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Abstract. In biometric authentication protocols, a user is authenticated
or granted access to a service if her fresh biometric trait matches the ref-
erence biometric template stored on the service provider. This matching
process is usually based on a suitable distance which measures the sim-
ilarities between the two biometric templates. In this paper, we prove
that, when the matching process is performed using a specific family
of distances (which includes distances such as the Hamming and the
Euclidean distance), then information about the reference template is
leaked. This leakage of information enables a hill-climbing attack that,
given a sample that matches the template, could lead to the full recovery
of the biometric template (i.e. centre search attack) even if it is stored
encrypted. We formalise this “leakage of information” in a mathemati-
cal framework and we prove that centre search attacks are feasible for
any biometric template defined in Z

n
q , (q ≥ 2) after a number of authen-

tication attempts linear in n. Furthermore, we investigate brute force
attacks to find a biometric template that matches a reference template,
and hence can be used to run a centre search attack. We do this in the
binary case and identify connections with the set-covering problem and
sampling without replacement.

Keywords: Biometric authentication · Privacy-preservation · Centre
search attack · Hill-climbing · Brute force attacks

1 Introduction

While biometric authentication is becoming increasingly popular, the privacy
and security risks related to their usage are raising severe concerns. The main
threats associated to biometric authentication include profiling and tracking of
individuals and identity theft. If successfully performed, any attack that recovers
a biometric template may have serious impact since users cannot change their
biometric features and biometric data may reveal very sensitive information (e.g.
genetic [1] information and medical diseases [2]).

Biometric authentication protocols involve comparing fresh biometric data
with a stored biometric template. The process is essentially performed by com-
puting some distance or divergence between the fresh and the stored template.
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If the measured distance is less than a predefined threshold, then the user is
authenticated; otherwise she is rejected. Many biometric authentication pro-
tocols use straightforward choices for the distance, such as the Hamming dis-
tance [3,4], the normalised Hamming distance ( [5] for iris recognition) and the
Euclidean distance [6–9]. In these cases the matching process leaks information
that could be exploited by an adversary to recover the stored template. More
precisely, the adversary could run an iterative process where he progressively
changes the components of an arbitrary biometric template until acceptance.
This strategy is known as hill-climbing attack [10], due to similarity with the
synonymous optimisation technique. When the initial template is an acceptable
biometric trait (e.g. a fresh sample) this process is called centre search attack [10].
Recovering stored biometric templates has more severe impact than just finding
an acceptable biometric template. Indeed, the same stored template might be
used in multiple biometric authentication systems which may even employ differ-
ent matching processes. Furthermore, a recovered stored template could be used
to find a match in criminal biometric template databases or even compromise
health records [11].

Hill climbing attacks involve making incremental changes to a potential solu-
tion, until one or more acceptable solutions are found. In our case, the adversary
observes how the matcher responds to forged biometric templates. His goal is
to recover the stored template from one matching template. Bringer et al. [12]
presented a hill-climbing strategy that is successful even when a dedicated secure
access module (e.g. smartcard) is used to perform the biometric authentication
process. The matching process considered in [12] involves an adapted Hamming
distance with erasures, nevertheless, the adversary is able to recover multiple
encrypted biometric templates. Later on, Simoens et al. [10] describe multiple
attacks (including the centre search attack) that can be mounted by each of the
internal entities in a distributed biometric authentication systems.

In the past years privacy-preserving distance computation has been inves-
tigated [13–15]. Although these protocols have direct applications to biometric
identification and authentication they all suffer from leakage of information when
a centre search attack is employed.

The problem of leakage of information due to the employment of distances has
also been investigated in other areas not relevant to biometric authentication. For
example, the Hamming weight model has been employed in order to successfully
perform side channel attacks [16,17] (e.g. differential power analysis). It has
been shown [16,17] that the power consumption of a device (e.g. a smart card)
directly depends on the Hamming weight and on the number of changes 0 ↔ 1
in the binary vector that is considered during the execution of the attack.

