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Preface

Today, huge amounts of data are being collected in many areas, which create new
opportunities to understand phenomena in meteorology, health, finance, and many
other sectors. Big Data is considered precious assets of companies, organizations, and
even nations. Turning such big data into real treasures requires the support of big data
systems and platforms. However, the sheer volume of big data requires significant
storage capacity, transmission bandwidth, computation, and power consumption. It is
expected that systems with unprecedented scales can resolve the problems caused by
varieties of big data with daunting volumes.

The complexity, diversity, frequently changed workloads, and rapid evolution of big
data systems raise great challenges in big data benchmarking. Without big data
benchmarks, it is very difficult for big data owners to make a decision on which system
is best for meeting with their specific requirements. They also face challenges on how
to optimize the systems and their solutions for specific or even comprehensive work-
loads. Meanwhile, researchers are also working on innovative data management sys-
tems, hardware architectures, operating systems, and programming systems to improve
performance in dealing with big data.

This book includes papers from two workshops, which are the fourth and fifth
workshops on Big Data Benchmarks, Performance Optimization, and Emerging
Hardware (BPOE-4 and BPOE-5). BPOE-4 (http://prof.ict.ac.cn/bpoe_4_asplos/) is co-
located with ASPLOS 2014 (http://www.cs.utah.edu/asplos14/), a premier conference
on architecture support for operating systems and programming systems. BPOE-5
(http://prof.ict.ac.cn/bpoe_5_vldb/) is co-located with VLDB 2014 (http://www.vldb.
org/2014/), a premier conference on data management, database and information
systems. Both workshops focus on architecture and system support for big data sys-
tems, aiming at bringing researchers and practitioners from data management, archi-
tecture, and systems research communities together to discuss the research issues at the
intersection of these areas.

The call for papers for these two workshops attracted a number of high-quality
international submissions. Within a rigorous process, in which each paper was
reviewed by at least four experts, we selected 6 papers out of 12 submissions for
inclusion in the BPOE-04 and 10 papers out of 18 submissions in the BPOE-05,
respectively. In addition, several prestigious keynote speakers were invited, including
Prof. Lizy Kurian John at University of Texas at Austin (http://users.ece.utexas.edu/
*ljohn/) whose topic was “Big Data Workloads: An Architect’s Perspective,” Prof.
Dhabaleswar K. (DK) Panda at Ohio State University (http://www.cse.ohio-state.edu/
*panda/) whose topic was “Accelerating Big Data Processing with RDMA-Enhanced
Apache Hadoop,” Prof. Christos Kozyrakis at Stanford University (http://csl.stanford.
edu/*christos/) whose topic was “Resource Efficient Cloud Computing,” and Dr. Jeff
Stuecheli from IBM (http://www.linkedin.com/pub/jeff-stuecheli/2/664/a0a) whose
topic was “Power Technology For a Smarter Future.”

http://prof.ict.ac.cn/bpoe_4_asplos/
http://www.cs.utah.edu/asplos14/
http://prof.ict.ac.cn/bpoe_5_vldb/
http://www.vldb.org/2014/
http://www.vldb.org/2014/
http://users.ece.utexas.edu/~ljohn/
http://users.ece.utexas.edu/~ljohn/
http://www.cse.ohio-state.edu/~panda/
http://www.cse.ohio-state.edu/~panda/
http://csl.stanford.edu/~christos/
http://csl.stanford.edu/~christos/
http://www.linkedin.com/pub/jeff-stuecheli/2/664/a0a
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On Big Data Benchmarking

Rui Han1(B), Xiaoyi Lu2, and Jiangtao Xu3

1 Department of Computing, Imperial College London, London, UK
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2 Ohio State University, Columbus, USA
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3 Beijing Jiaotong University, Beijing, China
11301168@bjtu.edu.cn

Abstract. Big data systems address the challenges of capturing, stor-
ing, managing, analyzing, and visualizing big data. Within this context,
developing benchmarks to evaluate and compare big data systems has
become an active topic for both research and industry communities. To
date, most of the state-of-the-art big data benchmarks are designed for
specific types of systems. Based on our experience, however, we argue
that considering the complexity, diversity, and rapid evolution of big
data systems, for the sake of fairness, big data benchmarks must include
diversity of data and workloads. Given this motivation, in this paper, we
first propose the key requirements and challenges in developing big data
benchmarks from the perspectives of generating data with 4 V proper-
ties (i.e. volume, velocity, variety and veracity) of big data, as well as
generating tests with comprehensive workloads for big data systems. We
then present the methodology on big data benchmarking designed to
address these challenges. Next, the state-of-the-art are summarized and
compared, following by our vision for future research directions.

Keywords: Big data systems · Benchmark · Data · Tests

1 Introduction

Big data systems have gained unquestionable success in recent years and will
continue its rapid development over the next decade. These systems cover many
industrial and public service areas such as search engine, social network and
e-commerce, as well as a variety of scientific research areas such as bioinformatics,
environment, meteorology, and complex simulations of physics. Conceptually,
big data are characterized by very large data volumes and velocities, diversity
and variety (various data types, and complex data processing requirements).
In the era of big data, these data require a new generation of big systems to
capture, store, search, and analyze them within an acceptable elapsed time.
The complexity, diversity, and rapid evolution of big data systems give rise to
new challenges in how to compare their performance, energy efficiency, and cost
effectiveness.
c© Springer International Publishing Switzerland 2014
J. Zhan et al. (Eds.): BPOE 2014, LNCS 8807, pp. 3–18, 2014.
DOI: 10.1007/978-3-319-13021-7 1



4 R. Han et al.

Conceptually, a big data benchmark aims to generate application-specific
workloads and tests capable of processing big data sets to produce meaning-
ful evaluation results [18]. Considering the diversity of big data systems (e.g.
there are three mainstream application domains, namely search engine, social
network, and e-commerce, of internet service workloads), and the emergence of
new systems driven by the exploration of big data value, covering diversity of
workloads is the prerequisite to perform successful and efficient benchmarking
tests. Within this context, we propose our insights into the requirements and
challenges in developing big data benchmarks. We also present the methodology
on big data benchmarking, which represents our thinking about how to address
these challenges. Finally, we discuss state-of-the-art benchmarking techniques
for big data systems and propose some future research directions. The aim of
this paper, therefore, is to provide a foundation towards building a successful
big data benchmark, and to stimulate productive thinking, investigation, and
development in this research area.

2 Requirements and Challenges

Big data benchmarks are developed to evaluate and compare the performance
of big data systems and architectures. Figure 1 shows the benchmarking process
for big data systems that consists of five steps. At the Planning step, the bench-
marking object, application domain, and evaluation metrics are determined. In
the following two steps, the data and test used in evaluation are generated. Next,
the benchmark test is conducted at the Execution step and the evaluation result
is reported. At the last step, the benchmarking result is analysed and evaluated.

Successful and efficient benchmarking can provide realistic and accurate
measuring of big data systems and thereby addressing two objectives. (1) Pro-
moting the development of big data technology, i.e. developing new architectures
(processors, memory systems, and network systems), innovative theories, algo-
rithms, techniques, and software stacks to manage big data and extract their
value and hidden knowledge. (2) Assisting system owners to make decisions for
planning system features, tuning system configurations, validating deployment
strategies, and conducting other efforts to improve systems. For example, bench-
marking results can identify the performance bottlenecks in big data systems,
thus optimizing system configuration and resource allocation. In this section, we
present the requirements and challenges in building big data benchmarks.

Fig. 1. Benchmarking process for big data systems



On Big Data Benchmarking 5

2.1 Generating Data with the 4V Properties of Big Data

Technically, a big data system can be attributed four dimensions: volume, veloc-
ity, variety, and veracity, which form the 4 V properties of big data [3]. (1) Volume
represents the amount/size of data such as Terabyte (TB) or Petabyte (PB).
(2) Velocity reflects the speed of generating, updating, or processing data.
(3) Variety denotes the range of data types and sources. Finally, (4) veracity
reflects whether the data used in benchmarking conform to the inherent and
important characteristics of raw data.

In a big data benchmark, applying real-world data or generating synthetic data
for application-specific workloads is a central problem. Traditionally, although
some benchmarks use real data sets as inputs of their workloads and thereby guar-
anteeing the data veracity, the volume and velocity of real data sets cannot be flex-
ibly adapted to different benchmarking requirements. Based on our experience, we
also noticed that in many practical scenarios, obtaining a variety of real data is not
trivial because many data owners are not willing to share their data due to con-
fidential issues. In big data benchmarks, therefore, the consensus is to generate
synthetic data as inputs of workloads on the basis of real data sets. Hence in syn-
thetic data generation, preserving the 4 V properties of big data is the foundation
of producing meaningful and credible evaluation results.

Volume. Today, data are generated faster than ever. For example, about 2.5
quintillion bytes of data are created every day [3] and this speed is expected
to increase exponentially over the next decade according to International Data
Corporation (IDC). In Facebook, there are 350 million photos updated and more
than 500 TB data generated per day. The above facts indicate the big data
generators must be able to generate different volumes of data as inputs of typical
workloads. The data volume has different meanings in different workloads. For
example, in workloads for processing text data (e.g. sort or WordCount), the
volume is represented by the amount of data (e.g. 1 TB or 1 PB text data).
In social network graph workloads, the volume is represented by the number of
vertices in social graph data (e.g. 220 vertices).

Velocity. In the context of big data generation, data velocity has threefold
meanings. First of all, it represents the data generation rate. For example, gen-
erating 100 TB text data in 10 h means the generation rate is 10 TB/h. Secondly,
many big data applications have real-time data updating; that is, data velocity
represents the data updating frequency in this case. For example, in a social net-
work site, the social graph data are continuously updating. Finally, in streaming
processing systems, data streams continuously arrives and these streams must
be processed in real-time to keep up with their arriving speed. Hence data veloc-
ity represents the processing speed. Given the above facts, it is challenging to
reflect data generation rates, updating frequencies, and processing speeds in data
generation.

Variety. The fast development of big data systems gives birth to a diversity
of data types, which cover structured data (e.g. tables), unstructured data (e.g.
text, graph, images, audios, and videos), and semi-structured data (e.g. web logs,
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reviews, and resumes, where reviews and resumes contains both text and graph
data). Hence in big data benchmarking, it is required that the data genera-
tors can support the whole spectrum of data types including structured, semi-
structured, and unstructured data, as well as representative data sources such
as table, text, stream, and graph. It is also required that these data generators
can support the complexity and diversity of workloads and keep in pace with
their frequent changes.

Veracity. Preserving data veracity is probably the most difficult job in synthetic
data generation. In big data generators, it is challenging to scale up or down a
synthetic data set while keeping this data similar to the real data [18]; that is,
the important characteristics of raw data must be preserved in synthetic data
generation. Data veracity is important to guarantee the reality and credibility
of benchmarking results.

2.2 Generating Benchmarking Tests with Comprehensive
Workloads

Margo Seltzer et al. pointed out that a testing result is meaningful only when
applying an application-specific benchmarking test [18]. Also, the diversity and
rapid evaluation of big data systems means it is challenging to develop big data
benchmarks to reflect various workload cases. Hence in big data benchmarks,
identifying the typical workload behaviours for an application domain is the
prerequisite of evaluating big data systems. Furthermore, big data benchmarks
must consider the diversity of workloads to cover different types of application
domains, as well as automatically generate tests based on these workloads. We
now discuss the key challenges in generating workloads and tests to evaluate big
data systems from the functional view and the system view.

Functional view. Given the complexity and diversity of workload behaviours
in current big data systems, it is reasonable to say that no single set of behaviors
is representative for all applications. Hence, it is necessary to abstract from the
behaviors of different workloads to a general approach. This approach should
identify typical workload behaviours in representative application domains. From
the functional view, these behaviors represent the system-independent outcome
of processing data, thus allowing the comparison of systems of different types,
e.g. a DBMS and a MapReduce system.

There are two challenges in developing this abstraction approach. First, the
operations to process big data in a specific application domain need to be
abstracted and their functions need to be identified. For example, select, put,
get, and delete are abstracted operations in database systems to operate table
data. Secondly, given a set of abstracted operations, workload patterns need to be
abstracted to describe complex processing tasks by combining abstracted oper-
ations. One abstracted workload pattern can contain one or multiple abstract
operations as well as their workflow. For example, an abstract pattern of a SQL
query can contain select and put operations, in which the select operation exe-
cutes first.



On Big Data Benchmarking 7

System view. The abstracted operations and patterns are designed to capture
the system-independent user behaviours of workloads, i.e. the data processing
operations and their sequences. Thus, an abstracted benchmark test can be
constructed based on abstracted operations and patterns, and this test is inde-
pendent of underlying systems and software stacks. From the system view, this
abstract test can be implemented over different systems and thereby allows the
comparison of systems of the same type. For example, an abstract test consist-
ing of a sequence of read, write, and update operations can be used to compare
different DBMSs.

2.3 Execution

To perform a fair, efficient, and successful benchmarking test, there are several
requirements and challenges to be addressed at the Execution step.

Adapting to different data formats. Since the same type of data can be stored
in multiple formats, e.g. texts can be stored in a simple text file or more complex
formats as web pages and pdf, Big data benchmarks need to provide format con-
version, which can transfer a data set into an appropriate format capable of being
used as the input of a test running on a specific system.

Portability to representative software stacks. A software stack consists of
a set of programs working together to provide a fully functional solution. Big
applications and systems belonging to one application domain are built on the
basis of one or multiple software stacks. Hence covering a broad spectrum of
representative software stacks in benchmark tests, as well as avoiding being too
costly or difficult to port a test to a specific software stack is another important
issue we need to consider.

Fair measurement. A fair and sensible evaluation has twofold meanings. First,
big data systems usually have many optional configurations, while these config-
urations have different combinations for optimal performance when the systems
run in different hardware platforms. Hence using default configurations in mea-
surement cannot guarantee fair measurement. That is to say, when comparing
different big data systems in heterogeneous platforms, each system must be con-
figured separately for fair comparison. For example, a big data system may have
some specific configuration to improve its performance, thus such configuration
is not suitable for fair measurement. Second, repeatability is another important
requirement of the evaluation. This requirement means the parameters of hard-
ware and software configurations must be stately clearly so that the same result
can be obtained when the evaluation is repeated several times. In particular, in
cloud environment, there are multiple virtual machines (VMs) running in one
physical machine (PM) and competing for compute resources. Hence we need to
develop a comprehensive evaluation mechanism to effectively identify and esti-
mate the impact of resource competition on benchmarking results, and to avoid
the uncertainties incurred by this resource competition.
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Extensibility. The fast evolution of big data systems requires big data bench-
marks not only keeping in pace with state-of-the-art techniques and underlying
systems, but also taking their future changes into consideration. That is, big
data benchmarks should be able to add new workloads or data sets with little
or no change to the underlying algorithms and functions [19].

Usability. Usability reflects users experiences in using benchmarks and it is
a combination of factors. In big data benchmarks, these factors include ease
of deploying, configuring, and use; high benchmarking efficiencies; simple and
understandable performance metrics; convenient user interfaces; and so on.

3 On Benchmarking Methodology

3.1 Layer Design of Big Data Benchmarks

Figure 2 shows the layered design of a big data benchmark with three layers:
The User Interface Layer provides interfaces to assist system owners to specify
their benchmarking requirements, such as the selected data, workloads, metrics
and the preferred data volume and velocity.

Fig. 2. Layered architecture of big data benchmarks

The Function Layer has three components: data generators, test generators
and metrics. Briefly, data generators are designed to produce data sets covering
different data types and application domains while keeping the 4 V properties
of big data in these data sets. The test generator enables the automatic genera-
tion of tests with comprehensive workloads for big data systems. Metrics (either
single or multiple metrics) can be divided into two types: user-perceivable met-
rics and architecture metrics [19]. User-perceivable metrics represent the metrics
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that matter for users; these metrics are usually observable and easy to be under-
stood by users. Examples of user-perceivable metrics are the duration of a test,
request latency, and throughput. While user-perceivable metrics are used to com-
pare performances of workloads of the same category, architecture metrics are
designed to compare workloads from different categories. Examples of architec-
ture metrics are million instructions per second (MIPS) and million floating-
point operations per second (MFLOPS). In addition, these metrics should not
only measure system performance, but also take energy consumption, cost effi-
ciency into consideration.

