the input message and produces the ciphertext, and finally
in the finalization it produces the tag. The internal state S has eight words
S1, S2, . . . , S8, each of 128 bits, i.e., |Si| = 128, i = 1, . . . , 8. The state update
function StateUpdate(S,M) is the round transformation and uses eight keyless1

AES-round calls (denoted further as AES0) to update the state as depicted in
Fig. 1.

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

M

S1 S2 S3 S4 S5 S6 S7 S8

Fig. 1. The round function StateUpdate(S, M). During the processing of the plaintext,
the XOR from S7 to S8 is absent.

1 We emphasize that all the AES calls are keyless, that is, composed of SubBytes,
ShiftRows and MixColumns (but no AddRoundKey).

Practical Cryptanalysis of PAES 231

Initialization. The 128-bit master key K and the nonce N are loaded into the
eight words of the state, the state goes through 10 rounds and at the end the
key is XORed to all eight words of the state:

S1 = K ⊕ N, S5 = L4(K) ⊕ L7(N)

S2 = L(K) ⊕ L3(N), S6 = L5(K) ⊕ L3(N)

S3 = L2(K) ⊕ L(N), S7 = L6(K) ⊕ L5(N)

S4 = L3(K) ⊕ L2(N), S8 = L7(K) ⊕ L6(N)
for i = 1 to 10

S = StateUpdate(State, 0)
for i = 1 to 8

Si = Si ⊕ K

where L is the linear transformation that operates on the four 32-bit columns
a, b, c, d of a 128-bit word a||b||c||d, and is defined as L(a, b, c, d) = (b, c, d⊕a, a).
We denote Li the i-th functional power of the transformation L, e.g., L2 = L◦L.

Processing the Plaintext. In one round, from 16-byte plaintext Pi, 16-byte
ciphertext Ci is obtained with one call to the StateUpdate function (see Fig. 2):

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

M

S1 S2 S3 S4 S5 S6 S7 S8

R

Fig. 2. One round of the encryption.

tmp = S7

StateUpdate(S, Pi)
Ri = tmp ⊕ S7

Ci = Pi ⊕ Ri

Finalization and the Tag Production. Let |M | be the 128-bit encoding
of the message length. Then, the tag T is produced after 10 rounds of the
StateUpdate function where the message input is set to |M |:

for i = 1 to 10
StateUpdate(S, |M |)

T = S7 ⊕ S8

232 J. Jean et al.

Claimed Security of PAES. The claimed security of PAES is given in Table 2.
We emphasize in particular that 128-bit security is claimed for the integrity of
PAES in the nonce-repeating mode.

Table 2. Bits of security goals of PAES [13, Table 3.1].

Goal Nonce-respecting Nonce-repeating

PAES-4/PAES-8 PAES-4 PAES-8

Confidentiality for the plaintext 128 - -

Integrity for the plaintext 128 - 128

Integrity for the associated data 128 - 128

Integrity for the public message number 128 - 128

3 Practical Universal Forgery Attack Against PAES-8

In this section, we show a universal forgery attack for PAES-8 in the nonce-
repeating mode. The attack works for any plaintext with length of at least 240
bytes, and requires only a small time and data complexity. The steps of the
attack can be summarized as follows:

1. Inject differences in two consecutive plaintext blocks such that they cancel in
S8 with a high probability.

2. The ciphertext difference after eight rounds will reveal if the cancellation in
S8 occurred and if so, it will leak information about the state bits.

3. Once the state is recovered, the tag is produced by going through the remain-
ing of the transformations of the (now) public construction.

3.1 Differential Trail and Detection of Difference Cancellation

The differential trail used in the attack is given in Fig. 3. We inject difference
Δα in the plaintext P0, and try to cancel it with another difference Δβ in the
plaintext P1. Interestingly, this type of trail has been discussed by the designers
of PAES (see [13, Figure 4.3]), however, they focused on the standard case of
propagating the difference through eight rounds and tried to predict it. On the
other hand, we use a different approach: our goal is not to predict the difference
after eight rounds, but only to detect if the initial differences in Δα and Δβ
have canceled. In Fig. 3, the trail can take two paths:

1. The differences Δα and Δβ cancel, thus only the words with bold lines are
active,

2. The differences Δα and Δβ do not cancel and there are additional active
words depicted with red lines.

Practical Cryptanalysis of PAES 233

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR7

ΔR8

ΔP = Δα0

ΔP = Δβ1

Δ X=0

Fig. 3. Differential trail used in the attack. The black bold lines denote active state
words. The red lines denote active words when Δα and Δβ do not cancel in S8.

We further show how to choose optimal Δα and Δβ and how to detect the
cancellation.
Choosing Plaintext Differences Δα and Δβ. For an arbitrary difference Δα
in the plaintext P0, the difference Δβ in the plaintext P1 should be
chosen such that it will cancel Δα and thus will avoid activating the state S8.
Therefore, Δα and Δβ are chosen so that the cancellation can occur with a high
probability – this happens when Δα has only one active byte. Let α and β be
the input and output difference transition of the S-Box, i.e., α changes to β with
a probability 2−6. Then, Δα and Δβ are defined as

234 J. Jean et al.

Δα = (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Δβ = MixColumns ◦ ShiftRows(β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and thus Δα after AES0 will change to Δβ with probability 2−6. We note that
the difference α can be located in any of the 16 bytes of the state.

Detecting the Cancellation Between Δα and Δβ. We can detect if the
cancellation occurred by observing the differences in the ciphertexts Ci (or equiv-
alently, the difference in the key streams Ri) after eight rounds. There are two
cases:

• Cancellation occurred. From the trail on Fig. 3, it follows that the differ-
ence ΔR8⊕ΔR7 is obtained when ΔR7 goes through one AES0 round. It means
that the difference in each of the 16 bytes of ΔR7 can be matched through
the S-Box with the corresponding differences in the bytes of ShiftRows−1 ◦
MixColumns−1(ΔR8 ⊕ΔR7). We note that the probability of matching is one.

• Cancellation did not occurred. If the cancellation did not occur, then
there are additional state words with differences (depicted with red lines in
Fig. 3). In this case, ΔR8⊕ΔR7 is obtained when ΔR7⊕ΔX (where ΔX is the
non-zero difference in S6) goes through AES0. In contrast to the above case,
now ΔR7 and ShiftRows−1 ◦ MixColumns−1(ΔR8 ⊕ ΔR7) can be matched
through the S-Box only with some probability lower than one.

Two randomly chosen differences can be matched through the S-Box with a
probability 127/256 ≈ 2−1. Without loss of generality, we can assume that ΔX
is active in all 16 bytes2. Therefore, when Δα and Δβ cancel, the probability
of a 16-byte match is 1, however, when they do not cancel, then the probability
drops to 2−16. As a result, we can easily distinguish the above two cases, by
analyzing ΔR7 and ΔR8.

The same distinguishing method can be applied to 4 additional rounds (see
Fig. 4). This way, we can increase the probability of distinguishing the two cases,
and end up with a very low probability of matching differences through S-Boxes
in the case when Δα and Δβ do not cancel. As we apply it to five rounds, the
probability becomes 2−5·16 = 2−80.

3.2 Recovery of State Words

Assume that Δα and Δβ have canceled (as demonstrated above, we can single
out the case when they cancel). It means that we have the input difference ΔR7

and the output difference ΔR8 ⊕ ΔR7 of an active AES0 for the word S7, i.e.,
SubBytes(ΔR7) = ShiftRows−1 ◦ MixColumns−1(ΔR8 ⊕ ΔR7). As in S7, all
16 bytes are active (with a probability very close to 1), we can easily find the
values of the individual bytes by the well-known method of solving 16 differential
2 The difference ΔX is produced after some initial difference goes through multiple
AES rounds, thus we can assume ΔX is a random 16-byte difference. As a result, the
probability that in ΔX all 16 bytes are active is (1 − 1/256)16 ≈ 1.

Practical Cryptanalysis of PAES 235

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR7

ΔR8

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR9

ΔR10

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR11

ΔR12

Δ X=0

 =0

 =0

 =0

 =0

Fig. 4. Extending the previous trail for 4 additional rounds.

equations of the form S(x⊕Δinput)⊕S(x) = Δoutput that come from the system
using S-Box S. Each such equation on average has two solutions, because if x is
a solution, then x ⊕ Δinput is also a solution. To find a single solution for each
byte, we repeat once the recovery for different Δα and Δβ. As a result, we can
recover the value of S7 at round 8 of the encryption.

Using the very same method, we can recover S7 at rounds 9, 10, 11 and 12. For
instance, for round 9, the input (resp. output) difference of AES0 is ΔR7 ⊕ ΔR8

(resp. ΔR7 ⊕ ΔR8 ⊕ ΔR9). With the knowledge of the values of 5 consecutive
S7, we can uniquely recover the values of S6, S5, S4, S3 at round 8 by simple
computation using those words. Let SvR

u be the u-th variable of the state for
round v. For instance, S8R

6 is computed by S8R
7 ⊕ AES−1

0 (S9R
7).

We can recover two more S7 words (of additional 2 rounds) if we shift the
round where we apply the difference Δα and instead to P0 we introduce Δα at
P2 and Δβ at P3. Hence, we will have the values of S7 for 7 consecutive rounds.

The state word S8 is different compared to the remaining seven words and
it is not possible to recover it by using the above method. Nevertheless, we can
still recover S8 at round 0 of the encryption based on the differences Δα and
Δβ, i.e., we can recover the active byte where the difference Δα is non-zero.
By repeating the recovery with 16 different positions of active bytes, we can
deduce the whole state word S8 at round 0. As S8 does not take feedback from
any other word (but the plaintext), we can easily find the value of S8 at any

236 J. Jean et al.

round, including our target round 8. That is, with the knowledge of S7 of seven
consecutive rounds (8, 9,...14) which can be deduced as shown above, and S8 at
round 8, we can recover the full state at round 8.

3.3 The Attack

We now present the universal forgery attack. The goal of the attack is to produce
a tag of an arbitrary plaintext. In our case, the attack works as long as the length
of the plaintext is at least 16 blocks (240 bytes). Our forgery is based on a state
recovery, i.e., if at some round the whole state is known, then the tag can easily
be produced by performing the remaining operations of the finalization, and
therefore it can be produced offline.

Let P0, P1, . . . , P14 be the first 15 blocks of the plaintext. Then, the forgery
can be described with the following algorithm:

1. Query the first 15 plaintext blocks of the target (P0‖P1‖ · · · ‖P14), and obtain
the key stream R0, R1, · · · , R14.

2. FOR position = 1 to 16 DO
3. FOR i = 1 to 27 DO
4. Choose 1-byte difference Δαi with active byte at position and

find the corresponding Δβi.
5. Query (P0⊕Δαi‖P1⊕Δβi‖P2‖ · · · ‖P14) and obtain the key stream

Ri
0, · · · , Ri

14.
6. Check if the difference R7 ⊕ Ri

7 can result in R7 ⊕ Ri
7 ⊕ R8 ⊕ Ri

8

by AES0.
7. Check the same property for additional 4 rounds.
8. Save the pairs that pass all the above checks.
9. END FOR

10. Recover the byte at position of the state word S8 at round 0
11. END FOR
12. Recover S7 at rounds 8,9,10,11,12
13. FOR i = 1 to 27 DO
14. Choose 1-byte difference Δαi and find the corresponding Δβi.
15. Query (P0‖P1‖P2 ⊕ Δαi‖P3 ⊕ Δβi‖P4‖ · · · ‖P14) and obtain the key

stream Ri
0, · · · , Ri

14.
16. Check if the difference R9 ⊕ Ri

9 can result in R9 ⊕ Ri
9 ⊕ R10 ⊕ Ri

10 by
AES0.

17. Check the same property for next 4 additional rounds.
18. Save the pairs that pass all the above checks.
19. END FOR
20. Recover S7 at rounds 13 and 14.
21. Deduce all the state words at round 8.
22. Go through the remaining of the transformations and produce the tag.

The first loop is used to recover S8, and to recover five S7, and the second
to recover the remaining two S7. Note, each of the loops (the inner loop of the

Practical Cryptanalysis of PAES 237

first loop) will produce two pairs, as the probability of the trail in the top (Δα
will be canceled by Δβ) is 2−6. In case no good trails with probability 2−6 exist,
the attacker can switch to ones with probability 2−7 and run the loops 28 times.
Furthermore, as we have seen from the previous analysis, a probability of false
positives is very low (around 2−80).

From the algorithm, it follows that the time complexity of the attack is
16 · 27 + 27 ≈ 211 computations. The data complexity is similar and comes in
a form of chosen plaintexts. To solve efficiently the differential equations, the
attack needs about 216 bytes in memory.

4 Practical Distinguisher for a Weak-Key Class of PAES

We continue our analysis by presenting a distinguisher for a class of 264 weak
keys (out of 2128 keys) in PAES-8. The distinguisher requires negligible time
complexity and only a single pair of known plaintext-ciphertext and a chosen
nonce. It exploits the lack of constants in the design and the symmetric properties
of the keyless AES round function. Although we give the distinguisher for PAES-8,
we note that a similar attack is applicable to the nonce-respecting mode PAES-4.

4.1 Symmetric Properties of the AES Round Function

We first recall the known symmetric property of the AES round function [7].
Namely, if a state is symmetric in the sense that its two halves are equal, then
the keyless round function AES0 of the AES maintains this property. We recall
the property of [7] using block matrices, and we introduce the following more
general notations:

U(A,B) =
(

A A
B B

)
, V (A,B) =

(
A B
B A

)
, W (A,B) =

(
A B
A B

)
.

Additionally, we denote by U , V and W the associated sets respectively for all
possible values of the 2 × 2 block matrices A and B. Finally, we denote M the
constant MDS matrix used in the AES round function, and observe that:

M =

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ =

(
M1 M2

M2 M1

)
= V (M1,M2) ∈ V.

Property 1. Let S ∈ U . Then, AES0(S) ∈ U .

Proof. Let S = U(A,B) ∈ U , and write the bytes in S as:

(
A A
B B

)
=

⎛
⎜⎜⎝

x0 x4 x0 x4

x1 x5 x1 x5

x2 x6 x2 x6

x3 x7 x3 x7

⎞
⎟⎟⎠ .

238 J. Jean et al.

As the SubBytes operation applies the same bijection to all the bytes in the state,
we ignore it here as it obviously preserves the structure. After the ShiftRows
operation, the state becomes⎛

⎜⎜⎝
x0 x4 x0 x4

x5 x1 x5 x1

x2 x6 x2 x6

x7 x3 x7 x3

⎞
⎟⎟⎠ def=

(
A′ A′

B′ B′

)
,

thus it still belongs to U . Then, the MixColumns operation results in:⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

x0 x4 x0 x4

x5 x1 x5 x1

x2 x6 x2 x6

x7 x3 x7 x3

⎞
⎟⎟⎠ =

(
M1 M2

M2 M1

)
×

(
A′ A′

B′ B′

)

=
(

M1A
′ ⊕ M2B

′ M1A
′ ⊕ M2B

′

M2A
′ ⊕ M1B

′ M2A
′ ⊕ M1B

′

)
def=

(
A′′ A′′

B′′ B′′

)
∈ U .

��
Property 2. Let S ∈ W. Then, AES0(S) ∈ V, and AES0(AES0(S)) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

(
A B
A B

)
=

⎛
⎜⎜⎝

x0 x2 x4 x6

x1 x3 x5 x7

x0 x2 x4 x6

x1 x3 x5 x7

⎞
⎟⎟⎠ .

Again, we ignore the SubBytes operation as the applied bijection preserves the
structure of the internal states. However, after the ShiftRows operation the state
becomes: ⎛

⎜⎜⎝
x0 x2 x4 x6

x3 x5 x7 x1

x4 x6 x0 x2

x7 x1 x3 x5

⎞
⎟⎟⎠ def=

(
A′ B′

B′ A′

)
∈ V,

which is transformed by the subsequent MixColumns transformation into the
state: (

M1 M2

M2 M1

)
×

(
A′ B′

B′ A′

)
=

(
M1A

′ ⊕ M2B
′ M1B

′ ⊕ M2A
′

M2A
′ ⊕ M1B

′ M2B
′ ⊕ M1A

′

)
def=

(
A′′ B′′

B′′ A′′

)
∈ V.

After applying a second keyless AES round, we get:

(
A′′ B′′

B′′ A′′

)
=

⎛
⎜⎜⎝

y0 y2 y4 y6
y1 y3 y5 y7
y4 y6 y0 y2
y5 y7 y1 y3

⎞
⎟⎟⎠ SR−→

⎛
⎜⎜⎝

y0 y2 y4 y6
y3 y5 y7 y1
y0 y2 y4 y6
y3 y5 y7 y1

⎞
⎟⎟⎠ def=

(
A′′′ B′′′

A′′′ B′′′

)
∈ W,

Practical Cryptanalysis of PAES 239

and by the MixColumns:(
M1 M2

M2 M1

)
×

(
A′′′ B′′′

A′′′ B′′′

)
=

(
M1A

′′′ ⊕ M2A
′′′ M1B

′′′ ⊕ M2B
′′′

M2A
′′′ ⊕ M1A

′′′ M2B
′′′ ⊕ M1B

′′′

)
def=

(
A′′′′ B′′′′

A′′′′ B′′′′

)
∈ W,

which concludes the proof. ��
Finally, we can represent the action of the keyless AES round function AES0

on the three sets U , V and W as follows on Fig. 5.

U V W

AES0

AES0

AES0

Fig. 5. Action of AES0 of the symmetrical states from U , V and W.

4.2 Symmetric Properties of the PAES Transformations

Along with AES0, PAES uses a few more transformations, in particular, the XOR
and the linear transformation L. We investigate here how these two transforma-
tions preserve the class belongings.

Property 3. Let X be either U , V or W, and let S1, S2 ∈ X . Then, S1 ⊕ S2 ∈ X .

Proof. Let S1 = U(A1, B1), S2 = U(A2, B2) ∈ U . Then:

S1 ⊕ S2 =
(

A1 A1

B1 B1

)
⊕

(
A2 A2

B2 B2

)
=

(
A1 ⊕ A2 A1 ⊕ A2

B1 ⊕ B2 B1 ⊕ B2

)
∈ U .

The cases for V and W can be proven similarly. ��
Property 4. Let S ∈ W. Then, L(S) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

S =
(

A B
A B

)
=

⎛
⎜⎜⎝

x0 x2 x4 x6

x1 x3 x5 x7

x0 x2 x4 x6

x1 x3 x5 x7

⎞
⎟⎟⎠ .

Then:

L(S) = L

⎛
⎜⎜⎝

x0 x2 x4 x6

x1 x3 x5 x7

x0 x2 x4 x6

x1 x3 x5 x7

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x2 x4 x6 ⊕ x0 x0

x3 x5 x7 ⊕ x1 x1

x2 x4 x6 ⊕ x0 x0

x3 x5 x7 ⊕ x1 x1

⎞
⎟⎟⎠ ∈ W.

��

240 J. Jean et al.

4.3 The Distinguisher

To distinguish PAES, we use the first ciphertext C0 produced during the encryp-
tion of an arbitrary plaintext P0 with a secret key K ∈ W and nonce N ∈ W.
The key K can be any of such 264 keys (the first two rows equal to the second
two rows), and the same structure holds for the nonce N .

We first inspect how the state words S1, S2, . . . , S8 change the class belong-
ings (either W or V) from the very first to the last steps of the initialization
phase:

• K,N ∈ W. By Properties 3 and 4 S1, S2, . . . , S8 ∈ W after the initial assign-
ments in the initialization.

• After the first update. By Property 3, the XORs do not change the class
belongings, thus each S6, S7, S8 stay in W after the XORs at the top of the
StateUpdate. Further, according to the Property 2, AES0 changes the class
from W to V. Consequently, at the end of the first update, Si ∈ V, i = 1, . . . , 8.

• The second update is similar to the previous one, but this time the class of
Si changes to W.

• . . .
• After the tenth update. The classes of all Si are W.
• After the XORs of the key. As each Si is in W and the key is in W, by

Property 3, it follows that each Si will be in W.

We now focus on the production of the ciphertext C0. Obviously, tmp = S7 =
W (A1, B1) ∈ W and after the application of the StateUpdate, S7 = V (A2, B2) ∈
V by Property 2. Thus, from the definition of the ciphertext C0 = P0⊕tmp⊕S7,
we get:

C0 ⊕ P0 =
(

A1 B1

A1 B1

)
⊕

(
A2 B2

B2 A2

)
=

(
A1 ⊕ A2 B1 ⊕ B2

A1 ⊕ B2 B1 ⊕ A2

)
=

(
X Z
Y T

)
.

Obviously X ⊕ Y ⊕ Z ⊕ T = 0, hence the xor of the four 32-bit blocks of
the first ciphertext and plaintext must result in a zero block. Therefore, we
have a distinguisher which requires negligible complexity and only a single block
of plaintext/ciphertexts to distinguish PAES when instantiated with any of the
264 keys and nonces from the class W. We note that our computer simulation
confirmed the correctness of the distinguisher.

5 Conclusion

We have shown two practical attacks on the CAESAR candidate PAES: a uni-
versal forgery attack and a distinguisher, which contradict the security claims of
this authenticated encryption scheme.

Our analysis gives insights into possible misuses of the AES round function.
Although this transformation per se provides excellent resistance against differ-
ential and linear attacks (once it has been iterated several times), by no means it
is sufficient proof of security against all attacks. The designs based on the round

Practical Cryptanalysis of PAES 241

function that does not apply any constants, as we have seen on the example of
our distinguisher and the chosen-key rotational distinguisher [10] of PAES, are
susceptible to attacks that exploit the symmetry of the AES transformations.
Consequently, using random constants in such designs should be taken as a
requirement to destroy those symmetric behaviors. Furthermore, as our forgery
attack shows, evaluating the differential properties in a straightforward manner
(providing the best in terms of probability differential characteristic), does not
guarantee security against differential attacks in the nonce-repeating mode.

We would also like to emphasize the importance of the technique used in the
forgery attack on the nonce-repeating mode. Due to the mode and the attack
framework, there is no need to provide a valid tag at the beginning of the attack
(forgery or state recovery). Hence the attacker can focus only on finding a differ-
ential characteristic that will leak differences in state words sufficient for recovery
based on solving differential equations. The characteristic does not necessarily
need to hold with a high probability, but for the forgery on PAES this was required
in the first two rounds only because there was an alternative path that does not
permit state recovery. In general, the probability of the characteristic is irrel-
evant, however, it is important for the characteristic to leak input and output
differences of non-linear operations which subsequently will be used to recover
the state bits. We believe that this technique (improved or modified variants)
can be a valuable approach for cryptanalysis of other CAESAR submissions and
authenticated encryption schemes.

Acknowledgment. We would like to thank the anonymous reviewers for their detailed
feedback and comments.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K., Compute, D.: AES-COPA v1. Submitted to the CAESAR competition, March
2014

2. Bernstein, D.: CAESAR Competition. http://competitions.cr.yp.to/caesar.html
3. Daemen, J., Rijmen, V.: The Design of Rijndael: - The Advanced Encryption

Standard. Springer, New York (2002)
4. Derbez, P., Fouque, P.A., Jean, J.: Improved key recovery attacks on reduced-round

AES in the single-key setting. IACR Cryptology ePrint Archive 2012, 477 (2012)
5. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-

round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

6. Krovetz, T., Rogaway, P.: OCB v1. Submitted to the CAESAR competition, March
2014

7. Van Le, T., Sparr, R., Wernsdorf, R., Desmedt, Y.G.: Complementation-like and
cyclic properties of AES round functions. In: Dobbertin, H., Rijmen, V., Sowa, A.
(eds.) AES 2005. LNCS, vol. 3373, pp. 128–141. Springer, Heidelberg (2005)

8. McGrew, D., Viega, J.: The Galois/Counter mode of operation (GCM). Submission
to NIST (2004). http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/
gcm-spec.pdf

http://competitions.cr.yp.to/caesar.html
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf

242 J. Jean et al.

9. Nikolić, I.: Tiaoxin-346 v1. Submitted to the CAESAR competition, March 2014
10. Saarinen, M.J.O.: PAES and rotations, March 2014. https://groups.google.com/

forum/#!topic/crypto-competitions/vRmJdRQBzOo
11. Wang, L.: SHELL v1. Submitted to the CAESAR competition, March 2014
12. Wu, H., Preneel, B.: AEGIS v1. Submitted to the CAESAR competition, March

2014
13. Ye, D., Wang, P., Hu, L., Wang, L., Xie, Y., Sun, S., Wang, P.: PAES v1. Submitted

to the CAESAR competition, March 2014

https://groups.google.com/forum/#!topic/crypto-competitions/vRmJdRQBzOo
https://groups.google.com/forum/#!topic/crypto-competitions/vRmJdRQBzOo

Diffusion Matrices from Algebraic-Geometry
Codes with Efficient SIMD Implementation

Daniel Augot1,2, Pierre-Alain Fouque3,4, and Pierre Karpman1,2,5(B)

1 Inria, Saclay, France
{daniel.augot,pierre.karpman}@inria.fr

2 LIX — École Polytechnique, Palaiseau, France
3 Université de Rennes 1, Rennes, France

pierre-alain.fouque@irisa.fr
4 Institut Universitaire de France, Paris, France

5 Nanyang Technological University, Singapore, Singapore

Abstract. This paper investigates large linear mappings with very good
diffusion and efficient software implementations, that can be used as part
of a block cipher design. The mappings are derived from linear codes over
a small field (typically F24) with a high dimension (typically 16) and a
high minimum distance. This results in diffusion matrices with equally
high dimension and a large branch number. Because we aim for parame-
ters for which no MDS code is known to exist, we propose to use more
flexible algebraic-geometry codes.

We present two simple yet efficient algorithms for the software imple-
mentation of matrix-vector multiplication in this context, and derive con-
ditions on the generator matrices of the codes to yield efficient encoders.
We then specify an appropriate code and use its automorphisms as well
as random sampling to find good such matrices.

We provide concrete examples of parameters and implementations,
and the corresponding assembly code. We also give performance figures
in an example of application which show the interest of our approach.

Keywords: Diffusion matrix · Algebraic-geometry codes · Algebraic
curves · SIMD · Vector implementation · SHARK

1 Introduction

The use of MDS matrices over finite fields as a linear mapping in block cipher
design is an old trend, followed by many prominent algorithms such as the
AES/Rijndael family [7]. These matrices are called MDS as they are derived
from maximum distance separable linear error-correcting codes, which achieve
the highest minimum distance possible for a given length and dimension. This
notion of minimum distance coincides with the one of branch number of a map-
ping [7], which is a measure of the effectiveness of a diffusion layer. MDS matri-
ces thus have an optimal diffusion, in a cryptographic sense, which makes them
attractive for cipher designs.
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 243–260, 2014.
DOI: 10.1007/978-3-319-13051-4 15

244 D. Augot et al.

The good security properties that can be derived from MDS matrices are
often counter-balanced by the cost of their computation. The standard matrix-
vector product is quadratic in the dimension of the vector, and finite field oper-
ations are not always efficient. For that reason, there is often a focus on finding
matrices allowing efficient implementations. For instance, the AES matrix is cir-
culant and has small coefficients. More recently, the PHOTON hash function [9]
introduced the use of matrices that can be obtained as the power of a com-
panion matrix, which sparsity may be useful in lightweight hardware implemen-
tations. The topic of finding such so-called recursive diffusion layers has been
quite active in the past years, and led to a series of papers investigating some of
their various aspects [2,18,23]. One of the most recent developments shows how
to systematically construct some of these matrices from BCH codes [1]. This
allows in particular to construct very large recursive MDS matrices, for instance
of dimension 16 over F28 . This defines a linear mapping over a full 128-bit block
with excellent diffusion properties, at a moderate hardware implementation cost.

As interesting as it may be in hardware, the cost in software of a large linear
mapping tends to make these designs rather less attractive than more balanced
solutions. An early attempt to use a large matrix was the block cipher SHARK, a
Rijndael predecessor [16]. It is a 64-bit cipher which uses an MDS matrix of
dimension 8 over F28 for its linear diffusion. The usual technique for implement-
ing such a mapping in software is to rely on a table of precomputed multiples of
the matrix rows. However, table-based implementations now tend to be frown
upon as they may lead to timing attacks [21], and this could leave ciphers with a
structure similar to SHARK’s without reasonable software implementations when
resistance to these attacks is required. Yet, such designs also have advantages of
their own; their diffusion acts on the whole state at every round, and therefore
makes structural attacks harder, while also ensuring that many S-Boxes are kept
active. Additionally, the simplicity of the structure makes it arguably easier to
analyze than in the case of most ciphers.

Our Contributions. In this work, we revisit the use of a SHARK structure
for block cipher design and endeavour to find good matrices and appropriate
algorithms to achieve both a linear mapping with very good diffusion and efficient
software implementations that are not prone to timing attacks. To be more
specific on this latter point, we target software running on 32 or 64-bit CPUs
featuring an SIMD vector unit.

An interesting way of trying to meet both of these goals is to decrease the
size of the field from F28 to F24 . However, according to the MDS conjecture,
there is no MDS code over F24 of length greater than 17, and no such code
is known [15]. Because a diffusion matrix of dimension n is typically obtained
from a code of length 2n, MDS matrices over F24 are therefore restricted to
dimensions less than 8. Hence, the prospect of finding an MDS matrix over
F24 diffusing on more than 8 × 4 = 32 bits is hopeless. Obviously, 32 bits is not

Diffusion Matrices from Algebraic-Geometry Codes 245

enough for a large mapping à la SHARK. We must therefore search for codes with
a slightly smaller minimum distance in the hope that they can be made longer.

Our proposed solution to this problem is to use algebraic-geometry codes [22],
as they precisely offer this tradeoff. One way of defining these codes is as eval-
uation codes on algebraic curves; thus our proposal brings a nice connection
between these objects and symmetric cryptography. Although elliptic and hyper-
elliptic curves are now commonplace in public-key cryptography, we show a rare
application of an hyperelliptic curve to the design of block ciphers. We present
a specific code of length 32 and dimension 16 over F24 with minimum distance
15, which is only 2 less than what an MDS code would achieve. This lets us
deriving a very good diffusion matrix on 16 × 4 = 64 bits in a straightforward
way. Interestingly, this matrix can also be applied to vectors over an extension of
F24 such as F28 , while keeping the same good diffusion properties. This allows
for instance to increase the diffusion to 16 × 8 = 128 bits.

We also study two simple yet efficient algorithms for implementing the matrix-
vector multiplication needed in a SHARK structure, when a vector permute instruc-
tion is available. From one of these, we derive conditions on the matrix to make
the product faster to compute, in the form of a cost function; we then search for
matrices with a low cost, both randomly, and by using automorphisms of the
code and of the hyperelliptic curve on which it is based. The use of codes auto-
morphisms to derive efficient encoders is not new [6,11], but it is not generally
applied to the architecture and dimensions that we consider in our case.

We conclude this paper by presenting examples of performance figures of
assembly implementations of our algorithms when used as the linear mapping of
a block cipher.

Structure of the Paper. We start with a few background notions in Sect. 2. We
then present our algorithms for matrix-vector multiplication and their context
in Sect. 3, and derive a cost function for the implementation of matrices. This is
followed by the definition of the algebraic-geometry code used in our proposed
linear mapping, and a discussion of how to derive efficient encoders in Sect. 4.
We conclude with insights into the performance of the mapping when used over
both F24 and F28 in Sect. 5.

2 Preliminaries

We note F2m the finite field with 2m elements. We often consider F24 , and
implicitly use this specific field if not mentioned otherwise. W.l.o.g. we use the
representation F24

∼= F2[α]/(α4 + α + 1). We freely use “integer representation”
for elements of F24 by writing n ∈ {0 . . . 15} =

∑3
i=0 ai2i to represent the

element x ∈ F24 =
∑3

i=0 aiα
i.

Bold variables denote vectors (in the sense of elements of a vector space),
and subscripts are used to denote their ith coordinate, starting from zero. For
instance, x = (1, 2, 7) and x2 = 7. If M is a matrix of n columns, we call

246 D. Augot et al.

mi = (Mi,j , j = 0 . . . n − 1) the row vector formed from the coefficients of its
ith row. We use angle brackets “〈” and “〉” to write ordered sets.

Arrays, or tables, (in the sense of software data structures) are denoted by
regular variables such as x or T , and their elements are accessed by using square
brackets. For instance, T [i] is the ith element of the table T , starting from zero.

We conclude with two definitions.

Definition 1 (Systematic form and dual of a code). Let the code C be an
[n, k, d]F2m code of length n, dimension k and minimum distance d with symbols
in F2m . A generator matrix for C is in systematic form if it is of the form (Ik A),
with Ik the identity matrix of dimension k and A a matrix of k rows and n − k
columns. A systematic generator matrix for the dual of C is given by (In−k At).

Definition 2 (Branch number [7]). Let A be the matrix of a linear mapping
over F2m , and wm(x) be the number of non-zero positions of the vector x over
F2m . Then the differential branch number of A is equal to minx�=0(wm(x) +
wm(A(x))), and the linear branch number of A is equal to minx�=0(wm(x) +
wm(At(x))).

Note that if A is such that (Ik A) is a generator matrix of a code of minimum
distance d which dual code has minimum distance d′, then A has a differential
(resp. linear) branch number of d (resp. d′).

3 Efficient Algorithms for Matrix-Vector Multiplication

This section presents software algorithms for matrix-vector multiplication over
F24 . We focus on square matrices of dimension 16. This naturally defines linear
operations on 64 bits, which can also be extended to 128 bits, as it will be made
clear in Sect. 5. Both cases are a common block size for block ciphers.

Targeted Architecture. The algorithms in this section target CPUs featuring
vector instructions, including in particular a vector shuffle instruction such as
Intel’s pshufb from the SSSE3 instruction set extension [12]. These instructions
are now widespread and have already been used successfully in fast cryptographic
implementations, see e.g. [4,10,20]. We mostly considered SSSE3 when designing
the algorithms, but other processor architectures do feature vector instructions.
This is for instance the case of ARM’s NEON extensions, which may also yield
efficient implementations, see e.g. [5]. We do not consider these explicitly in this
paper, however.

Because it plays an important role in our algorithms, we briefly recall the
semantics of pshufb. The pshufb instruction takes two 128-bit inputs1. The
first (the destination operand) is an xmm SSE vector register which logically
represents a vector of 16 bytes. The second (the source operand) is either a similar

1 The instruction can actually also be used on 64-bit operands, but we do not consider
this possibility here.

Diffusion Matrices from Algebraic-Geometry Codes 247

xmm register, or a 128-bit memory location. The result of calling pshufb x y is
to overwrite the input x with the vector x′ defined by:

x′[i] =
{

x[�y[i]�4] if the most significant bit of y[i] is not set
0 otherwise

where �·�4 denotes truncation to the 4 least significant bits. This instruction
allows to arbitrarily shuffle a vector according to a mask, with possible repetition
and omission of some of the vector values2. Notice that this instruction can also
be used to perform 16 parallel 4-to-8-bit table lookups: let us call T this table;
take as first operand to pshufb the vector x = (T [i], i = 0 . . . 15), as second
operand the vector y = (a, b, c, d, . . .) on which to perform the lookup; then
we see that the first byte of the result is x[y[0]] = T [a], the second is x[y[1]] =
T [b], etc.

Finally, there is a three-operand variant of this instruction in the more recent
AVX instruction set and onward [12], which allows not to overwrite the first
operand.

Targeted Properties. In this paper we focus solely on algorithms that can
easily be implemented in a way that makes them immune to timing-attacks [21].
Specifically, we consider the matrix as a known constant but the vector as
a secret, and we wish to perform the multiplication without secret-dependent
branches or memory accesses. It might not always be important to be immune
(or even partially resistant) to this type of attacks, but we consider that it should
be important for any cryptographic primitive or structure to possibly be imple-
mented in such a way. Hence we try to find efficient such implementations for
the SHARK structure and therefore for dense matrix-vector multiplications.

We now go on to describe the algorithms. In all of the remainder of this
section, x and y are two (column) vectors of F16

24 , and M a matrix of M16(F24).
We first briefly recall the principle of table implementations, which are unsatis-
factory when timing attacks are taken into account.

3.1 Table Implementation

We wish to compute y = M · x. The idea behind this algorithm is to use table
lookups to perform the equivalent multiplication yt = xt ·M t, i.e.yt =

∑15
i=0 xi·

(mt)i (where (mt)i is the ith row of M t). This can be computed efficiently by
tabulating beforehand the products λ·(mt)i, λ ∈ F24 (resulting in 16 tables, each
of 16 entries of 64 bits), and then for each multiplication by accessing the table for
(mt)i at the index xi and summing all the retrieved table entries together. This
only requires 16 table lookups per multiplication. However, the memory accesses
depend on the value of x, which makes this algorithm inherently vulnerable to
timing attacks.
2 We will use the word shuffle with this precise meaning in the remainder of this paper.

248 D. Augot et al.

Note that there is a more memory-efficient alternative implementation of
this algorithm which consists in computing each term λ · (mt)i with a single
pshufb instruction instead of using a table-lookup. In that case, only the 16
multiplication tables need to be stored, but their accesses still depend on the
secret value x.

3.2 A Generic Constant-Time Algorithm

We now describe our first algorithm, which can be seen as a variant of table
multiplication that is immune to timing attacks. The idea consists again in com-
puting the right multiplication yt = xt · M t, i.e. yt =

∑15
i=0 xi · (mt)i. However,

instead of tabulating the results of the scalar multiplication of the matrix rows
(mt)i, those are always recomputed, in a way that does not explicitly depend
on the value of the scalar.

Description of Algorithm 1. We give the complete description of Algorithm 1
in the full version of the paper [3], and focus here on the intuition. We want to
perform the scalar multiplication λ · z for an unknown scalar λ and a known,
constant vector z, over F24 . Let us write λ as the polynomial λ3 · α3 + λ2 ·
α2 + λ1 · α + λ0 with coefficients in F2. Then, the result of λ · z is simply
λ3 · (α3 ·z)+λ2 · (α2 ·z)+λ1 · (α ·z)+λ0 ·z. Thus we just need to precompute the
products αi · z, select the right ones with respect to the binary representation
of λ, and add these together. This can easily be achieved thanks to a broadcast
function defined as:

broadcast(x, i)n =
{
1n if the ith bit of x is set
0n otherwise

where 1n and 0n denote the n-bit binary string made all of one and all of zero
respectively. The full algorithm then just consists in using this scalar-vector
multiplication 16 times, one for each row of the matrix.

Implementation of Algorithm 1 with SSSE3 Instructions. We now con-
sider how to efficiently implement Algorithm 1 in practice. The only non-trivial
operation is the broadcast function, and we show that this can be performed with
only one or two pshufb instructions.

To compute broadcast(λ, i)64, with λ a 4-bit value, we can use a single
pshufb with first operand x, such that x[j] = 111111112 if the ith bit of j
is set and 0 otherwise, and with second operand y = (λ, λ, λ, . . .). The result of
pshufb x y is indeed (x[λ], x[λ], . . .) which is 164 if the ith bit of λ is set, and
064 otherwise, that is broadcast(λ, i)64.

In practice, the vector x can conveniently be constructed offline and stored
in memory, but the vector y might not be readily available before perform-
ing this computation3. However, it can easily be computed thanks to an addi-
tional pshufb. Alternatively, if the above computation is done with a vector
3 And because it depends on what we assume to be a secret value, it cannot either be

fetched from memory.

Diffusion Matrices from Algebraic-Geometry Codes 249

y = (λ, ?, ?, . . .) instead (with ? denoting unknown values) and call z its result
(x[λ], ?, ?, . . .), then we have broadcast(λ, i)n = pshufb z (0, 0, . . .).

In the specific case of matrices of dimension 16 over F24 , one can take advan-
tage of the 128-bit wide xmm registers by interleaving, say, 8 ·x with 4 ·x, and 2 ·x
with x, and by computing a slightly more complex version of the broadcast func-
tion broadcast(x, i, j)2n which interleaves broadcast(x, i)n with broadcast(x, j)n.
In that case, an implementation of one step of algorithm 1 only requires two
broadcast calls, two logical and, folding back the interleaved vectors (which only
needs a couple of logical shift and exclusive or), and adding the folded vectors
together. We give a snippet of such an implementation in the full version [3].

3.3 A Faster Algorithm Exploiting Matrix Structure

The above algorithm is already reasonably efficient, and has the advantage of
being completely generic w.r.t. the matrix. Yet, better solutions may exist in
more specific cases. We present here an alternative that can be much faster
when the matrix possesses a particular structure.

The idea behind this second algorithm is to take advantage of the fact that
in a matrix-vector product, the same constant values may be used many times
in finite-field multiplications. Hence, we try to take advantage of this fact by
performing those in parallel. The fact that we now focus on multiplications by
constants (i.e. matrix coefficients) allows us to compute these multiplications
with a single pshufb instead of using the process from Algorithm 1.

Description of Algorithm 2. We give the complete description of Algorithm 2
in the full version [3], and focus here on the intuition. Let us first consider a small
example, and compute M · x defined as:⎛

⎜⎜⎝
1 0 2 2
3 1 2 3
2 3 3 2
0 2 3 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ . (1)

It is obvious that this is equal to:⎛
⎜⎜⎝

x0

x1

0
x3

⎞
⎟⎟⎠ + 2 ·

⎛
⎜⎜⎝

x2

x2

x0

x1

⎞
⎟⎟⎠ + 2 ·

⎛
⎜⎜⎝

x3

0
x3

0

⎞
⎟⎟⎠ + 3 ·

⎛
⎜⎜⎝

0
x0

x1

x2

⎞
⎟⎟⎠ + 3 ·

⎛
⎜⎜⎝

0
x3

x2

0

⎞
⎟⎟⎠ , (2)

where both the constant multiplications of the vector (x0 x1 x2 x3)t and the
shuffles of its coefficients can be computed with a single pshufb instruction each,
while none of these operations directly depends on the value of the vector. This
type of decomposition can be done for any matrix, but the number of operations
depends on the value of its coefficients.

We now sketch one way of obtaining an optimal decomposition as above. We
consider a matrix product M · x with M constant and x unknown, where x is

250 D. Augot et al.

seen as the formal arrangement of variables xi. Let us define S(M,γ) as one of
the minimal sets of shuffles of coefficients of x, such that there exists a unique
vector z ∈ S(M,γ) with zi = xj iff Mi,j = γ. For instance, in the above example,
we have S(M, 2) = {(x2 x2 x0 x1)t, (x3 0 x3 0)t}. Equivalently, we could have
taken S(M, 2) = {(x3 x2 x3 0)t, (x2 0 x0 x1)t}. These sets are straightforward
to compute from this particular matrix, and so are they in the general case.

From the definition of S, it is clear that we have:

M · x =
∑

γ∈F∗
24

∑
s∈S(M,γ)

γ · s. (3)

Once the values of the sets S have been determined, it is clear that we only need
to compute this sum to get our result, and this is precisely what this second
algorithm does.

Cost of Algorithm 2. The cost of computing a matrix-vector product with
Algorithm 2 depends on the coefficients of the matrix, since the size of the sets
S(M,γ) depends both on the density of the matrix and of how its coefficients
are arranged.

If we assume that a vector implementation of this algorithm is used, and if
the dimension and the field of the matrix are well chosen, we can assume that
both the scalar multiplication of x by a constant and its shuffles can be computed
with a single pshufb and a few ancillary instructions. Hence, we can define a
cost function for a matrix with respect to its implementation with Algorithm 2
to be cost2(M) =

(∑
γ∈F24∗ 11(S(M,γ))+#S(M,γ)

)−11(S(M, 1)), where 11(E)
with E a set is one if E �= ∅, and zero otherwise. We may notice that #S(M,γ)
is equal to the maximum number of occurrence of γ in a single row of M , and
the cost2 function is therefore easy to compute. As an example the cost of the
matrix M from Eq. 1 is 7.

In order to find matrices that minimize the cost2 function, we would like to
minimize the sum of the maximum number of occurrence of γ for every γ ∈ F∗

24 .
A simple observation is that for matrices with the same number of non-zero coef-
ficients, this amount is minimal when every row can be deduced by permutation
of a single one; an important particular case being the one of circulant matrices.
More generally, we can heuristically hope that the cost of a matrix will be low
if all of its rows can be deduced by permutation of a small subset thereof.

We can try to estimate the minimum cost for an arbitrary dense circulant
matrix of dimension 16 over F24 . It is fair to assume that nearly all of the values
of F24 should appear as coefficients of such a matrix, 14 of them needing a
multiplication. Additionally, 15–16 permutations are needed if all the rows are
to be different. Hence we can assume that the cost2 function of such a matrix is
about 30.

Finally, let us notice that special cases of this algorithm have already been
used for circulant matrices, namely in the case of the AES MixColumn matrix
[4,10].

Diffusion Matrices from Algebraic-Geometry Codes 251

Implementation of Algorithm 2 with SSSE3 Instructions. The imple-
mentation of Algorithm 2 is straightforward. We refer to the full version for a
small code snippet [3].

3.4 Performance

In Table 2 of Sect. 5, we give a few performance figures for ciphers with a SHARK
structure using assembly implementations of Algorithms 1 and 2 for their lin-
ear mapping. From there it can be seen without surprise that Algorithm 2 is
more efficient if the matrix is well chosen. However, Algorithm 1 still performs
reasonably well, without imposing any condition on the matrix.

4 Diffusion Matrices from Algebraic-Geometry Codes

In this section, we present so-called algebraic-geometry codes and show how they
can give rise to diffusion matrices with interesting parameters. We also focus
on implementation aspects, and investigate how to find matrices with efficient
implementations with respect to the algorithms of Sect. 3, and in particular
Algorithm 2.

4.1 A Short Introduction to Algebraic-Geometry Codes

We first briefly present the concept of algebraic-geometry codes (or AG codes
for short), which are linear codes, and how to compute their generator matrices.
Because the codes are linear, these encoders are matrices. We do not give a
complete description of AG codes, and refer to e.g. [22] for a more thorough
treatment. We present a class of AG codes as a generalization of Reed-Solomon
(RS) codes.

We see AG codes as evaluation codes: to build the codeword for a message
w, we consider w as a function, and the codeword as a vector of values of this
function evaluated on some “elements”. In our case, the elements are points of
the two-dimensional affine space A2(F2m), and the functions are polynomials in
two variables, that is elements of F2m [x, y]. The core idea of AG codes is to con-
sider points of a (smooth) projective curve of the projective space P2(F2m) and
functions from the curve’s function space. Points at infinity are never included
in the (ordered) set of points. However, points of the curve at infinity are useful
in defining the curve’s function (sub)-space, which is why we do consider the
curve in the projective space instead of the affine one.

We first give the definition of the Riemann-Roch space in the special case
where it is defined from a divisor made of a single point at infinity. We refer to
e.g. [19] or [22] for a more complete and rigorous definition.

Definition 3 (Riemann-Roch space). Let X be a smooth projective curve
of P2(F2m) defined by the homogeneous polynomial p(x, y, z), and let p′(x, y)
be the dehomogenized of p. We define F2m [X] = F2m [x, y]/p′ as the coordinate

252 D. Augot et al.

ring of X , and its corresponding quotient field F2m(X) as the function field of
X . Assume Q is the only point of X at infinity, and let r be a positive integer.
The Riemann-Roch space L(rQ) is the set of all functions of F2m(X) with poles
only at Q of order less than r. This is a finite-dimensional F2m-vector-space.
Furthermore, let oQ(x) and oQ(y) be the order of the poles of x and y in Q4,
then a basis of L(rQ) is formed by all the monomial functions xiyj that are such
that i · oQ(x) + j · oQ(y) ≤ r.

