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Abstract. With the ever increasing demands of cloud computing services,
planning and management of cloud resources has become a more and more
important issue which directed affects the resource utilization and SLA and
customer satisfaction. But before any management strategy is made, a good
understanding of applications’ workload in virtualized environment is the basic
fact and principle to the resource management methods. Unfortunately, little
work has been focused on this area. Lack of raw data could be one reason;
another reason is that people still use the traditional models or methods shared
under non-virtualized environment. The study of applications’ workload in
virtualized environment should take on some of its peculiar features comparing
to the non-virtualized environment. In this paper, we are open to analyze the
workload demands that reflect applications’ behavior and the impact of virtu-
alization. The results are obtained from an experimental cloud testbed running
web applications, specifically the RUBiS benchmark application. We profile the
workload dynamics on both virtualized and non-virtualized environments and
compare the findings. The experimental results are valuable for us to estimate
the performance of applications on computer architectures, to predict SLA
compliance or violation based on the projected application workload and to
guide the decision making to support applications with the right hardware.

Keywords: Workload characterization � Virtualization � Performance model-
ing � Cloud computing

1 Introduction

The increasingly popular cloud computing paradigm provides on-demand access to
computing and storage with the appearance of unlimited resources [1]. Users are given
access to a variety of data and software utilities to manage their work. Users rent virtual
resources and pay for only what they use. Underlying these services are data centers
that provide virtual machines (VMs) [2]. Virtual machines make it easy to host com-
putation and applications for large numbers of distributed users by giving each the
illusion of a dedicated computer system. It is anticipated that cloud platforms and
services will increasingly play a critical role in academic, government and industry
sectors, and will have widespread societal impact.
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Resource planning and management is crucial for building cost-effective cloud
systems and services with a high service-level agreement (SLA) and customer satis-
faction rate. Current solutions to resource management usually over-provision VMs
and/or their capacity to cloud applications [3]. However, a fundamental question, i.e.,
“What are the characteristics of applications’ runtime behavior on the cloud?” or “What
impact does virtualization have on the resource demands from cloud applications?”, has
not yet been answered. There exists research on analyzing the performance traces
collected from data centers [4, 5]. Still, none of them evaluate the influence of virtu-
alization on the applications’ resource demands in cloud computing infrastructures.

The goal of this work is to characterize runtime workload of cloud applications in
the virtualized environment and compare it with traditional, non-virtualized systems.
To the best of our knowledge, this is the first work to analyze the impact of virtual-
ization on the resource demands of cloud applications. In this paper, we present the
experimental results on a cloud testbed. We run an illustrating web application, i.e.,
RUBiS (Rice University Bidding System) benchmark [6], on cloud servers. We profile
the application’s workload dynamics on both virtualized and non-virtualized envi-
ronments. We compare the resource demands of CPU, RAM, disk and network at the
three tiers (i.e., web, application and database servers) of RUBiS while serving thou-
sands of client requests. The findings and knowledge will help us accurately estimate
the performance of applications, predict SLA compliance or violation based on the
projected application workload and guide the decision making to support applications
with the right hardware in the cloud.

The rest of this paper is organized as follows. Section 2 discusses the related work.
We describe the settings of the cloud testbed and the application benchmark in Sect. 3.
The experimental results are presented in Sect. 4. Section 5 concludes the paper with
remarks on the future work.

2 Related Work

Workload characterization studies are useful for helping system operators identify
system bottlenecks and design solutions for performance optimization. Existing
research efforts target different systems and components including data centers [4, 5],
Web servers [7, 8], storage [9–11] and network [12, 13]. Several studies [14–16] focus
on workload analysis in the grid and parallel computing systems. They present various
methods for analyzing and modeling workload traces. However, the application
characteristics and resource scheduling policies in high-performance computing (HPC)
systems are different from those in the cloud [17–19].

Existing work on workload characterization can be classified into two major cat-
egories: model-driven and trace-driven methods. Model-driven approaches, such as
[20], analyze resource utilization and application performance based on assumptions of
workload distributions. The resource demand of a program is estimated by checking the
types and number of instructions of the program and its structure. The overhead of
modeling large and complex applications is prohibitive and the accuracy of the models
is compromised by static analysis.
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Trace-driven approaches study performance traces collected from real or controlled
systems in order to discover the time series of user requests and resource usage.
Distributions of profiled metrics are analyzed to describe workload characterization.
For example, Kavulya et al. [21] analyze the job patterns and failure sources based on
application execution traces from an HPC cluster. Mishra et al. [22] focus on the
characteristics of resource demands on CPU and memory. The Yahoo Cloud Serving
Benchmark [23] characterizes the activity of database-like systems at the read/write
level. Their work focus on estimating application completion time and looking for
performance problems based on application execution traces. Moreover, as applications
display various workload dynamics, it is difficult to exploit this approach in capacity
planning and real system analysis.