Our Contribution: In this paper, we point out that all biometric authentica-
tion protocols that rely on certain distances (including the Hamming and the
Euclidean distance) are susceptible to leakage of information and we provide
a formal mathematical framework to analyse this. In particular, we generalise
the centre search attack and prove that it is efficient and feasible in the binary
case as well as when the biometric templates are defined in Z

n
q . In both cases
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we show that the maximal number of authentication attempts in order to fully
recover the stored biometrics corresponding to the given data is linear in n
(the size of the biometric string). Our proofs hold also when the Euclidean dis-
tance is employed. Thus, we go beyond the Hamming distance case that was
described in [10]. We furthermore investigate the preliminary step to the centre
search attack: finding a biometric template that matches a reference one. For
the binary case, we propose a new algorithm that exploits a tree structure and
we compare its performance to standard brute force attacks and to the optimal
but infeasible attack. Finally, we highlight how the optimal solution of finding
a matching biometric template connects to the NP-complete set-covering prob-
lem and sampling without replacement. Our proofs are valid for standard as well
as for privacy-preserving biometric authentication protocols since the output of
the matching process is not affected by the employed protection mechanism (e.g.
homomorphic encryption). This means that encryption alone cannot mitigate the
leakage of information of the matching process. More precisely, this leakage of
information leads to full recovery of the stored template for the centre search
attack and to a matching template for the brute-force attack. An implication of
our work is that achieving security and privacy of biometric templates using the
known techniques is challenging.

Outline: The notations and the background material are introduced in Section 2
while Section 3 describes the adversarial model. We generalise the centre search
attack in Section 4 in two ways: first to any leaking distance on Z

n
2 and then to

any leaking distance on Z
n
q . In addition, we investigate the success probability of

finding an acceptable fresh biometric template and compare the bounds for the
success probability in different cases in Section 5. Finally, Section 6 summarizes
our results.

2 Preliminaries

Notations: Let q ∈ Z be a positive integer, q ≥ 2. The set of n-dimensional
vectors with components in Zq = {0, 1, · · · , q − 1} is denoted by Z

n
q . The i-

th component of a vector x ∈ Z
n
q is referred to as xi ∈ Zq. Given a distance

d : Z
n
q × Z

n
q → R≥0, a point x ∈ Z

n
q and a positive number τ ∈ R>0, the d-ball

of center x and radius τ is defined as Bx(τ) = {z ∈ Z
n
q : d(x, z) ≤ τ}. In the

following, the binary case (q = 2) will always be explicitly written as Z
n
2 . If

not otherwise specified, Z
n
q implies q > 2. We denote the bit-flip operation as

¯: Z2 → Z2, namely 1̄=0, 0̄=1. The integer part of a real number τ , is denoted
by �τ� (rounding to the closest integer ≤ τ).

2.1 Biometric Authentication

A biometric authentication system consists of two main phases: the enrolment
phase and the authentication phase.

The enrolment phase is a one-time step: a user (client) C registers to a trusted
party her biometric templates (digital strings b) along with her identity ID. These
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two pieces of information are then stored in the database of the authentication
server AS. Once enrolled in the system, the client can authenticate herself an
unlimited number of times.

In the authentication phase, the client is required to provide a fresh biometric
trait b′ as well as her identity ID. These two data are then communicated to the
authentication server, which checks if matching templates (fresh b′ and stored
b) match. If the distance between the user’s fresh biometric trait b′ and the
reference biometric template b is less or equal to a predefined threshold τ , then
the client gets authenticated. Otherwise, the system rejects the user.

Without loss of generality we will consider only the two party setting (i.e. one
client C and one authentication server AS, as depicted in Figure 1). However, our
analysis naturally applies when more than two parties are involved in the bio-
metric authentication process [4,18,19]. Due to privacy concerns, the biometric
templates should be protected and not sent in the clear over the network. This
implies that often the matching procedure is performed in the encrypted domain.
For instance, in multiple privacy-preserving biometric authentication protocols,
secure multi-party computation techniques are employed to preserve the privacy
of the users. In those protocols usually the biometric data are protected using
homomorphic encryption [20], garbled circuits [21] or oblivious transfer [22].

Figure 1 depicts the authentication phase of a biometric authentication sys-
tem in a two party setting, between a client C and an authentication server AS.
The client presents her fresh biometric and her ID to the authentication system.
The sensor S gets the user’s biometric vector b′ and her identity. In the privacy-
preserving case, S encrypts b′ (E(b′)) and ID (˜ID), otherwise this data is sent in
the clear. Subsequently, the two data (E(b′), ˜ID) are sent to the authentication
server AS, who retrieves the (possibly encrypted) stored template that corre-
sponds to the user with identity ID. The matching process is then preformed
by checking if the distance between the fresh and stored biometric templates
is less than a predefined threshold τ (i.e. d(b, b′) ≤ τ). Finally, depending on
the outcome of the matching (OutAS), the authentication server either accepts
or rejects the client. Note that even in the privacy-preserving case, where the
biometric data is encrypted, the output of the authentication server depends
only on the value of d(b, b′), i.e. the distance between the fresh and the stored
biometric vectors. Hence, encryption alone does not mitigate our attacks.