This space is particularly important because of the following theorem, which
links its dimension with the genus of X [19].

Theorem 1 (Riemann and Roch). Let L(rQ) be a Riemann-Roch space
defined on X , and g be the genus of X . We have dim(L(rQ)) ≥ r + 1 − g,
with equality when r > 2g − 2.

We have also mentioned earlier that a basis for a space L(rQ) can be com-
puted as soon as the order of the poles of x and y in Q are known, and the
dimension of the space can obviously be computed from the basis. In practice,
computing oQ(x) and oQ(y) can be done from a local parameterization of x and
y in Q. Both this parameterization and the values oQ(x) and oQ(y) can easily
be obtained from a computational algebra software such as Magma. Again, we
refer to [22] for more details.

We are now ready to define a simple class of AG codes.

Definition 4 (Algebraic-Geometry Codes). Let X be a smooth projective
curve of P2(F2m) with a unique point Q at infinity, and call #X its number
of affine points (that is not counting Q). Assume that #X ≥ n and let r be
s.t. dim(L(rQ)) = k, and call (f0, . . . , fk−1) one basis of this space. We define
the codeword of the [n, k, d]F2m algebraic-geometry code CAG associated with the
message m as the vector

∑
i=0...k−1(mi · fi(pj), j = 0 . . . n − 1), where P =

〈p0, . . . , pn−1〉 is an ordered set of points of X/{Q}. The code CAG is the set of
all such codewords.

These codes have the following properties: for fixed parameters n and k and
a curve X , there are

(
#X
n

) ·n! equivalent codes, which corresponds to the number
of possible ordered sets P ; it is also obvious that the maximal length of a code
over X is #X . We also have the following proposition [22]:

Proposition 1. Let CAG be a code of length n and dimension k, and let r be
an integer such that dim(L(rQ)) = k. Then the minimum distance of CAG is at
least n− r. If X is of genus g and r > 2g − 2, this is equal to n− ((k − 1)+ g) =
n − k − g + 1. Therefore, the “gap” between this code and an MDS code of the
same length is g. The same holds for the dual code.
4 We slightly abuse the notations here and actually mean x/z and y/z. But we prefer

manipulating their dehomogenized equivalents x and y. It is obvious that x/z and
y/z indeed have poles in Q, which is at infinity and hence has a zero z coordinate.

Diffusion Matrices from Algebraic-Geometry Codes 253

The minimum distance of AG codes thus depends on the genus of the curves
used to define them. Because the maximal number of points on a curve increases
with its genus, there is a tradeoff between the length of a code and its minimum
distance.

Construction of a Generator Matrix of an AG Code. Once the parameters of
a code have been fixed, including the ordered set P , one just has to specify a
basis of L(rQ), and to form the encoding matrix M ∈ Mk,n(F2m) obtained by
evaluating this basis on P . A useful basis is one such that the encoding matrix is
in systematic form, but it does not necessarily exist for any P . Note however that
in the case of MDS codes (such as RS codes) this basis always exists whatever
the parameters and the choice of P : this is because in this case every minor of
M is of full rank [15]. When such a basis exists, it is easy to find as one just has
to start from an arbitrary basis and to compute the reduced row echelon form
of the matrix thus obtained.

Example 1: An AG Code from an Elliptic Curve. We give parameters for a
code built from the curve defined on P2(F24) by the homogeneous polynomial
x2z + xz2 = y3 + yz2, or equivalently defined on A2(F24) by x2 + x = y3 + y.
It is of genus 1, and hence it is an elliptic curve. It has 25 points, including one
point at infinity, the point Q = [1 : 0 : 0]; the order of the poles of x and y in Q
are respectively 3 and 2. From this, a basis for the space L(12Q) can easily be
obtained. This space has dimension 12+1− g = 12, and can be used to define a
[24, 12, 12]F24

code by evaluation over the affine points of the curve. This allows
to define a matrix of dimension 12 over F24 , which diffuses over 12× 4 = 48 bits
and has a differential and linear branch number of 12.

Example 2: An AG Code from an Hyperelliptic Curve. We increase the length of
the code by using a curve with a larger genus. We give parameters for a rather
well-known code, built from the curve defined on P2(F24) by the homogeneous
polynomial x5 = y2z + yz4. This curve has 33 points, including one point at
infinity, the point Q = [0 : 1 : 0]; the order of the poles of x and y in Q are
respectively 2 and 5. From this, a basis for the space L(17Q) can easily be
defined. This space has dimension 17 + 1 − g = 16, and can be used to define a
[32, 16, 15]F24

code by evaluation over the affine points of the curve. This code has
convenient parameters for defining diffusion matrices: from a generator matrix
in systematic form (I16 A), we can extract the matrix A, which naturally diffuses
over 64 bits and has a differential and linear branch number of 15. Furthermore,
the code is self-dual, which means that A is orthogonal: A ·At = I16. The inverse
of A is therefore easy to compute.

We give the right matrix of two matrices of this code in systematic form in
the full version [3], the latter further including an example of a basis of L(17Q)
and the order of the points used to construct the matrix.

The problem for the rest of the section is now to find good point orders
P for the hyperelliptic code of Exaqmple 2 such that efficient encoders can be

254 D. Augot et al.

constructed thanks to Algorithm 2 of Sect. 3.3. For convenience, we name CHE
any of the codes equivalent to the one of Example 2.

4.2 Compact Encoders Using Code Automorphisms

We consider matrices in systematic form (I16 A). For dense matrices, Algorithm 2
tends to be most efficient when all the rows of a matrix can be deduced by
permutation of one of them, or more generally of a small subset of them. Our
objective is thus to find matrices of this form.

The main tool we use to achieve this goal are automorphisms of CHE . Let us
first give a definition. (In the following, Sn denotes the group of permutations
of n elements.)

Definition 5. (Automorphisms of a code). The automorphism group Aut(C)
of a code C of length n is a subgroup of Sn such that π ∈ Aut(C) ⇒ (c ∈ C ⇒
π(c) ∈ C).

Because we consider here the code CHE which is an evaluation code, we can
equivalently define its automorphisms as being permutations of the points on
which the evaluation is performed. If π is an automorphism of CHE , if {O0, . . . , Ol}
are its orbits, and if the code is defined with a point order P such that for each
orbit all of its points are neighbours in the order P , then the effect of π on a
codeword of CHE is to cyclically permute its coordinates along each orbit.

To see that this is useful, assume that there is an automorphism π with two
orbits O0 and O1 of size n/2 each. Then, if M = (In/2 A) is obtained with point
order P = 〈O0, O1〉, each row of M can be obtained by the repeated action of π
on, say, m0, and it follows that A is circulant (and therefore has a low cost w.r.t.
Algorithm 2). More generally, if an automorphism can be found such that it has
orbits of size summing up to n/2, the corresponding matrix M can be deduced
from a small set of rows. We give two toy examples with Reed-Solomon codes,
which can easily be verified.

π : F24 → F24 , x �→ 8x. This automorphism has O0 = 〈1, 8, 12, 10, 15〉 and
O1 = 〈2, 3, 11, 7, 13〉 for orbits, among others. The systematic matrix for the
[10, 5, 6]F24

code obtained with the points in that order is then such that A is
circulant and obtained from the cyclic permutation of the row (12, 10, 2, 6, 3).

π : F24 → F24 , x �→ 7x. This automorphism has O0 = 〈1, 7, 6〉, O1 = 〈2, 14, 12〉,
O2 = 〈4, 15, 11〉, and O3 = 〈8, 13, 5〉 for orbits, among others. The systematic
matrix for the [12, 6, 7]F24

code obtained with the points in that order is then of

the form
(

I3 03 A B
03 I3 C D

)
with A, B, C and D circulant matrices. It can thus be

obtained by cyclic permutation of only two rows.

Application to CHE . Automorphisms of CHE are quite harder to find than
ones of RS codes. They can however be found within automorphisms of the
curve X on which it is based [19]. This is quite intuitive, as these will precisely
permute points on the curve, which are the points on which the code is defined.

Diffusion Matrices from Algebraic-Geometry Codes 255

We mostly need to be careful to ensure that the point at infinity is fixed by these
automorphisms. We considered the degree-one automorphisms of X described by
Duursma [8]. They have two generators: π0 : F2

24 → F2
24 , (x, y) �→ (ζx, y) with

ζ5 = 1, and π1(a,b) : F2
24 → F2

24 , (x, y) �→ (x + a, y + a8x2 + a4x + b4), with
(a, b) an affine point of X . These generators span a group of order 160. When
considering their orbit decomposition, the break-up of the size of the orbits can
only be of one of five types, given in Table 1.

Table 1. Possible combination of orbit sizes of automorphisms of CHE spanned by π0

and π1. A number n in col. c means that an automorphism of this type has n orbits of
size c.

Orbit size 1 2 4 5 10

Type 1 32 0 0 0 0

Type 2 0 16 0 0 0

Type 3 0 0 8 0 0

Type 4 2 0 0 6 0

Type 5 0 1 0 0 3

From these automorphisms, it is possible to define a partitions of P in two sets
of size 16, which are union of orbits. We may therefore hope to obtain systematic
matrices of the type we are looking for. Unfortunately, after an extensive search5,
it appears that ordering P in this fashion never results in obtaining a systematic
matrix. We recall that indeed, because AG codes are not MDS, it is not always
the case that computing the reduced row echelon form of an arbitrary encoding
matrix yields a systematic matrix.

Extending the Automorphisms with the Frobenius Mapping. We extend
the previous automorphisms with the Frobenius mapping θ : F2

24 → F2
24 ,

(x, y) �→ (x2, y2); this adds another 160 automorphisms for X . However, these
will not anymore be automorphisms for the code CHE in general, and we will
therefore obtain matrices of a form slightly different from what we first hoped
to achieve.

The global strategy is still the same, however, and consists in ordering the
points along orbits of the curve automorphisms. By using the Frobenius, new
combinations of orbits are possible, notably 4 of size 8. We study below the result
of ordering P along the orbits of one such automorphism. We take the example
of σ = θ ◦σ2 ◦σ1, with σ1 : (x, y) �→ (x+1, y +x2 +x+7), σ2 : (x, y) �→ (12x, y),
and θ the Frobenius mapping. The key observation is that in this case, only σ0

and σ4 are automorphisms of CHE . Note that not all orbits orderings of σ for P
yield a systematic matrix. However, unlike as above, we were able to find some
5 Both on CHE and on the smaller elliptic code of Example 1. However, we are not as

yet able to explain this fact.

256 D. Augot et al.

orders that do. In these cases, the right matrix “A” of the full generator matrix
(I16 A) is of the form:

(a0, . . . ,a3, σ4(a0), . . . , σ4(a3),a8, . . . ,a11, σ4(a8), . . . , σ4(a11))t,

with a0, . . . ,a3, a8, . . . ,a11 row vectors of dimension 16. For instance, the first
and fifth row of one such matrix are:

a0 = (5, 2, 1, 3, 8 , 5 , 1 , 5 , 12, 10, 14, 6, 7 , 11 , 4 , 11)

a4 = σ4(a0) = (8 , 5 , 1 , 5 , 5, 2, 1, 3, 7 , 11 , 4 , 11 , 12, 10, 14, 6).

We give the full matrix in the full version [3]. We have therefore partially reached
our goal of being able to describe A from a permutation of a subset of its rows.
However this subset is not small, as it is of size 8—half of the matrix dimension.
Consequently, these matrices have a moderate cost according to the cost2 func-
tion, when implemented with Algorithm 2, but it is not minimal. Interestingly,
all the matrices of this form that we found have the same cost of 52.

4.3 Fast Random Encoders

We conclude this section by presenting the results of a very simple random search
for efficient encoders of CHE with respect to Algorithm 2. Unlike the above study,
this one does not exploit any kind of algebraic structure. Indeed, the search only
consists in repeatedly generating a random permutation of the affine points of
the curve, building a matrix for the code with the corresponding point order,
tentatively putting it in systematic form (I16 A), and if successful evaluating the
cost2 function from Sect. 3.3 on A. We then collect matrices with a minimum
cost.

Because there are 32! ≈ 2117,7 possible point orders, we can only explore a
very small part of the search space. However, matrices of low cost can be found
even after a moderate amount of computation, and we found many matrices of
cost 43, though none of a lower cost. We give the number of matrices of cost
strictly less than 60 that we found during a search of 238 encoders in the full
version [3]. We also give in the full paper an example of a matrix of cost 43,
which is only about a factor 1.5 away from the estimate of the minimum cost
of a circulant matrix given in Sect. 3.3. We observe that the transpose of this
matrix also has a cost of 43.

5 Applications and Performance

This last section presents the performance of straightforward assembly imple-
mentations of both of our algorithms when applied to a matrix of the code CHE
from Sect. 4, of cost 43. For convenience, we denote MH16 this matrix. It is of
dimension 16 over F24 and has a differential and linear branch number of 15.

We do this study in the context of block ciphers, by assuming that MH16

is used as the linear mapping of two ciphers with a SHARK structure: one with

Diffusion Matrices from Algebraic-Geometry Codes 257

4-bit S-Boxes and a 64-bit block, and one with 8-bit S-Boxes and a 128-bit
block. What we wish to measure in both cases is the speed in cycles per byte of
such hypothetical ciphers, so as to be able to gauge the efficiency of this linear
mapping and of the resulting ciphers. In order to do this, we need to estimate
how many rounds would be needed for the ciphers to be secure.

Basic Statistical Properties of a 64-bit Block Cipher with 4-bit
S-Boxes and MH16 as a Linear Mapping. We use standard wide-trail con-
siderations to study differential and linear properties of this cipher [7]. This is
very easy to do thanks to the simple structure of the cipher. The branch num-
ber of MH16 is 15, which means that at least 15 S-boxes are active in any two
rounds of a differential path or linear characteristic. The best 4-bit S-boxes have
a maximum differential probability and a maximal linear bias of 2−2 (see e.g.
[14,17]). By using such S-boxes, one can upper-bound the probability of a single
differential path or linear characteristic for 2n rounds by 2−2·15n. This is smaller
than 2−64 as soon as n > 2. Hence we conjecture that 6 to 8 rounds are enough
to make a cipher resistant to standard statistical attacks.

If one were to propose a concrete cipher, a more detailed analysis would of
course be needed, especially w.r.t. more dedicated structural attacks. However,
it seems reasonable to consider at a first glance that 8 rounds would indeed
be enough to bring adequate security. It is only 2 rounds less than AES-128,
which uses a round with comparatively weaker diffusion. Also, 6 rounds might
be enough. Consequently, we present software performance figures for 6 and 8
rounds of such an hypothetical 64-bit cipher with 4-bit S-Boxes in Table 2, on
the left6. We include data both for a strict SSSE3 implementation and for one
using AVX extensions, which can be seen to bring a considerable benefit. Note
that the last round is complete and includes the linear mapping, unlike e.g. AES.
Also, note that the parallel application of the S-Boxes can be implemented very
efficiently with a single pshufb, and thus has virtually no impact on the speed.

Basic Statistical Properties of a 128-Bit Block Cipher with 8-Bit
S-Boxes and MH16 as a Linear Mapping. Although the code CHE from
which the matrix MH16 is built was initially defined with F24 as an alphabet,
this latter can be replaced by an algebraic extension of F24 such as F28 , to yield
a code CHE′ with the same parameters, namely a [32, 16, 15]F28

code. Indeed,
by using a suitable representation such as F24

∼= F2[α]/(α4 + α3 + α2 + α + 1);
F28

∼= F24 [t]/(t2 + t + α)7, an element of F28 is represented as a degree-one
polynomial at + b over F24 . It follows that the minimum weight of a codeword
w = (ait + bi), i ∈ {0 . . . 31} of CHE′ is at least equal to the minimum weight of
words (ai), i = 0 . . . 31 and (bi), i ∈ {0 . . . 31}. If those are taken among code-
words of CHE , their minimum weight is 15, and thus so is the one of w. It is
also possible to efficiently compute the multiplication by MH16 over F28 from
two computations over F24 : because the coefficients of MH16 are in F24 , we have
6 The figures are given for computation of a single block; better performance can be

achieved for longer messages.
7 This representation is used by Hamburg in [10].

258 D. Augot et al.

MH16 · (ait + bi) = (MH16 · (ai) · t) + (MH16 · (bi)). As a result, applying MH16

to F28 has only twice the cost of applying it to F24 , while effectively doubling
the size of the block.

From wide-trail considerations, the resistance of such a cipher to statistical
attacks is comparatively even better than when using 4-bit S-Boxes, when an
appropriate 8-bit S-Box is used. For instance, the AES S-box has a maximal differ-
ential probability and linear bias of 2−6 [7]. This implies that the probability of
a single differential path or linear characteristic for 2n rounds is upper-bounded
by 2−6·15n, which is already much smaller than 2−128 as soon as n > 1. Again,
8 rounds of such a cipher should bring adequate security, and 6 rounds might
be enough. We provide performance figures for both an SSSE3 and an AVX
implementation in Table 2, on the right(see footnote 6). However, in the case
of 8-bit S-Boxes, the S-Box application is rather more complex and expensive
a step than with 4-bit S-Boxes. In these test programs, we decided to use the
efficient vector implementation of the AES S-Box from Hamburg [10].

Table 2. Performance of software implementations of the hypothetical 64 and 128-bit
cipher, in cycles per byte (cpb). Figures in parentheses are for an AVX implementation
(when applicable).

Processor # rounds 64-bit Block 128-bit Block

type cpb cpb cpb cpb

(Algorithm 1) (Algorithm 2) (Algorithm 1) (Algorithm 2)

Intel Xeon E5-2650 @

2.00GHz

6 50 (45.5) 33 (24.2) 58 (52.3) 32.7 (26.5)

8 66.5 (60.2) 44.5 (31.9) 76.8 (69.6) 43.8 (35.7)

Intel Xeon E5-2609 @

2.40GHz

6 72.3 (63.7) 45.3 (33.2) 79.8 (75.6) 47.1 (36.8)

8 95.3 (84.7) 63.3 (45.6) 106.6 (97.1) 62.1 (50.3)

Intel Xeon E5649 @ 2.53GHz 6 84.7 46 84.5 47

8 111.3 59.8 111 61.9

Discussion. The performance figures given in Table 2 are average for a block
cipher. For instance, it compares favourably with the optimized vector implemen-
tations of 64-bit ciphers LED and Piccolo in sequential mode from [4], which run
at speeds between 70 and 90 cpb., depending on the CPU. It is however slower
than Hamburg’s vector implementation of AES, with reported speeds of 6 to 22
cpb. (9 to 25 for the inverse cipher) [10,20].

6 Conclusion

We revisited the SHARK structure by replacing the MDS matrix of its linear dif-
fusion layer by a matrix built from an algebraic-geometry code. Although this
code is not MDS, it has a very high minimum distance, while being defined over
F24 instead of F28 . This allows to reduce the size of the coefficients of the matrix
from 8 to 4 bits, and has important consequences for efficient implementations of
this linear mapping. We studied algorithms suitable for a vector implementation

Diffusion Matrices from Algebraic-Geometry Codes 259

of the multiplication by this matrix, and how to find matrices that are most
efficiently implemented with those algorithms. Finally, we gave performance fig-
ures for assembly implementations of hypothetical SHARK-like ciphers using this
matrix as a linear layer.

This work provided generalizations of SHARK that are not vulnerable to timing
attacks as is the original cipher, and also a generalization to 128-bit blocks. It also
showed that even if not the fastest, such potential design could be implemented
efficiently in software.

As a future work, it would be interesting to investigate how to use the full
automorphism group of the code to design matrices with a lower cost.

Acknowledgments. Pierre Karpman is partially supported by the Direction générale
de l’armement and by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06).

References

1. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using
shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS. Springer
(2014). https://eprint.iacr.org/2014/566

2. Augot, D., Finiasz, M.: Exhaustive search for small dimension recursive MDS dif-
fusion layers for block ciphers and hash functions. In: ISIT, IEEE, pp. 1551–1555
(2013)

3. Augot, D., Fouque, P.A., Karpman, P.: Diffusion Matrices from Algebraic-
Geometry Codes with Efficient SIMD Implementation. IACR Cryptology ePrint
Archive 2014, 551 (2014). https://eprint.iacr.org/2014/551

4. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–352. Springer, Heidelberg (2014)

5. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)

6. Chen, J.P., Lu, C.C.: A serial-in-serial-out hardware architecture for systematic
encoding of Hermitian codes via Gröbner Bases. IEEE Trans. Commun. 52(8),
1322–1332 (2004)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Information Security and Cryptography. Springer, New York (2002)

8. Duursma, I.: Weight distributions of geometric Goppa codes. Trans. Am. Math.
Soc. 351(9), 3609–3639 (1999)

9. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

10. Hamburg, M.: Accelerating AES with vector permute instructions. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 18–32. Springer, Heidelberg (2009)

11. Heegard, C., Little, J., Saints, K.: Systematic encoding via Gröbner bases for a
class of algebraic-geometric goppa codes. IEEE Trans. Inf. Theor. 41(6), 1752–
1761 (1995)

12. Intel Corporation: Intel R© 64 and IA-32 Architectures Software DeveloperG’s Man-
ual, March 2012

https://eprint.iacr.org/2014/566
https://eprint.iacr.org/2014/551

260 D. Augot et al.

13. Knudsen, L.R., Wu, H. (eds.): SAC 2012. LNCS, vol. 7707. Springer, Heidelberg
(2013)

14. Leander, G., Poschmann, A.: On the classification of 4 bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Mathematical Library. North-Holland, Amsterdam (1978)

16. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996)

17. Saarinen, M.-J.O.: Cryptographic analysis of all 4 × 4-Bit S-Boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012)

18. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive diffusion layers
for block ciphers and hash functions. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 385–401. Springer, Heidelberg (2012)

19. Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathe-
matics, vol. 254, 2nd edn. Springer, New York (2009)

20. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. [13], pp. 339–354

21. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

22. Van Lint, J.H.: Introduction to Coding Theory. Graduate Texts in Mathematics,
vol. 86, 3rd edn. Springer, Berlin (1999)

23. Wu, S., Wang, M., Wu, W.: Recursive Diffusion Layers for (Lightweight) Block
Ciphers and Hash Functions. [13], pp. 355–371

Error-Tolerant Side-Channel Cube Attack
Revisited

Zhenqi Li1(B), Bin Zhang2,3, Arnab Roy4,5, and Junfeng Fan6

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences,

Beijing, China
lizhenqi@tca.iscas.ac.cn

2 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences,

Beijing, China
3 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
zhangbin@tca.iscas.ac.cn

4 University of Luxembourg, Luxembourg, Luxembourg
5 Technical University of Denmark,

Kongens Lyngby, Denmark
arroy@dtu.dk

6 Nationz Technologies Inc, Shenzhen, China
fanjunfeng@gmail.com

Abstract. Error-tolerant side-channel cube attacks have been recently
introduced as an efficient cryptanalytic technique against block ciphers.
The known Dinur-Shamir model and its extensions require error-free data
for at least part of the measurements. Then, a new model was proposed at
CHES 2013, which can recover the key in the scenario that each measure-
ment contains noise. The key recovery problem is converted to a decoding
problem under a binary symmetric channel. In this paper, we propose
a high error-tolerant side-channel cube attack. The error-tolerant rate is
significantly improved by utilizing the polynomial approximation and a
new variant of cube attack. The simulation results on PRESENT show
that given about 221.2 measurements, each with an error probability of
40.5 %, the new model achieves a success probability of 50% for the key
recovery. The error-tolerant level can be enhanced further if the attacker
can obtain more measurements.

Keywords: Cube attack · Side-channel attack · PRESENT

This work was supported by the National Grand Fundamental Research 973 Pro-
gram of China(Grant No. 2013CB338002), the programs of the National Natural
Science Foundation of China (Grant No. 60833008, 60603018, 61173134, 91118006,
61272476).
Most of Arnab Roy’s work was done when he was in the University of Luxembourg.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 261–277, 2014.
DOI: 10.1007/978-3-319-13051-4 16

262 Z. Li et al.

1 Introduction

Cube attack was formally proposed by Dinur and Shamir at Eurocrypt 2009 [8]
as an efficient cryptanalytic technique which can be applied to many types of
well-designed cryptosystems by exploiting an low degree multivariate polynomial
of a single output bit. It is an extension of high-order differential attacks [13]
and algebraic IV differential attacks [17,18]. It shows superior performance on
several stream ciphers [1,2,7,8,11], however, most block ciphers are immune to
it, as they iterate a highly non-linear round function for a number of times and
the degree of the polynomial for the ciphertext bits is much higher.

Since the master polynomials of some intermediate variables in the early
rounds are of relatively low degree, cube attack becomes a convincing method
to attack block ciphers by combining physical attacks, where the attackers can
exploit some leaked information about the intermediate variables, i.e., state reg-
isters. The attacker only needs to learn the value of a single wire or register
in each execution, it is thus ideal for probing attacks. The main challenge is to
overcome the measurement noise, thus how to launch an efficient error-tolerant
side-channel cube attack in a realistic setting is a highly interesting topic.

Dinur and Shamir initialized the first study on error-tolerant side-channel
cube attack (ET-SCCA) [10]. They treat the uncertain bits as new erasure vari-
ables and it was further enhanced in [6,9] by utilizing more trivial equations of
high dimensional cubes to correct the errors. The success of this model is based
on an assumption that the adversary possesses the exact knowledge of error
positions and partial measurements are error-free. Then, at CHES 2013 [19],
Li et. al. proposed a new model, which can recover the key when each measure-
ment contains noise. The key recovery problem is converted to decoding a [L, n]
linear code. However, the error-tolerant level is still very low.

This paper introduces a new ET-SCCA which can tolerate heavy noise inter-
ference. The error-tolerant rate can be improved significantly by utilizing the
polynomial approximation technique and applying a new variant of cube attack.
The main idea of polynomial approximation is to appropriately remove some
key variables to reduce the code dimension n of a [L, n] code. Moreover, a new
variant of cube attack is proposed, inspired by the idea of dynamic cube attack
[7]. The main idea is to increase the number of linear equations, i.e., code length
L, by adaptively choosing the plaintext. Consequently, the bound of error prob-
ability has been refined. Compared with the simulation results on PRESENT
in [19], the error probability for each measurement can be improved to 40.5%
given about 221.2 measurements and 227.6 time complexity. The error-tolerant
rate can be enhanced further if the attacker can obtain more measurements.
Table 1 summarized our simulation results on PRESENT.

This paper is organized as follows. We first introduce the basic idea of cube
attack and ET-SCCA in Sect. 2. In Sect. 3, we present the new model. Error
probability evaluation is developed and analyzed in Sect. 4. Section 5 presents
the simulations on PRESENT. The comparison is given in Sect. 6, followed by
some further discussions. Finally, we conclude the paper in Sect. 7.

Error-Tolerant Side-Channel Cube Attack Revisited 263

Table 1. Simulation results on PRESENT

Time complexity Data (measurements) Error probability Scenario

231.6 210.1 23.2 % Lower measurements

227.6 216.2 29.5 % Balanced

227.6 221.2 40.5 % Higher error tolerance

The success probability is about 50 %.
The memory requirement is negligible.

2 Preliminaries

2.1 Cube Attack

Consider a block cipher T and its encryption function (c1, ..., cm) = E(k1, ...,
kn, v1, ..., vm), where ci, kj and vs are ciphertext, encryption key and plaintext
bits, respectively. One can always represent ci, i ∈ [1,m], with a multivariate
polynomial in the plaintext and key bits, namely, ci = p(k1, ..., kn, v1, ..., vm). Let
I ⊆ {1, ...,m} be an index subset, and tI =

∏
i∈I vi, the polynomial p is divided

into two parts: p(k1, ..., kn, v1, ..., vm) = tI · pS(I) + q(k1, ..., kn, v1, ..., vm), where
no item in q contains tI . Here pS(I) is called the superpoly of I in p. A maxterm
of p is a term tI such that deg(pS(I)) ≡ 1 verified by the BLR test [4] and this
pS(I) is called maxterm equation of tI .

Example 1. Let p(k1, k2, k3, v1, v2, v3) = v2v3k1 + v2v3k2 + v1v2v3 + v1k2k3 +
k2k3 + v3 + k1 + 1 be a polynomial of degree 3 in 3 secret variables and 3 public
variables. Let I = {2, 3} be an index subset of the public variables. We can
represent p as p(k1, k2, k3, v1, v2, v3) = v2v3(k1 + k2 + v1) + (v1k2k3 + k2k3 +
v3 + k1 + 1), where tI = v2v3, pS(I) = k1 + k2 + v1 and q(k1, k2, k3, v1, v2, v3) =
v1k2k3 + k2k3 + v3 + k1 + 1.

Let d be the size of I, then a cube on I is defined as a set CI of 2d vectors
that cover all the possible combinations of tI and leave all the other variables
undetermined. Any vector τ ∈ CI defines a new derived polynomial p|τ with
n − d variables. Summing these derived polynomials over all the 2d possible
vectors in CI results in exactly pS(I) (cf. Theorem 1, [8]). For p and I defined
in Example 1, we have CI = {τ1, τ2, τ3, τ4}, where τ1 = [k1, k2, k3, v1, 0, 0], τ2 =
[k1, k2, k3, v1, 0, 1], τ3 = [k1, k2, k3, v1, 1, 0], and τ4 = [k1, k2, k3, v1, 1, 1]. It is easy
to verify that p|τ1 + p|τ2 + p|τ3 + p|τ4 = k1 + k2 + v1 = pS(I). Here pS(I) is called
the maxterm equation of tI . In the off-line phase, the attacker tries to find as
many maxterms and their corresponding maxterm equations as possible.

In the on-line phase, the secret key is fixed. The attacker chooses plaintexts
τ ∈ CI and obtains the evaluation of p at τ . By summing up p|τi for all the 2d

vectors in CI , he obtains pS(I), a linear equation in ki. The attacker repeats this
process for all the maxterms found in the off-line phase, and obtains a group of
equations, which he can solve to recover the key.

264 Z. Li et al.

2.2 Error-Tolerant Side-Channel Cube Attack(ET-SCCA)

At CHES 2013, Li et. al. [19] proposed a new model for ET-SCCA, which can
retrieve the key when all the leaked bits are noisy. The leaked data observed is
regarded as the received channel output of some linear code transmitted through
a binary symmetric channel (BSC). The problem of recovering the n secret key
bits in L linear equations can be considered as the problem of decoding a binary
linear [L, n] code with L being the code length and n the dimension as follows.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
l1 : a1

1k1 + a2
1k2 + ... + an

1kn = b1
l2 : a1

2k1 + a2
2k2 + ... + an

2kn = b2
...

lL : a1
Lk1 + a2

Lk2 + ... + an
Lkn = bL

(1)

where aj
i ∈ {0, 1} (1 ≤ i ≤ L, 1 ≤ j ≤ n) denotes the coefficient. Note that

bi ∈ {0, 1} is obtained by summing up the evaluation of the maxterm equation
over the ith cube Ci, namely, bi =

∑
τ∈Ci

p|τ . The value of p|τ is obtained via
measurements. Ideally, the measurement is error-free and the attacker obtains
the correct sequence B = [b1, b2, ..., bL]. In reality, however, the attacker is likely
to observe a different sequence Z = z1, z2, ..., zL due to the measurement errors.

Denote q as the probability that a bit may flip in each measurement and
assume that q < 1/2, then 1 − q = 1/2 + μ is the probability of an accurate
measurement and μ = 0 means a random guess. Since bi =

∑
τ∈Ci

p|τ , and Ci

has t = 2d̄ elements (d̄ is the average size of cubes), and each measurement
can be treated as an independent event, according to the piling-up lemma [14],
Pr{bi = zi} Δ= 1−p = 1

2 +2t−1μt. Thus, each zi can be regarded as the output of
a BSC with p = 1/2 − ε (ε = 2t−1μt) being the crossover probability. Therefore,
the key recovery problem is converted to decoding a [L, n] linear code. Maximum
likelihood decoding (ML-decoding, see AppendixC) is used and they derive the
error-tolerant bound in Lemma 1.

Lemma 1. To ensure 50% success probability of decoding a [L, n] code to retrieve
the key, the error probability q of each measurement should satisfy q ≤ 1

2 ·
(1 − (0.35·n

L)
1

2·t · 2
1
t), where t = 2d̄ denotes the number of summations to evalu-

ate each linear equation.

The simulation results on PRESENT-80 show that given about 210.2 measure-
ments, each with an error probability q = 19.4%, it achieves 50.1% of success
rate for the key recovery. However, the error-tolerant rate is still very low.

3 A New ET-SCCA with Higher Error-Tolerant Rate

3.1 Polynomial Approximation

The main target is to remove several secret variables while keeping the number of
maxterm equations reduced as few as possible. In this way, the code dimension

Error-Tolerant Side-Channel Cube Attack Revisited 265

n can be reduced while keeping the code length L reduced as little as possi-
ble. However, removing secret variables might be a challenging task as previous
studies on Trivium [8], Serpent [9,10], KATAN [12], LBlock [20] and PRESENT
[19] show that most of the maxterm equations have a low density. Removing
secret variables will probably lead to the reduction of the maxterm equations.
We propose two basic strategies of removing key variables as follows.

Lower Reduction Factor. The removed secret variables should not be those
that solely exist in the maxterm equations and should be those that exist in the
maxterm equations with multiple secret variables. (e.g., suppose we have derived
2 maxterm equations, one is k1 + k2 and the other is k3 + 1, then the removed
secret variables should contain k1 or k2, but not k3, since removing k3 will lead
to the second maxterm equation become a trivial one.) Note that this selection
process can be finished in the off-line phase, since all the maxterm equations are
available. Suppose the number of removed key variables is n′ and the number
of maxterm equations reduced is γ · n′, where γ is the reduction factor. γ = 0
means the removed secret variables will not influence the number of the maxterm
equations and the value of γ depends on the choice of removed secret variables.
The problem now convert to decoding a [L − γ · n′, n − n′] code.

Higher Approximation Rate. Suppose a polynomial p containing n secret
variables and m public variables, the removed key set is R = {ki1 , ki2 , ..., kir},
where 1 ≤ iq ≤ n, 1 ≤ q ≤ r. The approximation rate between p and p̃
after removing variables in R is defined as Λ(p, p̃)|R = e/2m+n = 1/2 + σ,
where e is the number of the equal evaluations and σ (0 < σ < 1/2)1 is the
bias factor. In reality, there might be more than one leakage function. Suppose
P = {p1, p2, ..., pu} are all the associated leakage functions and the corresponding
removed key variable sets are R1, R2, ..., Ru respectively2, the average approxi-
mation rate is defined as

Λ̄ =
∑u

t=1 Λ(pt, p̃t)|Rt

u
. (2)

The candidate key variables to remove should be those with maximum Λ̄. Note
that this process can also be finished in the off-line phase, i.e., all the removed
key variables are set to 0 for the evaluation of p̃.

3.2 A New Variant of Cube Attack

The main idea is to increase the number of maxterm equations by choosing
the static public variables, which are those variables that are not part of the
cube variables. In the traditional applications of cube attacks and cube testers
[1,2,8], these static variables will be set to constant values. We find that multiple
1 For the case of 1/2 − σ, convert it to 1/2 + σ by adding 1 to the evaluation of p̃
2 R1 = {k[1]

i1
, k

[1]
i2

, ..., k
[1]
ir1

}, R2 = {k[2]
i1

, k
[2]
i2

, ..., k
[2]
ir2

},...

266 Z. Li et al.

maxterm equations can be derived for each maxterm by choosing static variables.
In Example 1 of Sect. 2, the maxterm equation for the maxterm tI = v2v3 is
pS(I) = k1 + k2 + v1, where v1 is a static variable. If we set v1 = 0, then we can
derive a maxterm equation k1 + k2. Similarly, if we set v1 = 1, another variant
maxterm equation k1 + k2 + 1 can be derived. Then, we have the following
theorem (please refer to AppendixA for the details of the proof).

Theorem 1. For the maxterm equation pS(I) of maxterm tI , the number of
variant maxterm equations which can be derived is at most 2m−d and each can
be classified into the following two types.

1. p∗
S(I) + C, where C ∈ {0, 1}. (Type I)

2. p∗
S(I) +C0 +C1kn1 +C2kn2 + ...+Crknr

, where Ci ∈ {0, 1}, ∨r
i=1 Ci �= 0 and

C0 represents a constant term. (Type II)

p∗
S(I) is the equation of pS(I) when we set all static variables to 0.

The previous Example 1 of Sect. 2 describes the scenario of Type I. The following
example shows the scenario of Type II.

Example 2. Suppose a polynomial p = v1v2k1 + v1v2v3k2 + v3v4k1k2k3 + v1v2 =
v1v2 · (k1 + v3k2 +1)+ v3v4k1k2k3, then tI = v1v2 with I = {1, 2} is a maxterm,
pS(I) = k1 + v3k2 + 1 is the maxterm equation and p∗

S(I) = k1 + 1.

The static variables is thus {v3, v4}. If we choose v3 = 1, then a variant of
maxterm equation appears as k1 + k2 + 1 = p∗

S(I) + k2, which fits into Type II.
In the traditional cube attack, most of these variant maxterm equations are

trivial and make no contribution to the key recovery. However, in our model,
these variants can be treated as redundant information, which are beneficial to
the decoding algorithm. For a linear code considering polynomial approximation
[L − γ · n′, n − n′], the total number of maxterm equations can be increased
by a factor of E. Now the problem of key recovery is converted to decoding a
[(L − γ · n′) · E,n − n′] linear code, where 1 ≤ E ≤ 2m−d̄.

4 Error Probability Evaluation

By utilizing ML-decoding, we derive a new bound for error-tolerant rate in Corol-
lary 1 (Please refer to Appendix B for the details of the proof).

Corollary 1. To ensure 50% success probability of decoding a [L∗, n∗] code to
retrieve the key, the error probability q of each measurement should satisfy

q ≤ 1
2

· (1 − (
0.35 · n∗

L∗)
1

2·t · 2
1
t), (3)

where n∗ = n − n′, L∗ = (L − γ · n′) · E, 1 ≤ E ≤ 2m−d̄ and t = 2d̄.

Error-Tolerant Side-Channel Cube Attack Revisited 267

If n′ = 0 and E = 1, it reduces to the original ET-SCCA. The cost for the
polynomial approximation is that the removed key variables will add more noise
to those associated maxterm equations, but this kind of noise can be ignored if
we only remove a few key variables and keep the number of maxterm equations
influenced as little as possible. Moveover, the rest of the n′ key variables removed
can be exhaustively searched. The cost for choosing static public variables is that
the number of measurements will increase accordingly.

Suppose L = 1000, then the error probabilities under different number of
removed key variables n′ = 0, 10, 30 with γ = 1 and E = 1 are depicted in Fig. 1.

Fig. 1. Error probability q as a func-
tion of d̄ (Given n′ = 0, 10, 30, γ = 1,
E = 1 and L = 1000)

Fig. 2. Error probability q as a func-
tion of d̄ (Given n′ = 10, γ = 1,
E = 1, 256, 1024 and L = 1000)

Figure 1 shows that the error probability gradually increased with the growth
of n′. By applying the new variant of cube attack with E = 1, 256 and 1024,
shown in Fig. 2, which demonstrates that the error probability increased with
the growth of E. Similar results can also be obtained if we choose other size of
L. These results demonstrate that the error probability can be further improved
under the same noise channel and utilizing the same decoding algorithm.

5 Simulations on PRESENT

To compare our model with the original ET-SCCA in [19], we will apply the
model to PRESENT-80, a standardized round based lightweight block cipher
[5]. We assume PRESENT cipher is implemented on a 8-bit processor. Under
Hamming weight leakage model, the attacker exploits the Hamming weight leak-
age containing noise when the state variables are loaded from memory to ALU.

5.1 Off-Line Phase

We enumerate all the small candidate cubes, each size is at most 2. The time
complexity is thus P =

(
64
1

)·2+
(
64
2

)·22 = 213 encryptions. The leakage function is
the LSB (least significant bit) of the Hamming weight of the state byte after the

268 Z. Li et al.

first round. There are altogether 8 state bytes byte1, byte2, ..., byte8, correspond-
ing to 8 leakage functions. We can derive 304 maxterm equations containing 64
key variables (AppendixD) and the average cube size is d̄ = 1.9. Compared with
the special cube searching strategy in the original ET-SCCA [19], the process of
off-line phase in our model requires no knowledge of the internal round function.

Now we need to figure out which key variables should be removed according
to the distribution of key variables in all the maxterm equations. For the leakage
function of byte1 (or byte2), there are only 16 maxterm equations (Tables 9, 10
AppendixD), each of which only contains a single key variable, it is thus hard to
decide which key variables should be removed. For the leakage function of byte3,
considering those maxterm equations containing {k17, k18, k19, k20}, removing
k17 will lead to 3 maxterm equations (corresponding to maxterm {2, 3}, {2, 4}
and {3, 4} respectively) become trivial and removing k20 will lead to 2 maxterm
equations (corresponding to maxterm {1, 2} and {1, 3} respectively) reduced for
the leakage function of byte5. Removing k18 or k19 is a good choice since it only
lead to one maxterm equation (corresponding to maxterm {3} or {2}) reduced
for the leakage function of byte1 and it will not affect other state bytes. We choose
k18 as a representative variable. Similarly, we can also derive other representative
variables k22, k26, k30, k34, k38, k42, k46 from other ranges for the leakage function
of byte3. All the candidate key variables are summarized in Table 2.

Table 2. Candidate key variables for removing

State byte Candidate key variables

byte3, byte7 k18, k22, k26, k30, k34, k38, k42, k46

byte4, byte8 k50, k54, k58, k62, k66, k70, k74, k78

These variables will not lead to any reduction of the maxterm equations for
both byte5 and byte6, each only lead to one reduction of the maxterm equations
for byte1 or byte2. Therefore, n′ ∈ [0, 16] and the reduction factor γ = 1.

5.2 Polynomial Approximation for PRESENT-80

Now we need to select the optimal combinations of these candidates that can
maximize the approximation rate. We enumerate all the possible combinations
and calculate the average approximation rate according to equation (2). The
optimal combinations for each |R| ∈ [1, 8] are listed in the following table.

From Table 3, we can see that the value of σ decreases with the growth of
|R|. We will not consider those candidate key variables set with |R| > 8, since
the bias σ becomes trivial and more removed key variables will add more noise
to the evaluations of those associated maxterm equations.

Error-Tolerant Side-Channel Cube Attack Revisited 269

Table 3. Optimal combinations

R σ R σ

{k30} 0.267 {k18, k22, k26, k42, k50} 0.162

{k26, k74} 0.263 {k42, k50, k54, k58, k66, k74} 0.154

{k34, k38, k78} 0.207 {k22, k50, k54, k58, k62, k70, k74} 0.152

{k18, k66, k70, k78} 0.176 {k18, k26, k30, k34, k38, k42, k46, k54} 0.148

5.3 On-Line Phase

From the previous analysis, we know that n′ = |R| and γ = 1. The key recovery
problem is now equivalent to decoding a [L − n′, n − n′] linear code.

For the sake of comparison, grouping strategy and list decoding are also uti-
lized in the model as in [19]. More precisely, all the key variables are divided
into 4 groups G1, G2, G3 and G4 with several overlapping bits. ML-decoding is
applied in each group as a direct application of the ML-decoding has a time com-
plexity of 264−n′

. To increase the success probability, we save a candidate list of T
closest solutions for each group. The configurations with R = {k18, k66, k70, k78}
are listed in the following Table 4.

Table 4. Groups with R = {k18, k66, k70, k78}

Group [L, n] Key bits Overlapping bits

G1 [113, 23] [k17, k19, ..., k40] 8 with G2

G2 [114, 24] [k33, k34, ..., k56] 8 with G1, 8 with G3

G3 [94, 19] [k49, k50, ..., k68] 8 with G2, 8 with G4

G4 [92, 17] [k61, k62, ..., k80] 8 with G3

We have simulated the decoding algorithm for 100 runs with T = 200. For
each run, we randomly generate a key and construct the linear code in each
group. The noise was simulated by a random binary number generator according
to the crossover probability p (e.g., suppose k0 = 1, k1 = 0 and there is a
maxterm equation 1 + k0 + k1 = 0, the value 0 will flip to 1 with probability p
and remain unchanged with probability 1−p). We have conducted the simulation
for 10 times and the average number of successful decoding out of a batch of 100
runs are recorded. The comparison results are shown in Fig. 3, which indicates
that under the same success probability, decoding with removing 4 key variables
can tolerate more noise. The comparisons with various size of R are summarized
in Fig. 4, which demonstrates that under the same success probability, more noise
can be tolerated with the growth of |R|.

270 Z. Li et al.

Fig. 3. Comparison results of list
decoding

Fig. 4. Comparison results of list
decoding with various size of R

p is the crossover probability for each evaluation of the maxterm equation.
Since p = 1/2 − 2t−1μt, t = 2d̄ and 1 − q = 1/2 + μ, the error probability q for
each measurement are listed in Table 5.

Table 5. q with various R under the decoding success probability of 50%

|R| p q |R| p q

0 0.428 0.191 6 0.459 0.232

2 0.439 0.204 8 0.467 0.247

4 0.447 0.214

The whole attack contains two phases, the first phase is the decoding in each
group. The results are the candidate lists. Denote ti as the time complexity of
decoding in group Gi, η as the number of the groups and ni as the code dimension
in Gi, the time complexity is thus

∑η
i=1 ti, where ti = 2ni key trials. The second

is the verification phase. Since each candidate only contains 64 − n′ master key
variables, we need to verify it by combining the removed n′ key variables and
the rest of 16 master key bits, using the known plaintext/ciphertext pairs. The
time complexity is thus V (T) = T η · 2n′+16/2r encryptions3, where 2r is the
reduction factor related to the number of overlapping bits. Therefore, the attack
complexity is bounded by max{ ∑η

i=1 ti, T η · 2n′+16/2r }. The attack results
with various R on PRESENT are given in Table 6.

From Table 6, we can see that the model can tolerate more errors if more
candidate key variables are removed. The growth of the key variables removed
will lead to the increase of the time complexity in the verification phase and will
add more noise due to the polynomial approximation. Therefore, R should be
carefully chosen so that the error-tolerant rate can be optimal while keeping the
time complexity practical.
3 The verification complexity in [19] is actually incorrect. When 16 bits of the key are

missing, they can be exhaustively searched (in time complexity of 216).

Error-Tolerant Side-Channel Cube Attack Revisited 271

Table 6. Simulations by utilizing polynomial approximation

Size of Time Data Reduction Error

R (measurements) factor r probability

0 225.1 1152 24 19.1 %

2 224.7 1148 24 20.4 %

4 227.6 1144 23 21.4 %

6 231.6 1140 21 23.2 %

8 231.6 1136 23 24.7 %

The decoding success probability is about 50%.

5.4 Applying the New Variant of Cube Attack to the On-Line
Phase

In this section, we will show that the error-tolerant rate can be further improved
by choosing static public variables. The key recovery problem is now converted
to decoding a [(L−γ ·n′) ·E,n−n′] linear code, where 1 ≤ E ≤ 2m−d̄ represents
the size of the redundant maxterm equations.

