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Abstract. To provide a high performance and reliable big data plat-
form, this paper proposes a comprehensive invariant-based performance
diagnosis approach named InvarNet-X. InvarNet-X not only covers per-
formance anomaly detection but also root cause inference, both of which
are conducted under the consideration of operation context of big data
applications. The performance anomaly detection procedure is adopted
to trigger the cause inference procedure and accomplished by checking
the ARIMA model drift on Cycle Per Instruction (CPI) data of big data
applications. The oracle of cause inference is the unobservable root causes
of performance problems always expose themselves via the violations
of the associations amongst directly observable performance metrics.
In InvarNet-X, such observable associations as the likely invariants are
established by the Maximal Information Criteria (MIC) and each perfor-
mance problem is signified by a set of violations of those likely invariants.
Finally, the root cause is uncovered by searching a similar signature in
the signature database. With such a comprehensive analysis, InvarNet-X
can provide much detailed clues for performance problems and even pin-
point the root causes if the signature database is given. Through exper-
imental evaluations in a small prototype, we find out InvarNet-X can
achieve an average 91 % precision and 87 % recall in diagnosing some real
faults reported in software bug repositories, which is superior to several
state-of-the-art approaches. Meanwhile, the local modeling methodology
makes InvarNet-X easily facilitated in real-time and large scale big data
platforms.

Keywords: Big data + Hadoop + Observable likely invariant - Perfor-
mance diagnosis

1 Introduction

Big data becomes an inevitable trend at present and in the foreseeable future.
The popularity of big data attracts many researchers and engineers to devote
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themselves to mining the valuable knowledge in the scrambled data piles. How-
ever, during the transformation from ‘big data’ to ‘big value’, the performance
and reliability of the big data platform deserves the same attention. As a general
case, the big data platforms, most if not all, are deployed in large scale distrib-
uted systems with thousands of machines using parallel programming such as
MapReduce as their program paradigm. In such a huge platform, performance
anomalies, faults and failures become commonplace due to the complex interac-
tions in the intricate software stacks [1]. In our previous study [2], we summarized
the causes of faults in several widely used open software systems such as Hadoop.
One part of the causes are the operational environment changes such as resource
utilization hog, workload fluctuation and misconfiguration and the other part
are the bugs rooted in the software stacks such as memory leak and lock race.
In the big data software stacks, hadoop, no-sql databases, et al. are all the can-
didate hotbeds of these faults. In addition to that, new faults emerge in the big
data platform due to the inherent complexity and three “V”s (i.e. Velocity, Vol-
ume and Variety!) of big data. The typical bugs are out of memory (OOM) and
disk space exhaustion. For instance a bug, MapReduce-1182, shows OOM when
the data becomes huge. The bug tells us under the low data-intensive workloads,
“shuffie” in memory may be all right but under high data-intensive workloads,
the memory is bloated. The faults and failures mentioned above abate the profit
brought by big data technology. Thus both of performance and reliability should
be the important concerns when setting up a big data platform.

Performance diagnosis as the first line of defending software faults is in charge
of finding out the hidden root causes of performance problems. However due to
the huge cardinality of suspicious cause set, precise diagnosis in large distrib-
uted system is an extraordinarily difficult target to achieve. The difficulty is
exacerbated in big data platform embodied in the following aspects.

a. Unlike the web-based applications, the execution duration of big data appli-
cation is long ranging from several hours to several days (e.g. human genome
analysis). Therefore the commonly used QoS metrics like response time or
throughput are not suitable any more to monitor in real time. A new key
performance indicator (KPI) is urgently needed.

b. The type of big data application varies a lot including both of the batch
type and interactive type workloads. These two types of workloads exhibit
completely different characteristics and need distinct considerations.

c. The big data platform always possesses tens of thousands of heterogeneous
machines which requires the performance diagnosis approach can flexibly
adapt to the scale and heterogeneity.

