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Abstract. Big data systems address the challenges of capturing, stor-
ing, managing, analyzing, and visualizing big data. Within this context,
developing benchmarks to evaluate and compare big data systems has
become an active topic for both research and industry communities. To
date, most of the state-of-the-art big data benchmarks are designed for
specific types of systems. Based on our experience, however, we argue
that considering the complexity, diversity, and rapid evolution of big
data systems, for the sake of fairness, big data benchmarks must include
diversity of data and workloads. Given this motivation, in this paper, we
first propose the key requirements and challenges in developing big data
benchmarks from the perspectives of generating data with 4 V proper-
ties (i.e. volume, velocity, variety and veracity) of big data, as well as
generating tests with comprehensive workloads for big data systems. We
then present the methodology on big data benchmarking designed to
address these challenges. Next, the state-of-the-art are summarized and
compared, following by our vision for future research directions.
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1 Introduction

Big data systems have gained unquestionable success in recent years and will
continue its rapid development over the next decade. These systems cover many
industrial and public service areas such as search engine, social network and
e-commerce, as well as a variety of scientific research areas such as bioinformatics,
environment, meteorology, and complex simulations of physics. Conceptually,
big data are characterized by very large data volumes and velocities, diversity
and variety (various data types, and complex data processing requirements).
In the era of big data, these data require a new generation of big systems to
capture, store, search, and analyze them within an acceptable elapsed time.
The complexity, diversity, and rapid evolution of big data systems give rise to
new challenges in how to compare their performance, energy efficiency, and cost
effectiveness.
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Conceptually, a big data benchmark aims to generate application-specific
workloads and tests capable of processing big data sets to produce meaning-
ful evaluation results [18]. Considering the diversity of big data systems (e.g.
there are three mainstream application domains, namely search engine, social
network, and e-commerce, of internet service workloads), and the emergence of
new systems driven by the exploration of big data value, covering diversity of
workloads is the prerequisite to perform successful and efficient benchmarking
tests. Within this context, we propose our insights into the requirements and
challenges in developing big data benchmarks. We also present the methodology
on big data benchmarking, which represents our thinking about how to address
these challenges. Finally, we discuss state-of-the-art benchmarking techniques
for big data systems and propose some future research directions. The aim of
this paper, therefore, is to provide a foundation towards building a successful
big data benchmark, and to stimulate productive thinking, investigation, and
development in this research area.

2 Requirements and Challenges

Big data benchmarks are developed to evaluate and compare the performance
of big data systems and architectures. Figure 1 shows the benchmarking process
for big data systems that consists of five steps. At the Planning step, the bench-
marking object, application domain, and evaluation metrics are determined. In
the following two steps, the data and test used in evaluation are generated. Next,
the benchmark test is conducted at the Execution step and the evaluation result
is reported. At the last step, the benchmarking result is analysed and evaluated.

Successful and efficient benchmarking can provide realistic and accurate
measuring of big data systems and thereby addressing two objectives. (1) Pro-
moting the development of big data technology, i.e. developing new architectures
(processors, memory systems, and network systems), innovative theories, algo-
rithms, techniques, and software stacks to manage big data and extract their
value and hidden knowledge. (2) Assisting system owners to make decisions for
planning system features, tuning system configurations, validating deployment
strategies, and conducting other efforts to improve systems. For example, bench-
marking results can identify the performance bottlenecks in big data systems,
thus optimizing system configuration and resource allocation. In this section, we
present the requirements and challenges in building big data benchmarks.

Fig. 1. Benchmarking process for big data systems
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2.1 Generating Data with the 4V Properties of Big Data

Technically, a big data system can be attributed four dimensions: volume, veloc-
ity, variety, and veracity, which form the 4 V properties of big data [3]. (1) Volume
represents the amount/size of data such as Terabyte (TB) or Petabyte (PB).
(2) Velocity reflects the speed of generating, updating, or processing data.
(3) Variety denotes the range of data types and sources. Finally, (4) veracity
reflects whether the data used in benchmarking conform to the inherent and
important characteristics of raw data.