For PRESENT-80, m = 64 and d̄ ≈ 2, then 1 ≤ E ≤ 262. All the complexity
remain unaltered except for the data complexity. Deriving more redundant max-
term equations will lead to higher measurements. Suppose n′ = 4, the simulation
results under various E are summarized in Table 7.

Table 7. Simulations by choosing static variables

E Data (measurements) Total size of L Error probability

1 210.2 304 21.4 %

26 216.2 19456 29.5 %

28 218.2 77824 34.1 %

210 220.2 311296 38.6 %

211 221.2 622592 40.5 %

The decoding success probability is about 50 %.
The time complexity is 227.6 encryptions (verification phase).
R = {k18, k66, k70, k78}.

From Table 7, it is shown that the error-tolerant rate increased with the
growth of the E. It can be increased closely to 50% on the condition that we
can obtain more measurements, which means that our model can still work even
if the measurement contains heavy noise.

272 Z. Li et al.

6 Comparison and Discussions

6.1 ET-SCCA Comparisons

Compared with the original ET-SCCA [19], the error-tolerant level of the new
ET-SCCA is improved significantly by utilizing the polynomial approximation
and applying the new variant of cube attack. It is more flexible, since the attacker
can choose appropriate size of E according to his ability (e.g., accuracy of the
measurements). The comparison results are summarized in Table 8.

Table 8. Comparison between the original ET-SCCA and our model

Time complexity Data (measurements) Error probability Reference

234.6 210.2 19.1 % [19]

231.6 210.1 24.7 % this paper

227.6 221.2 40.5 % this paper

The success probability is about 50% for both models.

6.2 Motivation of the New Variant of Cube Attack

The motivation of the new variant of cube attack comes from the dynamic cube
attack [7]. The difference is that dynamic cube attacks transform some of the
static public variables to dynamic variables and each one of these dynamic vari-
ables is assigned a function that depends on some of the cube variables and some
expressions of secret variables. These functions are carefully chosen usually to
zero some state bits to simplify the expression and amplify the bias of the cube
tester. It requires a more complex analysis of the internal structure of the cipher.
Moveover, the main purpose of dynamic cube attack is to improve the standard
cube testers and construct a more efficient distinguisher, then filtering right key
using this distinguisher. While the new variant (also mentioned in [15]) applied
in this paper is to derive more redundant maxterm equations to facilitate the
decoding process, which requires no knowledge of the round function.

6.3 About the Definition of Maxterm Equation

Recall the formal definition of maxterm equation in [8]. The maxterm equation
pS(I) of a maxterm tI satisfies deg(pS(I)) ≡ 1, which holds whenever static vari-
ables are 0s or 1s. In most applications, e.g., Trivium, all the maxterm equations
are derived when they are set to 0s. However, some researchers [3] verified all
the maxterm equations derived from Trivium [8] by chosen the static variables.
Among 1000 runs, each of which a random IV was chosen, almost all the max-
term equations pass through a linear test with probability of about 50%, i.e.,
deg(pS(I)) ≡ 1 cannot hold for half of the runs. All these will have a negligible
influence to our simulation on PRESENT, since the number of variant maxterm
equations (i.e., E) is low and we can always get enough maxterm equations by
choosing the static variables.

Error-Tolerant Side-Channel Cube Attack Revisited 273

6.4 Attacking Implementations with Masking

Masking is a widely used countermeasure against side-channel attacks. The prin-
ciple is to randomly split every sensitive variable (e.g., variables involving secret
keys) occurring in the computation into d+1 shares, where d is called the mask-
ing order and plays the role of a security parameter. Suppose a state byte S is
split into d + 1 random shares S0, S1, ..., Sd, satisfying S0 ⊕ S1 ⊕ ... ⊕ Sd = S
and the computations are on the masked data. Suppose the attacker observe
the value of each share containing noise as S0 ⊕ e0, S1 ⊕ e1,...,Sd ⊕ ed, where ei

is the observation noise. By summing all these values up, S ⊕ ∑d
i=0 ei can be

derived. Compared with an implementation without masking, the only influence
to the ET-SCCA is that the observation noise for a masking implementation is
relatively higher, which is exponentially increased with the growth of the mask-
ing order d (according to piling-up lemma). However, in reality, d is small since
almost all the current masking schemes suffered from the efficiency problems
when d becomes bigger. Therefore, we believe that our model can still be avail-
able to a implementation with masking.

7 Conclusion and Open Problems

In this paper, we have revisited the error-tolerant side-channel cube attack
and proposed a more robust model. By appropriately utilizing the polynomial
approximation technique, the error-tolerant rate can be improved compared to
the original ET-SCCA. We also presented an efficient way of finding the key
variables that should be removed, by defining the average approximation rate.
Moreover, a new variant of cube attack was proposed inspired by the idea of
dynamic cube attack. The error-tolerant rate has been refined. Both theoretical
analysis and simulation results indicated that the improved model is more flex-
ible, exploiting measurements with heavy noise interference, which solves one
of the open problems listed in [19]. The simulation results on PRESENT show
that given about 221.2 measurements, each with an error probability of 40.5%,
it achieves 50% success probability of the key recovery. The error-tolerant level
can be enhanced further if the attacker can obtain more measurements. Hence,
we believe these results have both a theoretical and practical relevance.

A Proof of Theorem 1

Proof. The fact that we can derive at most 2m−d variant maxterm equations
is obvious, since the number of static public variables is m − d. The master
multivariate polynomial p can be represented as p(k1, ..., kn, v1, ..., vm) = tI ·
pS(I) + q(k1, ..., kn, v1, ..., vm). Since tI is a maxterm, then the degree of pS(I)

in secret variables is deg(pS(I)) ≡ 1. Then pS(I) can be represented as pS(I) =
C + C0 + C1k1 + C2k2 + ... + Cnkn, where C ∈ {0, 1} is a constant and Ci,
0 ≤ i ≤ n contains only static public variables.

274 Z. Li et al.

Since deg(pS(I)) ≡ 1, then
∨n

i=1 Ci �= 0, which means that there is at least
one key variables ki with Ci = 1. Suppose the set of key variables with all their
coefficients equal to 1 is K = {ki1 , ki2 , ..., kiu} and each Cit = 1, 1 ≤ t ≤ u.
By setting all the static public variables to 0, then p∗

S(I) = C +
∑iu

j=i1
kj . The

variant maxterm equations by choosing those static public variables can thus be
represented as

p′
S(I) = p∗

S(I) + C0 +
∑

j /∈{i1,i2,...,iu}
Cjkj (4)

Then, if the chosen static public variables make all the Cj = 0, where 1 ≤ j ≤ n
and j /∈ {i1, i2, ..., iu}, then equation (4) is the Type I variant. Inversely, if the
chosen static public variables make that there is at least one Cj �= 0, where
1 ≤ j ≤ n and j /∈ {i1, i2, ..., iu}, the equation (4) is the Type II variant. �

B Proof of Corollary 1

Proof. The key recovery problem is now converted to decoding a [(L − γ · n′) ·
E,n − n′] linear code, where 1 ≤ E ≤ 2m−d̄. Suppose L∗ = (L − γ · n′) · E
and n∗ = n − n′. Recall that the error probability p for each evaluation of the
maxterm equation is p = 1/2 − ε. The capacity of BSC can be approximated as
C(p) ≈ ε2 · 2/(ln(2)). Simulations [16] show that the critical length L∗ ≥ 0.35 ·
n∗ ·ε−2 provides the probability of successful decoding close to 1/2. Thus we get

ε ≥
√

0.35·n∗
L∗ . Since ε = 2t−1μt holds, then we can derive μ ≥ (0.35·n∗

L∗)
1

2·t · 2
1
t −1.

From q = 1/2 − μ, we have q ≤ 1
2 · (1 − (0.35·n∗

L∗)
1

2·t · 2
1
t). �

C ML-decoding

Siegenthaler [16] firstly proposed the use of ML-decoding in cryptanalysis of a
stream cipher by exhaustively searching through all the codewords of [L, n] code.
The complexity is about O(2n ·n/C(p)). Let A = (aj

i)L×n (1 ≤ i ≤ L, 1 ≤ j ≤ n)
be the generator matrix of (1) and Ai denote the i-th row vector of A. The aim
of the decoding is to find the closet codeword (b1, b2, ..., bL) to the received
vector (z1, z2, ..., zL), and decode the key variables k = (k1, k2, ..., kn) such that
bi = k·AT

i , where T denotes the matrix transpose, i.e., find such k that minimizes
D(k) =

∑L
i=1(zi

⊕
bi). It is known that ML-decoding is optimal since it has the

smallest error probability among all decoding algorithms.

Error-Tolerant Side-Channel Cube Attack Revisited 275

D Maxterm Equations for All the 8 Leakage Functions

Table 9. Maxterms and maxterm
equations

Leakage function of byte1
Cube Maxterm Cube Maxterm

Indexes equations indexes equations

{2} k19 {3} 1 + k18
{6} k23 {7} 1 + k22

{10} k27 {11} 1 + k26
{14} k31 {15} 1 + k30
{18} k35 {19} 1 + k34
{22} k39 {23} 1 + k38
{26} k43 {27} 1 + k42
{30} k47 {31} 1 + k46

Leakage function of byte2
{34} k51 {35} 1 + k50
{38} k55 {39} 1 + k54
{42} k59 {43} 1 + k58
{46} k63 {47} 1 + k62
{50} k67 {51} 1 + k66
{54} k71 {55} 1 + k70
{58} k75 {59} 1 + k74
{62} k79 {63} 1 + k78

Leakage function of byte3
{1, 2} k19 + k20 {1, 3} k18 + k20
{1, 4} k18 + k19 {2, 3} k17
{2, 4} 1 + k17 {3, 4} 1 + k17
{5, 6} k23 + k24 {5, 7} k22 + k24
{5, 8} k22 + k23 {6, 7} k21
{6, 8} 1 + k21 {7, 8} 1 + k21

{9, 10} k27 + k28 {9, 11} k26 + k28
{9, 12} k26 + k27 {10, 11} k25

{10, 12} 1 + k25 {11, 12} 1 + k25
{13, 14} k31 + k32 {13, 15} k30 + k32
{13, 16} k30 + k31 {14, 15} k29
{14, 16} 1 + k29 {15, 16} 1 + k29
{17, 18} k35 + k36 {17, 19} k34 + k36
{17, 20} k34 + k35 {18, 19} k33
{18, 20} 1 + k33 {19, 20} 1 + k33
{21, 22} k39 + k40 {21, 23} k38 + k40
{21, 24} k38 + k39 {22, 23} k37
{22, 24} 1 + k37 {23, 24} 1 + k37
{25, 26} k43 + k44 {25, 27} k42 + k44
{25, 28} k42 + k43 {26, 27} k41
{26, 28} 1 + k41 {27, 28} 1 + k41
{29, 30} k47 + k48 {29, 31} k46 + k48
{29, 32} k46 + k47 {30, 31} k45
{30, 32} 1 + k45 {31, 32} 1 + k45

Leakage function of byte4
{33, 34} k51 + k52 {33, 35} k50 + k52
{33, 36} k50 + k51 {34, 35} k49
{34, 36} 1 + k49 {35, 36} 1 + k49
{37, 38} k55 + k56 {37, 39} k54 + k56
{37, 40} k54 + k55 {38, 39} k53
{38, 40} 1 + k53 {39, 40} 1 + k53
{41, 42} k59 + k60 {41, 43} k58 + k60
{41, 44} k58 + k59 {42, 43} k57
{42, 44} 1 + k57 {43, 44} 1 + k57
{45, 46} k63 + k64 {45, 47} k62 + k64
{45, 48} k62 + k63 {46, 47} k61
{46, 48} 1 + k61 {47, 48} 1 + k61
{49, 50} k67 + k68 {49, 51} k66 + k68
{49, 52} k66 + k67 {50, 51} k65
{50, 52} 1 + k65 {51, 52} 1 + k65
{53, 54} k71 + k72 {53, 55} k70 + k72
{53, 56} k70 + k71 {54, 55} k69
{54, 56} 1 + k69 {55, 56} 1 + k69
{57, 58} k75 + k76 {57, 59} k74 + k76
{57, 60} k74 + k75 {58, 59} k73
{58, 60} 1 + k73 {59, 60} 1 + k73
{61, 62} k79 + k80 {61, 63} k78 + k80
{61, 64} k78 + k79 {62, 63} k77
{62, 64} 1 + k77 {63, 64} 1 + k77

Table 10. Maxterms and maxterm
equations

Leakage function of byte5
Cube Maxterm Cube Maxterm

Indexes equations indexes equations

{1, 2} 1 + k20 {1, 3} k20
{1, 4} 1 + k18 + k19 {2, 4} 1 + k17
{3, 4} k17 {5, 6} 1 + k24
{5, 7} k24 {5, 8} 1 + k22 + k23
{6, 8} 1 + k21 {7, 8} k21

{9, 10} 1 + k28 {9, 11} k28
{9, 12} 1 + k26 + k27 {10, 12} 1 + k25

{11, 12} k25 {13, 14} 1 + k32
{13, 15} k32 {13, 16} 1 + k30 + k31
{14, 16} 1 + k29 {15, 16} k29
{17, 18} 1 + k36 {17, 19} k36
{17, 20} 1 + k34 + k35 {18, 20} 1 + k33
{19, 20} k33 {21, 22} 1 + k40
{21, 23} k40 {21, 24} 1 + k38 + k39
{22, 24} 1 + k37 {23, 24} k37
{25, 26} 1 + k44 {25, 27} k44
{25, 28} 1 + k42 + k43 {26, 28} 1 + k41
{27, 28} k41 {29, 30} 1 + k48
{29, 31} k48 {29, 32} 1 + k46 + k47
{30, 32} 1 + k45 {31, 32} k45

Leakage function of byte6
{33, 34} 1 + k52 {33, 35} k52
{33, 36} 1 + k50 + k51 {34, 36} 1 + k49
{35, 36} k49 {37, 38} 1 + k56
{37, 39} k56 {37, 40} 1 + k54 + k55
{38, 40} 1 + k53 {39, 40} k53
{41, 42} 1 + k60 {41, 43} k60
{41, 44} 1 + k58 + k59 {42, 44} 1 + k57
{43, 44} k57 {45, 46} 1 + k64
{45, 47} k64 {45, 48} 1 + k62 + k63
{46, 48} 1 + k61 {47, 48} k61
{49, 50} 1 + k68 {49, 51} k68
{49, 52} 1 + k66 + k67 {50, 52} 1 + k65
{51, 52} k65 {53, 54} 1 + k72
{53, 55} k72 {53, 56} 1 + k70 + k71
{54, 56} 1 + k69 {55, 56} k69
{57, 58} 1 + k76 {57, 59} k76
{57, 60} 1 + k74 + k75 {58, 60} 1 + k73
{59, 60} k73 {61, 62} 1 + k80
{61, 63} k80 {61, 64} 1 + k78 + k79
{62, 64} 1 + k77 {63, 64} k77

Leakage function of byte7
{1, 2} k19 + k20 {1, 3} k18 + k20
{1, 4} k18 + k19 {2, 3} 1 + k17
{2, 4} k17 {3, 4} k17
{5, 6} k23 + k24 {5, 7} k22 + k24
{5, 8} k22 + k23 {6, 7} 1 + k21
{6, 8} k21 {7, 8} k21

{9, 10} k27 + k28 {9, 11} k26 + k28
{9, 12} k26 + k27 {10, 11} 1 + k25

{10, 12} k25 {11, 12} k25
{13, 14} k31 + k32 {13, 15} k30 + k32
{13, 16} k30 + k31 {14, 15} 1 + k29
{14, 16} k29 {15, 16} k29
{17, 18} k35 + k36 {17, 19} k34 + k36
{17, 20} k34 + k35 {18, 19} 1 + k33
{18, 20} k33 {19, 20} k33
{21, 22} k39 + k40 {21, 23} k38 + k40
{21, 24} k38 + k39 {22, 23} 1 + k37
{22, 24} k37 {23, 24} k37
{25, 26} k43 + k44 {25, 27} k42 + k44
{25, 28} k42 + k43 {26, 27} 1 + k41
{26, 28} k41 {27, 28} k41
{29, 30} k47 + k48 {29, 31} k46 + k48
{29, 32} k46 + k47 {30, 31} 1 + k45
{30, 32} k45 {31, 32} k45

Leakage function of byte8
{33, 34} k51 + k52 {33, 35} k50 + k52
{33, 36} k50 + k51 {34, 35} 1 + k49
{34, 36} k49 {35, 36} k49
{37, 38} k55 + k56 {37, 39} k54 + k56
{37, 40} k54 + k55 {38, 39} 1 + k53
{38, 40} k53 {39, 40} k53
{41, 42} k59 + k60 {41, 43} k58 + k60
{41, 44} k58 + k59 {42, 43} 1 + k57
{42, 44} k57 {43, 44} k57
{45, 46} k63 + k64 {45, 47} k62 + k64
{45, 48} k62 + k63 {46, 47} 1 + k61
{46, 48} k61 {47, 48} k61
{49, 50} k67 + k68 {49, 51} k66 + k68
{49, 52} k66 + k67 {50, 51} 1 + k65
{50, 52} k65 {51, 52} k65
{53, 54} k71 + k72 {53, 55} k70 + k72
{53, 56} k70 + k71 {54, 55} 1 + k69
{54, 56} k69 {55, 56} k69
{57, 58} k75 + k76 {57, 59} k74 + k76
{57, 60} k74 + k75 {58, 59} 1 + k73
{58, 60} k73 {59, 60} k73
{61, 62} k79 + k80 {61, 63} k78 + k80
{61, 64} k78 + k79 {62, 63} 1 + k77
{62, 64} k77 {63, 64} k77

276 Z. Li et al.

References

1. Aumasson, J.-P., Dinur, I., Henzen, L., Meier, W. and Shamir, A.: Efficient FPGA
implementations of high-dimensional cube testers on the stream cipher Grain-128.
In: Special Purpose Hardware for Attacking Cryptographic Systems-SHARCS’09’
(2009)

2. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

3. Bedi, S.S., Rajesh Pillai, N.: Cube attacks on Trivium. Cryptology ePrint Archive.
Report 2009/015 (2009)

4. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci. 47, 549–595 (1993)

5. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an altra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Dinur, I., Shamir, A.: Applying cube attacks to stream ciphers in realistic scenarios.
Crypt. Commun. 4, 217–232 (2012)

7. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

8. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

9. Dinur, I., Shamir, A.: Generic analysis of small cryptographic leaks. In: 2010 Work-
shop on Fault Diagnosis and Tolerance in Cryptography. pp. 39–48 (2010)

10. Dinur, I., Shamir, A.: Side channel cube attacks on block ciphers. Cryptology
ePrint Archive. Report 2009/127 (2009)

11. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
502–517. Springer, Heidelberg (2014)

12. Bard, G.V., Courtois, N.T., Nakahara Jr., J., Sepehrdad, P., Zhang, B.: Algebraic,
AIDA/Cube and side channel analysis of KATAN family of block ciphers. In: Gong,
G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196. Springer,
Heidelberg (2010)

13. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography: Two Sides of One Tapestry. The Springer International Series in Engi-
neering and Computer Science, vol. 276, pp. 227–233. Springer, New York (1994)

14. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

15. Quedenfeld, F.-M., Wolf, C.: Algebraic Properties of the Cube Attack. Cryptology
ePrint Archive. Report 2013/800 (2013)

16. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. Comput. 34(1), 81–85 (1985)

17. Vielhaber, M.: AIDA Breaks (BIVIUM A and B) in 1 Minute Dual Core CPU
Time. IACR Cryptology ePrint Archive, 402 (2009)

18. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential
Attack. IACR Cryptology ePrint Archive, 413 (2007)

Error-Tolerant Side-Channel Cube Attack Revisited 277

19. Li, Z., Zhang, B., Fan, J., Verbauwhede, I.: A new model for error-tolerant side-
channel cube attacks. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 453–470. Springer, Heidelberg (2013)

20. Li, Z., Zhang, B., Yao, Y., Lin, D.: Cube cryptanalysis of LBlock with noisy leakage.
In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 141–
155. Springer, Heidelberg (2013)

A Generic Algorithm for Small Weight Discrete
Logarithms in Composite Groups

Alexander May and Ilya Ozerov(B)

Faculty of Mathematics, Horst Görtz Institute for IT-Security,
Ruhr-University Bochum, Bochum, Germany

{alex.may,ilya.ozerov}@rub.de

Abstract. Let (G, ·) be an arbitrary cyclic group of composite order N
with G � G1 × G2. We present a generic algorithm for solving the dis-
crete logarithm problem in G with Hamming weight δ log N , δ ∈ (0, 1),

in time Õ(
√

p +
√|G2|H(δ)

), where p is the largest prime divisor in G1

and H(·) is the binary entropy function.
Our algorithm improves on the running time of Silver-Pohlig-Hellman’s

algorithm whenever δ �= 1
2
. Moreover, it improves on the Meet-in-the-

Middle type algorithms of Heiman, Odlyzko and Coppersmith with run-

ning time Õ(
√|G|H(δ)

) whenever p < |G|H(δ).

Keywords: Cryptanalysis · Generic discrete logarithm · Small ham-
ming weight · Representations

1 Introduction

The hardness of the discrete logarithm problem on classical computers is one
of the most central sources for constructing public key cryptography. In order
to achieve minimal key-size and maximal performance, crypto designers usually
choose cyclic groups G for which no group-specific algorithm, e.g. of index cal-
culus type [1], is known. In these groups, the security analysis is based on the
performance of generic algorithms.

However, very few generic algorithms for cyclic groups are known. Among
them are Shanks’ Baby-Step Giant-Step algorithm [10] and its low-memory vari-
ant, Pollard’s Rho Method [9]. Both algorithms achieve a running time of

√|G|.
Moreover, it is known by a result of Shoup [11] that generic algorithms in prime
order groups cannot compute discrete logarithms faster than

√|G|.
The generic algorithm of Silver, Pohlig and Hellman [8] can be seen as a gen-

eralization of Shanks’ algorithm to non-prime order groups. Let G be a cyclic
group with |G| = N and prime factorization N =

∏k
i=1 pei

i . Thus we have
G � G1 × . . . × Gk with cyclic groups |Gi| = pei

i . In the Silver-Pohlig-Hellman
algorithm, the discrete logarithm is first computed in Gi modulo pi, then lifted

A. May: Supported by DFG as part of GRK 1817 Ubicrypt and SPP 1736 Big Data.
I. Ozerov: Supported by DFG as part of SPP 1307 Algorithm Engineering.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 278–289, 2014.
DOI: 10.1007/978-3-319-13051-4 17

A Generic Algorithm for Small Weight Discrete Logarithms 279

modulo pei
i and afterwards composed by Chinese Remaindering to the full group

order N . Since this process is dominated by the running time of an individ-
ual discrete logarithm computation in Gi modulo pi, the total running time is
dominated by maxi{√

p
i
}.

If we do not further restrict the discrete logarithm problem, the generic algo-
rithms of Pollard and Silver, Pohlig and Hellman are all that we have. If we limit
our discrete logarithm to a certain interval [a, b] then the discrete logarithm can
be computed by Pollard’s kangaroo method [9] in time Õ(

√
b − a), which can be

seen as another variant of Shanks’ algorithm.
More generic algorithms are known when we limit our discrete logarithm to

a small Hamming weight. Let α be a generator of G with an order of bit-size
n. Let β = αx with an n-bit integer x having Hamming weight δn, δ ∈ (0, 1),
where we call δ the relative Hamming weight of x.

A brute-force enumeration of an n-bit number x with Hamming
weight δn takes time

(
n
δn

) ≈ 2H(δ)n. The algorithms of Heiman-Odlyzko [5],
Coppersmith [3] and Stinson [13] split x in two parts of length n

2 and Hamming
weight δ n

2 each. This is a classical Meet-in-the-Middle approach that achieves a

square-root complexity of roughly 2
H(δ)

2 n = Õ(
√|G|H(δ)

).

1.1 Our Contribution and Related Work

We present a new algorithm that can be seen as a generalization of the Meet-
in-the-Middle algorithms of Heiman-Odlyzko and Coppersmith and the Silver-
Pohlig-Hellman algorithm. In spirit, our approach is similar to an algorithm of
van Oorschot and Wiener [14] for the discrete logarithm problem with small x,
as opposed to small Hamming weight x in our case. The van Oorschot-Wiener
algorithm computes the CRT-representation of x modulo a factor N1 of the group
order via Silver-Pohlig-Hellman. Thus, x can be expressed as x = x1N1 + x0 for
some known x0. Then x1 is easily computed via Pollard’s kangaroo algorithm in
time Õ(

√
x1). Thus, van Oorschot and Wiener proceed in a divide and conquer

manner, where they split the computation of x in two parts.
Our algorithm also makes use of the Silver-Pohlig-Hellman algorithm as a

subroutine. However, our computation of the second part is way more challenging
than in the algorithm of van Oorschot and Wiener. Notice that the property of
a small Hamming weight discrete logarithm does not transfer to its Chinese
Remainder representation and vice versa. Nevertheless, we are able to show that
parts of the Chinese Remainder representation automatically reduce the search
space for small weight discrete logarithms.

In general, finding algorithms for small Hamming weight appears to be a
harder problem than finding algorithms for small size, e.g. for polynomial equa-
tions there is an efficient algorithm that finds all small size integer roots due
to Coppersmith [4], but there is no analogue known for small Hamming weight
roots.

Let G � G
′
1 × . . .G′

k be our composite group. We write this in the form
G � G1×G2, where we suitably combine groups. Our runtime will be dependent

280 A. May and I. Ozerov

on the size of |G1|, its prime factorization, and the relative Hamming weight δ of
our discrete logarithm problem. So if k > 2, then for a given δ we have to form
G1 in such a way that minimizes the running time. Let β = αx be our discrete
logarithm problem in G.

Let us first describe a simple enumeration version of our algorithm. Assume
|G| = N, |G1| = N1, |G2| = N2 and let n, n1, n2 denote the bit-sizes of N , N1, N2,
respectively. Notice that N = N1N2 and thus (roughly) n = n1 +n2. Let us first
compute x mod N1, that is we compute the discrete logarithm in the smaller
subgroup G1 × {1} ⊂ G. With the Silver-Pohlig-Hellman algorithm this can be
done in time

√
p, where p is the largest prime factor of |G1|. Now we enumerate

all natural numbers x′ which have weight δ in the upper n − n1 = n2 most
significant bits and which are consistent with the computed discrete logarithm
in G1. We are able to show that the second restriction basically determines the
remaining n1 least significant bits uniquely. Since we do this enumeration as a
Meet-in-the-Middle approach, we achieve complexity√(

n2

δn2

)
≈

√
2H(δ)n2 ≈

√
|G2|

H(δ)
.

We want to stress that our algorithm is not designed to attack practical
cryptographic schemes. Our main goal was to combine ideas of [2,6,7,12] to
obtain one of very few known generic algorithms for discrete logs. Our method is
inspired by a recent subset sum algorithm of Howgrave-Graham and Joux [6] and
our intention was to understand the full generality of their method in arbitrary
groups. In the Howgrave-Graham-Joux algorithm the target vector x ∈ {0, 1}n

is represented as a sum of vectors x1, x2 ∈ {0, 1}n. But their sum is a vector sum
in Z

n, whereas our vectors represent integers and the addition x1 + x2 is in Z,
i.e. we allow carry bits that allow for new kinds of representations.

Our algorithm is also in the spirit of Stern’s Information Set Decoding tech-
nique [12] for decoding random linear codes, where one part of the unknown
error vector is obtained combinatorically, whereas the remaining bits are com-
puted efficiently through simple linear algebra. Notice that like in [2,7] it is
possible to combine our technique with the classical technique of [6]. We leave
as an open problem whether this leads to even better results.

2 Known Generic Algorithms

In this section, we quickly repeat some standard algorithms for discrete loga-
rithms, since we will use variations of these as subroutines in our algorithm.
We start by explaining the sort-and-match algorithm that is the basis for all
Meet-in-the-Middle approaches.

Let αx = β be a discrete logarithm instance in some group G generated by
α. Let us write x = x1 + x2, where x1 ∈ S1, x2 ∈ S2 for some sets S1,S2 ⊂ Z.
Then we obtain the identity

αx1 = β · α−x2 .

A Generic Algorithm for Small Weight Discrete Logarithms 281

We compute a list L that contains the elements (αx1 , x1) for all x1 ∈ S1. Then,
we compute (β ·α−x2 , x2) for all x2 ∈ S2. Any element (β ·α−x2 , x2) that matches
an element (αx1 , x1) ∈ L in its first component yields a solution x = x1 + x2 to
the discrete logarithm problem. This strategy leads to the algorithm sort-and-
match.

Algorithm 1
1: procedure sort-and-match(S1, S2, α, β) � S1, S2 ⊆ ZN

2: Create a list L with entries (αx1 , x1) for all x1 ∈ S1, sort by its first component
3: for all x2 ∈ S2 do
4: Binary search for a (αx1 , x1) ∈ L such that αx1 = β/αx2

5: return x1 + x2 if there is a match
6: end for
7: return no match
8: end procedure

It is not hard to see that both the time and space complexity of sort-
and-match are Õ(|S1| + |S2|), where the Õ(·)-notation suppresses logarithmic
terms. So if x ∈ S and x1 ∈ S1, x2 ∈ S2 with |S1| ≈ |S2| ≈ √|S| then sort-
and-match achieves the square root of the time complexity that is required for
simply enumerating all x ∈ S. Hence our goal is to define S1,S2 in such a way
that the maximum of their cardinalities roughly equals

√|S|, and that with high
probability there always exist (x1, x2) ∈ S1 × S2 with x = x1 + x2.

In the following, we illustrate how the selection of S1,S2 is done for Shanks’
algorithm and for its variations due to Heiman-Odlyzko, Coppersmith and Stin-
son. Let (xn−1, . . . x0) ∈ {0, 1}n be the binary representation of x, i.e. x =∑n−1

i=0 xi2i. Then we write x = x1 + x2 = v1 · 2n/2 + v2 with 0 ≤ v1, v2 < 2n/2.
Figure 1 illustrates this splitting in form of the binary representations of x1, x2.
Notice that for ease of writing throughout this work we ignore any complications
that arise from rounding terms like n

2 , since this is always easy to solve.
It is obvious that the search spaces S1,S2 both have cardinality 2

n
2 =

√|S| =√|{0, 1}n| and that there always exists a pair (x1, x2) ∈ S1×S2 with x = x1+x2.
This leads to a generic discrete logarithm algorithm in G with time and space
complexity Õ(2

n
2) = Õ(

√|G|).

x1

x2

= v1 · 2n/2

= v2

v1 0

0 v2

︸ ︸ ︸ ︷︷ ︸

n/2 n/2

︷︷

Fig. 1. Splitting

282 A. May and I. Ozerov

In a nutshell, when we move to discrete logarithms x whose binary represen-
tation (xn−1, . . . , x0) have Hamming weight δn, we can easily adapt the splitting
of Fig. 1. Namely, we enumerate over all v1, v2 ∈ {0, 1}n

2 with Hamming weight
δ n
2 . Hence, S consists of all numbers that can be represented as n-bit vectors

with relative Hamming weight δ, whereas the numbers in S1, S2 can be rep-
resented as n

2 -bit vectors with relative Hamming weight δ, where we append a
0

n
2 -string accordingly.

Let us first compare the cardinalities of S and S1, S2. Here, we use the well-
known approximation

(
n
δn

) ≈ 2H(δ)n, that stems from Stirling’s formula. This

implies that |S1| = |S2| ≈ 2H(δ)n
2 = Õ(

√|G|H(δ)
) which is equal to the square

root of |S|. Thus, we obtain a Meet-in-the-Middle algorithm with square root
time and space complexity.

Notice however, that as opposed to Shanks’ algorithm not every x with
Hamming weight δn admits a splitting in x1, x2 as above, where both xi have
Hamming weight δ n

2 . The probability that a random x splits in this way is(
n/2
δn/2

)2
/
(

n
δn

)
= Θ(1√

n
). In the algorithms of Heiman, Odlyzko and Coppersmith

this problem is solved by a combinatorial structure which is called a splitting
set, which basically allows to re-randomize the coordinates for the splitting in
x1, x2.

A different deterministic approach due to Coppersmith is a simple application
of the intermediate value theorem. Assume wlog that the weight in the v1-part
is too high, and the weight in the v2-part is too low. Let us rotate both parts
cyclically until they change places. Since a rotation by one position changes the
weight in each part by at most 1, there must exist one out of the n/2 rotations
where both parts share the same weight.

In the following, we propose a slightly different solution for guaranteeing the
existence of a valid splitting, which we use in our algorithm. Namely, we choose
the non-zero parts of the binary representation of the element in S1,S2 from
{0, 1}n

2 , where their relative Hamming weight lies in the interval (δ − ε, δ + ε)
for some small ε > 0. In this way, we can ensure that a randomly chosen x splits
in x1 +x2 with appropriate Hamming weights in this interval with a probability
that is exponentially close to 1, while only slightly increasing the running time.
The main reason for choosing such a weight interval is that it simplifies the
description and analysis of our algorithm significantly.

3 Our New Generic Discrete Log Algorithm

Let α generate a composite order group G � G1 ×G2 with |G| = N , |G1| = Nτ

and |G2| = N1−τ for some τ ∈ (0, 1). In general, there might be several ways
to decompose G as G1 × G2. We will first describe our algorithm for a fixed
decomposition. Afterwards, we will minimize the running time by adjusting the
decomposition accordingly.

Our new algorithm combines the Silver-Pohlig-Hellman idea with a subse-
quent Meet-in-the-Middle approach for enumerating small weight vectors. As

A Generic Algorithm for Small Weight Discrete Logarithms 283

described in Sect. 2, we have to define the sets S1,S2 that describe how we split
x = x1 + x2 with (x1, x2) ∈ S1 × S2. We illustrate the binary representation for
our candidates (x1, x2) in Fig. 2. Here, the vi have relative weight δ, whereas the
wi may have arbitrary weight.

In the following, we always assume wlog that we know the factorization of
the group order N . Notice that this does not limit the applicability of our generic
algorithm, since our algorithm’s running time is exponential in the bit-length of
N anyway, whereas the factorization of N can be computed in sub-exponential
time.

The main idea of our new algorithm dlog is as follows. We first apply the
algorithm of Silver, Pohlig and Hellman to the smaller subgroup G1 to obtain the
discrete logarithm x′ modulo M := |G1|. Afterwards, we apply a Meet-in-the-
Middle technique on the bigger subgroup G2 where we cut down the search space
by the amount of information that is provided by x′. More precisely, knowing
only n − t bits of the discrete logarithm x (i.e. v1 and v2 in Fig. 2), it is possible
to compute the remaining t consecutive bits w in polynomial time with the help
of x′ = x mod M .

Let us fix some useful notation. We denote x′ = [x′]M = [x]M , where [·]M
describes the smallest non-negative representative of some number modulo M ,
i.e. in [0,M). Let us choose t such that 2t−1 < M ≤ 2t. Then w is either
[w]M := [x′ − v1 · 2(n+t)/2 − v2 · 2t]M or [w]M + M .

For any x ∈ N we denote by wt(x) the Hamming weight of the binary repre-
sentation of x.

In lines 6 through 9 a list S1 is computed by enumerating all values of v1
(see Fig. 2). We show that the remaining t-bit value w1 can be uniquely obtained
from v1. Similarly, in lines 10 through 15 we obtain only three possible values for
w2 for each value of v2. In total, it is sufficient to perform a Meet-in-the-Middle
attack on only n− t bits instead of the full n bits of the binary representation of
x. Eventually, the subroutine sort-and-match finds the discrete logarithm x,

x

x1

x2

= v1 2
n+t
2 + v2 2t + w

= v1 2
n+t
2 + w1

= v2 2t + w2

v1 v2 w

v1 0 w1

0 v2 w2

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

(n − t)/2 (n − t)/2 t
︸ ︷︷ ︸

(n + t)/2

Fig. 2. New splitting

284 A. May and I. Ozerov

Algorithm 2
1: procedure dlog(|G1|, |G2|, α, β, δ, ε)
2: n ← �log2(|G1| · |G2|)	
3: t ← �log2(|G1|)	
4: x′ ← sph(|G1|, α|G2|, β|G2|) � Use Silver-Pohlig-Hellman to get x mod |G1|.
5: M ← |G1|
6: S1 ← {}
7: for all 0 ≤ v1 < 2(n−t)/2 with (δ − ε)n−t

2
≤ wt(v1) ≤ (δ + ε)n−t

2
do

8: S1 ← S1 ∪ {v1 · 2(n+t)/2 + [−v1 · 2(n+t)/2]M}
9: end for

10: S2 ← {}
11: for all 0 ≤ v2 < 2(n−t)/2 with (δ − ε)n−t

2
≤ wt(v2) ≤ (δ + ε)n−t

2
do

12: S2 ← S2 ∪ {v2 · 2t + [x′ − v2 · 2t]M}
13: S2 ← S2 ∪ {v2 · 2t + [x′ − v2 · 2t]M − M}
14: S2 ← S2 ∪ {v2 · 2t + [x′ − v2 · 2t]M + M}
15: end for
16: return sort-and-match(S1, S2, α, β)
17: end procedure

since we show that with overwhelming probability there is always some x1 ∈ S1

and x2 ∈ S2 that sum to x.

Theorem 1. Let α be a generator of an cyclic group G � G1 × G2 of known
order N , where N has bit-size n. Let δ ∈ (0, 1

2) and let x be sampled uniformly
at random from all elements of ZN with Hamming weight δn. Let β := αx and p
be the largest prime factor of |G1|. Then for any ε > 0 with δ + ε ≤ 1

2 on input
(|G1|, |G2|, α, β, δ) algorithm dlog outputs x with probability at least 1 − 4(n+1)

|G2|ε2

in time Õ
(√

p +
√|G2|H(δ+ε)

)
and space Õ

(√|G2|H(δ+ε)
)
.

Proof. Let us first define M := |G1|, n := �log2(N)	, t := �log2(M)	 and x′ :=
[x]M as in dlog. Recall that [·]M denotes the least non-negative representative
modulo M , and wt(·) denotes the Hamming weight of the binary representation.
For simplicity, we ignore rounding problems like with (n − t)/2, since they can
easily be resolved without affecting the asymptotic running time.

Similar to the standard Meet-in-the-Middle approach from Sect. 2, in dlog we
decompose the unknown x = v1 ·2(n+t)/2+v2 ·2t+w for some 0 ≤ v1, v2 < 2(n−t)/2

and 0 ≤ w < 2t, as illustrated in Fig. 2. Moreover, we require that both v1, v2
have some Hamming weight in the interval [(δ −ε)(n− t)/2, (δ +ε)(n− t)/2]. The
proof is organized as follows. Firstly, we show that any random x possesses the
correct weights for v1, v2 with overwhelming probability. Secondly, we show that
for the correct weights, dlog always outputs x. Thus, dlog is of Las Vegas type.
Its output is always correct, but dlog fails on an exponentially small fraction of
all input instances.

Let x ∈ ZN be chosen uniformly at random with Hamming weight wt(x) =
δn. We show that (δ − ε)(n− t)/2 ≤ wt(v1),wt(v2) ≤ (δ + ε)(n− t)/2 holds with

A Generic Algorithm for Small Weight Discrete Logarithms 285

a probability that is at least 1 − 4(n + 1)/|G2|ε2
. Let (xn−1, . . . , x0) denote the

binary representation of x, and let Xi be a random variable for xi. For simplifying
our proof, we assume that x was sampled by n independent Bernoulli trials with
P[Xi = 1] = δ for all bits i = 0, . . . , n − 1. Notice that sampling x in this
manner and rejecting all x that have an incorrect Hamming weight gives the
same distribution as sampling x uniformly at random from all x with Hamming
weight δn.

Let I ⊆ {0, . . . , n − 1} with |I| = (n − t)/2 be some index set. Let X =∑n−1
i=0 Xi be the Hamming weight of x, and let Y =

∑
i∈I Xi be the Ham-

ming weight of coordinates I. In order to estimate dlog’s failure probability, we
compute

P [|Y − δ(n − t)/2| > ε(n − t)/2 | X = δn] ,

which is the probability that the Hamming weight on the I-bits of x is not in
the range between (δ − ε) · (n − t)/2 and (δ + ε) · (n − t)/2, under the condition
that x has the correct Hamming weight. Notice that P[X = δn] ≥ P[X = i] for
any i �= δn. Since 0 ≤ X ≤ n, we get 1 =

∑n
i=0 P[X = i] ≤ (n + 1) · P[X = δn]

and thus P[X = δn] ≥ 1
n+1 . This implies

P [|Y − δ(n − t)/2| > ε(n − t)/2 | X = δn]

≤ (n + 1) · P [|Y − δ(n − t)/2| > ε(n − t)/2] .

An application of Hoeffding’s inequality yields

(n + 1) · P [|Y − δ(n − t)/2| > ε(n − t)/2] ≤ 2(n + 1)2−ε2(n−t) ≤ 2(n + 1)
|G2|ε2 .

Hence, we obtain a probability of at most 2(n+1)/|G2|ε2
that the relative Ham-

ming weight for one of v1, v2 is incorrect. By the union bound, the probability
that v1 or v2 have incorrect weight is bounded by 4(n + 1)/|G2|ε2

.
It remains to show that for correct Hamming weight of v1, v2 dlog always

succeeds in computing x. By the correctness of our sort-and-match routine,
it suffices to show the existence of (x1, x2) ∈ S1 × S2 with x1 + x2 = x.

We split x in three parts v1, v2, w with x = v1 · 2(n+t)/2 + v2 · 2t + w (see
Fig. 2). Denote

x1 := v1 · 2(n+t)/2 + w1, x2 := v2 · 2t + w2 with 0 ≤ v1, v2 < 2(n−t)/2 and

0 ≤ w1, w2 < 2t.

In dlog we enumerate a first list S1 of all possible v1 and compute for each v1 a
corresponding w1. We proceed with v2 and their corresponding w2 analogously.

In S1 we choose to fix x1 = 0 mod M — the value 0 could be any con-
stant in ZM . Therefore, we compute w1 = −v1 · 2(n+t)/2 mod M and store the
corresponding integer

x1 := v1 · 2(n+t)/2 + [−v1 · 2(n+t)/2]M .

286 A. May and I. Ozerov

Notice that there always exists a 0 ≤ w1 < 2t with w1 = −v1 · 2(n+t)/2 mod M ,
since M ≤ 2t by the choice of t.

Since we have to ensure x1+x2 = x, we require x1+x2 = x′ mod M and thus
x2 = x′ mod M by our choice of x1. This in turn implies w2 = x′−v2 ·2t mod M .
By construction, we obtain

x1 + x2 = v1 · 2(n+t)/2 + [−v1 · 2(n+t)/2]M + v2 · 2t + [x′ − v2 · 2t]M = x mod M.

However, this does not necessarily imply x = x1 + x2 over Z. Especially,
we have to guarantee w1 + w2 = w. Notice that by definition w < 2t and
M ≤ 2t < 2M . Since 0 ≤ [w1]M , [w2]M < M we have 0 ≤ [w1]M + [w2]M < 2M .

If either 0 ≤ [w1]M + [w2]M < M and w < M (case I + I in Fig. 3) or
M ≤ [w1]M + [w2]M < 2M and M ≤ w (case II+ II in Fig. 3), we are done. If
0 ≤ [w1]M + [w2]M < M and M ≤ w (case I + II in Fig. 3), we have to add M
to [w1]M + [w2]M . In the remaining case II+ I, we have to substract M from
[w1]M + [w2]M .

Thus, [w1]M + [w2]M + kM = w holds for some k ∈ {−1, 0, 1}. In dlog we
choose x1 = v1 · 2(n+t)/2 + [w1]M ∈ S1 and x2 = v2 · 2t + [w2]M + kM ∈ S2 for
all k ∈ {−1, 0, 1}. For the correct k, we obtain x1 + x2 = x, as desired. Thus,
sort-and-match succeeds, and dlog outputs the discrete logarithm x.

It remains to show the time and space complexities. sph takes time Õ(
√

p)
with only polynomial memory consumption, when using Pollard’s Rho Method
as a subroutine. Notice that the complexity of the for-loops in step 7 and 11 of
dlog are dominated by the time to enumerate and store those vi with largest
weight (δ + ε)n−t

2 . Thus, our Meet-in-the-Middle attack has time and space

complexity Õ
(√|G2|H(δ+ε)

)
. �

Remark 1 (Large weight). dlog is by definition restricted to small Hamming
weight 0 < δ ≤ 1

2 . Symmetrically, dlog can be applied to large Hamming weight
1
2 ≤ δ < 1 by transforming the discrete logarithm instance to β̃ := α2n−1/β.
This transforms x to x̃ = (2n − 1) − x with Hamming weight (1 − δ) · n.

Remark 2 (Representations). Our algorithm can be interpreted in terms of the
representation technique introduced by Howgrave-Graham and Joux [6] for solv-
ing the subset sum problem. Notice that we split w = w1+w2 with w1, w2 ∈ ZM .
Thus, we obtain exactly M representations (w1, w2) of w as a sum. In our case, we

0 M 2t 2M
w, case I w, case II

[w1]M + [w2]M , case I [w1]M + [w2]M , case II

Fig. 3. ±M

A Generic Algorithm for Small Weight Discrete Logarithms 287

use the fact that exactly one representation (w1, w2) ensures that x1 = 0 mod M
and x2 = x mod M , simultaneously. We can directly compute this representation
in polynomial time – once x′ is known – without any further assumption on the
problem instance. This differs from [6], where the authors spent exponential time
to compute a representation of the solution and only receive one representation
on expectation, assuming a uniform distribution of the subset sum elements.

Remark 3 (Getting rid of ε). Recall that we introduced ε to ensure that the
Hamming weight of v1 and v2 lies within some ε-strip around its expectation
with overwhelming probability. If we set ε = 0, then dlog finds the discrete log-
arithm x only for a polynomial fraction of all x that exactly match the expected
Hamming weight on v1, v2.

One might be tempted to use cyclic rotations of the binary representation
of x, just as described at the end of Sect. 2. However, some problems arise here.
If we fully rotate, we obtain a bit vector for which the Hamming weight of v1
and v2 matches its expectation. In this case, it might however happen that w
gets split into two parts by the cyclic rotations. In this case, we were not able
to bound the number of w’s by a polynomial. We could also consider the case
where we do not fully rotate x, but restrict to n − t left rotations only such
that the w-part does not split. We conjecture that the number of pathological
instances where dlog does not succeed for at least one of the n − t rotations is
exponentially small in this case, but we were not able to prove that.

3.1 How to Optimally Split G into Subgroups

It remains to show how to optimally choose the subgroups G1 and G2 dependent
on the factorization of |G| and on the Hamming weight δ · log |G| of x. Since
we apply Silver-Pohlig-Hellman on G1, the group G1 should contain all prime
subgroups of G that are smaller or as large as the largest prime subgroup of
G1. In other words, if N =

∏k
i=1 pi is the factorization of the order of G and

p1 ≤ . . . ≤ pk, the only useful choices are |G1| =
∏�

i=1 pi and |G2| =
∏k

i=�+1 pi

for 1 ≤ � ≤ k − 1. This is because we have to spend time
√

p for the maximal
prime divisor p of |G1| anyway. Thus, our ordering of the pi minimizes |G2| and
thus the overall running time.

