
Chapter 6
Right About Time?

Sean Gryb and Flavio Mercati

Abstract Have our fundamental theories got time right? Does size really matter?
Or is physics all in the eyes of the beholder? In this essay, we question the origin
of time and scale by reevaluating the nature of measurement. We then argue for a
radical scenario, supported by a suggestive calculation, where the flow of time is
inseparable from the measurement process. Our scenario breaks the bond of time
and space and builds a new one: the marriage of time and scale.

Introduction

Near the end of the 19th century, physics appeared to be slowing down.Themechanics
of Newton and others rested on solid ground, statistical mechanics explained the
link between the microscopic and the macroscopic, Maxwell’s equations unified
electricity, magnetism, and light, and the steam engine had transformed society. But
the blade of progress is double edged and, as more problems were sliced through,
fewer legitimate fundamental issues remained. Physics, it seemed, was nearing an
end.

Or was it? Among the few remaining unsolved issues were two experimental
anomalies. As Lord Kelvin allegedly announced: “The beauty and clearness of the
dynamical theory [...] is at present obscured by two clouds” [1]. One of these clouds
was the ultra-violet catastrophe: an embarrassing prediction that hot objects like the
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sun should emit infinite energy. The other anomaly was an experiment by Michelson
and Morley that measured the speed of light to be independent of how an observer
was moving. Given the tremendous success of physics at that time, it would have
been a safe bet that, soon, even these clouds would pass.

Never bet on a sure thing. The ultra-violet catastrophe led to the development of
quantum mechanics and the Michelson–Morley experiment led to the development
of relativity. These discoveries completely overturned our understanding of space,
time, measurement, and the perception of reality. Physics was not over, it was just
getting started.

Fast-forward a hundred years or so. Quantum mechanics and relativity rest on
solid ground. The microchip and GPS have transformed society. These frameworks
have led to an understanding that spans from the microscopic constituents of the
nucleus to the large scale structure of the Universe. The corresponding models have
become so widely accepted and successful that they have been dubbed standard
models of particle physics and cosmology.Resultantly, the number of truly interesting
questions appears to be slowly disappearing. In well over 30years, there have been
no experimental results in particle physics that cannot be explained within the basic
framework laid out by the standardmodel of particle physics.With the ever increasing
cost of particle physics’ experiments, it seems that the data is drying up. But without
input from experiment, how can physics proceed? It would appear that physics is,
again, in danger of slowing down.

Or is it? Although the number of interesting fundamental questions appears to be
decreasing, the importanceof the remainingquestions is growing.Consider twoof the
more disturbing experimental anomalies. The first is the naturalness problem, i.e., the
presence of unnaturally large and small numbers in Nature. The most embarrassing
of these numbers—and arguably the worst prediction of science—is the accelerated
expansion of the Universe, which is some 120 orders of magnitude smaller than its
natural value. The second is the dark matter problem that just under 85–90% of the
matter content of our Universe is of an exotic nature that we have not yet seen in the
lab. It would seem that we actually understand very little of what is happening in our
Universe!

The problem is not that we don’t have enough data. The problem is that the datawe
do have does not seem to be amenable to explanation through incremental theoretical
progress. The belief that physics is slowing down or, worse, that we are close to a
final theory is just as as unimaginative now as it would have been before 1900. Our
thesis here will be that the lesson to take from that period is that the way forward is
to question the fundamental assumptions of our physical theories in a radical way.
This is easier said than done: one must not throw out the baby with the bath water.
What is needed is a careful examination of our physical principles in the context of
real experimental facts to explain more data using less assumptions.

The purpose of this work is to point out three specific assumptions made by our
physical theories that might be wrong. We will not offer a definite solution to these
problems but suggest a new scenario, supported by a suggestive calculation, that puts
these assumptions into a new light and unifies them. The three assumptions we will
question are
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1. Time and space are unified.
2. Scale is physical.
3. Physical laws are independent of the measurement process.