The Execution Layer offers several functions to support the execution of
benchmark tests over different software stacks. Specifically, the system config-
uration tools enable a generated test running in a specify software stack. The
data format conversion tools transform a generated data set into a format capa-
ble of being used by this test. The result analyzer and reporter display evaluation
results.

3.2 Data Generators in Big Data Benchmarks

Data generators in big data benchmarks aim to efficiently generate data sets
while preserving the 4 V properties of big data [15]. Figure 3 shows the process
of generating data sets.

At the first step, data generators support the variety of big data by selecting
real data sets to cover representative application domains as well as different
data sources and types. The generators can also apply tools to directly generate
synthetic data sets; that is, these synthetic data sets are independent of real
data. This is because it is accepted that such purely synthetic data can be used
as inputs of some workloads such as the Sort and WordCount workloads in
Micro benchmarks; and the Read, Write, and Scan workloads belonging to basic
database operations.

At the second step, each data generator employs a data model to capture
and preserve the important characteristics in one or multiple real data sets of a
specific date type. For example, a text generator can apply Latent dirichlet allo-
cation (LDA) [9] to describe the topic and word distributions in text data. This
generator first learns from a real text data set to obtain a word dictionary. It
then trains the parameters and of a LDA model using this data set. Finally, it
generates synthetic text data using the trained LDA model. To preserve data
veracity, it is required that different models should be developed to capture the
characteristic of real data of different types such as table, text, stream, and graph
data. In addition, the sampling tools enable the scaling down of data set sizes.

At the third step, the volume and velocity can be controlled according to user
requirements. For example, the data generation can be paralleled and distributed
to multiple machines, thus supporting different data generation rates.

At the fourth step, after a data set is generated, the format conversion tools
transform this data set into a format capable of being used as the input data of
a specific workload.
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Fig. 3. The big data generation process

3.3 Test Generator in Big Data Benchmarks

In big data benchmarks, the test generator is developed to automatically gener-
ate benchmarking tests for big data systems. The basic idea of this generator is
to abstract from the workload behaviours of current big data systems to a set
of operations and workload patterns used in big data processing [20]. As shown
in Fig. 2, the test generator consists of three components.

Operations represent the abstracted processing actions (operators) on data
sets. In the test generator, we divide operations into three categories according
to the number of data sets processed by these operations: element operation,
single-set operation, and double-set operation.

Workload patterns are designed to combine operations to form complex
processing tasks. In the test generator, we abstract three workload patterns:
(1) a single-operation pattern contains one single operation; (2) a multi-operation
pattern; and, (3) an iterative-operation pattern. The difference between a multi-
operation pattern and an iterative-operation pattern is that the former pattern
contains finite number of operations, while the latter pattern only provides stop-
ping conditions that the exact number of operations can be known at run time.

A prescription includes the information needed to produce a benchmarking
test, including data sets, a set of operations and workload patterns, a method
to generate workload, and the evaluation metrics.

Figure 4 shows the process of generating a test. At steps 1, 2, and 3, a data
set, a set of abstracted operations, and a set of workload patterns are selected,
respectively. A prescription is then generated at step 4. Finally, at step 5, a
prescribed test for a specific system and software stack is created based on the
prescription and system configuration tools. Using the test generator, the work-
loads in different application domains can be automatically generated.

Fig. 4. The benchmark test generation process
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4 State-of-the-Art

In this section, we review related work on big data benchmarks from the per-
spectives of data generation and benchmarking techniques.

4.1 Data Generation Techniques

As shown in Table 1, we now review data generation techniques in existing big
data benchmarks according to the 4 V properties of big data.

Volume. To date, most of existing benchmarks generate synthetic data as their
workload inputs, where the volume of synthetic data is scalable. By contrast,
some benchmarks such as Hibench and LinkBench also use fixed-size data as
inputs. Hence we call these benchmarks partially scalable in terms of data vol-
ume.

Velocity. Some benchmarks such as BigBench, LinkBench, and BigDataBench
provide parallel strategies to support the deployment of multiple data gener-
ators. In these benchmarks, the data generation rate can be controlled. How-
ever, the equally important aspect of data velocity, the data updating frequency,
is not considered in these benchmarks. Hence we call these benchmarks semi-
controllable in terms of data velocity. We also called benchmarks un-controllable
if both the data generation rate and updating frequency are not considered.

Variety. Table 1 lists the data sources of each benchmarks tested data, includ-
ing tables (structured data); text, graph, and videos (unstructured data); and
web logs and resumes (semi-structured data). We can observe that many current
benchmarks only consider limited data types (e.g. the text data in Hibench or the
table data in YCSB and TPC-DS). Although BigBench and CloudSuite bench-
marks support a variety of data sources and types, they are only designed to test
applications running in cloud service architecture, and DBMSs and MapReduce
Hadoop, respectively.

Veracity. In GridMix, PigMix, YCSB, and Micro benchmark, the generation
process of synthetic data is independent of the benchmarking applications. For
example, in HiBench [13], the synthetic data sets are either randomly generated
using the programs in the Hadoop distribution or created using some statistic
distributions. Data veracity is un-considered in these benchmarks.

In TPC-DS, BigBench, LinkBench, and CloudSuite, the data generation tools
partially consider the data veracity. For example, TPC-DS [12] implements a
multi-dimensional data generator (MUDD). MUDD generates most of data using
traditional synthetic distributions such as a Gaussian distribution. On the other
hand, MUDD generates a small portion of crucial data sets using more realistic
distributions derived from real data. In BigBench [12], table data are generated
using PDGF [17], while web logs and reviews are generated on the basis of the
table data. Hence the veracity of web logs and reviews rely on the table data.

By contrast, in BigDataBench [19], different data models are employ to cap-
ture and preserve the important characteristics of real data of different types
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(e.g. table, text, and table). The synthetic data are then generated using the
constructed data model, thus avoiding the loss of data veracity.

In conclusion, the issues relating to keeping the 4 V properties of big data
have not been adequately addressed by current big data benchmarks [1,2,4–
6,8,10–14,16].

Table 1. Comparison of data generation techniques in existing big data benchmarks.

Benchmark efforts Volume Velocity Variety(data Veracity

sources)

Hibench [13] Partially scalable Un-controllable Texts Un-considered

GridMix [2] Scalable Un-controllable Texts Un-considered

PigMix Scalable Un-controllable Texts Un-considered

YCSB [10] Scalable Un-controllable Tables Un-considered

SIGMOD

benchmark [16]

Scalable Un-controllable Tables, texts Un-considered

TPC-DS [12] Scalable Semi-controllable Tables Partially

Considered

BigBench [12] Scalable Semi-controllable Texts, web logs,

tables

Partially

Considered

LinkBench [8] Partially scalable Semi-controllable Graphs Partially

Considered

CloudSuite [11] Partially scalable Semi-controllable Texts, resumes,

graphs,

tables

Partially

Considered

BigDataBench [19] Scalable Semi-controllable Texts, resumes,

graphs,

tables

Considered

4.2 Benchmarking Techniques

Most of existing big data benchmarks aims to evaluate specific type of systems
or architectures. As listed in Table 2, many benchmarks are developed to test the
performance of DBMSs and Hadoop MapReduce, or compare the performance of
both types of systems. Specifically, HiBench [13], GridMix [2] and PigMix [4] are
designed to test MapReduce Hadoop systems. The SIGMOD benchmark in [16]
compare two parallel SQL DBMSs (i.e. DBMS-X and Vertica) with MapReduce
systems. TPC-DS is TPCs latest decision support benchmark [7] designed to test
the performance of DBMSs in decision support systems. Adopting from TPC-DS
by adding a web log generator and a review generator, BigBench aims to test the
Teradata Aster DBMS and MapReduce Hadoop systems [12]. In [1], the bench-
mark is designed to test four SQL driven systems for managing data, including
one database (Redshift), one data warehousing systems (Hive), and two engines
(Spark and Impala). LinkBench tests MySQL databases that store Facebooks
social graph data, and characterizes the real-world database workloads for social
applications [8].
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Some other benchmarks target at evaluating NoSQL databases or archi-
tectures. Yahoo! Cloud Serving Benchmark (YCSB) benchmark compares two
non-relational databases (Cassandra and HBase) against one geographically dis-
tributed database (PNUTS) and a traditional relational database (MySQL)
[10]. The CloudSuite benchmarks in [10; 13] are implemented to test cloud
service architectures. Standard Performance Evaluation Corporation (SPEC)
[6] has produced several benchmarks for evaluating workstations and has sev-
eral server and client benchmarks including a Java business benchmark called
SPECjBB, but specific big data benchmarks are not available. SPEC had pro-
duced web server benchmarks called SPECweb96, SPECweb99, SPECweb2005,
and SPECweb2009, but they have been retired. The SPECjEnterprise 2010 and
SPEC jBB benchmarks are the closest to big data/cloud benchmarks in SPECs
suites.

At present, BigDataBench is the only big data benchmark that supports the
evaluation of a hybrid of different big data systems. The workloads in BigData-
Bench cover three fundamental and widely usage scenarios (i.e. micro bench-
marks, “Cloud OLTP” workloads, and relational queries workloads) and three
major application domains in internet services (i.e. Search Engine, Social Net-
work, and E-commerce).

From the perspective of applications users, Table 2 divides workloads in cur-
rent big data benchmarks into three categories. (1) Online services: these services
are sensitive to the response delay, i.e. the time interval between the arrival and
departure moments of a service request. Examples of workloads belonging to
this category are typical MapReduce operations such as sort and WordCount.
(2) Offline analytics: these services usually perform complex and time-consuming
computations on big data. Examples of workloads for testing offline services
are machine learning algorithms such as k-means clustering and naive Bayes
classification. (3) Real-time analytics: application users use these services in
an interactive manner; that is, a variety of interactions happen between users
and application services. Examples of workloads for these services are relational
queries such as selecting, joining, and aggregation of database tables.

5 Open Challenges

Considering the emergence of new big data applications and the rapid evolu-
tion of big data systems, we believe an incremental and iterative approach is
necessary to conduct the investigations on big benchmarks. We now propose
some challenges to be addressed to develop successful and efficient big data
benchmarks.

5.1 Data-Centric Big Data Benchmarks

The fundamental problem of big data benchmarks is about how to provide better
measurement of systems for processing data with 4 V properties, which brings
the requirement for data-centric benchmarks.
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Table 2. Comparison of benchmarking techniques.

Benchmark efforts Workloads Software stacks

Type Examples

Hibench [13] Offline

analytics

Sort, WordCount, TeraSort,

PageRank, K-means, Bayes

classification

Hadoop and Hive

Real-time

analytics

Nutch Indexing

GridMix [2] Online services Sort, sampling a large dataset Hadoop

PigMix [4] Online services 12 data queries Hadoop

YCSB [10] Online services OLTP (read, write, scan, update) NoSQL systems

SIGMOD

benchmark [16]

Online services Data loading, select, aggregate, join,

count URL links

DBMS and Hadoop

TPC-DS [12] Online services Data loading, queries and

maintenance

DBMS

BigBench [12] Online services Database operations (select, create

and drop tables)

DBMS and Hadoop

Offline

analytics

K-means, classification

LinkBench [8] Online services Simple operations such as select,

insert, update, and delete; and

association range queries and

count queries

DBMS

CloudSuite [11] Online services YCSBs workloads NoSQL systems, Hadoop,

GraphLab

Offline

analytics

Text classification, WordCount

BigDataBench [19] Online services Database operations (read, write,

scan)

NoSQL systems, DBMS,

real-time and offline

analytics systems

Offline

analytics

Micro Benchmarks (sort, grep,

WordCount, CFS); search engine

(index, PageRank); social

network (K-means, connected

components (CC)); e-commerce

(collaborative filtering (CF),

Naive Bayes)

Real-time

analytics

Relational database query (select,

aggregate, join)

Fully controllable data velocity. The full control of data velocity has two
meanings. First, existing big data benchmarks only consider different data gen-
eration rates. Hence different data updating frequencies and processing speeds
should be reflected in future big data generators. Secondly, current data velocity
is implemented using parallel strategies; that is, data velocity can be controlled
by deploying different numbers of parallel data generators. In contrast, we note
that data velocity can be controlled in another way: adjusting the efficiency of
the data generation algorithms themselves to control data velocity. For example,
a graph data generator can be adjusted to consume more memory resources,
thus increasing its data generation speed.

Metrics to evaluate data veracity. As discussed in Sect. 3.2, applying data
models to capture and preserve important characteristics of real data is an effi-
cient way to keep data veracity in synthetic data generation. However, how to
measure the conformity of the generated synthetic data to the raw data is still
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an open question; that is, metrics need to be developed to evaluate data veracity.
Two types of evaluation metrics can be developed: (1) metrics to compare the
raw data and the constructed data models; (2) metrics to compare the raw data
and the synthetic data.

This problem is compounded when considering different data sources and
data types. For example, to compare real text data set and synthetic data, we
first need to derive the topic and word distributions from these data sets. Next,
statistical metrics such as KullbackCLeibler divergence can be applied to com-
pare the similarity between two distributions. Furthermore, when considering
table, graph or even stream data, some other metrics should be developed.

5.2 Domain-Centric Big Data Benchmarks

The fast development of big data systems has lead to a number of successful
application domains such as scientific analytics, social network, and streaming
process. Each of these application domain is the focus of one or multiple big data
platform efforts. Domain-centric benchmarks, therefore, are needed to promote
the progress of these big data platforms.

Enriching workloads of big data benchmarks. At present, there are three
major problems that restrict the wide application of current big data bench-
marks. First, there are still many important big data systems such as multime-
dia systems and applications such as large-scale deep learning algorithms not
being considered. Second, in an application domain, a representative workload
should reflect both typical data processing operations and the arrival patterns of
these operations (i.e. the arriving rate and sequence of operations). We believe
profiling history logs of real applications is a good way to obtain the repre-
sentative arrival patterns. Finally, the truly hybrid workload, i.e. the workload
consists of the mix of various data processing operations and their arriving rates
and sequences, has not been adequately supported. That is, to the best of our
knowledge, none of exiting big data benchmarks is ready to declare itself to be a
truly representative and comprehensive big data benchmark until its workloads
are significantly enriched to solve the above problems.

Supporting heterogeneous hardware platforms. With the fast develop-
ment of technology, the emerged hardware platforms and systems significantly
change the way about how to process data and show a promising prospect
to improve processing efficiency. For example, the heterogeneous platforms of
Xeon+General-purpose computing on graphics processing units (GPGPU) and
Xeon+Many Integrated Core (MIC) can significantly improve the processing
speed of HPC applications. However, to date, both platforms are only limited
to the HPC area; that is, the diversity of big data applications are not fully
considered in these platforms. For such an issue, big data benchmarks should be
developed to evaluate and compare different workloads in state-of-the-practice
heterogeneous platforms. The evaluation result is expected to show: (1) whether
any platform can consistently win in terms of both performance and energy
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efficiency for all big data applications, and (2) for each class of big data applica-
tions, we hope to find some specific platform that can realize better performance
and energy efficiency for them. To support the evaluation of an application, cur-
rent big data benchmarks should be extended to provide a uniform interface
to enable this application running in different platforms. In order to perform
apples-to-apples comparisons, this application should be running in the same
software stack.

A reusable environment to automate test generation. Section 3.3 pro-
poses a framework to abstract operations and workload patterns from typical
data processing behaviors, thus enabling automatic generation of tests with com-
prehensive workloads for big data systems. We note that these operations and
patterns are easy to derive in some application domains. For example, in the
application domain of basic database operations, there are some obvious oper-
ations such as real, write, select, and delete, and the patterns used to combine
these operations are simple. However, in some application domains such as social
network, there are a large number of data processing operations such as k-means
clustering and collaborative filtering, and the relationships between these oper-
ations are complex. All these facts mean abstracting a comprehensive set of
operations and behaviors is difficult.