Among the remaining k −1 choices, we have to find the best choice for �. Fix
an �, 1 ≤ � ≤ k − 1, and define τi := logN pi for each 1 ≤ i ≤ k. From Theorem
1, the time complexity of dlog is

Õ
(√

p� +
√

p�+1 · · · pk
H(δ+ε)

)
= Õ

(
(2n/2)τ� + (2n/2)(τ�+1+...+τk)·H(δ+ε)

)
.

Let us define p0 := 1, and thus τ0 = 0. In the case � = 0 we obtain the time
complexity of the standard small weight Meet-in-the-Middle algorithm without
using sph. In the case � = k we obtain the standard sph without any Meet-in-
the-Middle approach. Thus, our algorithm perfectly interpolates between both
cases and there exist τi such that our algorithm improves upon sph and standard
Meet-in-the-Middle for any 0 < � < k with δ < 1

2 (cf. Fig. 4).

288 A. May and I. Ozerov

Theorem 2. Let τ0 := 0. Given δ, ε with δ + ε ∈ (0, 1
2] and τ1, . . . , τk as defined

above, an optimal choice for dlog is to pick 0 ≤ � ≤ k − 1 such that
τ�

τ� + . . . + τk
< H(δ + ε) ≤ τ�+1

τ�+1 + . . . + τk

and to choose |G1| =
∏�

i=1 pi and |G2| =
∏k

i=�+1 pi.

Proof. First notice that

k−1⋃
�=0

(
τ�

τ� + . . . + τk
,

τ�+1

τ�+1 + . . . + τk

]

defines a disjoint partition of (0, 1], due to the fact that τ1 + . . . + τk = 1. Thus
each δ + ε with 0 < H(δ + ε) ≤ 1 leads to a unique choice of �.

Fix δ, ε and choose � as defined above. We want to show that for each choice
of �′ �= �, dlog’s complexity does not improve. Notice that there may be other
choices for � that achieve the same complexity.

If �′ < �, then it is easy to see that (τ�+1+. . .+τk)·H(δ+ε) ≤ (τ�′+1+. . .+τk)·
H(δ+ε). Since τ�

τ�+...+τk
< H(δ+ε), we also have τ� < (τ� + . . .+τk) ·H(δ+ε) ≤

(τ�′+1 + . . . + τk) · H(δ + ε). Thus the complexity does not improve for �′ < �.
If �′ > �, obviously we have τ� ≤ τ�′ . Additionally, we have that (τ�+1 +

. . . + τk) · H(δ + ε) ≤ τ�+1 ≤ τ�′ , since H(δ + ε) ≤ τ�+1
τ�+1+...+τk

. Therefore, the
complexity also does not improve for any �′ > �. �
Figure 4 shows the time complexity for a fixed group with a size of N that is
a product of 5 primes with sizes N0.1, N0.15, N0.2, N0.25 and N0.3. In this case,
Silver-Pohlig-Hellman (dashed line in Fig. 4, corresponding to � = k) has a time
complexity of N0.15. As we can see, our algorithm’s improvement (straight line)
is defined piecewise for 1 ≤ � ≤ k − 1. For small values of δ, a standard small
weight Meet-in-the-Middle approach (dotted line, corresponding to � = 0) yields
the optimal complexity.

τ1/2

τ2/2

τ3/2

τ4/2

τ5/2

� = 0 � = 1 � = 2 � = 3 � = 4

H(δ + ε)

complexity exponent

Meet-in-the-

Middle

Silver-Pohlig-Hellman

Fig. 4. Time complexity for k = 5, τ1 = 0.1, τ2 = 0.15, τ3 = 0.2, τ4 = 0.25, τ5 = 0.3

A Generic Algorithm for Small Weight Discrete Logarithms 289

References

1. Adleman, L.M.: A subexponential algorithm for the discrete logarithm problem
with applications to cryptography (abstract). In: FOCS, pp. 55–60. IEEE Com-
puter Society (1979)

2. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

3. Coppersmith, D.: Private communication to Scott Vanstone (1979)
4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent rsa

vulnerabilities. J. Cryptology 10(4), 233–260 (1997)
5. Heiman, R.: A note on discrete logarithms with special structure. In: Rueppel,

R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 454–457. Springer, Heidelberg
(1993)

6. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

7. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in 20.054n. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011)

8. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
gf(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110
(1978)

9. Pollard, J.M.: Monte carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978)

10. Shanks, D.: Class number, a theory of factorization and genera. In: Proceedings of
Symposia in Pure Mathematics, vol. 20, AMS, pp. 415–440 (1971)

11. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

12. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.,
Wolfmann, J. (eds.) Coding Theory and Applications. LNCS, vol. 388, pp. 106–113.
Springer, Heidelberg (1989)

13. Stinson, D.R.: Some baby-step giant-step algorithms for the low hamming weight
discrete logarithm problem. Math. Comput. 71(237), 379–391 (2002)

14. van Oorschot, P.C., Wiener, M.: On Diffie-Hellman key agreement with short expo-
nents. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343.
Springer, Heidelberg (1996)

Linear Biases in AEGIS Keystream

Brice Minaud(B)

ANSSI, 51, Boulevard de la Tour-Maubourg, 75700 Paris 07 SP, France
brice.minaud@gmail.com

Abstract. AEGIS is an authenticated cipher introduced at SAC 2013,
which takes advantage of AES-NI instructions to reach outstanding speed
in software. Like LEX, Fides, as well as many sponge-based designs,
AEGIS leaks part of its inner state each round to form a keystream. In
this paper, we investigate the existence of linear biases in this keystream.
Our main result is a linear mask with bias 2−89 on the AEGIS-256
keystream. The resulting distinguisher can be exploited to recover bits
of a partially known message encrypted 2188 times, regardless of the
keys used. We also consider AEGIS-128, and find a surprising correla-
tion between ciphertexts at rounds i and i+2, although the biases would
require 2140 data to be detected. Due to their data requirements, neither
attack threatens the practical security of the cipher.

Keywords: Cryptanalysis · AEGIS · CAESAR

1 Introduction

Traditional block cipher-based encryption ensures the confidentiality of encrypted
data: it is infeasible for anyone to decipher a message without knowledge of the
secret encryption key. However there is a compelling need for ciphers achieving
at once confidentiality and authenticity; that is, ciphers integrating a form of
integrity check guaranteeing that the encrypted message does originate from
its purported sender. Any tampering of the data will result in its rejection by
the deciphering algorithm. The CAESAR [1] authenticated cipher competition,
sponsored by the National Institute of Standards and Technology, crystallizes
the community’s growing interest in this type of cipher. In March 2014, first
round submissions were finalized and all entries were published online, awaiting
analysis.

AEGIS [9] is a particularly notable candidate in this competition. Indeed, it
takes full advantage of the new AES-NI instruction set in recent Intel and AMD
processors to achieve unprecedented encryption speed in software, at around
half a cycle per byte. Although AEGIS was first introduced only a year ago at
SAC 2013, it has already inspired other encryption designs, including PAES [10]
and Tiaoxin [8]. The state update function at the core of AEGIS is simply the
parallel application of a single AES round to a large state, followed by a shift
and XOR. This exploits the pipeline implementation of AES-NI, which allows for
the parallel computation of several AES rounds.
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 290–305, 2014.
DOI: 10.1007/978-3-319-13051-4 18

Linear Biases in AEGIS Keystream 291

AEGIS, like many entries in the CAESAR competition, follows a model where
a large inner state leaks essentially a portion of itself every round, which is then
XOR-ed with the plaintext to form the ciphertext. Moreover, like most ciphers
in this family, including all duplex-like constructions [3], it delays the insertion
of a plaintext block into the inner state until after the corresponding ciphertext
block has been output, in order for decryption to proceed in the same direction
as encryption. As such, these ciphers are not proper stream ciphers, but form
an interesting hybrid, where a single round behaves like a stream cipher.

In particular, assume we have a linear distinguisher on the ciphertext with
known plaintext, which we call a keystream bias by analogy with stream ciphers.
That is, we know that the sum of some specific bits of the ciphertext is biased
towards 0 or 1, provided the corresponding plaintext has a known value. Then,
because of the stream cipher-like behavior pointed out above, if only the last
block of plaintext involved varies, and the rest remains fixed as before, the sum
of ciphertext bits is biased towards 0 or 1 depending on the same sum on the
plaintext.

Thus, a linear distinguisher on the keystream yields an attack on the scheme,
where plaintext bits of a partially known message can be recovered, provided
the message is encrypted enough times. Observe that this does not require the
same key be used. Indeed, this plaintext could be encrypted in entirely different
sessions with different keys, as long as it is encrypted a sufficient number of
times in total. This is very reminiscent of classic stream cipher attacks such
as linear masking [4], as well as recent attacks on RC4 [2]. However, in the
security analysis of AEGIS by its authors, as well as many CAESAR submissions
displaying similar stream cipher-like behavior, this type of attacks does not seem
to be taken into account. This leaves open the question of how effective they
might be, which we investigate for AEGIS.

Our Contribution. In this paper, we describe linear biases in the keystream
of AEGIS-128 and AEGIS-256. As far as we know, this is the first cryptanalysis
of AEGIS. These biases result from the surprising property that, although the
inner state of AEGIS-128 (resp. AEGIS-256) is 5 (resp. 6) times the size of its
output per round, the outputs of only 3 consecutive rounds are related. This is
particularly striking in the case of AEGIS-128, where we show that the outputs
of rounds i and i + 2 are correlated.

However, the biases we find are quite small. In the case of AEGIS-256, we
exhibit biases of 2−89 for a few linear masks, which would require 2188 data to
be detected with good probability. This bias only requires a known plaintext
to be encrypted repeatedly, with no assumption about the keys or nonces: in
fact, the inner state before encryption is considered uniformly random. This
distinguisher can also be exploited to recover information on a partially known
plaintext encrypted 2188 times. Due to the data requirements involved, our attack
does not threaten the practical security of the cipher. For instance, restricting
the attacker to not use more than 2128 data in total even for AEGIS-256, inde-
pendently of the keys involved, would most likely prevent this type of attack
entirely.

292 B. Minaud

We also investigate linear biases of AEGIS-128, and find a bias of 2−77

between outputs of the cipher at rounds i and i + 2. While this would require
more than 2128 data, it is still worth noting, as this bias is vastly superior to
any generic attack, considering the inner state is 640-bit long. In AppendixB,
we investigate to what extent linear hull effects as well as multilinear techniques
can be expected to reduce the data requirements. We find that around 2140 data
would likely still be required, showing that AEGIS-128 should be safe from our
attack.

The first section provides a brief description of AEGIS-128 and AEGIS-256
encryption. In the second section, we define linear biases, and study some lin-
ear biases linking substates of AEGIS. From there, we deduce biases in the
keystream of AEGIS-128 and AEGIS-256. Finally, we show how these biases can
be exploited to mount an attack.

1.1 Notations

For: n an integer
X a n-bit vector
Y a n-bit vector
α a n-bit vector

Define: X ⊕ Y the bitwise XOR of X and Y
X&Y the bitwise AND of X and Y
α · X the scalar product of α and X

|α| the Hamming weight of α

2 Description of AEGIS-128 and AEGIS-256

When AEGIS was first introduced at SAC 2013, it came in two variants, AEGIS-
128 and AEGIS-256, providing a security level of 128 and 256 bits respectively.
In the CAESAR proposal, a new variant is introduced, AEGIS-128L, which fully
leverages the 8-stage AES pipeline provided by Intel Sandy Bridge processors. In
this paper, we focus on AEGIS-128 and AEGIS-256 in their most recent version,
namely the CAESAR submission [1].

2.1 AEGIS-128

AEGIS-128 takes as parameters a 128-bit key, a 128-bit nonce, and a tag length
less than or equal to 128. It proceeds in several stages: initialization, where
the 640-bit inner state is initialized using the key and nonce; processing of the
authenticated data, where optional associated data is integrated into the state;
encryption proper, where a variable-length plaintext is encrypted into a cipher-
text of the same length; and finalization, which produces an authentication tag
from the inner state. Hereafter we are only interested in the encryption step.
A complete description of AEGIS can be found in [9].

The inner state of AEGIS-128 consists of five 128-bit substates S0, . . . , S4.
The plaintext is divided into 128-bit blocks mi, i ≥ 0, and processed in successive

Linear Biases in AEGIS Keystream 293

rounds. Let us denote by Si,0, . . . , Si,4 the values of the substates at round i. For
simplicity, we set i = 0 when encryption begins, setting aside the initialization
step as well as the processing of authenticated data.

Then we have:

Si+1,0 = Si,0 ⊕ R(Si,4) ⊕ mi

Si+1,1 = Si,1 ⊕ R(Si,0)
Si+1,2 = Si,2 ⊕ R(Si,1)
Si+1,3 = Si,3 ⊕ R(Si,2)
Si+1,4 = Si,4 ⊕ R(Si,3)

where R denotes a single round of AES-128 [5], with no key addition. The state
update function is depicted in Fig. 1.

Si,0

R

Si+1,0

Si,1

R

Si+1,1

Si,2

R

Si+1,2

Si,3

R

Si+1,3

Si,4

R

Si+1,4

* *

mi

Fig. 1. State update function of AEGIS-128.

Each round, the ciphertext is output as:

Ci = Si,1 ⊕ Si,4 ⊕ (Si,2 & Si,3) ⊕ mi

2.2 AEGIS-256

AEGIS-256 takes as parameters a 256-bit key, a 256-bit nonce, and a tag length
less than or equal to 128. The encryption step is very much the same as that
of AEGIS-128, except the inner state consists of six rather than five 128-bit
substates Si,0, . . . , Si,5. The state update function may be written as:

Si+1,0 = Si,0 ⊕ R(Si,5) ⊕ mi

Si+1,1 = Si,1 ⊕ R(Si,0)
Si+1,2 = Si,2 ⊕ R(Si,1)
Si+1,3 = Si,3 ⊕ R(Si,2)
Si+1,4 = Si,4 ⊕ R(Si,3)
Si+1,5 = Si,5 ⊕ R(Si,4)

294 B. Minaud

Each round, the ciphertext is output as:

Ci = Si,1 ⊕ Si,4 ⊕ Si,5 ⊕ (Si,2 & Si,3) ⊕ mi

2.3 Security Claims

AEGIS-128 and AEGIS-256 claim a security level of respectively 128 and 256
bits for plaintext confidentiality (provided the attacker did not first break the
integrity of the scheme, for which a security level of 128 bits is claimed in both
cases–cf. [9], Sect. 3). There is no explicit bound on data requirements.

3 Preliminaries

3.1 Linear Biases and Weights

Since we will typically deal with probabilities very close to 1/2, it is convenient
to define the bias of an event (as a shortcut for the bias of its probability):

Definition 1 (Bias). The bias of a an event E is defined as:

Bias(E) = 2 · Prob(E) − 1

Definition 2 (Linear Bias). Consider a function F : {0, 1}n → {0, 1}n from
n bits to n bits. Given an input mask α ∈ {0, 1}n and output mask β ∈ {0, 1}n,
the linear bias of F with masks α, β, is defined as:

Bias(α · X ⊕ β · F (X) = 0)

with X uniformly random in {0, 1}n.
Matsui’s classic piling-up lemma [7] is commonly used to combine linear

biases together.

Lemma 1 (Piling-up Lemma). Let X1, . . . , Xn be independent random binary
variables. Then:

Bias(X1 ⊕ · · · ⊕ Xn = 0) = Bias(X1 = 0) × · · · × Bias(Xn = 0)

In the rest of this article, biases will often be of the form ±2−i, with i an
integer. This leads to the following definitions:

Definition 3 (Weight of an Event). Let E be an event. The weight of E is
the positive real:

weight(E) = −log2
(|Bias(E)|)

If the bias is zero, we define the weight as ∞.

Linear Biases in AEGIS Keystream 295

Definition 4 (Weight of a Linear Bias). The weight of a linear bias is the
weight of its bias. That is, with the previous notations:

weight(F, α, β) = −log2
(|Bias(α · X ⊕ β · F (X) = 0)|)

While the notion of weight is more prevalent in differential than in linear crypt-
analysis, we have defined it so that it behaves exactly in the same way: due to
Lemma 1, when combining linear characeteristics, we simply add their weights
together, making computations more readable. Since we will combine linear char-
acteristics repeatedly, the benefits are substantial. Note that finding strong biases
means we always want to minimize weights.

3.2 Linear Approximations of Bitwise AND

For x, y two independent uniformly random binary variables, it can be easily
checked that their product x&y can be linearly approximated in four different
ways: 0, x, y and x⊕ y ⊕ 1, each with probability 3/4. In particular, this implies
the following lemma, which will be quite useful:

Lemma 2. Let X, Y be two independent uniformly random variables in {0, 1}n,
and α be a linear mask in {0, 1}n. Then:

weight
(
α · (X&Y) = 0

)
= weight

(
α · (X&Y ⊕ X) = 0

)
= weight

(
α · (X&Y ⊕ Y) = 0

)
= weight

(
α · (X&Y ⊕ X ⊕ Y ⊕ 1) = 0

)
= |α|

where |α| denotes the Hamming weight of α. The biases are all positive.

4 Linear Biases for AEGIS-128 and AEGIS-256

4.1 Linear Biases Between Substates

The output of AEGIS-128 at round i is Ci = Si,1 ⊕ Si,4 ⊕ (Si,2 &Si,3) ⊕ mi.
Using linear approximations of & in the previous section, this can naturally be
approximated as a sum of some substates Si,j ’s. As a preliminary step towards
exhibiting biases in the AEGIS-128 keystream, we point out some useful linear
relations between substates Si,j ’s over three rounds.

Assume that at some round i, three consecutive plaintext blocks mi, mi+1,
mi+2 are all-zeros. Denote S0 = Si,0, . . . , S4 = Si,4. Then we can compute the
value of substate 0 over the three rounds i, i + 1, i + 2 as:

Si,0 = S0

Si+1,0 = S0 ⊕ R(S4)
Si+2,0 = S0 ⊕ R(S4) ⊕ R(S4 ⊕ R(S3))

296 B. Minaud

We are interested in the two differences Si,0 ⊕ Si+1,0 and Si,0 ⊕ Si+2,0. Let
us begin with the first:

S0 ⊕ Si+1,0 = R(S4)

If we choose any linear mask α, β with w = weight(R, α, β), then by definition
we have:

β · (S0 ⊕ Si+1,0) = α · S4 with weight w (1)

Now consider the second difference:

Si+2,0 ⊕ Si,0 = R(S4) ⊕ R(S4 ⊕ R(S3))

This is the derivative of R at point S4 with difference R(S3). Choose two linear
masks β, γ with w′ = weight(R, β, γ). By the piling-up lemma, we get:

γ · (Si+2,0 ⊕ Si,0) = β · S4 ⊕ β · (S4 ⊕ R(S3)) with weight 2w′ (2)
= β · R(S3)

Thus, the contribution of S4 cancels itself out.
Finally, we can combine the previous linear approximation of R along α, β

with (2) to get:

γ · (Si+2,0 ⊕ Si,0) = α · S3 with weight w + 2w′ (3)

Note that the above approximations also hold for Si,1, . . . , Si,4 by shifting
all Si,j ’s involved along j modulo 5. Furthermore the same equalities hold for
AEGIS-256 as well, except S3 and S4 in all three Eqs. (1), (2), (3) become S4 and
S5. The main takeaway in all cases is that Si+1,j ⊕ Si,j is correlated to Si,j−1,
while Si+2,j ⊕ Si,j is correlated to Si,j−2.

In the end, we will want to choose α, γ so as to minimize w + 2w′ in (3).
This involves considering linear propagation over two rounds of AES. Due to the
branching number of 5 of the AES construction [6], we will have at least 5 active
S-boxes over these two rounds. Moreover, since we want to minimize w + 2w′,
the second round incurs twice the cost, so the optimal configuration would be to
have 4 active S-boxes in the first round, and only one in the second round. This
is easily achieved: choosing any linear masks at the input and output of a single
S-box in the second round, then propagating the masks linearly will have the
desired effect (cf. Fig. 2). In fact, there are enough degrees of freedom to pass all
S-boxes with the optimal linear weight of 3. As a result, we get w = 4 · 3 = 12
and w′ = 3, so w + 2w′ = 18. AppendixA gives specific values for α, β, γ.

4.2 Biases for AEGIS-128

In this section, we will exhibit a linear bias between the output of AEGIS-128
at rounds i and i + 2, assuming that the messages mi, mi+1, mi+2 are all-zeros.
Let us define S0 = Si,0, . . . , S4 = Si,4.

Linear Biases in AEGIS Keystream 297

SB SR MC

SB SR MC

β β′ γ

α α′ β

Fig. 2. Linear masks over two rounds of AES. Grey boxes denote active bytes.

Choose α, β, γ as in the previous section. Recall that Ci = S1⊕S4⊕S2 &S3.
Using Sect. 3.2, we can approximate Ci and Ci+2 as:

γ · Ci = γ · (S1 ⊕ S4 ⊕ S3) with weight |γ|
γ · Ci+2 = γ · (Si+2,1 ⊕ Si+2,4 ⊕ Si+2,3) with weight |γ|

It follows from Eq. (3) in the previous section that we have:

γ · (Ci ⊕ Ci+2) = α · (S4 ⊕ S2 ⊕ S1) with weight 3w + 6w′ + 2|γ|

Now, observe that Ci may also be approximated as:

α · Ci = α · (S1 ⊕ S4 ⊕ S2) with weight |α|

We are now approximating Ci bitwise in two different ways. However, as long as
α and γ have disjoint support, the two events are independent. In the remainder,
we assume this is the case.

If we combine the last two equations together, we get:

(α ⊕ γ) · Ci ⊕ γ · Ci+2 = 0 with weight 3w + 6w′ + |α| + 2|γ|

This is an absolute bias on the AEGIS-128 keystream. Note that in order to
simplify the presentation, we did not keep track of whether the bias is positive
or negative; however, this is fixed and known.

The question now becomes how to choose α, γ so as to minimize the weight
above. Details of this computation are provided in AppendixA. In the end, we
obtain |α| = 5, |γ| = 9, with all S-boxes having optimal linear bias, hence w = 12,
w′ = 3 as in the previous section. This yields 3w + 6w′ + |α| + 2|γ| = 77.

298 B. Minaud

4.3 Biases for AEGIS-256

Biases on the AEGIS-256 keystream are built essentially in the same way as for
AEGIS-128, except the outputs of all three rounds i, i+1 and i+2 are necessary.
Again, we assume mi = mi+1 = mi+2 = 0. Recall that Ci = S1 ⊕ S4 ⊕ S5 ⊕
S2 &S3.

We use the following approximations:

α · Ci = α · (S1 ⊕ S4 ⊕ S5) with weight |α|
β · Ci = β · (S1 ⊕ S4 ⊕ S5 ⊕ S2 ⊕ S3) with weight |β|
γ · Ci = γ · (S1 ⊕ S4 ⊕ S5 ⊕ S2) with weight |γ|

β · Ci+1 = β · (Si+1,1 ⊕ Si+1,4 ⊕ Si+1,5 ⊕ Si+1,2 ⊕ Si+1,3) with weight |β|
γ · Ci+2 = γ · (Si+2,1 ⊕ Si+2,4 ⊕ Si+2,5 ⊕ Si+2,2) with weight |γ|
Using Eq. (2) from Sect. 4.1, we have:

γ · (Ci ⊕ Ci+2) = β · (R(S5) ⊕ R(S2) ⊕ R(S3) ⊕ R(S0))
with weight 8w′ + 2|γ|

On the other hand:

β · (Ci ⊕ Ci+1) = β · (R(S0) ⊕ R(S3) ⊕ R(S4) ⊕ R(S1) ⊕ R(S2))
with weight 2|β|

Summing the last two equalities yields:

β · (Ci ⊕ Ci+1) ⊕ γ · (Ci ⊕ Ci+2) = β · (R(S1) ⊕ R(S4) ⊕ R(S5))
with weight 8w′ + 2|β| + 2|γ|

Now it remains to use Eq. (1) to pass through R and get:

β · (Ci ⊕ Ci+1) ⊕ γ · (Ci ⊕ Ci+2) = α · (S1 ⊕ S4 ⊕ S5)
with weight 3w + 8w′ + 2|β| + 2|γ|

Finally:

α · Ci ⊕ β · (Ci ⊕ Ci+1) ⊕ γ · (Ci ⊕ Ci+2) = 0
with weight 3w + 8w′ + |α| + 2|β| + 2|γ|

Now the question is to find α, β, γ minimizing this weight. In fact, we can
choose precisely the same α, γ as for AEGIS-128. Indeed, these masks were
chosen so as to (1) pass all S-boxes with optimal probability; (2) minimize w
as compared to w′; (3) minimize |α| + 2|γ| within the previous constraints. The
same criterions are very fitting once again; the only difference is the new β term,
but with the previous choices |β| = 3, so it is nearly optimal as well. As a result,
we have a weight of 3 · 12 + 8 · 3 + 5 + 2 · 3 + 2 · 9 = 89.

Linear Biases in AEGIS Keystream 299

Intuition. How the previous linear approximations were chosen so as to cancel
each other out, and perhaps more importantly what made such a choice possible,
may not be immediately apparent from the description of the linear characteristic
itself. As a result, it may be useful to provide some intuition.

We know that Sj ⊕Si+1,j = R(Sj−1). From Eq. (2), Sj ⊕Si+2,j = R(Sj−1)⊕
R(Sj−1 ⊕ R(Sj−2)) is linearly correlated to R(Sj−2), with the contribution of
Sj−1 cancelling itself out; so we may write Sj ⊕ Si+2,j = D(R(Sj−2)), where D
is a purely formal notation to indicate an expression that is linearly correlated
to the input of D.

On the other hand, if we approximate the & operation in Ci and Ci+1 linearly
along the same mask, and add them together, we can ensure that every Si+1,j

is matched with the corresponding Sj , so as a result we can roughly write:

Ci+1 ⊕ Ci ≈ R(S0) ⊕ [R(S1)] ⊕ [R(S2)] ⊕ R(S3) ⊕ R(S4)

where the brackets denote a term that comes from a & operation and thus may
be omitted at will by Sect. 3.2.

The same reasoning holds for Ci+2; and in the end we have:

Ci ≈ S1 ⊕ [S2] ⊕ [S3] ⊕ S4 ⊕ S5

Ci+1 ⊕ Ci ≈ R(S0) ⊕ [R(S1)] ⊕ [R(S2)] ⊕ R(S3) ⊕ R(S4)

Ci+2 ⊕ Ci ≈ [D(R(S0))] ⊕ [D(R(S1))] ⊕ D(R(S2)) ⊕ D(R(S3)) ⊕ D(R(S5))

Now take the characteristic α
R−→ β

R−→ γ from the previous section, which
is also a characteristic α

R−→ β
D−→ γ as can be seen in Sect. 4.1, Eq. (2). If the

characteristics hold, this tells us that α · Sk = β · R(Sk) = γ · D(R(Sk)). Hence,
if we approximate the first line along α, the second along β, and the third along
γ, if the linear characteristics hold and we add up everything, any two terms
in the same column will cancel each other out. So the question becomes simply
how to make an appropriate choice for each bracket in the equations above so
that there is 0 or 2 terms in each column. This is exactly what we do in order
to construct our linear characteristic, namely:

Ci ≈ S1 ⊕ S4 ⊕ S5

Ci+1 ⊕ Ci ≈ R(S0) ⊕ R(S1) ⊕ R(S2) ⊕ R(S3) ⊕ R(S4)

Ci+2 ⊕ Ci ≈ D(R(S0)) ⊕ D(R(S2)) ⊕ D(R(S3)) ⊕ D(R(S5))

If we look at AEGIS-128 from the same perspective, we can write:

Ci ≈ S1 ⊕ [S2] ⊕ [S3] ⊕ S4

Ci+1 ⊕ Ci ≈ R(S0) ⊕ [R(S1)] ⊕ [R(S2)] ⊕ R(S3)
Ci+2 ⊕ Ci ≈ [D(R(S0))] ⊕ [D(R(S1))] ⊕ D(R(S2)) ⊕ D(R(S4))

After removing the second line entirely, the approximation we made is:

Ci ≈ S1 ⊕ S2 ⊕ S4

Ci+2 ⊕ Ci ≈ D(R(S1)) ⊕ D(R(S2)) ⊕ D(R(S4))

300 B. Minaud

4.4 Exploiting the Keystream Biases

In the previous two sections, we have assumed that at some round i, three
consecutive plaintexts mi, mi+1, mi+2 are all-zeros. From there, we have shown
the existence of an absolute bias of the form:

Bias(α · Ci ⊕ β · Ci+1 ⊕ γ · Ci+2 ⊕ b = 0) = 2−w

In other words, we have built a distinguisher on the AEGIS keystream. However,
if we no longer assume mi+2 = 0, then at round i + 2, the only difference in the
output of the cipher is that mi+2 is XOR-ed into the ciphertext Ci+2. As a result,
we have:

Bias(α · Ci ⊕ β · Ci+1 ⊕ γ · Ci+2 ⊕ γ · mi+2 ⊕ b = 0) = 2−w

Thus, the observable value α · Ci ⊕ β · Ci+1 ⊕ γ · Ci+2 directly leaks information
about γ · mi+2.

This leads to the following attack scenario. Assume the same three consecu-
tive plaintext blocks 0, 0, m are encrypted 22w times in total, independently of
the keys and nonces used. Then an attacker having access to that data would
deduce the value of γ ·m with good probability, just by counting the occurences of
the event α·Ci⊕β ·Ci+1⊕γ ·Ci+2 = 0 on the fly. However, the data requirements
make this attack impractical, since 2154 and 2188 encryptions would be required
respectively for AEGIS-128 and AEGIS-256 in order to exploit a single bias (as
opposed to a multilinear approach). In AppendixB, we try to capture linear
propagation in AEGIS-128 more accurately, in order to evaluate to what extent
data requirements could be lowered; we conclude that AEGIS-128 seems to resist
straightforward improvements of our attack, as 2140 data is still required.

5 Conclusion

In this article, we have constructed linear biases in the keystream of AEGIS-128
and AEGIS-256. These biases stem from dependencies between surprisingly few
consecutive rounds: for AEGIS-128, linear biases exist between the outputs of
rounds i and i + 2; while for AEGIS-256, three consecutive rounds are enough.
Our main result is the construction of a linear mask with bias 2−89 on the
keystream of AEGIS-256. This bias can be exploited to recover bits of informa-
tion on a partially known plaintext encrypted 2188 times, regardless of the keys
involved. While the biases remain too low to be a threat in practice, they are
vastly superior to any generic attack, and point out an unexpected property in
the keystream of AEGIS.

Acknowledgments. The author would like to thank all members of the ANSSI cryp-
tography laboratory, especially Thomas Fuhr and Henri Gilbert, for their valuable
comments and insights on this article.

Linear Biases in AEGIS Keystream 301

A Values of α, β, γ

Consider the situation depicted on Fig. 3, where the linear characteristic α →
β → γ spans two rounds of AES (without key addition). We are trying to
minimize |α| + 2|γ|, while passing all S-boxes with optimal linear probability.

SB SR MC

SB SR MC

β β′ γ

α α′ β

Fig. 3. Linear masks over two rounds of AES. Grey boxes denote active bytes.

First, we look for β′ minimizing |γ|. With little-endian hexadecimal notations,
it turns out only one value β′ = 0e reaches the minimum with |γ| = 9 (γ equals
f, 8, c, 5 along one column). For this value, five choices of β allow us to pass
the S-box with weight 3: β = 09, 31, 38, c8, or f9. For each of these values, we
compute α′, then look for the minimal size of α such that all four S-boxes are
passed with optimal probability. We find |α| = 5, for β = 38 (α equals 4, 3,
2, 2 along the diagonal). Observe that |α| is at least 4 since it has to span 4
S-boxes. Since we followed the only way to have |γ| = 9, which is optimal; |α|
is within 1 of being optimal; and we are trying to minimize |α| + 2|γ|, we have
found the unique optimal choice.

More accurately, it is the unique optimal choice once we have fixed our choice
for the active S-box in the second round. In fact, we could choose any one of
the other 15 S-boxes, and use the exact same values of linear masks β, β′ at the
entrance of that S-box (namely, 38 and 0e). Indeed, the circulant nature of the
AES MixColums matrix means that a given mask at the input (resp. output)
of one S-box will propagate to a permutation of the same masks at the output
(resp. input) of the previous (resp. next) layer of S-boxes, and hence in our case
will yield the same sizes for α and γ. Thus there are 16 choices for α, γ with
identical properties for our purpose; one per choice of active S-box in the middle
round.

302 B. Minaud

B Refined Linear Model of AEGIS-128

In Sect. 4.2, we have found a linear mask with bias 2−77 on the AEGIS-128
keystream. Detecting this bias would require 2154 data, which is significantly
more than is sensible with a security parameter of 128 bits. However, the bias on
an actual AEGIS-128 keystream may be slightly different, due to the indepen-
dence assumptions required by our analysis. Additionaly, there may be linear
hull effects strengthening or weakening the bias. In any case, other biases of
comparable strength undoubtedly exist, and could be exploited in a multilinear
attack. With all this in mind, it may be worth wondering whether the 2154 data
requirement has some chance of being brought down below 2128.

It so happens that for AEGIS-128, there is a fairly elegant way of simultane-
ously taking into account many of the effects listed above. In our previous analy-
sis, we used standard linear cryptanalysis techniques to follow the propagation of
a bias along a few AES-based transformations. This amounts to modelling the
transformations in a certain way, materialized by independence assumptions.
However in the case of AEGIS-128, large parts of the transformations can be
computed with complete accuracy by looking at byte distributions, without the
need to model anything.

If we recap the previous analysis in Sect. 4.2, we approximate Ci and Ci ⊕
Ci+2 linearly, and from there we obtain the following two sums:

S1 ⊕ S2 ⊕ S4

and : R(S2) ⊕ R(S2 ⊕ R(S1)) ⊕ R(S3) ⊕ R(S3 ⊕ R(S2)) ⊕ R(S0) ⊕ R(S0 ⊕ R(S4))

= D(R(S1)) ⊕ D(R(S2)) ⊕ D(R(S4))

where D is a purely formal notation denoting the fact that its input and output
are linearly correlated (cf. Sect. 4.1); then we use the fact that X and D(R(X))
are correlated. More precisely, we first relate X to R(X), then R(X) to D(R(X)).
Thus the propagation is decomposed in two steps, which we can picture as:

S1 ⊕ S2 ⊕ S4 → R(S1) ⊕ R(S2) ⊕ R(S4) → D(R(S1)) ⊕ D(R(S2)) ⊕ D(R(S4))

So our propagation “factors” through the value R(S1)⊕R(S2)⊕R(S4): that is to
say, all information we had on S1 ⊕ S2 ⊕ S4 is first translated as information on
R(S1) ⊕ R(S2) ⊕ R(S4); after which only information on R(S1) ⊕ R(S2) ⊕ R(S4)
is used to deduce information on D(R(S1)) ⊕ D(R(S2)) ⊕ D(R(S4)). Moreover,
with our linear masks, only a single S-box is active in R(S1)⊕R(S2)⊕R(S4), so
actually the whole propagation factors through the value of R(S1)⊕R(S2)⊕R(S4)
on a single byte.

The idea for our new model is that we are going to compute the actual
distribution of R(S1) ⊕ R(S2) ⊕ R(S4) on one byte from the knowledge of Ci =
S1 ⊕ S2 &S3 ⊕ S4. Then we are going to use this full distribution, rather than
a single linear mask, to compute a distribution of Si+2,3 ⊕ S3 ⊕ Si+2,4 ⊕ S4 ⊕
Si+2,1 ⊕ S1, which is our linear approximation of Ci ⊕ Ci+2 along a linear mask
γ. Thus we hope to compute the bias of γ · (Ci ⊕ Ci+2) more accurately. A good
motivation for this model is that the two steps above: linking knowledge of Ci to

Linear Biases in AEGIS Keystream 303

the distribution of R(S1)⊕R(S2)⊕R(S4) on one byte; and then the distribution
of R(S1) ⊕ R(S2) ⊕ R(S4) on one byte to the bias of the linear approximation of
γ ·(Ci⊕Ci+2), can be computed with perfect precision within complexity at most
232, as we show below. Hence the only loss of precision results from “factoring”
through R(S1)⊕R(S2)⊕R(S4); but as we saw in the previous paragraph, we were
already making this approximation when we used standard linear characteristic
techniques.

Thus, assume we know some specific value for Ci = S1⊕S2 &S3⊕S4. Then we
can actually compute the distribution of a single byte of R(S1) ⊕ R(S2) ⊕ R(S4)
with full precision. Indeed, if we denote by SB the SubBytes layer of AES, from
S1 ⊕ S2 &S3 ⊕ S4 we can compute the distribution of SB(S1) ⊕ SB(S2) ⊕ SB(S4)
in an exact manner, since each byte depends only on the value S1, S2, S3, S4 on
the same byte; so we need only guess 4 bytes simultaneously.

From there, we can also compute the distribution of R(S1) ⊕ R(S2) ⊕ R(S4)
on a single byte exactly, since it is simply the independent sum of the previous
byte distributions through the MixColumns matrix. Moreover, in the end, this
distribution depends on only 16 bytes in total, which is 128 bits, so we can simply
count how many choices lead to a specific value using a 128-bit integer, and the
resulting distribution is prefectly precise. Thus, from knowledge of Ci = S1 ⊕
S2 &S3 ⊕S4, it is possible to compute the distribution of R(S1)⊕R(S2)⊕R(S4)
on one byte with full precision.

Now for the second step of the propagation, we want to compute the distri-
bution of the following value (i.e. the linear approximation of Ci ⊕ Ci+2 along
the mask γ):

Si+2,3 ⊕ S3 ⊕ Si+2,4 ⊕ S4 ⊕ Si+2,1 ⊕ S1

= R(S2) ⊕ R(S2 ⊕ R(S1)) ⊕ R(S3) ⊕ R(S3 ⊕ R(S2)) ⊕ R(S0) ⊕ (S0 ⊕ R(S4))

from the known distribution of:

R(S1) ⊕ R(S2) ⊕ R(S4)

More precisely, we are interested in the distribution of the first value before
MixColumns (which is the last operation applied to each component), on a single
byte, so R reduces to one S-box layer (and a permutation of the bytes).

At first sight, it suffices to guess the values of all R(Si)’s on this one byte.
This only involves guessing 5 bytes, requiring 240 operations, which is reasonable.
However a better algorithm is possible by observing that the contribution of S0

and S4 is independent from the rest on both sides. As a result, it suffices to
compute these two distributions separately, then add them together:

R(S1) ⊕ R(S2) → R(S2) ⊕ R(S2 ⊕ R(S1)) ⊕ R(S3) ⊕ R(S3 ⊕ R(S2))
R(S4) → R(S0) ⊕ (S0 ⊕ R(S4))

Thus the complexity drops down to 232 operations.
The end result is that for a fixed value of Ci = S1 ⊕ S2 &S3 ⊕ S4, we can

compute the distribution of R(S1) ⊕ R(S2) ⊕ R(S4) on one byte without any

304 B. Minaud

approximation. Then from this distribution, we can compute the distribution of
one byte of the linear approximation of Ci ⊕ Ci+2 before MixColumns, which is
what we measure from Ci ⊕Ci+2 using our linear masks, modulo the cost of the
linear approximation along γ, which is 2|γ|.

We implemented this model, and results correlate fairly well with our previous
analysis. In particular, we recover the fact that the values of β′ we chose yields
the strongest bias, although one other value seems as strong (namely 12), which
is not too surprising since it is one of the two second-best candidates as far as
minimizing |γ|. The main difference is that we find a bias close to 2−72 when
we fix Ci to some random value and measure γ · (Ci ⊕ Ci+2) according to our
model, rather than 2−77 when we used pure linear masking. We surmise this is
mostly due to more information being taken into account at the input, resulting
overall in more information at the output; although both steps of the new model
behave slightly better than expected.

On the other hand, few output masks yield biases in this vicinity. If we
exploit the best bias at 2−72, across all 16 possible second-round S-boxes (cf.
AppendixA), 2144−4 = 2140 data would still be required to mount an attack.
With additional improvements, one could hope to further reduce data require-
ments, but at this point it seems very unlikely that data requirements could fall
below 2128. Thus, the main conclusion of our model seems to be that AEGIS-128
remains resistant to straightforward improvements of our attack.

References

1. CAESAR- Competition for Authenticated Encryption: Security, Applicability, and
Robustness. General secretary D.J. Bernstein (2013). http://competitions.cr.yp.
to/caesar.html

2. AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.: On the
security of RC4 in TLS. In: USENIX Security Symposium (2013), Presented at
FSE 2013 as an invited talk by D.J. Bernstein (2013). http://www.isg.rhul.ac.uk/
tls/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

4. Coppersmith, D., Halevi, S., Jutla, C.S.: Cryptanalysis of stream ciphers with
linear masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532.
Springer, Heidelberg (2002)

5. Daemen, J., Rijmen, V.: AES proposal: Rijndael. Advanced Encryption Standard
submission (1999). http://jda.noekeon.org/

6. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001)

7. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

8. Nikolić, I.: Tiaoxin-346. CAESAR submission (2014). http://competitions.cr.yp.
to/round1/tiaoxinv1.pdf

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/
http://jda.noekeon.org/
http://competitions.cr.yp.to/round1/tiaoxinv1.pdf
http://competitions.cr.yp.to/round1/tiaoxinv1.pdf

Linear Biases in AEGIS Keystream 305

9. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm. CAESAR
submission, updated from Cryptology ePrint Archive Report 2013/695, updated
from SAC 2013 version (2014). http://competitions.cr.yp.to/round1/aegisv1.pdf

10. Ye, D., Wang, P., Hu, L., Wang, L., Xie, Y., Sun, S., Wang, P.: PAES v1: paralleliz-
able authenticated encryption schemes based on AES round function. CAESAR
submission (2014). http://competitions.cr.yp.to/round1/paesv1.pdf

http://competitions.cr.yp.to/round1/aegisv1.pdf
http://competitions.cr.yp.to/round1/paesv1.pdf

Chaskey: An Efficient MAC Algorithm
for 32-bit Microcontrollers

Nicky Mouha1(B), Bart Mennink1, Anthony Van Herrewege1, Dai Watanabe2,
Bart Preneel1, and Ingrid Verbauwhede1

1Dept. of Electrical Engineering, ESAT/COSIC, KU Leuven and iMinds,
Ghent, Belgium

{nicky.mouha,bart.mennink,anthony.vanherrewege,bart.preneel,
ingrid.verbauwhede}@esat.kuleuven.be

2Yokohama Research Laboratory, Hitachi, Yokohama, Japan
dai.watanabe.td@hitachi.com

Abstract. We propose Chaskey: a very efficient Message Authentica-
tion Code (MAC) algorithm for 32-bit microcontrollers. It is intended for
applications that require 128-bit security, yet cannot implement standard
MAC algorithms because of stringent requirements on speed, energy con-
sumption, or code size. Chaskey is a permutation-based MAC algorithm
that uses the Addition-Rotation-XOR (ARX) design methodology. We
prove that Chaskey is secure in the standard model, based on the secu-
rity of an underlying Even-Mansour block cipher. Chaskey is designed
to perform well on a wide range of 32-bit microcontrollers. Our bench-
marks show that on the ARM Cortex-M3/M4, our Chaskey implementa-
tion reaches a speed of 7.0 cycles/byte, compared to 89.4 cycles/byte for
AES-128-CMAC. For the ARM Cortex-M0, our benchmark results give
16.9 cycles/byte and 136.5 cycles/byte for Chaskey and AES-128-CMAC
respectively.

Keywords: Microcontroller · Message authentication code · Standard
model security · Permutation-based · ARX

1 Introduction

Message Authentication Code (MAC) algorithms are one of the basic building
blocks for cryptographic systems. A MAC algorithm processes a message m and
a secret key K to generate a tag τ . It should be hard for an attacker to construct
a forgery: that is, to generate a valid combination of (m, τ) without knowledge
of the secret key K. Thereby, the MAC algorithm ensures the authenticity of
the message m.

Over the years, a large variety of MAC algorithms have been proposed. Some
of the most commonly used algorithms today are CMAC [30,38], HMAC [6,60],

This work was supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007) and OT/13/071. Nicky Mouha and Bart Mennink are Postdoctoral
Fellows of the Research Foundation – Flanders (FWO).

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 306–323, 2014.
DOI: 10.1007/978-3-319-13051-4 19

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 307

and UMAC [14]. CMAC is based on a block cipher, usually AES or Triple-DES,
whereas HMAC uses a hash function such as MD5, SHA-1, or SHA-2, and UMAC
is based on a universal hash function combined with a standard cryptographic
primitive such as a block cipher or a hash function.

Unlike most other MAC algorithms, a nonce input is required for MAC algo-
rithms based on universal hash functions [19,61]. This includes MAC algorithms
such as UMAC [14], Poly1305-AES [9], and GMAC [31]. The nonce should not
be reused, or this would lead to a forgery attack. Furthermore, Poly1305-AES
and GMAC become insecure when tags are truncated [34]. We note that cur-
rently used MAC algorithms based on universal hash functions typically make
use of multiplications. On several microcontrollers, the number of cycles required
to execute an integer multiplication instruction is data-dependent, which makes
the implementations potentially vulnerable to timing attacks [45].

For MAC algorithms that are based on hash functions, the block size is
typically very large: for MD5, SHA-1, SHA-2, and the upcoming SHA-3 [10],
messages are processed in blocks of at least 512 bits. For very short messages,
this will result in a large overhead. But also for longer messages, it is generally
undesirable for typical microcontrollers to process such large blocks. This is
because many load and store operations are required to move data back and
forth between the limited number of registers and the RAM, which significantly
increases the time, energy, and code size of the MAC algorithm implementation.

A similar issue appears for block-cipher-based MAC algorithms, which typ-
ically use AES or Triple-DES. On typical microcontrollers, the key schedule of
these block ciphers increases the register pressure: round keys must be either
precomputed and stored in RAM, or computed on the fly. Furthermore, on 32-
bit platforms, the S-box operations of AES and Triple-DES require extensive
use of bit masking operations to implement the S-box operations, which again
negatively impacts the speed of the implementation. Finally, we note that MAC
algorithms based on reduced-round block ciphers such as ALPHA-MAC [22] and
Pelican MAC [23] have been proposed, yet their performance gain is small for
very short messages because a full-round block cipher is used for both initializa-
tion and finalization.

Chaskey

We present Chaskey, a permutation-based MAC algorithm that overcomes these
issues. Chaskey takes a 128-bit key K and processes a message m in 128-bit
blocks using a 128-bit permutation π. This permutation is based on the Addition-
Rotation-XOR (ARX) design methodology. Its design is inspired by the permu-
tation of SipHash [3], however with 32-bit instead of 64-bit words.

Chaskey has the following features:

– Dedicated Design. Chaskey is a dedicated design for 32-bit microcontroller
architectures. The addition and XOR operations are performed on 32-bit
words, and each of these operations requires only one instruction on these
architectures.

