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Abstract. Asthe amount of data explodes rapidly, more and more orga-
nizations tend to use data centers to make effective decisions and gain
a competitive edge. Big data applications have gradually dominated the
data centers workloads, and hence it has been increasingly important to
understand their behaviour in order to further improve the performance
of data centers. Due to the constantly increased gap between I/O devices
and CPUs, I/O performance dominates the overall system performance,
so characterizing I/O behaviour of big data workloads is important and
imperative.

In this paper, we select four typical big data workloads in broader areas
from the BigDataBench which is a big data benchmark suite from inter-
net services. They are Aggregation, TeraSort, Kmeans and PageRank.
We conduct detailed deep analysis of their I/O characteristics, including
disk read/write bandwidth, I/O devices utilization, average waiting time
of I/O requests, and average size of I/O requests, which act as a guide
to design highperformance, low-power and cost-aware big data storage
systems.

1 Introduction

In recent years, big data workloads [20] are more and more popular and play an
important role in enterprises business. There are some popular and typical appli-
cations, such as TeraSort, SQL operations, PageRank and K-means. Specifically,
TeraSort is widely used for page or document ranking; SQL operations, such as
join, aggregation and select, are used for log analysis and information extraction;
PageRank is widely used in search engine field; and Kmeans is usually used as
electronic commerce algorithm.

These big data workloads run in data centers, and their performance is crit-
ical. The factors which affect their performance include: algorithms, hardware
including node, interconnection and storage, and software such as programming
model and file systems. This is the reason for why several efforts have been
made to analyse the impact of these factors on the systems [17,20]. However,
data access to persistent storage usually accounts for a large part of applica-
tion time because of the ever-increasing performance gap between CPU and 1/0
devices.
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With the rapid growth of data volume in many enterprises and a strong desire
for processing and storing data efficiently, a new generation of big data storage
system is urgently required. In order to achieve this goal, a deep understanding
of big data workloads present in data centers is necessary to guide the big data
systems design and tuning.

Some studies have been conducted to explore the computing characteristics
of big data workloads [16,18], meanwhile, lots of work also have been done to
depict the storage I/O characteristics of enterprise storages [5,9]. However, to
the best of our knowledge, none of the existing research has understood the
I/0O characteristics of big data workloads, which is much more important in the
current big data era. So understanding the characteristics of these applications
is the key to better design the storage system and optimize their performance
and energy efficiency.

In this paper, we choose four typical big data workloads as mentioned above,
because they have been widely used in popular application domains [1,20], such
as search engine, social networks and electronic commerce. Detailed information
about I/O metrics and workloads are shown in Sect. 3.2. Through the detailed
analysis, we get the following four observations. First, the change of the number
of task slots has no effects on the four I/O metrics, but increasing the number
of task slots appropriately can accelerate the process of application execution.
Second, increasing memory can alleviate the pressure of disk read/write, and
effectively improve the I/O performance when the data size is large. Third, the
compression of intermediate data mainly affects the MapReduce I/O perfor-
mance and has little influence on HDFS I/O performance. However, compres-
sion consumes some CPU resource which may influence the job’s execution time.
Fourth, the I/O pattern of HDFS and MapReduce are different, namely, HDFS’s
I/0 pattern is large sequential access and MapReduce’s I/O pattern is small ran-
dom access, so when configuring storage systems, we should take several factors
into account, such as the number of devices and the types of devices.

The rest of the paper is organized as follows: Sect. 2 discusses related work.
Section 3 describes the experimental methodology. Section4 shows the experi-
mental results. Section 5 briefly brings up future work and concludes this paper.

2 Related Work

Workloads characterization studies play a significant role in detecting prob-
lems and performance bottlenecks of systems. Many workloads have been exten-
sively studied in the past, including enterprise storage systems [7,10], web server
[15,19], HPC cluster [14] and network systems [12].

2.1 I/0O Characteristics of Storage Workloads

There have been a number of papers about the I/O characteristics of storage
workloads [8,11,15].
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Kavalanekar et al. [15] characterized large online services for storage sys-
tem configuration and performance modeling. It contains a set of characteristics,
including block-level statistics, multi-parameter distributions and rankings of file
access frequencies. Similarly, Delemitrou et al. [11] presented a concise statistical
model which accurately captures the I/O access pattern of large-scale applica-
tions including their spatial locality, inter-arrival times and type of accesses.

2.2 Characteristics of Big Data Workloads

Big data workloads have been studied in recent years at various levels, such as
job characterization [16-18], storage systems [5,9].

Kavulya et al. [16] characterized resource utilization patterns, job patterns,
and source of failure. This work focused on predicting job completion time and
found the performance problems. Similarly, Ren et al. [18] focused on not only
job characterization and task characterization, but also resource utilization on
a Hadoop cluster, including CPU, Disk and Network.