Moreover, in practice, generating benchmarking tests from operations and
patterns may be beyond the capabilities of the average system owner. Hence
going mainstream with this framework requires the development of an environ-
ment that provides abstracted operations and workload patterns for different
application domains, as well as offers a repository of reusable prescriptions to
simplify the generation of prescribed tests running on state-of-the-art software
stacks.

Increasing use cases of big data benchmarks. The number of successful use
cases is an important measure of the practicality of a big data benchmark. Table 3
lists the use cases of current big data benchmarks. We can observe that some
benchmarks such as Hibench, GridMix, PigMix are designed to test some specific

Table 3. Use cases of current big data benchmarks.

Benchmark efforts Use cases

Hibench [13], GridMix [2], PigMix [4] Hadoop

YCSB [10] NoSQL and SQL databases, cloud
storage system

TPC-DS [12] DBMS

SIGMOD benchmark [16], BigBench [12] DBMS and Hadoop

LinkBench [8] DBMS (MySQL)

CloudSuite [11] Cloud service architecture

BigDataBench [19] Hardware systems, cloud service
architecture, DBMS, distributed
systems
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type of systems, hence these benchmarks have a single use case such as Hadoop.
In addition, although some benchmarks such as BigBench and LinkBench are
designed for different systems, they are currently only evaluated in one system.
By contrast, YCSB and BigDataBench have been successfully applied to evaluate
multiple systems and architectures. Hence, it is necessary to apply benchmarks
to evaluate a larger number and type of big data systems, and in turn, learning
from the experiences in testing these systems to develop appropriate benchmarks
for better evaluation.

6 Conclusion

With the rapid development of information technology, big data systems have
emerged to manage and process data with high volume, velocity, and variety.
These new systems have given rise to various new requirements about how to
develop a new generation of big data benchmarks. In this paper, we summarize
the lessons we have learned and propose key challenges in developing big data
benchmarks from two aspects: (1) how to develop data generators capable of
preserving the 4 V properties of big data in data generation; (2) how to auto-
matically generate benchmarking tests to cover a diversity of typical application
scenarios while supporting different system implementations and software stacks.
We then introduce the methodology on big data benchmark aiming to address
the proposed challenges. Next, we discuss existing benchmarking techniques and
propose some future research directions. The work presented in this paper rep-
resents our effort towards building a truly representative and comprehensive big
data benchmark suite and we encourage more investigations and developments
in big data benchmarking tools.
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Abstract. Hadoop MapReduce is increasingly being used by many data-
centers (e.g. Facebook, Yahoo!) because of its simplicity, productivity,
scalability, and fault tolerance. For MapReduce applications, achieving
low job execution time is critical. Since a majority of the existing clus-
ters today are equipped with modern, high-speed interconnects such as
InfiniBand and 10 GigE, that offer high bandwidth and low communi-
cation latency, it is essential to study the impact of network configura-
tion on the communication patterns of the MapReduce job. However, a
standardized benchmark suite that focuses on helping users evaluate the
performance of the stand-alone Hadoop MapReduce component is not
available in the current Apache Hadoop community. In this paper, we
propose a micro-benchmark suite that can be used to evaluate the per-
formance of stand-alone Hadoop MapReduce, with different intermedi-
ate data distribution patterns, varied key/value sizes, and data types. We
also show how this micro-benchmark suite can be used to evaluate the
performance of Hadoop MapReduce over different networks/protocols
and parameter configurations on modern clusters. The micro-benchmark
suite is designed to be compatible with both Hadoop 1.x and Hadoop 2.x.

Keywords: Big data · Hadoop MapReduce · Micro-benchmarks ·
High-performance networks

1 Introduction

MapReduce, proposed by Google [8], has been seen as a viable model for processing
petabytes of data. The Apache Hadoop project [23], an open-source implementa-
tion of the MapReduce computing model, has gained widespread acceptance and
is widely used in many organizations around the world. MapReduce is extensively
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adopted by various applications to perform massive data analysis and is hence
required to deliver high performance. While Hadoop does attempt to minimize the
movement of data in the network, there are times when MapReduce does gener-
ate considerable network traffic, especially during the intermediate data shuffling
phase [17], which is communication intensive.

Several modern, high-speed interconnects such as InfiniBand and 10 GigE,
are used widely in clusters today. The data shuffling phase of the MapReduce
job can immensely benefit from the high bandwidth and low latency commu-
nication offered by these high-performance interconnects. In order to evaluate
this improvement potential, we require benchmarks that can give us insights
into the factors that affect MapReduce as an independent component. The per-
formance of Hadoop MapReduce is influenced by many factors such as network
configuration of the cluster, controllable parameters in software (e.g. number of
maps/reduces, data distribution), data types, and so on. To get optimal per-
formance, it is necessary to tune and optimize these factors, based on cluster
and workload characteristics. Adopting a standardized performance benchmark
suite to evaluate these performance metrics in different configurations would be
good for Hadoop users. For Hadoop developers, a benchmark suite with these
capabilities could help evaluate the performance of new MapReduce designs.

At present, we lack a standardized benchmark suite that focuses on helping
users evaluate the performance of the Hadoop MapReduce as a stand-alone com-
ponent. Current, commonly used benchmarks in Hadoop, such as Sort and Tera-
Sort, usually require the involvement of HDFS. The performance of the HDFS
component has significant impact on the overall performance of the MapReduce
job, and this interferes in the evaluation of the performance benefits of new
designs for MapReduce. Furthermore, these benchmarks do not provision us to
study the impact of changing data distribution patterns, varying data types, etc.,
on the performance of the MapReduce job. Such capabilities are very useful for
optimizing the parameters and the internal designs of Hadoop MapReduce. With
this as background, the basic motivation of this paper is: Can we design a simple
micro-benchmark suite to let users and developers in the Big Data community
evaluate, understand, and optimize the performance of Hadoop MapReduce in a
stand-alone manner over different networks/protocols?

In this paper, we propose a comprehensive micro-benchmark suite to eval-
uate the performance of stand-alone Hadoop MapReduce. We provide options
for varying different benchmark-level parameters such as intermediate data dis-
tribution pattern, key/value size, data type, etc. Our micro-benchmark suite
can also dynamically set the Hadoop MapReduce configuration parameters, like
number of map and reduce tasks, etc. We display the configuration parameters
and resource utilization statistics for each test, along with the final job execution
time, as the micro-benchmark output.

This paper makes the following key contributions:

1. Designing a micro-benchmark suite to evaluate the performance of stand-
alone Hadoop MapReduce, when run over different types of high-performance
networks.
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2. A set of micro-benchmarks to measure the job execution time of Hadoop
MapReduce with different intermediate data distribution patterns.

3. Illustration of the performance results of Hadoop MapReduce using these
micro-benchmarks over different networks/protocols (1 GigE/10 GigE/IPoIB
QDR (32 Gbps)/IPoIB FDR (56 Gbps)).

4. A case study on enhancing Hadoop MapReduce design by using RDMA over
native InfiniBand, undertaken with the help of the proposed micro-benchmark
suite.

The rest of the paper is organized as follows. In Sect. 2, we discuss related
work in the field. We present design considerations for our micro-benchmark
suite in Sect. 3 and the micro-benchmarks in Sect. 4. In Sect. 5, we present the
results of performance tests, obtained with our micro-benchmark suite. Section 6
shows a case study with RDMA-enhanced MapReduce. Finally, we conclude the
paper in Sect. 7.

2 Related Work

Over the years, many benchmarks have been introduced in the areas of Cloud
Computing and Big Data. MRBench [13] provides micro-benchmarks in the form
of MapReduce jobs of TPC-H [4]. MRBS [21] is a benchmark suite that eval-
uates the dependability of MapReduce systems. It provides five benchmarks
for several application domains and a wide range of execution scenarios. Simi-
larly, HiBench [9] has extended the DFSIO program to compute the aggregated
throughput by disabling the speculative execution of the MapReduce framework.
It also evaluates Hadoop in terms of system resource utilization (e.g. CPU, mem-
ory). MalStone [6] is a benchmark suite designed to measure the performance of
cloud computing middleware when building data mining models. Yahoo! Cloud
Serving Benchmark (YCSB) [7] is a set of benchmarks for performance evalu-
ations of key/value-pair and cloud data-serving systems. YCSB++ [18] further
extends YCSB to improve performance understanding and debugging. BigData-
Bench [25], a benchmark suite for Big Data Computing, covers typical Internet
service workloads and provides representative data sets and data generation
tools. It also provides different implementations for various Big Data processing
systems [1,14].

In addition to the above benchmarks that address the Hadoop framework as
a whole, micro-benchmark suites have been designed to study some of its individ-
ual components. The micro-benchmark suite designed in [10] helps with detailed
profiling and performance characterization of various HDFS operations. Like-
wise, the micro-benchmark suite designed in [16] provides detailed profiling and
performance characterization of Hadoop RPC over different high-performance
networks. Along these lines, our proposed micro-benchmark suite introduces a
performance evaluation tool for stand-alone Hadoop MapReduce, that does not
need HDFS or any other distributed file system.
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3 Design Considerations

The performance of a MapReduce job is usually measured by its execution time.
It can be significantly influenced by numerous factors such as the underlying
network or the communication protocol, number of map tasks and reduce tasks,
intermediate shuffle data pattern, and the shuffle data size, as illustrated in
Fig. 1(a).

Essentially, the efficiency of the network intensive data shuffling phase is
determined by how fast the map outputs are shuffled. Based on these aspects,
we consider the following dimensions to design the Hadoop MapReduce micro-
benchmark suite,

Intermediate data distribution: Map tasks transform input key/value pairs
to a set of intermediate key/value pairs. These intermediate key/value pairs are
shuffled from the mappers, where they are created, to the reducers where they
are consumed. Depending upon the MapReduce job, the distribution of inter-
mediate map output records can be even or skewed. A uniformly balanced load
can significantly shorten the total run time by enabling all reducers to finish
at about the same time. In jobs with a skewed load, some reducers complete
the job quickly, while others take much longer, as the latter have to process a
more sizeable portion of the work. Since it is vital for performance to understand
whether these distributions can be significantly impacted by the underlying net-
work protocol, we consider this an important aspect of our micro-benchmark
suite.

Size and number of key/value pairs: For a given data size, the size of the
key/value pair determines the number of times the Mapper and Partitioner func-
tions are called; and, in turn, the number of intermediate records being shuffled.
Our micro-benchmark suite provides support for three related parameters: key
size, value size and number of key/value pairs. Through these parameters, we
can specify the total amount of data to be processed by each map, amounting
to the total shuffle data size. These parameters can help us understand how the
nature of intermediate data, such as the key/value pair sizes, can impact the
performance of the MapReduce job, on different networks.

Number of map and reduce tasks: The number of map and reduce tasks is
probably the most basic Hadoop MapReduce parameters. Tuning the number of
map and reduce tasks for a job is essential for optimal performance and hence
we provide support to vary the number of map and reduce tasks in our micro-
benchmark suite.

Data types: Hadoop can process many different types of data formats, from
flat text files to databases. Binary data types usually take up less space than
textual data. Since disk I/O and network transfer will become bottlenecks in
large jobs, reducing the sheer number of bytes taken up by the intermediate
data can provide a substantial performance gain. Thus, data types can have
a considerable impact on the performance of the MapReduce job. Our micro-
benchmark suite is designed to support different data types.
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Network configuration: The intermediate data shuffling phase, which is the
heart of MapReduce, results in a global, all-to-all communication. This accounts
for a rather significant amount of network traffic within the cluster, although
it varies from job to job. This is an important consideration, especially when
expanding the cluster. Hence, it is essential to compare and contrast the impact
that different network interconnects/protocols have on the performance of the
MapReduce job. Our micro-benchmark suite is capable of running over any net-
work and cluster configuration.

Resource utilization: The multi-phase parallel model of MapReduce and its
scheduling policies have a significant impact on various systems resources such
as the CPU, the memory, and the network, especially with an increasing number
of maps and reduce tasks being scheduled. As it is essential to understand the
correlation between network characteristics and resource utilization, our micro-
benchmark suite provides the capability to measure the resource utilization,
during the course of the MapReduce job.

4 Micro-benchmarks for Hadoop MapReduce

In this section, we present the overall design of the micro-benchmark suite, and
describe the micro-benchmarks implemented based the various design factors
outlined in Sect. 3.

4.1 Overview of Overall Micro-benchmark Suite Design

In this study, we develop a micro-benchmark suite for stand-alone Hadoop
MapReduce, in order to provide an understanding of the impact of different
factors described in Sect. 3 on the performance of the MapReduce job when run
over different networks. As illustrated in Fig. 1(b), these micro-benchmarks have
the following key features:

Stand-alone feature: Each micro-benchmark is basically a MapReduce job
that is launched without HDFS or any other distributed file system. In order to
achieve this,

(1)For theMapphase,wedefineacustominput format,namely,NullInputFormat,
for the mapper instances. This empty input format creates dummy input splits
based on the number of map tasks specified, with a single record in each. Each map
task generates a user-specified number of key/value pairs in memory, and passes it
on as map output.

(2) For the Reduce phase, we make use of NullOutputFormat [3], defined in the
MapReduce API, as the output format. Each reduce task aggregates intermediate
data from the map phase, iterates over them and discards it to /dev/null. This
is ideal for our micro-benchmarks, since we evaluate MapReduce as a stand-alone
component.
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Fig. 1. Design overview of the MapReduce micro-benchmarks

Custom Partitioners: The partitioning phase that takes place after the map
phase and before the reduce phase, partitions the data gets across the reduc-
ers according to the partitioning function. To simulate different intermediate
data distribution scenarios, we employ different custom partitioners. We support
three different intermediate data distribution patterns, namely, average distri-
bution, random distribution and skewed distribution. These three distributions
cover most of the intermediate data distribution patterns found in MapReduce
applications.

Configurable parameters: In our micro-benchmark suite, we provide para-
meters to vary the number of mappers and reducers. The user can specify the
size in bytes and the number of the key/value pairs to be generated based on the
intermediate shuffle data size of the MapReduce job. We also provide a para-
meter to indicate data type, such as BytesWritable or Text. Based on these
parameters, the micro-benchmark suite generates the data to be processed by
each map.

4.2 Micro-benchmarks

Using the framework described in Sect. 4.1 as basis, we define three micro-
benchmarks. For each of these, we can vary the size and number of key/value
pairs, to generate different sizes of shuffle data. These micro-benchmarks use the
Map function to create specified number of key/value pairs. To avoid any addi-
tional overhead, we restrict the number of unique pairs generated to the number
of reducers specified.

Average-distribution (MR-AVG): In this micro-benchmark, we distribute
the intermediate key/value pairs uniformly amongst all of the reduce tasks. The
custom partitioner defined for MR-AVG distributes the key/value pairs amongst
the reducers in a round-robin fashion, making sure each reducer gets the same
number of intermediate key/value pairs. This helps us obtain a fair comparison
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of the performance of a MapReduce job on different networks, when the inter-
mediate data is evenly distributed.

Random-distribution (MR-RAND): In this micro-benchmark, we randomly
distribute the intermediate key/value pairs among the reduce tasks. The cus-
tom partitioner defined for MR-RAND randomly picks a reducer and assigns
the key/value pair to it. With the help of Java’s Random class, the reducer
is pseudo-randomly chosen, with its range specified as the number of reducers.
With this limited range, the micro-benchmark more or less generates the same
pattern of reducers, making sure each run gets similar intermediate key/value
pairs to reducers mapping. This mapping is relatively close to an even distribu-
tion and thus helps us picture a fairly accurate comparison of the performance of
a MapReduce job on different networks, when the intermediate data is randomly
distributed among the reducers.

