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Abstract. Parallel computing in R has been widely used to analyse
microarray data. We have seen various applications using various data
distribution and calculation approaches. Newer data storage systems,
such as MySQL Cluster and HBase, have been proposed for R data
storage; while the parallel computation frameworks, including MPI and
MapReduce, have been applied to R computation. Thus, it is difficult
to understand the whole analysis workflows for which the tool kits are
suited for a specific environment. In this paper we propose DSIMBench,
a benchmark containing two classic microarray analysis functions with
eight different parallel R workflows, and evaluate the benchmark in the
IC Cloud testbed platform.
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1 Introduction

Data mining techniques applied to microarray data convert raw intensity values
into useful information. R is one of the most popular data mining software tools
used for medical research. With masses of data accumulating from translational
research studies involving high-throughput sequencing, many high performance
databases, such as MySQL Cluster [1], PostgreSQL Cluster [2], MongoDB [3]
and HBase [4], and parallel computing frameworks, including Message Passing
Interface (MPI) [5] and MapReduce [6], are being integrated into the traditional
microarray analysis tool, R [7]. Though these new methods greatly improve the
performance of R, they greatly complicate the whole analysis workflow. For
example, all the databases and parallel frameworks mentioned above form eight
different R workflows. Many datasets are required to fully evaluate the perfor-
mance of each workflow. Thus, hundreds of, or even thousands of, tests must
be performed in order to robustly evaluate and determine the most efficient and
effective workflow.

Our motivation is to find an effective big data solution for our open source
knowledge management software platform tranSMART [8], which was originally
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developed by Johnson&Johnson for in-house clinical trial and knowledge man-
agement requirements in translational studies. For the needs of various collab-
orative translational research projects, an instance of tranSMART is hosted at
Imperial College London and has been configured to use an Oracle relational
database for back-end storage. It currently holds over 70 million gene expression
records. When querying the database simultaneously for hundreds of patient
gene expression records, a typical exercise in translational studies, the record
retrieval time can currently take up to several minutes. Furthermore, some typi-
cal analyses using R, such as marker selection and data clustering, can take up to
several minutes, or even hours. These kinds of response times impede applica-
tions performed by researchers using this deployed configuration of tranSMART.
Anticipating the requirement to store and analyse next generation sequencing
data, where the volume of data being produced will be in the TB or PB range,
the current performance exhibited by tranSMART is unacceptably poor.

In this paper, we present DSIMBench (Data Science Institute Microarray
Benchmarks), which uses two common translational medical applications with
six representative data mining workflows, and evaluate the benchmark on the
IC Cloud [9] testbed.

2 Related Work

Benchmarks play a significant role in all domains. SPEC [10] benchmarks are
gold standards used by many processor manufacturers and researchers to mea-
sure the effectiveness of their inventions. Popular benchmarking suites designed
for specific application domains are also well accepted, such as TPC-H [11]
for database systems, SPLASH [12] for parallel architectures, and MediaBench
II [13] for media and communication processors.

Manybioinformatics benchmark suites arewidely in use, such asBioBench [14],
BioPerf [15] and MineBench [16]. These benchmarks contain several applications
in common, including BLAST, FASTA, Clustalw, and Hmmer. The bioinfor-
matics applications presented in DSIMBench differ from those included in these
benchmark suites. BioBench contains only serial workloads. Bioperf only uses
a few parallelized applications. Even in MineBench which contains full-fledged
OpenMP parallelized codes of all bioinformatics work-loads, no large-scale com-
puting framework has been integrated, such as MPI and MapReduce. In contrast
to the above benchmarks, DSIMBench focuses on R scalability and performance
for big data technologies with microarray data.

3 R with High Performance Plugins

3.1 Data Distribution

A standard vanilla R workflow loads the entire data before performing calcu-
lations. However, R provides many interfaces to different kinds of storage sys-
tems such as built-in functions (e.g. CSV reader), for local file system access
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(e.g. Linux ext4), DBI plugins for relational database access (e.g. MySQL Clus-
ter), and RHadoop plugin for interfacing with key-value database clusters (e.g.
HBase).

3.2 Parallel Computation

There are many high performance R plugins that parallelize calculationd for
CPU cores within one machine or for CPU cores across machines configured in a
computing cluster. MPI and MapReduce are two representative technologies used
for big data. For MPI, the R Snowfall [17] plugin is a usability wrapper around
the Rmpi [18] plugin for more usable development of parallel R programs. Rmpi
is a widely used MPI interface for the Local Area Multicomputer (LAM) [19],
with MPICH2 [20], a MPI implementation. For MapReduce, the RHadoop plugin
is a representative interface for the Apache Hadoop ecosystem [21], including
Hadoop Distributed File System (HDFS), MapReduce and HBase.