Get E(b) corresponding to ˜ID

compute the distance d(b, b′) ≤ τ

OutAS ∈ {accepted, rejected}

C
IDb′

OutASOutAS

S
AS

E(b′) ˜ID

Fig. 1. Authentication phase in a two-party biometric authentication system



On the Leakage of Information in Biometric Authentication 269

The main enablers of the attacks described in this paper are:

(a) A return channel of the biometric authentication process, denoted as OutAS
(e.g. access granted or not) that is sent by the authentication server to the
user after each authentication attempt. In a real-life biometric authentication
scenario this could be a door that opens denoting “access granted” when
biometric authentication is used for access control in a building.

(b) The fact that the matching process (and so the value of OutAS) is based
on a distance that is sensitive to single component variations (see leaking
distance Definition 1).

In this paper, we demonstrate that even when secure-multi party compu-
tation techniques are employed, it is still possible to disclose the biometric
templates as long as a certain family of distances is used to compare the raw
(plaintext) biometric data. That is, an attacker can learn information about
the value of b (plaintext of stored biometric template) by observing the authen-
tication server’s response OutAS to the client’s authentication requests, if the
response depends on the value of d(b, b′). More precisely, if d is a distance that
detects component-variation (see Definition 1), and if there exists a function f
that enables to retrieve information about the distance of the raw templates,
given their possibly encrypted versions, i.e. ∃f s.t. f(E(b), E(b′)) = d(b, b′),
then the biometric authentication system leaks information (in the non privacy-
preserving case E = id, is the identity map and f = d is the given distance).
In particular, it is always possible to disclose the original b given a matching
b′. For instance, consider the case [4] where b, b′ ∈ Z

n
2 , d = dH is the Hamming

distance and E and D are the Goldwasser-Micali [23] encryption and decryption
functions, respectively. Then, dH(b, b′) = HW(b ⊕ b)′ = HW (D(E(b ⊕ b′))) =
HW (D(E(b) × E(b′))), where HW denotes the Hamming weight of a vector, i.e.
HW(x) =

∑n
i=1 xi. In this case, we have f = HW ◦ D ◦ ×.

3 Adversarial Model

The main threats in a privacy-preserving biometric authentication protocol are
classified as follows [10]:

– Biometric reference recovery: the adversary tries to recover the reference
(stored) biometric template b.

– Biometric sample recovery: the adversary tries to recover (or generate) a
fresh biometric template b′ that will be acceptable by the biometric authen-
tication system.

– Identity privacy: the adversary tries to link a biometric template b(i) of a
user i to the user’s identity ID(i).

– Traceability and distinguishability of users: the adversary’s objective is to
distinguish different users and/or trace one user in different authentication
attempts.
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In this paper, we focus on the two first threats only, as they apply to any bio-
metric authentication system, privacy-preserving or not. We also consider that
the adversary A has access to the output of the authentication process (OutAS)
as well as to the predefined threshold τ used in matching process. The settings
for the two attacks are:

– Biometric reference recovery: the adversary A has an acceptable fresh bio-
metric template b′ at his disposal and tries to recover the stored template b
(centre search attack).

– Biometric sample recovery: the adversary A does not have access to an
acceptable fresh biometric b′ but tries to find an accepted template anyway
(brute force attack).

4 Generalisations of the Centre Search Attack

Let b′ ∈ Z
n
q denote a fresh biometric template and b ∈ Z

n
q the reference (stored)

template, for q ≥ 2. The standard centre search attack aims at finding the
point b in the centre of the acceptance ball Bb(τ) = { z ∈ Z

n
2 : d(b, z) ≤ τ }.

Simoens et al. [10] gave an informal description of this attack in the case d is the
Hamming distance. Here, we extend this attack to a larger family of distances
over Z

n
2 (Theorem 2). In order to do so, we prove in Theorem 1 that any leaking

distance (cf. Definition 1) over Z
n
2 is equivalent to the Hamming distance. In

addition, Theorem 3 proves that a centre search attack is feasible also for b ∈ Z
n
q

when q > 2 if a leaking distance (e.g. the Euclidean distance) is employed in the
matching process.

The family of distances we consider in this paper is defined as follows:

Definition 1 (Leaking distances). Let q ≥ 2, a distance d : Z
n
q × Z

n
q →

R≥0, is said to be a leaking distance (to detect component variations) if it can
be written as d(x, y) = h

(∑n
i=1 |xi − yi|k

)

, for all x, y ∈ Z
n
2 , k ∈ Q>0 and

h : R → R≥0 a monotonically strictly increasing positive function.