Wewill argue that these three assumptions inadvertently violate the sameprinciple:
the requirement that the laws of physics depend only on what is knowable through
direct measurement. They fall into a unique category of assumptions that are chal-
lenged when we ask how to adapt the scientific method, developed for understanding
processes in the lab, to the cosmological setting. In other words, how can we do sci-
ence on the Universe as a whole?

We will not directly answer this question but, rather, suggest that this difficult
issue may require a radical answer that questions the very origin of time. The flow
of time, we will argue, may be fundamentally linked to the process of measurement.
We will then support this argument with an intriguing calculation that recovers the
black hole entropy law from a simple toy model. Before getting to this, let us explain
the three questionable assumptions.

Three Questionable Assumptions

Many of our most basic physical assumptions are made in the first week of physics
education. A good example is one of the first equations we are taught: the definition
of velocity,

v = �x

�t
. (6.1)

It is perhaps a bit over-dramatic—but, at the same time, not inaccurate—to say that
to give this equation a precise operational meaning has been an outstanding issue in
physics for its entire history. This is because, to understand this equation, one has
to have an operational definition of both x , t , and �. Great minds have pondered
this question and their insights has led to scientific revolutions. This includes the
development ofNewtonianmechanics, relativity, andquantummechanics.1 Recently,
the meaning of x and, in particular, t , have been the subject of a new debate whose
origin is in a theory of quantum gravity. This brings us to our first questionable
assumption.

Time and Space Are Unified

The theory of relativity changed our perception of time. AsMinkowski put it in 1908
[2], “space by itself, and time by itself, are doomed to fade away into mere shadows,

1 A lot to digest in the first week!
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and only a kind of union of the two will preserve an independent reality”. Nowhere is
this more apparent than in the main equation physicists use to construct the solutions
of general relativity (GR):

SEinstein-Hilbert =
∫

d4x (R + Lmatter)
√−g . (6.2)

Can you spot the t? It’s hidden in the 4 of d4x . But there are important structures
hidden by this compact notation.

Wewill start by pointing out an invisibleminus sign in Eq. (6.2).When calculating
spacetime distances, one needs to use

x2 + y2 + z2 − t2, (6.3)

which has a—in front of the t2 instead of Pythagoras’ +. The minus sign looks
innocent but has important consequences for the solutions of Eq. (6.2). Importantly,
the minus sign implies causal structure, which means that only events close enough
to us so that light signals sent from these events can make it to us now can effect
what is going on now. This, in turn, implies that generic solutions of GR can only be
solved by specifying information at a particular time and then seeing how this infor-
mation propagates into the future. Doing the converse, i.e., specifying information
at a particular place and seeing how that information propagates to another place, is,
in general, not consistent.2 Thus, the minus sign already tells you that you have to
use the theory in a way that treats time and space differently.

There are other ways to see how time and space are treated differently in gravity.
In Julian Barbour’s 2009 essay, The Nature of Time [3], he points out that Newton’s
“absolute” time is not “absolute” at all. Indeed, the Newtonian notion of duration—
that is, how much time has ticked by between two distinct instants—can be inferred
by the total change in the spatial separations of particles in the Universe. He derives
the equation

�t2 ∝
∑

i

�d2
i , (6.4)

where the di are inter-particle separations in units where the masses of the particles
are one. The factor of proportionality is important, but not for our argument. What
is important is that changes in time can be inferred by changes in distances so that
absolute duration is not an input of the classical theory. This equation can be gener-
alized to gravity where it must be solved at every point in space. The implications
for the quantum theory are severe: time completely drops out of the formalism.