A wide spectrum of research has been done in this field. But most of them
focus on fault location in a coarse granularity (e.g. VM or node level [3-5]). Few
of them emphasize the root cause inference in a fine granularity (e.g. metric
level). Recently an invariant-based performance diagnosis approach is proposed

! New properties like “Veracity” are added recently. But we still use the widely
accepted three “V”s.
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in [6,7] which shares a similar idea with ours. It constructs an invariant network
by capturing the stable temporal and spatial relationships amongst the perfor-
mance metrics collected from the whole distributed system in a pair-wise manner.
This approach can work in real time and infer the root causes at fine granularity.
However it’s insufficient due to its workload agnostic, linear modeling and com-
putationally intractable global invariant construction.

Considering the aforementioned challenges and the weakness of the current
research, we propose a comprehensive invariant based performance diagnosis
approach, InvarNet-X. The goal of InvarNet-X is to pinpoint the root causes
for those problems whose causes are recurrent and investigated? and provide
some hints for the unknown problems on the fly. To reduce the cost of unnec-
essary performance diagnosis, InvarNet-X first conducts the anomaly detection
procedure by checking the autoregressive integrated moving average (ARIMA)
model drift on CPI data of big data applications then triggers cause inference
procedure. In InvarNet-X, each performance problem is signified by a set of vio-
lations of likely invariants constructed by MIC [10] and stored in a signature
database. Finally, the real culprits are captured by searching the similar sig-
natures in the signature database. InvarNet-X works under the consideration
of operation context in order to adapt to the varying workloads and hardware
heterogeneity. Via experimental evaluations in a small prototype, we find out
InvarNet-X can achieve an average 91 % precision and 87 % recall in diagnos-
ing some real faults which is superior to several state-of-the-art approaches.
Our contribution is three-fold:

— We propose a new performance anomaly detection method by checking
ARIMA model drift on CPI data for big data applications.

— We introduce a novel invariant construction method with MIC and build a
signature database for each performance problem using the MIC' invariant.

— We design and implement InvarNet-X to evaluate the accuracy and efficacy
of our approach. The experimental results show that our approach can find
out the culprits accurately.

The rest of this paper is organized as follows. Section 2 depicts the basic idea
and problem formulation of InvarNet-X. Section 3 demonstrates the details of
InvarNet-X. Section 4 shows the experimental evaluation and comparisons with
several state-of-the-art approaches. Section 5 shows the related work. And Sect. 6
concludes this paper.

2 Problem Formulation

Our work is motivated by the methodology in medical science. The diseases have
distinct behaviors from the perspective of some observable symptoms. Thus
a conventional method to diagnose a disease is to look for a similar charac-
teristic of observable symptoms from historical knowledge of investigated dis-
eases. The historical knowledge is organized as a ‘symptom-disease’ database.

2 These problems take up 50 %90 % in the known performance problems [8].
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In the same manner, the software system can exhibit the distinct behaviors
from the viewpoint of performance metrics. The unobservable root causes of
performance problems can be investigated via the directly observable runtime
performance metrics. The essential work is to build the mapping function from
the characteristics of performance metrics to hidden root causes. An ideal func-
tion is a one-to-one mapping. As a new exploration, Jiang [6,7] proposed an
invariant-based mapping which means the performance states are characterized
by the space spanned by the invariants. Our approach shares the similar idea
with Jiang’s work but makes some improvements. The invariants in this paper
are the statistically invariant associations between performance metrics, defined
as “observable likely invariant”, rather than invariant statements or variables
which are stated in previous study [9]. For instance, if the correlation coefficient
between “used memory” and “CPU utilization” stays constant, we say these two
metrics forms an invariant. Let H denote the monitoring data collected from nor-
mal period and F' denote the monitoring data from the same system during a
recent performance problem (e.g. system hang). Both of H and F comprise n
performance metrics: (M7, Ms, - - -, M,,). We construct all the invariants of H in
a pair-wise manner and make them as the baseline of metric associations. These
invariants are denoted by matrix I where each entry Ins, ar; (4 # j) represents an
invariant formed by metric M; and M;. Next, we use the same method to calcu-
late the metric associations of F' denoted by matrix A, where each entry A, as;
denotes the association between metric M; and M. If |Ing, ar; — Anryna;| > € a
violation occurs where ¢ is the preset threshold, say € = 0.2 in this paper. All the
violations constitute a binary tuple (0,1, 1,0,---,0) (“0” implies no violation,“1”
implies violation) which is used to signify a performance problem uniquely. The
length of the tuple is determined by the number of entries in matrix I. Aggre-
gating all the binary tuples constructed for multiple performance problems, a
signature database is established and will be used in the future performance
diagnosis. Different from Jiang’s work, we adopt MIC to calculate the metric
associations instead of “ARX” [6,7] due to the excellent association discovery
power of MIC.