The Hamming distance is an example of a leaking distance over Z2 (take h
to be the identity map and k = 1). For a general q ≥ 2, the Euclidean distance
detects component variation (h is the square-root function and k = 2). Note that
leaking distances are reasonable distances to be used for biometric authentication,
as they enable to compare vectors (biometric data) component wise.

In order to simulate the query/access to an oracle, we introduce the following
decision function.

Definition 2. Let q ≥ 2, τ ∈ R>0 and let d : Z
n
q × Z

n
q → R≥0 be a distance

metric. Then, for each x ∈ Z
n
q , we define a decision function δx : Z

n
q → {0, 1}

as δx(z) =
{

0 if d(x, z) > τ
1 if d(x, z) ≤ τ

.

It is easy to see that the decision function δx corresponds to the output of
the authentication process denoted as OutAS in Sections 2 and 3. Firstly, we



On the Leakage of Information in Biometric Authentication 271

consider biometric templates as binary vectors. This is for instance the case for
iris recognition based biometric authentication [5,24]. We begin by proving that
any binary leaking distance can be written in terms of the Hamming distance.

Theorem 1. Let d : Z
n
2 × Z

n
2 → R≥0 be a leaking distance on Z

n
2 . Then every

d-ball corresponds to a dH-ball, with dH being the Hamming distance.

We provide the proof of Theorem 1 in the appendix. Observe that Theorem 1
provides a boardwalk among all binary leaking distances. In particular, it enables
us to extend all the results concerning Hamming distance to any other leaking
distance (on Z

n
2 ). For example, the correction factor for the Euclidean distance

on Z
n
2 is τ = τ̃2.

Theorem 2. Let dH : Z
n
2 × Z

n
2 → R≥0 be the Hamming distance and τ ∈ R>0.

Then, it is possible to determine the bit-values of a string x having access only
to a vector y ∈ Bx(τ) and in at most n+2τ calls to the decision function δx (cf.
Definition 2).

The proof of Theorem 2 is provided in the appendix. In light of Theorem 1,
we have the natural extension of Theorem 2 to the case of any leaking distance
on Z

n
2 .

Corollary 1. For any leaking distance d on Z
n
2 , Theorem 2 holds, with τ =

h−1(τ̃) being the corresponding threshold when τ̃ is the given radius of the ball
for the distance d.

As a side result, we have:

Corollary 2. If x is the stored biometric template b, and y is a matching fresh
measurement b′ satisfying d(b, b′) ≤ τ , then Theorem 2 provides an algorithm
to retrieve b being given b′ in a number of authentication attempts linear in
bit-length of the biometric templates.

In the protocol for iris recognition by Daugman [5], the matching process relies
on a normalised Hamming distance, which is defined as NHD(b, b′,X, Y ) =
∑n

i=1(bi ⊕ b′
i)XiYi /

∑n
i=1 XiYi, for b, b′,X, Y ∈ Z

n
2 . In the previous formula

the vector X is the mask for the stored biometric template b, while Y masks the
fresh trait b′. It is immediate to see that the normalised Hamming distance does
not comply with Definition 1, nevertheless it is still possible, given b′ and Y , to
mount a centre search attack and recover the bits of b that are not blinded by
the mask X,i.e. bi such that Xi = 1.

Theorem 2 holds only for leaking distances on Z
n
2 as in the proof we exploit

the fact that |xi − yi| can only assume two values 0 and 1, when xi = yi and
xi �= yi respectively. However, Theorem 3 generalises the reasoning in Theorem 2
to the non-binary case when any leaking distance is used (such as the Euclidean
distance, often used in non-binary biometric authentication protocols).
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Theorem 3. Let d : Z
n
q × Z

n
q → R≥0 be any leaking distance on Z

n
q (cf. Defi-

nition 1) and τ ∈ R>0, be a threshold such that τ < h(� q
2�k), then it is possible

to determine the value of the vector x ∈ Z
n
q having access only to a vector

y ∈ Bx(τ) in at most mn calls to the decision function δx (as in Definition 2),
where m = min{�2τ�, 2 log q}.

The proof of Theorem 3 is provided in the appendix. Also in this case, if we
consider the vectors as biometric templates it holds:

Corollary 3. Considering x as the stored biometric template b, and y as the
fresh matching trait b′, then the proof of Theorem 3 provides an algorithm to
mount centre search attacks against biometric authentication systems with tem-
plates in Z

n
q . And the maximal number of authentication attempts is linear in

length (dimension as vectors) of the biometric templates.

It is important to highlight that the results of this section imply that all biometric
authentication protocols that employ a leaking distance in the matching process
are vulnerable to the centre search attack, and this attack can be performed in
an efficient way.