Expert readers will recognize this as one of the facets of the Problem of Time [4].
The fact that there is no equivalent Problem of Space can be easily traced back to
the points just made: time is singled out in gravity as the variable in terms of which

2 Technically, the difference is in the elliptic versus hyperbolic nature of the evolution equations.
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the evolution equations are solved. This in turn implies that local duration should
be treated as an inferred quantity rather than something fundamental. Clearly, time
and space are not treated on the same footing in the formalism of GR despite the
rather misleading form of Eq. (6.2). Nevertheless, it is still true that the spacetime
framework is incredibly useful and, as far aswe know, correct. How can one reconcile
this fact with the space-time asymmetry in the formalism itself? We will investigate
this in Sect. “Time from Coarse Graining”.

Scale Is Physical

Before even learning the definition of velocity, the novice physicist is typically in-
troduced to an even more primary concept that usually makes up one’s first physics
lesson: units. Despite the rudimentary nature of units, they are probably the most
inconsistently understood concept in all of physics. If you ask ten different physi-
cists for the physical meaning of a unit, you will likely get ten different answers. To
avoid confusion, most theoreticians set all dimensionful constants equal to 1. How-
ever, one can’t predict anything until one has painfully reinserted these dimensionful
quantities into the final result.

Andyet, no one has ever directly observed a dimensionful quantity. This is because
all measurements are comparisons. A ‘meter’ has no intrinsic operational meaning,
only the ratio of two lengths does. One can define an object A to have a length of
one meter and make a measurement that reveals that some other object B has twice
the length of object A. Then, we can deduce that object B has a length of 2 meters.
This, however, tells you nothing about the intrinsic absolute length of object A for
if a demon doubled the intrinsic size of the Universe, the result of the experiment
would be exactly the same. So, where do units come from?

Some units, like the unit of pressure, are the result of emergent physics. We
understand how they are related tomore “fundamental” units likemeters and seconds.
However, even ourmost fundamental theories ofNature have dimensionful quantities
in them. The standard model of particle physics and classical GR require only a
singe unit: mass. Scale or, more technically, conformal invariance is then broken by
only two quantities with the units of mass. The first is the recently observed Higgs
mass, which can be related to all the masses of the particles in the standard model.
The second is the Plank mass, which sets the scale of quantum gravity. As already
discussed, there is a naturalness problem associated with writing all other constants
of nature as dimensionless quantities but this will not bother us to much here.

The presence of dimensionful quantities is an indication that our “fundamental”
theories are not fundamental at all. Instead, scale independence should be a ba-
sic principle of a fundamental theory. As we will see in Sect. “Time from Coarse
Graining”, there is a formulation of gravity that is nearly scale invariant. We will try
to address the “nearly” with the considerations of the next section.
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Physical Laws Are Independent of the Measurement Process

There is one assumption that is so fundamental it doesn’t even enter the physics
curriculum. This is the assumption that the scientific method is generally applicable
for describing everything in the Universe taken together. We know that the scien-
tific method can be applied in the laboratory where external agents (i.e., scientists)
carefully control the inputs of some subsystem of the Universe and observe the sub-
system’s response to these inputs. We don’t know, however, whether it is possible to
apply these techniques to theUniverse as awhole.On the other hand,when it comes to
quantummechanics, we do know whether our formalism can be consistently applied
to the Universe. The answer is ‘NO’! The reasons are well understood—if not disap-
pointingly under appreciated—and the problem even has a name: the measurement
problem.

The measurement problem results from the fact that quantum mechanics is
a framework more like statistical physics than classical mechanics. In statistical
physics, one has practical limitations on one’s knowledge of a system so one takes
an educated guess at the results of a specific experiment by calculating a proba-
bility distribution for the outcome using one’s current knowledge of the system. In
quantum mechanics, one has fundamental limitations on one’s knowledge of the
system—essentially because of the uncertainty principle—so one can only make an
educated guess at the outcome of a specific experiment by calculating a probability
distribution for the outcome using one’s current knowledge of the system. However,
it would be strange to apply statistical mechanics to the whole Universe because
the Universe itself is only given once. It is hard to imagine what an ensemble of
Universes, for which one can calculate and give meaning to a probability distribu-
tion, would even mean.3 The same is true in quantum mechanics, but the problem is
worse. The framework itself is designed to give you a probability distribution for the
outcome of some measurement but how does one even define a measurement when
the observer itself is taken to be part of the system? The answer is not found in any
interpretation of quantum mechanics, although the problem itself takes a different
form in a given interpretation. The truth is that quantum mechanics requires some
additional structure, which can be thought of as describing the observer, in order
for it to make sense. In other words, quantum mechanics alone, without additional
postulates, can never be a theory of the whole Universe.