As we know, performance diagnosis is laborious and time-consuming. Hence
choosing the right time to conduct performance diagnosis can reduce some unnec-
essary cost. In our previous work [11], we use the ARIMA model drift on several
performance metrics (e.g. CPU utilization) to detect the performance anomaly.
However, that method shows weak power to resist the system noise such as the
resource utilization fluctuation. Therefore we set up the ARIMA model on CPI
instead of other performance metrics. If a performance anomaly is detected, the
cause inference procedure is triggered. We first calculate the violation tuple under
the current abnormal situation then retrieve a similar signature in the signature
database. If a similar signature is found, the culprit is pinpointed otherwise we
provide some hints and leave the problem to the system administrators who will
manually investigate the problems. Once the performance problems is resolved,
a new signature will be added into the signature base.
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To adapt to the varying workloads and heterogeneous hardware, we propose
the concept of “operation context”. The operation context contains the workload
type and node ID in this paper. InvarNet-X works under the consideration of
operation context which means the performance model and signature database
are built for each workload on each node.

Restrictions: In this paper we only validate our approach in Hadoop-based big
data platforms due to its open source and widespread use. When a batch job
submitted to Hadoop, Hadoop works in the FIFO mode which means the job
takes up the cluster exclusively [12]. This makes InvarNet-X distinguish the
jobs clearly. But the restriction doesn’t exist when Hadoop processes interactive
jobs. The performance problem is restricted on performance degradation rather
than sudden crash in order to guarantee InvarNet-X can collect enough data to
proceed diagnosis. From our previous work [2], we observe that large number of
bugs can cause performance degradation such as memory leak bug. And Tan [13]
also claimed 31 % bug manifested as degraded performance problem in Hadoop.
Therefore our system focuses on diagnosing these problems.

Figure 1 demonstrates the basic idea of the this paper. From the figure, we
can see the invariant associations between M7 — My and My — M3 on slave-3 are
violated. By searching a similar signature in the signature database, we find out
the root cause is a CPU-hog.

3 System Design

We adopt a centralized mode to implement InvarNet-X. Figure 3 shows the archi-
tecture of InvarNet-X. InvarNet-X leverages the performance metrics and CPI
data collected from the Hadoop nodes to build the performance model, invariants
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and problem signature database for each batch job and interactive job separately.
The output of InvarNet-X is a list of root causes which puts the most probable
causes in the top. The fault injection module is used to inject faults in Hadoop
JobTracker, configuration files, data blocks or operating system in order to vali-
date the effectiveness of InvarNet-X. In the following, we will discuss the details
of InvarNet-X.

InvarNet-X mainly contains two parts and five modules shown in Fig. 3.
The offline part contains three modules: performance model building, invari-
ant construction and signature base building. The performance model building
module establishes ARIMA models for specific types of workloads to describe
the dynamics of CPI data. If the model on CPI data drifts, an anomaly occurs.
The invariant construction module is responsible in discovering the MIC invari-
ants amongst the performance metrics. Next, the MIC invariants are fed into the
signature base building module which will find out all the violations of invari-
ants under specific performance problems and store the violation tuples as the
signatures of corresponding performance problems in a signature database. The
online part contains two modules: performance anomaly detection and cause
inference. When an anomaly of CPI is detected in performance detection mod-
ule, the cause inference is triggered. Firstly, a violation tuple is generated by
checking all the violations of invariants when the performance problem occurs.
Secondly, the signatures in the signature database with a high similarity score
to the violation tuple are selected. Finally the root causes corresponding to the
selected signatures are reported. Compared to our previous work [11], we make
several improvements on two modules including performance anomaly detection
and invariant construction, other modules keep the same as before. Before we
discuss the details of improvements, we first demonstrate that CPI can be a KPI
of big data applications in order to detect the performance anomaly in real time.