There is little work on understanding applications’ workload dynamics in cloud
computing environments. As virtualization has been an enabling technology for cloud
computing, it is imperative to investigate the impact of virtualization on the resource
demands of cloud applications, which is the focus of this work.

3 Cloud Testbed and Benchmark

The cloud computing system under test consists of HP ProLiant servers which are
connected by gigabit Ethernet. Each cloud server is equipped with 8 Intel Xeon
2.8 GHz cores, 32 GB of RAM and 2 TB of disk. We have installed Xen 3.1.2
hypervisors on the cloud servers. The operating system on a virtual machine is Linux
2.6.18 as distributed with Xen 3.1.2. The cloud testbed is organized and built in an
Amzon EC2-like [24] style providing IaaS cloud services. Each cloud server hosts up
to ten VMs. A VM is assigned up to two VCPUs, among which the number of active
ones depends on applications. The amount of memory allocated to a VM is set to 2 GB.

On the cloud testbed, we run the RUBiS [6] distributed online web service
benchmark as an illustrating cloud service. RUBiS provides an auction site prototype
modeling eBay.com and it is widely used as the benchmark program to evaluate the
server performance and web application designs. The RUBiS servers form a three-tier
server architecture consisted of the Web, application and database servers. RUBiS
clients send requests with different workload patterns (browsing, bidding and mixed
with adjustable composition of the two actions) to the Web server and simulate auc-
tions of items on eBay.

To profile the application’s resource demands in the cloud environment, we exploit
third-party monitoring tools, sysstat [25] to collect runtime performance data in the
hypervisor and VMs, and a modified perf [26] to obtain the values of performance
counters from the Xen hypervisor on each server in the cloud testbed. In total, 518
metrics are profiled, i.e., 182 for the hypervisor and 182 for VMs by sysstat and 154 for
performance counters by perf, periodically. They cover the statistics of every com-
ponent of cloud servers, including the CPU usage, process creation, task switching
activity, memory and swap space utilization, paging, interrupts, network activity, I/O
and data transfer, power management, and more. Table 1 lists and describes a sampling
of the performance metrics that are used to characterize the workload dynamics of
cloud applications on our testbed.
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4 Experimental Results and Analysis

We run the RUBiS benchmark system on the cloud testbed and profile the workload
dynamics with different clients’ request patterns on both virtualized and non-virtualized
environments. In this section, we present the results from the experiments and analyze
them to find the workload characteristics and the impact of virtualization on the
dynamics of resource demands.

4.1 Workload Characterization in a Virtualized Environment

In the first set of experiments, we deployed the RUBiS servers in VMs: the front-end
Apache web server and PHP application server (The two servers are integrated together
in the PHP implementation.) and the back-end MySQL database server. 1000 clients
external to the cloud testbed sent browsing, bidding and mixed type requests to the web
server. The think time was set to 7 s. We ran the experiments for around 20 min and
profiled the resource demands for CPU, RAM, disk, network, TCP socket and context
switch both in VMs and the hypervisor (dom0). Figures 1, 2, 3, 4, 5 and 6 depict the

Table 1. A sample of performance metrics used to characterize workload of the RUBiS
benchmark system on the cloud testbed.
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workloads. We tested five types of request compositions: browsing only, bidding only,
30 % browsing and 70 % bidding, 50 % browsing and 50 % bidding, and 70 %
browsing and 30 % bidding. Due to the space limitation, we only include the results of
the first two compositions in this paper.

The first two sub-figures in each set show the workload demands of the web and
application servers and the database server for virtualized resources, including CPU
cycles, amount of RAM, disk reads and writes, data received and transmitted through
networks, number of TCP sockets and number of context switches in VMs. The last
sub-figure in each set presents the overall workload demands to the physical resources.

From the figures, we can see the workload curves for different types of resources
display different shapes/distributions with different means and variances. But for each
type of resource, the workload dynamics show some patterns that can be quantified by
formal models. In addition, there exist some lags between workload changes of the
database server and the web and application servers as the client requests are received
and processed first by the web server before being sent to the back-end database server.

