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Abstract. Map/Reduce is a popular parallel processing framework for data
intensive computing. For overlapping the Map task’s execution phase and the
Reduce task’s intermediate data fetching and merging phase, existing Map/
Reduce schedulers always pre-launch the Reduce task at the specific threshold
where its map tasks have been launched, and this pattern incurs the occupation
of the consuming resources of the reduce task during its idle time on waiting for
fetching the intermediate data from map tasks. To address this issue, we propose
an extension version of Hadoop map/reduce framework, called Predoop, in this
paper. The basic idea of Predoop is to preempt the reduce task during its idle
time and allocate the released resource to the map tasks on schedule. To achieve
this goal, first, we introduce the preemptive mechanism for reduce tasks and
map tasks respectively to enable Map/Reduce tasks to be preempted or resumed
with correct status; second, we adopt the preempting-resuming model for the
reduce task with the consideration of the progress of Reduce task data fetching
& merging and the Map task execution so as to determine the timing of Reduce
task preemption and resuming; third, we introduce the preemption-aware task
scheduling strategy to allocate the released resources to the on-schedule Map
tasks with the consideration of data locality. Experimental result demonstrates
that Predoop outperforms Hadoop on various workload and the average job
turnaround time can be reduced by maximum of 66.57 %.

Keywords: Map/Reduce - Intermediate data dependency - Preemption - Task
scheduling

1 Introduction

Map/Reduce is a new parallel processing framework for programming the commodity
computer clusters to perform the large-scale data processing [1]. The scheduling
granularity for each scheduled job is on the task level in the Map/Reduce framework
[1]. Once a map or a reduce task is launched, it will stay in active and occupy its
allocated computing resource, such as the memory space or the CPU slots. In general,
each map task always processes one data block of total job input data sets and each
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Reduce task would process the output data from all of map tasks corresponding to its
processing partition. We call this data dependency between the Map task and the
Reduce task as intermediate data dependency.

Due to the intermediate data dependency between map tasks and reduce tasks,
existing map/reduce schedulers always pre-launch the Reduce task at the specific
threshold (often 10 %) where its map tasks have been launched. Under the ideal
situation, this setting can overlap the map task’s execution phase and the reduce task’s
intermediate data fetching and merging phase [2]. However, due to the asymmetry in
the completion time of map tasks of a job (because of the difference in the launching
time or the uneven data processing progress), the Reduce task often stays in idle and
consumes little of its occupied resources at the stage where part of its dependent map
tasks have been data-fetched while others still on execution. The reduce task’s idle time
contributes much to the inefficient resource utilization, and hence, pulls down the
efficiency of map/reduce job execution. Our examination shows that, running 20
WordCount map/reduce jobs on a 12-node cluster, the idle time of a reduce task can be,
by average, 44.5 % to its total execution time and 23.3 % to its job’s total execution
time. The situation goes worse when the resource competition becomes more intensive
(that is, more jobs in the workload) [3].

To address this performance issue, we present an extension version of Hadoop map/
reduce framework, called Predoop [4]. The motivation of Predoop is to preempt the idle
reduce tasks to mitigate the idle time, and allocate the resources to map tasks on
schedule to accelerate the job execution. To achieve this goal, Predoop introduces a
preemption model for reduce tasks to determine the time point of suspending or
resuming the reduce task. Based on the preemption model, Predoop adopts a pre-
emption-aware task scheduling strategy to guarantee that the on-schedule map tasks are
allocated with those released resources. Further, Predoop integrates the enabling pre-
emptive mechanisms for reduce tasks and map tasks to make sure that the preemption
model and task scheduling are practical. The main contributions of Predoop are as
follows:

(1) The preempting-resuming model for the reduce task. The definition of the time
point to preempt/resume reduce task is the most fundamental factor in the reduce
task preemption solution. We introduce two quantitatively estimation models—
preempting model and resuming model, to determine the reduce task preempting
and resuming occasion. To improve the preemption efficiency, the preempting
model is designed based on the ratio of the progress of the reduce task’s data
fetching & merging to the map task’s execution; the resuming model is design
based on the ratio of the number of completing map tasks after preemption to total
number of map tasks.

