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Abstract. In order to provide security against side-channel attacks a
masking scheme which makes use of wire-tap codes has recently been pro-
posed. The scheme benefits from the features of binary linear codes, and
its application to AES has been presented in the seminal article. In this
work – with respect to the underlying scheme – we re-iterate the funda-
mental operations of the AES cipher in a hopefully more understandable
terminology. Considering an FPGA platform we address the challenges
each AES operation incurs in terms of implementation complexity. We
show different scenarios on how to realize the SubBytes operation as
the most critical issue is to deal with the large S-boxes encoded by the
underlying scheme. Constructing various designs to actualize a full AES-
128 encryption engine of the scheme, we provide practical side-channel
evaluations based on traces collected from a Spartan-6 FPGA platform.
As a result, we show that – despite nice features of the scheme – with
respect to its area and power overhead its advantages are very marginal
unless its fault-detection ability is also being employed.

1 Introduction

Nowadays security of embedded devices does rely not only on the underlying
modern cipher but also on the way it is implemented. Side-channel analysis
(SCA) attacks, which have been brought to the attention of scientific communi-
ties since the late 90s [14,15], are amongst the major threats against the secu-
rity of cryptographic devices. Amongst other countermeasures masking [6,7,17],
which by randomizing the secret internals aims at cutting the relation between
the side-channel leakages and predictable processes, is the most studied one. It
can also be seen as the one that achieving its goals in practice is most challenging.
For instance, dealing with glitches in hardware platforms is of major concerns for
most of the masking schemes (see [18,20,22,24]). Along the same line different
masking approaches like additive [6], multiplicative [1], and affine [9,27] have
been introduced. It has been shown in [9] that affine masking, which combines
both additive and multiplicative masking, can achieve – in terms of the number
of traces – a considerably high level of security.
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Recently a masking scheme which makes use of wire-tap channel concept
has been proposed [5]. The scheme which is developed based on the principle of
binary linear codes can be seen as an extended version of affine masking. More
precisely, in affine masking the bit size of the words, e.g., 8 in case of the AES
state bytes, does not change after masking a secret. But in wire-tap approach
the length of the masked value is expanded. Another specification of the scheme
is regarding the selection of the masks. In affine masking the additive mask has
the same length as the unmasked value, and also can take all possible values,
e.g., {0, 1}8 in case of 8-bit AES state bytes. However, they are restricted to
the elements of the underlying code (so-called codewords) in case of wire-tap
code approach. An expanded value is seen as error bits which are added to a
codeword, i.e., the mask. This therefore provides two features for the scheme:

– The additive mask can be removed without knowing it; thanks to parity-
check matrix of the underlying code which can eliminate the codewords.

– Certain faults which cause the additive mask to be not a codeword anymore
can be detected while the main goal of the scheme is to provide security
against e.g., power analysis attacks.

The focus of [5] is on an AES encryption engine, and a procedure on how to
make a protected version of the cipher under the proposed scheme is introduced.
Moreover, by means of simulation results the success rate of first- and second-
order CPA [4] attacks as well as MIA [10] for different settings is examined.

Our contribution in this work is in the direction of realizing a hardware
implementation of the scheme for a certain setting. We first shortly restate the
scheme and its features by concentrating on the AES-128 encryption as the tar-
get cipher. With respect to how to implement each operation of the cipher, we
try to provide more details that are partially missing in the original work [5]. We
also give solution for a couple of issues which we faced during the implementa-
tion that hugely affect its performance as well as its security. Based on practical
investigations, which are performed on a Spartan-6 FPGA as the implemen-
tation platform, we provide a comparison between the underlying scheme and
classical Boolean masking from efficiency and security points of view. In short,
we show that the additional features that the scheme provides are very marginal
considering its high performance overhead when it is implemented correctly.

2 Underlying Scheme

Since the theory behind the wire-tap channel [23,28] and the secrecy of the
scheme is given in detail in [5], below we mainly focus on the target cipher, i.e.,
AES-128 encryption, with respect to side-channel protection. For the sake of
consistency we also try to follow the notations given in [5].

2.1 Notations

Suppose a binary linear code C of length n, dimension k, and minimum distance
d as [n, k, d]. C consists in a generator matrix G of size (n − k) × n with rows
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of (g1, . . . , gn−k), where each row is an n-bit binary vector. A codeword c ∈
C is generated as m · G, where m is an (n − k)-bit binary vector. Indeed all
2n−k codewords of C can be generated by m going through the entire space
vector {0, 1}n−k. C also contains a k × n (binary) parity-check matrix H as
∀c ∈ C, c · HT = 0.

In order to encode a k-bit message x it should be first expanded by means
of a k × n matrix L as x · L. Rows of L = (l1, . . . , lk) are n-bit binary vectors
which are linearly independent of each other, and none of them is a codeword.
The encoding of x is determined by adding (modulo 2) a randomly selected
codeword to the result of the expansion as

z = x · L ⊕ m · G.