4 DSIMBench Workflows

We designed eight R workflows based on different data distributions and com-
putational solutions, as shown in Table 1. The first three workflows (W1–W3)
are created to test the data loading performance. Each workflow loads data from
one of three data sources, including local file system ext4, relational database
MySQL Cluster and key-value database HBase, and performs computation in
vanilla R. Workflow W4 acts as a baseline test for the parallel computations.
Workflows W5 and W6 test only the performance on the parallelization of the
computation in R, as the data is delegated directly from the master node through
direct network sockets. Finally workflows W7 and W8 test both the data loading
and parallel computation in combination, where W7 loads data to the worker
nodes using the fastest data loading workflow chosen from test results of W1–W3
with MPI, while W8 loads data using RHBase and computes using MapReduce.

Table 1. The DSIMBench workflows.

Workflows Data loading Computation Data source Parallel method

W1 Single process N/A ext4 N/A

W2 Single process N/A HBase N/A

W3 Single process N/A MySQL Cluster N/A

W4 N/A Single process N/A Vanilla R

W5 N/A Multiple cores N/A MPI

W6 N/A Multiple cores N/A MapReduce

W7 Multiple processes Multiple cores Best DB MPI

W8 Multiple processes Multiple cores RHBase MapReduce
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4.1 Data Source Performance Assessment

In workflows W1–W3, as shown in Fig. 1, third-party R plugins are used to
connect to the respective data sources. Hence, it is possible that the different
implementations of these R plugins could interfere with the performance of the
data source. In order to better assess the performance of the data sources in
workflows W1–W3 we performed data loading tests using a user-based high-
level API written in Java to directly load data from each data source to identify
how much of the performance is affected by that middleware layer in R. The
fastest source is then tested via a R plugin. If this R plugin on the source
outperforms the other data sources via Java APIs, this data source will be used
in the following W4–W6 tests.

Fig. 1. Diagram illustrating how the loading test is organised.

4.2 Parallel Computation Benchmark Workflows

W4 in Fig. 2 is introduced as the baseline. W5 shows R Snowfall MPI computa-
tion via a LAM/MPICH2 cluster. The data distribution consists of two sequential
steps: data loading and data copy. The input data matrix is loaded into LAM
master node and then fully copied to all MPICH2 slave nodes. The calculation
is carried out by the Snowfall sfLapply() function. sfLapply() mediates the
distributed calculation in the slave nodes and collects the results. W6 indicates
RHadoop MapReduce computation via a Apache Hadoop cluster. MapReduce
in W6 utilises HDFS as Mapper task data source. Thus, the data distribution
consists of two sequential steps. First, the input data matrix is split into data
blocks and then uploaded into HDFS. The number of data blocks depend on the
number of Mappers. After a MapReduce computation, all the results are stored
in HDFS.
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Fig. 2. Diagram illustrating how the parallel framework test is organised.

W7 in Fig. 3 manipulates MPICH2 tasks to load directly from the fastest data
source based on W1–W3. If ext4 is applied to W7, the matrix data file will be
split into data blocks and copied to each worker during the data preparation. The
number of data blocks depends on the MPICH2 number. W8 manipulates Map-
per tasks to load directly from HBase to test the built-in MapReduce HBase per-
formance. RHadoop launches Mapper tasks without data loading. Each Mapper
task loads data via built-in access to HBase Scanner and computes concurrently.

Fig. 3. Diagram illustrating R MapReduce with HBase.

5 DSIMBench Applications

5.1 Marker Selection

High-throughput gene expression analysis is a technique used to uncover disease
specific gene signatures and gain further insight into disease mechanisms. In the
past decade, gene expression measurements have shifted from quantitative assays
capable of measuring the expression of single genes, to assays capable of assess-
ing the levels of the majority of expressed genes in cells, tissues or organisms
of interest. DNA microarray chips are the common technology platform used in
recent years and are capable of simultaneous determination the entire human
“transcriptome”. In complex disease research, including diseases such as asthma
and chronic obstructive pulmonary disease (COPD), microarray experiments are
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performed on samples obtained from disease subjects and control (healthy) indi-
viduals. After the initial pre-processing steps which reduce background “noise”,
the expression intensity of genes present on each chip/sample are determined.
Subsequently, deferentially expressed genes (DEGs) in disease compared to con-
trol samples are computed as well as the statistical significance of the difference.
Finally, DEGs can be filtered by the relative levels of differential expression
(fold-change) and significance (p-values; typically corrected for multiple testing:
q-values).

The basic use case is to create a cohort between the patients and the control.
For some more complicated ones, many clinical measurements are utilised to gen-
erate cohorts. A test case below was carried out using a large publicly available
transcriptomic dataset taken from NCBI GEO [22] concerning Multiple Myeloma
(GEO accession GSE24080; Popovici et al., 2010 [23]). The dataset contains 559
subjects’ gene expression data produced by an Affymetrix GeneChip Human
Genome U133 Plus 2.0 Array. The cohorts are generated depending on patient
medical therapies and survival time. This test case is utilised in workflows W1–
W3 to test the data query in different number of subjects based on different
cohorts.

5.2 Hierarchical Clustering

Genomic, proteomic and metabolic measurements have contributed to molec-
ular profiling based patient stratification [24], such as identification of disease
subgroups and the prediction of responses of individual subjects. Biomedical
research is moving towards using high-throughput molecular profiling data to
improve clinical decision-making. One approach for building classifiers is to clas-
sify subjects based on their molecular profiles. Unsupervised clustering algo-
rithms can be utilised for stratification purposes.