Batch job Master ‘ Slave
iobl = { NameNode Daemo? B
[Batch job) " R Daemona N
JobTracker TaskTracker
Daemon v DaemoQ«
ejob =P T v
Interactiv . -
Jj CPI & metric Fault CPI & metric Fault
Ll collection Injection’ collection | Injection”
Linux OS 54 Linux OS éx ’

Performance
Detection

Cause
Inference

Cause list
1.0verload

2.CPU hog

3.Mem hog
> 4.Net drop
g 5.Net delay
Invariants Signature R 6.Mem leak
w building Signature| | |5 B
InvarNet-X A5¢ T

Fig. 3. The architecture of InvarNet-X



130 P. Chen et al.

3.1 CPI as a KPI

In our preliminary work [11], we utilized a specific resource (e.g. CPU or mem-
ory) utilization as the KPI. It indeed indicates some performance problems in
most cases. But it may mislead anomaly detection result under the disturbance
of system noise. To validate this perspective, we inject resource utilization dis-
turbance to mimic the system noise when the job (e.g. Wordcount) is running.
From the results we observe that the execution time of some jobs have no changes
although they are suffering from anomalies. Figure 2 shows the CPI changes of
Wordcount before and after the CPU utilization disturbance (additional 30 %
CPU utilization for 300s). The CPU disturbance doesn’t enlarge the execution
time while the CPI keeps unaffected. Therefore a more robust KPI should be
proposed to reflect the performance of the big data application.

For a specific program compiled to run on a specific machine, the execution
time of this program could be expressed as:

T=IxCPI=x*C,

where I denotes the total instructions of this program, C'PI denotes cycles per
instruction, C' denotes the time length (second) of one cycle. In this equation, I
and C are fixed. Hence the execution time 7" only depends on C'PI and C'PI can
be a candidate KPI of the big data application. To further validate this new KPI,
we choose several types of jobs in BigDataBench [14] including batch type: Word-
count, Sort, Bayes classifier and interactive type: TPC-DS workloads (8 queries
run in a mixed mode). 15 GB test data is generated using the BigDataBench.
Four-group tests are designed. In each group, only one type of job is repeated for
25 times. And during the job running, we inject several faults such as network
jam, CPU hog and disk hog to make the execution time of these jobs varies.
During each time of running we collect the CPI data every 10s and employ the
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95 % percentile of CPI data as a sufficient statistics for one run. Other statistics
like average are also applicable. For each job, the execution time and the 95 %
percentile of CPI data is normalized to the minimum value respectively in one
group. Due to the limited space, we only show the CPI data and execution time
of wordcount and sort in Fig.4. From Fig.4 (a) and (b), we observe that the
CPI changes with the execution time consistently. The correlation coeflicient of
these two metrics is 0.97 and 0.95 for wordcount and sort respectively. Figure 4
(c) and (b) demonstrate the scatter plot of CPI and execution time. And we use
a 2-order polynomial function to fit these data and conclude that CPI increases
monotonously with the job execution time. All the evidences show that CPI
can be a stable performance indicator of big data applications. Actually, Zhang
et al. [16] also utilize CPI as a performance indicator of CPU interference.

3.2 Performance Anomaly Detection

We employ the method proposed in our previous work [11] to detect the perfor-
mance anomaly. But this paper uses CPI data rather than conventional perfor-
mance metrics to build ARIMA model. If the reader wants to know the detail
of ARIMA model building, please refer to [11]. The ARIMA model of CPI data
in the normal state is first established and stored in an XML file in a five-tuple:
(p, d, q, ip, type) format where the first three elements are the parameters of
ARIMA, ip is the ip address of a Hadoop node and type is the workload type. To
model the distinct characteristics of CPI data at “Map” and “Reduce” phases
of Hadoop workloads, we utilize N (e.g. 10) complete normal execution traces
of CPI data of a specific type of workload to train the ARIMA model. When
a new job arrives at the platform, InvarNet-X selects a performance model for
performance anomaly detection from the archived models instantly. A simple
threshold based anomaly detection method is proposed in [11]. That is if

€ = | Mg (t) = Mepi(t)] >

a performance anomaly occurs where My, (t) is the CPI data at time ¢, M/, ;(t)
is the CPI data predicted by ARIMA model using previous CPI data and « is
the preset threshold. But how to set the threshold still remains a problem. In
this paper, we propose three guiding rules to set the threshold. Each type of
workload is repeated for IV times, say 20 under normal state. Next, we use the
trained ARIMA model to fit the CPI data during N runs. The absolute value of
fitting residual is denoted by R. The three rules are listed below. To make the
performance anomaly detection more robust to resist system noises, we report
a performance problem when the anomaly occurs for three times continuously.
The effectiveness of these rules will be discussed in the Sect. 4.