In a big data benchmark, applying real-world data or generating synthetic data
for application-specific workloads is a central problem. Traditionally, although
some benchmarks use real data sets as inputs of their workloads and thereby guar-
anteeing the data veracity, the volume and velocity of real data sets cannot be flex-
ibly adapted to different benchmarking requirements. Based on our experience, we
also noticed that in many practical scenarios, obtaining a variety of real data is not
trivial because many data owners are not willing to share their data due to con-
fidential issues. In big data benchmarks, therefore, the consensus is to generate
synthetic data as inputs of workloads on the basis of real data sets. Hence in syn-
thetic data generation, preserving the 4 V properties of big data is the foundation
of producing meaningful and credible evaluation results.

Volume. Today, data are generated faster than ever. For example, about 2.5
quintillion bytes of data are created every day [3] and this speed is expected
to increase exponentially over the next decade according to International Data
Corporation (IDC). In Facebook, there are 350 million photos updated and more
than 500 TB data generated per day. The above facts indicate the big data
generators must be able to generate different volumes of data as inputs of typical
workloads. The data volume has different meanings in different workloads. For
example, in workloads for processing text data (e.g. sort or WordCount), the
volume is represented by the amount of data (e.g. 1 TB or 1 PB text data).
In social network graph workloads, the volume is represented by the number of
vertices in social graph data (e.g. 220 vertices).

Velocity. In the context of big data generation, data velocity has threefold
meanings. First of all, it represents the data generation rate. For example, gen-
erating 100 TB text data in 10 h means the generation rate is 10 TB/h. Secondly,
many big data applications have real-time data updating; that is, data velocity
represents the data updating frequency in this case. For example, in a social net-
work site, the social graph data are continuously updating. Finally, in streaming
processing systems, data streams continuously arrives and these streams must
be processed in real-time to keep up with their arriving speed. Hence data veloc-
ity represents the processing speed. Given the above facts, it is challenging to
reflect data generation rates, updating frequencies, and processing speeds in data
generation.

Variety. The fast development of big data systems gives birth to a diversity
of data types, which cover structured data (e.g. tables), unstructured data (e.g.
text, graph, images, audios, and videos), and semi-structured data (e.g. web logs,
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reviews, and resumes, where reviews and resumes contains both text and graph
data). Hence in big data benchmarking, it is required that the data genera-
tors can support the whole spectrum of data types including structured, semi-
structured, and unstructured data, as well as representative data sources such
as table, text, stream, and graph. It is also required that these data generators
can support the complexity and diversity of workloads and keep in pace with
their frequent changes.

Veracity. Preserving data veracity is probably the most difficult job in synthetic
data generation. In big data generators, it is challenging to scale up or down a
synthetic data set while keeping this data similar to the real data [18]; that is,
the important characteristics of raw data must be preserved in synthetic data
generation. Data veracity is important to guarantee the reality and credibility
of benchmarking results.

2.2 Generating Benchmarking Tests with Comprehensive
Workloads

Margo Seltzer et al. pointed out that a testing result is meaningful only when
applying an application-specific benchmarking test [18]. Also, the diversity and
rapid evaluation of big data systems means it is challenging to develop big data
benchmarks to reflect various workload cases. Hence in big data benchmarks,
identifying the typical workload behaviours for an application domain is the
prerequisite of evaluating big data systems. Furthermore, big data benchmarks
must consider the diversity of workloads to cover different types of application
domains, as well as automatically generate tests based on these workloads. We
now discuss the key challenges in generating workloads and tests to evaluate big
data systems from the functional view and the system view.

Functional view. Given the complexity and diversity of workload behaviours
in current big data systems, it is reasonable to say that no single set of behaviors
is representative for all applications. Hence, it is necessary to abstract from the
behaviors of different workloads to a general approach. This approach should
identify typical workload behaviours in representative application domains. From
the functional view, these behaviors represent the system-independent outcome
of processing data, thus allowing the comparison of systems of different types,
e.g. a DBMS and a MapReduce system.