As a consequence of this, any approach to quantum gravity that uses quantum
mechanics unmodified—including all major approaches to quantum gravity—is not,
and can never be a theory of the whole Universe. It could still be used for describing
quantum gravity effects on isolated subsystems of the Universe, but that is not the

3 This is one of the goals of theMany Worlds interpretation of quantummechanicswhose proponents
believe that it is possible to make sense of such an ensemble using the standard axioms of classical
probability theory (see [5] for a popular account). Whether it is sensible to apply these axioms to the
Universe as a whole, however, is unclear. Furthermore, having to believe in an infinite number of
unobservable parallel Universes is a big price to pay just to make sense of probabilities in quantum
mechanics.
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ambition of a full fledged quantum gravity theory. Given such a glaring foundational
issue at the core of every major approach to quantum gravity, we believe that the
attitude that we are nearing the end of physics is unjustified. The “shut-up and
calculate” era is over. It is time for the quantum gravity community to return to these
fundamental issues.

One approach is to change the ambitions of science. This is the safest and, in some
ways, easiest option, but it would mean that science is inherently a restricted frame-
work. The other possibility is to try to address the measurement problem directly. In
the next section, we will give a radical proposal that embraces the role of the observer
in our fundamental description of Nature. To understand how this comes about, we
need one last ingredient: renormalization, or the art of averaging.

A Way Forward

The Art of Averaging

It is somewhat unfortunate that the great discoveries of thefirst half of the 20th century
have overshadowed those of the second half of the century. One of these, the theory of
renormalization, is potentially the uncelebrated triumph of twentieth century physics.
Renormalization was born as rather ugly set of rules for removing some undesirable
features of quantum field theories. From these humble beginnings, it has grown into
one of the gems of physics. In its modern form due toWilson [6], renormalization has
become a powerful tool for understanding what happens in a general system when
one lacks information about the details of its fine behavior. Renormalization’s reach
extends far beyond particle physics and explains, among other things, what happens
during phase transitions. But, the theory of renormalization does even more: it helps
us understand why physics is possible at all.

Imagine what it would be like if, to calculate everyday physics like the trajectory
ofNewton’s apple, onewould have to compute themotions of every quark, gluon, and
electron in the apple and use quantum gravity to determine the trajectory. This would
be completely impractical. Fortunately, one doesn’t have to resort to this.High-school
physics is sufficient to determine the motion of what is, fundamentally, an incredibly
complicated system. This is possible because one can average, or coarse grain,
over the detailed behavior of the microscopic components of the apple. Remarkably,
the average motion is simple. This fact is the reason why Newtonian mechanics is
expressible in terms of simple differential equations and why the standard model is
made up of only a couple of interactions. In short, it is why physics is possible at all.
The theory of renormalization provides a framework for understanding this.

The main idea behind renormalization is to be able to predict how the laws of
physics will change when a coarse graining is performed. This is similar to what
happens when one changes the magnification of a telescope. With a large magnifica-
tion, onemight be able to see themoons of Jupiter and some details of the structure of
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their atmospheres. But, if the magnification, or the renormalization scale, is steadily
decreased, the resolution is no longer good enough tomake out individual moons and
the lens averages over these structures. The whole of Jupiter and its moons becomes
a single dot. As we vary the renormalization scale, the laws of physics that govern the
structures of the system change from the hydrodynamic laws governing atmospheres
to Newton’s law of gravity.