— max-min. Use max(R) as the upper bar, min(R) as the lower bar. If £ >
max(R) or £ < min(R), an anomaly occurs.

— 95-percentile. Use the 95 % percentile of R as the threshold.

— beta-max. Use (3 x max(R) as the threshold where 3 is a fluctuation factor
which is used to cover the unobserved value escaped from the test. We set
(8 = 1.2 in this paper.
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3.3 Invariants Construction

We use MIC to discover the association between two performance metrics. The
detailed description of MIC could be found in [10]. Fore each metric pair X,Y,
their association coefficient is represented by the M IC(X,Y’) score which falls in
the region [0, 1]. In this paper, a simple but exhaustive pair-wise search method is
adopted to calculate all the associations. Suppose M metrics are collected from a
specific node, in theory, M (M —1)/2 association pairs should be generated. How-
ever not all of the association pairs are invariants. The stable ones which don’t
fluctuate too much under the normal state are regarded as the invariants. Under
the normal state, one type of workload is repeated for N times. We use an asso-
ciation matrix to save the association pairs, denoted as A? where the superscript
denotes the ith run and each entry A®(m,n) denotes the MIC score of metric
m and metric n. Let the vector V(m,n) = (A'(m,n), A%(m,n),---, AN (m,n))
denote the association coefficients of metric pair (m,n) over N runs. If a asso-
ciation pair doesn’t exist in one run, the MIC score is assigned 0. We further
select the association pairs satisfying the following condition: Maxz(V (m,n)) —
Min(V(m,n)) < 7. The threshold 7 is a tunable parameter and is set 0.2 in this
paper. The invariant selection algorithm is shown in Algorithm 1. When all the
invariants for one type of workload are discovered, we store them in an XML file
as a three-tuple (I,ip, type) where I stores all invariants in a matrix format, ip
is the ip address of a Hadoop node and type is the workload type.

Algorithm 1. Invariant selection

Input: A set of performance metrics in the N runs under the same workload in
the normal state: P' = (P!,Ps,---,Py), P> = (P, P3,--- ,P¥), ---, PN =
(PN, PYN,... PN), M is the number of performance metrics;

Input: A preset threshold 7

Output: The set of invariants I;

1: fori=1;i= N;i+ + do

2:  for each metric m € P* do

3: for each metric n € P' do

4: Al(m,n) = MIC(m,n);

5: end for

6: end for

7: end for

8: for each metric m € P! do

9:  for each metric n € P! do

10: fori=1;i= N;i++ do

11: V(m,n) « A*(m,n) // V(m,n) is a vector
12: end for

13: if Maz(V(m,n)) — Min(V(m,n)) <7 then
14: I(m,n) «— Max(V(m,n))

15: end if

16: end for

17: end for
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For each performance problem whose root cause is investigated (e.g. memory
leak), we build the association matrix Agpnormar When the performance problem
occurs. Then we compare Agpnorma; With the invariants I of the same workload
in the same Hadoop node and find out all the violations according to Sect. 2.
The violations constitute a binary tuple and the tuple acts as the signature of
one performance problem. The signature is stored in the signature database in
the four-tuple format: (binary tuple, problem name, ip, workload type). As more
performance problems are diagnosed, the number of items in signature database
increases gradually.

If the cause inference procedure is triggered, we adopt the approach men-
tioned in [11] to report the most probable root cause whose similarity score is
the most close to the violation tuple. Until now the performance diagnosis is
finished.

4 Experimental Evaluation

We have implemented a prototype and deployed it in a controlled environment.
To collect the process and operating system performance metrics, a low over-
head and off-the-shelf tool, collectl, is employed. The collected 26 performance
metrics not only include coarse-grained CPU, memory, disk and network utiliza-
tion but also the fine-grained metrics such as CPU context switch per second,
memory page faults, etc. “perf” tool is used to collect the cycle and instruction
periodically by reading the corresponding registers in the hardware performance
counter on a per process basis. The collection interval is 10s. Other parts of
InarNet-X are developed from scratch. In the following, we will give the details
of our experimental methodology and evaluation results.