There are two challenges in developing this abstraction approach. First, the
operations to process big data in a specific application domain need to be
abstracted and their functions need to be identified. For example, select, put,
get, and delete are abstracted operations in database systems to operate table
data. Secondly, given a set of abstracted operations, workload patterns need to be
abstracted to describe complex processing tasks by combining abstracted oper-
ations. One abstracted workload pattern can contain one or multiple abstract
operations as well as their workflow. For example, an abstract pattern of a SQL
query can contain select and put operations, in which the select operation exe-
cutes first.
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System view. The abstracted operations and patterns are designed to capture
the system-independent user behaviours of workloads, i.e. the data processing
operations and their sequences. Thus, an abstracted benchmark test can be
constructed based on abstracted operations and patterns, and this test is inde-
pendent of underlying systems and software stacks. From the system view, this
abstract test can be implemented over different systems and thereby allows the
comparison of systems of the same type. For example, an abstract test consist-
ing of a sequence of read, write, and update operations can be used to compare
different DBMSs.

2.3 Execution

To perform a fair, efficient, and successful benchmarking test, there are several
requirements and challenges to be addressed at the Execution step.

Adapting to different data formats. Since the same type of data can be stored
in multiple formats, e.g. texts can be stored in a simple text file or more complex
formats as web pages and pdf, Big data benchmarks need to provide format con-
version, which can transfer a data set into an appropriate format capable of being
used as the input of a test running on a specific system.

Portability to representative software stacks. A software stack consists of
a set of programs working together to provide a fully functional solution. Big
applications and systems belonging to one application domain are built on the
basis of one or multiple software stacks. Hence covering a broad spectrum of
representative software stacks in benchmark tests, as well as avoiding being too
costly or difficult to port a test to a specific software stack is another important
issue we need to consider.

Fair measurement. A fair and sensible evaluation has twofold meanings. First,
big data systems usually have many optional configurations, while these config-
urations have different combinations for optimal performance when the systems
run in different hardware platforms. Hence using default configurations in mea-
surement cannot guarantee fair measurement. That is to say, when comparing
different big data systems in heterogeneous platforms, each system must be con-
figured separately for fair comparison. For example, a big data system may have
some specific configuration to improve its performance, thus such configuration
is not suitable for fair measurement. Second, repeatability is another important
requirement of the evaluation. This requirement means the parameters of hard-
ware and software configurations must be stately clearly so that the same result
can be obtained when the evaluation is repeated several times. In particular, in
cloud environment, there are multiple virtual machines (VMs) running in one
physical machine (PM) and competing for compute resources. Hence we need to
develop a comprehensive evaluation mechanism to effectively identify and esti-
mate the impact of resource competition on benchmarking results, and to avoid
the uncertainties incurred by this resource competition.
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Extensibility. The fast evolution of big data systems requires big data bench-
marks not only keeping in pace with state-of-the-art techniques and underlying
systems, but also taking their future changes into consideration. That is, big
data benchmarks should be able to add new workloads or data sets with little
or no change to the underlying algorithms and functions [19].

Usability. Usability reflects users experiences in using benchmarks and it is
a combination of factors. In big data benchmarks, these factors include ease
of deploying, configuring, and use; high benchmarking efficiencies; simple and
understandable performance metrics; convenient user interfaces; and so on.

3 On Benchmarking Methodology

3.1 Layer Design of Big Data Benchmarks

Figure 2 shows the layered design of a big data benchmark with three layers:
The User Interface Layer provides interfaces to assist system owners to specify
their benchmarking requirements, such as the selected data, workloads, metrics
and the preferred data volume and velocity.