Skew-distribution (MR-SKEW): In this micro-benchmark, we distribute
the intermediate key/value pairs unevenly among the reducers. Based on the
number of reducers specified, the custom partitioner defined for MR-SKEW
distributes 50 % of the intermediate key/value pairs to the first reducer, 25 %
of the remainder to the second reducer, 12.5 % of the remaining to the third,
and then randomly distributes the rest. Since this skewed distribution pattern is
fixed for all runs, irrespective of the key/value pairs generated, we can guarantee
a fair comparison on homogenous systems. This micro-benchmark helps us gain
essential insights into the performance of MapReduce jobs with skewed loads,
running over different network types. By determining the overhead of running a
skewed load, we can determine if it is worthwhile to find alternative techniques
that can mitigate load imbalances in Hadoop applications.

5 Performance Evaluation

5.1 Experimental Setup

(1) Intel Westmere Cluster (Cluster A): This cluster has nine nodes. Each
node has Xeon Dual quad-core processor operating at 2.67 GHz. Each node
is equipped with 24 GB and two 1TB HDDs. Nodes in this cluster also have
NetEffect NE020 10Gb Accelerated Ethernet Adapter that are connected using
a 24 port Fulcrum Focalpoint switch. The nodes are also interconnected with a
Mellanox switch. Each node runs Red Hat Enterprise Linux Server release 6.1.

(2) TACC Stampede [22] (Cluster B): We use the Stampede supercomputing
system at TACC [22] for our experiments. According to TOP500 [24] list in June
2014, this cluster is listed as the 7th fastest supercomputer worldwide. Each node
in this cluster is dual socket containing Intel Sandy Bridge (E5-2680) dual octa-
core processors, running at 2.70GHz. It has 32 GB of memory, a SE10P (B0-
KNC) co-processor and a Mellanox IB FDR MT4099 HCA. The host processors
are running CentOS release 6.3 (Final). Each node is equipped with a single
80 GB HDD.
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For Cluster A, we show performance comparisons over 1 GigE, 10 GigE, and
IPoIB (32 Gbps). We evaluate our micro-benchmarks with Apache Hadoop 1.2.1
and JDK version 1.7. We also present some results with Apache Hadoop NextGen
MapReduce (YARN) [5] version 2.4.1. On Cluster B, we compare IPoIB FDR
(56 Gbps) and RDMA FDR (56 Gbps), with Apache Hadoop 1.2.1 running over
IPoIB and RDMA for Apache Hadoop (v0.9.9) [2]. These results are presented
in Sect. 6.

5.2 Evaluation along Different Dimensions

Evaluating impact of intermediate data distribution patterns: In this
section, we present performance results obtained using micro-benchmarks pre-
sented in Sect. 4.2, to evaluate the impact of intermediate data distribution pat-
terns on the MapReduce job execution time. We perform these tests on Cluster A,
using BytesWritable data type and a fixed key/value pair size of 1 KB, with 16
map tasks and 8 reduce tasks on 4 slave nodes. We compare the performance with
different shuffle data sizes, by varying the number of intermediate key/value pairs
generated. Figure 2 shows comparison for job execution time with different inter-
mediate data distribution patterns. From Fig. 2(a), it is clear that the job execu-
tion time for MR-AVG micro-benchmark decreases around 17 %, if the underlying
interconnect is changed to 10 GigE from 1 GigE, and up to 24 %, when changed
to IPoIB (32 Gbps). Similarly, from Fig. 2(b), job execution time for MR-RAND
micro-benchmark decreases around 16 %, if the underlying interconnect is 10 GigE
instead of 1 GigE, and up to 22 %, if it is IPoIB (32 Gbps). We observe that IPoIB
(32 Gbps) improves the performance by about 8–10 %, as compared to 10 GigE, for
both MR-AVG and MR-RAND micro-benchmarks. From Fig. 2(c), we can observe
that the performance improves by about 11 % for MR-SKEW micro-benchmark,
if we switch from 1 GigE from 10 GigE. Also, IPoIB (32 Gbps) performs better
than 10 GigE, by about 12 %, as intermediate shuffle data sizes are scaled up. It
can be observed that IPoIB (32 Gbps) provides better improvement with increased
shuffle data sizes and more skewed workloads. Also, the skewed data distribution
seems to double the job execution time for a given data size, as compared to the
average distribution, irrespective of the underlying network interconnect.
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Fig. 2. Job Execution Time for different data distribution patterns on Cluster A
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Evaluating with Apache Hadoop NextGen MapReduce (YARN): In
this section, we evaluate the probable influence that the intermediate data dis-
tribution pattern has on the MapReduce job execution time for the Hadoop
YARN Architecture [5], using Apache Hadoop 2.4.1. We perform these tests on
Cluster A, with a key/value pair size of 1 KB, using 32map tasks and 16 reduce
tasks on 8 slave nodes. We compare the performance with different shuffle data
sizes, by varying the number of intermediate key/value pairs generated. From
Fig. 3(a), it is clear that the job execution time for MR-AVG decreases around
11 %, if the underlying interconnect is changed to 10 GigE from 1 GigE, and
by about 18 %, when changed to IPoIB (32 Gbps). Similarly, from Fig. 3(b), job
execution time for MR-RAND micro-benchmark decreases around 10 %, when
we switch from 1 GigE to 10 GigE, and up to 17 % improvement, when changed
to IPoIB (32 Gbps). For MR-SKEW micro-benchmark, Fig. 3(c) shows that the
performance of the MapReduce job improves by about 10–12 % with the use of
high-speed interconnects. It can be observed that, IPoIB (32 Gbps) improves
performance by about 7–10 % for all three micro-benchmarks, as compared to
10 GigE, with increased shuffle data sizes. Also, for a given data size, the skewed
data distribution increases the job execution time by more than 3X, when com-
pared to the average data distribution, irrespective of the underlying network
interconnect. From Figs. 2 and 3, we can infer that, increasing cluster size and
concurrency significantly benefits average and random data distribution pat-
terns. From Figs. 2(c) and 3(c), it also evident that, even though the Map phase
may benefit from the increased concurrency and cluster size, the Reduce phase
of the MapReduce job with a skewed intermediate data distribution still depends
on the slowest reduce task, and hence, the improvement is not as much.
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Fig. 3. Job Execution Time with different patterns for YARN architecture on Cluster A

Evaluating impact of varying key/value pair sizes: In this section, we
present results using MR-AVG micro-benchmark, to portray the impact of vary-
ing key/value pair size on the performance of the MapReduce job. We run these
evaluations on Cluster A, with 16 map tasks and 8 reduce tasks on 4 slave
nodes, for BytesWritable data type. Figure 4 shows job execution time compar-
isons with MR-AVG micro-benchmark for different key/value pair sizes. From
Fig. 4(a), we can see that the job execution time for a key/value pair size of
100 bytes, decreases around 18 %, if the underlying interconnect is changed from
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1 GigE to 10 GigE, and by about 22 %, when changed to IPoIB (32 Gbps).
Figures 4(b) and (c) show similar performance improvement for key/value pair
sizes of 1 KB and 100 KB, when underlying interconnect is changed to from 1
GigE to IPoIB (32 Gbps) and 10 GigE. We also observe that IPoIB (32 Gbps)
performs slightly better than 10 GigE, by about 7–10 %, for all three key/value
pair sizes. It can be seen that increasing the key/value pair sizes brings about
lower job execution times for a given shuffle data size. For instance, the job
execution time for 16 GB shuffle data size reduces from 128 to 107 s for IPoIB
(32 Gbps) when key/value sizes are increased from 100 bytes to 10 KB. We can
therefore infer that the size and number of key/value pairs can influence the
performance of the MapReduce job running on different networks.
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Fig. 4. Job Execution Time with MR-AVG for different key/value pair sizes on
Cluster A

Evaluating impact of varying the number of map and reduce tasks: In
this section, we present performance results with varying number of map and
reduce tasks, using MR-AVG micro-benchmark, over 10 GigE and IPoIB (32
Gbps). We run these performance evaluations on Cluster A, with a key/value
pair size of 1 KB. We vary the number of key/value pairs to generate different
shuffle data sizes. In Fig. 5, we present performance evaluations with 8 map and
4 reduce tasks (8M-4R), and 4 map and 2 reduce tasks (4M-2R). For both these
cases, Fig. 5 clearly shows that IPoIB (32 Gbps) outperforms 10 GigE, by about
13 %. It is evident that IPoIB (32 Gbps) gives better performance improvement
with increased concurrency, as compared to 10 GigE. For instance, increasing
the number of map and reduce tasks improved the performance of the MapRe-
duce job by about 32 % for IPoIB (32 Gbps), while it improved by only 24 %
for 10 GigE, for a shuffle data size of 32 GB. It can therefore be inferred that
varying the number of map and reduce tasks can impact the load on the network.

Evaluating impact of data types: In this section, we present results of
experiments done with the MR-RANDOM micro-benchmark, to understand the
impact of data types on the performance of the MapReduce job over different
networks interconnects. We run these experiments on Cluster A, using 16 map
tasks and 8 reduce tasks on 4 slave nodes, with fixed key/value pair size of 1 KB,
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Fig. 6. Job Execution Time with BytesWri-
table and Text on Cluster A

to study BytesWritable and Text data types. Figure 6(a) shows the trend for
BytesWritable and Fig. 6(b) shows the trend for Text, as we scale up to 64 GB.
We observe that the job execution time decreases around 17–23 %, if the under-
lying interconnect is 10 GigE, instead of 1 GigE, and up to 28 % improvement,
if it is IPoIB (32 Gbps). Also, IPoIB (32 Gbps) gives noticeable performance
improvement over 10 GigE. It is evident that high-speed interconnects provide
similar improvement potential to both data types. We plan to investigate other
data types, as the next step.

Resource Utilization: In this section, we present results of experiments done
with the MR-AVG micro-benchmark, to study the resource utilization patterns of
MapReduce jobs over different network interconnects. We use 16 map tasks and
8 reduce tasks on 4 slave nodes for these experiments, on Cluster A. We present
CPU and network utilization statistics of one of the slave nodes. Figure 7(a)
shows the CPU utilization trends for MR-AVG benchmark, run with intermedi-
ate data size of 16 GB, a fixed key/value pair size of 1 KB and BytesWritable
data type. It can be observed that CPU utilization trends of 10 GigE and IPoIB
(32 Gbps) are similar to that of 1 GigE. Figure 7(b) shows the network through-
put for the same. For network throughput, we consider the total number of
megabytes received per second. IPoIB (32 Gbps) achieves a peak bandwidth of
950 MB/s, 10 GigE peaks at 520 MB/s, and 1 GigE peaks at 101 MB/s. These
trends suggest that IPoIB (32 Gbps) makes better use of the resources, especially
the network bandwidth, as compared to 10 GigE and 1 GigE.

6 A Case Study: Enhanced Hadoop MapReduce Design
over Native InfiniBand

In previous research [19,20], we have designed and implemented a high-
performance Hadoop MapReduce framework with RDMA over native Infini-
Band, known as MRoIB. This is publicly available as a part of the RDMA for
Apache Hadoop project (v0.9.9) [2,11,12,15,19,20]. We found that the stand-
alone Hadoop MapReduce micro-benchmark suite proposed in this paper is
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Fig. 7. Resource Utilization on one slave node for MR-AVG on Cluster A

extremely helpful in evaluating the performance of alternative MapReduce
designs such as MRoIB, and in tuning different internal parameters to obtain
optimal performance.
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Fig. 8. Performance with different patterns for IPoIB Vs. RDMA on Cluster B (56
Gbps FDR)

Figure 8 illustrates the performance improvement possible with native IB
as compared to IPoIB (56 Gbps) on Cluster B. We use BytesWritable data
type and a fixed key/value pair size of 1 KB, with 32 map tasks and 16 reduce
tasks. We vary the number of key/value pairs to generate different shuffle data
sizes, and study the MR-AVG micro-benchmark. We omit the other two micro-
benchmarks due to space constraints. From Fig. 8(a), we observe that MRoIB
improves the performance of the MapReduce job running on 8 slaves nodes,
by 28–30 %, as compared to default Hadoop MapReduce over IPoIB (56 Gbps).
Similarly, Fig. 8(b) illustrates a comparison between MRoIB and default MapRe-
duce over IPoIB (56 Gbps) with 16 slave nodes on Cluster B. It is clear that
RDMA-enhanced MapReduce outperforms IPoIB (56 Gbps) by about 25–28 %,
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even on a larger cluster. This points us towards the benefits that native IB-based
MapReduce has over default Hadoop MapReduce running over IPoIB (56 Gbps).

7 Conclusion and Future Work

In order to obtain optimal performance, it is essential to study the impact of
network on the performance of Hadoop MapReduce. In this paper, we have
designed a micro-benchmark suite to evaluate the performance of stand-alone
MapReduce over different network interconnects. This comprehensive and easy-
to-use micro-benchmark suite, that is compatible with both Hadoop 1.x and
Hadoop 2.x, gives users a means to understand how factors such as intermediate
data patterns, size and number of key/value pairs, data type, and number of
map and reduce tasks, can influence the execution of a MapReduce job on high-
performance networks.

As an illustration, we have presented performance results of Hadoop MapRe-
duce with our micro-benchmarks over different networks/protocols: 1 GigE,
10 GigE, IPoIB QDR (32 Gbps), and IPoIB FDR (56 Gbps). We observe that
the performance of the MapReduce job improves around 17 %, if the underlying
interconnect is changed to 10 GigE from 1 GigE, and up to 23 %, when changed
to IPoIB QDR (32 Gbps). Additionally, IPoIB QDR (32 Gbps) improves perfor-
mance of the MapReduce job by about 12 % over 10 GigE. It is also noticeable
that IPoIB QDR (32 Gbps) performs better with increasing shuffle data sizes.
We also present a case study undertaken to understand the benefits that native
InfiniBand can provide to Hadoop MapReduce. It is clear that RDMA-enhanced
MapReduce design can achieve much better performance than default Hadoop
MapReduce over IPoIB FDR (56 Gbps).

In the light of the results presented in this paper, our proposed micro-
benchmark suite can help developers enhance their MapReduce designs, espe-
cially those intended to optimize data shuffling over the network. For future
work, we plan to provide public access to these micro-benchmarks, by making
them available as a part of the OSU HiBD Micro-benchmarks [2]. We also intend
to add additional features to enhance this micro-benchmark suite, so that users
can gain a more concrete understanding of real-world workloads.
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Abstract. With the rapid development of hardware, a stand-alone com-
puter can employ a memory which has large amounts of volumes. Sev-
eral industries and research institutions have devoted more resources
to develop several in-memory databases, which preload the data into
memory for further processing. With the boom of in-memory databases,
there emerges requirements to evaluate and compare the performance of
these systems impartially and objectively. In this paper, we proposed
MemTest, a novel benchmark considering the main characteristics of
an in-memory database. This benchmark constructs particular metrics,
which cover CPU usage, cache miss, compression ratio, minimal memory
space and response time of an in-memory database and are also the core
of our benchmark. We design a data model based on inter-bank transac-
tion applications, around which a data generator is devised to support the
data distributions of uniform and skew. The MemTest workload includes
a set of queries and transactions against the metrics and data model. In
the end, we illustrate the efficacy of MemTest through implementations
on three different in-memory databases.