The theory of renormalization produces precise equations that say how the laws
of physics will change, or flow, as we change the renormalization scale. In what
follows, we will propose that flow under changes of scale may be related to the flow
of time.

Time from Coarse Graining

We are now prepared to discuss an idea that puts our three questionable assumptions
into a new light by highlighting away inwhich they are connected. First, we point out
that there is a way to trade a spacetime symmetry for conformal symmetry without
altering the physical structures of GR. This approach, called Shape Dynamics (SD),
was initially advocated byBarbour [7] andwas developed in [8, 9]. Symmetry trading
is allowed because symmetries don’t affect the physical content of a theory. In SD,
the irrelevance of duration in GR is traded for local scale invariance (we will come
to the word “local” in a moment). This can be done without altering the physical
predictions of the theory but at the cost of having to treat time and space on a different
footing. In fact, the local scale invariance is only an invariance of space, so that local
rods—not clocks—can be rescaled arbitrarily. Time, on the other hand, is treated
differently. It is a global notion that depends on the total change in the Universe.

The equivalence between SD and GR is a rather remarkable thing. What can
be proved is that a very large class of spacetimes that are solutions of GR can be
reproduced by a framework that does not treat spacetime as fundamental. Instead,
what is fundamental in SD is scale-invariant geometry. Recently [10], it has been
discovered that some solutions of SD do not actually correspond to spacetimes as
all, although they are still in agreement with experiment. These are solutions that
describe certain kinds black holes in SD. In these solutions, there is no singularity
where the curvature of spacetime becomes infinite. Rather, there is a traversable
worm hole that connects the event horizon of a black hole to another region of space.
This exciting discovery could pave the way to a completely different understanding
of black holes.

Symmetry trading is the key to understanding how GR and SD are related. In 2
spatial dimensions, we know that this trading is possible because of an accidental
mathematical relationship between the structure of conformal symmetry in 2 dimen-
sions and the symmetries of 3 dimensional spacetime [11].4 We are investigating

4 Technically, this is the isomorphism between the conformal group in d spatial dimensions and the
deSitter group in d + 1 dimensions.
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whether this result will remain true in 3 spatial dimensions. If it does, it would mean
that the spacetime picture and the conformal picture can coexist because of a mere
mathematical accident.

We now come to a key point: in order for any time evolution to survive in SD, one
cannot eliminate all of the scale. The global scale of the Universe cannot be traded
since, then, no time would flow. Only a redistribution of scale from point to point
is allowed (this is the significance of the word “local”) but the overall size of the
Universe cannot be traded. In other words, global scale must remain for change to
be possible. How can we understand this global scale?

Consider a world with no scale and no time. In this world, only 3 dimensional
Platonic shapes exist. This kind of world has a technical name, it is a fixed point of
renormalization—“fixed” because such a world does not flow since the renormal-
ization scale is meaningless. This cannot yet be our world because nothing happens
in this world. Now, allow for something to happen and call this “something” a mea-
surement. One thing we know about measurements is that they can never be perfect.
We can only compare the smallest objects of our device to larger objects and coarse
grain the rest. Try as we may, we can never fully resolve the Platonic shapes of the
fixed point. Thus, coarse graining by real measurements produces flow away from
the fixed point. But what about time? How can a measurement happen if no time has
gone by? The scenario that we are suggesting is that the flow under the renormaliza-
tion scale is exchangeable with the flow of time. Using the trading procedure of SD,
the flow of time might be relatable to renormalization away from a theory of pure
shape.

In this picture, time and measurement are inseparable. Like a diamond with many
faces, scale and time are different reflections of a single entity. This scenario requires
a radical revaluation of our notions of time, scale, and measurement.