Between the front-end servers and back-end server, the front-end servers generate
higher workload demands as they demand 6.11, 3.29, 5.71, 55.56 and 1.85 times
more CPU cycles, RAM space, disk read/write, network data and context switches
than the back-end server, but the number of TCP sockets is almost same. When we
compare the aggregated workload demands of the VMs with that of the hypervisor,
the former is 16.84, 0.58, 0.47, 0.98, 2.67 and 0.09 times more/less than the latter with
regard to the six types of resources. This indicates the hypervisor performs additional
work other than the workload of RUBiS servers.
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Fig. 1. CPU cycle demands by the web and application servers and the database servers in VMs
and the hypervisor (dom0) to process the browsing and bidding requests from 1000 clients.
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Fig. 2. RAM demands by the web and application servers and the database servers in VMs and
the hypervisor.
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Fig. 4. Network data received and transmitted by the web and application servers and the
database servers in VMs and the hypervisor.
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Fig. 5. Number of TCP Sockets generated by the web and application servers and the database
servers in VMs and the hypervisor.
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Fig. 3. Disk read and write by the web and application servers and the database servers in VMs
and the hypervisor.
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Fig. 6. Number of context switches performed by the web and application servers and the
database servers in VMs and the hypervisor.
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Fig. 7. CPU cycle demands by the web and application servers and the database servers to
process the browsing and bidding requests from 1000 clients.
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Fig. 8. RAM demands by the web and application servers and the database servers.
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Fig. 9. Disk read and write by the web and application servers and the database servers.
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Fig. 10. Network data received and transmitted by the web and application servers and the
database servers.
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Fig. 11. Number of TCP Sockets created by the web and application servers and the database
servers to process the browsing and bidding requests from 1000 clients.
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Fig. 12. Number of context switches performed by the web and application servers and the
database servers.
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Comparing the two client request compositions, their workload dynamics display
similar shapes except for the RAM demands. Figure 2 shows the browsing requests
experience one or more jumps demanding more RAM, while the bidding requests have
a more smooth curve. A possible explanation is that as more client browsing requests
arrive, some requests are backlogged and after a certain period of time the server
allocates more RAM to process those backlogged requests, which also causes more
disk reads/writes (the spikes in the first two sub-figures of Fig. 3). On the other hand,
the longer think time of the bidding requests allows the servers to process the requests
more smoothly. Another important finding is that although the browsing requests
demand similar or more virtualized CPU and network resources than the bidding
requests, the latter demands a little more physical resources than the former as shown in
Figs. 1 and 4. We also find that the number of context switches performed by the
hypervisor is larger than that by VMs servers as shown in Fig. 6.

4.2 Workload Characterization in a Non-virtualized Environment

In order to characterize the impact of virtualization on system’s workload, we conduct a
series of experiment on non-virtualized servers in our testbed. The front-end web and
application servers and the back-end database servers reside on separate physical
servers. 1000 clients external to the RUBiS servers send browsing and bidding requests
to the web server. Sysstat and perf profile resource usages directly from the host OS and
hardware on each physical server. Figures 7, 8, 9, 10, 11 and 12 show the experimental
results. The workload curves still display certain patterns that can be modeled.

We are interested in comparing the results with those from the virtualized environment
as shown in Sect. 4.1. The two sets of figure show that the workload curves display the
similar shapes and the front-end servers demand more resource than the back-end server.
The aggregated demands for the six types of resources in the non-virtualized setting are
3.47, 0.97, 0.6, 0.98, 2.67 and 0.12 times more/less than those in the virtualized envi-
ronment. The workload requests for RAM show themost significant difference between the
two environments. As in the non-virtualized system (Fig. 8), the bidding requests also
display abrupt increase of RAM usage and the jumps happen earlier in time than those in
the virtualized system. One reason is the longer communication delay in the non-virtualized
system. In addition, from Fig. 9 we can see disk read and write workload shows higher
variance in the non-virtualized system than the virtualized one.

Comparing the results in Sects. 4.1 and 4.2, we find application’s demand for
physical resources is higher in the non-virtualized environment than in the virtualized
one, with 88 % more CPU cycles, 21 % more RAM, 2 % more network traffic and
60 % more TCP sockets, while disk read/write is 25 % less and the number of context
switches is 87 % less. These findings will allow cloud service providers to achieve
efficient capacity planning for a desirable SLA satisfaction rate.

5 Conclusion

In this work, we study the impact of virtualization on the workload dynamics. We
present experimental results on a cloud testbed by profiling the workload dynamics on
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both virtualized and non-virtualized environments. We compare the resource demands
at the three server tiers.

This study is preliminary. Our goal is to extract the rules of thumb to aid cloud
service providers to achieve the best resource planning. We plan to design and apply
formal methods to model the workload dynamics at both resource level and transaction
level.
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