308 N. Mouha et al.

– Cross-Platform Versatility. We took into account that certain microcon-
trollers do not support variable-length bit rotations and bit shifts. By choosing
some rotation constants to be multiples of 8, these bit rotations are efficiently
implemented by swapping 8-bit or 16-bit registers.

– Efficient Implementation. Benchmarks on an ARM Cortex-M4 show that
Chaskey requires only 7.0 cycles/byte for long (≥ 128 byte) messages, and
10.6 cycles/byte for short (16 byte) messages. It has been implemented
in only 402 bytes of ROM. Results for the Cortex-M0 are very good as
well: 16.9 cycles/byte for long messages, 21.3 cycles/byte for short ones, and
414 bytes of ROM for the implementation. There is, roughly speaking, a lin-
ear relation between the number of cycles and energy consumption [21]. We
therefore expect Chaskey to be very energy efficient as well.

– Resistance Against Timing Attacks. On all microcontroller architectures
that we are aware of, every instruction of Chaskey takes a constant time to
execute. The total number of cycles depends only on the message length.
Therefore, Chaskey is inherently secure against timing attacks.

– Key Agility. Chaskey does not have a key schedule, as keys are simply
XORed into the state. Updating the key in Chaskey requires generating a
new uniformly random 128-bit key, and only two shifts and two conditional
XORs on 128-bit words to generate two subkeys.

– Tag Truncation. Chaskey is robust under tag truncation. Unlike for example
GMAC [34], the best attack on Chaskey with short tags is tag guessing. We
recommend |τ | ≥ 64 for typical applications. Shorter tags may be used after
careful analysis of the probability of occasionally accepting an inauthentic
message.

– Nonces are Optional. Several MAC algorithms (including GMAC [31],
VMAC [46], and Poly1305-AES [9]) require a nonce, and become completely
insecure if this nonce is reused (see e.g. [40]). Chaskey does not require a
nonce, and therefore avoids these issues altogether.

– Provably Secure. We prove that Chaskey is secure, based on the security
of an Even-Mansour [32,33] block cipher based on π, up to about D = 264

blocks of chosen plaintexts and T = 2128/D off-line block cipher evaluations.
– Patent-Free. We are unaware of any patents or patent applications related

to Chaskey.

The name Chaskey is derived from Chasqui, also written as Chaski. Chasquis
were fast runners that delivered messages in the Inca empire. They were of short
stature, and could cover large distances through mountainous areas with little
nutrition available to them [52].

2 Preliminaries

Table 1 summarizes the notation used in this paper. Throughout, n is both the
key size and the block size. While the Chaskey algorithm is introduced for n =
128, we remark that our statements on the Chaskey mode of operation are
independent of this specific choice of n.

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 309

We interchangeably consider an element a of GF (2n) as an n-bit string a[n−
1]a[n−2] . . . a[0] and as the polynomial a(x) = a[n−1]xn−1+a[n−2]xn−2+ . . .+
a[0] with binary coefficients. Let f(x) be an irreducible polynomial of degree n
with binary coefficients. For n = 128, we choose f(x) = x128 + x7 + x2 + x + 1.
Then to multiply two elements a and b, we represent them as two polynomials
a(x) and b(x), and calculate a(x)b(x) mod f(x). For example, we show how to
multiply an element by x in Algorithm 1. Note that x corresponds to bit string
012610, which is 2 in decimal notation.

When converting between bit strings and arrays of 32-bit words, we always
use little endian byte ordering. Inside every byte, bit numbering starts with the
least significant bit.

Table 1. Notation.

Notation Description

x y concatenation of bit strings x and y
|x| length of bit string x

x + y addition of x and y modulo 232 (in text)
x y addition of x and y modulo 232 (in figures)
x ≪ s rotation of x to the left by s positions
x s shift of x to the left by s positions
x ⊕ y bitwise exclusive OR (XOR) of x and y
Δ⊕x XOR difference of x and x : Δx = x ⊕ x
0a bit string consisting of a times 0

rightt(a) select the t least significant bits of a
x[i] bit selection: bit at position i of word x,

where i = 0 is the least significant bit

3 Specification of Chaskey

3.1 Mode of Operation

Chaskey uses an n-bit key K to process a message m of arbitrary size into a tag
τ of t ≤ n bits. For every key K, two subkeys K1, K2 are generated as shown in
Algorithm 2.

The message m is split into � blocks m1,m2, . . . , m� of n bits each, except for
the last block m� which may be incomplete. We define that an empty message
m = ∅ consists of one empty block: |m1| = 0. An n-bit permutation π then
iterates over the message, as specified in Algorithm 3 and illustrated in Fig. 1.

An alternative description of Chaskey based on an Even-Mansour [32,33]
block cipher E with 2n-bit key and n-bit block size is given in Algorithm 4.
This block-cipher-based description is equivalent to Chaskey once we define E
using π as EX‖Y (m) = π(m ⊕ X) ⊕ Y . The purpose of this block-cipher-based
alternative is to reduce the security of Chaskey to the security of the underlying

310 N. Mouha et al.

block cipher E. A security proof will be given in Sect. 5. This security proof
views Chaskey-B as a variant of FCBC by Black and Rogaway [15,16], shown in
Algorithm 5.

K

m1

π

m2

π . . . π

m

π τ

K1 K1

rig
ht

t

K

m1

π

m2

π . . . π

m 10∗

π τ

K2 K2

rig
ht

t

Fig. 1. The Chaskey mode of operation when |m�| = n (top), and when 0 ≤ |m�| <
n (bottom). The round function of permutation π is shown in Fig. 2, the subkeys
K1 and K2 are generated according to Algorithm 2, and m�‖10∗ is shorthand for
m�‖10n−|m�|−1.

From this block-cipher-based description, it can be seen that Chaskey is
similar to the three-key MAC constructions proposed by Black and Rogaway [15,
16]. Their constructions are variants of CBC-MAC [1,37] that are secure for
variable-length messages and avoid padding for messages of an integer number
of blocks. As in CMAC [30,38], our algorithm requires only one n-bit key, from
which two n-bit subkeys are generated. However, unlike CMAC, Chaskey does
not require any block cipher calls to generate these two subkeys, only two shifts
and two conditional XORs on 128-bit words.

Chaskey also differs from the CBC-MAC variants in literature because its
underlying block cipher uses an Even-Mansour construction and as it uses the
same subkey twice in the last two subkey XORs: before and after the last per-
mutation call. Therefore, it is possible that this subkey (or part thereof) can
remain inside the registers of the microcontroller. This reduces the number of
load and store operations, which are very expensive on typical microcontrollers.

Every key K must be chosen independently and uniformly at random from
the entire key space. To avoid attacks with a practical complexity of off-line
permutation evaluations, as will be explained in Sect. 6.1, we restrict the total
number of blocks to be authenticated under the same key K to at most 248. This
corresponds to refreshing the key after at most 4 petabytes of data. To avoid tag
guessing attacks, we recommend that the tag size |τ | ≥ 64. Changing |τ | always
requires selecting a new key K uniformly at random.

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 311

Algorithm 1. TimesTwo
1: proc TimesTwo(a)
2: if a[127] = 0 then
3: return (a � 1) ⊕ 0128

4: else
5: return (a � 1) ⊕ 012010000111

Algorithm 2. SubKeys
1: proc SubKeys(K)
2: K1 ← TimesTwo(K)
3: K2 ← TimesTwo(K1)
4: return (K1, K2)
5:

Algorithm 3. Chaskey
1: proc Chaskeyπ(K, m)
2: (K1, K2) ← SubKeys(K)
3: m1‖ . . . ‖m� ← m
4: h1 ← K
5: for i = 1, . . . , � − 1 do
6: hi+1 ← π(hi ⊕ mi)

7: if |m�| = n then
8: L ← K1

9: else
10: m� ← m�‖10n−|m�|−1

11: L ← K2

12: h�+1 ← π(h� ⊕m� ⊕L)⊕L
13: return τ ← rightt(h�+1)

Algorithm 4. Chaskey-B
1: proc Chaskey-BE(K, m)
2: (K1, K2) ← SubKeys(K)
3: m1‖ . . . ‖m� ← m
4: h1 ← 0n

5: for i = 1, . . . , � − 1 do
6: hi+1 ← EK‖K(hi ⊕ mi)

7: if |m�| = n then
8: L ← K1

9: else
10: m� ← m�‖10n−|m�|−1

11: L ← K2

12: h�+1 ← EK⊕L‖L(h� ⊕ m�)
13: return τ ← rightt(h�+1)

Algorithm 5. FCBC [15, 16]
1: proc FCBC((p1, p2, p3), m)
2:
3: m1‖ . . . ‖m� ← m
4: h1 ← 0n

5: for i = 1, . . . , � − 1 do
6: hi+1 ← p1(hi ⊕ mi)

7: if |m�| = n then
8: q ← p2

9: else
10: m� ← m�‖10n−|m�|−1

11: q ← p3

12: h�+1 ← q(h� ⊕ m�)
13: return τ ← h�+1

3.2 Permutation π

The permutation π is built using three operations: addition modulo 232, bit
rotations, and XOR (ARX). The structure is the same as that of SipHash [3],
but with 32-bit instead of 64-bit words and different rotation constants. Although
SipHash has been proposed only very recently, it has found its way into several
widely used software packages. For example, SipHash is used inside the hash
table implementations of FreeBSD, Python, Perl, and Ruby. Both Chaskey and
SipHash use the 2-input MIX operation of Skein [35], one of the finalists of the
SHA-3 competition [53].

In Chaskey, the permutation π consists of eight applications of a round func-
tion. This round function is specified in Fig. 2.

Although we are confident that 8 rounds is enough for a secure construction,
we recommend that implementers include the 16-round variant Chaskey-LTS
(long term security) as a fallback in case of cryptanalytical breakthroughs.
Chaskey-LTS consumes roughly twice the number of cycles and thus twice the
amount of energy as Chaskey, but is still much faster than AES-CMAC. As only
the number of rounds is different, it is possible to implement both Chaskey and
Chaskey-LTS with negligible overhead in code size.

Note that half of the rotation constants of π are chosen to be multiples of
eight. This is because a variety of microcontrollers do not support rotations
and shifts over arbitrary amounts, e.g. the Renesas H8/300 CPU supports only
one-bit rotations and shifts, the Renesas H8/2000 supports one-bit and two-bit
rotations and shifts, and Microchip’s 8-bit microcontrollers (PIC10/12/16/18)
support one-bit rotations. Due to our choice of constants, implementation on

312 N. Mouha et al.

≪ 5

v1 v0 v2 v3

v1 v0 v2 v3

≪ 16

≪ 8

≪ 13≪ 7

≪ 16

Fig. 2. A round of the Chaskey permutation π, defined as: v0‖v1‖v2‖v3 ←
π(v0‖v1‖v2‖v3). We intentionally swapped v0 and v1, as this reduces the number of
crossing lines in the figure.

8- and 16-bit microcontrollers will be more efficient than had these constants
been chosen at random. They furthermore allow us to implement Chaskey effi-
ciently on a wide range of 32-bit microcontrollers, yet we have found that they
do not seem to make π weaker against cryptanalytical attacks.

4 Implementation Results

We implemented Chaskey on several microcontroller platforms. We provide imple-
mentation results on ARM Cortex-M0 and -M4 platforms, and compare these to
AES-128-CMAC on the same platforms. All our implementations have been com-
piled with GNU Tools for ARM Embedded Processors version 4.7.3 20121207.
The Cortex-M0 benchmarks are executed on an STM32F030R8 microcontroller
of STMicroelectronics, the Cortex-M4 ones on an STM32F401RE.

We compare the results for our Chaskey implementation with what is, to
the best of our knowledge, the fastest available AES implementation for the
ARM Cortex-M series: SharkSSL [55,56]. Since no AES-128-CMAC benchmarks
are available for this implementation, we instead compare with AES-128-ECB,
which is guaranteed to be at least as fast and small as AES-128-CMAC. Note

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 313

Table 2. Benchmark results for Chaskey and AES-128-CMAC on Cortex-M0/M4.
AES-128-CMAC is implemented using AES code from the MAGEEC framework. AES-
128-ECB on Cortex-M0/M3 is based on figures from SharkSSL [55,56]. Note that
compiling with speed optimization flags does not always result in the fastest imple-
mentation.

Data gcc ROM size Speed
Microcontroller Algorithm

[byte] flags [byte] [cycles/byte]

Speed optimized

Cortex-M0 AES-128-ECB (SharkSSL) n/a n/a 8 380 124.4
AES-128-CMAC 128 -O2 13 492 136.5
Chaskey 16 -O2 1 308 21.3

128 -O2 1 308 18.3

Cortex-M3/M4 AES-128-ECB (SharkSSL) n/a n/a 4 854 66.7
AES-128-CMAC 128 -O2 28 524 105.0
Chaskey 16 -O2 908 10.6

128 -O2 908 7.0

Size optimized

Cortex-M0 AES-128-ECB (SharkSSL) n/a n/a 4 398 112.7
AES-128-CMAC 128 -Os 11 664 140.0
Chaskey 16 -Os 414 21.8

128 -Os 414 16.9

Cortex-M3/M4 AES-128-ECB (SharkSSL) n/a n/a 3 922 86.1
AES-128-CMAC 128 -Os 10 952 89.4
Chaskey 16 -Os 402 16.1

128 -Os 402 11.2

that we list SharkSSL results for the Cortex-M3, since Cortex-M4 results are
not available. However, the architecture of both microcontrollers is extremely
similar, and thus results are expected to be the same.

Results for the various implementations are shown in Table 2. In all of our
own benchmarks, round keys are precomputed, and time required to do so is not
included in the listed numbers.

5 Proof of Security

We focus on the security of the Chaskey mode of operation. For this, we con-
sider n, t ∈ N to be arbitrary values. Denote by block(k, n) the set of all block
ciphers with k-bit key and n-bit block size, and let perm(n) denote the set of all
permutations on n bits. Note that for E ∈ block(k, n), we have EK ∈ perm(n)
for all K ∈ {0, 1}k. The definitions below follow Bellare et al. [7] and Iwata and
Kurosawa [38,39].

MAC Security. Let H : K × {0, 1}∗ → {0, 1}t be a MAC function.

Advmac
H (q,D, r) = max

A
Pr

(
K

$←− K , (m, τ) $←− AHK ;
HK(m) = τ and m never queried

)
,

314 N. Mouha et al.

where the maximum is taken over all adversaries making at most q queries of
total length at most D blocks and running in time r.

3PRP Security. The strength of a block cipher E is conventionally expressed
as the PRP (pseudorandom permutation) security. In Chaskey-B (see Algo-
rithm 4) we use a block cipher E ∈ block(2k, n) on input of three different
keys: EK‖K , EK⊕K1‖K1 , and EK⊕K2‖K2 , where K1, K2 are generated as shown
in Algorithm 2. As the keys (K,K1,K2) are dependent, so are the three different
usages of E. As such, a slightly more involved security notion is needed, which
we call 3PRP. For ease of presentation, the definition is adapted to the specific
key generation and block cipher use mode of Chaskey.

Adv3prp
E (D, r) = max

A

∣∣∣∣∣∣∣∣
Pr

(
K

$←− {0, 1}k , (K1,K2) ← SubKeys(K) ;
AEK‖K ,EK⊕K1‖K1 ,EK⊕K2‖K2 = 1

)
−

Pr
(
p1, p2, p3

$←− perm(n) ; Ap1,p2,p3 = 1
)
∣∣∣∣∣∣∣∣
,

where the maximum is taken over all adversaries making at most D queries and
running in time r.

The proof consists of two phases. Theorem 1 states the security of Chaskey-B
in the standard model, based on any E with 2n-bit key and n-bit block size. This
result is generalized in the ideal permutation model to Chaskey in Theorem 2,
once we use EX‖Y (m) = π(m ⊕ X) ⊕ Y for π ∈ {0, 1}n.

Theorem 1. Let K
$←− {0, 1}n and consider Chaskey-BE

K : {0, 1}∗ → {0, 1}t.
Then,

Advmac
Chaskey-B(q,D, r) ≤ 2D2

2n
+

1
2t

+ Adv3prp
E (D, r).

Theorem 2. Let K
$←− {0, 1}n, assume that π

$←− perm(n), and let us consider
Chaskeyπ

K : {0, 1}∗ → {0, 1}t. Then,

Advmac
Chaskey(q,D, r) ≤ 2D2

2n
+

1
2t

+
D2 + 2DT

2n
,

where T is defined as r/rπ for rπ denoting the running time of one evaluation
of π.

The proofs of Theorems 1 and 2 can be found in the full version of the paper.1

6 Cryptanalysis

6.1 Attack Setting

In this section, we give an overview of the cryptographic properties of the
Chaskey permutation π, and the two-key Even-Mansour block cipher EX‖Y (m) =

1 http://eprint.iacr.org/2014/386

http://eprint.iacr.org/2014/386

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 315

π(m ⊕ X) ⊕ Y . Note even if π has structural weaknesses, Theorem 1 guarantees
that Chaskey remains secure as long as EK‖K , EK⊕K1‖K1 , and EK⊕K2‖K2 are
secure Even-Mansour block ciphers that are indistinguishable from each other.
In particular, attackers are restricted to the following setting:

Uniformly Random Key K. Every implementation of Chaskey should ensure
that the n-bit key K is chosen uniformly at random from the entire key space. In
this way, Chaskey completely avoids all attacks on EK‖K using weak keys [24],
known keys [43] or related keys [8,11,12]. In a weak-key attack, the attacker
knows that the key K is chosen from a smaller subset of the key space. The
attacker controls the value of K in a known-key attack, which in the case of the
Even-Mansour block cipher corresponds to an attack on the underlying permu-
tation π. In a related-key attack, the attacker obtains encryptions under different
keys, and will know (or even control) the relationship among these keys.

Data Complexity D Below 2n/2 Chosen Plaintexts. No encryption device
is allowed to perform close to 2n/2 block cipher calls under the same key. This
is because after about 2n/2 block cipher calls, an internal collision attack [54]
becomes likely. The same restriction applies to all iterated MAC constructions
with an n-bit state. We will now explain that the data complexity under the
same key should be restricted further to avoid attacks with a practical time
complexity.

Time Complexity T Below 2n/D Block Cipher Evaluations. Even and
Mansour [32,33] proved that any attack on their construction requires about
T block cipher evaluations and 2n/D known plaintexts. Dunkelman et al. [29]
described a key recovery attack on the Even-Mansour construction to show that
this bound is tight. As they clarify, this tight bound holds for both single-key
and two-key Even-Mansour. To avoid attacks with a practical time complexity,
the specification restricts the total number of blocks under the same key K to
at most 248. This limit assumes that performing about 280 off-line permuta-
tion evaluations is impractical for the attacker. Implementations that require a
higher security level should rekey more frequently. We note that the amortized
cost of rekeying is usually negligible, and rekeying does not require additional
cryptographic components if Chaskey is also used as a key derivation function
(KDF) [20].

No Chosen Ciphertext Attacks. The attacker cannot make any decryption
queries E−1

K‖K , E−1
K⊕K1‖K1

, or E−1
K⊕K2‖K2

, for the simple reason that Chaskey
implementations do not contain the decryption function, and the corresponding
keys are secret.

Tag Guessing Has Probability 2−|τ |. The probability of constructing a
forgery by guessing the tag is 2−|τ |. Guessing a tag correctly for Chaskey does
not make additional forgeries easier. The specification recommends that |τ | ≥ 64,

316 N. Mouha et al.

which ensures that the probability of guessing τ correctly after 232 trials is less
than one in a billion. If it is acceptable to occasionally accept an inauthentic
message as authentic (e.g. in certain voice communication applications [34]), the
use of shorter tags may be carefully considered.

Implementation Attacks. Chaskey is inherently secure against timing attacks,
as its execution time depends only on the message length |m|, and not on the
secret key K. However, a straightforward implementation of Chaskey provides
no resistance against hardware side channel attacks, nor to fault attacks. Fur-
thermore, note that if the internal state of Chaskey is recovered and |τ | = n, it
is easy to recover the secret key K from any (m, τ)-pair.

6.2 Cryptanalysis of the Block Cipher

We now proceed with our cryptanalysis results for the block ciphers EK‖K ,
EK⊕K1‖K1 , and EK⊕K2‖K2 using π as the underlying permutation.

Standard Differential Cryptanalysis. We searched for differential charac-
teristics of EK‖K that are linear in GF (2), which means the output difference of
every addition is the XOR of the two input differences. This was done by formu-
lating this problem as the search for low-weight codewords in a linear code [58].

The best found characteristics for 1, 2, . . . , 8 rounds are shown in Table 3. We
show only the input and output differences; the linearity property can be used to
find the internal differences. We calculated the characteristic probability in two
ways: by determining the probability of every addition using the Lipmaa-Moriai
formula [49] and multiplying these probabilities, and by using Leurent’s ARX
Toolkit [47,48] to obtain a more accurate estimate that takes certain dependen-
cies between operations into account.

In Table 4, we give the differences after every round of the best found dif-
ferential characteristic for eight rounds, which corresponds to the last charac-
teristic in Table 3. It is interesting to note that this characteristic has what can
be described as an hourglass structure: the differences are sparse in the middle
of the characteristics (located only in the most significant bits), and gradually
become denser towards the outer rounds. The same observation also holds for
all other characteristics of Table 3.

In Table 3, probabilities below 2−128 indicate that a characteristic exists only
with some probability. Although such characteristics are not usable in an attack,
it is important to explore them from a design point of view. Table 3 shows that
Even-Mansour block ciphers based on π have a very large security margin against
even very advanced variants of differential cryptanalysis attacks, especially as
the data complexity in any attack on Chaskey is limited to 264.

Note that it is possible that better (possibly non-linear) characteristics exist,
or that the probability of a given characteristic is lower than the probability
of the corresponding differential. However, we expect that these effects will
not be significant enough to invalidate our security claim against differential
cryptanalysis.

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 317

Table 3. Best found differential characteristics for 1, 2, . . . , 8 rounds of the permutation
π. Only the input and output differences are shown. Each of these characteristics is
linear, this property can be used to determine the internal differences. We calculate
the characteristic probability in two ways: assuming independence of every operation
and using the Lipmaa-Moriai formula, as well as by Leurent’s ARX toolkit for a more
refined estimate.

Rounds Δ⊕
in(v0, v1, v2, v3) → Δ⊕

out(v0, v1, v2, v3) Lipmaa-Moriai Leurent

1
(00000000, 00000000, 80000000, 00000000)

1 1→ (80000000, 80000000, 80000000, 80001000)

2
(00008400, 00000400, 00000000, 00000000)

2−4 2−4

→ (80008080, 00000040, 00000000, 80109080)

3
(00000008, 00000008, 00008181, 00000081)

2−16 2−16

→ (80109080, 80009810, 80009010, 92008082)

4
(C0240100, 44202100, 0C200008, 0C200000)

2−37 2−37

→ (10409000, 00547800, 00101840, 12408210)

5
(C8226120, 4C224101, 084C6908, 0C046900)

2−73 2−73.1

→ (E8001014, 08912214, 00802210, EA120916)

6
(1AC8DA46, 73C0D20A, 9282B2A3, 02947AA1)

2−133 2−132.8

→ (6A00109B, 50B7698C, 12866000, 68037999)

7
(8C74CC70, 7F3690AE, 5403A321, D1852232)

2−208 2−205.6

→ (DBCD9AC0, 293EC4DB, 08036B1F, B195C08B)

8
(90EA132B, 88490EDB, 45854D95, E6A41996)

2−293 2−289.9

→ (726DC8C0, 097D6D14, 24592382, 2C2329AF)

Truncated Differential Cryptanalysis. We used the same techniques that
were applied to Salsa20 [4] to find truncated differentials for EK‖K . More specif-
ically, we introduced differences in the most significant bits of the inputs, and
searched for statistical biases in the output bits. We found such biases for up to
four rounds of the block cipher. For example, if in the plaintext Δ⊕v1[31] and
Δ⊕v2[31] are both 1, then we found experimentally that Δ⊕v2[16] after four
rounds has a bias of about 2−12.48 towards 0. We tried out all combinations of
input differences in the most significant bits of the four input words, but did not
find biases in any of the output bit differences after five rounds or more, when
experimenting with sets of 230 samples.

Meet-in-the-Middle Attacks. The idea behind a meet-in-the-middle attack
is to separate the mathematical equations that describe a block cipher into two
or more groups, in such a way that some variables do not appear in at least one
of the groups of equations. After three rounds of π, full diffusion occurs: every
input bit affects every output bit. Similarly, π−1 also reaches full diffusion after
three rounds. As eight rounds of π consist of almost three full diffusions, meet-

318 N. Mouha et al.

Table 4. Best found linear differential characteristic for 8 rounds of π. This is the
characteristic given in the last row of Table 3. If we assume independence of every
operation and use the Lipmaa-Moriai formula for every addition, we find a probability
of 2−293. Leurent’s ARX toolkit can be used to refine this probability to 2−289.9. Note
the hourglass structure: differences are sparse in the middle, and gradually become
denser towards the outer rounds.

Roundi Δ⊕v0 Δ⊕v1 Δ⊕v2 Δ⊕v3
Pr[Roundi−1

→ Roundi]

0 90EA132B 88490EDB 45854D95 E6A41996

1 1AC8DA46 73C0D20A B2A39282 02947AA1 2−76

2 0C200008 08200008 81048100 81000085 2−55

3 00000000 00000000 00008080 00800000 2−15

4 00000000 80000000 80000000 00000000 2−1

5 00000000 80008850 80008010 10000000 2−4

6 18400010 18C02200 10010240 08421212 2−19

7 6A00109B 50B7698C 12866000 68037999 2−39

8 726DC8C0 097D6D14 24592382 2C2329AF 2−84

in-the-middle attacks should not be applicable to Even-Mansour block ciphers
based on π.

Note that the attacker is not allowed to perform chosen-ciphertext attacks,
which limits the power of advanced meet-in-the-middle attacks, using the splice-
and-cut technique that was introduced for hash function cryptanalysis [2,59] and
subsequently applied to block ciphers as well [18,62].

A further extension of splice-and-cut meet-in-the-middle attacks are biclique
attacks [17,42]. Most applications of bicliques offer only slight improvements
over brute force attacks [57]. Although brute-force-like attacks provide insight
into the security of ciphers in the absence of other shortcut attacks, they do not
affect the practical security of the cipher.

Rotational Cryptanalysis. A randomly chosen key K ensures that the input
of the permutation π when used in an Even-Mansour block cipher will (with
very high probability) have an asymmetrical state, thereby preventing rotational
attacks [41].

Slide Attacks. Because every round of π is identical, slide attacks [13] are
applicable to π. However, in a slide attack, about 2n/2 plaintext-ciphertext pairs
are required before a slid pair is found. Therefore, slide attacks have a data
complexity that goes beyond our security bound, and do not pose a threat to π,
nor to Even-Mansour block ciphers based on π.

Fixed Points. Because π contains only the modular addition, XOR, and bitwise
rotation operations, the permutation has the following fixed point: π(0n) = 0n.

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 319

Fixed-points are a type of differentiability attack [50]. When π is used inside
the EK‖K block cipher, this fixed point corresponds to EK‖K(K) = K. If K is
chosen uniformly at random, this relationship only holds with probability 2−n

for any plaintext chosen by the attacker. Similar observations hold for EK⊕K1‖K1

and EK⊕K2‖K2 . Although it may seem to be a bold move from a design point
of view to allow that E02n(0n) = 0n, we note that this property also holds for
the stream cipher Trivium [25,27] and the block cipher KATAN [26]. However,
no attacks have been found that break the full version of these ciphers.

Dependency Between Key and Subkeys. As shown by Algorithm 1, the
subkeys K1 and K2 are generated from the key K as K1 = xK and K2 = x2K1.
Theorem 1 requires that an attacker cannot distinguish EK‖K , E(x+1)K‖xK ,
and E(x2+1)K‖x2K from each other. As shown by Theorem 2, this assumption
holds if the underlying permutation π is an ideal permutation. We now argue
that even if the permutation π of Sect. 3.2 is used instead, an attacker cannot
distinguish these three block ciphers. Because of the rotational relations between
the key K and the subkeys K1 and K2, rotational cryptanalysis [41] seems to
be a promising technique. However, the fact that (x + 1)K and xK, as well as
(x2 + 1)K and x2K both differ by K, seems to effectively preclude rotational
cryptanalysis to distinguish E(x+1)K‖xK or E(x2+1)K‖x2K from EK‖K , or from
each other. Furthermore, the security proof assumes that individual queries to
the three aforementioned block ciphers are permitted, whereas an attacker can
in practice only observe τ .

Other Attacks. We do not consider zero-sum attacks [5] and cube attacks [28]
to be a threat for ARX ciphers, because the addition operation ensures that
for every output bit, the polynomial expression in GF (2) representing this bit
in terms of its inputs will be of sufficiently high degree. Moreover, rebound
attacks [51] are not known to be relevant to secret-key algorithms.

7 Conclusion

Chaskey is a permutation-based MAC algorithm, with at its core an ARX-based
permutation π based on SipHash. Alternatively, Chaskey can also be interpreted
as a block-cipher-based MAC algorithm based on an underlying Even-Mansour
block cipher.

Inspired by the block-cipher-based CMAC, Chaskey avoids padding for mes-
sages of an integer number of blocks. Its subkey generation is even more efficient
than CMAC, as it does not require any block cipher calls.

We proved that Chaskey is secure, based on the 3PRP-indistinguishability of
three underlying Even-Mansour block ciphers. Assuming that the permutation
π used in these Even-Mansour block ciphers is ideal, we proved that Chaskey is
secure up to about D = 2n/2 chosen plaintexts and about T = 2n/D queries to
π or π−1.

320 N. Mouha et al.

We remark, however, that the efficient permutation π designed for Chaskey
shows properties that allow it to be distinguished from an ideal permutation.
For example, it is easy to find a fixed point: π(0n) = 0n. Fortunately, this
observation does not extend to an attack when this permutation is used inside
an Even-Mansour block cipher, as finding this fixed point implies knowledge of
the secret key.

Therefore, we explored the distinguishability of the three Even-Mansour
block ciphers from a cryptanalysis point of view. After investigating a wide
variety of currently known cryptanalysis attacks, we found no shortcut attacks
resulting from using our proposed eight-round permutation π instead of an ideal
permutation. We recommend, however, that implementers also support a 16-
round Chaskey-LTS as a fallback in case of cryptanalytical breakthroughs.

Our benchmarks showed that Chaskey performs very well on ARM Cortex-M
microcontrollers. We measured that our straightforward Chaskey implementa-
tions are between 7 to 15 times faster than AES-128-CMAC in speed-optimized
implementations, and at about 10 times smaller in area optimized implemen-
tations. Because of the roughly linear relation between cycle count and energy
consumption, Chaskey is therefore much more energy efficient as well. Although
32-bit microcontrollers were our main target platform, Chaskey is also expected
to perform well on 8-bit and 16-bit platforms.

References

1. Ambler, E.: Computer Data Authentication. FIPS PUB 113, National Institute of
Standards and Technology (NIST), May 1985. http://csrc.nist.gov/publications/
fips/fips113/fips113.html

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

3. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012)

4. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008)

5. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi. Presented at the Rump Session of
Cryptographic Hardware and Embedded Systems - CHES 2009 (2009)

6. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz [44], pp. 1–15

7. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994)

8. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003)

9. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H., [36], pp. 32–49

http://csrc.nist.gov/publications/fips/fips113/fips113.html
http://csrc.nist.gov/publications/fips/fips113/fips113.html

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 321

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion. Submission to the NIST SHA-3 Competition (Round 3) (2011)

11. Biham, E.: New types of cryptanalytic attacks using related keys (Extended
abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–
409. Springer, Heidelberg (1994)

12. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology
7(4), 229–246 (1994)

13. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

14. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216–233. Springer, Heidelberg (1999)

15. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

16. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. J. Cryptology 18(2), 111–131 (2005)

17. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

18. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

19. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

20. Chen, L.: Recommendation for key derivation using pseudorandom functions
(Revised). NIST Special Publication 800–108, National Institute of Standards and
Technology (NIST), October 2009. http://csrc.nist.gov/publications/nistpubs/
800-108/sp800-108.pdf

21. de Clercq, R., Uhsadel, L., Van Herrewege, A., Verbauwhede, I.: Ultra low-power
implementation of ECC on the ARM Cortex-M0+. In: 51th Design Automation
Conference (DAC 2014), pp. 1–6. IEEE, San Francisco (2014)

22. Daemen, J., Rijmen, V.: A new MAC construction ALRED and a specific instance
ALPHA-MAC. In: Gilbert, H., Handschuh, H., [36], pp. 1–17

23. Daemen, J., Rijmen, V.: The Pelican MAC function. IACR Cryptology ePrint
Archive, Report 2005/88 (2005)

24. Davies, D.W.: Some regular properties of the ‘Data Encryption Standard’ algo-
rithm. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO ’82, pp. 89–96.
Plenum Press, New York (1982)

25. De Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

26. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

27. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

28. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

322 N. Mouha et al.

29. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

30. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST special publication 800-38B, National Institute of
Standards and Technology (NIST), May 2005. http://csrc.nist.gov/publications/
nistpubs/800-38B/SP 800-38B.pdf

31. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Galois/
Counter Mode (GCM) and GMAC. NIST special publication 800-38D, National
Institute of Standards and Technology (NIST), November 2007. http://csrc.nist.
gov/publications/nistpubs/800-38D/SP-800-38D.pdf

32. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

33. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–162 (1997)

34. Ferguson, N.: Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process, May 2005

35. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-
3 Competition (Round 3) (2010). http://www.skein-hash.info/sites/default/files/
skein1.3.pdf

36. Gilbert, H., Handschuh, H. (eds.): FSE 2005. LNCS, vol. 3557. Springer, Heidelberg
(2005)

37. ISO/IEC: Information Technology: Information Technology - Security Techniques -
Message Authentication Codes (MACs) - Part 1: Mechanisms Using a Block
Cipher. ISO/IEC 9797–1:2011 (2011)

38. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

39. Iwata, T., Kurosawa, K.: Stronger security bounds for OMAC, TMAC, and XCBC.
In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 402–
415. Springer, Heidelberg (2003)

40. Joux, A.: Authentication Failures in NIST version of GCM. Comments submitted
to NIST Modes of Operation Process, June 2006

41. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

42. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

43. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

44. Koblitz, N. (ed.): CRYPTO 1996. LNCS, vol. 1109. Springer, Heidelberg (1996)
45. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz [44], pp. 104–113
46. Krovetz, T.: Message authentication on 64-bit architectures. In: Biham, E., Youssef,

A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 327–341. Springer, Heidelberg (2007)
47. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X.,

Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Hei-
delberg (2012)

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers 323

48. Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 241–258. Springer, Heidelberg (2013)

49. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

50. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

51. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

52. Mozans, H.J.: Along the Andes and down the Amazon, vol. 2. D. Appleton and
Company, New York (1911)

53. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220, November 2007. http://csrc.nist.
gov/groups/ST/hash/documents/FR Notice Nov07.pdf

54. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

55. RealTimeLogic: SHARKSSL v2.3.3 Crypto Library Benchmarks with ARM
Cortex-M0@24MHz + ARM GCC 4.5.1 (2014). http://realtimelogic.com/
products/sharkssl/Cortex-M0/

56. RealTimeLogic: SHARKSSL/RAYCRYPTO v2.4 Crypto Library Benchmarks
with ARM Cortex-M3@50MHz + IAR EWARM 6.40 (2014). http://realtimelogic.
com/products/sharkssl/Cortex-M3/

57. Rechberger, C.: On bruteforce-like cryptanalysis: new meet-in-the-middle attacks
in symmetric cryptanalysis. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 33–36. Springer, Heidelberg (2013)

58. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

59. Sasaki, Y., Aoki, K.: Preimage attacks on step-reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer, Hei-
delberg (2008)

60. Turner, J.M.: The Keyed-Hash Message Authentication Code (HMAC). FIPS PUB
198–1, National Institute of Standards and Technology (NIST), July 2008. http://
csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf

61. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

62. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-
the-middle cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://realtimelogic.com/products/sharkssl/Cortex-M0/
http://realtimelogic.com/products/sharkssl/Cortex-M0/
http://realtimelogic.com/products/sharkssl/Cortex-M3/
http://realtimelogic.com/products/sharkssl/Cortex-M3/
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

Fast Point Multiplication Algorithms
for Binary Elliptic Curves

with and without Precomputation

Thomaz Oliveira1(B), Diego F. Aranha2, Julio López2,
and Francisco Rodŕıguez-Henŕıquez1

1 Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico
thomaz.figueiredo@gmail.com

2 Institute of Computing, University of Campinas, Campinas, Brazil

Abstract. In this paper we introduce new methods for computing
constant-time variable-base point multiplications over the Galbraith-Lin-
Scott (GLS) and the Koblitz families of elliptic curves. Using a left-to-right
double-and-add and a right-to-left halve-and-add Montgomery ladder over
a GLS curve, we present some of the fastest timings yet reported in the
literature for point multiplication. In addition, we combine these two pro-
cedures to compute a multi-core protected scalar multiplication. Further-
more, we designed a novel regular τ -adic scalar expansion for Koblitz
curves. As a result, using the regular recoding approach, we set the speed
record for a single-core constant-time point multiplication on standardized
binary elliptic curves at the 128-bit security level.

Keywords: Binary elliptic curves · Scalar multiplication · Software
implementation

1 Introduction

From a cryptographic perspective, one of the most interesting consequences of
the Snowden revelations is the increased awareness about the importance of
implementing security protocols that offer the Perfect Forward Secrecy (PFS)
property. The PFS property guarantees that in a given protocol, none of its past
short term session keys can be derived from the long term server’s private key.
One tangible example of this situation is the recent announcement by the Inter-
net Engineering Task Force that the Transport Layer Security (TLS) protocol
version 1.3, will no longer include cipher suites based on RSA key transport prim-
itives [34]. Instead, the client-server secret key establishment will be performed
via either the Ephemeral Diffie-Hellman or the Elliptic Curve Ephemeral Diffie-
Hellman (ECDHE) methods. Because of the significant performance advantage
of the latter over the former, it is anticipated that in the years to come, ECDHE
will be the favorite choice for establishing a TLS shared secret.

J. López — The author was supported in part by the Intel Labs University Research
Office.

c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 324–344, 2014.
DOI: 10.1007/978-3-319-13051-4 20

Fast Point Multiplication Algorithms for Binary Elliptic Curves 325

The specifications of all the TLS protocol versions [8–10] include support
for prime and binary field elliptic curve cryptographic primitives. In the case
of binary elliptic curves, the TLS protocol supports a selection of several stan-
dardized random curves as well as Koblitz curves [23] at the 80-, 128-, 192- and
256-bit security levels. Koblitz curves allow performance improvements, due to
the availability of the Frobenius automorphism τ . Also, their generation is inher-
ently rigid (in the SafeCurves sense [2]), where the only degree of freedom in the
curve generation process consists in choosing a suitable prime degree extension
m that produces a curve with almost-prime order. This severely limits the possi-
bility of “1-in-a-million attacks” [35] aiming to reach a weak curve after testing
many random seeds.

Point multiplication is the single most important operation of (hyper) elliptic
curve cryptography, for that reason, considerable effort has been directed towards
achieving fast and compact software/hardware implementations of it. A major
result that has influenced the latest implementations was found in 2009, when
Galbraith, Lin and Scott (GLS), building on a previous technique introduced by
Gallant, Lambert and Vanstone (GLV) [14], constructed efficient endomorphisms
for a class of elliptic curves defined over the quadratic field Fq2 , where q is a prime
number [13]. Taking advantage of this result, the authors of [13] performed a
128-bit security level point multiplication that took 326,000 clock cycles on a
64-bit processor. Since then, a steady stream of algorithmic and technological
advances has translated into a significant reduction in the number of clock cycles
required to compute a (hyper) elliptic curve constant-time variable-base-point
multiplication at the 128-bit security level [1,4,5,11,16,24,38].

The authors of [11,24] targeted a twisted Edwards GLV-GLS curve defined
over Fp2 , with p = 2127 − 5997. That curve is equipped with a degree-4 endo-
morphism allowing a fast point multiplication computation that required just
92,000 clock cycles on an Ivy Bridge processor [11]. Bos et al. [5] and Bernstein
et al. [1], presented an efficient point multiplication on the Kummer surface asso-
ciated with the Jacobian of a genus 2 curve defined over a field generated by the
prime p = 2127 − 1. Each iteration of the Montgomery ladder presented in [1]
costs roughly 25 field multiplications, which implemented on a Haswell processor
permits to compute a point multiplication in 72,000 clock cycles.

In 2014, Oliveira et al. introduced the λ-projective coordinate system that
leads to faster binary field elliptic curve arithmetic [31,32]. The authors applied
that coordinate system into a binary GLS curve that admits a degree-2 endomor-
phism and a fast field arithmetic associated with the quadratic field extension of
the binary field F2127 . When implemented on a Haswell processor, this approach
permits to perform one constant-time point multiplication computation in just
60,000 clock cycles.

Contributions of This Paper. This work presents new methods aimed to per-
form fast constant-time variable-base-point multiplication computation for both
random and Koblitz binary elliptic curves of the form y2 + xy = x3 + ax2 + b.
In the case of random binary elliptic curves, we introduce a novel right-to-left

326 T. Oliveira et al.

variant of the classical Montgomery-López-Dahab ladder algorithm presented
in [25], which efficiently adapted the original ladder idea introduced by Peter
Montgomery in his 1987 landmark paper [26]. The new variant presented in this
work does not require point doublings, but instead, it uses the efficient point
halving operation available on binary elliptic curves. In contrast with the algo-
rithm presented in [25] that does not admit the benefit of precomputed tables,
our proposed variant can take advantage of this technique, a feature that could
be proved valuable for the fixed-base-point multiplication scenario. Moreover, we
show that our new right-to-left Montgomery ladder formulation can be nicely
combined with the classical ladder to attain a high parallel acceleration factor
for a constant-time multi-core implementation of the point multiplication oper-
ation. As a second contribution, we present a procedure that adapts the regular
scalar recoding of [21] to the task of producing a regular τ -NAF scalar recoding
for Koblitz curves. This approach has faster precomputation than related recod-
ings [30] and allows us to achieve a speed record for single-core constant-time
point multiplication on standardized binary elliptic curves at the 128-bit security
level.

The remainder of this paper is organized as follows. In Sect. 2 we give a short
description of the GLS and Koblitz curves, their arithmetic and their security.
In Sect. 3 we present new variants of the Montgomery ladder for binary elliptic
curves. Then, in Sect. 4, we introduce a regular τ -NAF recoding amenable for
producing protected point multiplication implementations on Koblitz curves. In
Sect. 5, we present our experimental implementation results and finally, we draw
our conclusions in Sect. 6.

2 Mathematical Background

2.1 Quadratic Field Arithmetic

A binary extension field Fq, q = 2m, can be constructed by taking an degree-m
polynomial f(x) ∈ F2[x] irreducible over F2, where the field elements in Fq are
the set of binary polynomials of degree less than m. Quadratic extensions of a
binary extension field can be built using a degree two monic polynomial g(u) ∈
Fq[u] irreducible over Fq. In this case, the field Fq2 is isomorphic to Fq[u]/(g(u))
and its elements can be represented as a0 + a1u, with a0, a1 ∈ Fq. Operations in
the quadratic extension are performed coefficient-wise. For instance, the multipli-
cation of two elements a, b ∈ Fq2 is computed at the cost of three multiplications
in the base field using the customary Karatsuba formulation,

a · b = (a0 + a1u) · (b0 + b1u) (1)
= (a0b0 + a1b1) + (a0b0 + (a0 + a1) · (b0 + b1))u,

with a0, a1, b0, b1 ∈ Fq.
In [31,32], the authors developed an efficient software library for the field

F2m and its quadratic extension F22m , with m = 127, generated by means of the
irreducible trinomials f(x) = x127 + x63 + 1 and g(u) = u2 + u + 1, respectively.

Fast Point Multiplication Algorithms for Binary Elliptic Curves 327

The computational cost of the field arithmetic in the quadratic extension field
gets significantly reduced by using that towering approach. To be more concrete,
let M and m denote the cost of one field multiplication over Fq2 and Fq, respec-
tively. The execution of the arithmetic library of [32] on the Sandy Bridge and
Haswell microprocessors yields a ratio M/m of just 2.23 and 1.51, respectively.
These experimental results are considerably better than the theoretical ratio
M/m = 3 that one could expect from the Karatsuba formulation of Eq. (1). The
aforementioned performance speedup can be explained from the fact that the
towering field approach permits a much better usage of the processor’s pipelined
execution unit, which potentially can improve the speed of one 64-bit carry-less
multiplication1 from 7 clock cycles to the maximum achievable throughput of
just 2 clock cycles [12].

2.2 GLS Binary Elliptic Curves

Let Ea,b(Fq2) denote the additive abelian group formed by the point at infinity
O and the set of affine points P = (x, y) with x, y ∈ Fq2 that satisfy the ordinary
binary elliptic curve equation given as,

E : y2 + xy = x3 + ax2 + b, (2)

defined over Fq2=22m , with a ∈ Fq2 and b ∈ F
∗
q2 . Let #Ea,b(Fq2) denote the size

of the group Ea,b(Fq2), and let us assume that Ea,b(Fq2) includes a subgroup
〈P 〉 of prime order r.

The point multiplication operation, denoted by Q = kP , corresponds to
adding P to itself k − 1 times, with k ∈ [0, r − 1]. The average cost of computing
kP by a random n-bit scalar k using the traditional double-and-add method is
about nD + n

2A, where D and A are the cost of doubling and adding a point,
respectively. If the elliptic curve E of Eq. (2) is equipped with a non-trivial
efficiently computable endomorphism ψ such that ψ(P) = δP ∈ 〈P 〉, for some
δ ∈ [2, r − 2]. Then the point multiplication can be computed à la GLV as,

Q = kP = k1P + k2ψ(P) = k1P + k2 · δP,

where the subscalars |k1|, |k2| ≈ n/2, can be found by solving a closest vector
problem in a lattice [13]. Having split the scalar k into two parts, the computation
of kP = k1P + k2ψ(P) can be performed by applying simultaneous multiple
point multiplication techniques [18] that translates into a saving of half of the
doublings required by the execution of a single point multiplication kP .

Inspired by the GLS technique of [13], Hankerson, Karabina and Menezes
presented in [17] a family of binary GLS curves defined over the field Fq2 , with
q = 2m, which admits a two-dimensional endomorphism. This endomorphism can
be computed at the inexpensive cost of just three additions in Fq. Furthermore,
by carefully choosing the elliptic curve parameters a, b of Eq. (2), the authors
of [17] showed that it is possible to find members of that family of GLS curves
with an almost-prime group order of the form #Ea,b(Fq2) = hr, with h = 2 and
where r is a (2m − 1)-bit prime number.
1 Corresponding to the Intel’s PCLMULQDQ instruction.