To be sure, a lot of thought is still needed to turn this into a coherent picture.
A couple of comments are in order. Firstly, some authors [12, 13] have inves-
tigated a similar scenario, called holographic cosmology using something called
gauge/gravity duality. However, our approach suggests that one may not have to
assume gauge/gravity duality for this scenario but, instead, can make use of symme-
try trading in SD. Furthermore, our motivation and our method of implementation
is more concrete. Secondly, in the context of scale-invariant particle “toy models”,
Barbour, Lostaglio, and one of the authors [14] have investigated a scenario where
quantum effects ‘ruin’ the classical scale invariance. In these models, the quantum
theory has an emergent scale, which can then be used as a clock that measures the
quantum time evolution of the scale invariant shapes of the system. This simplemodel
illustrates one way in which the radical scenario discussed here could implemented
into a concrete theory. Finally, why should we expect that there is enough structure in
a coarse graining of pure shapes to recover the rich structure of spacetime? A simple
answer is the subject of the next section.
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The Size that Matters

In this section, we perform a simple calculation suggesting that the coarse graining
of shapes described in the last section could lead to gravity. This section is more
technical than the others but this is necessary to set up our final result. Brave souls
can find the details of the calculations in the“Technical Appendix”.

We will consider a simple “toy model” that, remarkably, recovers a key feature of
gravity. Before getting into the details of the model, we should quickly point out that
this model should be taken more as an illustration of one way in which it is possible
to define the notion of a coarse graining on shape space. The model should not be
taken as a literal model for gravity or black holes, even though some of the results
seem suggestive in this regard. Certainly much more work would be needed to flesh
this out in a convincing way.

The model we will consider is a set of N free Newtonian point particles. To
describe the calculation we will need to talk about two spaces: Shape Space and
Extended Configuration Space (ECS). Shape Space is the space of all the shapes of
the system. If N = 3, this is the space of all triangles. ECS is the space of all Cartesian
coordinates of the particles. That is, the space of all ways you can put a shape into
a Cartesian coordinate system. The ECS is larger than Shape Space because it has
information about the position, orientation, and size of the shapes. Although this
information is unphysical, it is convenient to work with it anyway because the math
is simpler. This is called a gauge theory. We can work with gauge theories provided
we remove, or quotient, out the unphysical information. To understand how this is
done, examine Fig. (6.1) which shows schematically the relation between the ECS
and Shape Space. Each point on Shape Space is a different shape of the system, like

Fig. 6.1 Each point in Shape Space is a different shape (represented by triangles). These correspond
to an equivalence class (represented by arrows) of points of the Extended Configuration Space
describing the same shape with a different position, orientation, and size



6 Right About Time? 97

a triangle. All the points along the arrows represent the same shape with a different
position, orientation, or size. By picking a representative point along each arrow, we
get a 1–to–1 correspondence between ECS and Shape Space. This is called picking
a gauge. Mathematically, this is done by imposing constraints on the ECS. In our
case, we need to specify a constraint that will select a triangle with a certain center
of mass, orientation, and size. For technical reasons, we will assume that all particles
are confined to a line so that we don’t have to worry about orientation. To specify
the size of the system, we can take the “length” of the system, R, on ECS. This is
the moment of inertia. By fixing the center of mass and moment of inertia in ECS,
we can work indirectly with Shape Space. The main advantage of doing this is that
there is a natural notion of distance in ECS. This can be used to define the distance
between two shapes, which is a key input of our calculations.

To describe the calculation, we need to specify a notion of entropy in Shape
Space. Entropy can be thought of as the amount of information needed to specify a
particularmacroscopic state of the system.Tomake this precise,we can use the notion
of distance on ECS to calculate a “volume” on Shape Space. This volume roughly
corresponds to the number of shapes that satisfy a particular property describing the
state. The more shapes that have this property, the more information is needed to
specify the state. The entropy of that state is then related to its volume, �m , divided
by the total volume of Shape Space, �tot. Explicitly,