5 Biometric Sample Recovery Attacks in the Binary Case

One of the most severe threats to biometric authentication systems is recovering
a stored raw biometric template b (maybe linked to the identity of the user). The
knowledge of b provides more information than the knowledge of a fresh trait
b′, as the same b could be used in multiple biometric authentication systems
possibly employing different matching processes (while b′ might be rejected). In
Section 4 we already presented efficient ways to recover the centre b of a ball,
given a point b′ close to it, namely b′ ∈ Bb(τ). The question we address now
is: Is there a way to find a matching template b′ given access only to δb? The
next subsections present four different answers to this question. We discuss the
connection between this problem and the set-covering problem in Section 5.2.

In the following, we consider only the case in which the biometric traits are
binary vectors, i.e. b ∈ Z

n
2 , and the employed distance is a leaking distance (cf.

Definition 1).

5.1 Blind Brute Force

In the blind brute force attack, the attacker randomly chooses a point b′ R←− Z
n
2 ,

and checks the output of the function δb(b′). If δb(b′) = 1, it means that p ∈
Bb(τ), so the attacker can easily recover b using this point b′ (cf. Theorem 2).
Otherwise (i.e., if δb(b′) = 0), the attacker picks another point at random from
Z

n
2 as before. We call this attack blind brute force because in each attempt the

adversary tries a random point until a point in Bb(τ) is found.
Let us compute the success probability of this attack after t ∈ Z>0 attempts.

Suppose first that we pick b′ ∈ Z
n
2 uniformly at random. Then the probability of

having b′ accepted is ω := |Bb(τ)|/|Zn
2 | =

∑τ
k=0

(

n
k

)

/2n. In each attempt, if the
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trial point is chosen uniformly at random and independently from the previous
attempts, then with probability ω this new trial point will be accepted. Let us
now introduce binary random variables Xi = 0 or 1, for i = 1, 2, · · · , t, and
let P(Xi = 1) = ω and P(Xi = 0) = 1 − ω. Obviously, Xi, i = 1, 2, · · · , t, are
i.i.d. Bernoulli random variables Xi ∼ Bern(ω). We are interested in computing
P

(

∑t
i=1 Xi = 1

)

, the total probability of succeeding once in t attempts. It is

not hard to see that P

(

∑t
i=1 Xi = 1

)

= tω(1 − ω)t−1, as the random variable
∑t

i=1 Xi ∼ Binom(t, ω) has a binomial distribution.

5.2 Sampling without Replacement

Brute Force without Point Replacement. In order to perform a brute force
attack without point replacement the attacker has to define a set of potential
candidates C ⊆ Z

n
2 . For the first trial, C = Z

n
2 and the attacker chooses a point

b′ R←− C at random. If δb(b′) = 1, the selected point is inside the acceptance ball,
b′ ∈ Bb(τ), and so the attack is successful. Otherwise, the attacker updates the
set of potential candidates C = C \ {b′}, deleting the one point that is not in
the acceptance ball. The attack proceeds by randomly picking a point from the
updated set C.

Let the random variables Xi, i = 1, 2, · · · , t, be as in the case of the blind
brute force attack. Note, however, that now P(Xi = 1) is different in each
attempt. In this case,

∑t
i=1 Xi follows the Hypergeometric distribution. There-

fore, P

(

∑t
i=1 Xi = 1

)

= B
(

2n−B
t−1

)/(

2n

t

)

, where B = |Bx(τ)| =
∑τ

k=0

(

n
k

)

. This
attack is intuitively better than the blind brute force, but of course the larger
the n is, the less efficient it is.

The Tree Algorithm. We propose
here a method (Algorithm 1) to find
a point b′ ∈ Z

n
2 within distance τ

from the unknown biometric template
b, given access to the decision function
δb (as in Definition 2). The central idea
of Algorithm 1 is to consider the points
of Z

n
2 as leaves of a binary tree of depth

n. The tree structure is then exploited
to define relatives-relations among the
points of Z

n
2 and to ensure that at

each unsuccessful trial one can delete
non-overlapping portions of the space
Z

n
2 . More precisely, if a point p ∈ Z

n
2

is such that δb(p) = 0, the algorithm
removes from the set of potential cen-
tres not only the tried point p, but also
its siblings-relatives generated by the τ
common ancestor (see Figure 2).