At anytime the encoded message z can be multiplied by HT to eliminate the
added random codeword:

z · HT = x · L · HT ⊕ m · G · HT
︸ ︷︷ ︸

:=0

.

The result, i.e., x · L · HT , which is in some cases called syndrome, is related to
x. Indeed the decoding (deriving x from z) can be done if x → x · L · HT forms
a bijection.

2.2 Settings

Considering AES each message x is mapped to a cipher state byte as k = 8.
Hereafter for the sake of simplicity without losing generality we specify the length
of the code n = 16 as the evaluations reported in [5] indicate its high level of
security. In other words, each state byte of AES is expanded to 16 bits and a
[16, 8, 5] binary code [11] is used for masking. This leads to generator matrix
G =

(

− MT |I8
)

and parity-check matrix H =
(

I8|M
)

, where I8 denotes the
identity matrix of size 8 × 8 and

M =

⎛
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.

For other values of n and parametric definitions of G and H sizes see [5].
By defining the underlying code as above the only missing point is how to

define the L matrix. An example of L given in [5] as Lsimple = (l1, . . . , lk) is
chosen as



344 A. Moradi

l1 = [1000000000000000],
l2 = [0100000000000000],
l3 = [0010000000000000],
l4 = [0001000000000000],
l5 = [0000100000000000],
l6 = [0000010000000000],
l7 = [0000001000000000],
l8 = [0000000100000000].

Expanding x by Lsimple results in x as the left half and 0 as the right half.
Indeed, Lsimple brings a feature as x · L · HT = x. In other words, decoding of
z = x · L ⊕ m · G is easily done by z · HT := x.

Further, a simple algorithm is given in [5] to randomly generate the L matrix.
This resulted in an example (given in [5]) as Lspecific = (l1, . . . , lk) as follows:

l1 = [0111110110100101],
l2 = [1011000010000101],
l3 = [0001011100100111],
l4 = [0001110011001101],
l5 = [0000110101001100],
l6 = [1011110110111111],
l7 = [1001111111111111],
l8 = [0101100101110101].

However, decoding z = x · Lspecific by HT is not possible. It means that x →
x · Lspecific · HT is not a bijection as

∃x1, x2; x1 · Lspecific · HT = x2 · Lspecific · HT .

It in fact prevents Lspecific to be considered as a valid case of L. In short, exam-
ining whether x → x ·L ·HT is bijective is missing in the algorithm given in [5].
Alternatively it can be checked whether L · HT has a right inverse Inv as

L · HT · Inv = I8.

Since Inv is an 8×8 binary matrix, its existence can be checked by an exhaustive
search for each column separately, in sum in a space of 8 × 28.

As a valid example, replacing l4 by [1010011111010111] causes Lspecific to ful-
fill all the requirements. Hereafter we consider this corrected matrix as Lspecific′

for further investigations. Also, an example for the corresponding Inv is given
in Appendix.

2.3 AES Operations

XOR (AddRoundKey). Suppose x1 and x2 are encoded as zi∈{0,1} = xi ·
Lspecific′ ⊕ ci by two randomly selected codewords c1 and c2. A correct encoding
of x1 ⊕ x2 can be made by z1 ⊕ z2 = (x1 ⊕ x2) · Lspecific′ ⊕ (c1 ⊕ c2) since as a
property of binary linear codes (c1 ⊕ c2) is also a codeword.
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S-box (SubBytes). If z = x · Lspecific′ ⊕ c is the input of the S-box, z′ =
S(x) · Lspecific′ ⊕ c′ as an encoding of S(x) can be the result of a table lookup
S′(z), where ∀x the look-up table S′ is precomputed given two independent
codewords c and c′.

Permutation (ShiftRows). Since ShiftRows is a byte-wise permutation, the
corresponding word-wise permutation of an encoded cipher state results in cor-
rect encoding of the cipher state after ShiftRows.

Multiply by 2. MixColumns over a column (x1, x2, x3, x4) can be realized by
an XOR sequence of the input bytes, some multiplied by 2 and 3 in GF(28).
Since x ∗ 3 = (x ∗ 2) ⊕ x, and as explained above XOR of the encoded words is
straightforward, the only remaining operation to realize MixColumns is

MUL2(z) = (x ∗ 2) · Lspecific′ ⊕ c′′; z = x · Lspecific′ ⊕ c; c, c′′ ∈ C.

A solution that we provide here (not clearly given in [5]) is to find a matrix P
such that

x · Lspecific′ · P = (x ∗ 2) · Lspecific′ .

A simple solution is to select P = L−1
specific′ ·M2 ·Lspecific′ , where L−1

specific′ denotes
the right inverse of Lspecific′ which as explained before can be found in a space
of 8 × 216. Also M2 stands for binary matrix representation of multiply-by-2 in
GF(28). An example for L−1

specific′ , M2, and P are given in Appendix.
Multiplying z by P leads to

z · P = x · Lspecific′ · P ⊕ c · P = (x ∗ 2) · Lspecific′ ⊕ c · P.