S = −kB log
�m

�tot
, (6.5)

where kB is Boltzmann’s constant.
We will be interested in states described by a subsystem of n < N particles

that have a certain center of mass x0 and moment of inertia, r . To make sense
of the volume, we need a familiar concept: coarse graining. We can approximate
the volume of the state by chopping up the ECS into a grid of size �. Physically,
the coarse graining means that we have a measuring device with a finite resolu-
tion given by �. Consider a state that is represented by some surface in ECS. This
is illustrated in Fig. (6.2) by a line. The volume of the state is well approximated
by counting the number of dark squares intersected by the line. In the“Technical
Appendix”, we calculate this volume explicitly. The result is

Fig. 6.2 Left Approximation
of a line using a grid. Right
Further approximation of the
line as a strip of thickness
equal to the grid spacing
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�m ∝ �2 rn−2
(

R2 − r2 −
(
1 + m

M − m

)
m

M
x20

) N−n−2
2

, (6.6)

where M and R are the total mass and moment of inertia of the whole system and m
is the mass of the subsystem. We can then compare this volume to the total volume
of Shape Space, which goes like the volume of an N − 1 dimensional sphere (the
−1 is because of the center of mass gauge fixing). Thus,

�tot ∝ RN−1. (6.7)

The resulting entropy is

S = 1

2
kB

N

n

( r

R

)2 − kB log
r

R
+ · · · . (6.8)

Remarkably, the first term is exactly the entropy of a black hole calculated by
Bekenstein and Hawking [15, 16]. More remarkably, the second term is exactly
the first correction to the Bekenstein–Hawking result calculated in field theory [17,
18]. However, one should be careful not to interpret this result too literally. After all,
we are considering only a very simplified case. A much more detailed analysis is
necessary to draw any conclusions from this about real black holes. Note, however,
that ErikVerlinde [19] discovered away to interpret Newtonian gravity as an entropic
force for systems whose entropy behaves in this way. It would appear that this sim-
ple model of a coarse graining of pure shapes has the right structure to reproduce
Newtonian gravity.

Conclusions

We have questioned the basic assumptions that: (i) time and space should be treated
on the same footing, (ii) scale should enter our fundamental theories of Nature, and
(iii) the evolution of the Universe is independent of the measurement process. This
has led us to a radical proposal: that time and scale emerge from a coarse graining of
a theory of pure shape. The possibility that gravity could come out of this formalism
was suggested by a simple toy model. The results of this model are non–trivial. The
key result was that the entropy (6.8) scales like r2, which, dimensionally, is an area.
In three dimensions, this is the signature of holography. Thus, in this simple model,
Shape Space is holographic. If this is a generic feature of Shape Space, it would be
an important observation for quantum gravity.

Moreover, the toy model may shed light on the nature of the Plank length. In this
model, the Plank length is the emergent length arising in ECS given by

L2
Planck = G � ∝ R2

N
. (6.9)
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This dimensionful quantity, however, is not observable in this model. What is
physical, instead, it the dimensionless ratio r/R. This illustrates how a dimensionful
quantity can emerge from a scale independent framework. Size doesn’t matter—but
a ratio of sizes does. The proof could be gravity.

Technical Appendix

The extended configuration space isR
N : the space coordinates, ri , (i = 1, . . . , N ) of

N particles in 1 dimension. To represent the reduced configuration space, or Shape
Space, we can use a gauge fixing surface. To fix the translations, we can fix the center
of mass to be at the origin of the coordinate system:

N∑
i=1

mi ri = 0 . (center of mass at the origin) (6.10)

The equation above gives three constraints selecting three orthogonal planes through
the origin whose orientation is determined by the masses mi . A natural gauge-fixing
for the generators of dilatations is to set the moment of inertia with respect to the
center of mass to a constant5 (the weak equation holds when the gauge-fixing (6.10)
is applied):

∑
i< j

mi m j

M2 |ri − r j |2 ≈
N∑

i=1

mi

M
|ri |2 = R2 . ( f i xed moment of inertia)

(6.11)
The last relation defines a sphere in R

N centered at the origin. Thus, Shape Space
is the intersection of the N − 1-dimensional sphere (6.11) with the three orthogonal
planes (6.10).