328 T. Oliveira et al.

Security of GLS Curves. Given a point Q ∈ 〈P 〉, the Elliptic Curve Discrete
Logarithm Problem (ECDLP) consists of finding the unique integer k ∈ [0, r−1]
such that Q = kP. To the best of our knowledge, the most powerful attack
for solving the ECDLP on binary elliptic curves was presented in [33] (see
also [20,36]), with an associated computational complexity of O(2c·m2/3 log m),
where c < 2, and where m is a prime number. This is worse than generic algo-
rithms with time complexity O(2m/2) for all prime field extensions m less than
N = 2000, a bound that is well above the range used for performing elliptic
curve cryptography [33]. On the other hand, since the elliptic curve of Eq. (2) is
defined over a quadratic extension of the field Fq, the generalized Gaudry-Hess-
Smart (gGHS) attack [15,19] to solve the ECDLP on the curve E, applies. To
prevent this attack, it suffices to verify that the constant b of Ea,b(Fq2) is not
weak. Nevertheless, the probability that a randomly selected b ∈ F

∗
q is a weak

parameter, is negligibly small [17].

2.3 Koblitz Curves

A Koblitz curve, also known as an anomalous binary curve or subfield curve, is
defined as the set of affine points P = (x, y) ∈ Fq × Fq, q = 2m, that satisfy
the Weierstraß equation Ea : y2 + xy = x3 + ax2 + 1, a ∈ {0, 1}, together with
a point at infinity denoted by O. In λ-affine coordinates, where the points are
represented as P = (x, λ = x+ y

x), x �= 0, the λ-affine form of the above equation
becomes [32], (λ2 + λ + a)x2 = x4 + 1. A Koblitz curve forms an abelian group
denoted as Ea(F2m) of order 2(2 − a)r, for an odd prime r, where its group law
is defined by the point addition operation.

Frobenius Map. Since their introduction in [23], Koblitz curves were exten-
sively studied for their additional structure that allows, in principle, a perfor-
mance speedup in the point multiplication computation. The Frobenius map
τ : Ea(Fq) → Ea(Fq) defined by τ(O) = O, τ(x, y) = (x2, y2), is a curve auto-
morphism satisfying (τ2 + 2)P = μτ(P) for μ = (−1)1−a and all P ∈ Ea(Fq).
By solving the equation τ2 + 2 = μτ , the Frobenius map can be seen as the
complex number τ = μ+

√−7
2 . Notice that in λ-coordinates the Frobenius map

action remains the same, because, τ(x, λ) = (x2, λ2) = (x2, x2 + y2

x2), which cor-
responds to the λ-representation of τ(x, y). Let Z[τ] be the ring of polynomials
in τ with coefficients in Z. Since the Frobenius map is highly efficient, as long as
it is possible to convert an integer scalar k to its τ -representation k =

∑l−1
i=0 uiτ

i,
its action can be exploited in a point multiplication computation by adding mul-
tiples uiτ

i(P), with uiτ
i ∈ Z[τ]. Solinas [37] proposed exactly that, namely, a

τ -adic scalar recoding analogous to the signed digit scalar Non-Adjacent Form
representation.

Security of Koblitz Curves. From the security point of view, it has been
argued that the availability of additional structure in the form of endomorphisms
can be a potential threat to the hardness of elliptic curve discrete logarithms [3],

Fast Point Multiplication Algorithms for Binary Elliptic Curves 329

but limitations observed in approaches based on isogeny walks is evidence con-
trariwise [22]. Furthermore, the generation of Koblitz curves satisfy by defini-
tion the rigidity property. Constant-time compact implementations for Koblitz
curves are also easily obtained by specializing the Montgomery-López-Dahab
ladder algorithm [25] for b = 1, although we show below that this is not the
most efficient constant-time implementation strategy possible. Another practi-
cal advantage is the adoption of Koblitz curves by several standards bodies [27],
which guarantee interoperability and availability of implementations in many
hardware and software platforms.

3 New Montgomery Ladder Variants

This Section presents algorithms for computing the scalar multiplication through
the Montgomery ladder method. Here, we let P be a point in a binary elliptic
curve of prime order r > 2 and k a scalar of bit length n. Our objective is to
compute Q = kP .

Algorithm 1. Left-to-right Montgomery ladder [26]
Input: P = (x, y), k = (1, kn−2, . . . , k1, k0)
Output: Q = kP
1: R0 ← P ; R1 ← 2P ;
2: for i = n − 2 downto 0 do
3: if ki = 1 then
4: R0 ← R0 + R1; R1 ← 2R1

5: else
6: R1 ← R0 + R1; R0 ← 2R0

7: end if
8: end for
9: return Q = R0

Algorithm 1 describes the classical left-to-right Montgomery ladder approach
for point multiplication [26], whose key algorithmic idea is based on the following
observation. Given a base point P and two input points R0 and R1, such that
their difference, R0 − R1 = P, is known, the x-coordinates of the points, 2R0,
2R1 and R0 + R1, are fully determined by the x-coordinates of P, R0 and R1.

More than one decade after its original proposal in [26], López and Dahab
presented in [25] an optimized version of the Montgomery ladder, which was
specifically crafted for the efficient computation of point multiplication on ordi-
nary binary elliptic curves. In this scenario, compact formulae for the point
addition and point doubling operations of Algorithm1 can be derived from the
following result.

330 T. Oliveira et al.

Lemma 1 [25]. Let P = (x, y), R1 = (x1, y1), and R0 = (x0, y0) be elliptic
curve points, and assume that R1 − R0 = P, and x0 �= 0. Then, the x-coordinate
of the point (R0 +R1), x3, can be computed in terms of x0, x1, and x as follows,

x3 =

{
x + x0·x1

(x0+x1)
2 R0 �= ±R1

x2
0 + b

x2
0

R0 = R1

(3)

Moreover, the y-coordinate of R0 can be expressed in terms of P, and the x-
coordinates of R0, R1 as,

y0 = x−1(x0 + x)
[
(x0 + x)(x1 + x) + x2 + y

]
+ y (4)

Let us denote the projective representation of the points R0, R1 and R0+R1,
without considering their y-coordinates as, R0 = (X0,−, Z0), R1 = (X1,−, Z1)
and R0 + R1 = (X3,−, Z3). Then, for the case R0 = R1, Lemma 1 implies,{

X3 = X4
0 + b · Z4

0

Z3 = X2
0 · Z2

0

(5)

Furthermore, for the case R0 �= ±R1, one has that,{
Z3 = (X0 · Z1 + X1 · Z0)

2

X3 = x · Z3 + (X0 · Z1) · (X1 · Z0)
(6)

From Eqs. (5) and (6) it follows that the computational cost of each lad-
der step in Algorithm 1 is of 5 multiplications, 1 multiplication by the curve
b-constant, 4 or 5 squarings2 and 3 additions over the binary extension field
where the elliptic curve has been defined.

In the rest of this Section, we will present a novel right-to-left formulation of
the classical Montgomery ladder.

3.1 Right-to-Left Double-and-Add Montgomery-LD Ladder

Algorithm 2 presents a right-to-left version of the classical Montgomery ladder
procedure. At the end of the i-th iteration, the points in the variables R0, R1

are, R0 = 2i+1P, and R1 = �P + P
2 , where � is the integer represented by the

i rightmost bits of the scalar k. The variable R2 maintains the relationship,
R2 = R0 − R1 from the initialization (step 1), until the execution of the last
iteration of the main loop (steps 2–9). This comes from the fact that at each
iteration, if ki = 1, then the difference R0 −R1 remains unchanged. If otherwise,
ki = 0, then both R2 and R0 are updated with their respective original values
plus R0, which ensures that R2 = R0 − R1, still holds. Notice however that,
although the difference R2 = R0 − R1, is known, it may vary throughout the
iterations.
2 Either b = 1 or

√
b is precomputed. Formula (5) can also be computed as Z3 =

(X0 · Z0)
2 and X3 = (X2

0 +
√

b · Z2
0)2.

Fast Point Multiplication Algorithms for Binary Elliptic Curves 331

Algorithm 2. Montgomery-LD double-and-add scalar multiplication (right-to-
left)
Input: P = (x, y), k = (kn−1, kn−2, . . . , k1, k0)
Output: Q = kP
1: R0 ← P ; R1 ← P

2
; R2 ← P

2
= (R0 − R1);

2: for i = 0 to n − 1 do
3: if ki = 1 then
4: R1 ← R1 + R0;
5: else
6: R2 ← R2 + R0;
7: end if
8: R0 ← 2R0;
9: end for

10: return Q = R1 − P
2

As stated in Lemma 1, the point additions of steps 4 and 6 in Algorithm2
can be computed using the x-coordinates of the points R0, R1 and R2, according
to the following analysis. If ki = 1, then the x-coordinate of R0+R1 is a function
of the x-coordinates of R0, R1 and R2, because R2 = R0 − R1. If ki = 0, the
x-coordinate of R2 + R0 is a function of the x-coordinates of the points R0,
R1 and R2, because R0 − R2 = R0 − (R0 − R1) = R1. Hence, considering
the projective representation of the points R0 = (X0,−, Z0), R1 = (X1,−, Z1),
R2 = (X2,−, Z2) and R0 + R1 = (X3,−, Z3), where all the y-coordinates are
ignored, and assuming R0 �= ±R1, we have,⎧⎪⎨

⎪⎩
T = (X0 · Z1 + X1 · Z0)2

Z3 = Z2 · T

X3 = X2 · T + Z2 · (X0 · Z1) · (X1 · Z0)
(7)

From Eqs. (5) and (7), it follows that the computational cost of each ladder step
in Algorithm 2 is of 7 multiplications, 1 multiplication by the curve b-constant,
4 or 5 squarings and 3 additions over the binary field where the elliptic curve
lies.

Although conceptually simple, the above method has several algorithmic and
practical shortcomings. The most important one is the difficulty to recover, at
the end of the algorithm, the y-coordinate of R1, as in none of the available points
(R0, R1 and R2) the corresponding y-coordinate is known. This may force the
decision to use complete projective formulae for the point addition and doubling
operations of steps 4, 6 and 8, which would be costly. Finally, we stress that to
guarantee that the case R0 = R2 will never occur, it is sufficient to initialize R1

with P
2 , and perform an affine subtraction at the end of the main loop (step 10).

In the following subsection we present a halve-and-add right-to-left Mont-
gomery ladder algorithm that alleviates the above shortcomings and still achieves
a competitive performance.

332 T. Oliveira et al.

3.2 Right-to-Left Halve-and-Add Montgomery-LD Ladder

Algorithm 3 presents a right-to-left Montgomery ladder procedure similar to
Algorithm 2, but in this case, all the point doubling operations are substituted
with point halvings. A left-to-right approach using halve-and-add with Mont-
gomery ladder was published in [29], however, this method requires one inversion
per iteration, which degrades its efficiency due to the cost of this operation.

Algorithm 3. Montgomery-López-Dahab halve-and-add (right-to-left)
Input: P = (x, y), k′ = (k′

n−1, k
′
n−2, . . . , k

′
1, k

′
0)

Output: Q = kP
1: Precomputation: x(Pi), where Pi = P

2i
, for i = 0, . . . , n

2: R1 ← Pn; R2 ← Pn;
3: for i = 0 to n − 1 do
4: R0 ← Pn−1−i;
5: if k′

i = 1 then
6: R1 ← R0 + R1;
7: else
8: R2 ← R0 + R2;
9: end if

10: end for
11: R1 ← R1 − Pn

12: return R1

As in any halve-and-add procedure, an initial step before performing the
actual computation consists of processing the scalar k such that it can be equiv-
alently represented with negative powers of two. To this end, one first computes
k′ ≡ 2n−1k mod r, with n = |r|. This implies that, k ≡ ∑n

i=1 k′
n−i/2i−1 mod r

and therefore, kP =
∑n

i=1 k′
n−i(

1
2i−1 P). Then, in the first step of Algorithm3, n

halvings of the base point P are computed. We stress that all the precomputed
points Pi = P

2i , for i = 0, . . . , n can be stored in affine coordinates. In fact, just
the x-coordinate of each one of the above n points must be stored (with the sole
exception of the point Pn, whose y-coordinate is also computed and stored).

As in the preceding algorithm notice that at the end of the i-th iteration,
the points in the variables R0, R1 are, R0 = P

2n−i−1 , and R1 = �P + Pn, where

in this case � is the integer represented as, � =
i∑

j=0

k′
j

2n−j mod r. Notice also that

the variable R2 maintains the relationship, R2 = R0 − R1, until the execution
of the last iteration of the main loop (steps 3–10). This comes from the fact
that at each iteration, if ki = 1, then the difference R0 −R1 remains unchanged.
If otherwise, ki = 0, then both R2 and R0 are updated with their respective
original values plus R0, which ensures that R2 = R0 − R1, still holds.

Since at every iteration, the values of the points R0, R1 and R0 − R1, are
all known, the compact point addition formula (7) can be used. In practice, this
is also possible because the y-coordinate of the output point kP can be readily

Fast Point Multiplication Algorithms for Binary Elliptic Curves 333

recovered using Eq. 4, along with the point 2P . Moreover, since the points in the
precomputed table were generated using affine coordinates, it turns out that the
z-coordinate of the point R0 is always 1 for all the iterations of the main loop.
This simplifies (7) as,⎧⎪⎨

⎪⎩
T = (X0 · Z1 + X1)2

Z3 = Z2 · T

X3 = X2 · T + Z2 · (X0 · Z1) · (X1)
(8)

Hence, the computational cost per iteration of Algorithm3 is of 5 multiplications,
1 squaring, 2 additions and one point halving over the binary field where the
elliptic curve lies.

GLS Endomorphism. The efficient computable endomorphism provided by
the GLS curves can be used to implement the 2-GLV method on the Algorithm 3.
As a result, only n/2 point halving operations must be computed. Besides the
speed improvement, the 2-GLV method reduces to a half the number of precom-
puted points that must be stored.

3.3 Multi-core Montgomery Ladder

As proposed in [38], by properly recoding the scalar, one can efficiently compute
the scalar multiplication in a multi-core environment. Specifically, given a scalar
k of size n, we fix a constant t which establishes how many scalar bits will be
processed by the double-and-add, and by the halve-and-add procedures. This is
accomplished by computing, k′ = 2tk mod r, which yields,

k =
k′
0

2t
+

k′
1

2t−1
+ · · · +

k′
t−1

21︸ ︷︷ ︸
halve-and-add

+
k′

t

20
+ 21k′

t+1 + 22k′
t+2 + · · · + 2(n−1)−tk′

n−1︸ ︷︷ ︸
double-and-add

In a two-core setting, it is straightforward to combine the left-to-right and
right-to-left Montgomery ladder procedures of Algorithms 1 and 3, and distrib-
ute them to both cores. In this scenario, the number of necessary pre-computed
halved points reduces to ∼n

4 . In a four-core platform, we can apply the GLS endo-
morphism to the left-to-right Montgomery ladder (Algorithm1). Even though
the GLV technique is ineffective for the classical Montgomery algorithm (due to
the fact that we cannot share the point doublings between the base point and
its endomorphism), the method permits an efficient splitting of the algorithm
workload into two cores. In this way, one can use the first two cores for com-
puting t-digits of the GLV subscalars k1 and k2 by means of Algorithm 3, while
we allocate the other two cores to compute the rest of the scalar’s bits using
Algorithm 1, as shown in Algorithm 6 (see Appendix A).

334 T. Oliveira et al.

Table 1. Montgomery-LD algorithms cost comparison. In this table, M, Ma, Mb, S, I
denote the following field operations: multiplication, multiplication by the curve a-
constant, multiplication by the curve b-constant, squaring and inversion. The point
halving operation is denoted by H.

Method Cost

1
-c
o
re

Alg. 1: Montgomery-LD
(double-and-add, left-to-right)

pre/post 10M + 1S + 1I
sc. mult. n(5M + 1Mb + 4S)

Alg. 3: Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

pre/post 48M + 1Ma + 13S + 3I
sc. mult. (n

2
+ 1)H + n(5M + 1S)

2
-c
o
re

Montgomery-LD-2-GLV
(double-and-add, left-to-right)

core I
pre/post 25M + 1Ma + 5S + 2I
sc. mult. (n − t2)(5M + 1Mb + 4S)

Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

core II
pre/post 46M + 2Ma + 12S + 2I
sc. mult. (t2

2
+ 1)H + t2(5M + 1S)

Overhead 15M + 5S + 1I

4
-c
o
re

Montgomery-LD-2-GLV
(double-and-add, left-to-right)

cores pre/post 10M + 1S + 1I
I & II sc. mult. (n

2
− t4)(5M + 1Mb + 4S)

Montgomery-LD-2-GLV
(halve-and-add, right-to-left)

cores pre/post 16M + 1Ma + 4S + 1I
III & IV sc. mult. (t4

2
+ 1)H + t4(5M + 1S)

Overhead 34M + 1Ma + 12S + 1I

3.4 Cost Comparison of Montgomery Ladder Variants

Table 1 shows the computational costs associated to the Montgomery ladder vari-
ants described in this Section. The constants t2 and t4 represent the values of the
parameter t chosen for the two- and four-core implementations, respectively.3 All
Montgomery ladder algorithms require a basic post-computation cost to retrieve
the y-coordinate, which demands ten multiplications, one squaring and one inver-
sion. Due to the application of the GLV technique, the Montgomery-LD-2-GLV
halve-and-add version (corresponding to Algorithm3), requires some few extra
operations, namely, the subtraction of a point and the addition of two accumu-
lators, which is performed using the López-Dahab (LD) projective coordinate
formulae. In the end, one extra inversion is needed to convert the point repre-
sentation from LD-projective coordinates to affine coordinates.

In the case of the parallel versions, the overhead is given by the
post-computation done in one single core. The exact costs are mainly deter-
mined by the accumulator additions that are performed via full and mixed LD-
projective formulae. In all of the timings reported in Sect. 5, we consider the
LD-projective to affine coordinate transformation cost.

4 A Novel Regular τ -Adic Approach

4.1 Recoding in τ -Adic Form

The recoding approach proposed by Solinas finds an element ρ ∈ Z[τ], of as
small norm as possible, such that ρ ≡ k (mod τm−1

τ−1). A τ -adic expansion with

3 In our implementations (see Subsect. 5.3 below), the values used for the parameters
t2 and t4 ranged from 53 to 55.

Fast Point Multiplication Algorithms for Binary Elliptic Curves 335

Algorithm 4. Regular width-w τ -recoding for m-bit scalar
Input: w, tw, αu = βu +γuτ for u = {±1, ±3, ±5, . . . , ±2w−1 −1}, ρ = r0 +r1τ ∈ Z[τ]

with odd r0, r1

Output: ρ =

� m+2
w−1 �∑
i=0

uiτ
i(w−1)

1: for i ← 0 to �m+2
w−1

� - 1 do
2: if w = 2 then
3: ui ← ((r0 − 2r1) mod 4) − 2
4: r0 ← r0 − ui

5: else
6: u ← (r0 + r1tw mod 2w) − 2w−1

7: if u > 0 then s ← 1 else s ← −1
8: r0 ← r0 − sβu, r1 ← r1 − sγu, ui ← sαu

9: end if
10: for j ← 0 to (w − 2) do
11: t ← r0, r0 ← r1 + μr0/2, r1 ← −t/2
12: end for
13: end for

14: if r0 �= 0 and r1 �= 1 then
15: ui ← r0 + r1τ
16: else
17: if r1 �= 0 then
18: ui ← r1
19: else
20: ui ← r0
21: end if
22: end if

average non-zero density 1
3 can be obtained by repeatedly dividing ρ by τ and

assigning the remainders to the digits ui to obtain k =
∑i=l−1

i=0 uiτ
i. An alter-

native approach that does not involve multi-precision divisions, is to compute
an element ρ′ = k partmod

(
τm−1
τ−1

)
by performing a partial reduction proce-

dure [37]. A width-w τ -NAF expansion with non-zero density 1
w+1 , where at

most one of any w consecutive coefficients is non-zero, can also be obtained
by repeatedly dividing ρ′ by τw and assigning the remainders to the digit set
{0,±α1,±α3, . . . ,±α2w−1−1}, for αi = i mod τw. Under reasonable assump-
tions, this window-based recoding has length l ≤ m + 1 [37].

In this section, a regular recoding version of the (width-w) τ -NAF expan-
sion is derived. The security advantages of such recoding are the predictable
length and locations of non-zero digits in the expansion. This eliminates any
side-channel information that an attacker could possibly collect regarding the
operation executed at any iteration of the scalar multiplication algorithm (point
doubling/Frobenius map or point addition). As long as querying a precomputed
table of points to select the second operand of a point addition takes constant
time, the resulting algorithm should be resistant against any timing-based side-
channel attacks.

Let us first consider the integer recoding proposed by Joye and Tunstall [21].
They observed that any odd integer i in the interval [0, 2w) can be written
as i = 2w−1 + (−(2w−1 − i)). Repeatedly dividing an odd n-bit integer k −
((k mod 2w)−2w−1) by 2w−1 maintains the parity and assigns the remainders to
the digit set {±1, . . . ,±(2w−1 −1)}, producing an expansion of length �1+ n

w−1]
with non-zero density 1

w−1 . Our solution for the problem of finding a regular
τ -adic expansion employs the same intuition, as explained next.

336 T. Oliveira et al.

Let φw : Z[τ] → Z2w be a surjective ring homomorphism induced by τ �→ tw,
for t2w + 2 ≡ μtw (mod 2w), with kernel {α ∈ Z[τ] : τw divides α}. An element
i = i0 + i1τ from Z[τ] with odd integers i0, i1 ∈ [0, 2w) satisfies the analogous
property φw(i) = 2w−1 + (−(2w−1 − φw(i))). Repeated division of (r0 + r1τ) −
(((r0 + r1τ) mod τw) − τw−1) by τw−1, correspondingly of φw(ρ′) = (r0 +
r1tw)− ((r0 + r1tw mod 2w)−2w−1) by 2w−1, obtains remainders that belong to
the set {0,±α1,±α3, . . . ,±α2w−1−1}. The resulting expansion always has length
�1+ m+2

w−1 and non-zero density 1
w−1 . Algorithm 4 presents the recoding process

for any w ≥ 2. The resulting recoding can also be seen as an adaption of the SPA-
resistant recoding of [30], mapping to the digit set {0,±α1,±α3, . . . ,±α2w−1−1}
instead of integers. While the non-zero densities are very similar, our scheme
provides a performance benefit in the precomputation step, since the Frobenius
map is usually faster than point doubling and preserves affine coordinates and
consequently faster point additions.

4.2 Left-to-Right Regular Approach

Algorithm 5 presents a complete description of a regular scalar multiplication
approach that uses as a building block the regular width-w τ -recoding procedure
just described.

For benchmarking purposes, we also included a baseline implementation of
the customary Montgomery López-Dahab ladder. This allows easier comparisons
with related work and permits to evaluate the impact of incomplete reduction
in the field arithmetic performance (cf. Subsect. 5.2).

Algorithm 5. Protected scalar multiplication
Input: P = (x, λ), k ∈ Z, width w

Output: Q = kP

1: Compute ρ′ = r0 + r1τ = k partmod
(

τm−1
τ−1

)

2: if 2|r0 then r′
0 = r0 + 1

3: if 2|r1 then r′
1 = r1 + 1

4: Compute width-w length-l regular τ -adic of r′
0 + r′

1τ as
∑�1+m+2

w−1 �
i=0 uiτ

i(w−1) (Alg. 4)

5: for i ∈ {1, . . . , 2w−1 − 1} do

6: Compute Pu = αuP

7:
8: Q ← O
9: for i = l − 1 downto 0 do

10: Q ← τw−1(Q)

11: Perform a linear pass to recover Pui

12: Q ← Q + Pui

13: end for

14: return Q = Q − (r′
0 − r0)P − (r′

1 − r1)τ(P).

Fast Point Multiplication Algorithms for Binary Elliptic Curves 337

5 Implementation Issues and Results

In this Section, we discuss several implementation issues. We also present our
experimental results and we compare them against state-of-the-art protected
point multiplication implementations at the 128-bit security level.

5.1 Mechanisms to Achieve a Constant-Time GLS-Montgomery
Ladder Implementation

To protect the previously described algorithms against timing attacks, we obser-
ved the following precautions:

Branchless Code. The main loop, the pre- and post-computation phases are im-
plemented by a completely branch-free code.

Data Veiling. To guarantee a constant memory access pattern in the main loop
of the Montgomery ladder algorithms, we proposed an efficient data veiling
method, as described in Algorithm 7 of Appendix B. Algorithm 7 evaluates the
actual and the previous scalar bits to decide whether the variables containing
the Montgomery-LD accumulators values should or should not be masked. This
strategy saves a considerable portion of the computational effort associated to
Algorithm 1 of [4].

Field Arithmetic. Two of the base field arithmetic operations over Fq were imple-
mented through look-up tables, namely, the half-trace and the multiplicative
inverse operations. The half-trace is used to perform the point halving prim-
itive, which is required in the pre-computation phase of the Montgomery-LD
halve-and-add algorithm. The multiplicative inverse is one of the operations
in the y-coordinate retrieval procedure, at the end of the Montgomery ladder
algorithms. Also, whenever post-computational additions are necessary, inverses
must be performed to convert a point from LD-projective to affine coordinates.

Although we are aware of the existence of protocols that consider the base
point as a secret information [6], in which case one could not consider that
our software provides protection against timing attacks, in the vast majority of
protocols, the base point is public. Consequently, any attacks aimed at the two
field operations mentioned above would be pointless.

5.2 Mechanisms to Achieve a Constant-Time
Koblitz Implementation

Implementing Algorithm 5 in constant time needs some care, since all of its
building blocks must be implemented in constant time.

Finite Field Arithmetic. Modern implementations of finite field arithmetic can
make extensive use of vector registers, removing timing variances due to the cache
hierarchy. For our illustrative implementation of curve NIST-K283, we closely
follow the arithmetic described in Bluhm-Gueron [4], adopting the incomplete
reduction improvement proposed by Negre-Robert [28].

338 T. Oliveira et al.

Integer Recoding. All the branches in Algorithm 4 need to be eliminated by
conditional execution statements to protect leakage of the scalar k. Moreover, to
remove the remaining sign-related branches, multiple precision integer arithmetic
must be implemented in complement of two. If two constants, say βu, γu, are
stored in a precomputed table, then they need to be recovered by a linear pass
across the table in constant time. Finally, the partial reduction step producing ρ′

must also be implemented in constant time by removing all of its branches. Notice
that the requirement for r0, r1 to be odd is not a problem, since partial reduction
can be modified to always result in odd integers, with a possible correction at
the end of the scalar multiplication by performing a (protected) conditional
subtraction of points (line 14 of Algorithm5).

5.3 Results

Our implementation was mainly designed for the Intel Haswell processor family,
which supports vectorial sets such as SSE and AVX, a carry-less multiplication
and some bit manipulation instructions. The programming was done in C with
the support of assembly inline code. The compilation was performed via GCC
version 4.7.3 with the flags -m64 -march=core-avx2 -mtune=core-avx2 -O3
-fomit-frame-pointer -funroll-loops. Finally, the timings were collected
on an Intel Core i7-4700MQ, with the Turbo Boost and Hyperthreading features
disabled4.

Table 2 presents the experimental timings obtained for the most prominent
building blocks required for computing the point multiplication operation on the
GLS and Koblitz binary elliptic curves.

We present in Table 3 a comparison of our timings against a selection of
state-of-the-art implementations of the point multiplication operation on binary
and prime elliptic curves. Due to the Montgomery-LD point doubling efficiency,
which costs 49 % less than a point halving, the GLS-Montgomery-LD-double-
and-add achieved the fastest timing in the one-core setting, with 70,800 clock
cycles. This is 13 % faster than the performance obtained by the GLS-Montg-
omery-LD-halve-and-add algorithm. In the known-base point setting, we can
ignore the GLS-Montgomery-LD-halve-and-add pre-computation expenses asso-
ciated with its table of halved points. In that case, we can compute the scalar
multiplication in an estimated time of 44,600 clock cycles using a table of just
4128 bytes.
4 We intend to submit our software to the ECRYPT Benchmarking of Cryptographic

Systems (eBACS) SUPERCOP toolkit in the near future.

Fast Point Multiplication Algorithms for Binary Elliptic Curves 339

Table 2. Timings (in clock cycles) for the elliptic curve operations in the Intel Haswell
platform.

Elliptic curve
operation

GLS E/F2254

cycles op/M1

Halving 184 4.181
Montgomery-LD D&A (left-to-right) Addition (Eq. (6)) 161 3.659
Montgomery-LD H&A (right-to-left) Addition (Eq. (8)) 199 4.522

Montgomery-LD Doublinga (Eq. (5)) 95 2.159

Elliptic curve
operation

Koblitz E/F2283

cycles op/M1

Frobenius 70 1.235
Integer τ -adic recoding (Alg. 4) (w = 5) 8,900 156.863

Point addition 602 10.588

1Ratio to multiplication.
aThe flexibility for finding a curve b-constant, provided by the GLS curves, allow
us to have a small

√
b (see Appendix C). As a consequence, we used the Eq. (5)

alternative formula.

Furthermore, the GLS-Montgomery-LD-halve-and-add is crucial for imple-
menting the multi-core versions of the Montgomery ladder. When compared
with our one-core double-and-add implementation, Table 3 reports a speedup of
1.36 and 2.03 in our two- and four-core Montgomery ladder versions, respectively.
Here, besides the overhead costs commented in Sect. 3, we can clearly perceive
the usual multicore management penalty. Finally, we observe that our GLS-
Montgomery-LD-double-and-add surpasses by 48 %, 40 % and 2 % the Mont-
gomery ladder implementations of [4] (Random), [4] (Koblitz) and [1],
respectively.

As for our Koblitz implementations, the fast τ endomorphism allows us
to have a regular-recoding implementation that outperforms a standard Mont-
gomery ladder for Koblitz curves by 18 %. In addition, our fastest Koblitz code
surpasses by 16 % the recent implementation reported in [4]5. Finally, note that,
in spite of the fact that the τ endomorphism is 26 % faster than the Montgomery-
LD point doubling, the superior efficiency of the GLS quadratic field arithmetic
produces faster results for the GLS Montgomery ladder algorithms.

5 We could not reproduce the timing of 118,000 cycles with the code available from [4],
which indicates that TurboBoost could be possibly turned on their benchmarks.
Considering this, our implementation of Koblitz-Montgomery-LD becomes 9% faster
than [4], reflecting the savings from partial reduction, and the speedup achieved by
the Koblitz-regular implementation increases to 26%.

340 T. Oliveira et al.

Table 3. Timings (in clock cycles) for 128-bit level scalar multiplication with timing-
attack resistance in the Intel Ivy Bridge (I) and Haswell (H) architectures.

Method Cycles Arch

Montgomery-DJB-chain (prime) [7] 148,000 I
Random-Montgomery-LD ladder (binary) [4] 135,000 H
Genus-2-Kummer (prime) [5] 122,000 I
Koblitz-Montgomery-LD ladder (binary) [4] 118,000 H
Twisted-Edwards-4-GLV (prime) [11] 92,000 I
Genus-2-Kummer Montgomery ladder (prime) [1] 72,200 H
GLS-2-GLV double-and-add (binary, λ) [32] 60,000 H

O
u
r
W

o
rk

Koblitz-Montgomery-LD double-and-add (left-to-right) 122,000 H
Koblitz-regular τ -and-add (left-to-right, w = 5) 99,000 H
GLS-Montgomery-LD-2-GLV halve-and-add (Algorithm 3) 80,800 H
GLS-Montgomery-LD double-and-add (Algorithm 1) 70,800 H
2-core GLS-Montgomery-LD-2-GLV halve-and-add/double-and-add 52,000 H
4-core GLS-Montgomery-LD-2-GLV halve-and-add/double-and-add
(Algorithm 6)

34,800 H

6 Conclusion

We presented several algorithms that permit to compute a constant-time high-
security point multiplication operation over two families of binary elliptic curves,
namely, the GLS and the Koblitz curves. Although this work was completely
focused on a high-end desk computation of the variable-base point multiplica-
tion, the possibility of applying Algorithm3 to the fixed-base point multiplication
setting is highly appealing since that procedure requires a comparatively small
pre-computed table of roughly 2n · (n + 1) bits for computing a point multipli-
cation at the n-bit security level. The above combined with the Montgomery
ladder unique feature of performing all the computations using only two point
coordinates, should be attractive for deployments of public key cryptography on
constrained computing environments.

A Multi-core Montgomery Ladder

Here we present the four-core GLS-Montgomery-LD ladder algorithm. Given t4
the integer constant that establishes the workload of each algorithm, P ∈ E(Fq2),
and the scalar k represented as k1 + k2 · δ using the GLS-GLV method, cores
I and II are both responsible for computing �n

2 � − t4 bits of the subscalars k1
and k2 using the Montgomery-LD double-and-add method. In turn, the cores
III and IV , both compute t4 bits of k1 and k2 with the Montgomery-LD halve-
and-add algorithm. In the end, on a single core, it is necessary to add all the
accumulators Qi, for i = 0 . . . 3.

Fast Point Multiplication Algorithms for Binary Elliptic Curves 341

Algorithm 6. Parallel Montgomery ladder scalar multiplication (four-core)
Input: P ∈ E(Fq2) of order r, scalar k of bit length n, integer constant t4
Output: Q = kP

k′ ← 2t4k mod r
Represent k′ = k′

1 + k′
2λ, where ψ(P) = λP

{Initialization}
R0 ← O, R1 ← P
for i = �n

2
� downto t4 do

b ← k′
1,i ∈ {0, 1}

R1−b ← R1−b + Rb

Rb ← 2Rb

end for
Q0 ← R0

{Barrier} Core I

{Initialization}
R0 ← O, R1 ← P
for i = �n

2
� downto t4 do

b ← k′
2,i ∈ {0, 1}

R1−b ← R1−b + Rb

Rb ← 2Rb

end for
Q1 ← R0

{Barrier} Core II

{Precomputation}
for i = 1 to t4 + 1 do

Pi ← P
2i

end for
{Initialization}
R1 ← Pt4+1, R2 ← Pt4+1

for i = 0 to t4 − 1 do
R0 ← Pt4−i

b ← k′
1,i ∈ {0, 1}

R2−b ← R2−b + R0

end for
Q2 ← R1 − Pt4+1

{Barrier} Core III

{Precomputation}
for i = 1 to t4 + 1 do

Pi ← P
2i

end for
{Initialization}
R1 ← Pt4+1, R2 ← Pt4+1

for i = 0 to t4 − 1 do
R0 ← Pt4−i

b ← k′
2,i ∈ {0, 1}

R2−b ← R2−b + R0

end for
Q3 ← R1 − Pt4+1

{Barrier} Core IV

return Q = Q0 + Q2 + ψ(Q1 + Q3)

B Memory Access Pattern

The following data veiling algorithm ensures a fixed memory access pattern
for all Montgomery-LD ladder algorithms. Given the two Montgomery-LD ladder
accumulators A and B, and the scalar k = (kn−1, kn−2, . . . k0), this method
allows us, in the beginning of the i-th main loop iteration, to use the bits ki−1

and ki to decide if A and B will or will not be swapped. As a result, it is not
necessary to reapply the procedure at the end of the i-th iteration.

342 T. Oliveira et al.

Algorithm 7. Data veiling algorithm
Input: Scalar digits ki and ki−1, Montgomery-LD ladder accumulators A and B
Output: Montgomery-LD ladder accumulators A and B

mask ← 0 − (ki−1 ⊕ ki)
tmp ← A ⊕ B
tmp ← tmp ∧ mask
A ← A ⊕ tmp
B ← B ⊕ tmp
return A, B

C GLS Elliptic Curve Parameters

For achieving a greater benefit from the multiplication by the b-constant in
the Montgomery-LD doubling formula X3 = X0

4 + bZ0
4 = (X0

2 +
√

bZ0
2)2 we

carefully selected a GLS curve with a 64-bit b-parameter square-root. As a result,
we saved two carry-less multiplication and a dozen of SSE instructions per field
multiplication. Next, we describe the parameters, as polynomials represented in
hexadecimal, for our GLS curve Ea,b/Fq2 : y2 + xy = x3 + ax2 + b.

– a = u
– b = 0x54045144410401544101540540515101
–

√
b = 0xE2DA921E91E38DD1

The 253-bit prime order r of the main subgroup of Ea,b/Fq2 is,

r = 0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6B89E49D3FECD828CA8D66BF4B88ED5.

Also, the integer δ such that ψ(P) = δP for all P ∈ Ea,b is,

δ = 0x74AEFB81EE8A42E9E9D0085E156A8EFBA3D302F9C74D737FA00360F9395C788.

The base point P = (x, y) of order r used in this work is,

x = 0x4A21A3666CF9CAEBD812FA19DF9A3380 + 0x358D7917D6E9B5A7550B1B083BC299F3 · u

y = 0x6690CB7B914B7C4018E7475D9C2B1C13 + 0x2AD4E15A695FD54011BA179D5F4B44FC · u.

Finally, the towering of our field Fq
∼= F2[x]/(f(x)) and its quadratic extension

Fq2 ∼= Fq[u]/(g(x)) is constructed by means of the irreducible trinomials f(x) =
x127 + x63 + 1 and g(u) = u2 + u + 1.

References

1. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. Cryptology ePrint Archive, Report 2014/134 (2014).
http://eprint.iacr.org/

2. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography. http://safecurves.cr.yp.to

http://eprint.iacr.org/
http://safecurves.cr.yp.to

Fast Point Multiplication Algorithms for Binary Elliptic Curves 343

3. Bernstein, D.J., Lange, T.: Security dangers of the NIST curves. Invited talk,
International State of the Art Cryptography Workshop, Athens, Greece (2013)

4. Bluhm, M., Gueron, S.: Fast software implementation of binary elliptic curve
cryptography. Cryptology ePrint Archive, Report 2013/741 (2013). http://eprint.
iacr.org/

5. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013)

6. Chatterjee, S., Karabina, K., Menezes, A.: A new protocol for the nearby friend
problem. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921,
pp. 236–251. Springer, Heidelberg (2009)

7. Costello, C., Hisil, H., Smith, B.: Faster compact Diffie–Hellman: endomorphisms
on the x -line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 183–200. Springer, Heidelberg (2014)

8. Dierks, T., Allen, C.: The TLS Protocol Version 1.0. RFC 2246 (Proposed Stan-
dard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746, 6176

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1.
RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated by
RFCs 4366, 4680, 4681, 5746, 6176

10. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008

11. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Heidelberg
(2014)

12. Fog, A.: Instruction Tables: List of Instruction Latencies, Throughputs and Micro-
operation Breakdowns for Intel, AMD and VIA CPUs. http://www.agner.org/
optimize/instruction tables.pdf. Accessed 14 May 2014

13. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

14. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

15. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptol. 15, 19–46 (2002)

16. Gueron, S., Krasnov, V.: Fast prime field elliptic curve cryptography with 256
bit primes. Cryptology ePrint Archive, Report 2013/816 (2013). http://eprint.
iacr.org/

17. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
point multiplication method for elliptic curves over binary fields. IEEE Trans.
Comput. 58(10), 1411–1420 (2009)

18. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Secaucus (2003)

19. Hess, F.: Generalising the GHS attack on the elliptic curve discrete logarithm
problem. LMS J. Comput. Math. 7, 167–192 (2004)

20. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: Improvement of Faugère et al.’s
method to solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS,
vol. 8231, pp. 115–132. Springer, Heidelberg (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

344 T. Oliveira et al.

21. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009)

22. Koblitz, A.H., Koblitz, N., Menezes, A.: Elliptic curve cryptography: the serpentine
course of a paradigm shift. J. Number Theory 131(5), 781–814 (2011)

23. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

24. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. J. Cryptol. 27(2), 248–283 (2014)

25. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

26. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

27. National Institute of Standards and Technology. Recommended Elliptic Curves for
Federal Government Use. NIST Special Publication (1999). http://csrc.nist.gov/
csrc/fedstandards.html

28. Négre, C., Robert, J.-M.: Impact of optimized field operations AB, AC and
AB + CD in scalar multiplication over binary elliptic curve. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 279–296.
Springer, Heidelberg (2013)

29. Nègre, C., Robert, J.-M.:. New parallel approaches for scalar multiplication in
elliptic curve over fields of small characteristic (2013). http://hal.archives-ouvertes.
fr/docs/00/90/84/63/PDF/parallelization-ecsm8.pdf

30. Okeya, K., Takagi, T., Vuillaume, C.: Efficient representations on Koblitz curves
with resistance to side channel attacks. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 218–229. Springer, Heidelberg (2005)

31. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 311–330. Springer, Heidelberg (2013)

32. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptogr. Eng. 4(1), 3–17
(2014)

33. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466.
Springer, Heidelberg (2012)

34. Salowey, J.: Confirming consensus on removing RSA key transport from TLS 1.3.
Transport Layer Security Working Group of the IETF Mailing List, 3 May 2014

35. Scott, M.: Re: NIST announces set of elliptic curves (1999). https://groups.google.
com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM MJ

36. Shantz, M., Teske, E.: Solving the elliptic curve discrete logarithm problem using
Semaev polynomials, Weil descent and Gröbner basis methods - an experimental
study. Cryptology ePrint Archive, Report 2013/596 (2013). http://eprint.iacr.org/

37. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Crypt. 19(2–3),
195–249 (2000)

38. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F.,
Hankerson, D., López, J.: Speeding scalar multiplication over binary elliptic curves
using the new carry-less multiplication instruction. J. Cryptogr. Eng. 1, 187–199
(2011)

http://csrc.nist.gov/csrc/fedstandards.html
http://csrc.nist.gov/csrc/fedstandards.html
http://hal.archives-ouvertes.fr/docs/00/90/84/63/PDF/parallelization-ecsm8.pdf
http://hal.archives-ouvertes.fr/docs/00/90/84/63/PDF/parallelization-ecsm8.pdf
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
http://eprint.iacr.org/

Partial Key Exposure Attacks on RSA:
Achieving the Boneh-Durfee Bound

Atsushi Takayasu(B) and Noboru Kunihiro

The University of Tokyo, Tokyo, Japan
a-takayasu@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. Several algorithms have been proposed for factoring RSA
modulus N when attackers know the most or the least significant (β −
δ) log N bits of secret exponents d < Nβ . The attacks are expected to
work when β < 1 − 1/

√
2 with full size public exponent e considering

Boneh and Durfee’s result for small secret exponent attacks on RSA.
However, previous attacks do not always work in this condition when
attackers know only a small amount of information on secret exponent,
that is, δ is close to β. In this paper, we propose the improved algo-
rithms for partial key exposure attacks which cover Boneh and Durfee’s
bound when δ = β. Our algorithms are the best among all known results
when attackers know the most significant bits of d ≤ N9/16 or the least

significant bits of d ≤ N (9−√
21)/12. In our algorithm constructions, we

construct basis matrices for lattices which are not triangular and analyze
the determinant by using unravelled linearization. The analysis enables
us to make better use of the algebraic structures of modular polynomials,
that is, we can select appropriate lattice bases or construct appropriate
lattice bases.

Keywords: RSA · Cryptanalysis · Partial key exposure · Coppersmith’s
method · Lattices

1 Introduction

1.1 Background

Small Secret Exponent RSA. When small secret exponent d < Nβ is used,
RSA cryptosystem becomes efficient for the decryption cost or the signature
generation cost. However, Wiener [32] revealed the vulnerability. They claimed
that public modulus N can be factored in polynomial time when β < 1/4.

Boneh and Durfee [5] revisited the attack and further improved the result.
They used lattice-based Coppersmith’s method to solve modular equations [8,
20]. At first, they constructed lattices which provide Wiener’s bound β < 1/4.
Next, they added some extra polynomials in the lattice bases and improved the
bound to β < (7−2

√
7)/6 = 0.28474 · · · . Finally, they achieved a stronger bound

β < 1 − 1/
√

2 = 0.29289 · · · by extracting sublattices. To achieve the stronger
bound, they used lattices which are not full-rank. Since the determinant of such
lattices are difficult to compute, the analysis of the bound is involved.
c© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 345–362, 2014.
DOI: 10.1007/978-3-319-13051-4 21

346 A. Takayasu and N. Kunihiro

Partial Key Exposure Attacks on RSA. Boneh, Durfee and Frankel [6]
introduced several attacks on RSA with small public exponent e. Their attacks
make good use of the knowledge of the most significant bits (MSBs) or the
least significant bits (LSBs) of secret exponent d. After that, such partial key
exposure situations have been practically reported using side channel attacks,
cold boot attacks [14]. Therefore, estimating the security of RSA with partial
knowledge of the secret key has become increasingly important problem. See also
[15,16,22,23,28].

Blömer and May [4] improved the attacks using Coppersmith’s method to
solve modular equations [8,20]. Blömer and May’s work revealed that partial
key exposure RSA is vulnerable for larger public exponent e. Ernst et al. [13]
improved the attack to full size encryption exponent e using Coppersmith’s
method to find small roots of polynomials over the integers [9,12]. In addi-
tion, they proposed analogous attacks with full size public exponent e and small
secret exponent d. In this paper, we study the situation:

– the prime factors p, q are the same bit size, q < p < 2q,
– the public exponent e is full size, the bit length of e is log N ,
– the secret exponent d < Nβ is small, 0 < β ≤ 1,
– in addition to public keys (N, e), attackers know d0 which is (β − δ) log N the

most or the least significant bits of the secret exponent d with 0 ≤ δ ≤ β.

Partial key exposure situation with δ = β, when attackers know no infor-
mation of secret exponent d, is the same situation as Boneh and Durfee’s work
[5]. Therefore, the attack should always work when β < 1 − 1/

√
2. However,

Ernst et al.’s results [13] only achieved the Boneh and Durfee’s weaker bound
β < (7 − 2

√
7)/6 when δ = β.

At PKC 2009, Aono [1] improved the algorithm for the LSBs partial key expo-
sure attacks using Coppersmith’s method to solve modular equations
[8,20]. Aono used lattices which are not full rank and the basis matrices are not
triangular. The result covers Boneh and Durfee’s stronger bound β < 1 − 1/

√
2

when δ = β. However, the attack is not applicable to the MSBs partial key expo-
sure case. Sarkar, Gupta and Maitra [29] analyzed the MSBs partial key exposure
attacks using Coppersmith’s method to solve modular equations [8,20]. Though
their attack partially covers Ernst et al.’s bound, they cannot improve it. To con-
struct algorithms for the MSBs partial key exposure attacks that cover Boneh
and Durfee’s stronger bound remains an open problem.

Unravelled Linearization. Herrmann and May [18] introduced a new tech-
nique for lattice constructions, unravelled linearization. To solve nonlinear mod-
ular equations, consider the linear modular polynomials using linearization. In
addition, unravelled linearization makes use of the lost algebraic structure using
unravelling, which partially unravel the linearized variables in basis matrices.
This operation transform basis matrices which are not triangular to be trian-
gular and enables us to analyze the lattices which are not full rank easily. At
PKC 2010, Herrmann and May [19] gave an elementary proof for Boneh and

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 347

Durfee’s attack to achieve the stronger bound β < 1 − 1/
√

2. They used unrav-
elled linearization and transformed Boneh and Durfee’s lattices to be full rank
with triangular basis matrices. Compared with original Boneh and Durfee’s proof
[5], the elegant technique enables us to extract appropriate sublattices easily. In
addition, several results [2,18,21,31] have been reported to improve the previous
results with the technique.

Collecting Helpful Polynomials. To maximize solvable root bounds, it is
crucial to select appropriate polynomials in lattice bases. To examine which
polynomials to be selected, May introduced the notion of helpful in his survey
[26]. They called the polynomials whose sizes of diagonals in the basis matrices
are smaller than the size of the modulus helpful polynomials. Helpful polynomials
reduce the determinant of the lattices and enable us to obtain better bounds.