Here the problem is that c · P is not necessarily a codeword. As a solution, also
somehow followed by [5], c′′ ⊕c ·P should be added to the above result to obtain1

z · P ⊕ c′′ ⊕ c · P = (x ∗ 2) · Lspecific′ ⊕ c′′ = MUL2(z).

A question arising here is whether there exists an L such that

?

∃ L, ∀c ∈ C; c · P ∈ C.

The answer is unfortunately negative as if c · P is a codeword, applying the
parity-check matrix should lead to

c · P · HT = c · L−1 · M2 · L · HT = 0.

However, L · HT cannot be 0 following the definition of L (see Section 2.1). So,
there is no way to avoid mask correction, i.e., adding c′′ ⊕ c · P .

Algorithm 1 gives an overview of the full AES-128 encryption based on the
selected settings and according to the one given in [5]. As explained above and
1 Note that c′′ and c must not be necessarily different.
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Algorithm 1. AES-128 encryption protected by wire-tap code
Input : Plaintext X , seen as 16 bytes xi, i ∈ {0, . . . , 15},

11 RoundKeys Rj , each seen as 16 bytes rji , j ∈ {0, . . . , 10}
Output: Ciphertext Y, seen as 16 bytes yi

1 Select 64 random bytes mi∈{0,...,63}
2 Generate 4 vectors C, C′, C1, C3, each seen as 16 codewords as

ci = mi · G, c′
i = mi+16 · G, c1i = mi+32 · G, c3i = mi+48 · G, i ∈ {0, . . . , 15}

3 C2 = C ⊕ C1

4 T = C1⊕ MixColumn
(
ShiftRows(C′)

)
/* Mask Correction */

5 for i ∈ �0, 15� do
6 ∀x ∈ {0, 1}8; S′

i(x · Lspecific′ ⊕ ci) = S(x) · Lspecific′ ⊕ c′
i

7 zi = xi ·Lspecific′ ⊕ c1i /* Plaintext Encoding as Z */

8 ∀j ∈ �0, 10�; kj
i = rji ·Lspecific′ ⊕ c2i /* RoundKey Encoding */

9 end

10 for j ∈ �0, 9� do

11 ∀i ∈ �0, 15�; zi = zi ⊕ kj
i /* Z :

(
X ⊕ Rj

)
·Lspecific′ ⊕ C */

12 ∀i ∈ �0, 15�; zi = S′
i(zi) /* Z : SB

(
X ⊕ Rj

)
·Lspecific′ ⊕ C′ */

13 Z=ShiftRows(Z) /* Z :SR
(
SB
(
X ⊕ Rj

))
· Lspecific′⊕SR(C′) */

14 if j �= 9 then

15 Z=MixColumns(Z)/* Z :MC
(
SR
(
SB
(
X ⊕Rj

)))
·Lspecific′⊕MC

(
SR(C′)

)
*/

16 Z = Z ⊕T /* Z :MC
(
SR
(
SB
(
X ⊕ Rj

)) )
·Lspecific′ ⊕C1 */

17 else
18 Z = Z ⊕C3 /* Z :SR

(
SB
(
X ⊕ R9

))
·Lspecific′⊕SR(C′)⊕C3 */

19 end

20 end

21 ∀i ∈ �0, 15�; zi = zi ⊕ k10
i /* Z : Y ·Lspecific′⊕SR(C′) ⊕ C3 ⊕ C2 */

22 ∀i ∈ �0, 15�;wi = zi ·HT /* W : Y ·Lspecific′ ·HT */

23 ∀i ∈ �0, 15�; yi = wi · Inv /* Y : ciphertext */

also as given in line 16 of the algorithm, at every round the masks should be
corrected to keep them as valid codewords since MixColumns is not transparent
to the underlying code. This in fact limits one of the main features of the scheme
as the same mask correction is usually done for a classical Boolean masking
scheme (e.g., see DPA contest V4 [26]). Note that the required mask correction
is not due to our selection of Lspecific′ or matrix P . The same scenario is given
by the algorithm available in the original work of [5].

The only place in the algorithm which makes use of this feature – as masks
can be removed without knowing them – is the last step of the algorithm lines 22
and 23. Indeed these two lines can be replaced by

Y = (Z ⊕ SR(C′) ⊕ C3 ⊕ C2) · L−1
specific′ ,

where first the mask is removed then the right inverse of Lspecific′ is applied to
obtain the ciphertext. This way the masks do not need to be valid codewords.
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Fig. 1. Overall architecture of the design

So, any c ∈ {0, 1}16 can be selected as a mask to form C, C′, C1, and C3. More
precisely, no binary linear code is required to be chosen, and any L – with a right
inverse – can be employed to extend the cipher state bytes. It indeed shows that
this feature of the scheme has a very marginal application for this perspective.