The flat Euclidean metric, ds2 = mi δi j δab dra
i drb

j , is the natural metric on the
extended configuration space Q. This metric induces the non-flat metric

ds2induced = mi δi j δab dra
i drb

j

∣∣∣
QS

. (6.12)

on Shape Space.

Description of a Macrostate in Shape Space

Consider an N -particle toy Universe with an n-particle subsystem, n < N . The
particles in the subsystem have coordinates xi = ri , (i = 1, . . . , n), while the

5 We are using here the notion of moment of inertia with respect to a point, which we rescaled by
the total mass M = ∑

i mi to give it the dimensions of a squared length.
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coordinates of all the other particles will be called yi = rn+i , (i = 1, . . . , N − n).
It is useful to define the coordinates of the center of mass of the subsystem and of
the rest of the Universe6:

x0 =
n∑

i=1

mi

m
xi , y0 =

N−n∑
i=1

mn+i

M − m
yi , m =

n∑
i=1

mi , (6.13)

and the center-of-mass moment of inertia of the two subsystems

r =
n∑

i=1

mi

M
|xi − x0|2, r ′ =

N−n∑
i=1

mn+i

M
|yi − y0|2 . (6.14)

The relation between the moments of inertia of the total system and those of the two
subsystems is

R2 = r2 + (r ′)2 +
(
1 + m

M − m

)
m

M
x20 . (6.15)

We define a macrostate as a state in which the moment of inertia of the subsystem,
r , and its center of mass, x0, are constant. To calculate the Shape Space volume of
such a macrostate, we must integrate over all Shape Space coordinates xi and yi that
respect the conditions (6.13), (6.14), and (6.15) using the measure provided by the
induced metric (6.12). Let’s make the following change of variables:

x̃i = √
mi (xi − x0) , ỹi = √

mn+i (yi − y0) . (6.16)

Our equations become

1
m

n∑
i=1

√
mi x̃i = 0, 1

M−m

n∑
i=1

√
mn+i ỹi = 0,

r = 1
M

n∑
i=1

x̃2i , r ′ = 1
M

N−n∑
i=1

ỹ2i , R2 = r2 + (r ′)2 +
(
1 + m

M−m

)
m
M x20 .

(6.17)

In the new coordinates, the metric is the identity matrix (it loses the mi factors
on the diagonal). The integral is over the direct product of an (n − 2)-dimensional
sphere of radius Mr and an (N − n − 2)-dimensional sphere of radius Mr ′ =
M

√
R2 − r2 −

(
1 + m

M−m

)
m
M x20 whose volume (calculated with a coarse-graining

of size �) is:

6 Notice that the two sets of coordinates must satisfy the relation m x0 + (M − m)y0 = 0 in order
to keep the total center of mass at the origin.
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�m = �2
4 π(N−n−1)/2π(n−1)/2

�((N − n − 1)/2)�((n − 1)/2)
M N−4rn−2

×
(

R2 − r2 −
(
1 + m

M − m

)
m

M
x20

) N−n−2
2

. (6.18)

The total volume of Shape Space is that of an (N − 1)-dimensional sphere of
radius M R

�tot = 2πN/2

�(N/2)
M N−1 RN−1. (6.19)

Thus, the Shape Space volume per particle, in the limit 1 � n � N , r � r , m � M
reduces to

ω ∝
(

�

r

)2/n r

R

(
1 −

( r

R

)2 −
(
1 + m

M − m

)
m

M

( x0
R

)2) N
2n

, (6.20)

and its logarithm has the expansion (remember that x0 < R)

S = 1

2
kB

N

n

( r

R

)2 − kB log
r

R
− 2

n
kB log

�

r
+ · · · . (6.21)

Notice that the numerical factors change in the 3 dimensions. In that case, they are

S = 3

2
kB

N

n

( r

R

)2 − 3 kB log
r

R
− 4

n
kB log

�

r
· · · . (6.22)
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