(2) Preemption-aware task scheduling for the reduce task preemption. Based on the
preempting-resuming model, we adopt the preemption-aware task scheduling to
schedule the preempted resources in high priority. We design a new scheduling
strategy for preempted resources, which allocates these resources to map tasks and
avoids the fragmentized execution of the map task due to its consuming resource
reclaimed by the resuming reduce tasks frequently.
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(3) Preemptive mechanisms for map tasks and reduce tasks. By recording the
boundary of <key, value> pair processed by a map task, and the boundary of map
task that has been intermediate data-fetched, the preemptive task mechanisms can
assure the map and reduce task be resumed with the correct status and not losing
previous works.

(4) We have conducted the performance evaluation for Predoop with two famous
benchmark suites: SWIM and BigDataBench [5, 6]. The experimental results
demonstrate that Predoop outperforms the native Hadoop on both the synthetic
workloads (SWIM) and real world workloads (BigDataBench). It can reduce the
average turnaround time of map/reduce jobs by up to 66.57 %.

The following sections are organized as follows: Sect. 2 describes the preempting-
resuming model of reduce tasks; Sect. 3 present the preemption-aware task scheduling
in Predoop; Sect. 4 introduces the preemptive mechanisms for the reduce task and map
task respectively; Sect. 5 analyzes the experimental results; Sects. 6 and 7 present the
related work, the conclusion and the future work of this paper respectively.

2 Preempting-Resuming Model of Reduce Tasks in Predoop

As described before, the main idea of Predoop is to preempt a reduce task during its
idle time in the fetching and merging phase and allocate its released computing
resources to some map tasks to be scheduled. Features of the preempting-resuming
model of reduce tasks are to decide the time point to perform the preempting operation
on a reduce task, and the time point to resume it and reallocate the computing resource
it occupied before.

2.1 Preempting Model of Reduce Task

On designing the preempting model, we take two factors into consideration. One is the
start point of a reduce task’s idle time. It is obviously the candidate time point to
preempt a reduce task. The second is the length of a reduce task’s idle time. This is for
that idle time of the reduce task could be too short to cover the time cost of the
backfilling map task’s deployment so that the benefit of utilizing the preempted
resources will be overthrown. To make the most use of the limited idle time, Predoop
determines the candidate time point of the reduce task preempting in an advance way
by estimating the start point and the length of reduce task’s idle time periodically. Once
the time length is long enough, the corresponding start time will be chosen as the
candidate preempting time.

For each preempting decision making, the starting point of a reduce task‘s idle time
can be calculated out with the factor of Remaining Fetch & Merge time from the
deciding time. The Remaining Fetch & Merge time can be defined as the remaining
time that a reduce task needs to complete fetching and merging the intermediate data
generated by the map tasks that has been completed. Due to that, in Predoop, a reduce
task performs the data fetching & merging with a thread pool and fetches the
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intermediate data one group after another. The Remaining Fetching & Merging time is
estimated as T4, through the following function.

qui
Trﬁn = Tﬁn + ’7 X l—‘ X Titer (1)

Where, T}, stands for the average time that a reduce task spends to fetch and merge
the intermediate data from a map task; N,,; is the number of map tasks that have been
completed with their intermediate data not fetched; k is the number of map tasks that a
reduce task can start to fetch their intermediate data roughly at the same time and run in
a single wave; Ty, is the average time interval between two successive data fetching
waves for a reduce task. In predoop, the & is initially set as 1 and the Tj,, is set as the
minimal remaining execution time among all active data fetching threads. As a reduce
task makes progress in its execution, we dynamically update the Ty, k and Ty,
accordingly.

The figure out the length of a reduce task’s idle time, we need to estimate the end
time point of this time period. In predoop, the end time of a reduce task’ idle time can
be decided with the factor of Remaining execution time of map task, which the reduce
task depends on, from the decision making time point. In other word, once these map
tasks finish execution, the reduce task may be reactive to fetch and merge the new-
generated intermediate data. The Remaining execution time of map task is estimated
as T,,, through the following function.