However, the above researches on big data workloads focused on job level,
but not on the storage level. Some studies have provided us with some metrics
about data access pattern in MapReduce scenarios [4,6,13], bur these metrics
are limited, such as block age at time of access [13] and file popularity [4,6]. Abad
et al. [5] conducted a detailed analysis about some HDFS characterization, such
as file popularity, temporal locality, request arrival patterns, and then figure
out the data access pattern of two types of big data workloads, namely batch
and interactive query workloads. But this work concentrates on HDFS’s I/O
characterization, does not study the intermediate data, and also this work only
involves two types of workloads.

In this paper, we focus on I/O characteristics of big data workloads, the
difference between our work and the previous work is that first, we focus on
the I/O behaviour of individual workload and choose four typical workloads
in broader areas, including search engine, social network, e-commerce, which
are popular in the current big data era; Second, we analyze the I/O behavior of
both HDFS and MapReduce intermediate data from different I/O characteristics,
including disk read/write bandwidth, I/O devices’ utilization, average waiting
time of I/O requests, and average size of I/O requests.

3 Experimental Methodology

This section firstly describes our experiment platform, and then presents work-
loads used in this paper.

3.1 Platform

We use an 11-node (one master and ten slaves) Hadoop cluster to run the four
typical big data workloads. The nodes in our Hadoop cluster are connected
through 1 Gb ethernet network. Each node has two Intel Xeon E5645 (Westmere)
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Table 1. The detailed hardware configuration information

CPU Type | Intel R Xeon E5645
# Cores 6 cores@2.4 G

# threads |12 threads

Memory 32GB, DDR3

Disk 6 disks (one disk for system, three disks for HDFS data, the other two
disks for MapReduce intermediate data)

Disk Model Seagate: ST1000NMO0011
Capacity: 1'TB

Rotational Speed: 7200 RPM

Avg. Seek/Rotational Time: 8.5ms/4.2ms
Sustained Transfer Rate: 150 MB/s

Table 2. The detailed software configuration information

Hadoop 1.0.4

JDK 1.6.0

Hive 0.11.0

OS Distribution and Linux kernel | Centos 5.5 with the 2.6.18 Linux kernel
TeraSort BigDataBench2.1 [2]

SQL operations BigDataBench2.1

PageRank BigDataBench2.1

Kmeans BigDataBench2.1

processors, 32 GB memory and 7 disks(1TB). A Xeon E5645 processor includes
six physical out-of-order cores with speculative pipelines. Tables 1 and 2 shows
the detailed configuration information.

3.2 Workloads and Statistics

We choose four popular and typical big data workloads from BigDataBench
[20]. BigDataBench is a big data benchmark suite from internet services and it
provides several big data generation tools to generate various types and volumes
of big data from small-scale real-world data while preserving their characteristics.
Table 3 shows the description of the workloads, which is characterized in this
paper.

Tostat [3] is a well-used monitor tool used to collect and show various system
statistics, such as CPU times, memory usage, as well as disk I/O statistics. In
this paper, we mainly focus on the disk-level I/O behaviour of the workloads,
and we extract information from iostat’s report, and the metrics which we focus
on are shown in Table 4.
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Workloads Performance bottleneck Scenarios Input Data size
TeraSort (TS) 1/0 bound Page ranking; document |1TB
ranking
Aggregation (AGG) | CPU bound Log analysis; information | 1 TB
extraction
K-means (KM) CPU bound in iteration; | Clustering and 512GB
I/O bound in Classification
clustering
PageRank (PR) CPU-bound Search engine 512GB
Table 4. Notation of I/O characterization
I/0 Description Notes
characterization

rMB/s and wMB/s

The number of megabytes read from or
written to the device per second

Disk Read or Write
Bandwidth

Y%outil Percentage of CPU time during which Disk utilization
1/0 requests were issued to the device
await (ms) The average time for I/O requests issued |average waiting

to the device to be served. This
includes the time spent by the
requests in queue and the time spent
servicing them

time of I/O
request =
await - svetm

svetm (ms)

The average service time for 1/O requests
that were issued to the device

avgrg-sz (the
number of
sectors)

The average size of the requests that
were issued to the device. And the size
of sectors is 512B

average size of I/0O
request

4 Results

In this section, we describe HDFS/MapReduce I/O characteristics from four
metrics, namely, disk read/write bandwidth, I/O devices’ utilization, average
waiting time of the I/O requests, and average size of the I/O requests. Through
the comparison of each workloads, we can obtain the I/O characterization of
HDFS and MapReduce respectively, and also the difference between HDFS and
MapReudce.