4.1 Evaluation Methodology

Due to the lack of real operating platforms, our approach is only evaluated in a
controlled big data platform. But we believe it works well in a real system without
exceptions. The controlled platform contains five server machines hosting the
benchmark. Each physical machine is configured with two 4-core Xeon 2.1 GHZ
CPU processors, 16 GB memory, a 1 TB hard disk and a gigabit NIC and runs a
64-bit CentOS 6.2. All the servers are interconnected by a 8-port gigabit Switch.
We adopt Hadoop 1.0.2, Mahout 0.6, Hive 0.9 and Mysql 5.1 as the primary
software stack.

In this paper we choose four batch type of workloads: Sort, Wordcount, Grep
and Naive Bayesian classifier and one interactive type of workloads: TPC-DS in
BigDataBench, leaving other workloads for the future work. And the 8 queries
in TPC-DS run simultaneously in a mixed mode. During all the experiments,
15 GB data is generated by the tool in BigDataBench benchmark. According
to the reports in previous literature [13] and Hadoop bug repository [15], we
inject the following faults. For the performance problems caused by runtime
environment changes, we inject the following faults: (1) CPU-hog: a CPU-bound
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application co-locates with TaskTracker competing for CPU resource sharply;
(2) Mem-hog: a memory-bound application consumes a large number of mem-
ory on one data node; (3) Disk-hog: we use a disk-bound program to gener-
ate a mass of disk reads and writes on the data node; (4) Net-drop: we use a
fault injection tool “AnarchyApe” to mimic the packet loss on the name node;
(5) Net-delay: we use “AnarchyApe” to delay all the packets for 800 ms; (6)
Block Corruption (Block-C): we use “AnarchyApe” again to corrupt some data
blocks on one data node; (7) Misconf: we set a low value (e.g. 1M) for the item
“mapred.max.split.size” in the configure file; (8) Overload: we increase the cur-
rent number of interactive type of workloads; (9) Suspend: we use “AnarchyApe”
again to suspend the datanode or tasktracker process. For the performance prob-
lems caused by software bugs, we inject the following faults: (1) RPC-hang: the
bug HADOOP-6498 causes rpc call hang. To reproduce this bug, we use hadoop
inject framework to add a “sleep” statement to delay RPC call; (2) HADOOP-
9703 (H-7703): when the method “stop” of “org.apache.hadoop.ipc.Client” is
invoked, the thread leak happens. We use the hadoop fault inject framework to
reproduce the bug by invoking this function call. (3) HADOOP-1036 (H-1036):
we revert Hadoop to an older version and trigger the bug by throwing NullPoint-
erException; (4) Lock-R: we use hadoop fault inject framework to substitute
the method who has the property “synchronized” with a new method with-
out “synchronized”; (5) HADOOP-1970 (H-1970): hadoop fault inject frame-
work is also used to trigger this bug by interfering the communication thread;
(6) Block receiver exception (Block-R): we add an exception statement in the
“receivePacket” function of Class BlockReciever by hadoop inject framework. All
the injected faults are guaranteed to cause significant performance problems.
Each fault mentioned above is repeated for 40 times and lasts 5 min. Two of
them are used to train the signatures and the others are used to cause inference.
As the probability of multiple faults happening in the same node at the same time
is very tiny, we don’t consider multiple faults in this paper. Actually, our method
could be easily extended to multiple faults by listing multiple root causes whose
signatures are most similar to the violation tuple. We leverage two commonly
used metrics: precision and recall to evaluate the effectiveness of our prototype.

Ny
Recall = #, Precision = ———2
Nip + Ny Nip + Nyp
where Ny, Ny, Nyp, and Ny, denote the number of true positives, false nega-
tives, false positives, and true negatives, respectively.