_ 1 - Pmt
Pmt

Trm X Tmex ( 2 )

Where, p,,, stands for the execution progress of a map task. P,,, can be calculated
out during a map task’s execution according to the proportion of data that have been
processed. T,,.. is the map task’s total execution time since its beginning.

The preempting model of reduce task finally decides the candidate preempting time
point of a reduce task according to the following condition.

Min {Trmla Trm27 Y Trmﬂ} - T
Tnse

™ > D, (3)

Where, the set of T,,,,; (1 <i<n) stands for the remaining execution time of all map
tasks that the reduce task depends on; T, is the average execution time of the com-
pleted map tasks that the reduce task depends on; D), is a threshold which indicates to
what extend is the reduce task’s idle time long enough to perform the preempting
operation.

In predoop, the periodical prediction of a reduce task’s preempting time will stop
when a candidate time point is generated, and restart when the reduce task resumes
from a preemption. To compensate the inaccuracy in the estimation, the preempting
operation on a reduce task will be carried out immediately once the reduce task shifts to
the idle state ahead of the candidate preempting time point. On the other hand, if the
reduce task’s data fetching & merging operation on its depending map tasks, which has
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completed on the preempting decision making time point, does not finish on the
candidate preempting time point, the preempting operation of the reduce task will be
postponed until all fetching & merging operations complete.

2.2 Resuming Model of Reduce Task

In predoop, a preempted reduce task can only be resumed when there are some map
tasks that it depends on have been completed during its preemption. The resuming
model determines the resuming of a reduce task only if the following two conditions
are satisfied.

Condition 1:

Nmap_c - Nmap_f ZD; (4)
N map

Where, N,,,, . stands for the number of completed map tasks that a reduce task
depends on; N, ris the number of map tasks that a reduce task depends on and have
completed with the generated intermediate data not fetched; N,,qp, is the total number of
map tasks that the reduce task depends on; D, is a threshold.

Condition 2: All map tasks allocated with the preempted computing resource of the
reduce task are not in the intermediate data partition phase.

In a word, Condition 1 guarantees that only when the number of its depending map
tasks has accumulated to be large enough, the preempted reduce task can be resumed.
Condition 1 is established to prevent the frequent preempting/resuming of reduce tasks
and make the reduce task fetch the intermediate data in a bundle way. Because the
partition phase is the last phase of map task execution and leads to heavy disk I/O cost,
Condition 2 makes the restriction that the intermediate data partitioning operation can
be performed in all-or-nothing way, so as to simplify the preemption operation of map
task, and make sure that the disk I/O cost caused by the data partitioning can be
returned with some progress in the map task execution.

3 Preemption-Aware Task Scheduling in Predoop

The most distinguished feature of task scheduling in Predoop is to allocate the
resources released from the preempted reduce tasks (we call them as preempted
resource) to the on-schedule map tasks. Similar to Hadoop, task scheduling in Predoop
is triggered with the ‘asking for the new task’ heartbeat message sent from a computing
node with the available resources information enclosed. The scheduler performs the
task scheduling on the preempted resources with the following three rules:

Rule 1: The allocation of preempted resource is prior to the regular resource.
Where, the regular resource refers to the available resource released by the map/
reduce task that completed or failed normally.
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Rule 2:
—3t(t € PR A (Aloc(t) N GR # ¢ V Aloc(t) N PR # ¢)) (5)

Where, PR stands for the preempted reduce task set in Predoop; GR stands for the
non-preempted reduce task set; the function Aloc() can be expressed as Aloc:T —> T,
where T is the total task set in Predoop. Function Aloc(t) defines the task set that
allocated with the computing resource that task t has released when completed or
suspended.

Rule 3:
—3t(t € MP At € Aloc(pr;) At € Aloc(prj), pr; € PR,prj € PR, pri #pr;)  (6)

Where, MP stands for the map task set in Predoop.