At a glance, the notion is completely trivial. However, Takayasu and Kunihiro
[30] made use of the notion and provided the improved lattice constructions.
They claimed that as many helpful polynomials as possible should be selected in
lattice bases as long as the basis matrices are triangular. Based on the strategy,
they improved the algorithms to solve two forms of modular multivariate linear
equations [7,17]. The two algorithms were improved with full rank lattices with
triangular basis matrices. That means though the analyses of triangular basis
matrices are easy, that do not mean selections of appropriate lattice bases are
trivial. Takayasu and Kunihiro’s results [30] imply that the notion of helpful
enables us to determine the appropriate polynomial selections.

1.2 Our Contributions

In this paper, we use Coppersmith’s method to solve modular equations [8,20]
and propose a improved algorithms for partial key exposure attacks on RSA for
both the MSBs and the LSBs cases. Both our algorithms achieve Boneh and
Durfee’s stronger bound β < 1 − 1/

√
2 when δ = β. Since we consider bivariate

equations, our algorithms work under the assumption that polynomials obtained
by the LLL reduced bases are algebraically independent as in previous works
[1,4,5,13,29]. The assumption may be valid since few negative cases have been
reported.

For the MSBs partial key exposure attacks, this is the first result to cover
Boneh and Durfee’s stronger bound when δ = β.

Theorem 1. When we know the most significant (β − δ) log N bits of secret
exponent d, public moduli N can be factored in polynomial time in log N and
1/ε provided that

(i) δ ≤ 1 + β −
√

−1 + 6β − 3β2

2
− ε, β ≤ 1

2
,

(ii) δ ≤ τ

2
− τ2

3
+

1
6τ

· (τ − 2(β − δ))3

2 + 2δ − 4β
− ε, τ = 1 − 2β − 1

1 − 2
√

1 + δ − 2β
,

1
2

< β ≤ 9
16

.

348 A. Takayasu and N. Kunihiro

Fig. 1. Recoverable conditions for the
MSBs partial key exposure attacks.
Grey area represents the condition
established by Ernst et al. Our algo-
rithm works in the area left above of
the solid line.

Fig. 2. Recoverable condition for the
LSBs partial key exposure attacks.
Grey area represents the condition
established by Ernst et al. Aono’s algo-
rithm works in the area left above of
the broken line. Our algorithm works
in the area left above of the solid line.

We solve the same modular equations as Sarkar et al. [29], though Sarkar et al.’s
algorithm does not even cover Boneh and Durfee’s weaker bound. To the best of
our knowledge, this is the first result to analyze the basis matrices which are not
triangular for the MSBs partial key exposure attacks. Unravelled linearization
enables us to analyze algebraic structures of modular polynomials in detail.
Though we use the same polynomials as Sarkar et al. in lattice bases, we change
the selections. Figure 1 compares the solvable root bounds of our algorithm and
Ernst et al.’s algorithms [13]. When β ≤ 9/16 = 0.5625, our algorithm is superior
to the previous ones.

For the LSBs partial key exposure attacks, our algorithms cover Boneh and
Durfee’s stronger bound when δ = β and are superior to Aono’s algorithm [1].

Theorem 2. When we know the least significant (β − δ) log N bits of secret
exponent d, public moduli N can be factored in polynomial time in log N and
1/ε provided that

δ ≤ 1 + β −
√

−1 + 6β − 3β2

2
− ε, β ≤ 9 − √

21
12

.

We solve the same modular equations as Aono. First, we use unravelled lineariza-
tion and transform Aono’s basis matrices to be triangular. This transformation
reveals a bottleneck of Aono’s lattice constructions. We change polynomials in
lattice bases in order to make full use of algebraic structures of modular polyno-
mials. Figure 2 compares the solvable root bounds of our algorithm, Ernst et al.’s
algorithm [13], and Aono’s algorithm [1]. When β < (9−√

21)/12 = 0.36811 · · · ,
our algorithms are superior to the previous ones.

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 349

1.3 Roadmap

The organization of this paper is as follows. In Sect. 2, we recall the RSA key
generation and formulate the MSBs and the LSBs partial key exposure attacks.
In Sect. 3, we introduce Coppersmith’s method to solve modular equations,
the technique and the strategy for the lattice constructions. In Sect. 4, we ana-
lyze the MSBs partial key exposure attack and prove Theorem1. In Sect. 5, we
analyze the LSBs partial key exposure attack and prove Theorem2.

2 Formulations of Partial Key Exposure Attacks

We recall that the RSA key generation is described as

ed = 1 + �φ(N),where φ(N) = (p − 1)(q − 1) = N − (p + q − 1).

In the MSBs partial key exposure case, we know d0 which is the most sig-
nificant bits of secret exponent d. We rewrite d = d0M + d1 with an integer
M := 2�δ log N�, d1 is the unknown part of d. In this case, we can easily calculate
an approximation to �, �0 = �(ed0 − 1)/N�. We rewrite � = �0 + �1. The size of
the unknown �1 is bounded by Nγ with γ = max{δ, β − 1/2}. This analysis is
written in [4] in detail. Again, looking at the RSA key generation,

e(d0M + d1) = 1 + (�0 + �1)(N − (p + q − 1)).

We consider the modular polynomial

fMSBs(x, y) = 1 + (�0 + x)(N + y) (mod e).

This polynomial has the roots (x, y) = (�1,−(p + q − 1)). Sizes of the roots are
bounded by X,Y where X := Nγ , Y := 3N1/2. We can factor the RSA modulus
N , if we can find the roots of fMSBs(x, y).

In the LSBs partial key exposure case, we know d0 which is the least sig-
nificant bits of secret exponent d. We rewrite d = d1M + d0 with an integer
M := 2�(β−δ) log N�, d1 is the unknown part of d. In this case, we cannot calcu-
late an approximation to �. Again, look at the RSA key generation,

e(d1M + d0) = 1 + �(N − (p + q − 1)).

We consider the modular polynomial

fLSBs(x, y) = 1 − ed0 + x(N + y) (mod eM).

This polynomial has the roots (x, y) = (�,−(p + q − 1)). Sizes of the roots are
bounded by X,Y where X := Nβ , Y := 3N1/2. We can factor the RSA modulus
N , if we can find the roots of fLSBs(x, y).

350 A. Takayasu and N. Kunihiro

3 Coppersmith’s Method to Solve Modular Equations

The Overview of the Method. At EUROCRYPT 1996, Coppersmith intro-
duced the lattice based method to solve modular univariate equations in polyno-
mial time. The method reveals several vulnerabilities of RSA cryptosystems. See
[10,11,25–27] for more information. This method can be heuristically extended
to bivariate cases with reasonable assumption. In this paper, we explain the
reformulation by Howgrave-Graham [20]. For bivariate polynomials h(x, y) =∑

hiX ,iY xiXyiY , define a norm of the polynomials as ‖h(x, y)‖ :=
√∑

h2
iX ,iY

.
The following Howgrave-Graham’s lemma enables us to solve modular equations
by finding roots of polynomials over the integers.

Lemma 1 (Howgrave-Graham’s lemma [20]). Let h(x, y) be a bivariate
integer polynomial which consists of at most n monomials. Let W,m,X, Y be
positive integers. When the polynomial h(x, y) satisfies

1. h(x̄, ȳ) = 0 (mod Wm), where |x̄| < X, |ȳ| < Y ,
2. ‖h(xX, yY)‖ < Wm/

√
n.

Then h(x̄, ȳ) = 0 holds over the integers.

To solve bivariate equations, we should find two polynomials that satisfy
Howgrave-Graham’s lemma. We use lattices and the LLL algorithm to find such
low norm polynomials. Let b1, . . . ,bn be linearly independent k-dimensional
vectors. The lattice L(b1, . . . ,bn) spanned by the basis vectors b1, . . . ,bn is
defined as L(b1, . . . ,bn) = {∑n

j=1 cjbj : cj ∈ Z}. We call n the rank of the
lattice, and k the dimension of the lattice. When n = k, lattices are described as
full rank. The basis matrix of the lattice B is defined as the n×k matrix that has
basis vectors b1, . . . ,bn in each row. In this paper, we use only full rank lattices.
The determinant of a full rank lattice is computed by vol(L(B)) = |det(B)|.

In 1982, Lenstra, Lenstra and Lovász proposed the LLL algorithm [24], which
find short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [24]). Given k-dimensional basis vectors b1,
. . . ,bn, the LLL algorithm finds short lattice vectors v1,v2 that satisfy

‖v1‖ ≤ 2(n−1)/4(vol(L))1/n, ‖v2‖ ≤ 2n/2(vol(L))1/(n−1).

These norms are all Euclidean norms. The running time of the LLL algorithm
is O(n5k(log B)3) where log B represents the maximum input length.

To solve the modular equations h(x, y) = 0 (mod W), we create n polynomi-
als h1(x, y), . . . , hn(x, y) that have the same roots as the original solutions mod-
ulo Wm with a positive integer m. We generate basis vectors b1, . . . ,bn whose
elements are the coefficients of the polynomials h1(xX, yY), . . . , hn(xX, yY),
respectively. The polynomials modulo Wm whose coefficients correspond to any
lattice vectors spanned by b1, . . . ,bn have the same roots as the original solu-
tions. If two polynomials p1(x, y) and p2(x, y) whose coefficients correspond to

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 351

short lattice vectors v1,v2 satisfy Howgrave-Graham’s lemma, we can find the
roots over the integers. This operation can easily be done by computing the
Gröbner bases or resultant of p1(x, y), p2(x, y).

We should note that the polynomials p1(x, y) and p2(x, y) have no assur-
ance of algebraic independency. We assume that these polynomials are algebraic
independent, and the resultant will not vanish. This assumption might be valid,
since few negative cases have been reported.1

Unravelled Linearization. Boneh and Durfee [5] solved modular equations

fBD(x, y) := 1 + N(x + y) = 0 (mod e)

for small secret exponent attacks on RSA. They selected shift-polynomials

gBD1
[u,i] (x, y) := xu−ifBD(x, y)iem−i, for u = 0, 1, . . . , m, i = 0, 1, . . . , u,

gBD2
[u,j] (x, y) := yjfBD(x, y)uem−u, for u = 0, 1, . . . ,m, j = 0, 1, . . . , �(1 − 2β)u�,

in the lattice bases. The selection generates the basis matrix which is not tri-
angular. That means there are some shift-polynomials which have several new
monomials when added in the basis matrix. To avoid the situation, Herrmann
and May [19] use the linearization z := 1 + xy. The linearization reduces the
number of monomials of fBD(x, y). We partially apply the linearization to some
monomials and the basis matrix becomes triangular. This operation enables us
to compute the determinant of the lattice easily. See [19] for detailed analysis.

Collecting Helpful Polynomials. May [26] defined the notion of helpful
compared with sizes of diagonals and a size of a modulus. Helpful polynomi-
als contribute to the conditions for modular equations to be solved. Since each
polynomial may affect not only the diagonal but also several other diagonals in
our analyses, we cannot examine which polynomials to be selected with the pre-
vious definition of helpful polynomials. Therefore, we redefine the notion which
covers the previous definition.

Definition 1 (Helpful Polynomials). To solve equations with a modulus W ,
consider a basis matrix B. We add a new shift-polynomial h[i′,j′](x, y) and con-
struct a new basis matrix B+. We call h[i′,j′](x, y) a helpful polynomial, provided
that

det(B+)
det(B)

≤ Wm.

Conversely, if the inequality does not hold, we call h[i′,j′](x, y) an unhelpful poly-
nomial.
1 We should note that in Bernstein et al.’s [3] millions of experiments with very small

lattice dimension, the heuristic assumption fails in many cases. However, they pro-
pose the method to recover small solutions in such cases. See the paper for detailed
information.

352 A. Takayasu and N. Kunihiro

4 Partial Key Exposure Attack: The Most Significant
Bits Case

4.1 Previous Works

In the MSBs partial key exposure case, Ernst et al. [13] found the small roots of
polynomials over the integers

gEJMW1(x, y, z) = 1 − ed0M + ex + y(N + z),

or gEJMW2(x, y, z) = 1 − ed0M + ex + (�0 + y)(N + z),

to factor N . The polynomial gEJMW1(x, y, z) has the roots (x, y) = (−d1, �,−(p+
q−1)), and the polynomial gEJMW2(x, y, z) has the roots (x, y) = (−d1, �1,−(p+
q − 1)). Their algorithms work provided that

(1) γ ≤ 5
6 − 1

3

√
1 + 6β − ε,

(2) γ ≤ 3
16 − ε and β ≤ 11

16 ,

(3) γ ≤ 1
3 + 1

3β − 1
3

√
4β2 + 2β − 2 − ε and β ≥ 11

16 .

The condition (1) can be obtained by finding the roots of the polynomial gEJMW1

(x, y, z). The conditions (2), (3) can be obtained by finding the roots of the poly-
nomial gEJMW2(x, y, z) with γ = δ and γ = β −1/2, respectively. The condition
yields Boneh and Durfee’s weaker bound β < (7 − 2

√
7)/6 when δ = β.

Sarkar et al. [29] solved the modular equation fMSBs(x, y) = 0 to factor N .
To solve the modular equation, they used shift-polynomials

gMSBs1
[u,i] (x, y) := xu−ifMSBs(x, y)iem−i,

gMSBs2
[u,j] (x, y) := yjfMSBs(x, y)uem−u.

Both shift-polynomials modulo em have the same roots as the original solutions,
that is, gMSBs1

[u,i] (�1,−(p+q−1)) = 0 (mod em) and gMSBs2
[u,j] (�1,−(p+q−1)) = 0

(mod em). They selected shift-polynomials

gMSBs1
[u,i] (x, y) for u = 0, 1, . . . , �m/4γ�, i = 0, 1, . . . ,max{m,u},

gMSBs2
[u,j] (x, y) for u = 0, 1, . . . ,m, i = 1, 2, . . . , u,

in the lattice bases. This selection generates triangular basis matrices with diag-
onals XuY iem−i for gMSBs1

[u,i] (x, y), and XuY u+jem−u for gMSBs2
[u,j] (x, y). The con-

dition for the algorithm to work is the same as (2) of Ernst et al.’s condition.

4.2 Our Lattice Constructions

In this section, we explain our improved lattice constructions. At first, we con-
sider the case for β ≤ 1/2.

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 353

For Smaller d. To solve the modular equation fMSBs(x, y) = 0, we use the
same shift-polynomials gMSBs1

[u,i] (x, y), gMSBs2
[u,j] (x, y) as Sarkar et al. However, we

change the selections. To construct the basis matrix, we use shift-polynomials

gMSBs1
[u,i] (x, y) for u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gMSBs2
[u,j] (x, y) for u = 0, 1, . . . ,m, j = 1, 2, . . . , �2(β − γ)m + (1 + 2γ − 4β)u�,

in the lattice bases. The selections of shift-polynomials generate basis matrices
which are not triangular. However, we partially apply the linearization z =
1+(�0 +x)y and the basis matrices can be transformed into triangular. The size
of the root for the linearized variable z is bounded by Z := 3N1/2+β . In general,
we reveal the following property.

Lemma 2. We define the polynomial order ≺ as

gMSBs1
[u,i] (x, y), gMSBs2

[u,j] (x, y) ≺ gMSBs1
[u′,i′] (x, y), gMSBs2

[u′,j′] (x, y), if u < u′,

gMSBs1
[u,i] (x, y) ≺ gMSBs2

[u′,j′] (x, y), if u = u′

gMSBs1
[u,i] (x, y) ≺ gMSBs1

[u′,i′] (x, y), if u = u′, i < i′,

gMSBs2
[u,j] (x, y) ≺ gMSBs2

[u′,j′] (x, y), if u = u′, j < j′.

Ordered in this way, the basis matrices become triangular with diagonals
Xu−�lMSBs(i)�Y i−�lMSBs(i)�Z�lMSBs(i)�em−i for gMSBs1

[u,i] (x, y), and

Xu−�lMSBs(u+j)�Y u+j−�lMSBs(u+j)�Z�lMSBs(u+j)�em−u for gMSBs2
[u,j] (x, y), where

lMSBs(k) := max
{

0,
k − 2(β − γ)m
2 + 2γ − 4β

}
.

The proof is written in the full version.
The linearization technique enables us to select shift-polynomials more flex-

ibly with the constraint for basis matrices to be triangular. Therefore, we can
eliminate some unhelpful polynomials and add helpful polynomials compared
with Sarkar et al.’s basis matrices. To maximize the solvable root bounds, our
collections of shift-polynomials are determined by the following lemma.

Lemma 3. When β ≤ 1/2, assume there are shift-polynomials gMSBs1
[u,i] (x, y) for

u = u′ +j′, . . . , m, i = u′ +j′ and gMSBs2
[u,j] (x, y) for u = u′ +1, . . . , u′ +j′ −1, j =

u′+j′−u in lattice bases. In this case, shift-polynomials gMSBs2
[u′,j′] (x, y) are helpful

polynomials when u′ = 0, 1, . . . , m, j′ = 1, . . . , �2(β − γ)+ (1+2γ − 4β)u�. Shift-
polynomials gMSBs2

[u′,j′] (x, y) are unhelpful polynomials when u′ = 0, 1, . . . ,m, j′ >

2(β − γ) + (1 + 2γ − 4β)u′.

Proof. Consider the basis matrix B. We add a new shift-polynomial gMSBs2
[u′,j′] (x, y)

and construct the basis matrix B+. The value det(B+)/det(B) can be computed
as

det(B+)
det(B)

= Y j′
Zu′

em−u′ ×
(

XY

Z

)m−u′

354 A. Takayasu and N. Kunihiro

≈ N
1
2 j′+(1

2+β)u′+m−u′−(β−γ)(m−u′).

This value is smaller than the size of the modulus em ≈ Nm, when

j′ ≤ 2(β − δ)m + (1 + 2δ − 4β)u′.

That is, Lemma 3 is proved. ��
We prove the bound (i) of Theorem1. We can rewrite the diagonals as
Xu′−�lMSBs(j′)�Y j′−�lMSBs(j′)�Z�lMSBs(j′)�em−min{u′,j′} for j′ = 0, 1, . . . , 2(1 −
β)m,u′ = lMSBs(j′)�, . . . , m. Ignoring low order terms of m, we compute the
dimension

n =
�2(1−β)m�∑

j′=0

m∑
u′=�lMSBs(j)�

1 =
(

1
2

+ 2(β − γ) +
1 + 2γ − 4β

2

)
m2,

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
�2(1−β)m�∑

j′=0

m∑
u′=�lMSBs(j)�

(u′ − lMSBs(j′)�)

=
(

1
6

+ (β − γ) +
1 + 2γ − 4β

6

)
m3,

sY =
�2(1−β)m�∑

j′=0

m∑
u′=�lMSBs(j)�

(j′ − lMSBs(j′)�)

= ((β − γ) + 2(β − γ)2 + (β − γ)(1 + 2γ − 4β) +
1 + 2γ − 4β

6

+
(1 + 2γ − 4β)2

6
)m3,

sZ =
�2(1−β)m�∑

j′=0

m∑
u′=�lMSBs(j′)�

lMSBs(j′)� =
(

1
6

+
1 + 2γ − 4β

6

)
m3,

se =
�2(1−β)m�∑

j′=0

m∑
u′=�lMSBs(j)�

(m − min{u′, j′})

=
(

1
3

+ (β − γ) +
1 + 2γ − 4β

6

)
m3,

We can find solutions of fMSBs(x, y) = 0 provided that (det(B))1/n < em,
that is,

2γ2 − 2(1 + β)γ + 2β2 − 2β + 1 > 0.

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 355

This condition yields the bound

γ <
1 + β −

√
−1 + 6β − 3β2

2
.

It is clear that γ = max{δ, β − 1/2} = δ when β ≤ 1/2. Therefore, the bound (i)
of Theorem 1 is proved.

For Larger d. In the following, we briefly summarize the case for 1/2 < β ≤
9/16. The detailed analysis is written in the full version.

When β > 1/2, 2(β−γ)m+(1+2γ−4β)u < 0 for larger u > −2(β−γ)m/(1+
2γ−4β). Since we select shift-polynomials gMSBs1

[u,i] (x, y) for −2(β−γ)m/(1+2γ−
4β) < u ≤ m which are unhelpful polynomials and do not contribute for basis
matrices to be triangular, we should redefine collections of shift-polynomials. We
use shift-polynomials

gMSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . ,min{u, t},

gMSBs2
[u,j] (x, y) with u = 0, 1, . . . ,m,

j = 1, 2, . . . ,min{�2(β − γ)m + (1 + 2γ − 4β)u�, t − u},

in the lattice bases. The parameter τ = t/m should be optimized later2. The
selections of shift-polynomials generate basis matrices which are not triangular.
However, we partially apply the linearization z = 1 + (l0 + x)y and the basis
matrices can be transformed into triangular. That means Lemma 2 holds.

We prove the bound (ii) of Theorem1. We can rewrite the diagonals as
Xu′−�lMSBs(j′)�Y j′−�lMSBs(j′)�Z�lMSBs(j′)�em−min{u′,j′} for j′ = 0, 1, . . . , t, u′ =
lMSBs(j)�, lMSBs(j)� + 1, . . . , m. Ignoring low order term of m, we compute
the dimension

n =
t∑

j′=0

m∑
u′=�lMSBs(j)�

1 = mt − 1
2

· (t − 2(β − γ)m)2

2 + 2γ − 4β
,

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
t∑

j′=0

m∑
u′=�lMSBs(j′)�

(u′ − lMSBs(j′)�)

=
m2t

2
− 1

6
· (t − 2(β − γ)m)3

(2 + 2γ − 4β)2
− sZ ,

sY + sZ =
t∑

j′=0

m∑
u′=�lMSBs(j′)�

j′

2 These collections and optimization of the parameter τ are based on the notion of
consecutive helpful polynomials defined in [30]. See the paper in detail.

356 A. Takayasu and N. Kunihiro

=
1
6

· t3 − 8(β − γ)3m3

2 + 2γ − 4β
+

t2

2

(
m − t − 2(β − γ)m

2 + 2γ − 4β

)

sZ =
t∑

j′=0

m∑
u′=�lMSBs(j′)�

lMSBs(j′)�

=
m

2
· (t − 2(β − γ)m)2

2 + 2γ − 4β
− 1

3
· (t − 2(β − γ)m)3

(2 + 2γ − 4β)2

se =
t∑

j′=0

m∑
u′=�lMSBs(j′)�

(m − min{u′, j′})

= −m

2
· (t − 2(β − γ)m)2

2 + 2γ − 4β
+

1
6

· (t − 2(β − γ)m)3

(2 + 2γ − 4β)2
+ m2t − mt2

2
+

1
6
t3

We can find solutions fMSBs(x, y) = 0 provided that (det(B))1/n < em, that is,

γτ − τ2

2
+

τ3

3
<

1
6

· (τ − 2(β − γ))3

2 + 2γ − 4β
.

Note that Sarkar et al.’s condition can be written as γτ − τ2/2 + τ3/3 < 0 with
τ = (1/4−γ)/γ. We can improve the result since τ −2(β−γ) > 0, 2+2γ−4β > 0
and the right hand side of the inequality is positive. To maximize the solvable
root bound, we set the parameter

τ = 1 − 2β − 1
1 − 2

√
1 + γ − 2β

and obtain the bound (ii) of Theorem1.

5 Partial Key Exposure Attack: The Least Significant
Bits Case

5.1 Previous Works

In the LSBs partial key exposure case, Ernst et al. [13] found the small roots of
polynomials over the integers

gEMJW3(x, y, z) = 1 − ed0 + eMx + y(N + z),

to factor N . The polynomial gEJMW3(x, y, z) has the roots (x, y) = (−d1, �,−(p+
q − 1)). Their algorithm works provided that

δ ≤ 5
6

− 1
3

√
1 + 6β − ε.

When δ = β, the condition yields Boneh and Durfee’s weaker bound [5] β <
(7 − 2

√
7)/6.

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 357

Blömer and May [4] consider LSBs key exposure attacks with small public
exponents e and full size secret exponents d. Though the situation is slightly
different from the one considered in this paper, their lattice construction provides
the same bound as Ernst et al.’s algorithm. Blömer and May solve the modular
equation fLSBs(x, y) = 0 to factor N . To solve the modular equation, they used
shift-polynomials

gLSBs1
[u,i] (x, y) := xu−ifLSBs(x, y)i(eM)m−i,

gLSBs2
[u,j] (x, y) := yjfLSBs(x, y)u(eM)m−u.

Both shift-polynomials modulo (eM)m have the same roots as the original solu-
tions, that is, gLSBs1

[u,i] (�,−(p+q−1)) = 0 (mod (eM)m), gLSBs2
[u,j] (�,−(p+q−1)) =

0 (mod (eM)m). They selected shift-polynomials

gLSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gLSBs2
[u,j] (x, y) with u = 0, 1, . . . ,m, j = 1, 2, . . . , �(1 − 2δ)m/2�,

in the lattice bases. This selections generate triangular basis matrices with diago-
nals XuY iem−i for gLSBs1

[u,i] (x, y), and XuY u+jem−u for gLSBs2
[u,j] (x, y). Their algo-

rithm works provided that δ ≤ 5
6 − 1

3

√
1 + 6β − ε. The bound corresponds to

Ernst et al.’s bound.
Aono [1] improved the attack and firstly achieved Boneh and Durfee’s stronger

bound [5]. To improve the bound, Aono considered the other modular polyno-
mial,

fLSBs1(x, y) = 1 + x(N + y) (mod e).

The roots of the polynomials are (x, y) = (�,−(p + q − 1)) which are the
same as fLSBs(x, y). To construct the basis matrix, Aono used shift-polynomials
gLSBs1
[u,i] , gLSBs2

[u,j] (x, y), and

gLSBs3
[u,k] (x, y) := ykfLSBs1(x, y)uem−uMm.

Shift-polynomials gLSBs3
[u,k] (x, y) modulo (eM)m have the same roots as the origi-

nal solutions, that is, gLSBs3
[u,k] (�,−(p + q − 1)) = 0 (mod (eM)m). Aono selected

shift-polynomials

gLSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gLSBs2
[u,j] (x, y) with u = 0, 1, . . . ,m, j = 1, 2, . . . , t,

gLSBs3
[u,k] (x, y) with u = t/(1 − 2β)� , t/(1 − 2β)� + 1, . . . , m,

k = t + 1, t + 2, . . . , �(1 − 2β)u�,
with t =

√
2(1 − 2β)(β − δ)m in the lattice bases. This selections of shift-

polynomials generate basis matrices which are not triangular. Aono bounded
the determinant of the lattice by computing Gram-Schmidt orthogonal bases.
The algorithm works provided that

2β2 − 3β + 2τ(β − δ) − δ + 1 > 0,

358 A. Takayasu and N. Kunihiro

when 1 + 2δ − 4β > 0. When δ = β, this yields Boneh and Durfee’s stronger
bound β < 1−1/

√
2. When 1+2δ−4β ≤ 0, Aono’s lattice construction becomes

the same as Blömer and May [4].

5.2 Our Observation of Aono’s Lattice Using Unravelled
Linearization

As we showed, the basis matrix constructed by Aono [1] is not triangular. How-
ever, we reveal that the basis matrix can be transformed into triangular with
linearization z = 1 + xy. The size of the root for the linearized variable z is
bounded by Z := 3N1/2+β .

Lemma 4. We define the polynomial order ≺ as

gLSBs1
[u,i] (x, y) ≺ gLSBs2

[u,j] (x, y) ≺ gLSBs3
[u,k] (x, y),

gLSBs1
[u,i] (x, y) ≺ gLSBs1

[u′,i′] (x, y), if u < u′ or u = u′, i < i′,

gLSBs2
[u,j] (x, y) ≺ gLSBs2

[u′,j′] (x, y), if u < u′ or u = u′, j < j′,

gLSBs3
[u,k] (x, y) ≺ gLSBs3

[u′,k′] (x, y), if u < u′ or u = u′, k < k′.

Ordered in this way, the basis matrix becomes triangular with diagonals XuY i ×
(eM)m−i for gLSBs1

[u,i] (x, y), XuY u+j(eM)m−u for gLSBs2
[u,j] (x, y), and Y kZu ×

em−uMm for gLSBs3
[u,k] (x, y).

The proof is written in the full version.

5.3 Our Lattice Constructions

In this section, we propose the improved algorithm for LSBs partial key exposure
attacks when 1+2δ−4β > 0. We change the shift-polynomials used in the lattice
bases. We use the shift-polynomial gLSBs1

[u,i] (x, y), and

gLSBs4
[u,k] (x, y) := ykfLSBs(x, y)u−�lLSBs(k)�fLSBs1(x, y)�lLSBs(k)�

×em−uMm−(u−�lLSBs(k)�),

where

lLSBs(k) = max
{

0,
k − 2(β − δ)m
1 + 2δ − 4β

}
.

Shift-polynomials gLSBs4
[u,k] (x, y) modulo (eM)m have the same roots as the orig-

inal solutions, that is, gLSBs4
[u,k] (�,−(p + q − 1)) = 0 (mod (eM)m). We selected

shift-polynomials

gLSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gLSBs4
[u,k] (x, y) with u = 0, 1, . . . ,m, k = 1, 2, . . . , �2(β − δ)m + (1 + 2δ − 4β)u�,

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 359

in the lattice bases. Though the selections generate basis matrices which are not
triangular, we partially apply the linearization z = 1 + xy and the basis matrix
can be transformed into triangular. In general, we reveal the following property.

Lemma 5. We define the polynomial order ≺ as

gLSBs1
[u,i] (x, y) ≺ gLSBs4

[u,k] (x, y),

gLSBs1
[u,i] (x, y) ≺ gLSBs1

[u′,i′] (x, y), if u < u′ or u = u′, i < i′,

gLSBs4
[u,k] (x, y) ≺ gLSBs4

[u′,k′] (x, y), if u < u′ or u = u′, k < k′.

Ordered in this way, the basis matrix becomes triangular with diagonals XuY i ×
(eM)m−i for gLSBs1

[u,i] (x, y), and Xu−�lLSBs(k)�Y u−�lLSBs(k)�+kZ�lLSBs(k)� ×em−u

Mm−(u−�lLSBs(k)�) for gLSBs4
[u,k] (x, y).

The proof is written in the full version.
Lemmas 4, 5 clarify the point of our improvements. When lLSBs(k) = 0,

gLSBs4
[u,k] (x, y) = gLSBs2

[u,k] (x, y). When lLSBs(k) > 0, the diagonals of gLSBs4
[u,k] (x, y)

in our basis matrices are smaller than that of gLSBs3
[u,k] (x, y) in Aono’s basis matri-

ces with respect to powers of M . Therefore, we can improve the bound when
shift-polynomials gLSBs4

[u,k] (x, y) with lLSBs(k) > 0 are used.
To maximize the solvable root bounds, our collection of shift-polynomials is

determined by the following lemma.

Lemma 6. Assume that there are shift-polynomials gLSBs4
[u,k] (x, y) for (u, k) =

(u′ + 1, k′ + 1), (u′ + 2, k′ + 2), . . . , (m,m − u′ + k′) in B. Shift-polynomials
gLSBs4
[u′,k′] (x, y) are helpful polynomials when u′ = 0, 1, . . . ,m, k′ = 1, 2, . . . , �2(β −

δ)m + (1 + 2δ − 4β)u�. Shift-polynomials gLSBs4
[u′,k′] (x, y) are unhelpful polynomials

when u′ = 0, 1, . . . ,m, k′ > 2(β − δ)m + (1 + 2δ − 4β)u′.

Proof. Consider the basis matrix B. We add a new shift-polynomial gLSBs4
[u′,k′] (x, y)

and construct the basis matrix B+. The value det(B+)/det(B) can be com-
puted as

det(B+)
det(B)

= Y k′
Zu′

em−u′
Mm ×

(
1
M

)u′

≈ N
1
2k′+(1

2+β)u′+m−u′+(β−δ)u′
.

This value is smaller than the size of the modulus (eM)m ≈ N (1+β−δ)m, when

j′ ≤ 2(β − δ)m + (1 + 2δ − 4β)u′.

That is, Lemma 6 is proved. ��
Note that Lemma 6 does not hold when 1 + 2δ − 4β < 0. Since our assumption
that there are shift-polynomials gLSBs4

[u,k] (x, y) for (u, k) = (u′ + 1, k′ + 1), (u′ +
2, k′ + 2), . . . , (m,m − u′ + k′) in B does not hold.

360 A. Takayasu and N. Kunihiro

We prove the bound of Theorem2. Ignoring low order terms of m, we compute
the dimension

n =
m∑

u=0

u∑
i=0

1 +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑
k=1

1 =
(

1
2

+ 2(β − δ) +
1 + 2δ − 4β

2

)
m2,

and the determinant of the lattice det(B) = XsXY sY ZsZeseMsM where

sX =
m∑

u=0

u∑
i=0

(u − i) =
1
3
m3,

sY =
m∑

u=0

u∑
i=0

i +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑
k=1

k

=
(

1
6

+ 2(β − δ)2 + (β − δ)(1 + 2δ − 4β) +
(1 + 2δ − 4β)2

6

)
m3,

sZ =
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑
k=1

u =
(

(β − δ) +
1 + 2δ − 4β

3

)
m3,

se =
m∑

u=0

u∑
i=0

(m − i) +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑
k=1

(m − u)

=
(

1
3

+ (β − δ) +
1 + 2δ − 4β

6

)
m3,

sM =
m∑

u=0

u∑
i=0

(m − i) +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑
k=1

(m − (u − lLSBs(k)�))

=
(

1
3

+ (β − δ) +
1 + 2δ − 4β

3

)
m3.

We can find solutions of fLSBs(x, y) = 0, fLSBs1(x, y) = 0 provided that
(det(B))1/n < (eM)m, that is,

2δ2 − 2(1 + β)δ + 2β2 − 2β + 1 > 0.

This condition yields the bound

δ <
1 + β −

√
−1 + 6β − 3β2

2
.

Therefore, the bound of Theorem2 is proved.

References

1. Aono, Y.: A new lattice construction for partial key exposure attack for RSA. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 34–53. Springer,
Heidelberg (2009)

Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound 361

2. Bauer, A., Vergnaud, D., Zapalowicz, J.-C.: Inferring sequences produced by
nonlinear pseudorandom number generators using Coppersmith’s methods. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
609–626. Springer, Heidelberg (2012)

3. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341–360. Springer, Heidelberg (2013)

4. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n0.292.
IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000)

6. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

7. Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: ANTS-X,
2012. IACR Cryptology ePrint Archive, Report 2011/437 (2011). http://eprint.
iacr.org/2011/437

8. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

9. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178–189. Springer, Heidelberg (1996)

10. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

11. Coppersmith, D.: Finding small solutions to small degree polynomials. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer, Heidelberg
(2001)

12. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004)

13. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

14. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: Proceedings of the USENIX Security Symposium
2008, pp. 45–60 (2008)

15. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010)

16. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

17. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

18. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
when do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 487–504. Springer, Heidelberg (2009)

http://eprint.iacr.org/2011/437
http://eprint.iacr.org/2011/437

362 A. Takayasu and N. Kunihiro

19. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

20. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, Michael J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

21. Kunihiro, N.: On optimal bounds of small inverse problems and approximate GCD
problems with higher degree. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012.
LNCS, vol. 7483, pp. 55–69. Springer, Heidelberg (2012)

22. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. IACR Cryptology ePrint Archive, Report 2014/513 (2014). http://
eprint.iacr.org/2014/513

23. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 180–197. Springer, Heidelberg (2013)

24. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

25. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

26. May, A.: Using LLL-reduction for solving RSA and factorization problems: a survey
(2010). http://www.cits.rub.de/permonen/may.html

27. Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

28. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012)

29. Sarkar, S., Sen Gupta, S., Maitra, S.: Partial key exposure attack on RSA –
improvements for limited lattice dimensions. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010)

30. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. In: Boyd, C., Simpson, L. (eds.) ACISP.
LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg (2013)

31. Takayasu, A., Kunihiro, N.: Cryptanalysis of RSA with multiple small secret expo-
nents. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 176–191.
Springer, Heidelberg (2014)

32. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. the-
ory 36(3), 553–558 (1990)

http://eprint.iacr.org/2014/513
http://eprint.iacr.org/2014/513
http://www.cits.rub.de/permonen/may.html

Solving the Discrete Logarithm of a 113-bit
Koblitz Curve with an FPGA Cluster

Erich Wenger(B) and Paul Wolfger

Institute for Applied Information Processing and Communications,
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
Erich.Wenger@iaik.tugraz.at, Paul.Wolfger@student.tugraz.at

Abstract. Using FPGAs to compute the discrete logarithms of elliptic
curves is a well-known method. However, until to date only CPU clusters
succeeded in computing new elliptic curve discrete logarithm records.
This work presents a high-speed FPGA implementation that was used
to compute the discrete logarithm of a 113-bit Koblitz curve. The core
of the design is a fully unrolled, highly pipelined, self-sufficient Pollard’s
rho iteration function. An 18-core Virtex-6 FPGA cluster computed the
discrete logarithm of a 113-bit Koblitz curve in extrapolated 24 days.
Until to date, no attack on such a large Koblitz curve succeeded using
as little resources or in such a short time frame.

Keywords: Elliptic curve cryptography · Discrete logarithm problem ·
Koblitz curve · Hardware design · FPGA · Discrete logarithm record

1 Introduction

It is possible to repeatedly fold a standard letter-sized sheet of paper at the
midway point about six to seven times. In 2012, some MIT students [28] were
able to fold an 1.2 Km long toilet paper 13 times. And every time the paper was
folded, the number of layers on top of each other doubled. Therefore, the MIT
students ended up with 213 = 8192 layers of paper on top of each other. And
poor Eve’s job was to manually count all layers one by one.

Similar principles apply in cryptography, althoughbigger numbers are involved.
In Elliptic Curve Cryptography (ECC), where �log2 n�-bit private keys are used,
Eve does not have to iterate through all possible n keys. Instead, Eve would use
the more efficient parallelizable Pollard’s rho algorithm that finishes in approxi-
mately

√
n steps. The omnipresent question is how big n has to be such that even

the most powerful adversaries are not able to reconstruct a private key. Especially
in embedded, cost-sensitive applications, it is important to use keys that are only
as large as necessary.

Discrete logarithms over elliptic curves were computed in the past [9,18] and
several experimental baselines were established. Since then, committees [3,6]
steadily increased the minimal n by simply applying Moore’s law. However, it is
necessary to practically compute discrete logarithms to check to which margin
the current standards hold.
© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 363–379, 2014.
DOI: 10.1007/978-3-319-13051-4 22

364 E. Wenger and P. Wolfger

The task of computing a discrete logarithm can be split into the work done
by researchers and the work done by machines. This paper presents both a novel
hardware architecture and the discrete logarithm of a 113-bit Koblitz curve. The
highly pipelined, high-speed, and practically extensively tested ECC Breaker
FPGA design was used to solve the discrete logarithm of a 113-bit Koblitz
curve in extrapolated1 24 days using mere 18 FPGAs. Therefore, ECC breaker
is the first FPGA design to be used to solve a large discrete logarithm. Fur-
ther, based on ECC Breaker it is even possible to compute discrete logarithms
of even larger binary-field elliptic curves. Substantiated by practical experimen-
tation, this paper will make a notable contribution to the community’s activity
of breaking larger elliptic curves and carving new standards.

This paper is structured as follows: Sect. 2 gives an overview on related work.
Section 3 revisits some mathematical foundations and Sect. 4 summarizes the
experiments with different iteration functions. The most suitable iteration func-
tion was implemented in hardware, which is described in Sect. 5. As the design
is flexible enough to attack larger elliptic curves, Sect. 6 gives runtime and cost
approximations. Section 7 summarizes the learned lessons and Sect. 8 concludes
the paper. Appendix A gives an overview of the targeted curve parameters and
pseudo-randomly chosen target points.

2 Related Work

Certicom [10] introduced ECC challenges in 1997 to increase industry accep-
tance of cryptosystems based on the elliptic curve discrete logarithm problem
(ECDLP). They published system parameters and point challenges for different
security levels. Since then, the hardest solved Certicom challenges are ECCp-
109 for prime-field based elliptic curves, done by Monico et al. using a cluster of
about 10,000 computers (mostly PCs) for 549 days, and ECC2-109 for binary-
field based elliptic curves, also done by Monico et al., computing on a cluster
of around 2,600 computers (mostly PCs) for around 510 days. Harley et al. [18]
solved an ECDLP over a 109-bit Koblitz-curve Certicom challenge (ECC2K-108)
with public participation using up to 9,500 PCs in 126 days.

As the Certicom challenges lie far apart (ECCp-131 is 2,048 times more com-
plex than ECCp-109), also self-generated challenges have been broken. A discrete
logarithm defined over a 112-bit prime-field elliptic curve was solved by Bos
et al. [9], utilizing 200 Playstation 3 s for 6 months. A single playstation reached
a throughput of 42 · 106 iterations per second (IPS). This work presents the
discrete logarithm of a 113-bit binary-field Koblitz curve that used 18 FPGAs
for extrapolated 24 days and reached a throughput of 165 · 106 iterations per
FPGA per second.

Further, several attempts and approximations were done in order to attack
larger elliptic curves using FPGAs. Dormale et al. [24] targeted ECC2-113,
ECC2-131, and ECC2-163 using Xilinx Spartan 3 FPGAs performing up to
20 ·106 IPS. Most promising is the work of Bailey et al. [5] who attempt to break
1 The attack actually run for 47 days but not all FPGAs were active at all times.

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 365

ECC2K-130 using Nvidia GTX 295 graphics cards, Intel Core 2 Extreme CPUs,
Sony PlayStation 3s, and Xilinx Spartan 3 FPGAs. Their FPGA implementa-
tion has a throughput of 33.7 · 106 IPS and was later improved by Fan et al. [12]
to process 111 · 106 IPS. Other FPGA architectures were proposed by Güneysu
et al. [16], Judge and Schaumont [20], and Mane et al. [21]. Güneysu et al.’s
Spartan 3 architecture performs about 173 · 103 IPS, Judge and Schaumont’s
Virtex 5 architecture executes 2.87 · 106 IPS, and Mane et al.’s Virtex 5 archi-
tecture does 660 · 103 IPS.

So far, none of their FPGA implementations have been successful in solving
ECDLPs. This work on the other hand presents a practically tested architecture
which can be used to attack both Koblitz curves and binary-field Weierstrass
curves.

3 Mathematical Foundations

To ensure a common vocabulary, it is important to revisit some of the basics.
Hankerson et al. [17] and Cohen et al. [11] shall be consulted for further details.

3.1 Elliptic Curve Cryptography

This paper focuses on Weierstrass curves that are defined over binary extension
fields K = F2m . The curves are defined as E/K : y2 +xy = x3 +ax2 +b, where a
and b are system parameters and a tuple of x and y which fulfills the equation is
called a point P = (x, y). Using multiple points and the chord-and-tangent rule,
it is possible to derive an additive group of order n, suitable for cryptography.
The number of points on an elliptic curve is denoted as #E(K) = h ·n, where n
is a large prime and the cofactor h is typically in the range of 2 to 8. The core
of all ECC-based cryptographic algorithms is a scalar multiplication Q = kP , in
which the scalar k ∈ [0, n − 1] is multiplied with a point P to derive Q, where
both points are of order n.

As computing Q = kP can be costly, a lot of research was done on the
efficient and secure computation of Q = kP . A subset of binary Weierstrass
curves, known as Koblitz curves (also known as anomalous binary curves), have
some properties which make them especially interesting for fast implementations.
They may make use of a map σ(x, y) = (x2, y2), σ(∞) = (∞), an automorphism
of order m known as a Frobenius automorphism. This means that there exists
an integer λj such that σj(P) = λjP . Another automorphism, which is not
only applicable to Koblitz curves, is the negation map. The negative of a point
P = (x, y) is −P = (n − 1)P = (x, x + y).

3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

The security of ECC lies in the intractability of the ECDLP: Given the two
points Q and P , connected by Q = kP , it should be practically infeasible to
compute the scalar 0 ≤ k < n. As standardized elliptic curves are designed

366 E. Wenger and P. Wolfger

such that neither the Pohlig-Hellman attack [25], nor the Weil and Tate pairing
attacks [13,23], nor the Weil descent attack [15] apply, the standard algorithm
to compute a discrete logarithm is Pollard’s rho algorithm [26].

The main idea behind Pollard’s rho algorithm is to define an iteration func-
tion f that defines a random cyclic walk over a graph. Using Floyd’s cycle-finding
algorithm, it is possible to find a pair of colliding triples, each consisting of a
point Xi and two scalars ci and di. As X1 = X2 = c1P + d1Q = c2P + d2Q
and (d2 − d1)Q = (d2 − d1)kP = (c1 − c2)P , it is possible to compute k =
(c1 − c2)(d2 − d1)−1 mod n. Pollard’s rho algorithm expects to encounter such
a collision after

√
πn
2 steps.

In order to parallelize the attack efficiently, Van Oorschot and Wiener [30]
introduced the concept of distinguished points. Distinguished points are a subset
of points, which satisfy a particular condition. Such a condition can be a specific
number of leading zero digits of a point’s x-coordinate or a particular range
of Hamming weights in normal basis. Those distinguished points are stored in
a central database, but can be computed in parallel. The number of instances
running in parallel is linearly proportional to the achievable speedup. Note that
each instance starts with a random starting triple and uses one of the iteration
functions f which are discussed in the following section.

4 Selecting the Iteration Function

As the iteration function will be massively parallelized and synthesized in hard-
ware, it is crucial to evaluate different iteration functions and select the most
suitable one. In this work, the iteration functions by Teske [29], Wiener and
Zuccherato [31], Gallant et al. [14], and Bailey et al. [4] were checked for their
practical requirements and achievable computation rates. Table 1 summarizes
the experiments done in software on a 41-bit Koblitz curve.

What all iteration functions have in common is that they update a state,
henceforth referred to as triple, consisting of two scalars ci, di ∈ [0..n − 1] and a
point Xi = ciP+diQ. An iteration function f deterministically computes Xi+1 =
f(Xi) and updates ci+1 and di+1 accordingly, such that Xi+1 = ci+1P + di+1Q
holds. A requirement on f is that it should be easily computable and to have
the characteristics of a random function.

Teske’s r-adding walk [29] is a nearly optimal choice for an iteration func-
tion. It partitions the elliptic curve group into r distinct subsets {S1, S2, ..., Sr}
of roughly equal size. If a point Xi is assigned to Sj , the iteration function com-
putes f(Xi) = Xi + R[j], with R[] being an r-sized table consisting of linear
combinations of P and Q. After approximately

√
πn
2 steps, Teske’s r-adding

walk finds two colliding points for all types of elliptic curves.
The Frobenius automorphism of Koblitz curves can not only be used to

speedup the scalar multiplication, but also to improve the expected runtime
of a parallelized Pollard’s rho by a factor of

√
m. Wiener and Zuccherato [31],

Gallant et al. [14], and Bailey et al. [4] proposed iteration functions which should
achieve this

√
m-speedup.

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 367

Table 1. Implementation results of all tested iteration functions.