3 Hardware Design

Regardless of the limiting issue mentioned above, we give the details of the
hardware design we developed to realize Algorithm 1. The target platform chosen
for our practical experiments is a Spartan-6 LX75 FPGA embedded on a Side-
channel AttacK User Reference Architecture (SAKURA-G) [21]. Due to the
nature of the algorithm and efficiency as the main feature of hardware platforms,
we aim at a round-based architecture, i.e., all operations of a cipher round are
performed in parallel. This usually leads to a design with “single clock per round”
capability. However, as it is explained later the efficiency that can be reached by
the underlying scheme might be much less.

Figure 1 shows an overview of the hardware design which is well matched with
Algorithm 1. It should be noted that the RoundKeys R have been precomputed.
As shown in the algorithm and also by the design diagram, the mask of the
round input, i.e., C1, is constant during an encryption. It is essential since for
the selected masks the masked S-boxes S′ are precomputed once at the start
of the encryption. This might be a dangerous situation for a hardware platform
as bit flips of the registers – modeled by Hamming distance (HD) – affect the
amount of power consumption. Indeed if two values masked by the same mask,
x⊕m and y⊕m, are consecutively saved in a register, x⊕m⊕y⊕m = x⊕y has
an influence on power consumption which might be easily detected by HD(x, y).
Therefore, there are two important facts which should be considered for the
design:
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– The most problematic case of the above mentioned issue is at the last cipher
round. Due to the absence of MixColumns, the XOR result of two consecutive
values stored by the state register Z is SB−1

(

SR−1
(

Y ⊕ R10
)
)

⊕Y expanded
by Lspecific′ . Therefore, by means of a different mask at the end of the last
round (see lines 16 and 18 of Algorithm 1) the mask of the ciphertext, i.e.,
SR (C′) ⊕ C3 ⊕ C2, is different to the mask of the last round input, i.e., C1.
This prevents the addressed problem2.

– Still the mask of the input of the first two rounds are the same. It may give
an opportunity to a side-channel adversary to control the plaintexts thereby
simplifying the prediction of consecutive values stored by certain words of
the state register Z. Therefore, in order to prevent this the state register
should be precharged before saving a new entry at each round (see clear
signal of state register Z in Fig. 1).

3.1 Masked S-box

The most challenging part of the design is how to actualize the masked S-boxes
S′. The problem is due to the bit length of the S-box input, i.e., 16 bits in our
settings, which causes realizing a table with 16 × 216 bits problematic. In case
of our platform there exist 172 instances of 18-kbit Block RAMs (BRAM)3, 64
of them are required to make this table. However, it consists of only 256 valid
entries for the chosen input and output masks.

Direct Mapping. A straightforward solution is to map the encoded S-box
input to an 8-bit (masked) value and directly perform the table lookup over a
256-entry table containing the encoded S-box outputs (size of 16 × 28 = 4 kbits
fitting into a 9-kbit BRAM). In order to do so, one can add m · Lspecific′ to the
encoded S-box input as

(x · Lspecific′ ⊕ c) ⊕ m · Lspecific′ ,

where c = m · G. Now by applying the HT matrix and Inv as defined in
Section 2.2 we obtain

((x ⊕ m) · Lspecific′ ⊕ m · G)·HT ·Inv =
(

(x ⊕ m) · Lspecific′ · HT
)

·Inv = x⊕m.

Therefore, we can convert the encoded S-box input to its corresponding Boolean
masked value. However, this is in contradiction with the concept of the under-
lying scheme since the operation is performed on classical Boolean masked data
not under the defined binary linear code.
2 Indeed, introducing a new mask as C3 is not required, but to keep the algorithm

compatible with that of [5] we kept it in the design.
3 Each 18-kbit BRAM can be configured as two independent 9-kbit BRAM resulting

in total 344 instances. For more information see RAMB16BWER and RAMB8BWER in [29].
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Fig. 2. Block diagram of the masked S-box circuit (left) binary search module, (right)
update module

Binary Search. Another solution given in [5] is to make two tables, one to save
16-bit encoded S-box inputs and the other for the corresponding 16-bit encoded
S-box outputs. So, a space of 32 × 28 = 8 kbits is required for these two tables
which can easily fit into a half of a 18-kbit BRAM. Therefore, for each masked
S-box lookup the input table should be searched.

Since the search through an arbitrary table might be very inefficient, we
considered the binary search which requires the tables to be sorted based on the
encoded input. Figure 2 shows a block diagram of the binary search module.
The BRAM is configured to use a 32-bit data path for input and output and 8
bits for the address4. Each 32-bit entry of the BRAM contains a tuple of (input,
output) as (x · Lspecific′ ⊕ c, S(x) · Lspecific′ ⊕ c′). At the start of the search,
10000000 is given to the address of the BRAM. During the next clock cycle
comparison result of the given encoded S-box input and the 16-bit part of the
BRAM output decides whether 01000000 should be added or subtracted from
the previous BRAM address. This procedure is continued till the comparison
shows equality. In the worst case it takes 9 clock cycles to obtain the desired
encoded S-box output5.