Rule 1 is established for that the use of preempted computing resource is highly
time sensitive (only available during the idle time of a reduce task). Rule 2 guarantees
that the preempted resource can only be allocated to the map task. This is for that idea
of Predoop is to preempt the reduce task only when it is idle. However, once a reduce
task is allocated with the preempted resource, it may be interrupted during its data
fetching when the corresponding preempted reduce task needs to be resumed and
reclaim the resource. Rule 3 prevent that the resources allocated to a map task is
released from multiple reduce tasks. This is to avoid the scenario where a map task
‘gathers’ the resource fragment from multiple suspended reduce tasks and leads to its
frequent interruption because any of those reduce tasks needs to be resumed.

Based on the three rules, Predoop queues the map/reduce job in FIFO (First In First
Out) way and assigns the preempted resource to map tasks with the consideration of
node-level, rack-level and offSwitch-level data locality in sequence. On the other hand,
among the map tasks with node-level data locality, Predoop chooses the task, that has
been preempted because their consuming resources are reclaimed by the reduce tasks,
in prior. This is because that the more preempted map tasks accumulated during a job’s
execution, the larger amount of intermediate data its reduce tasks need to fetch later,
and hence increases the risk of network burst. For the regular available resources,
Predoop inherits the task scheduling strategy from Hadoop.

4 Preemptive Task Mechanism in Predoop

In predoop, map tasks and reduce tasks are applied with different preemptive task
mechanisms on their consuming resources preempted or reallocated.

As described above, the preemption of reduce task can only occur when it finishes
the intermediate data fetching and merging from part of its dependent map tasks during
its shuffle time. During its data fetching & merging phase, the reduce task ‘pull’ the
intermediate data from multiple dependent map tasks in a parallel way and store them
into data segments in memory or on disk according to the data size. The data segments
are then merged into the larger segment and stored into the disk. Figure 1(a) shows the
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Fig. 1. Preemptive mechanism for reduce and map tasks

preemptive mechanism of reduce task in Predoop. In Predoop, each reducae task holds
a index during it execution. The index records the dependent map tasks that have or
haven’t been completed yet, and the location of data segment files belonging to the
reduce task. The index is updated dynamically when the reduce task is in progress. On
the preemption, the reduce task first stops the updating of the index, completes the
fetching and merging of data output from all completed map tasks, and flushes all data
segments in memory into the disk (step 1). The reduce task then backups its index
information to the Preempt Executor (step 2). Finally the Preempt Executor preempts
the reduce task (actually kill the process of the reduce task) (step 3). When resuming
the reduce task, the Preempt Executor first restarts the reduce task (step 4). Once
restarted, the reduce task gets the index from Preempt Executor and makes clear of the
map tasks to fetch the intermediate data (step 5). The reduce task then pulls the map
output and merges into new data segment files (step 6).

In Predoop, the map task can only be preempted during its map phase. During the
map phase, the map tasks read and process the <key, value> pair from the distributed file
system HDEFS in sequence. Figure 1(b) shows the preemptive mechanism of map task in
Predoop. In Predoop, each map task can only be preempted at the end of each <key,
value> pair and the index of the last processed <key, value> pair needs to be recorded.
On preemption, the map task first finishes processing the <key, value> pair on hand. The
map task then records the index of the last processed pair to its Application Master.
Application Master resets the status of the map task as ‘on schedule’ (step 2). Finally,
Application Master preempts the map task (actually kill it) via Preempt Executor resided
on the same node as the map task (step 3). On resuming, the Application Master restarts
the map task (step 4). The map task gets the index of last processed <key, value> pair
information from Application Master (step 5). The map task then restarts the data
processing from the <key, value> pair next to the last processed one.

5 Performance Evaluation

In this section, we present a systematic performance evaluation of Predoop. We
compare the performance of Predoop to YARN (a new version of Hadoop) with the
FIFO scheduler. This is for that FIFO is the fundamental of others schedulers. When
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porting to other scheduler, the advantage of preemptive scheduling may be amplified
due to the fact that there are multiple job queues in other schedulers and concurrent
preemptions can be conducted.