Keywords: Memory · In-memory database · Benchmark · Finance

1 Introduction

Nowadays, the price of memory continues to decrease, making it possible to
deploy a computer system with huge memory size, and chip densities continue
their current trend of doubling every year for the foreseeable future [1]. Several
commercial and open source providers have devoted huge resources to develop
IMDBs (In-Memory Databases), such as Hana (SAP) [2], Timesten (Oracle) [3],
Hekaton (Microsoft) [4], HyperSql [5], SQLite [6], MemSql [7] and Monetdb
(OpenSource) [8]. In general, IMDBs preload the whole data into memory so
that the I/O operators can be significantly avoided during the query processing.
Hence, it is expected that IMDBs will play an important role in some emer-
gent applications, such as weather forecast, finance, artificial intelligence, etc.
The appearance of more and more IMDB products brings a need to devise a
benchmark to test and evaluate them fairly and objectively.
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The development of benchmark has shown great success in the past 30 years,
since the birth of Wisconsin Benchmark. Academia and industry have proposed
numerous meaningful database benchmarks, such as the Wisconsin benchmark
and TPC-X series for RDBMS, the OO7 [9] and bucky [10] for object-oriented
DBMS, XMark [11] and EXRT [12] for XML data, YCSB [13] and BigBench [14]
for big data applications, etc. Existing benchmarks are often employed to test the
performance for the disk-based databases, regarding throughput and response
time as main metrics. Such benchmarks cannot be suitable for IMDBs well since
the following characters of an IMDB are not addressed well [2,3,8,15]: (i) Data
Compression (In IMDBs, data is often stored in compressed form. Optimizations
for this characteristic can reduce the data size in main memory. Hence, it is
required to notice this property.), (ii) Minimal Memory Space (Memory is critical
in IMDBs. During the query processing, it not only stores the data but also offers
enough space to process data. Each IMDB has a request for the minimal memory
space.), (iii) CPU (In database fields, CPU is used for computation and data
processing. Different from most conventional systems which attempt to minimize
disk access, IMDBs have overlooked I/O cost and focus more on the processing
cost of CPU. By the optimization of CPU utility, an IMDB can speed up the
query processing and gain more performance improvement) and (iv) Cache (In
IMDBs, cache is employed to reduce the data transfer between memory and cpu.
Actually, during the data processing, performance of CPU depends upon how
well the cache can be utilized.).

Our goal in this paper is a novel benchmark for in-memory databases, named
MemTest. Based on main properties of IMDBs, some metrics are proposed to
evaluate the performance fairly and objectively, including compression ratio,
response time, minimal memory space, CPU usage and cache miss. For other
parts, the benchmark embraces a data model, synthetic data generator and work-
load description.

The data model in MemTest is based on an inter-bank transaction scenario.
This type of applications needs to capture, store, manage and analyze terabytes
of data every day. In order to satisfy daily work, IMDBs are employed as a
innovative solution to process the huge data. Many companies works on the
application, such as VISA, JCB and China Unionpay. In this study, we employ
a star schema including six tables to construct the schema. There are one big
table as the fact table (having more than 200 columns) and five small tables
as dimension tables (less than 30 columns). The data types cover text, date
and numeric, etc. Based on realistic data properties, we provide the implemen-
tation of a simple data generator to generate dataset with uniform distribution
and skew distribution. A scale factor (SF) is also provided to decide scalable vol-
umes of raw data. Then, we devised 12 queries and 2 transactions in the workload
part. Six major business areas are identified: institutions’ transaction statistics
and analysis for each day, transaction quality analysis, transaction compliance
analysis, institutions’ abnormal statistics and analysis, generating new transac-
tions and capturing the most abnormal institutions. The workload supports join,
aggregation, and update, etc. in the IMDB field.
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The major contribution can be summarized by Table 1, showing that our
proposed benchmark actually deals with some intrinsic characters of an IMDB
system. As well as the existing benchmarks, our novel benchmark can cover
important characteristics in DBMS, such as OLTP, OLAP and Multi-user model.
Meanwhile, MemTest still takes special consideration of some inherent charac-
teristics of the IMDB systems, most of which are often overlooked by the existing
works. As mentioned above, several characteristics, such as compression ratio,
startup, Minimal Memory Space, have not been studied before. In addition, we
also conduct a series of experiments to evaluate IMDBs.

Table 1. The comparison of MemTest and other benchmarks

Characteristic SSB TPC-C TPC-H TPC-DS CH-Benchmark MemTest

OLTP × √ × × √ √

OLAP
√ × √ √ √ √

Multi-user model × √ √ √ √ √

Compression Ratio × × × × × √

Minimal Memory Space × × × × × √

CPU Usage × × × × × √

Cache Miss × × × × × √

The rest of this paper is organized as follows. Section 2 describes the related
work. Section 3 emphasizes on the proposed metrics. Section 4 illustrates the data
model and its data generation. Section 5 introduces the detailed world. We report
some experimental results in Sect. 6, and conclude this work briefly in the last
section.

2 Related Work

The requirement for well-defined benchmarks that measure the performance of
database has grown with time passing by. Since 1980’s, academia and industry
have proposed numerous meaningful database benchmarks, such as the Wiscon-
sin benchmark and TPC-X series for RDBMS, the OO7 [9] and bucky [10] for
object-oriented DBMS, XMark [11] and EXRT [12] for XML data, YCSB [13]
and BigBench [14] for big data applications, etc.

With the rapid development of hardware in recent years, we can deploy
huge amounts of RAM in one computer system, which makes in-memory data-
base (IMDB) possible. Representative IMDB products include Hana (SAP),
MonetDB, Timesten (Oracle), HyperSql, SQLite and MemSql, all based on rela-
tional data model. The benchmarks for RDBMS have made big progress in the
past 30 years. Wisconsin benchmark [16] is the earliest benchmark. It develops a
relatively simple, but fairly scientific benchmark to evaluate the performance of
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relational database systems. TPC-X series study a series of benchmarks for test-
ing and evaluation, including TPC-C and TPC-E for online transaction proces-
sion (OLTP), TPC-H and TPC-DS for online analytical processing (OLAP), etc.
CH-Benchmark [17] mixes the TPC-C and TPC-H to measure one database’s
capability for both OLTP and OLAP. Set query benchmark [16] chooses a list
of “basic” set queries from the aspects of document search, direct marketing,
and decision support to evaluate the performance of one database. Star Schema
Benchmark [18] employs a star schema to measure the performance of database
products in support of classical data warehousing applications.

However, all existing benchmarks for RDBMS are not suitable for IMDB,
due to insufficient consideration of the main characteristics of IMDB. In [19,20],
some researchers try to explore the performance of IMDB. However, they only
use response time and throughput as metrics without testing and evaluating
other critical properties of IMDBs, such as compression ratio and cache miss. In
contrast, our benchmark proposed a novel schema, metrics and workloads which
are especially designed for IMDB, as illustrated in the introduction part.

3 Metrics

The MemTest metrics are computed from the information collected during the
workload run. It can be divided into three groups: basic performance measures,
CPU measures and memory measures.

The basic performance measure is response time. It includes the total
time of twelve queries and two transactions. This metric is common in both
IMDBs and disk-based databases. Since IMDBs store their data in main physical
memory and employ different optimizations to structure and organize data, we
design CPU measures and memory measures especially for the IMDBs.

TheCPUMeasures include CPU Usage and Cache Miss. CPU Usage records
the CPU utilization during the data processing. After executing the workload
in the order of 12 queries and 2 transactions, the CPU usage can be computed
by the equation: CPU usage = the Total CPU time−the CPU Waiting time

the Total CPU time ∗ 100%.
The Total CPU Time records the time interval of process from its beginning to
the end. The CPU Waiting Time records the idle time of CPU during process.
Since different hardwares have different architectures of CPU, it is hard to devise
an universal equation to represent cache miss. In this study, we employ the inter-
face provided by the hardware or the existing performance tool such as perf and
oprofile in linux to get cache miss.

In the existing works, many technologies are proposed to improve CPU and
cache efficiency, such as Partially Decomposed Storage Model (PDSM), Decom-
posed Storage Mode (DSM) and JiT Processing technology [21]. A good IMDB
should employ advanced storage and processing technology to improve the CPU
and cache at the same time.

The Memory Measures include Compression Rate and Minimal Memory
Space.
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– Compression Ratio (CR). There existed many compression techniques for
IMDBs, such as dictionary compression, domain encoding and run-length
encoding [22]. Different IMDBs may employ different compression algorithms.
In this study, compression ratio (CR@SF) is used to reflect the compression
capability of an IMDB. As mentioned above, an IMDB system tends to store
compressed data in the memory to save memory cost. An excellent IMDB
system is capable of loading more data into memory. Let SDisk denote the
disk space allocation, and SMem the memory occupation. CR@SF is defined
as: CR@SF = SMem

SDisk
∗ 100%.

– Minimal Memory Space (MMS). This metric describes the minimal memory
space to execute the workload efficiently under a given SF value. In general,
an IMDB system requires large amounts of memory to run the workload effi-
ciently. In other words, almost all of the workloads can be conducted without
significant I/O cost. It is worth noting that MMS is not equal to the size
of disk data after compression, since it also needs to consider the memory
allocation to execute the workloads. In fact, some IMDB systems may fail to
work due to the memory deficiency.

4 Data Model

In this section, we devise a data model based on the inter-bank transaction
applications.

4.1 Table Structure

Our database schema contains one big table with more than 200 columns and
five small tables, as shown in Fig. 1. Due to the limitation of space, we only list
common columns in the big table and then introduce the important attributes in
all table. The TRANSACTION DETAIL table details the transaction infor-
mation, including the receive institution, the forward institution, the card, the
merchant, the term, and so on. In fact, the table has more than 200 columns.
Due to the space limitation, we use the COLUMN1 to COLUMN200 to represent
the columns that cannot be listed in the table. The RESP INFO table uses
RESP CD to judge whether the transaction is successful. Specifically, there
are many kinds of response codes, among which the success code are unique
and there are many failure codes since there exist many reasons for a fail-
ure transaction. The attributes RESP NAME, RESP DESC and RESP TYPE
illustrate a response code more detailedly. The attribute VALID STATE record
whether the code is currently valid. The BRANCH INFO table stores the
information of branches, including its name, nation, city, street and so on. The
MCHNT INFO table stores the information of merchants, including name,
type of a merchant, address and so on. The INSTITUTION INFO table
records the information of institutions. It is worth noting that there are two
types of institutions: receive institution (identified by rcv ins id) to process the
transaction of a customer and forward institution (identified by fwd ins id) to
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Fig. 1. The database schema of MemTest

forward a transaction apply of a customer. All the institutions are stored in this
table. The INS MAINTAIN INFO table stores the abnormal information of
institutions. It include the begin time and end time of an event, the reason for
this event, current date, and so on.

4.2 Data Generation and Distribution

In this study, we implement a lightweight data generation in Java and it is fully
platform independent. In fact, we also collect a real dataset from an inter-bank
company. However, the dataset are not allowed to be published due to commer-
cial reason. Table 2 lists the detailed distribution of data after analyzing a real-
istic applications. Sepecificly, 60 % of all institutions (ins), 70 % of all merchants
(Mchnt) and 50 % of all branches are located in big cities. 90 % of transaction are
successful (Suc) according to Response Codes (Resp Cd). In all transaction, big
institutions (Big Ins) occupies 80 % (Trans Freq). In order to simulate real sce-
narios, we devise a simple method to support the uniform and skew distribution
of data in inter-bank transaction applications. For the attributes conforming uni-
form distribution, we employ RND function to randomly generate data. For the
attributes conforming skewed distribution, we first learn a parameter from the
real data distribution as the skewed rate and then generate a dataset conforming
the skew distribution. For instance, given a list with five items {r1, r2, ..., r5},
from the real data set we learn that the item r1 appears more frequently and
its skewed rate is 0.7, then we use RND function to generate a number n ran-
domly. If 1 � n � 7, r1 will be selected to populate the field, otherwise a item
in {r2, ..., r5} will be selected randomly. This generator also provides scalable
volumes of raw data based on a scale factor (SF).



40 Q. Kang et al.

Table 2. The detail of data distribution

Ins Mchnt Branch Resp Cd Trans Freq

Big Cities 60 % 70 % 50 % Suc 90 % Big Ins 80 %

Small Cities 40 % 30 % 50 % Fail 10 % Small Ins 20 %

5 Workload

In inter-bank transaction, the analysis of transaction data is able to help insti-
tutions find risky and abnormal transactions and uncover the key factors of
transaction failure solve problems and improve transaction quality. Hence, we
design a set of queries and transactions to be executed for this application.

5.1 Business Cases

In this section, we identify four groups of queries including twelve queries and
two transactions to simulate realistic business cases in inter-bank applications.

Query Group 1. Institutions’ Transaction Statistics and Analysis. In
this group, three queries are designed to help find the institutions which have
a lower success rate. Consequently, the decision maker can improve the trans-
action especially for the institutions which have larger transaction amount and
frequency. Specifically, query 1.1 computes the total amount, average tax and
average discount of each institution for each day, query 1.2 computes the trans-
action frequency of each institution for each day, query 1.3 keeps count of the
successful rate and failure rate of each institution for each day according to the
response code.

Query Group 2. Transaction Quality Analysis. Queries in this group are
targeted at discovering the transaction quality through analyzing the behavior
of response codes. Query 2.1 finds the total number and amount of transactions
for each day according to different response codes. In order to cast more con-
centration on the failure transactions, query 2.2 keeps count of the total number
of failure transactions according to the failure response code. Thereafter, among
the failure transactions, query 2.3 computes the total number of institutions,
terms and merchants.

Query Group 3. Transaction Compliance Analysis. In the realistic inter-
bank transaction applications, besides the transaction quality, another important
type of transaction is compliance transaction. It means that the transaction is
successful but illegal, such as testing transactions for a system. Query 3.1 com-
putes low-amount transaction number and average transaction amount accord-
ing to the term, merchant and branch, query 3.2 record the sign-in transactions
and return the top 10 merchants and terms in the branch, query 3.3 return the
high-rate failure transactions for each day.

Query Group 4. Institutions’ Abnormal Statistics and Analysis. This
group mainly is designed to detect institutions’ abnormal information, caused by
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the hardware or software in an institution. First, query 4.1 divides the institu-
tions into three classes (e.g. high-incident, middle-incident, low-incident) accord-
ing to their abnormal frequency in the history. Then, query 4.2 computes the
number of cards, terms, branches and merchants, etc. for each abnormal institu-
tion in the transaction. Query 4.3 computes the total amount, average tax and
average discount of transactions during the institutions incident.

Transaction 1. Generating New Transactions. Every day, there are huge
data which will enter the database system in the inter-bank application. For
instance, China Unionpay can generate at least 30,000,000 transactions. Given
this situation, we design this transaction to insert data into table TRANS-
ACTION DETAIL. Other business cases in this part include the statistics of
transaction number every day.

Transaction 2. Capturing the Most Abnormal Institutions. This trans-
action is targeted at finding the most abnormal institution. Different from query
group 4, this transaction will compute the number of abnormal events in each
institution and find the most abnormal institution. Then, the detailed transac-
tions of this institution will be analyzed.

List 1. The specification of Q2.3

SELECT RESP CD, RESP NAME, INS NAME, TERM ID, TERM TYPE
, M NAME, COUNT(∗ ) TRANS NUM

FROM TRANSACTION DETAIL T,RESP INFO R, INSTITUTION INFO
I ,MCHNT INFO M

WHERE T.RETURN RESP CD=R.RESP CD AND T. RCV INS ID=I .
INS ID AND T.MCHNTCD=M.M ID AND RESP TYPE=’DELTA1 ’
AND VALID STATE=’DELTA2 ’ AND SETTLE DATE BETWEEN ’
DELTA3 ’ AND ’DELTA4 ’

GROUPBY RESP CD,RESP NAME,INS NAME,TERM ID,TERM TYPE,
MNAME

ORDERBY TRANS NUM DESC;

5.2 Technical Details

As mentioned before, IMDBs have redesigned the store organization and process-
ing algorithms. For instance, during the query processing, most conventional
database systems attempt to minimize disk access, whereas IMDBs focus more
on processing costs. In our workload, we design complex queries to cover differ-
ent operators in database field. Specifically, all queries have aggregations, 90 %
of queries have join operators and a transaction includes update operations.
In the workload, a query may have some arguments, like SETTLE DATE,
VALID STATE and RESP TYPE. We list the specification of query 2.3 in
List 1 as an example. All the arguments can be randomly replaced by a query
generator from a predefined dictionary. Optionally, we also offer a fixed replace
strategy and then generate the workload to simulate daily work in inter-bank
applications.
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Fig. 2. Testing for query and transaction (SF=2)

6 Experiments

In this section, we conduct a series of experiments to benchmark three different
IMDBs: DBMS-X, DBMS-Y, and Monetdb. DBMS-X is an IMDB system which
supports features like column-based storage and queries, data compression and
parallel processing. DBMS-Y is based on row-based storage with features like
durability, query optimization, recoverability etc. Monetdb is an open-source
column-oriented database with features like data compression and query opti-
mizers. The server under test has 0.5 TB memory and 8 CPUs. Specifically, it
has three levels cache: L1 cache (private) size is 32 KB, L2 cache (private) size
is 256 KB and L3 cache (shared within a CPU) size is 30 MB. By default, the
memory size that three IMDBs can use is 90 % of total memory and all queries
are generated previously and keep unchanged during the benchmark run.