4.2 Performance Anomaly Detection

We use the performance anomaly detection method proposed in Sect.3.2 to
detect the anomalies incurred by fault injections. Figure 5 shows the CPI pre-
diction residuals of Wordcount and TPC-DS using the trained ARIMA before
and after CPU-hog injection. Even a cursory glance at this figure, we can see the
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Fig.5. The CPI prediction residuals before and after CPU-hog injection. (a) shows
the CPI prediction residuals of workload Wordcount; (b) shows the CPI prediction
residuals of workload TPC-DS
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Fig. 6. The anomaly detection results of “max-min”, “95-percentile” and “beta-max”.
(a) shows the results under workload Wordcount; (b) shows the results under workload
TPC-DS

anomaly occurs when the CPU-hog is injected. We use the normal CPI data to
train ARIMA model and use the CPI data with CPU-hog to detect anomalies.
The result of anomaly detection is shown in Fig.6 where “1” on y-axis denotes
anomaly. According to the ground truth, we observe that the 95 %-percentile
method has the worst detection result while the other two methods have very
similar results. However the “max-min” method has a larger computational com-
plexity than “beta-max” method due to additional “min” operation. Hence we
choose “beta-max” method as the final performance anomaly detection method.

4.3 Diagnosis Results

We evaluate InvarNet-X under both of batch type of workloads and interactive
type of workloads. Due to the limited space, we only show diagnosis results under
workload Wordcount and TPC-DS. In reality, the diagnosis results under other
workloads such as Sort are very similar to the shown results. Figure7 shows
the diagnosis result under workload T'PC-DS. From this figure, we observe that
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Fig. 7. The diagnosis result under workload TPC-DS

InvarNet-X achieves the perfect precision (100 %) and recall (99 %, 98 %) for
Overload and Suspend. Because these two faults can cause a large number of
violations of invariants which makes them easily distinguished from other faults
by InvarNet-X. However the recall of Lock-R is very low as Lock-R makes dif-
ferent violations in different runs leading to a high false positive. For these non-
deterministic problems, although InvarNet-X can’t precisely pinpoint the root
causes, it can provide some hints by showing the violated association pairs (e.g.
“lock number-cpu utilization”) Another interesting finding is the low accuracy of
Net-drop and Net-delay. Comparing the diagnosis results with the ground truth,
we find InvarNet-X mistakes Net-drop for Net-delay and vise versa sometimes
because these two faults have very similar signatures. That’s a typical “signature
conflict” which will be discussed in our future work. Figure 8 shows the diagno-
sis result under workload Wordcount. When Hadoop works in FIFO mode, one
job takes up the whole cluster exclusively. Therefore overload doesn’t happen
in this situation. Besides some similar characteristics with TPC-DS, the average
precision (91.2 %) and recall (87.3 %) of Wordcount are higher than the average
precision (88.1%) and recall (86 %) of TPC-DS. That’s because TPC-DS is a
mixed workload including multiple different queries which may skew the per-
formance model (i.e. ARIMA) and invariants even in the normal state. While
Wordcount as a single batch job keeps a stable performance model and invari-
ants in the normal state. In other words, the batch type of workloads possess
higher quality of signatures.

Similar to our work, Jiang et al. [6,7] also propose an invariant based perfor-
mance diagnosis approach. In their work, they use autoregressive models with
exogenous inputs (ARX) to learn linear relationships between performance met-
rics. To compare with their work, we use ARX instead of MIC to implement
the invariant construction. And to further validate the necessity of operation
context, we implement another version of InvarNet-X without operation con-
text which only contains a single performance model and signature base for one
specific workload. Due to the limited space, we only show the diagnosis results
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Fig. 8. The diagnosis result under workload Wordcount
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Fig. 9. The comparison of InvarNet-X, ARX and InvarNet-X (no operation context)
in precision

under workload Wordcount in Figs.9 and 10. Figure9 and Fig.10 show the
diagnosis precision and recall of InvarNet-X, ARX and InvarNet-X (no opera-
tion context) respectively. From these two figures, we observe that the diagnosis
precision of InvarNet-X is about 9 % higher than the one of ARX while the diag-
nosis recall shows no significant differences. The invariants discovered by ARX
are rigorous linear relationships. The linear relationships can be broken easily
when a performance problem occurs meaning that ARX has a strong power to
capture the performance problems. However it has a weak power to distinguish
the performance problems due to many similar signatures. This is the reason
why we obtain the above observation. InvarNet-X without operation context
shows a very disappointing diagnosis accuracy no matter in precision and recall.
Therefore operation context is a necessary factor of performance diagnosis.
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Fig. 10. The comparison of InvarNet-X, ARX and InvarNet-X (no operation context)
in recall