5.1 Experimental Methodology

We first conduct a systematic performance evaluation of Predoop with a diverse sets of
workloads, including load-shrinking and load-amplifying workload from BigData-
Bench benchmark, and the mix workload from Swim [5, 6]. Further, we study the
sensitivity of Predoop performance to the configuration of two thresholds in the pre-
emption model (Dp and Dr), due to the fact that various configurations result in the
different occasion and frequency of reduce task preemption. Finally, we evaluate
the scalability of Predoop.

Experiments are conducted in a cluster of 13 nodes. One node is dedicated as both
the ResourceManager and NameNode. Each node is equipped with two Intel(R)
Pentium(R) 4 cpus, 3 GB memory and one 160 GB SATA hard driver. On the YARN
configuration, we configure totally 2 GB memory per node and assign 1024 MB
memory for each Application Master. The HDFS block size is set as 64 MB as default.

Two benchmarks are employed. One is BigDataBench, which provides the real
world ap-plication workloads with real world data sets, and we choose two single-job
workloads from it: WordCount and Sort. WordCount represents the workload category
that includes map/reduce job which generates small amount of intermediate data so that
the reduce tasks have lighter load than map tasks (We called them load-shrinking
workload). Sort represents the workload category which generates large amount of
intermediate data so that reduce tasks have much heavier load than map tasks (We call
them load-amplifying application). The other benchmark is SWIM. SWIM can gen-
erate the synthetic workload for diverse size of Hadoop cluster according to the trace of
Facebook product map/reduce platform. We add the sleep() to the map and reduce task
function body so as to guarantee the execution time of map/reduce task in accordance
with the heavy-tail distribution [7].

We choose Average Turnaround Time as the main evaluation metric. Average
Turnaround Time is the most typical metric to reflect the efficiency of a scheduler of the
system.

5.2 Result for the Single-Application Workloads

We first conduct the experiment on single-application workload with the input data size
of 8 GB, 10 GB, 12 GB, 14 GB, 16 GB. For each job, we set the reduce task number as
8. The required memory amount of each task is set as 1024 MB as default. The
thresholds D, and D, in the preemption model of reduce task are set as 20 % and 40 %
respectively.

Figure 2 shows that Predoop outperform YARN on the execution of single-
application workload with various data sizes. For the Sort workload, the average job
turnaround time is reduced by 29.5 % on average and 49.07 % by maximum. Predoop



Predoop: Preempting Reduce Task for Job Execution Accelerations 175

(@) Sort (b) ¥Wardcount
7000 12000
IC} EYARN — £ O ARN
. £900 WFredoop ‘E1~~’~ Weredoor
'3 5000 5 sono
g 4000 B
£ 2000 E 6000
4000
E 2000 3
" 2000
I 1000 g‘
0 °
8 10 16

12 14 12
data size(GB) data size(GB)

Fig. 2. Average turnaround time of single-application workloads

also achieves performance improvement on the load-shrinking workload, like Word-
count. The average job turnaround time is reduced by 37.24 % on average and 66.57 %
by maximum.

According to the statistics, due to the preemptive mechanism, Predoop minifies the
reduce task’s idle time by 95.86 %—99.93 % compared to YARN, and allocates the
preempted resources to map tasks on schedule. This improvement contributes much to
the promotion of the job turnaround time. On the other hand, the performance result
shows that Predoop achieves better performance promotion on the load-shrinking
workload (like Wordcount) than the load-amplifying workload. This may be for that
when map tasks have heavier load and output smaller intermediate data, there will be
more chances for the reduce tasks to complete one round of data fetching & merging
quickly and leave more idle time to be preempted during its waiting for the next round
of map task completion.