In addition, different Hadoop configurations can influence the workloads’
execution. So in this paper, we select three factors and analyse their impact
on the I/O characterization of these workloads. The three factors are as fol-
lows. First, the number of task slots, including map slots and reduce slots. In
Hadoop, computing resource is represented by slot, there are two types of slot:
map task slot and reduce task slot. Here computing resource refers to CPU.
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Second, the amount of physical memory of each node. As we know that memory
plays an important role in I/O performance, so memory is an important factor
which affects the I/O behaviour of workloads. So, the second factor we focus on
is the relationship be-tween memory and I/O characterization. Third, whether
the intermediate data is compressed or not. Compression involves two types of
resources: CPU and I/O. what’s the influence on the I/O behaviour of workloads
when CPU and I/O resources both change. So, the final factor we focus on is
the relationship between compression and I/O characterization.

4.1 Disk Read/Write Bandwidth

Task Slots. Figure 1 shows the effects of the number of task slots on the disk
read/write bandwidth in HDFS and MapReduce respectively. In these experi-
ments, each node configured 16 GB memory and the intermediate data is com-
pressed. “10.8”, “20_16” in the figures mean the number of map task slots and
reduce task slots respectively.
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Fig. 1. The effects of the number of task slots on the Disk Read/Write Bandwidth in
HDFS and MapReduce respectively

From Fig.1 we can get the following two conclusions. First, when the num-
ber of task slots changes, there is barely any influence on the disk read/write
bandwidth in both scenarios for every workload. Second, the variation of disk
read/write bandwidth of different workloads in both scenarios are disparate
because the data volume of each workload in different phases of execution are
not the same.

In a word, there is little effect on disk read /write bandwidth when the number
of task slots changes. However, configuring the number of task slots appropriately
can reduce the execution time of workloads, so we should take it into account
when workloads run.

Memory. Figure 2 displays the effects of the memory size on the disk read /write
bandwidth in HDFS and MapReduce respectively. In these experiments, task
slots configuration on each node is 10_8 and the intermediate data is not com-
pressed. “16G”, “32G” in the figures mean the memory size of node.

As Fig. 2 shows, the influence of the memory size on disk read/write Band-
width depends on the data volume. There is a growth of disk read bandwidth
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Fig.2. The effects of memory on the Disk Read/Write Bandwidth in HDFS and
MapReduce respectively

in HDFS when memory increases as shown in Fig.2(a) due to the large amount
of raw data, but after handling and processing the raw data, the disk write
band-width of each workloads in HDFS are different because of the final data
volume. When the final data volume is small, memory has no effects on the disk
write bandwidth, such as Kmeans, as shown in Fig. 2(c). This result can also be
reflected in MapReduce.

Compression. Figure3 exhibits the effects of intermediate data compression
on the disk read/write bandwidth in MapReduce. In these experiments, each
node configured 32 GB memory and task slots configuration is 10_8. “off”, “on”
in the figures mean whether the inter-mediate data is compressed or not.

As Fig. 3 shows, due to the reduction of intermediate data volume with com-
pression, the disk read/write bandwidth increase in MapReduce.

0 50 100 150 0 50 100 150 200 250
Disk Read Bandwidth(MB/s) Disk Write Bandwidth(MB/s)

(a) MapReduce Read (b) MapReduce Write

Fig. 3. The effects of compression on the Disk Read/Write Bandwidth in MapReduce.

In addition, compression has little impact on the HDFS’s disk read/write
bandwidth, so we do not present the result.

4.2 Disk Utilization

Task Slots. Figure4 depicts the effects of the number of task slots on the disk
utilization in HDFS and MapReduce respectively.

From Fig.4 we can get the following two conclusions. First, the trends of
workloads in disk utilization are the same when the number of task slots changes,
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Fig. 4. The effects of the number of task slots on the Disk Utilization in HDFS and
MapReduce respectively.

Table 5. The HDFS/MapReduce Disk %util ratio

>90 %uitl >95 %uitl >99 %util
AGG 226% /0  |164% /0  98% /0
TS |52%/272% 3.8% /156% 2.4% / 5.5%
KM 04% /0 03% /0 02% /0
PR 05%/01% 03%/01% 02%/0.1%

i.e. the number of task slots has little impact on the disk utilization in both sce-
narios. Second, workloads have different behaviour about disk utilization in both
scenarios. From the Table 5, the HDF'S disk utilization of Aggregation is higher
than the others, so Aggregation HDFS disk may be the bottleneck. Similarly,
the MapReduce disk utilization of TeraSort is higher than the others; From the
Fig.4(b), the MapReduce disk utilization of workloads is 50 % or less at their
most of execution time, so the disks are not busy, except TeraSort because of
the large amount of TeraSort’s intermediate data.