In contrast to Direct Mapping, in this case the address of the BRAM does
not necessarily form a classical Boolean masking of the input x as x ⊕ m. But
since it is the index of the table sorted based on the encoded S-box input, it can
be modeled as f(x) ⊕ g(m), where

– f(x) stands for a function which maps x to the index of the sorted table of
x · Lspecific′ , but

– deriving g(m) is more complicated and explained in [19].

Both these two functions are deterministic based on Lspecific′ . They are also
linear and can be represented by a matrix multiplication as g(m) = m · G · O,
where O is the sorting matrix given in [19]. Compared to Direct Mapping, a
4 Indeed the address has 9 bits width, we explain later how to control the 9th bit.
5 It can be done also in 8 clock cycles, but the BRAM content of address 10000000

should be previously saved in a separate register.
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second-order SCA attack with a HD/HW model might be less efficient supposing
that f(·) and g(·) are not known. However, it does not generally increase the
robustness of the implementation against a second-order side-channel adversary
as long as they do not randomly change. It can be seen as with the same outcome
as Direct Mapping that the encoded S-box input is converted to a Boolean
masked version for the table lookup.

The use of this approach brings one more consequence. According to [29]
each BRAM has a register for the address input and an optional register for the
data output. A conceptual block diagram of a Xilinx BRAM is given in [3]. The
problem here is that during the binary search the BRAM address register as
well as its output register (if enabled regardless of the selected option) stores the
consecutive values which are masked by the same mask. As explained before, this
leads to a side-channel leakage depending on the XOR result of the corresponding
two unmasked values (for a similar observation see [2]). In case of the address
register f(x1)⊕f(x2) = f(x1⊕x2) has a considerable contribution on the amount
of power consumption when f(x1) ⊕ g(m) and f(x2) ⊕ g(m) are consecutive
addresses given to the BRAM by the binary search module. The same holds for
the output register as the difference between two consecutive (input, output)
tuples is

(

(x1 ⊕ x2) · Lspecific′ ,
(

S (x1) ⊕ S (x2)
)

· Lspecific′
)

. Note that even if
the output register is not enabled, the output signals still drive a combinatorial
circuit (here MixColumns) and the same leakage can be seen.

In order to avoid such leakage, similar to the state register Z the BRAM also
should be precharged during the binary search process. In our designs we have
precharged the BRAM address by 0 before giving it a new address. Therefore,
it leads to maximum 18 clock cycles for each masked S-box lookup. Due to the
existence of a register for the BRAM input, precharge of the state register Z can
be performed at the same time with the last clock cycle of the binary search. It
leads to maximum 19 clock cycles per cipher round, i.e., 190 + 1 for one com-
plete encryption6. This is extremely higher than that of the Direct Mapping
approach, i.e., 20 + 1 clock cycles for a complete encryption. At each cipher
round, one clock cycle is needed to save in the state register Z and precharge
the BRAM, and one clock cycle for both the mask S-box lookup and precharge
of the state register.

In short both above expressed approaches have the same drawback as the S-
box lookup needs to be out of the underlying code. Note that it can be prevented
only if the (input, output) table is randomly – independent of m – permuted,
which causes a search to take in average 128 clock cycles (at most 256).

3.2 Mask Update

As stated before, all the masks – derived from the 64 random bytes mi – stay
unchanged during the whole encryption. Moreover, the same holds for C2 derived
from other masks as well as for T used for mask corrections at the end of each
6 One last additional clock cycle is required to save the final round output in the state

register Z (see Fig. 1).
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round (see Algorithm 1). By giving a new set of mi new codewords and constants
should be computed. Also, the masked S-box tables S′ need to be updated. A
scheme to use BRAMs as the masked tables and dynamically update them is
previously given in [13] called BRAM Scrambling. It is mainly based on the
dual-port feature of BRAMs and the fact that two tables can fit in one BRAM.
Fortunately it is the case for our settings as for both approaches given above two
masked tables simply fit into a BRAM. Two 4-kbit tables fit into each 9-kbit
BRAM in case of Direct Mapping, and one 18-kbit BRAM can hold two 8-kbit
tables of Binary Search approach.

While the encryption module uses the first half of the BRAM via one of the
ports, the other port is used to make the second half updated. After finishing
the update process when an encryption is not in progress the context switch is
performed thereby using the updated second half for the encryption and updat-
ing the first half. Note that the ports used for encryption and update are not
swapped. Generally only one bit as the MSB of the 9-bit address changes to
switch the halves used by these two modules.