5.3 Results for the Mix Workloads

To evaluate the performance of Predoop in the shared map/reduce cluster, we use four
mix workloads generated by SWIM. Among these mix workload, the proportion of
load-amplifying job varies from 6 % to 8.7 %, which represents the typical mixture
ratio in the product map/reduce clusters (like Facebook).The thresholds D, and D, in
the preemption model of reduce task are also set as 20 % and 40 % respectively. To
simulate the memory resource contention in the shared map/reduce cluster, we vary the
memory requirement of each map and reduce task as 512 MB, 1 GB (default set in
YARN), and 1.5 GB (Table 1).

Figure 3 shows that Predoop outperforms YARN on the mix workload experiment.
The average job turnaround time is reduced by up to 49.85 %. According to the
statistics, the drop rate of the average reduces task’s idle time keeps relatively stable

Table 1. Characteristics of mix workloads

Binl Bin2 Bin3 Bin4

Job number 120 150 180 200
Total size of map input data (GB) 46.66 64.19 72.32 82.94
Total size of intermediate data (GB) 6 6.25 6.47 6.58

Total size of reduce output data (GB) 1.36 1.44 2.26 7.19
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Fig. 3. Average turnaround time of mix workloads

under the different memory requirements (varying from 89 % to 90.7 %). However, the
drop rate of the average job turnaround time goes up from 18.7 % to 25 %, with the
memory requirement per task increasing (In another word, the resource contention
more intensive). This is due to the fact that, with the resource contention, jobs with
larger map task size may have higher risk to launch map tasks in batch. The preemptive
scheduling can preempt the idle reduce tasks, contribute their occupied resource to help
the on-schedule map tasks hold their required memory resource more quickly, and
hence, accelerate the job completion. The statistic result shows that the performance

improvement of the jobs with larger map task size contributes much to the increasing
drop rate.

5.4 Performance Sensitivity to the Threshold Configurations

As described in Sect. 3, the preemption model of reduce tasks is designed with two
threshold parameters: Dp and Dr. Performance of Predoop may be sensitive to the
threshold configuration due to that these two thresholds control the occasion and
frequency of reduce task preempting and resuming and may incur extra cost on the task
status switch. To evaluate the performance sensitivity, we choose the mix workload
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Fig. 4. Performance sensitivity to threshold configuration
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with the job number of 120 and 200 and conduct the experiments by varying the
threshold configuration. We vary Dp in preempting model as 10 %, 20 %, 30 %, 40 %,
50 %, 60 %, 70 %, and vary Dr in resuming model as 20 %, 40 %, 60 %, 80 %, 100 %.

Figure 4(a) and (b) shows the variation of average drop rate on turnaround time by
Predoop. We find that for D, the best performance can be achieved when setting the
threshold as 30 %—40 % for the 120-job mix workload and 20 %-30 % for the 200-job
mix workload. To make it clear, we count the percent of risk preemption among all the
reduce task preemption. The risk preemption is defined as the reduce preemption that
leave the reduce task in preempting for less than 10 % of its dependent map tasks’
average execution time. Figure 4(c) demonstrates that the variation of percent of risk
preemption is quite in accordance with that of drop rate on trunaround time. This is due
to the fact that setting the threshold too small will lead the reduce task to be preempted
frequently and provide the preemption time not long enough to accommodate the
efficient execution of map tasks, but only induce the extra map&reduce task start/stop
cost. When setting the threshold too large, the reduce task will delay its preemption and
keep it in the idle state so as to shorten the time period that map tasks consume the
preempted resource.

When varying the configuration of D,, we find the similar performance variation
pattern as that of D,, in Fig. 4(b) and (d). The cause is also similar. When the threshold
is set too small, the reduce task needs to be resumed quite frequently and leaves too
short preemption time. When the threshold is set too large, the reduce task will stay in
the preemption even when there is enough fetching data generated, so that delay the
completion of reduce tasks.

5.5 Scalability

We evaluate Predoop’s performance scalability according to the cluster size. We
generate five groups of workloads for the cluster size of 4, 6, 8, 10, 12. For each group,
we generate three workloads with 120 jobs each. For each group, we calculate the
average job turnaround time of the corresponding three workloads.