Fig. 2. Layered architecture of big data benchmarks

The Function Layer has three components: data generators, test generators
and metrics. Briefly, data generators are designed to produce data sets covering
different data types and application domains while keeping the 4 V properties
of big data in these data sets. The test generator enables the automatic genera-
tion of tests with comprehensive workloads for big data systems. Metrics (either
single or multiple metrics) can be divided into two types: user-perceivable met-
rics and architecture metrics [19]. User-perceivable metrics represent the metrics
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that matter for users; these metrics are usually observable and easy to be under-
stood by users. Examples of user-perceivable metrics are the duration of a test,
request latency, and throughput. While user-perceivable metrics are used to com-
pare performances of workloads of the same category, architecture metrics are
designed to compare workloads from different categories. Examples of architec-
ture metrics are million instructions per second (MIPS) and million floating-
point operations per second (MFLOPS). In addition, these metrics should not
only measure system performance, but also take energy consumption, cost effi-
ciency into consideration.

The Execution Layer offers several functions to support the execution of
benchmark tests over different software stacks. Specifically, the system config-
uration tools enable a generated test running in a specify software stack. The
data format conversion tools transform a generated data set into a format capa-
ble of being used by this test. The result analyzer and reporter display evaluation
results.

3.2 Data Generators in Big Data Benchmarks

Data generators in big data benchmarks aim to efficiently generate data sets
while preserving the 4 V properties of big data [15]. Figure 3 shows the process
of generating data sets.

At the first step, data generators support the variety of big data by selecting
real data sets to cover representative application domains as well as different
data sources and types. The generators can also apply tools to directly generate
synthetic data sets; that is, these synthetic data sets are independent of real
data. This is because it is accepted that such purely synthetic data can be used
as inputs of some workloads such as the Sort and WordCount workloads in
Micro benchmarks; and the Read, Write, and Scan workloads belonging to basic
database operations.

At the second step, each data generator employs a data model to capture
and preserve the important characteristics in one or multiple real data sets of a
specific date type. For example, a text generator can apply Latent dirichlet allo-
cation (LDA) [9] to describe the topic and word distributions in text data. This
generator first learns from a real text data set to obtain a word dictionary. It
then trains the parameters and of a LDA model using this data set. Finally, it
generates synthetic text data using the trained LDA model. To preserve data
veracity, it is required that different models should be developed to capture the
characteristic of real data of different types such as table, text, stream, and graph
data. In addition, the sampling tools enable the scaling down of data set sizes.

At the third step, the volume and velocity can be controlled according to user
requirements. For example, the data generation can be paralleled and distributed
to multiple machines, thus supporting different data generation rates.

At the fourth step, after a data set is generated, the format conversion tools
transform this data set into a format capable of being used as the input data of
a specific workload.
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Fig. 3. The big data generation process

3.3 Test Generator in Big Data Benchmarks

In big data benchmarks, the test generator is developed to automatically gener-
ate benchmarking tests for big data systems. The basic idea of this generator is
to abstract from the workload behaviours of current big data systems to a set
of operations and workload patterns used in big data processing [20]. As shown
in Fig. 2, the test generator consists of three components.

Operations represent the abstracted processing actions (operators) on data
sets. In the test generator, we divide operations into three categories according
to the number of data sets processed by these operations: element operation,
single-set operation, and double-set operation.

Workload patterns are designed to combine operations to form complex
processing tasks. In the test generator, we abstract three workload patterns:
(1) a single-operation pattern contains one single operation; (2) a multi-operation
pattern; and, (3) an iterative-operation pattern. The difference between a multi-
operation pattern and an iterative-operation pattern is that the former pattern
contains finite number of operations, while the latter pattern only provides stop-
ping conditions that the exact number of operations can be known at run time.

A prescription includes the information needed to produce a benchmarking
test, including data sets, a set of operations and workload patterns, a method
to generate workload, and the evaluation metrics.