Based on the two approaches given in Section 3.1 the corresponding update
modules are slightly different. In case of Direct Mapping, it is similar to the
one explained in [13]. Suppose m as the random byte from which input mask
c = m · G has been derived, and suppose c′ as the output mask. The new
randoms are denoted by mnew, respectively cnew and c′

new. The XOR of the
current and new masks are given to the update module as Δm = m⊕mnew and
Δc′ = c′ ⊕ c′

new.
The update module performs the following operations

– It reads the address i := x ⊕ m from one half of the BRAM (the part being
used for encryption) as v := S(x) · Lspecific′ ⊕ c′.

– It saves v⊕ Δc′ := S(x) ·Lspecific′ ⊕ c′
new at the address i⊕ Δm := x⊕mnew

of the other half of the BRAM.

The above procedure is repeated 256 times ∀i ∈ �0, 255� to finish the update
process.

For the Binary Search approach the update module is a bit more compli-
cated since the updated table should be saved as sorted. Here Δc = c ⊕ cnew is
also given to the update module, and the following operations are performed:

– The address i := f(x)⊕g(m) is read from one half of the BRAM as (w, v) :=
(

x · Lspecific′ ⊕ c, S (x) · Lspecific′ ⊕ c′).
– (w ⊕ Δc, v ⊕ Δc′) := (x · Lspecific′ ⊕ cnew, S (x) · Lspecific′ ⊕ c′

new) is stored
at the address i ⊕ g(Δm) := f(x) ⊕ g(mnew) of another half of the BRAM.

f(·) and g(·) are those functions introduced in Section 3.1. As explained before,
g(m) = m ·G ·O, where details of sorting matrix O are given in [19]. Here g(Δm)
can be computed as

Δm · G · O = (m ⊕ mnew) · G · O = Δc · O.

A block diagram of the update module for the Binary Search approach
is shown by Fig. 2. In both cases the update process can be done in 512 clock
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cycles since each read or write operation needs to be done in a separate clock
cycle. Therefore, similar to the scheme presented in [13] – depending on the
delay between consecutively given plaintexts – the masks used for a couple of
encryptions may not be different.

4 Security Evaluation

4.1 Evaluation

Before providing practical evaluation results, we would like to comment on the
security evaluations presented in [5]. If an arbitrary byte x1 (and x2) is encoded
by all possible 256 codewords we obtain a set S1 = {x1 · Lspecific′ ⊕ m · G|m ∈
{0, 1}8} (and respectively S2). As a feature of the scheme – thanks to the parity-
check matrix – the masks can be removed without knowing them. However, it
means that S1 and S2 do not have any overlap, i.e., �z; z ∈ S1, z ∈ S2. Therefore,
if the SCA leakages associated to S1 and S2 are different, their observation may
lead to categorize them based on x1 and x2. This means that under certain
assumptions an SCA attack will be possible. This assumptions are related to
the order of the attack as well as the algebraic degree of the pseudo-Boolean
representation of the leakage function. It is indeed the same concept as low-
entropy masking studied in [16] and [12]. Since the selected code in our settings
is an optimal [16, 8, 5] binary code, it can resist against first-order attacks if the
algebraic degree of the leakage function d < 5. Formally speaking

E
(

L (X · Lspecific′ ⊕ M · G) | X = x
)

is constant for any pseudo-Boolean function L of algebraic degree d < 5, where
X represents any 8-bit random variable, M is a random variable uniformly dis-
tributed on {0, 1}8, and E stands for expectation. Similarly it can resist against
univariate second-order attacks (without considering the leakage of the mask
m or m · G) for all leakage functions with algebraic degree d < 3. However, a
univariate third-order attack works if the leakage function is not linear.

In theory a univariate mutual information analysis (MIA) [10] should be
able to distinguish x considering the distribution of L (x · Lspecific′ ⊕ M · G).
The higher the algebraic degree of L is, the easier MIA can distinguish x.
In fact, these issues have not been considered in the evaluations of [5], and a
noisy Hamming weight (HW) model, i.e., a linear L , is considered to show the
resistance of the scheme against first-order attacks using simulation results.

4.2 Implementation

For practical experiments we developed three implementations:

– Profile 1, with the design of Fig. 1 and Lspecific′ where the masked S-boxes
are realized by Binary Search approach,

– Profile 2, the same as Profile 1 except the masked S-boxes which are actu-
alized by Direct Mapping technique,
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Table 1. Comparison of area and performance of three designed profiles

Profile
Area Performance (# clock)

# Register # LUT # BRAM 9k∗ Round Total
avg∗∗ max avg max

1 3 050 14 499 32 17 19 171 191

2 2 747 13 808 16 2 2 21 21

3 1 595 2 320 16 2 2 21 21

∗ In case of Profile 1, each 18-kbit BRAM is counted as two 9-kbit BRAMs.
∗∗ Average performance of a binary search over an N-element array is O(log2(N) − 1).