Figure 5 shows that with the typical synthetic workloads, Predoop outperforms
YARN on diverse cluster sizes. The average turnaround time is reduced by the max-
imum of 46.29 %, and by the minimum of 20.98 %. According to the statistics, the
average reduce task idle time is cut down by maximum of 98.37 % and by minimum of
91.28 %.

EYARN
EPr=docp

Avgdg hirmaound limes)

4 6 B 1 12
cluster size

Fig. 5. Average turnaround time with diverse cluster size
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6 Related Works

Many task schedulers have been proposed for map/reduce cluster over the past several
years to pursue either the fairness among jobs or maximization of the job execution
performance. To address the fairness issue, Hadoop, the most popular open-source
implementation of Map/Reduce framework, provides three task scheduler: FIFO
Scheduler, Fair Scheduler, Capacity Scheduler [3]. In [8], based on these fundamental
task scheduling, the fair scheduler is improved in Hadoop by postponing the execution
of head-of-queue tasks when the computing node to be allocated doesn’t hold its
processing data locally. Quincy introduced a min-cost flow algorithm to achieve the
tradeoff between the fairness and data locality [9]. However, most fairness-centra
schedulers don’t adopt the preemptive mechanism and cannot prevent the long job
monopolizing the system capacity or the significant resource waste.

There are several ways to maximize the job performance: (1) overlapping or sub-
dividing some phases in a map/reduce job so as to overlap the execution of phases that
utilize different resources of CPU and disk i/0. Works in [10] split the reduce task of a
map/reduce job into the data copy task and the data computing task. However, it can
not resolve the resource waste issue during the data copy task’s idle time; (2) reducing
the i/o cost by the aware of data locality or the network status. References [11, 13]
present a data locality-aware and skew-aware reduce task scheduler to shorten the
reduce task execution time; Maestro improves the locality of map task execution by
keeping track of the data chunk and its replication location [12]. Reference [14] pro-
posed the communication-aware placement and scheduling of map tasks and predictive
load-balancing of reduce tasks so as to reduce the data i/o cost during the job execution.
All the four works focus on the optimization of data i/o cost, but ignore the data
dependence between map and reduce tasks; (3) remedying the outlier of map/reduce
task execution particularly in the heterogonous environment. Mantri can identify the
outlier in the map/reduce clusters by real-time monitoring task execution and restart
the outliers on the node chosen with network awareness [15]. Though Mantri conserves
some valuable work for the outlier task, the preemptive mechanism is not introduced in
it. What’s more, the performance optimization of the regular tasks is not Mantri’s
focus; (4) predicting the execution of map/reduce task and adjust the resource allo-
cation dynamically so as to meet the SLA. ARIA conducts the job profiling and designs
the map/reduce performance model to estimate the amount of resource a routinely
executed job required to complete within the deadline [16]. Reference [17] adopted the
preemptive mechanism for reduce task and designs the task scheduling for the fairness
issue. Hence, the scheduling algorithm is totally different from that in Predoop.

7 Conclusion and Future Work

In this paper, we propose an extended map/reduce framework called Predoop. Predoop
aims at solving the issue that the reduce task occupies the allocated resource during its
idle time when waiting for the intermediate data fetching from its dependent map tasks,
which lowers the job performance. Idea of Predoop is to preempt the reduce task during
its idle time and allocate the released resource to the map tasks on schedule. To achieve
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this goal, Predoop adopts the effective preemptive mechanism for both reduce and map
task, and defines the preempting-resuming model of reduce tasks with the consideration
of the progress of reduce task data fetching & merging and the map task execution.
Based on the preempting-resuming model, a preemptive task scheduling strategy is
present to allocate the preempted resources to map tasks concerning the data locality.
Experimental results demonstrate that Predoop outperforms Hadoop for the load-
amplified workload, the load-shrinked workload and the mix workload. The average
job turnaround time is promoted by the maximum of 66.57 %. The ongoing work
includes: (1) improving the preempting-resuming model for the map/reduce job that
has asymmetric processing time on multiple data elements; (2) the online adjustment of
the threshold in the preemption model.
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