Figure 4 shows the process of generating a test. At steps 1, 2, and 3, a data
set, a set of abstracted operations, and a set of workload patterns are selected,
respectively. A prescription is then generated at step 4. Finally, at step 5, a
prescribed test for a specific system and software stack is created based on the
prescription and system configuration tools. Using the test generator, the work-
loads in different application domains can be automatically generated.

Fig. 4. The benchmark test generation process
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4 State-of-the-Art

In this section, we review related work on big data benchmarks from the per-
spectives of data generation and benchmarking techniques.

4.1 Data Generation Techniques

As shown in Table 1, we now review data generation techniques in existing big
data benchmarks according to the 4 V properties of big data.

Volume. To date, most of existing benchmarks generate synthetic data as their
workload inputs, where the volume of synthetic data is scalable. By contrast,
some benchmarks such as Hibench and LinkBench also use fixed-size data as
inputs. Hence we call these benchmarks partially scalable in terms of data vol-
ume.

Velocity. Some benchmarks such as BigBench, LinkBench, and BigDataBench
provide parallel strategies to support the deployment of multiple data gener-
ators. In these benchmarks, the data generation rate can be controlled. How-
ever, the equally important aspect of data velocity, the data updating frequency,
is not considered in these benchmarks. Hence we call these benchmarks semi-
controllable in terms of data velocity. We also called benchmarks un-controllable
if both the data generation rate and updating frequency are not considered.

Variety. Table 1 lists the data sources of each benchmarks tested data, includ-
ing tables (structured data); text, graph, and videos (unstructured data); and
web logs and resumes (semi-structured data). We can observe that many current
benchmarks only consider limited data types (e.g. the text data in Hibench or the
table data in YCSB and TPC-DS). Although BigBench and CloudSuite bench-
marks support a variety of data sources and types, they are only designed to test
applications running in cloud service architecture, and DBMSs and MapReduce
Hadoop, respectively.

Veracity. In GridMix, PigMix, YCSB, and Micro benchmark, the generation
process of synthetic data is independent of the benchmarking applications. For
example, in HiBench [13], the synthetic data sets are either randomly generated
using the programs in the Hadoop distribution or created using some statistic
distributions. Data veracity is un-considered in these benchmarks.

In TPC-DS, BigBench, LinkBench, and CloudSuite, the data generation tools
partially consider the data veracity. For example, TPC-DS [12] implements a
multi-dimensional data generator (MUDD). MUDD generates most of data using
traditional synthetic distributions such as a Gaussian distribution. On the other
hand, MUDD generates a small portion of crucial data sets using more realistic
distributions derived from real data. In BigBench [12], table data are generated
using PDGF [17], while web logs and reviews are generated on the basis of the
table data. Hence the veracity of web logs and reviews rely on the table data.

By contrast, in BigDataBench [19], different data models are employ to cap-
ture and preserve the important characteristics of real data of different types
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(e.g. table, text, and table). The synthetic data are then generated using the
constructed data model, thus avoiding the loss of data veracity.

In conclusion, the issues relating to keeping the 4 V properties of big data
have not been adequately addressed by current big data benchmarks [1,2,4–
6,8,10–14,16].

Table 1. Comparison of data generation techniques in existing big data benchmarks.

Benchmark efforts Volume Velocity Variety(data Veracity

sources)

Hibench [13] Partially scalable Un-controllable Texts Un-considered

GridMix [2] Scalable Un-controllable Texts Un-considered

PigMix Scalable Un-controllable Texts Un-considered

YCSB [10] Scalable Un-controllable Tables Un-considered

SIGMOD

benchmark [16]