Testing for Response Time. First, we evaluate the response time of all queries
and transactions, as shown in Fig. 2. It is observed that execution time of Q1.1,
Q1.2, Q1.3, Q2.1, Q2.2, Q3.1 and T2 are low in three IMDBs since their operators
are relatively simple. We can see that Q2.3 costs the most of time in three IMDBs.
It is because multiple joins need to be processed in this query, as shown in
List 1. In summary, for all queries, DBMS-Y has the longest execution time and
Monetdb since it is based on the row-oriented store and have to load attributes
which are not required to process, resulting to the increment of processing cost.
In Fig 2, it is also shown that DBMS-Y performs better than DBMS-X and
Monetdb when transaction one is executed. This is an interesting implication.
Actually, most of IMDBs based on column-oriented store (e.g. DBMS-X) will not
directly modify the physics of the most original records when they are required
to be updated. These systems only mark the original records useless and store
new records in another area. However, through this technology, there also still
exists performance difference between column-oriented store and row-oriented
store systems since the former need to maintain extra structures to record and
maintain the data to be updated.

We also test the performance of IMDBs when multiple users execute the
whole workload. In this test, we implement a parallel tool to simulate the oper-
ator of multiple users. From Table 3, we can see that the results of three IMDBs
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Table 3. Testing in the multi-user model

are similar and DBMS-X has a slightly better scalability than other two IMDBs.
For three IMDBs, we do not list all the results due to the long execution time.

Fig. 3. Testing for CPU usage and cache miss (SF=2)

Testing for CPU Measures. In this section, we test CPU usage and cache
miss to know more about IMDBs under test. We employ the one-user model. In
Fig. 3(a), we can see that three IMDBs have a relatively high CPU usage (>40%)
and DBMS-X and Monetdb behave better than DBMS-Y. This phenomenon
can be explained based on the physical organization. If the tuples are stored
in the row-store style, some attributes which are not needed must be loaded
into the cache. In the same size of cache, it will increase the percentage of
useless data, resulting to the frequent data exchange between cache and memory.
Thereafter, the CPU waiting time will increase, resulting to the reduction of CPU
usage. However, if the data is organized based on the column-store style, For the
same size of cache, it can load more data tuples that are referenced. This will
reduce the data exchange between cache and memory. The CPU usage will also
increase. In Fig. 3(b), we continued the evaluation of cache miss to verify the
difference for different organization styles. It has a corresponding result to the
CPU usage.

Testing for Memory Measures. In the following part, Fig. 4(a) describes the
compression scalability with the increment of SF. It is observed that DBMS-X and
monetdb have better compression ratios, approximately 0.1 and 0.3. DBMS-Y
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Fig. 4. Testing and evaluation for Compression Ratio and Minimal Memory Size

almosthasno compression.That is because in the column-store systemafield stores
the data sets which have the same type.

Since more and more IMDBs are employed to process analytic tasks in real
time and column-oriented store system are widely introduced into the industry,
we continue to test the effectiveness of MMS by using DBMS-X. This test is in
fact an iterative plan and we need to change the memory size continuously. In
other words, after assigning the SF value, we also need to assign the memory
space in each iteration and record the behaviors. The data set generated by a
given SF value is common for all iterations. During each iteration, we restart
the database server, change the memory space for use, execute the whole work-
load, and observe the change of response time. In this way, MMS is recorded.
Figure 4(b) shows that when the memory size is less than 18 GB, the memory
processing capability decreases a lot. It is shown that with the increment of mem-
ory space, the current memory space is sufficient to process data if the execution
time increment is slow. Otherwise, the execution time will grow up significantly,
or even the system will crash down. Thereafter, Fig. 4(c) lists the trend of MMS
with the increment of SF.

In this section, we have tried our best to guarantee the objectiveness of
experimental results. The conclusion is that column-oriented store system is good
at complex analysis and row-oriented store system can deal with transaction
processing well in IMDBs. In summary, as a novel data processing technology
IMDBs have gained huge performance improvement.

7 Conclusion

In this study, we proposed an IMDB benchmark, named MemTest. This bench-
mark takes special consideration of main characteristics of IMDBs. Accord-
ingly, novel metrics are especially designed for testing and evaluating IMDBs. In
MemTest, we provide a schema based on inter-bank transaction applications.
The workload is devised to cover OLAP and OLTP operations. Finally, experi-
ments are conducted to verify the effectiveness and efficiency of our benchmark
by implementing and running it on three systems. For future work, we may
devise more complex queries and conduct the experiments on more IMDBs.
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Abstract. Parallel computing in R has been widely used to analyse
microarray data. We have seen various applications using various data
distribution and calculation approaches. Newer data storage systems,
such as MySQL Cluster and HBase, have been proposed for R data
storage; while the parallel computation frameworks, including MPI and
MapReduce, have been applied to R computation. Thus, it is difficult
to understand the whole analysis workflows for which the tool kits are
suited for a specific environment. In this paper we propose DSIMBench,
a benchmark containing two classic microarray analysis functions with
eight different parallel R workflows, and evaluate the benchmark in the
IC Cloud testbed platform.

Keywords: Benchmark · R · MPI · MapReduce

1 Introduction

Data mining techniques applied to microarray data convert raw intensity values
into useful information. R is one of the most popular data mining software tools
used for medical research. With masses of data accumulating from translational
research studies involving high-throughput sequencing, many high performance
databases, such as MySQL Cluster [1], PostgreSQL Cluster [2], MongoDB [3]
and HBase [4], and parallel computing frameworks, including Message Passing
Interface (MPI) [5] and MapReduce [6], are being integrated into the traditional
microarray analysis tool, R [7]. Though these new methods greatly improve the
performance of R, they greatly complicate the whole analysis workflow. For
example, all the databases and parallel frameworks mentioned above form eight
different R workflows. Many datasets are required to fully evaluate the perfor-
mance of each workflow. Thus, hundreds of, or even thousands of, tests must
be performed in order to robustly evaluate and determine the most efficient and
effective workflow.

Our motivation is to find an effective big data solution for our open source
knowledge management software platform tranSMART [8], which was originally
c© Springer International Publishing Switzerland 2014
J. Zhan et al. (Eds.): BPOE 2014, LNCS 8807, pp. 47–56, 2014.
DOI: 10.1007/978-3-319-13021-7 4
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developed by Johnson&Johnson for in-house clinical trial and knowledge man-
agement requirements in translational studies. For the needs of various collab-
orative translational research projects, an instance of tranSMART is hosted at
Imperial College London and has been configured to use an Oracle relational
database for back-end storage. It currently holds over 70 million gene expression
records. When querying the database simultaneously for hundreds of patient
gene expression records, a typical exercise in translational studies, the record
retrieval time can currently take up to several minutes. Furthermore, some typi-
cal analyses using R, such as marker selection and data clustering, can take up to
several minutes, or even hours. These kinds of response times impede applica-
tions performed by researchers using this deployed configuration of tranSMART.
Anticipating the requirement to store and analyse next generation sequencing
data, where the volume of data being produced will be in the TB or PB range,
the current performance exhibited by tranSMART is unacceptably poor.

In this paper, we present DSIMBench (Data Science Institute Microarray
Benchmarks), which uses two common translational medical applications with
six representative data mining workflows, and evaluate the benchmark on the
IC Cloud [9] testbed.

2 Related Work

Benchmarks play a significant role in all domains. SPEC [10] benchmarks are
gold standards used by many processor manufacturers and researchers to mea-
sure the effectiveness of their inventions. Popular benchmarking suites designed
for specific application domains are also well accepted, such as TPC-H [11]
for database systems, SPLASH [12] for parallel architectures, and MediaBench
II [13] for media and communication processors.

Manybioinformatics benchmark suites arewidely in use, such asBioBench [14],
BioPerf [15] and MineBench [16]. These benchmarks contain several applications
in common, including BLAST, FASTA, Clustalw, and Hmmer. The bioinfor-
matics applications presented in DSIMBench differ from those included in these
benchmark suites. BioBench contains only serial workloads. Bioperf only uses
a few parallelized applications. Even in MineBench which contains full-fledged
OpenMP parallelized codes of all bioinformatics work-loads, no large-scale com-
puting framework has been integrated, such as MPI and MapReduce. In contrast
to the above benchmarks, DSIMBench focuses on R scalability and performance
for big data technologies with microarray data.

3 R with High Performance Plugins

3.1 Data Distribution

A standard vanilla R workflow loads the entire data before performing calcu-
lations. However, R provides many interfaces to different kinds of storage sys-
tems such as built-in functions (e.g. CSV reader), for local file system access
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(e.g. Linux ext4), DBI plugins for relational database access (e.g. MySQL Clus-
ter), and RHadoop plugin for interfacing with key-value database clusters (e.g.
HBase).

3.2 Parallel Computation

There are many high performance R plugins that parallelize calculationd for
CPU cores within one machine or for CPU cores across machines configured in a
computing cluster. MPI and MapReduce are two representative technologies used
for big data. For MPI, the R Snowfall [17] plugin is a usability wrapper around
the Rmpi [18] plugin for more usable development of parallel R programs. Rmpi
is a widely used MPI interface for the Local Area Multicomputer (LAM) [19],
with MPICH2 [20], a MPI implementation. For MapReduce, the RHadoop plugin
is a representative interface for the Apache Hadoop ecosystem [21], including
Hadoop Distributed File System (HDFS), MapReduce and HBase.

4 DSIMBench Workflows

We designed eight R workflows based on different data distributions and com-
putational solutions, as shown in Table 1. The first three workflows (W1–W3)
are created to test the data loading performance. Each workflow loads data from
one of three data sources, including local file system ext4, relational database
MySQL Cluster and key-value database HBase, and performs computation in
vanilla R. Workflow W4 acts as a baseline test for the parallel computations.
Workflows W5 and W6 test only the performance on the parallelization of the
computation in R, as the data is delegated directly from the master node through
direct network sockets. Finally workflows W7 and W8 test both the data loading
and parallel computation in combination, where W7 loads data to the worker
nodes using the fastest data loading workflow chosen from test results of W1–W3
with MPI, while W8 loads data using RHBase and computes using MapReduce.

Table 1. The DSIMBench workflows.

Workflows Data loading Computation Data source Parallel method

W1 Single process N/A ext4 N/A

W2 Single process N/A HBase N/A

W3 Single process N/A MySQL Cluster N/A

W4 N/A Single process N/A Vanilla R

W5 N/A Multiple cores N/A MPI

W6 N/A Multiple cores N/A MapReduce

W7 Multiple processes Multiple cores Best DB MPI

W8 Multiple processes Multiple cores RHBase MapReduce
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4.1 Data Source Performance Assessment

In workflows W1–W3, as shown in Fig. 1, third-party R plugins are used to
connect to the respective data sources. Hence, it is possible that the different
implementations of these R plugins could interfere with the performance of the
data source. In order to better assess the performance of the data sources in
workflows W1–W3 we performed data loading tests using a user-based high-
level API written in Java to directly load data from each data source to identify
how much of the performance is affected by that middleware layer in R. The
fastest source is then tested via a R plugin. If this R plugin on the source
outperforms the other data sources via Java APIs, this data source will be used
in the following W4–W6 tests.

Fig. 1. Diagram illustrating how the loading test is organised.

4.2 Parallel Computation Benchmark Workflows

W4 in Fig. 2 is introduced as the baseline. W5 shows R Snowfall MPI computa-
tion via a LAM/MPICH2 cluster. The data distribution consists of two sequential
steps: data loading and data copy. The input data matrix is loaded into LAM
master node and then fully copied to all MPICH2 slave nodes. The calculation
is carried out by the Snowfall sfLapply() function. sfLapply() mediates the
distributed calculation in the slave nodes and collects the results. W6 indicates
RHadoop MapReduce computation via a Apache Hadoop cluster. MapReduce
in W6 utilises HDFS as Mapper task data source. Thus, the data distribution
consists of two sequential steps. First, the input data matrix is split into data
blocks and then uploaded into HDFS. The number of data blocks depend on the
number of Mappers. After a MapReduce computation, all the results are stored
in HDFS.
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Fig. 2. Diagram illustrating how the parallel framework test is organised.

W7 in Fig. 3 manipulates MPICH2 tasks to load directly from the fastest data
source based on W1–W3. If ext4 is applied to W7, the matrix data file will be
split into data blocks and copied to each worker during the data preparation. The
number of data blocks depends on the MPICH2 number. W8 manipulates Map-
per tasks to load directly from HBase to test the built-in MapReduce HBase per-
formance. RHadoop launches Mapper tasks without data loading. Each Mapper
task loads data via built-in access to HBase Scanner and computes concurrently.

Fig. 3. Diagram illustrating R MapReduce with HBase.

5 DSIMBench Applications

5.1 Marker Selection

High-throughput gene expression analysis is a technique used to uncover disease
specific gene signatures and gain further insight into disease mechanisms. In the
past decade, gene expression measurements have shifted from quantitative assays
capable of measuring the expression of single genes, to assays capable of assess-
ing the levels of the majority of expressed genes in cells, tissues or organisms
of interest. DNA microarray chips are the common technology platform used in
recent years and are capable of simultaneous determination the entire human
“transcriptome”. In complex disease research, including diseases such as asthma
and chronic obstructive pulmonary disease (COPD), microarray experiments are
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performed on samples obtained from disease subjects and control (healthy) indi-
viduals. After the initial pre-processing steps which reduce background “noise”,
the expression intensity of genes present on each chip/sample are determined.
Subsequently, deferentially expressed genes (DEGs) in disease compared to con-
trol samples are computed as well as the statistical significance of the difference.
Finally, DEGs can be filtered by the relative levels of differential expression
(fold-change) and significance (p-values; typically corrected for multiple testing:
q-values).

The basic use case is to create a cohort between the patients and the control.
For some more complicated ones, many clinical measurements are utilised to gen-
erate cohorts. A test case below was carried out using a large publicly available
transcriptomic dataset taken from NCBI GEO [22] concerning Multiple Myeloma
(GEO accession GSE24080; Popovici et al., 2010 [23]). The dataset contains 559
subjects’ gene expression data produced by an Affymetrix GeneChip Human
Genome U133 Plus 2.0 Array. The cohorts are generated depending on patient
medical therapies and survival time. This test case is utilised in workflows W1–
W3 to test the data query in different number of subjects based on different
cohorts.

5.2 Hierarchical Clustering

Genomic, proteomic and metabolic measurements have contributed to molec-
ular profiling based patient stratification [24], such as identification of disease
subgroups and the prediction of responses of individual subjects. Biomedical
research is moving towards using high-throughput molecular profiling data to
improve clinical decision-making. One approach for building classifiers is to clas-
sify subjects based on their molecular profiles. Unsupervised clustering algo-
rithms can be utilised for stratification purposes.

Our benchmark applies three kinds of correlation methods used to generate
correlation matrices that are used by the hierarchical clustering algorithm in
tranSMART - the Pearson product-moment correlation, Spearmans rank-order
correlation, and Euclidean distance correlation. The test case below was carried
out using a large publicly available transcriptomic dataset taken from NCBI
GEO concerning leukemia (GEO accession GSE13204; Kohlmann et al., 2014
[25]). The dataset contains 2325 subjects’ gene expression data produced by
an Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. The correlation
matrix calculations could either be implemented on Hadoop, a popular and well
supported distributed data storage and computation framework that supports
MapReduce, or be implemented for distributed execution in R using Snowfall,
a parallel computing package for R scripts. In this benchmark, all W4–W6 and
the fastest one in W1–W3 are utilised to test the hierarchical clustering method.