Memory. Figure5 depicts the effects of the memory size on the disk utilization
in HDFS and MapReduce respectively. As Fig.5(a) shows, increasing memory
size has no impact on the disk utilization in HDFS. However, from Fig.5(b) we
can see that there is a difference between HDFS and MapReduce. In MapReduce,
the disk utilization of Aggregation and Kmeans has no changes when memory
size changes because the devices are not busy before memory changes. However,
the disk utilization of TeraSort and PageRank is reduced when memory increases
as shown in Fig. 5(b). So, increasing memory size can help reduce the number of
I/0 requests and ease the bottleneck of disk.

Compression. From Fig. 6(a), we can know that when intermediate data is com-
pressed, the HDFS’s disk utilization essentially unchanges. As Fig.6(b) shows,
there is no influence on intermediate data’s disk utilization of TeraSort, Aggrega-
tion and Kmeans, except PageRank in MapReduce.
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Fig. 5. The effects of memory on the Disk Utilization in HDFS and MapReduce
respectively.

100 ==

75

CDF

50

AGG_on

k
¥
I
5 4

¢ - = Ts_on
- KM_off — —KM_on
PR_off PR_on
0
0 20 40 60 80 100 [ 20 40 60 80 100
Disk %util Disk %util
(a) HDFS (b) MapReduce

Fig. 6. The effects of compression on the Disk Utilization in HDFS and MapReduce
respectively.

4.3 Average Waiting Time of I/O Request

Memory. Figure 7 shows the effects of Memory on the disk waiting time of 1/O
requests in HDFS and MapReduce respectively.

From Fig. 7, we can learn that the disk average waiting time of I/O requests
of workloads varies with different memory size, in other words, the memory size
has an impact on the disk waiting time of I/O requests and the MapReduce disk
waiting time of I/O request is larger than the HDFS’s.
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Fig. 7. The effects of memory on the Disk waiting time of I/O requests in HDFS and
MapReduce respectively.

Compression. Figure8 depicts the effects of compression on the disk waiting
time of I/O requests in HDFS and MapReduce respectively.
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Fig. 8. The effects of compression on the Disk waiting time of I/O requests in HDFS
and MapReduce respectively.

From Fig. 8, we can see that the disk average waiting time of I/O requests
remains unchanged in HDFS because HDFS’s data is not compressed, however,
due to the reduction of intermediate data volume with compression, the disk
waiting time of I/O request in MapReduce is decreased. And the MapReduce
disk waiting time is larger than the HDFS’s because of their different I/O mode
in access pattern, i.e. HDFS’s access pattern is domated by large sequential
accesses, while MapReduce’s access pattern is dominated by smaller random
access. This result can be seen in Fig. 9.

4.4 Average Size of I/O Requests

Task Slots. Figure9 depicts the effects of the number of task slots on the disk
average size of I/O request in HDFS and MapReduce respectively.

As the task slots is a kind of computing resource, there is little impact on
the disk average size of I/O requests when the number of task slots changes
from the figures. Also, the average size of HDFS I/0 requests is larger than the
MapReduce’s because they have different I/O mode in I/O granularity. In other
words, HDFS’s 1/O granularity is larger than the MapReduce’s.
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Fig. 9. The effects of the number of task slots on the Disk average size of I/O request
in HDFS and MapReduce respectively.

The same result also can be achieved by the effects of memory on the disk
average size of 1/O requests. However, due to the compression, the effects of
memory on the disk average size of I/O requests is different from the effects of
the number of task slots on the disk average size which is reflected in Fig. 10.
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Fig.10. The effects of compression on the Disk average size of 1/O request in
MapReduce.

Compression. In addition, whether the intermediate data is compressed or not
has no impact on the HDFS’s disk average size of I/O requests, so we do not
present the result.

Figure 10 displays the effects of compression on the disk average size of 1/0
requests in MapReduce. It is seen from figure that as the intermediate data is
compressed, the disk average size of I/O requests is decreased, and the percentage
of reduction varies with the types of workloads due to the intermediate data
volume. As Fig. 10 shows, there is little influence on the disk average size of 1/O
request when the intermediate data volume is small, such as Aggregation and
Kmeans.

5 Conclusion and Future Work

In this paper, we have presented a study of I/O characterization of big data
workloads. These workloads are typical, which are representative and common
in search engine, social networks and electronic commerce. In contrast with pre-
vious work, we take into account disk read/write bandwidth, average waiting
time of I/O requests, average size of I/O requests and storage device utilization,
which are important for big data workloads. Some observations and implica-
tions are concluded as follows. First, task slots has little effects on the four
I/0 metrics, but increasing the number of task slots can accelerate the process
of application execution. Second, the compression of intermediate data mainly
affects the MapReduce I/0 performance and has little influence on HDFS 1/0
performance. However, compression consumes some CPU resource which may
influence the job’s execution time. Third, increasing memory can alleviate the
pressure of disk read/write and effectively improve the I/O performance when
the data size is large. Last, HDFS data and MapReduce intermediate data have
different I/O mode, which leads us to configuring their own storage systems
according to their I/O mode.
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