Table 1. The overhead of InvarNet-X and ARX (/second)

Workload | Perf-M | Invar-C | Invar-C (ARX) | Sig-B | Perf-D | Cause-I | Cause-1
(ARX)

Wordcount | 1.2 45 700 4 0.02 |1.6 10

Sort 0.8 30 650 3 0.03 1.7 11

Grep 0.2 18 410 1.7 0.02 1.6 10

Interactive | 0.5 16 380 1.5 0.03 1.6 12

4.4 Overhead

Here we only consider the CPU overhead because other types of overhead like
memory and disk caused by InvarNet-X are very small. The CPU overhead
contains six parts: data collection, performance model building (Perf-M), invari-
ant construction (Invar-C), signature building (Sig-B), performance anomaly
detection (Perf-D) and cause inference (Cause-I). The data collection costs no
more than 5% CPU utilization. Table 1 shows the execution time of the other
five parts under different types of workloads. We observe that the execution
time of Perf-D and Cause-1 stays below 2s satisfying the online requirement.
While the execution time of Cause-I(ARX) is around 10s much larger than
Cause-I(InvarNet-X ). Although as an offline part, the execution time Invar-C
(InvarNet-X) is up to 45s, it is much lower than the one of Invar-C (ARX)
in one order of magnitude. Therefore InvarNet-X is computationally tractable
when it scales up in large scale big data platform.
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5 Related Work

A large quantity of work has been done in performance diagnosis of general
distributed systems. However most of them are concerned with fault location in
a coarse granularity (e.g. VM level [3-5]). Few of them emphasize the root cause
inference in a fine granularity. Towards performance diagnosis in MapReduce
(e.g. hadoop) system, the work could be roughly categorized into two classes:
log-based and correlation-based. The log-based method [13] can pinpoint the
buggy code in a very fine granularity (e.g. line of code) but it is hard to conduct
in real time. The correlation-based method [5] more often than not uses the peer-
similarity to find out the abnormal nodes assuming that the correlations amongst
the performance metrics of different nodes are stable. However an exceptional
case exists. Assume one bug exists in the platform, when the bug is triggered by
a certain job, say wordcount, all the nodes behave abnormally in a similar way
but the correlations are not deviated. In this case, the correlation-based method
will ignore this fault.

Recently an invariant-based performance diagnosis approach is proposed in
[6,7]. It constructs an invariant network by capturing the stable temporal and
spatial relationships amongst the performance metrics in a pair-wise manner.
A set of deviations of these invariants can indicate a specific fault. This app-
roach can work in real time and infer the root causes at fine granularity. How-
ever this method has the following limitations: (a) It is workload agnostic. As
pointed in [7], they selected 111 measurements form the system and 74 of them
are correlated with the workload. Moreover according to our work [11], it’s hard
to find out such a model suitable to all kinds of workloads. Hence workload is an
important factor in performance diagnosis. (b) It only considers linear relation-
ships between performance metrics leading to invariant missing. Due to highly
dynamical nature of software system, non-linearity is a more common case.
(c) The global constructions of invariant network and simultaneously checking
all the invariants in real time make it computationally intractable in the large
scale distributed environment.

6 Conclusion

This paper proposes a comprehensive invariant-based approach, InvarNet-X, to
pinpoint the culprits of performance problems in the big data platform. InvarNet-
X not only covers performance anomaly detection but also root cause inference.
The performance anomaly procedure is accomplished by checking the ARIMA
model drift on CPI data of big data applications. In InvarNet-X, the likely
invariants are established via MIC and each performance problem is signified by
a set of violations of those likely invariants. Finally, the root cause is uncovered
by searching a similar signature in the signature database. Through experimen-
tal evaluations in a small prototype, we find out InvarNet-X can achieve an
average 91 % precision and 87 % recall in diagnosing some real faults which is
superior to several state-of-the-art approaches. Meanwhile InvarNet-X causes a
low overhead to the system.
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