Scalable Un-controllable Tables, texts Un-considered

TPC-DS [12] Scalable Semi-controllable Tables Partially

Considered

BigBench [12] Scalable Semi-controllable Texts, web logs,

tables

Partially

Considered

LinkBench [8] Partially scalable Semi-controllable Graphs Partially

Considered

CloudSuite [11] Partially scalable Semi-controllable Texts, resumes,

graphs,

tables

Partially

Considered

BigDataBench [19] Scalable Semi-controllable Texts, resumes,

graphs,

tables

Considered

4.2 Benchmarking Techniques

Most of existing big data benchmarks aims to evaluate specific type of systems
or architectures. As listed in Table 2, many benchmarks are developed to test the
performance of DBMSs and Hadoop MapReduce, or compare the performance of
both types of systems. Specifically, HiBench [13], GridMix [2] and PigMix [4] are
designed to test MapReduce Hadoop systems. The SIGMOD benchmark in [16]
compare two parallel SQL DBMSs (i.e. DBMS-X and Vertica) with MapReduce
systems. TPC-DS is TPCs latest decision support benchmark [7] designed to test
the performance of DBMSs in decision support systems. Adopting from TPC-DS
by adding a web log generator and a review generator, BigBench aims to test the
Teradata Aster DBMS and MapReduce Hadoop systems [12]. In [1], the bench-
mark is designed to test four SQL driven systems for managing data, including
one database (Redshift), one data warehousing systems (Hive), and two engines
(Spark and Impala). LinkBench tests MySQL databases that store Facebooks
social graph data, and characterizes the real-world database workloads for social
applications [8].
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Some other benchmarks target at evaluating NoSQL databases or archi-
tectures. Yahoo! Cloud Serving Benchmark (YCSB) benchmark compares two
non-relational databases (Cassandra and HBase) against one geographically dis-
tributed database (PNUTS) and a traditional relational database (MySQL)
[10]. The CloudSuite benchmarks in [10; 13] are implemented to test cloud
service architectures. Standard Performance Evaluation Corporation (SPEC)
[6] has produced several benchmarks for evaluating workstations and has sev-
eral server and client benchmarks including a Java business benchmark called
SPECjBB, but specific big data benchmarks are not available. SPEC had pro-
duced web server benchmarks called SPECweb96, SPECweb99, SPECweb2005,
and SPECweb2009, but they have been retired. The SPECjEnterprise 2010 and
SPEC jBB benchmarks are the closest to big data/cloud benchmarks in SPECs
suites.

At present, BigDataBench is the only big data benchmark that supports the
evaluation of a hybrid of different big data systems. The workloads in BigData-
Bench cover three fundamental and widely usage scenarios (i.e. micro bench-
marks, “Cloud OLTP” workloads, and relational queries workloads) and three
major application domains in internet services (i.e. Search Engine, Social Net-
work, and E-commerce).

From the perspective of applications users, Table 2 divides workloads in cur-
rent big data benchmarks into three categories. (1) Online services: these services
are sensitive to the response delay, i.e. the time interval between the arrival and
departure moments of a service request. Examples of workloads belonging to
this category are typical MapReduce operations such as sort and WordCount.
(2) Offline analytics: these services usually perform complex and time-consuming
computations on big data. Examples of workloads for testing offline services
are machine learning algorithms such as k-means clustering and naive Bayes
classification. (3) Real-time analytics: application users use these services in
an interactive manner; that is, a variety of interactions happen between users
and application services. Examples of workloads for these services are relational
queries such as selecting, joining, and aggregation of database tables.

5 Open Challenges

Considering the emergence of new big data applications and the rapid evolu-
tion of big data systems, we believe an incremental and iterative approach is
necessary to conduct the investigations on big benchmarks. We now propose
some challenges to be addressed to develop successful and efficient big data
benchmarks.

5.1 Data-Centric Big Data Benchmarks

The fundamental problem of big data benchmarks is about how to provide better
measurement of systems for processing data with 4 V properties, which brings
the requirement for data-centric benchmarks.
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Table 2. Comparison of benchmarking techniques.