Algorithm 1. The Tree algorithm

Input: (n, τ, δb,)

Output: b′ = b′
1, · · · , b′

n (a matching
template)

C = Z
n−τ
2

for i = 1 to 2n−τ : do
a

R←− {C}
p = generate(a, τ)

if δb(b
′) = 1 (accepted) then

Return b′

else
C = C � {a}

end if

end for
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Fig. 2. The fundamental step of the Tree algorithm. Suppose the target biometric
template is the vector b = (10100) ∈ Z

5
2, the black bullet in the tree, and suppose the

threshold is set to be τ = 2. Let a = (000) be the selected ancestor, highlighted as a
grey circle in the picture. Let b′ = (00011) be the leaf randomly generated from a, then
dH(b′, b) > τ and so δb

(
(00011)

)
= 0. In this case the points generated by a (i.e. that

have a as common ancestor) will be deleted from the set of potential solutions.

The main function called by the algorithm is generate. Its input is the
threshold τ and a (n − τ)-dimensional binary vector a. The output is a ran-
dom leaf b′ ∈ Z

n
2 generated by a (the τ ancestor). That is, generate(a, τ) =

(a1, . . . , an−τ , r1, . . . , rτ ) = b′, where ri ∈ Z2, i = 1, . . . , τ are τ random bits.
The set of potential ancestors C is updated at every unsuccessful round, by
deleting the chosen ancestor. The tree algorithm uses the Hamming distance.

For a practical implementation, we can store the paths of the tree that lead to
the already rejected ancestors, and pick the new node a among the non-already-
traversed paths. The running time of the attack is (of course) exponential, as it
progressively constructs a binary tree of order n− τ . Nevertheless, the probabil-
ity to display the whole tree before finding a point that matches the reference
template is very low (precisely: 2−n+τ ).

The Optimal Solution. The goal of the attacks described in this section is to
find the ball Bb(τ) ⊂ Z

n
2 on which δb takes the value 1, without any additional

information at hand. We have already investigated blind brute force (random
tries), brute force without point replacement (remove one point at each unsuc-
cessful trial), and the Tree algorithm (remove 2τ points at each unsuccessful
trial). The optimal brute force approach exploits the following idea: if a point
p ∈ Z

n
2 is rejected, i.e. δb(p) = 0, it means that b /∈ Bp(τ). Hence, the whole ball

Bp(τ) can be removed by the set of potential centres. Intuitively, the best one
can do to rapidly reduce the size of potential centres, is to use as trial points,
points that lie at distance 2τ from each other. This corresponds to covering the
space Z

n
2 with the smallest number of balls of radius τ . This corresponds to an

instance of the well-known set-covering problem in a space [25,26].
More precisely, the optimal biometric sample recovery attack would involve

the adversary covering Z
n
2 with a family F of balls of radius τ . At this point,

the adversary needs to query the oracle (i.e. to use the decision function δb)
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at most |F| times, one for each (centre of a) ball in F. Hence the best solution
is for F a minimal covering, i.e. |F| = minG∈C |G|, where C is the set of all
possible covering of Z

n
2 with balls of radius τ . This is exactly the set covering

problem: to find the minimal number of balls needed to cover a space. It is proven
that the set covering problem is NP-complete[26]. This result implies that also
providing an optimal algorithm for the biometric sample recovery attack is an
NP-complete problem. However, there exist some greedy approximations that are
relatively efficient. In particular, for our case, Theorem 1 in [26] applies directly
and hence the number of points that the adversary needs to query is only a
factor of O(τ ln(n + 1)) more than the optimal cover.

5.3 Comparisons and Bounds

In order to compare the performance of the four described methods we need to
bound the probability that an attacker succeeds in finding a matching point, in
each case. At the t-th trial, the attacker attempts point xt ∈ Zn

2 and observes
yt ∈ 0, 1, with yt � 1Bb(τ)(xt) = δb(xt). Let zt ∈ {0, 1} denote whether or not
the attacker has found an acceptable point after t trials and st =

∑t
i=1 yt be the

number of points the attacker has found by time t.
To begin the analysis, we define μb(τ) � |Bb(τ)|/|Zn

2 | ∈ [0, 1] to be the
relative measure of the acceptance ball around b. In the binary case, dropping
the dependence on b, τ , we have μ ∈ [2τ−n, (n+1)τ2−n]. Of course, μ is also the
probability of acceptance if sampling uniformly.

Blind brute force. In this case the points are selected uniformly without replace-
ment, i.e. xt ∼ U(Zn

2 ). It trivially follows that E(st) = μt. It is also clear that
the attack is successful whenever st ≥ 1. For that reason, we shall attempt to
bound the probability that this occurs while μt < 1. As a matter of fact, we can
write:

P(st ≥ 1) = P(
t

∨

i=1

zt = 1) ≤
t

∑

i=1

P(zt = 1) = μt ≤ (n + 1)τ2−nt.

where the first inequality becomes an equality whenever μt < 1.