– Profile 3, with the same design as the other profiles, but without using the
wire-tap approach. In other words, it follows the architecture of Fig. 1, but
realizes a classical Boolean masking, i.e., no expansion and no binary linear
code is used. The masked S-boxes are also implemented straightforwardly
similar to that of Profile 2 but without any mapping.

As stated before, our implementation platform is a Spartan-6 LX75 FPGA
of SAKURA-G. Table 1 represents a comparison of area and performance of our
three profiles. It should be emphasized that the area required for KeySchedule
and to store the RoundKeys is ignored in the given numbers. Also, the PRNG
module which is supposed to provide random numbers is excluded in the com-
parisons as all three profiles need the same PRNG and the same number of
random bytes per encryption. As the last note, Profiles 1 and 2 are designed
to be parametric, i.e., for any selected L and C with length n = 16 the area
requirements stay unchanged.

As expected, compared to the others Profile 1 is the largest and slowest
design. Also, comparing Profiles 2 and 3 the overhead of using the wire-tap
approach based on our settings becomes clear, i.e., 0.7 times more registers and
4.95 times more logic LUTs.

4.3 Measurements

In order to perform practical evaluations we collected the power traces of the
target FPGA by means of a LeCroy digital oscilloscope at the sampling rate of
1GS/s. The measurements are done by monitoring the voltage drop by a 0.6Ω
resistor placed at the Vdd path. We also made use of the amplifier embedded on
SAKURA-G to increase the level of the signal compared to the electrical noise
level. During the measurements the target FPGA is clocked at a frequency of
3MHz.

As illustrated in Section 3.1, from a security point of view Profiles 1 and 2
are roughly the same, and evaluation of Profile 1 faces more challenges due it
is much longer traces. Therefore, we provide here only the evaluation result of
Profiles 2 and 3, a sample trace of each is shown by Fig. 3. As expected, due
to its higher area requirements Profile 2 has much higher power consumption
compared to Profile 3. Also, the evaluation result of Profile 1 is given in [19].
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Fig. 4. Profile 2, PRNG off, Perceived Information curves based on an S-box output
byte of first and last rounds using 1 000 000 traces

PRNG Off. In order to have a reference about the leakage of our platform as
well as to verify our measurement setup we first considered Profile 2 when the
PRNG is switched off. Therefore, all 64 bytes mi∈{0,...,63} (see Algorithm 1) are
constant as 0 during the collection of 1 000 000 traces. In other words, in this
case only the expansion with Lspecific′ is performed and all codewords used for
encoding are selected as 0.

Our security evaluations are based on the Information Theoretic (IT) metric
of [25]. It means that we estimate the mutual information between the mea-
sured traces and a secret internal which we suppose to know. In order to prevent
missing any statistical moments, in all our evaluations the probability distribu-
tions are estimated by histograms of 12 bins rather than Gaussian. Following
the notations of [25], we estimate the mutual information as

I(S;L) = H[S] +
∑

s

Pr[s]
∑

l

Pr[l|s] · log2 Pr[s|l],

where S (a secret internal) is selected as an S-box output in our evaluations7.
We indeed measure the amount of perceived information [8] as we estimate the
distributions by a histogram and consider the leakage model based on an S-box
output value.

Figure 4 shows two perceived information curves each of which associated
to an S-box output; one for the first round and the other for the last round of
7 Due to the bijective property of AES S-box and the former linear key addition, it

indeed leads to the same result if the corresponding plaintext byte is selected.
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Fig. 5. Profiles 2 and 3, PRNG on, Perceived Information curves based on an S-box
output byte of (a) first and (b) last round using 50 000 000 traces

encryption. As expected – due to constant masks – information available through
the traces either at the first round or at the last round can be easily detected.

PRNG On. By switching the PRNG on we first confirmed the uniform dis-
tribution of 64 random bytes given to the design. As stated before, due to a
long time required to update the masked S-boxes some encryptions may share
the same masks. Therefore, we kept a considerable delay between consecutive
encryptions during the measurements in order to make sure that no mask is
reused. In other words, one encryption does not start till the last mask update
process is finished. In this settings we collected 50 000 000 traces from each of
Profiles 2 and 3.

Repeating the last experiment as estimating the perceived information
between the measured traces and the S-box output led to the curves shown
in Fig. 5(a) and Fig. 5(b) for the first and the last round respectively. As shown
by the graphics, there is a difference between the estimated perceived informa-
tion of Profile 2 and Profile 3. It indeed confirms our statement in Section 4.1
about the existence of a univariate leakage in case of Profile 2 though due to its
very low magnitude a practical attack might be very challenging. Note that the
same result is observed by evaluation of Profile 1 as shown in [19].