6 Results

We performed the data loading test on marker selection and parallel tests on the
hierarchical clustering on 4 virtual machines in our IC Cloud implementation.
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The 4 VMs works on two physical machines with each 24 core and 64 GB memory.
Each physical machine hosts 2 VMs.

– Operating system: CentOS Linux 2.6.18-308.24.1.el5xen
– CPU: 144 cores (Intel(R) Xeon(R) CPU E5-2630 0 @ 2.60GHz)
– Memory: 384 GB, DDR3, 1066 MHz
– Disk array: 24 TB (Huawei, OceanStor S5500T)
– Virtual machine: 8 virtual CPU cores, 8 GB memory

6.1 Data Loading Test

We chose 5 cohorts (10 cases) of different data size and the whole dataset of
GSE24080 for a marker selection exercise, shown in Fig. 4. In the Java API test,
loading from ext4 file system outperforms all the other data sources. A widely
used vanilla R function scan greatly utilised for R the CSV file reading. RHBase
performs better than scan only in the first data size. In the following parallel R
test we choose ext4 as the data source.

6.2 R Parallel Framework Test

We utilised R function rdist() in package fields to calculate euclidean distance
matrices, function cor() to calculate the Pearson and Spearman correlation
matrices and function hclust() to cluster the correlation matrices. The result of
W4 and W5 to compare parallel frameworks, shown in Fig. 5(a), indicates that
when using the smaller MULTIMYEL dataset, MPI and MapReduce perform
slower than vanilla R. W5 suffers from slow data transmission. The result of
W7 and W8 to compare multi-thread data losing using different data sources,
shown in Fig. 5(b), indicates it is faster for MPICH2 to load data directly from
ext4 than HBase. W8 suffers from the long time RHBase data loading, as shown
in Fig. 4. The vanilla R computation (W2) performs best in the small dataset,
but does not scale up well in the large dataset. In the large dataset the better
parallel methods in Fig. 5(a) (W6) and (b) (W7) are utilised to compare to W4.
W6 and W7 outperformed W4. Though W6 computation time is a little longer
than W7, W6 outperform W7 due to the faster data preparation.

7 Discussion

As shown in Fig. 5, the parallel methods suffer from data communication over-
heads such as transferring data to each worker, worker management and collecting
data from the workers post-computation. But when size of the dataset increases,
the advantages of parallel methods overcome these overheads. In Fig. 5(c), W6 and
W7 have similar computation times, but W6 benefits from faster data preparation
using HDFS. We considered using RHadoop with HBase at the beginning, how-
ever RHBase demonstrates poor data loading performance and is consequently
much slower than the HBase Java API. RHBase does not perform well due to
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Fig. 4. Bar chart showing the performance evaluation in our data loading tests.

(a) Parallel R using single thread loading in   
small dataset.

(b) Parallel R using multi-thread loading in
small dataset.

(c) Parallel R in large datset.

Fig. 5. Bar chart showing the performance evaluation in our computation tests.
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the slow HBase Thrift [26] server. If RHBase could be implemented via rJava and
HBase Java API, it may perform much better. Also, the data loading tests should
introduce concurrent data loading tests before computation tests and full tests. As
shown in Fig. 5, though parallel approaches can improve the data loading, optimi-
sation of the matrix computation should not be neglected. R matrix calculations
use a pure array object to gain significant performance using the CPU cache. Par-
allel methods divide a big matrix into small pieces and executes calculations by
the low-speed R loop functions that cannot be pre-loaded in CPU cache due to
potential R branch sentences. This is the reason why parallel methods can only
perform 2 or 3 times faster than vanilla R when 32 CPU cores are utilised.

8 Conclusion

Big microarray data analysis using R is gaining significant focus as it’s data
access and computationally intensive workloads are in dire need to optimise their
performance. We believe a new data mining benchmark is required to thoroughly
analyse these analysis workflows and propose the most optimal workflow setup
for them. In this paper, we presented DSIMBench, a benchmark containing two
classic microarray analysis functions with six different parallel R workflows, and
evaluated the benchmark in IC Cloud testbed platform.
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Abstract. The number of mobile devices (e.g., smartphones, tablets, wearable
devices) is rapidly growing. In line with this trend, a massive amount of mobile
videos with metadata (e.g., geospatial properties), which are captured using the
sensors available on these devices, are being collected. Clearly, a computing
infrastructure is needed to store and manage this ever-growing large-scale video
dataset with its structured data. Meanwhile, cloud computing service providers
such as Amazon, Google and Microsoft allow users to lease computing
resources with varying combinations of computing resources such as disk,
network and CPU capacities. To effectively use these emerging cloud platforms
in support of mobile video applications, the application workflow and resources
required at each stage must be clearly defined. In this paper, we deploy a mobile
video application (dubbed MediaQ), which manages a large amount of user-
generated mobile videos, to Amazon EC2. We define a typical video upload
workflow consisting of three phases: (1) video transmission and archival,
(2) metadata insertion to database, and (3) video transcoding. While this
workflow has a heterogeneous load profile, we introduce a single metric, frames-
per-second, for video upload benchmarking and evaluation purposes on various
cloud server types. This single metric enables us to quantitatively compare main
system resources (disk, CPU, and network) with each other towards selecting
the right server types on cloud infrastructure for this workflow.

Keywords: Mobile video systems � Spatial databases � Cloud computing � Big
video data � Benchmarking

1 Introduction

With the recent advances in video technologies and mobile devices (e.g., smartphones,
tablets, wearable devices), massive amounts of user generated mobile videos are being
collected and stored. According to Cisco’s forecast [7], there will be over 10 billion
mobile devices by 2018 and 54 % of them will be smart devices, up from 21 % in
2013. Accordingly, mobile video will increase 14-fold between 2013 and 2018,
accounting for 69 % of total mobile data traffic by the end of the forecasted period.
Clearly, this vast amount of data brings a major scalability problem in any computing
infrastructure. On the other hand, cloud computing provides flexible resource
arrangements that can instantaneously scale up and down to accommodate varying
workloads. It is projected that the total economic impact of cloud technology could be
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$1.7 trillion to $6.2 trillion annually in 2025 [8]. Thus, the large IT service providers
such as Amazon, Google, and Microsoft, are ramping up cloud infrastructures.

One key question is how to evaluate the performance of mobile video applications
on these cloud infrastructures and select the appropriate set of resources for a given
application. Suppose a mobile user wants to upload a video to a cloud server along with
its metadata (e.g., geospatial properties of video such as camera location and viewing
direction), which are captured and extracted using the sensors embedded on the mobile
devices. Note that this kind of geospatial metadata enables advanced data management,
especially in very large-scale video repositories. For example, the performance of a
spatial query such as a range query, which can find all video frames that overlap with a
user-specified region [2], can be significantly enhanced using spatial metadata. When
we upload captured videos with metadata from mobile device to cloud, this upload
operation consists of three stages which require different computing system resources:
(1) network to transfer videos from mobile clients to the cloud servers (i.e., network
bandwidth), (2) database to insert metadata about the uploaded videos (i.e., database
transaction), and (3) video transcoding to change the resolution of uploaded videos to
use less storage and bandwidth (i.e., CPU processing power). These phases are exe-
cuted in sequence; therefore, inefficiency in any step slows down the performance of
video applications. A benchmark to evaluate such an application needs to identify the
system resources used at each stage, compare them with one another quantitatively and
spot which resource(s) becomes the bottleneck in the workflow of the application. Once
the bottlenecks are detected, the servers with the right specifications can be selected and
configured accordingly on cloud.

There exists a challenge in evaluating the performance of a large scale video
application on cloud because most of the benchmarking studies in the cloud computing
context focus on evaluating either the performance of Big Data processing frameworks
such as Hadoop and Hive [25, 26] or NoSQL data-stores rather than considering all
system resources a mobile video application requires. In particular, some benchmarks
are designed for social networking applications [17], online transaction processing
(OLTP) [9, 10, 19] and simple key-value based put-get operations [16, 18]. These
benchmarks only emphasize the impact of the database system on the overall perfor-
mance. In addition, a recent study measures the impact of virtualization on the net-
working performance in the data centers [6]. However, this study only measures packet
delays and TCP/UDP throughput, and packet loss among virtual machines.

In this paper, we define a single (cross-resource) metric to evaluate the uploading
workflow of video applications on cloud and present an end-to-end benchmark. In
particular, we use a throughput, the number of processed frames per second, as the
metric and compare the performance of system resources (e.g., network, disk, CPU)
with one another. To this extent, we deployed one exemplary mobile video application
called MediaQ, which we developed on the Amazon EC2 platform, and conducted
extensive experiments on various server types. Specifically, we used the smallest and
the largest instance at each server group (e.g., disk-optimized, CPU-optimized, general-
purpose) to identify the lower and upper performance bound. Our experimental results
show that CPU drastically slows down the entire system and becomes the bottleneck in
the overall performance. Our experiments also show that simply selecting high-end
CPU-optimized servers does not resolve the problem entirely. Therefore, we propose

58 A. Akdogan et al.



two techniques to enhance the CPU throughput: (1) reducing video quality and
(2) enabling multithreading. Our study serves as the first step towards understanding
the end-to-end performance characteristics of cloud resources in terms of resource-
demanding video applications.

The remainder of this paper is organized as follows. Section 2 provides the nec-
essary background. The benchmark design and experimental results are presented in
Sects. 3 and 4, respectively. Related work is discussed in Sect. 5. Subsequently Sect. 6
concludes the paper with the directions for future work.

2 Background

Before we present our results and findings, we briefly introduce a typical example of
resource intensive mobile video application (MediaQ) and available server types in the
data centers to prepare for the rest of the discussion.

2.1 MediaQ: Mobile Multimedia Management System

MediaQ [2, 3] is an online media management framework that includes functions to
collect, organize, search, and share user-generated mobile videos using automatically
tagged geospatial metadata. MediaQ consists of a MediaQ server and a mobile app for
smartphones and tablets using iOS and Android. User-generated-videos (UGV) can be
uploaded to the MediaQ server from users’ smartphones and they are then displayed
accurately on a map interface according to their automatically collected geo-tags and
other metadata information such as the recorded real time, camera location, and the
specific direction the camera was pointing. Media content can be collected in a casual
or on-demand manner. Logged in participants can post specific content requests that
will automatically generate an alert with other participants who are near a desired
content assignment location to entice them to record using their phones.

The schematic design of the MediaQ system is summarized in Fig. 1. Client-side
components are for user interaction, i.e., the Mobile App and the Web App. The
Mobile App is mainly for video capturing with sensed metadata and their uploading.
The Web App allows searching the videos and issuing spatial crowdsourcing task
requests to collect specific videos. Server-side components consist of Web Services,
Video Processing, GeoCrowd Engine, Query Processing, Account Management, and
Data Store. The Web Service is the interface between client-side and server-side
components. The Video Processing component performs transcoding of uploaded
videos so that they can be served in various players. At the same time, uploaded videos
are analyzed by the visual analytics module to extract extra information about their
content such as the number of people in a scene. We can plug in open source visual
analytics algorithms here to achieve more advanced analyses such as face recognition
among a small group of people such as a user’s family or friends. Automatic keyword
tagging is also performed at this stage in parallel to reduce the latency delay at the
server. Metadata (captured sensor data, extracted keywords, and results from visual
analytics) are stored separately from uploaded media content within the Data Store.
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Query Processing supports effective searching for video content using the metadata in
the database. Finally, task management for spatial crowdsourcing can be performed via
the GeoCrowd engine.

2.2 Cloud Server Type Classification

Recently the computing resources on cloud have become more granular since service
providers use virtualization techniques to manage physical servers and provide a wide
selection of server types optimized to fit different use cases [1]. These types comprise
varying combinations of CPU, memory, storage, and networking capacity and give users
the flexibility to choose an appropriate combination of resources. Specifically, server types
are clustered into six groups where each group consists of several options with varying
computational capabilities. Table 1 depicts a classification of the server groups presently
offered by the biggest three service providers along with the prices (dollars/hour) of the
smallest and the largest server at each group. As shown, the pricing varies widely across
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Fig. 1. Overall structure of MediaQ system

Table 1. Categorization of the server types with the prices (dollars/hour) of the smallest and the
largest servers at each group.

Type Amazon EC2 Microsoft Azure Google Compute

Price ($/hour) Price ($/hour) Price ($/hour)
Smallest Largest Smallest Largest Smallest Largest

General purpose (m) 0.07 0.56 0.02 0.72 0.077 1.232
Compute optimized
(c)

0.105 1.68 2.45 4.9 0.096 0.768

Memory optimized
(r)

0.175 2.8 0.33 1.32 0.18 1.44

Disk optimized (i) 0.853 6.82 – – – –

Micro (t) 0.02 0.044 – – 0.014 0.0385
GPU 0.65 0.65 – – – –
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the server types within each service provider. For example, the most expensive machine in
Microsoft Azure is 245 times more costly than the cheapest one (4.9/0.02). This ratio is 97
for Amazon EC2 and 102 for Google Compute Engine, respectively. Clearly, such a huge
discrepancy across the server types makes the selection of appropriate set of resources
critical in hosting an application on these cloud platforms.

3 Benchmark Design

In this section, we first explain our measurement methodology and then discuss the
metric we used in the experimental evaluation.

3.1 Methodology

There are three main components in the performance evaluation of large scale mobile
video systems such as MediaQ which requires different system resources: (1) network
to transfer videos from mobile clients to a cloud server (i.e., network bandwidth),
(2) database to insert metadata about the uploaded videos (i.e., database transaction),
and (3) video transcoding to change the resolution of uploaded videos which is a
common operation in video services (i.e., CPU processing power). Specifically, we
measure the upload performance which involves these three phases that are executed in
sequence. Upon recording a video, mobile clients retrieve metadata (i.e., GPS signals,
field of views, etc.) from the video. Subsequently, along with the video data, they
upload the metadata in JSON format to the server. Once a video is uploaded, the
metadata is inserted into the database and the video is transcoded, which is required to
either support different formats (e.g., MP4, WAV) or to reduce video quality due to
limited network bandwidth when being displayed later. Therefore, the videos are not
retrievable until transcoding task is completed, and hence overhead in any component
can degrade the overall performance of video applications. Our goal is to define a
single metric, examine these components individually using this metric, and detect
which phase slows down the system. To this extent, we deployed MediaQ server side
code on the EC2 servers running a video upload service implemented in PHP. The
service can receive multiple video files simultaneously. We then run multiple clients
which transfer large amount of videos concurrently using the upload service.

3.2 Metric

We introduce a single metric, processed-frames-per-second, to evaluate the perfor-
mance of three main components. For network performance, we straightforwardly
report the number of transferred frames per second. For database performance, we
report the number of frames inserted per second. Note that we do not insert the video
data but its spatio-temporal metadata to the database. The metadata are collected at
video capturing time by mobile devices and transferred to the server, thus the database
cost is only composed of inserting a set of metadata (i.e., per frame) from memory into
database. Similar to the standalone version of MediaQ, we selected MySQL database
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installed on EC2 servers. For transcoding performance, we use the number of trans-
coded frames per second. Once a video arrives at the server, MediaQ transcodes it
using FFMPEG [13], which is a widely used video solution. In order to measure the
maximum throughput, we perform a stress test on the cloud server by generating a large
amount of real videos and uploading them to the server simultaneously and continu-
ously for a significant amount of time.

4 Performance Evaluation

In this section, we first present an overall cost analysis of the three components in the
workflow and show how the server types impact the performance. Subsequently, we
evaluate transcoding and database components in more detail, and finally present
performance-cost results.

4.1 Overall Cost Analysis

In this set of experiments, we used the smallest servers on Amazon EC2 in four
instance families: general purpose (m), compute-optimized (c), memory-optimized (r)
and disk-optimized (i) and measured the throughputs (See Table 2 for hardware
specifications of Amazon EC2). To fully utilize multi-core CPUs available at the
servers, we enabled multi-threading on database and transcoding parts. Specifically, we
first run the experiments using one thread (T = 1), and then increase the number of
threads T by one to run the experiment again. The point where throughput cannot be
improved further is the maximum throughput that the server can achieve. Note that
there is no index built on the metadata table in the database and we take advantage of
bulk insert, where 1,000 rows are written into disk as one transaction which reduces the
disk I/O significantly. For transcoding tasks, we reduce the video resolution from
960 × 540 to 480 × 270.