Sampling without replacement. All the other described approaches correspond to
sampling without replacement. In either case, let α ∈ [0, 1] denote the proportion
of points removed at each step. Then, we obtain the following bound:

P(st ≥ 1) ≤
t

∑

i=1

P(zt = 1) ≤
t

∑

i=1

μ

1 − αi
≤

∫ t

0

μ

1 − αx
dx =

μ

α
log

1
1 − αt

.

For the point-wise replacement algorithm, α = q−n, hence there is little effect.
For the binary case, we can employ the tree algorithm, α = 2τ−n, which can be a
substantial improvement. An unbounded adversary may use an optimal cover, in
order to exclude as many points as possible whenever a point is rejected. In fact,
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Fig. 3. Visualisation of the bounds for q = 2, n = 32, τ = 5. In this case μ ≈ 5.6×10−5.

in the best case, the adversary will be able to remove B points every time a point
is rejected, giving a value of α = B2−n. To visualise the bounds, we choose some
parameters such that there is a clear difference after a small number of iterations
(depicted in Figure 3). More precisely, Figure 3 shows the performance of all four
methods in terms of an upper bound on their success probability after a number
of iterations. The four curves show sampling with replacement (i.e. brute force),
and three different cases for sampling without replacement. Firstly, removing a
single point. Secondly, removing 2τ points using the tree construction. Finally,
removing the maximum number of points B, which is computationally infeasible.
There is a significant gain for the last choice, but only after a large portion of
the space has already been covered. As when α → 0, ln 1

1−αt → αt, the success
probabilities of the first three methods are approximately linear in the size of
the space, and hence exponential in the dimension.

The naive no replacement algorithm naturally does not improve significantly
over brute force without replacement, since the volume that is excluded at every
step is infinitesimal. Obviously, if we are able to remove a significant part of the
volume, then we obtain a clear improvement in performance. Only an optimal
adversary can do significantly better. However, this would assume either that
set-covering is in P or that the adversary is computationally unbounded. Con-
sequently, as there is no polynomial algorithm that is significantly better than
brute force, biometric authentication schemes based on matching templates are
secure against biometric sample recovery attacks.

6 Conclusions

In this paper, we prove that all biometric authentication protocols that employ
distances between a template and an fresh biometric in the matching process
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suffer from leakage of information that could be exploited by an adversary to
launch centre search attacks. In order to analyse this leakage of information,
we provide a mathematical framework and prove that centre search attacks are
feasible for any biometric template defined in Z

n
q , q ≥ 2, after a number of

authentication attempts that is linear in n. Our results imply that it is possi-
ble to mount this attack on most existing biometric authentication protocols
(including privacy-preserving ones) that rely on a Hamming, Euclidean, nor-
malised Hamming distance or any distance that complies with Definition 1.

Furthermore, we investigate whether brute force attacks can be used to
recover a matching biometric. We describe four strategies: blind brute force,
brute force without replacement, a new algorithm based on a tree structure and
the optimal case. Our results demonstrate that improving the success rate in
these brute force attacks would imply finding a solution to the NP-complete
set-covering problem. Thus, this provides some security guarantees of existing
biometric authentication protocols as long as the attacker has not access to a
matching biometric trait.

A possible countermeasure that could be employed in order to strengthen
existing biometric authentication protocols against centre search attacks would
be the employment of more sophisticated authentication methods. For example,
simply using weighted distances in which the weights are secret and different for
each user may provide sufficient security. Something similar is already employed
in the normalised Hamming distance for which indeed the centre search attack is
feasible but only for a subset of the components of the stored biometric template.
An alternative and promising direction would be to rely on a mechanism that
randomly selects a distance from a pool of distances at each authentication
attempt. However, such measures should be incorporated carefully in order not
to affect the accuracy of the biometric authentication system.

A Collected Proofs

Proof (Theorem 1). By hypothesis d is a leaking distance, hence it is of the form
d(x, y) = h(

∑n
i=1 |xi − yi|k), for all x, y ∈ Z

n
2 . Since h : R → R≥0 is monotonic,

it is bijective on its image, in other words it has an inverse h−1 : I → R, where
I = Im(h) = {w ∈ R≥0 : w = h(z),∃ z ∈ R}.
Consider the d ball of radius τ̃ around a point x ∈ Z

n
2 , namely the set {y ∈

Z
n
2 : d(x, y) ≤ τ̃}. We want to prove this d-ball equals a Hamming distance-ball

centred in x and of radius τ .
Indeed, d(x, y) ≤ τ̃ ⇐⇒ h(

∑n
i=1 |xi − yi|k) ≤ τ̃ . Noticing that h is increasing

implies that h−1 is also increasing, one obtains:
∑n

i=1 |xi − yi|k ≤ h−1(τ̃). In
addition, since |xi − yi| ∈ {0, 1} we can ignore the exponent k in the expression
(this is because 0k = 0 and 1k = 1,∀ k ∈ Q>0). Hence,