Our benchmark applies three kinds of correlation methods used to generate
correlation matrices that are used by the hierarchical clustering algorithm in
tranSMART - the Pearson product-moment correlation, Spearmans rank-order
correlation, and Euclidean distance correlation. The test case below was carried
out using a large publicly available transcriptomic dataset taken from NCBI
GEO concerning leukemia (GEO accession GSE13204; Kohlmann et al., 2014
[25]). The dataset contains 2325 subjects’ gene expression data produced by
an Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. The correlation
matrix calculations could either be implemented on Hadoop, a popular and well
supported distributed data storage and computation framework that supports
MapReduce, or be implemented for distributed execution in R using Snowfall,
a parallel computing package for R scripts. In this benchmark, all W4–W6 and
the fastest one in W1–W3 are utilised to test the hierarchical clustering method.

6 Results

We performed the data loading test on marker selection and parallel tests on the
hierarchical clustering on 4 virtual machines in our IC Cloud implementation.
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The 4 VMs works on two physical machines with each 24 core and 64 GB memory.
Each physical machine hosts 2 VMs.

– Operating system: CentOS Linux 2.6.18-308.24.1.el5xen
– CPU: 144 cores (Intel(R) Xeon(R) CPU E5-2630 0 @ 2.60GHz)
– Memory: 384 GB, DDR3, 1066 MHz
– Disk array: 24 TB (Huawei, OceanStor S5500T)
– Virtual machine: 8 virtual CPU cores, 8 GB memory

6.1 Data Loading Test

We chose 5 cohorts (10 cases) of different data size and the whole dataset of
GSE24080 for a marker selection exercise, shown in Fig. 4. In the Java API test,
loading from ext4 file system outperforms all the other data sources. A widely
used vanilla R function scan greatly utilised for R the CSV file reading. RHBase
performs better than scan only in the first data size. In the following parallel R
test we choose ext4 as the data source.

6.2 R Parallel Framework Test

We utilised R function rdist() in package fields to calculate euclidean distance
matrices, function cor() to calculate the Pearson and Spearman correlation
matrices and function hclust() to cluster the correlation matrices. The result of
W4 and W5 to compare parallel frameworks, shown in Fig. 5(a), indicates that
when using the smaller MULTIMYEL dataset, MPI and MapReduce perform
slower than vanilla R. W5 suffers from slow data transmission. The result of
W7 and W8 to compare multi-thread data losing using different data sources,
shown in Fig. 5(b), indicates it is faster for MPICH2 to load data directly from
ext4 than HBase. W8 suffers from the long time RHBase data loading, as shown
in Fig. 4. The vanilla R computation (W2) performs best in the small dataset,
but does not scale up well in the large dataset. In the large dataset the better
parallel methods in Fig. 5(a) (W6) and (b) (W7) are utilised to compare to W4.
W6 and W7 outperformed W4. Though W6 computation time is a little longer
than W7, W6 outperform W7 due to the faster data preparation.

7 Discussion

As shown in Fig. 5, the parallel methods suffer from data communication over-
heads such as transferring data to each worker, worker management and collecting
data from the workers post-computation. But when size of the dataset increases,
the advantages of parallel methods overcome these overheads. In Fig. 5(c), W6 and
W7 have similar computation times, but W6 benefits from faster data preparation
using HDFS. We considered using RHadoop with HBase at the beginning, how-
ever RHBase demonstrates poor data loading performance and is consequently
much slower than the HBase Java API. RHBase does not perform well due to



54 S. Wang et al.

Fig. 4. Bar chart showing the performance evaluation in our data loading tests.

(a) Parallel R using single thread loading in   
small dataset.

(b) Parallel R using multi-thread loading in
small dataset.

(c) Parallel R in large datset.

Fig. 5. Bar chart showing the performance evaluation in our computation tests.
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the slow HBase Thrift [26] server. If RHBase could be implemented via rJava and
HBase Java API, it may perform much better. Also, the data loading tests should
introduce concurrent data loading tests before computation tests and full tests. As
shown in Fig. 5, though parallel approaches can improve the data loading, optimi-
sation of the matrix computation should not be neglected. R matrix calculations
use a pure array object to gain significant performance using the CPU cache. Par-
allel methods divide a big matrix into small pieces and executes calculations by
the low-speed R loop functions that cannot be pre-loaded in CPU cache due to
potential R branch sentences. This is the reason why parallel methods can only
perform 2 or 3 times faster than vanilla R when 32 CPU cores are utilised.

8 Conclusion

Big microarray data analysis using R is gaining significant focus as it’s data
access and computationally intensive workloads are in dire need to optimise their
performance. We believe a new data mining benchmark is required to thoroughly
analyse these analysis workflows and propose the most optimal workflow setup
for them. In this paper, we presented DSIMBench, a benchmark containing two
classic microarray analysis functions with six different parallel R workflows, and
evaluated the benchmark in IC Cloud testbed platform.
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