Reference Iteration function Expected Measured
iterations iterations

Teske [29] f(Xi) = Xi + R[j] 929 · 103 906 · 103

Wiener and Zuccherato [31] f(Xi) = min
0≤l<m

{

σl(Xi + R[j])
}

145 · 103 147 · 103

Gallant et al. [14] f(Xi) = Xi + σl(Xi) 145 · 103 166 · 103

Bailey et al. [4] f(Xi) = Xi + σ(l mod 8)+3(Xi) 145 · 103 183 · 103

Wiener and Zuccherato [31] proposed to calculate f(Xi) = σl(Xi+R[j]) ∀ l ∈
[0,m− 1] and choose the point, which has the smallest x-coordinate when inter-
preted as an integer. Gallant et al. [14] introduced an iteration function based
on a labeling function L, which maps the equivalence classes defined by the
Frobenius automorphism to some set of representatives. The iteration function
is then defined as f(Xi) = Xi+σl(Xi), where l = hashm(L(Xi)). Bailey et al. [4]
suggested to compute f(Xi) = Xi + σ(l mod 8)+3(Xi) to reduce the complexity
of the iteration function.

Additionally to the Frobenius automorphism, it is possible to use a negation
map to improve the expected runtime by a factor of

√
2. The negation map

compares Xi with −Xi and selects the point with the smaller y-coordinate when
interpreted as an integer. Although the potential speed-up seems very promising,
there is an unfortunate challenge associated with the negation map; the problem
of fruitless cycles which is discussed in Sect. 7.

In order to make sure that the potential iteration functions work as promised,
a 41-bit Koblitz curve was used to evaluate the iteration functions with a C
implementation on a PC (cf. Table 1). As labeling function L, the Hamming
weight of the x-coordinate in normal basis was used. The hash function was dis-
regarded. Table 1 summarizes the average number of iterations (computing 100
ECDLPs) of all tested iteration functions using four parallel threads. The exper-
iments showed that the average number of iterations of Gallant’s and Bailey’s
iteration functions are 13-24 % higher compared to the iteration function by
Wiener and Zuccherato. Additionally, with a probability of 14-20 % some of the
parallel threads produced identical sequences of distinguished points. Restarting
the threads regularly or on-demand would counter this problem. Not countering
the problem of fruitless threads would increase the average runtime of Gallant’s
iteration function by another 29 %.

As Wiener and Zuccherato’s iteration function achieved the best speed and
does not have the problem of fruitless threads, it was chosen to be implemented
in hardware. Additionally, by leaving out the automorphism, the hardware can
be used to attack general binary-field Weierstrass curves as well.

368 E. Wenger and P. Wolfger

5 ECC Breaker Hardware

Before the actual hardware architecture and its most critical components are
discussed, it is important to review the basic design assumptions and core ideas
of the ECC Breaker design.

5.1 Basic Assumptions and Decisions

ASIC Vs FPGA Design. In literature it is possible to find a lot of FPGA and
ASIC designs optimized for some crucial characteristic. Some authors even dare
to compare FPGA and ASIC results. However, several of the largest components
in ASIC designs, e.g., registers, RAM, or integer multipliers, are for free in an
FPGA design. For instance, every slice comes with several registers. Therefore,
adding pipeline stages in a logic-heavy FPGA design is basically for free. For
this paper, Xilinx Virtex-6 ML605 evaluation boards were chosen because of
availability. Note that all following design decisions were made to maximize the
performance of ECC Breaker on this particular board.

Design Goals. As Pollard’s rho algorithm is perfectly parallelizeable, the design
goal clearly is to maximize the throughput per (given) area. Note that the speed
(iterations per seconds) of an attack is linearly proportional to the throughput
and inversely proportional to the chip area (more instances per FPGA also
increase the speed). Therefore, the most basic design decision was whether to go
for many small or a single large FPGA design.

Core Idea. In earlier designs, many area-efficient architectures were consid-
ered, each coming with a single F2m multiplier, F2m squarer, and F2m adder
per instance. The main problems of these designs were the costly multiplexers
and the low utilization of the hardware. Therefore the design principle of ECC
Breaker is a single, fully unrolled, fully pipelined iteration function. In order to
keep all pipeline stages busy, the number of pipeline stages equals the amount of
triples processed within ECC Breaker.

ECC Breaker Versus Related Work. (i) In the current setup, the interface
between ECC Breaker and desktop is a simple, slow, serial interface. This might
be a challenge for related implementations but not for ECC Breaker. The imple-
mented iteration function does not require mechanisms to detect fruitless cycles
or threads and the on-chip distinguished points (triple) storage assures that only
distinguished triples have to be read. (ii) The proposal by Fan et al. [12] to per-
form simultaneous inversion and therefore save some finite-field multipliers was
not picked because their proposal introduces many multiplexers and a complex
control logic, and might not fully utilize the available hardware. (iii) Further,
ECC Breaker stands on its own by coming with prime field Fn arithmetic which
has only a minor impact on the size of the hardware (< 3 %). Additionally,
it proved indispensable during development that the generated distinguished
triples could be easily verified.

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 369

ECC Breaker

 NextInput

Iteration
Function

Point Addition

Point
Automorphism

FIFO

 adder

 multiplier

FIFOFIFO

Xi ci di

Xi+1 ci+1 di+1

Branching
Table multiplier

 squarer

 inverter

 adder

 multiplier

Interface

Distinguished
Point Storage

Lambda
Table

F2m

F2m

F2m

Fn Fn

Fn Fn

Fig. 1. Top-level view of ECC breaker on the left. Iteration Function on the right.

Generalization of ECC Breaker. Although the current version of ECC
Breaker is carefully optimized for a 113-bit binary-field Koblitz curve, the under-
lying architecture and design approach is also suitable for larger elliptic curves,
e.g., a 131-bit Koblitz curve. In Sect. 6, approximations of the expected runtimes
and potential costs to attack such a larger curve are given.

5.2 The Architecture

The basic architecture of ECC Breaker is presented in Fig. 1. The core of ECC
Breaker is a circular, self-sufficient, fully autonomous iteration function. A (poten-
tially slow) interface is used to write the NextInput register. If the current stage
of the pipeline is not active, the pipeline is fed with the triple from the NextInput
register. This is done until all stages of the pipeline process data. If a point is distin-
guished, it is automatically added to the distinguished point storage (a sufficiently
large block RAM). At periodic but time-insensitive intervals the host computer
can read all distinguished points that accumulated within the storage.

The iteration function itself consists of several components: a point addition
module, a point automorphism module, two Fn adders, two Fn multipliers, two
block-RAM based tables and several block-RAM based FIFOs to care for data-
dependencies.

5.3 ECC Breaker Components

Point Addition Module. No matter which iteration function is selected, an
affine point addition module is always necessary. In the case of binary Weierstrass
curves, the formulas for a point addition (x3, y3) = (x1, y1) + (x2, y2) are x3 =
μ2 +μ+x1 +x2 +a and y3 = μ(x1 +x3)+x3 +y1, with μ = (y1 +y2)/(x1 +x2).
Special cases of points being equivalent, inverse of each other, or the identity are
not handled by the hardware as they are very unlikely to occur in practice.

370 E. Wenger and P. Wolfger

y1 y2 x1x2

ADD ADD

FIFO

FIFO

ADD

a

FIFO
FIFO INV

MUL

SQU

MUL

ADD

ADD

FIFO

ADD

x3y3

Fig. 2. Simplified point addition mod-
ule. The grey shaded blocks are with-
out registers.

comparator tree

x y

rot 0 rot 1 rot 2 rot 3

C N C N

FIFO

BARREL
ROTATE

N CN C

FIFO

x' y'

...

Fig. 3. Point automorphism unit with
m comparator units.

Figure 2 shows the implemented point addition module which directly maps
the formulas from above. Two F2m multiplier, one F2m inverter, and five FIFOs
are necessary to compute a point addition in 184 cycles. Note that it is not
possible to get rid of the costly inversion as the result of the point addition must
be available in affine coordinates (cf. [24]).

Point Automorphism Module. In order to speed-up Pollard’s rho algorithm
for Koblitz curves, it is necessary to uniquely map m points from the same
equivalence class to a single point. As ECC Breaker follows Wiener and Zuccher-
ato’s [31] approach of interpreting the field elements as integers and comparing
them, it was necessary to design a module that does m squarings and m compar-
isons as efficiently as possible. This module relies on normal basis representation
and is depicted in Fig. 3. It converts x and y into normal basis, finds the smallest
x within the normal basis, rotates y appropriately, and transforms x and y back
into a canonical polynomial representation. As the m exponents of x (x(2i)) are
computed by simple rewiring (x rotated by i steps), and the smallest x is found
using a binary comparison tree, no canonical F2m squarer is needed.

As optimization, only the t = 70 most significants bits of x are compared.
This means that if two numbers with t equivalent most significant bits are com-
pared, no unique minimum is found. However, the probability for that is only
2−t. For i =

√
πn
2m iterations and m · i comparisons, the probability for not

selecting the smaller value is only 1 − (1 − 2−t)m·i = 0.00081 for m = 113.

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 371

In respect to the overall design, the point automorphism module requires
14 % of all slices and is about 5.6 times smaller than the point addition module
(in terms of slices). The majority of the point automorphism module is the
comparator tree. The basis transformations are fairly cheap and make up only
20 % of the point automorphism module.

F2m inverse. An Euclidean-based inversion algorithm is not deterministic and
therefore hard to compute with a pipelined hardware module. Therefore, ECC
Breaker computes the inverse using Fermat’s little theorem; an inversion by
exponentiation. Fortunately, an exponentiation with 2m−2 can be computed very
efficiently using Itoh and Tsujii’s [19] exponentiation trick, needing 112 squarers
and 8 multipliers for m = 113: a = a21−1 → a22−1 → a23−1 → a26−1 → a27−1 →
a214−1 → a228−1 → a256−1 → a2112−1 → a2113−2 = a−1.

F2m normal basis. The advantage of a normal basis is that a squaring is a
simple rotation operation. The disadvantage of a normal basis is that a F2m

multiplication is fairly complex to compute. ECC breaker uses per default a
normal, canonical polynomial representation.

Only within the point automorphism module the normal basis rendered
advantageous. The necessary matrix multiplication for a basis transformation
can be implemented very efficiently. As the matrix is constant, on average m/2
of the input signals are xored per output signal. Based on the results from
Table 2, 666 LUTs are needed per basis transformation.

Experiments show that the normal basis could also reduce the area of the
consecutive squaring units within the F2m inverse. The 14, 28, and 56 squarers
currently need 1 582, 3 164, and 6 328 LUTs, respectively. Doing two basis trans-
formations and a rotation within normal basis would actually save area. Also,
accumulating the two transformation matrices into a single matrix would further
reduce the area. However, as all squarers together only need 11 % of all slices and
10 % of all LUTs, the potential area improvement is rather limited. Therefore,
contrary to [5,12], ECC Breaker only uses a normal basis number representation
within the point automorphism module.

F2m multiplier. As in total ten F2m multipliers are needed for the point addi-
tion module and the F2m inversion module, the F2m multipliers have the largest
effect on the area footprint of the ECC Breaker design. For ECC Breaker, the fol-
lowing multiplier designs on a Virtex-6 FPGA were evaluated (post-synthesis):
(i) A simple 113-bit parallel polynomial multiplier needs 5,497 LUTs. (ii) A Mas-
trovito multiplier [22] interprets the F2m multiplication as matrix multiplication
and performs both a polynomial multiplication and the reduction step simulta-
neously. Unfortunately, it needs 7,104 LUTs. A polynomial multiplication and
reduction with the used pentanomial can be implemented much more efficiently.
(iii) Bernstein [7] combines some refined Karatsuba and Toom recursions for his
batch binary Edwards multiplier. The code from [8] for a 113-bit polynomial
multiplier needs 4,409 LUTs. (iv) Finally, the best results were achieved with a
slightly modified binary Karatsuba multiplier, described by Rodrıguez-Henrıquez
and Koç [27]. Their recursive algorithm was applied down to a 16 × 16-bit

372 E. Wenger and P. Wolfger

Table 2. Hierarchical representation of final hardware design (post place-and-route).

Entity Instances Cycles Registers LUTs Slices

1pot 58,784 62,655 100%
iteration function 1 210 57,332 60,826 98%

point addition 1 184 35,691 43,177 79%
F2m inverse 1 168 29,809 35,126 65%
F2m multiplier 8 7 14,958 28,273 51%
F2m squarer 112 1 12,543 6,325 11%

F2m multiplier 2 7 3,738 7,127 13%
point automorphism 1 16 15,189 14,372 14%

comparator tree 1 7 13,238 10,529 10%
basis transformation 4 1 452 2,664 3%

Fn multiplier 2 26 3,650 2,000 2%
Fn adder 2 9 1,308 1,051 1%

multiplier level, which is synthesized as standard polynomial multiplier. The
formulas for the resulting multiplier structure are given in Appendix B. The
design only requires 3,757 LUTs. At last the design was equipped with several
pipeline stages such that it can be clocked with high frequencies.

F2m multiplier. Computing prime-field multiplications in hardware can be a
troublesome and very resource-intensive task. In the case of a Virtex-6, dedi-
cated DSP slices were used for integer multiplications. As a result, the two Fn

multipliers are very resource efficient, requirering only 2 × 145 DSP slices and
2 % of all slices.

6 Results and Transferability of Results

The construction of the current ECC Breaker design was an iterative process that
continuously optimized the speed, the area, and the power consumption of all
components. To make maximal use of the available resources, the available block
RAMs and DSP slices were used whenever possible. Table 2 gives the number of
registers and LUTs needed for all components of a 113-bit Koblitz-curve ECC
Breaker design. The design was synthesized and mapped with Xilinx ISE 14.6.

ECC Breaker requires (post place-and-route) 47 % of all available slices
(17,782/37,680), 41 % of all LUTs (62,657/150,720), 19 % of all registers (58,788/
301,440), 37 % of all DSP macros (290/768), and less than 10 % of all block
RAMs. The biggest components are the point addition module and the F2m

inverse module. Although already extensively optimized, the 10 F2m multipli-
ers require about 64 % of all slices. As the place-and-route tool performs opti-
mizations across module borders, the slice counts of all components are just
approximations.

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 373

Table 3. ECC Breaker on different FPGAs (post synthesis).

Series Part Number LUTs of total Registers max Freq. Develop. Price
[MHz] Kit [USD]

Point Addition w/o Automorphism

Virtex-6 XC6VLX240T 57,294 38% 37,060 261 ML605 2,495
Spartan-6 XC6SLX150T 57,686 62% 37,715 147 LX150T 995

Point Addition w/ Automorphism

Virtex-6 XC6VLX240T 86,409 57% 55,881 261 ML605 2,495
Artix-7 XC7A200T 86,478 64% 55,848 264 AC701 999
Virtex-7 XC7VX485T 86,391 28% 55,704 313 VC707 3,495
Kintex-7 XC7K325T 86,391 42% 55,704 313 KC705 1,695

6.1 ECC Breaker on Different FPGAs

As the VHDL code is portable, the suitability of ECC Breaker was also evaluated
for other Xilinx FPGAs. Although size was a secondary optimization goal, ECC
Breaker has been designed for a particular Virtex-6 FPGA. So it does not come
with surprise that ECC Breaker does only fit into certain FPGAs that come with
certain features. For instance, the used ML605 development board incorporates
a Virtex-6 FPGA that comes with 768 DSPs (of which 290 are used).

An overview of synthesis results on different FPGAs is given in Table 3.
Fortunately, the ECC Breaker design is perfectly suitable for all kind of the lat-
est Xilinx Virtex-7 (targets high performance designs), Kintex-7 (targets best
performance per cost), and Artix-7 (low cost) FPGA devices. The Virtex-7 and
Kintex-7 development boards can even fit multiple ECC Breaker instances. How-
ever, the Kintex-7 KC705 development board fits the most instances per cost.
The prices, taken from www.avnet.com [1], do not contain taxes and do not
contain potential bulk discounts.

Also smaller FPGAs were considered. Especially the Spartan-6 LX150T-
series is of special interest as they are part of SciEngines RIVYERA’s S6-LX150
FPGA cluster [2]. Unfortunately, Spartan-6 FPGAs come with 180 DSPs at
maximum and therefore the LX150T could be only used to attack non-Koblitz
binary-field curves.

6.2 Expected Runtimes

Using the synthesis results from Table 3, several performance approximations of
different elliptic-curve targets were performed (cf. Table 4). Note that the results
are very optimistic as they are post-synthesis, the FPGAs are running at the
maximum frequency, and a single FPGA contains multiple instances of ECC
Breaker.

Computing a discrete logarithm of a 113-bit Koblitz curve (denoted as
ECC2K-112) can be done in about 3 days, when a cluster of 256 Spartan-6
FPGAs would be available. With the same cluster, it would be possible to attack
a 113-bit binary-field curve (denoted as ECC2-112) in 28 days.

www.avnet.com

374 E. Wenger and P. Wolfger

Table 4. Approximations of best-case runtimes and costs for different targets.

Series Target Freq. Inst- FPGAs Costs Iterations exp. Runt.
[MHz] ances [103 USD] [days]

Virtex-6 ECC2K-112 261 1 17 42 8.5 · 1015 22
Spartan-6 ECC2K-112 147 1 256 255 8.5 · 1015 3

Virtex-6 ECC2-112 261 2 17 42 90.3 · 1015 118
Spartan-6 ECC2-112 147 1 256 255 90.3 · 1015 28

Kintex-7 ECC2K-130 313 2 590 1,000 4,055.4 · 1015 127
Kintex-7 ECC2-131 313 2 5,900 10,001 46,239.1 · 1015 145
Kintex-7 ECC2-163 313 1 589,971 1,000,001 3,030.3 · 1021 189,934

The Certicom challenge ECC2K-130 targeted by Bailey et al. [5] and Fan
et al. [12] can be computed in 127 days, assuming a budget of one million USD.
The Certicom challenge ECC2-131 can be computed in 145 days, assuming a
budget of ten million USD. Targeting the smallest standardized NIST curve B-
163 would take 520 years, assuming a budget of one billion USD, which would be
a reasonable budget of certain agencies. However, if there were one billion USD
to be spent, it would be more reasonable to go for a dedicated ASIC design.

7 Lessons Learned

After spending months of research time on continuously improving the ECC
Breaker design, there are some important insights that need to be discussed.

Maximum Achievable Frequency. As ECC Breaker is a fairly complex and
large design, the hardware synthesizer reached its limit when it comes to max-
imum frequency approximations. In most cases, it was only possible to reach a
fraction of the theoretically given frequency after mapping and routing.

Limited by Power Consumption. However, it was not even possible to run
the ML605 development boards at maximum post-map-and-route frequency. An
average power consumption of about 12 A at the internal power supply resulted in
a sporadic emergency switch-off with which the power controller protected itself.
This is rather strange, considering that the internal power supply is designed to
support 20 Ampere. Therefore it was necessary to reduce the clock frequency
further in order to achieve a stable operation. Finally, ECC Breaker was run-
ning at 165 MHz even though the synthesizer approximated a maximum clock
frequency of 275 MHz.

Multiple Instances per FPGA. It was previously mentioned that some
FPGAs fit multiple ECC Breaker instances. However, it has yet to be tested

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 375

whether two ECC Breaker instances per FPGA at lower clock frequency out-
perform a single instance, clocked with a higher frequency. Especially under
consideration of the previously discussed routing and power problems, multiple
ECC Breaker instances per FPGA might not be feasible.

Fruitless Cycles. An initial implementation made use of a negation map.
However, the possibility of a fruitless cycle in which Xi+1 = f(Xi) = Xi +
R[j] − R[j] = Xi rendered the hardware implementation with negation map
useless. The probability that a fruitless cycle occurs is p = 1

2·m·r , r being the
number of branches and m the size of the automorphism. The probability to
encounter a fruitless cycle after i iterations is 1− (1−p)i. Given 1,024 branches,
an automorphism of size 113, and a clock rate of 165 MHz, the iteration function
was trapped in a cycle with a probability of 99 % after less than one second. It is
subject to future research how to efficiently get rid of the fruitless-cycle problem
in a fully pipelined hardware design.

8 Conclusion

This work presents a circular, self-sufficient, highly pipelined, fully autonomous
hardware design that was used to practically compute the discrete logarithm of
a 113-bit Koblitz curve within extrapolated 24 days on mere 18 Virtex-6 FPGAs.
However, because of the scalability and adaptability of ECC Breaker, even more
complex results can be expected. This work will bring the community one step
closer to solving the ECC2K-130 challenge.

Acknowledgments. The authors are really grateful to Wolfgang Kastl and Jürgen Fuß
from the University of Applied Sciences Upper Austria who provided sixteen ML605
boards and continuously supported us and the authors would like to thank the reviewers
for their helpful comments.

This work has been supported in part by the Austrian Government through the
research program FIT-IT under the project number 835917 (project NewP@ss), by the
European Commission through the FP7 program under project number 610436 (project
MATTHEW), and the Secure Information Technology Center-Austria (A-SIT).

A Targeted Curve and Target Point Pair Selection

The selection of the curve parameters for a 113-bit Koblitz curve are quite
straightforward. However, to proof that the discrete logarithm was actually com-
puted without knowing it in advance, a point generation function was needed.
The Sage code in Listing 1.1 was used to deterministically and pseudo-randomly
generate two points with order n using Sage 5.12. As P and Q are gener-
ated pseudo-randomly, their discrete logarithm is unknown. The Sage script
also checks the point orders and the validity of the computed result. Table 5
summarizes all parameters needed for the discrete logarithm computation.

376 E. Wenger and P. Wolfger

Table 5. Curve parameters of targeted 113-bit elliptic curve.

m 113
irreducible polynomial x113 + x5 + x3 + x2 + 1
irreducible polynomial 0x2000000000000000000000000002d

elliptic curve yE 2 + xy = x3 + ax2 + b
curve parameter a 1
curve parameter b 1
order n 0xfffffffffffffffdbf91af6dea73

cofactor h 2
point P.x 0x0a27644cfced9667d2084f8be061c

point P.y 0x0d5acd887d5585dd75c5d07165699

point Q.x 0x189037f88aed8e32400b16d2b1a6e

point Q.y 0x00e4718fb1e9f50f845ff162ff59c

scalar k such that Q = kP 0x276c233740d817000b80478fde46

B Binary Karatsuba F2113 Multiplier

Algorithm 1 gives the top-level F2113 multiplier formulas. KS64, KS32, and KS16
are 64-bit, 32-bit, and 16-bit binary Karatsuba multipliers, respectively.

Algorithm 1. Calculate c = a × b, with a, b being m-bit binary polynomials.
Input: a, b
Output: c = a × b
1: mab1 ← (a[112..64] ⊕ a[63..0]) × (b[112..64] ⊕ b[63..0]) � KS64
2: cl1 ← a[63..0] × b[63..0] � KS64
3: cl2 ← a[95..64] × b[95..64] � KS32
4: cl3 ← a[111..96] × b[111..96] � KS16
5: mab2 ← (a[95..64] ⊕ a[111..96]) × (b[95..64] ⊕ b[111..96]) � KS32

6: ma3 ← b[112] × a[111..96]
7: mb3 ← a[112] × b[111..96]
8: m3 ← ma3 ⊕ mb3

9: c3[32] ← a[112] × b[112]
10: c3[30..0] ← cl3
11: c3[31..16] ← c3[31..16] ⊕ m3

12: m2 ← mab2 ⊕ cl2 ⊕ c3
13: c2[62..0] ← cl2
14: c2[97..64] ← c3
15: c2[94..32] ← c2[94..32] ⊕ m2

16: m1 ← mab1 ⊕ cl1 ⊕ c2
17: c[126..0] ← cl1
18: c[225..128] ← c2
19: c[190..64] ← c[190..64] ⊕ m1

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 377

Listing 1.1. Sage code to verify P , Q, and Q = kP .

m=113

a=1

b=1

h=2 n=0 xfffffffffffffffdbf91af6dea73

k=0 x276c233740d817000b80478fde46 FF =

sage.rings.finite_rings.finite_field_ext_pari .\

FiniteField_ext_pari;

K = FF(2**m,’x’)

x=K.gen()

E = EllipticCurve(K, [1,a,0,0,b])

def str_to_poly(str):

I=Integer(str , base =16)

v=K(0)

for i in range(0,K.degree ()):

if (I >> i) & 1 > 0:

v = v + x^i

return v

def poly_to_str(poly):

vec=poly._vector_ ()

string =""

for i in range(0,len(vec)):

string = string + str(vec[len(vec) - i - 1])

return hex(Integer(string , base =2))

import hashlib

PX = str_to_poly(hashlib.sha256(str (0)). hexdigest ())

PY=PolynomialRing(K, ’PY’).gen()

P_ROOTS = (PY^2+PX*PY+PX^3+a*PX^2+b).roots ()

P=E([PX ,P_ROOTS [0][0]]); P=P*h

QX = str_to_poly(hashlib.sha256(str (1)). hexdigest ())

Q_ROOTS = (PY^2+QX*PY+QX^3+a*QX^2+b).roots ()

Q=E([QX ,Q_ROOTS [0][0]]); Q=Q*h

print ’P.x:’, poly_to_str(P[0])

print ’P.y:’, poly_to_str(P[1])

print ’Q.x:’, poly_to_str(Q[0])

print ’Q.y:’, poly_to_str(Q[1])

print k*P==Q, is_prime(n), (n*P). is_zero(), (n*Q). is_zero ()

378 E. Wenger and P. Wolfger

References

1. Avnet Inc, Feb 2014. http://www.avnet.com/
2. SciEngines GmbH, Feb 2014. http://www.sciengines.com/
3. Babbage, S., Catalano, D., Cid, C., de Weger, B., Dunkelman, O., Gehrmann, C.,

Granboulan, L., Güneysu, T., Hermans, J., Lange, T., Lenstra, A., Mitchell, C.,
Näslund, M., Nguyen, P., Paar, C., Paterson, K., Pelzl, J., Pornin, T., Preneel, B.,
Rechberger, C., Rijmen, V., Robshaw, M., Rupp, A., Schläffer, M., Vaudenay, S.,
Vercauteren, F., Ward. M.: ECRYPT II yearly report on algorithms and keysizes
(2011–2012). http://www.ecrypt.eu.org/ Sep 2012

4. Bailey, D.V., Baldwin, B., Batina, L., Bernstein, D.J., Birkner, P., Bos, J.W.,
van Damme, G., de Meulenaer, G., Fan, J., Güneysu, T., Gurkaynak, F., Kleinjung,
T., Lange, T., Mentens, N., Paar, C., Regazzoni, F., Schwabe, P., Uhsadel, L.: The
certicom challenges ECC2-X. IACR cryptology ePrint archive, Report 2009/466
(2009)

5. Bailey, D.V., Batina, L., Bernstein, D.J., Birkner, P., Bos, J.W., Chen, H.-C.,
Cheng, C.-M., van Damme, G., de Meulenaer, G., Perez, L.J.D., Fan, J., Güneysu,
T., Gurkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar,
C., Regazzoni, F., Schwabe, P., Uhsadel, L., Herrewege, A.V., Yang. B.-Y.: Break-
ing ECC2K-130. IACR cryptology ePrint archive, Report 2009/541 (2009)

6. Barker, E., Roginsky, A.: Recommendation for cryptographic key generation. NIST
Spec. Publ. 800, 133 (2012)

7. Bernstein, D.J.: Batch binary edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 317–336. Springer, Heidelberg (2009)

8. Bernstein, D.J.: Binary Batch Edwards 113-bit Multiplier (May 2009). http://
binary.cr.yp.to/bbe251/113.gz

9. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using
sloppy reduction. Int. J. Appl. Crypt. 2(3), 212 (2012)

10. Certicom Research: The Certicom ECC Challenge (Nov 1997). https://www.
certicom.com/index.php/the-certicom-ecc-challenge

11. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography: Discrete
Mathematics and its Applications. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman and Hall/CRC, Boca Raton (2006)

12. Fan, J., Bailey, D.V., Batina, L., Güneysu, T., Paar, C., Verbauwhede, I.: Break-
ing elliptic curve cryptosystems using reconfigurable hardware. In: Field Program-
mable Logic and Applications (FPL), pp. 133–138. IEEE (2010)

13. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Math. Comput. 62(206), 865–874 (1994)

14. Gallant, R., Lambert, R., Vanstone, S.: Improving the parallelized Pollard lambda
search on anomalous binary curves. Math. Comput. Am. Math. Soc. 69(232), 1699–
1705 (2000)

15. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of weil
descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002)

16. Güneysu, T., Paar, C., Pelzl, J.: Attacking elliptic curve cryptosystems with
special-purpose hardware. In: FPGA, pp. 207. ACM Press (2007)

17. Hankerson, D., Vanstone, S., Menezes, A.J.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

http://www.avnet.com/
http://www.sciengines.com/
http://www.ecrypt.eu.org/
http://binary.cr.yp.to/bbe251/113.gz
http://binary.cr.yp.to/bbe251/113.gz
https://www.certicom.com/index.php/the-certicom-ecc-challenge
https://www.certicom.com/index.php/the-certicom-ecc-challenge

Solving the Discrete Logarithm of a 113-bit Koblitz Curve 379

18. Harley, R.: Elliptic curve discrete logarithms: ECC2K-108 (2000). http://cristal.
inria.fr/harley/ecdl7/readMe.html

19. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

20. Judge, L., Schaumont, P.: A flexible hardware ECDLP engine in bluespec. In:
Special-Purpose Hardware for Attacking Cryptographic Systems (SHARCS) (2012)

21. Mane, S., Judge, L., Schaumont, P.: An integrated prime-field ECDLP hardware
accelerator with high-performance modular arithmetic units. In: Reconfigurable
Computing and FPGAs, pp. 198–203. IEEE, Nov. 2011

22. Mastrovito, E.D.: VLSI designs for multiplication over finite fields GF(2m), pp.
297–309. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
(1988)

23. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. Trans. Inf. Theory 39(5), 1639–1646 (1993)

24. Meurice de Dormale, G., Bulens, P., Quisquater, J.-J.: Collision search for elliptic
curve discrete logarithm over GF(2m) with FPGA. In: Paillier, P., Verbauwhede,
I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 378–393. Springer, Heidelberg (2007)

25. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. Trans. Inf. Theory 24(1), 106–110
(1978)

26. Pollard, J.M.: A monte carlo method for factorization. BIT Numer. Math. 15(3),
331–334 (1975)

27. Rodrıguez-Henrıquez, F., Koç, Ç.: On fully parallel karatsuba multipliers for
GF(2m), pp. 405–410. In Computer Science and Technology (2003)

28. Stier, C.: Students break record by folding toilet paper 13 times. http://www.
newscientist.com/blogs/nstv/2012/01/paper-folding-limits-pushed.html. Jan 2012

29. Teske, E.: Speeding up pollard’s rho method for computing discrete logarithms. In:
Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 541–554. Springer, Heidelberg
(1998)

30. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

31. Wiener, M., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

http://cristal.inria.fr/harley/ecdl7/readMe.html
http://cristal.inria.fr/harley/ecdl7/readMe.html
http://www.newscientist.com/blogs/nstv/2012/01/paper-folding-limits-pushed.html.
http://www.newscientist.com/blogs/nstv/2012/01/paper-folding-limits-pushed.html.

Author Index

Albertini, Ange 1
Aranha, Diego F. 20, 324
Augot, Daniel 243
Aumasson, Jean-Philippe 1

Bernstein, Daniel J. 38, 92
Biham, Eli 59
Biryukov, Alex 77

Carmeli, Yaniv 59
Chou, Tung 92
Cogliani, Simon 112
Cogliati, Benoit 129

Dinur, Itai 147
do Canto, Rodrigo Portella 112
Dobraunig, Christoph 165

Eichlseder, Maria 1
Eisenträger, Kirsten 183

Fan, Junfeng 261
Fouque, Pierre-Alain 20, 243

Guo, Jian 195

Hallgren, Sean 183

Jaulmes, Eliane 212
Jean, Jérémy 195, 228

Karpman, Pierre 243
Kunihiro, Noboru 345

Lange, Tanja 38
Lauter, Kristin 183
Leurent, Gaëtan 195
Li, Zhenqi 261
López, Julio 324

Maimut, Diana-Ştefania 112
May, Alexander 278

Mendel, Florian 1, 165
Mennink, Bart 306
Minaud, Brice 290
Mouha, Nicky 306

Naccache, David 112
Nikolić, Ivica 77, 228

Oliveira, Thomaz 324
Ozerov, Ilya 278

Patarin, Jacques 129
Peyrin, Thomas 195
Preneel, Bart 306
Prouff, Emmanuel 212

Qian, Chen 20

Reyhanitabar, Reza 112
Rodríguez-Henríquez, Francisco 324
Roy, Arnab 261

Sasaki, Yu 228
Schläffer, Martin 1, 165
Seurin, Yannick 129

Takayasu, Atsushi 345
Tibouchi, Mehdi 20

Van Herrewege, Anthony 306
Vaudenay, Serge 112
Verbauwhede, Ingrid 306
Vizár, Damian 112

Wang, Lei 195, 228
Watanabe, Dai 306
Wenger, Erich 363
Wild, Justine 212
Wolfger, Paul 363

Zapalowicz, Jean-Christophe 20
Zhang, Bin 261

	Preface
	Organization
	Contents
	Malicious Hashing: Eve's Variant of SHA-1
	1 Introduction
	2 Malicious Hashing
	2.1 Malicious Cryptography and Backdoors
	2.2 Definitions

	3 Eve's Variant of SHA-1
	3.1 Short Description of SHA-1
	3.2 Differential Attack Strategy for SHA-1
	3.3 Malicious Collision Attack

	4 Building Meaningful Collisions
	4.1 Constraints
	4.2 Binary File Format Overview
	4.3 Example Files

	A Full Characteristic for Malicious SHA-1
	References

	Binary Elligator Squared
	1 Introduction
	2 Preliminaries
	2.1 Well-Bounded Encodings
	2.2 Elligator Squared
	2.3 Shallue--van de Woestijne in Characteristic 2
	2.4 Lambda Affine Coordinates

	3 Algorithmic Aspects
	3.1 The Subroutine SWCHAR2
	3.2 The Subroutine PREIMAGESSW
	3.3 Operation Counts

	4 Implementation Aspects
	5 Experimental Results
	6 Comparison of Elligator 2 and Elligator Squared on Prime Finite Fields
	References

	Batch NFS
	1 Introduction
	1.1 Contents of this paper.
	1.2 Security consequences.
	1.3 Previous work.

	2 Exponents
	2.1 QS: the Quadratic sieve (1982).
	2.2 NFS: the number-field sieve (1993).
	2.3 RAM cost analysis (1993).
	2.4 AT cost analysis (2001).
	2.5 The factorization factory (1993).
	2.6 Batch NFS (new).
	2.11 Comparison and numerical parameter optimization.

	3 Early-abort ECM
	3.1 Early-abort trial division.
	3.2 Early aborts in more generality.
	3.3 Performance of early aborts.
	3.4 Understanding the heuristics.
	3.5 Impact of early aborts on smoothness probabilities.

	A ECM
	References

	An Improvement of Linear Cryptanalysis with Addition Operations with Applications to FEAL-8X
	1 Introduction
	2 The Cipher FEAL-8X
	2.1 An Equivalent Description of FEAL-8X

	3 First Attack -- Finding the Key Using 215 Known Plaintexts
	3.1 The Linear Approximations
	3.2 The Basic Attack
	3.3 Matching Subkeys from the Backward and Forward Directions
	3.4 Retrieving the Rest of the Subkeys

	4 The Partitioning Technique -- Finding the Key Using 214 Known Plaintexts
	4.1 A Simplified Example
	4.2 The Attack

	5 Attacking FEAL-8X Using 210 Known Plaintexts with Complexity 262
	6 Attacks with a Few Known or Chosen Plaintexts
	6.1 Differential and Linear Exhaustive Search Attacks
	6.2 Meet in the Middle Attacks

	7 Summary
	A Efficient Implementation
	B The Linear Approximations Used in Our Attacks
	References

	Colliding Keys for SC2000-256
	1 Introduction
	2 Description of SC2000-256
	3 Key Collisions for SC2000-256
	3.1 Specifying the Difference for the Second Phase
	3.2 Finding Pairs in the First Phase

	4 Results and Applications
	5 Conclusion
	References

	Faster Binary-Field Multiplication and Faster Binary-Field MACs
	1 Introduction
	1.1 Integer-Multiplication Hardware
	1.2 New Speeds for Binary-Field MACs
	1.3 New Bit-Operation Records for Binary-Field Multiplication
	1.4 Polynomial-Multiplication Hardware: PCLMULQDQ

	2 Field Arithmetic in F28
	2.1 Review of Tower Fields
	2.2 Variable Multiplications
	2.3 Constant Multiplications
	2.4 Subfields and Decomposability

	3 Faster Additive FFTs
	3.1 Size-4 FFTs: The Lowest Level of Recursion
	3.2 The Size-8 FFTs: The First Recursive Case
	3.3 The Size-16 FFTs: Saving Additions for Radix Conversions
	3.4 Size-16 FFTs Continued: Decomposition at Field-Element Level
	3.5 Improvements: A Summary
	3.6 Polynomial Multiplications: A Comparison with Karatsuba and Toom

	4 The Auth256 Message-Authentication Code: Major Features
	4.1 Output Size: Bigger-Birthday-Bound Security
	4.2 Pseudo Dot Products and FFT Addition
	4.3 Embedding Invertible Linear Operations into FFT Inputs

	5 Software Implementation
	5.1 Minimizing Memory Operations in Radix Conversions
	5.2 Minimizing Memory Operations in Muladdadd Operations
	5.3 Implementing the Size-16 Additive FFT

	6 Auth256: Minor Details
	6.1 Review of Wegman--Carter MACs
	6.2 Field Representation
	6.3 Hash256 Padding and Conversion
	6.4 Hash256 and Auth256 Keys and Authenticators

	References
	A Security Proof

	OMD: A Compression Function Mode of Operation for Authenticated Encryption
	1 Introduction
	2 Preliminaries
	3 Definitions and Security Goals
	4 The OMD Mode of Operation
	5 Security Analysis
	5.1 Generalized OMD Using a Tweakable Random Function
	5.2 Instantiating Tweakable RFs with PRFs

	6 Instantiations
	6.1 OMD-SHA256
	6.2 OMD-SHA512
	6.3 Instantiating G-OMD with a Native Tweakable PRF

	References

	Security Amplification for the Composition of Block Ciphers: Simpler Proofs and New Results
	1 Introduction
	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Security Definitions and Classical Lemmas

	3 A Simple Proof of the ``Two Weak Make One Strong'' Theorem
	4 Many Weak Make One Even Stronger
	5 On the Tightness of the Bound
	A Omitted Proofs
	References

	Improved Differential Cryptanalysis of Round-Reduced Speck
	1 Introduction
	2 Notations and Conventions
	3 Description of Speck
	4 Summary of Previous and New Attacks on Speck
	5 Auxiliary Algorithms Used by Our Attacks
	5.1 Key-Schedule Inversion
	5.2 Overview of the 2-Round Attack on Speck

	6 Details of the Full Differential Attacks
	7 The 2-Round Attack
	7.1 A Basic 2-Round Attack
	7.2 Optimizing the Basic 2-Round Attack Using Filters
	7.3 The Optimized 2-Round Attack

	8 Conclusions
	A Details of the Basic 2-Round Attack
	References

	Differential Cryptanalysis of SipHash
	1 Introduction
	2 Description of SipHash
	3 Automatic Search for Differential Characteristics
	3.1 Generalized Conditions
	3.2 Propagation of Conditions
	3.3 Basic Search Strategy

	4 Improvements in the Automatic Search for SipHash
	4.1 Extended Search Strategy
	4.2 Calculating the Probability Using Cyclic S-Functions
	4.3 Bitsliced Description of SipHash

	5 Results
	5.1 Colliding Characteristics for SipHash-1-x and SipHash-2-x
	5.2 Characteristic for Finalization of SipHash-2-4

	6 Conclusion
	A Results Without Secret Key
	B An Example for Cyclic S-Functions
	References

	Weak Instances of PLWE
	1 Introduction
	2 Background
	2.1 Distances and Distributions
	2.2 Lattices
	2.3 Number Fields
	2.4 Definition of the Ring-LWE Distribution and Problem
	2.5 Worst-Case Hardness of Search Version of Ring-LWE
	2.6 Known Attacks

	3 Overview of Results
	4 Search to Decision Reduction for the Ring-LWE Problem
	5 Reduction from R-DLWEq to PLWE
	5.1 The PLWE Problem
	5.2 Reduction

	6 Breaking Certain Instances of PLWE
	6.1 The Attack
	6.2 A Family of Examples
	6.3 Extension of the Attack on PLWE
	6.4 Security Implications for RLWE and PLWE-based Cryptosystems

	References

	The Usage of Counter Revisited: Second-Preimage Attack on New Russian Standardized Hash Function
	1 Introduction
	2 Specifications of Streebog
	2.1 Domain Extension of Streebog
	2.2 The Compression Function of Streebog

	3 Our Observation
	4 Second-Preimage Attack on Full Streebog with a Diamond
	4.1 The Diamond Structure
	4.2 Details of the Attack

	5 Second-Preimage Attack on Full Streebog with an Expandable Message
	5.1 The Expandable Message
	5.2 Details of the Attack

	6 Open Discussion and Conclusion
	References

	Side-Channel Analysis of Montgomery's Representation Randomization
	1 Introduction
	2 On Randomized Implementations of Modular Operations
	2.1 Background on Elliptic Curves and Montgomery Multiplication
	2.2 Randomized Montgomery Domain

	3 Our Attack
	3.1 Core Idea
	3.2 Attack Description

	4 Simulations
	5 Analysis and Conclusion
	A Examples of Algorithms for Elliptic Curve Scalar Multiplication
	References

	Practical Cryptanalysis of PAES
	1 Introduction
	2 Description of PAES
	3 Practical Universal Forgery Attack Against PAES-8
	3.1 Differential Trail and Detection of Difference Cancellation
	3.2 Recovery of State Words
	3.3 The Attack

	4 Practical Distinguisher for a Weak-Key Class of PAES
	4.1 Symmetric Properties of the AES Round Function
	4.2 Symmetric Properties of the PAES Transformations
	4.3 The Distinguisher

	5 Conclusion
	References

	Diffusion Matrices from Algebraic-Geometry Codes with Efficient SIMD Implementation
	1 Introduction
	2 Preliminaries
	3 Efficient Algorithms for Matrix-Vector Multiplication
	3.1 Table Implementation
	3.2 A Generic Constant-Time Algorithm
	3.3 A Faster Algorithm Exploiting Matrix Structure
	3.4 Performance

	4 Diffusion Matrices from Algebraic-Geometry Codes
	4.1 A Short Introduction to Algebraic-Geometry Codes
	4.2 Compact Encoders Using Code Automorphisms
	4.3 Fast Random Encoders

	5 Applications and Performance
	6 Conclusion
	References

	Error-Tolerant Side-Channel Cube Attack Revisited
	1 Introduction
	2 Preliminaries
	2.1 Cube Attack
	2.2 Error-Tolerant Side-Channel Cube Attack(ET-SCCA)

	3 A New ET-SCCA with Higher Error-Tolerant Rate
	3.1 Polynomial Approximation
	3.2 A New Variant of Cube Attack

	4 Error Probability Evaluation
	5 Simulations on PRESENT
	5.1 Off-Line Phase
	5.2 Polynomial Approximation for PRESENT-80
	5.3 On-Line Phase
	5.4 Applying the New Variant of Cube Attack to the On-Line Phase

	6 Comparison and Discussions
	6.1 ET-SCCA Comparisons
	6.2 Motivation of the New Variant of Cube Attack
	6.3 About the Definition of Maxterm Equation
	6.4 Attacking Implementations with Masking

	7 Conclusion and Open Problems
	A Proof of Theorem 1
	B Proof of Corollary 1
	C ML-decoding
	D Maxterm Equations for All the 8 Leakage Functions
	References

	A Generic Algorithm for Small Weight Discrete Logarithms in Composite Groups
	1 Introduction
	1.1 Our Contribution and Related Work

	2 Known Generic Algorithms
	3 Our New Generic Discrete Log Algorithm
	3.1 How to Optimally Split G into Subgroups

	References

	Linear Biases in AEGIS Keystream
	1 Introduction
	1.1 Notations

	2 Description of AEGIS-128 and AEGIS-256
	2.1 AEGIS-128
	2.2 AEGIS-256
	2.3 Security Claims

	3 Preliminaries
	3.1 Linear Biases and Weights
	3.2 Linear Approximations of Bitwise AND

	4 Linear Biases for AEGIS-128 and AEGIS-256
	4.1 Linear Biases Between Substates
	4.2 Biases for AEGIS-128
	4.3 Biases for AEGIS-256
	4.4 Exploiting the Keystream Biases

	5 Conclusion
	A Valuesof α, β, γ
	B Refined Linear Model of AEGIS-128
	References

	Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers
	1 Introduction
	2 Preliminaries
	3 Specification of Chaskey
	3.1 Mode of Operation
	3.2 Permutation π

	4 Implementation Results
	5 Proof of Security
	6 Cryptanalysis
	6.1 Attack Setting
	6.2 Cryptanalysis of the Block Cipher

	7 Conclusion
	References

	Fast Point Multiplication Algorithms for Binary Elliptic Curves with and without Precomputation
	1 Introduction
	2 Mathematical Background
	2.1 Quadratic Field Arithmetic
	2.2 GLS Binary Elliptic Curves
	2.3 Koblitz Curves

	3 New Montgomery Ladder Variants
	3.1 Right-to-Left Double-and-Add Montgomery-LD Ladder
	3.2 Right-to-Left Halve-and-Add Montgomery-LD Ladder
	3.3 Multi-core Montgomery Ladder
	3.4 Cost Comparison of Montgomery Ladder Variants

	4 A Novel Regular -Adic Approach
	4.1 Recoding in -Adic Form
	4.2 Left-to-Right Regular Approach

	5 Implementation Issues and Results
	5.1 Mechanisms to Achieve a Constant-Time GLS-Montgomery Ladder Implementation
	5.2 Mechanisms to Achieve a Constant-Time Koblitz Implementation
	5.3 Results

	6 Conclusion
	A Multi-core Montgomery Ladder
	B Memory Access Pattern
	C GLS Elliptic Curve Parameters
	References

	Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Roadmap

	2 Formulations of Partial Key Exposure Attacks
	3 Coppersmith's Method to Solve Modular Equations
	4 Partial Key Exposure Attack: The Most Significant Bits Case
	4.1 Previous Works
	4.2 Our Lattice Constructions

	5 Partial Key Exposure Attack: The Least Significant Bits Case
	5.1 Previous Works
	5.2 Our Observation of Aono's Lattice Using Unravelled Linearization
	5.3 Our Lattice Constructions

	References

	Solving the Discrete Logarithm of a 113-bit Koblitz Curve with an FPGA Cluster
	1 Introduction
	2 Related Work
	3 Mathematical Foundations
	3.1 Elliptic Curve Cryptography
	3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

	4 Selecting the Iteration Function
	5 ECC Breaker Hardware
	5.1 Basic Assumptions and Decisions
	5.2 The Architecture
	5.3 ECC Breaker Components

	6 Results and Transferability of Results
	6.1 ECC Breaker on Different FPGAs
	6.2 Expected Runtimes

	7 Lessons Learned
	8 Conclusion
	A Targeted Curve and Target Point Pair Selection
	B Binary Karatsuba F2113 Multiplier
	References

	Author Index