∑n
i=1 |xi − yi| ≤ h−1(τ̃),

but the left hand side of the inequality is exactly the Hamming distance between
the points x and y.
To summarise, we have d(x, y) ≤ τ̃ ⇐⇒ dH(x, y) ≤ h−1(τ̃). Let us put τ =
h−1(τ̃), then {y ∈ Z

n
2 : d(x, y) ≤ τ̃} = {y ∈ Z

n
2 : dH(x, y) ≤ τ}. That is, any

d-ball can be described as a dH -ball (Hamming distance-ball) and vice versa. ��
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Proof (Theorem 2). Step 1. Find a point w that lies just outside the boundary
of Bx(τ).
By hypothesis δx(y) = 1. Let w be the vector obtained from y by flipping
the first bit, i.e. w1 = ȳ1 and wi = yi , ∀i ∈ {2, . . . , n}. If w is rejected, that
is, if δx(w) = 0, it means that y is already on the boundary of Bx(τ) and
we are done by putting v = y. Otherwise, proceed by flipping one more bit
of y until it exits Bx(τ). The general step after k − 1 trials (flipping bits of
y and being accepted) is: set w = (ȳ1, . . . , ȳk, yk+1, . . . , yn), if δx(w) = 0 put
v = (ȳ1, . . . , ȳk−1, yk, . . . , yn). If δx(w) = 1, go on and flip the next component.
It is quite intuitive that this procedure ends after at most 2τ + 1 steps (the
worst case is when y is already on the boundary but we move it in the wrong
direction and cross the ball along its diameter).

Step 2. Determine the central point x of Bx(τ).
Note that by Step 1, we already know the value of the k-th component of x,
namely xk = vk. For j ∈ {1, 2, . . . , n} \ {k}, consider the vector v(j) defined
as v(j)i = wi, ∀ i ∈ {1, . . . , n} \ {j}. If δx(v(j)) = 1, it means that v(j)
compensates the error (in the k-th component) introduced by w with a new
correct component (the j-th component). Hence xj = v(j)j . On the other hand,
δx(v(j)) = 0 implies that the j-th component of w was correct. Hence, in this
case, xj = 1 − v(j)j . Step 2 ends after n − 1 queries. ��
Proof (Theorem 3). Let e(i) ∈ Z

n
q denote the i-th vector of the canonical basis,

i.e. for each i = 1, . . . , n, e(i)i = 1 and e(i)j = 0, ∀j ∈ {1, . . . , n} \ {i}. For each
of the n components of a biometric template, determine two vectors v(i), w(i) ∈
Z

n
q , i = 1, . . . , n such that: v(i) = b′ + λ1e(i) and w(i) = b′ + λ2e(i), with λ1 ∈

{yi, q−1−yi} and λ2 ∈ {0, yi−1}. Moreover, δx

(

v(i)
)

= 1 but δx

(

v(i)+e(i)
)

= 0,
and δx

(

w(i)
)

= 1 but δx

(

w(i) − e(i)
)

= 0. Such pair of vectors exists for each
component, as Bx(τ) is a bounded subset of Z

n
q and τ < h(� q

2�k). There are two
possible situations:

– v(i) and w(i) are on the boundary of the ball Bx(τ). In this case the centre
of the ball x ∈ Z

n
q will have the i-th component equal to the middle point

xi = (v(i)i + w(i)i)/2, ∀i ∈ {1, . . . , n}.
– v(i) and w(i) are not exactly on the boundary of the ball Bb(τ). Since it is

v(i), w(i), x ∈ Z
n
q the respective distances from the boundary εv(i) and εw(i)

must be equal (by symmetry). Thus, also in this case bi = (v(i)i + w(i)i)/2,
∀i ∈ {1, . . . , n}.

There are two efficient strategies to determine the vectors v(i), w(i):

– Linear search: in this case the worst case scenario is when y = x, and the
adversary needs to try all the points (with components in Zq) that lie in the
diameter of the ball Bx(τ), that is at most �2τ� trials.

– Binary search: the adversary performs at most 2 log q trials to determine
each external point, v(i), w(i).
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Thus, the maximum number of queries (access to the δx function) necessary
in order to recover the centre x of a ball in Z

n
q is bounded by nm, with m =

min{�2τ�, 2 log q}. ��
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