Attacking an implementation realized by BRAMs is in general harder
compared to the corresponding circuit purely implemented by combinatorial
elements (see [3]). It becomes more challenging if the implementation is equipped
with masking as in the case of our profiles. We should stress that in all of our
profiles the BRAMs’ ports used for encryption are disabled right after finishing
the encryption process; it can be seen by the sample traces of Fig. 3. Therefore,
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the leakage observed in [2] are not seen here. Moreover, since we precharge the
address register of BRAMs by 0, their output register do not store a deterministic
value as the S-box table is masked. This also hardens a key-recover attack.

In order to perform a higher-order analysis the leakages of the mask and
masked data should be combined. It is actually referred as second-order analysis
in [5] where the centered-product of simulated leakages (noisy HW) of c and
x · L ⊕ c is taken as the combined leakage. As expressed before in Section 3.2,
by giving a new set of random bytes at the start of an encryption the masks
and all other constants are computed. The related leakage is observable only
at the first clock cycle (see Fig. 3). Since these values stay unchanged during
an encryption, their corresponding leakage do not combine with the leakage
associated to the process of masked data. Therefore, we should manually do the
combination required for higher-order analyses. So, we performed the following
steps:

– We first made all traces mean free. The means at each sample point is com-
puted based on the selected target value, i.e., an S-box output of the first or
the last round.

– Next, we obtained the average of a part of a mean-free trace related to the
first clock cycle (see Fig. 3).

– At the last step the average value is multiplied to all points of the mean-free
trace.

The last two steps are repeated for all mean-free traces independently, and the
second step is needed since the leakage associated to the masks may not appear
at a specific sample point.

μ

P
×

Profile 2
Profile 3

(a)

μ

×

Profile 2
Profile 3

(b)

Fig. 6. Profiles 2 and 3, PRNG on, Perceived Information curves based on an S-box
output byte of (a) first and (b) last round using 50 000 000 center-product preprocessed
traces
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Finally, we repeated the same experiment as before by estimating the per-
ceived information between the preprocessed traces and an S-box output at both
the first and the last round. The corresponding results shown by Fig. 6 indicate
the same observation as before, i.e., there exist more exploitable leakages by Pro-
file 2 compared to Profile 3. We should highlight that although the magnitude
of perceived information compared to that of Fig. 5 is increased, performing
a successful key-recovery attack on both of these two profiles is not an easy
task. This is due to the high level of switching noise related to our round-based
architectures as well as to the random precharge of BRAM output registers.

5 Conclusions

In this work we have taken an in-depth look at the wire-tap coding approach as
a side-channel countermeasure with focus on AES and an FPGA as the target
platform. Under certain assumptions and settings we have demonstrated the
difficulties a hardware designer may face when implementing the basic modules
of the cipher. The most challenging issue is how to realize the masked S-box, that
is due to the S-box size and the underlying binary code length. As the encoded
S-box cannot easily fit into the memory, we examined a couple of solutions,
most of which turns the design into a sort of classical Boolean masking for S-box
lookup. The problems we addressed here can be mitigated for other ciphers with
a smaller S-box size, where the whole encoded S-box can be straightforwardly
implemented as a look-up table.

We have shown that one of the nice features of the scheme as the possibility
to unmask without the knowledge of the mask is only beneficial at the end of the
cipher operations, which can be replaced by a simple XOR. Moreover, due to
the intransparency of MixColumns to the underlying binary code the mask cor-
rection is unavoidable during the cipher-round computations. These two issues
cause the scheme to be not much advantageous compared to classical Boolean
masking. Further, our practical implementations on a Spartan-6 FPGA showed
a considerable area overhead, i.e., 0.7 times more registers and 5 times more
LUTs, compared to a corresponding design of classical Boolean masking which
expectedly consumed less energy. Our practical side-channel analyses also indi-
cated that the underlying scheme does not provide a higher level of resistance.
Indeed, we have shown that the scheme might be vulnerable to certain attacks
while the corresponding Boolean masking design is still robust.

In short, with respect to only power analysis and compared to Boolean mask-
ing we do not find a motivating advantage of the scheme – in our settings – as
the circuit is more complicated, needs more energy, and is slightly less robust
against power analysis attacks. However, we have not considered two advantage
of the scheme in our analyses:

– Due to the properties of the binary linear codes, a higher-order version of
the scheme can be made with moderate efforts.

– Expansion matrix L can randomly change. This results in requiring another
module responsible for generation of a new L following its requirements.
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Other matrices like P to multiply by 2, Inv to decode the ciphertext, sorting
matrix O, and etc should also be dynamically obtained accordingly. If so,
another source of randomness is needed for the system which optimistically
complicates a key-recovery attacks.

– The scheme by nature can detect certain faults. Protecting against both DPA
and fault attacks is of crucial interest as most of the known countermeasures
can deal with only one of them. By the extensive evaluation given here we
provided first a roadmap how to implement it, and second an overview about
its DPA resistance in practice. As a result, this scheme might be a potential
candidate to increase security against both DPA and fault attacks, that the
later one should be carefully investigated to determine to which extend it
can defeat fault attacks.
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