Benchmark efforts Workloads Software stacks

Type Examples

Hibench [13] Offline

analytics

Sort, WordCount, TeraSort,

PageRank, K-means, Bayes

classification

Hadoop and Hive

Real-time

analytics

Nutch Indexing

GridMix [2] Online services Sort, sampling a large dataset Hadoop

PigMix [4] Online services 12 data queries Hadoop

YCSB [10] Online services OLTP (read, write, scan, update) NoSQL systems

SIGMOD

benchmark [16]

Online services Data loading, select, aggregate, join,

count URL links

DBMS and Hadoop

TPC-DS [12] Online services Data loading, queries and

maintenance

DBMS

BigBench [12] Online services Database operations (select, create

and drop tables)

DBMS and Hadoop

Offline

analytics

K-means, classification

LinkBench [8] Online services Simple operations such as select,

insert, update, and delete; and

association range queries and

count queries

DBMS

CloudSuite [11] Online services YCSBs workloads NoSQL systems, Hadoop,

GraphLab

Offline

analytics

Text classification, WordCount

BigDataBench [19] Online services Database operations (read, write,

scan)

NoSQL systems, DBMS,

real-time and offline

analytics systems

Offline

analytics

Micro Benchmarks (sort, grep,

WordCount, CFS); search engine

(index, PageRank); social

network (K-means, connected

components (CC)); e-commerce

(collaborative filtering (CF),

Naive Bayes)

Real-time

analytics

Relational database query (select,

aggregate, join)

Fully controllable data velocity. The full control of data velocity has two
meanings. First, existing big data benchmarks only consider different data gen-
eration rates. Hence different data updating frequencies and processing speeds
should be reflected in future big data generators. Secondly, current data velocity
is implemented using parallel strategies; that is, data velocity can be controlled
by deploying different numbers of parallel data generators. In contrast, we note
that data velocity can be controlled in another way: adjusting the efficiency of
the data generation algorithms themselves to control data velocity. For example,
a graph data generator can be adjusted to consume more memory resources,
thus increasing its data generation speed.

Metrics to evaluate data veracity. As discussed in Sect. 3.2, applying data
models to capture and preserve important characteristics of real data is an effi-
cient way to keep data veracity in synthetic data generation. However, how to
measure the conformity of the generated synthetic data to the raw data is still
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an open question; that is, metrics need to be developed to evaluate data veracity.
Two types of evaluation metrics can be developed: (1) metrics to compare the
raw data and the constructed data models; (2) metrics to compare the raw data
and the synthetic data.

This problem is compounded when considering different data sources and
data types. For example, to compare real text data set and synthetic data, we
first need to derive the topic and word distributions from these data sets. Next,
statistical metrics such as KullbackCLeibler divergence can be applied to com-
pare the similarity between two distributions. Furthermore, when considering
table, graph or even stream data, some other metrics should be developed.

5.2 Domain-Centric Big Data Benchmarks

The fast development of big data systems has lead to a number of successful
application domains such as scientific analytics, social network, and streaming
process. Each of these application domain is the focus of one or multiple big data
platform efforts. Domain-centric benchmarks, therefore, are needed to promote
the progress of these big data platforms.

Enriching workloads of big data benchmarks. At present, there are three
major problems that restrict the wide application of current big data bench-
marks. First, there are still many important big data systems such as multime-
dia systems and applications such as large-scale deep learning algorithms not
being considered. Second, in an application domain, a representative workload
should reflect both typical data processing operations and the arrival patterns of
these operations (i.e. the arriving rate and sequence of operations). We believe
profiling history logs of real applications is a good way to obtain the repre-
sentative arrival patterns. Finally, the truly hybrid workload, i.e. the workload
consists of the mix of various data processing operations and their arriving rates
and sequences, has not been adequately supported. That is, to the best of our
knowledge, none of exiting big data benchmarks is ready to declare itself to be a
truly representative and comprehensive big data benchmark until its workloads
are significantly enriched to solve the above problems.

Supporting heterogeneous hardware platforms. With the fast develop-
ment of technology, the emerged hardware platforms and systems significantly
change the way about how to process data and show a promising prospect
to improve processing efficiency. For example, the heterogeneous platforms of
Xeon+General-purpose computing on graphics processing units (GPGPU) and
Xeon+Many Integrated Core (MIC) can significantly improve the processing
speed of HPC applications. However, to date, both platforms are only limited
to the HPC area; that is, the diversity of big data applications are not fully
considered in these platforms. For such an issue, big data benchmarks should be
developed to evaluate and compare different workloads in state-of-the-practice
heterogeneous platforms. The evaluation result is expected to show: (1) whether
any platform can consistently win in terms of both performance and energy
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efficiency for all big data applications, and (2) for each class of big data applica-
tions, we hope to find some specific platform that can realize better performance
and energy efficiency for them. To support the evaluation of an application, cur-
rent big data benchmarks should be extended to provide a uniform interface
to enable this application running in different platforms. In order to perform
apples-to-apples comparisons, this application should be running in the same
software stack.

A reusable environment to automate test generation. Section 3.3 pro-
poses a framework to abstract operations and workload patterns from typical
data processing behaviors, thus enabling automatic generation of tests with com-
prehensive workloads for big data systems. We note that these operations and
patterns are easy to derive in some application domains. For example, in the
application domain of basic database operations, there are some obvious oper-
ations such as real, write, select, and delete, and the patterns used to combine
these operations are simple. However, in some application domains such as social
network, there are a large number of data processing operations such as k-means
clustering and collaborative filtering, and the relationships between these oper-
ations are complex. All these facts mean abstracting a comprehensive set of
operations and behaviors is difficult.

Moreover, in practice, generating benchmarking tests from operations and
patterns may be beyond the capabilities of the average system owner. Hence
going mainstream with this framework requires the development of an environ-
ment that provides abstracted operations and workload patterns for different
application domains, as well as offers a repository of reusable prescriptions to
simplify the generation of prescribed tests running on state-of-the-art software
stacks.

Increasing use cases of big data benchmarks. The number of successful use
cases is an important measure of the practicality of a big data benchmark. Table 3
lists the use cases of current big data benchmarks. We can observe that some
benchmarks such as Hibench, GridMix, PigMix are designed to test some specific

Table 3. Use cases of current big data benchmarks.

Benchmark efforts Use cases

Hibench [13], GridMix [2], PigMix [4] Hadoop

YCSB [10] NoSQL and SQL databases, cloud
storage system

TPC-DS [12] DBMS

SIGMOD benchmark [16], BigBench [12] DBMS and Hadoop

LinkBench [8] DBMS (MySQL)

CloudSuite [11] Cloud service architecture

BigDataBench [19] Hardware systems, cloud service
architecture, DBMS, distributed
systems
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type of systems, hence these benchmarks have a single use case such as Hadoop.
In addition, although some benchmarks such as BigBench and LinkBench are
designed for different systems, they are currently only evaluated in one system.
By contrast, YCSB and BigDataBench have been successfully applied to evaluate
multiple systems and architectures. Hence, it is necessary to apply benchmarks
to evaluate a larger number and type of big data systems, and in turn, learning
from the experiences in testing these systems to develop appropriate benchmarks
for better evaluation.

6 Conclusion

With the rapid development of information technology, big data systems have
emerged to manage and process data with high volume, velocity, and variety.
These new systems have given rise to various new requirements about how to
develop a new generation of big data benchmarks. In this paper, we summarize
the lessons we have learned and propose key challenges in developing big data
benchmarks from two aspects: (1) how to develop data generators capable of
preserving the 4 V properties of big data in data generation; (2) how to auto-
matically generate benchmarking tests to cover a diversity of typical application
scenarios while supporting different system implementations and software stacks.
We then introduce the methodology on big data benchmark aiming to address
the proposed challenges. Next, we discuss existing benchmarking techniques and
propose some future research directions. The work presented in this paper rep-
resents our effort towards building a truly representative and comprehensive big
data benchmark suite and we encourage more investigations and developments
in big data benchmarking tools.
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