Figure 2a illustrates the throughput comparison where a single large video with
24 fps (frame per second) was uploaded to the server. We observed that other than
general purpose instance, the performance difference between the optimized servers
(c, r, i) is not significant even though the prices vary widely such that i-small is 8 times

Table 2. Hardware specifications of the smallest and largest servers of 4 server types on EC2.

Type Memory CPU Disk Network bandwidth

m-small 3.75 GB 1 VCPU 4 GB SSD No info.
c-small 3.75 GB 2 VCPUs 32 GB SSD No info.
r-small 15.25 GB 2 VCPUs 32 GB SSD No info.
i-small 30.5 GB 4 vCPUs 800 GB SSD No info.
m-large 30 GB 8 VCPU 160 GB SSD No info.
c- large 60 GB 32 VCPUs 640 GB SSD No info.
r- large 244 GB 32 VCPUs 2 × 320 GB SSD 10 Gigabit Ethernet
i- large 244 GB 32 vCPUs 8 × 800 GB SSD 10 Gigabit Ethernet
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more expensive than c-small. As shown, database can handle almost two and three
orders of magnitude more frames than network and transcoding, respectively.

Fully utilizing the network bandwidth, real systems can handle concurrent video
uploads to the server; therefore, in the next experiments, we did a stress test where
multiple videos were uploaded simultaneously until the network bandwidth was sat-
urated. As illustrated in Fig. 2b, network throughput increases significantly; however,
database and transcoding remain almost constant. This is because we already enabled
bulk insert and multi-threading to ensure the maximum performance even in the case of
a single video upload. Another observation is that transcoding, which shows the lowest
throughput, becomes a major bottleneck in the workflow.

The frames per second (fps) value in video recording has a direct impact on the
performance in our experiments. However, database throughput is independent of fps in
our target application MediaQ. This is because, fps value ranges from 15 to 120 in new
generation smartphone cameras; however, regardless of fps, we select one metadata per
each second using a sampling technique [3] and store it for all the frames in the
corresponding second. This is a real-world phenomenon since metadata includes
geospatial attributes such as the camera location and viewing direction which do not
change significantly within a second. This approach widens the gap between the
throughput of database and those of other components even further. Figure 3a depicts a
comparison of the system resources under various fps values on a c-small instance,
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where the metric is total length of videos (minute) that each component can process
within a unit time (second). For this experiment, we only changed the fps values [14] of
videos and kept the original resolution. As shown, database throughput remains con-
stant as fps increases while others diminish and the percentage of decrease over
fps = 18 is listed in Fig. 3b. For higher frame rates, the length of video that network can
handle decreases since the size of the videos grow and saturate the fixed bandwidth
capacity. Similarly, transcoding can process a shorter amount of video per second as fps
increases since its throughput on a specific server is fixed. In conclusion, these pre-
liminary experiments verify that transcoding slows down the workflow dramatically;
therefore, in the following section we propose several approaches to enhance this piece
and measure the impact of each proposed technique.

4.2 Transcoding Performance

It is crucial to improve the transcoding performance because newly uploaded videos are
not retrievable for use until their transcoding tasks are completed. That is the main
reason behind the delay between the uploading and viewing time in many video-based
applications. There are two ways to make transcoding faster: (1) enabling multi-
threading, and (2) reducing the size of the output file, which results in a lower video
quality. We explain these two approaches in turn.

Multi-threading. One natural way to improve the performance is utilizing multi-core
CPUs available in the servers and scale-up. There are two techniques to increase the
throughput on cloud. First, running a multi-threaded ffmpeg process (MT) on a single
video and decrease the total amount of time to transcode it. Second, running a single-
threaded ffmpeg processes in parallel on multiple videos (PST). In the following set of
experiments, we use the largest compute-optimized (c3.xlarge) server with 32 vCPU’s.

Figure 4a illustrates the effect of varying number of threads while transcoding a
video. In this specific experiment, we used a 230 MB video in AVI format as input and
reduced the resolution from 960 × 540 to 480 × 270 in two different video output types,
MP4 and AVI. As shown, the total time does not decrease linearly as the number of
threads increases. As stated in Amdahl’s Law [6], a parallel algorithm is as fast as its
sequential, non-parallelizable portion which dominates the total execution time. For
ffmpeg, after 4 threads the performance gain becomes insignificant no matter how
many CPUs are used, which verifies that ffmpeg does not scale up.

Another way to increase throughput is running single-thread ffmpeg processes in
parallel where each thread handles a single video. Figure 4b depicts the throughput
performance of these two techniques. Since ffmpeg does not scale well as the number of
threads increases, the throughput remains almost constant. However, throughput
increases almost linearly for PST until all 32 CPUs are fully utilized. That is because
while MT technique suffers from low parallelism, PST can utilize available CPUs
better. After the CPUs are saturated, the performance goes down for both MT and PST
due to resource contention across the threads.

Reducing Video Quality. In this set of experiment, we investigate the impact of
resolution and type of the outputted video on the performance. Table 3 presents the
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transcoding throughputs for converting a video with dimensions 960 × 540 to smaller
resolutions. The percentage of increase in the throughput is listed as well for clarity of
the presentation. As expected, the result shows that throughput increases significantly
as the resolution decreases. However, the percentage improvement diminishes when
the output video resolution becomes too smaller (i.e., 60 × 32) because loading the
input video, frame by frame, is a constant cost which largely contributes to the total
transcoding cost. In addition, we also observe that the results are similar for different
output formats (mp4 and avi).

4.3 Database Performance

In this section, we measure the database throughput on both the smallest and largest
instances at each server group to show the lower and upper performance bounds. In
addition, we investigate the impact of indexing on throughput and test if it changes the
best performer server. Throughput is measured using iterative multi-threading
approach. First, we run the experiment with a single thread and repeat the experiment
increase the number of threads by one until no throughput improvement is observed.
Then, we report the maximum throughput as the result.

Metadata information is stored in video_metadata database table which consists of
13 columns where average length of a row is 319 bytes. Figure 5a and b illustrate the
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Table 3. Transcoding throughput for mp4 and avi types with various output resolutions. The
input video is in.m4v format with 960 × 540 resolution.

Output resolution MP4 AVI
Throughput % improvement Throughput % improvement

480 × 270 623 – 626 –

240 × 136 842 35 % 839 34 %
120 × 68 980 57 % 982 57 %
60 × 34 1038 66 % 1048 67 %
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effect of server types on the database throughput where the smallest and largest
instances in general purpose (m), compute-optimized (c), memory-optimized (r) and
disk-optimized (i) are clustered together. As shown in Fig. 5a, where there is no index
on video_metadata table, the smallest disk-optimized server (i) slightly outperforms
others. With the largest instances, compute-optimized (c) server provides slightly better
performance than others. This is because while small servers contain 2 to 4 CPUs, large
ones have 8 to 32 CPUs and compute-optimized machines might be better in managing
concurrent threads. Note that, even though metadata insertion is an I/O-intensive task,
disk-optimized machines do not expressively outperform other instances. The reason is
that video data is mostly append-only, where the updates to the dataset are rare after the
insertion. Disk-optimized instances are tuned to provide fast random I/O; however, in
append-only datasets random access is not much used. Another observation is that
optimized machines perform at least 2.5 times better than the general purpose one.

Effect of Indexing. To investigate how indexing influences throughput at each server,
we built 2 indices on video_metadata table. Specifically, a B-tree index on the time
field and hash index on the keywords fields, which is a good indexing strategy that
allows efficient range search over the time and effective equality search on the key-
words associated with the videos. As depicted in Fig. 5b, for both smallest and largest
server groups, compute-optimized instances show better performance unlike the no-
index scenario. The reason is that indices are kept in memory and index update is a
CPU intensive task. Another observation is that indexing degrades the performance
considerably, where throughput approximately drops to 1/3 of the no-index scenario
due to extra high index maintenance cost.

4.4 Performance-Cost Analysis

In this section, we discuss how the performance-to-price ratios of different server types.
Figure 6 illustrates the number of frames per dollar that each component can process
using the smallest servers in each server group. In this specific example, we uploaded
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multiple videos with 24 fps to the servers and enabled multithreading mode both on
database insertion and transcoding. Note that performance-price ratio is sensitive to the
total amount of data we upload since more nodes need to be employed when the
storage capacity of a single server is exceeded. In Fig. 6a, we present the result for
4 GB of data which can fit all server types (See Table 2 for server specifications). As
shown in Fig. 6a, compute-optimized server (c-small) outperforms other server types in
all aspects. In addition, disk-optimized server (i-small) is not cost efficient for video
uploads since there is not much need for random disk access as discussed in the
previous section and the data size is small. In Fig. 6b, we present the results for 32 GB
of data which 8 times exceeds the m-small node. In this scenario, we need allocate 8
small servers; therefore, cost efficiency dramatically drops for m-small server.

5 Related Work

With the increasing popularity of Big Data processing frameworks, several benchmarks
have been proposed to evaluate various offline operations (e.g., grep, sort, aggregation,
etc.) on popular frameworks such as Hadoop and Hive [25, 26]. Meanwhile, a number
of benchmarks have been developed to measure the scalability of NoSQL and
NewSQL databases. These benchmarks only emphasize the impact of the database
system on the overall performance rather than considering all the resources an end-to-
end mobile video application requires. In particular, some benchmarks are designed for
social networking applications [17], online transaction processing (OLTP) [9, 10, 19]
and simple key-value based put-get operations, which are heavily used in web appli-
cations [16, 18]. In addition, there are a few recent studies that measure the impact of
virtualization on the networking performance in the data centers [6, 20]. However,
these studies only measure packet delays and TCP/UDP throughput, and packet loss
among virtual machines. Similar to our approach, CloudCmp [21] measures the per-
formance of elastic computing and persistent storage services offered by cloud service
providers. However, CloudCmp separates computing and storage instances, and
employs different metrics for performance evaluation and cross-platform comparisons.

1

10

100

1,000

10,000

100,000

1,000,000

m-small c-small r-small i-small

Network Database Transcoding
#

fr
am

es
 / 

do
lla

r

a) 4GB of data

1

10

100

1000

10000

100000

1000000

m-small c-small r-small i-small

Network Database Transcoding

#
fr

am
es

 / 
do

lla
r

b) 32GB of data

Fig. 6. Number of frames that can be processed for each dollar spent (log-scale).

A Benchmark to Evaluate Mobile Video Upload 67



Moreover, while we focus on multimedia applications CloudCmp covers a wide range
of web applications where the workloads are composed of put and get requests. In
addition, a few measurement techniques have been studied to assess the energy con-
sumption of cloud platforms [12].

In the multimedia context, several benchmarking approaches have been proposed
as well. ALPBench [24] focuses on multi-core architecture, and measures the thread
and instruction-level parallelism of complex media applications such as speech and
face recognition. Also traditional benchmark suites such as SPEC [22] and MiBench
[21] are not adequate to characterize the performance of all system resources used in
the workflow from mobile clients to cloud servers.

6 Conclusion and Future Directions

In this paper, we proposed a single frame-based metric which can measure the per-
formance of three main system components on cloud infrastructure for a large-scale
mobile video application, especially for uploading videos from mobile clients to cloud
servers. To this extent, we first deployed our mobile video management system, Me-
diaQ, to Amazon EC2, separated video upload workflow into three phases and iden-
tified the system resources used at each stage. Using our metric, we spotted CPU as the
main bottleneck that slows down the entire system performance. Subsequently, we
proposed several approaches to enhance CPU throughput and concluded that running
multiple single-threaded transcoding processes increases throughput linearly with the
number of CPUs. In addition, to benchmark various server types available on EC2,
we conducted our experiments on four different server families, specifically, on the
smallest and the largest instance of servers to identify the lower and upper performance
bound. Our experimental results show that compute-optimized machines provide the
best performance for a resource intensive mobile video application.

We believe that our approach will help users to make more informed decisions in
choosing server types while deploying mobile video applications to cloud infrastruc-
tures. In addition, such a cross-resource metric can be used to calculate performance-to-
price ratios. As a next step, we plan to extend our frame-based metric to measure:
(1) mobile devices’ computing and storage capabilities, and (2) other server side
processes such as query processing (e.g., range query). Moreover, we also would like
to partition our dataset and scale out to multiple servers.
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Abstract. Databases serving OLTP operations generated by cloud applications
have been widely researched and deployed nowadays. Such cloud serving
databases like BigTable, HBase, Cassandra, Azure and many others are
designed to handle a large number of concurrent requests performed on the
cloud end. Such systems can elastically scale out to thousands of commodity
hardware by using a shared nothing distributed architecture. This implies a
strong need of data replication to guarantee service availability and data access
performance. Data replication can improve system availability by redirecting
operations against failed data blocks to their replicas and improve performance
by rebalancing load across multiple replicas. However, according to the PA-
CELC model, as soon as a distributed database replicates data, another tradeoff
between consistency and latency arises. This tradeoff motivates us to figure out
how the latency changes when we adjust the replication factor and the consis-
tency level. The replication factor determines how many replicas a data block
should maintain, and the consistency level specifies how to deal with read and
write requests performed on replicas. We use YCSB to conduct several
benchmarking efforts to do this job. We report benchmark results for two widely
used systems: HBase and Cassandra.

Keywords: Database � Replication � Consistency � Benchmark � Hbase �
Cassandra � YCSB

1 Introduction

In recent years, it has become a trend to adopt cloud computing in the IT industry. This
trend is driven by the rapid development of internet-based services such as social
network, online shopping and web search engines. These cloud based systems need to
deal with terabytes and even larger amounts of data, as well as keep the cloud service
high reliable and available for millions of users. Such scenarios require cloud serving
databases to be able to handle huge number of concurrent transaction timely (avail-
ability) and to increase their computing capacity during running time (scalability and
elasticity). It is difficult for traditional databases to do such jobs, which motivates the
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development of new cloud serving databases to satisfy the above requirements.
BigTable [1], developed by Google to support cloud data serving in the context of Big
Data era, is the first of such databases, and it has inspired a variety of similar systems
such as HBase [2] and Cassandra [3]. These systems are usually based on key-value
stores, adopt a shared nothing distributed framework and therefore can scale out to
thousands of commodity hardware at running time.

However, these new type of databases encounter the CAP [4] tradeoff: According
to the CAP theorem, it is impossible for a distributed computer system to simulta-
neously provide all the three following guarantees: availability, consistency and
partition tolerance. In practice, cloud serving databases are usually deployed on clusters
consisting of thousands of commodity machines. In such clusters, network partitions
are unavoidable: Failures of commodity hardware are very common and the update
operations can barely be simultaneously performed on different nodes too, which
mimics partitions. For such reasons, cloud serving databases must make tradeoff
between availability and consistency. In order to keep high availability, most cloud
serving databases choose a weaker consistency mechanism than the ACID transactions
in traditional databases.

Also due to the partition problem, cloud serving databases usually use data repli-
cation to guarantee service availability and data access performance. Data replication
can improve the system availability by redirecting operations against failed data blocks
to their replicas, and improve data access performance by rebalancing load across
multiple replicas. However, according to the PACELC [5] model, as soon as a dis-
tributed database replicates data, another tradeoff between consistency and latency
arises. This tradeoff motivates us to figure out how the latency changes when we adjust
the replication factor and the consistency level:

• Replication factor: The replication factor determine how many replicas a data block
should maintain in a specific scenario? Replicas can be used for failover and to
spread the load to them, which may imply that the higher replication factor, the
better load balancing and the shorter request latency. However, such an assumption
is questionable before we do some performance comparisons by changing the
replication factor of the same cluster. Besides, the storage capacity are not unlim-
ited. When we use a replication factor of n, the actual space occupied by the
database is n times the size of the records it originally intends to store. So, we
should carefully make decisions on the replication factor.

• Consistency level: How to process read and write requests performed on replicas?
For example, writes are synchronously written to all of the replicas in HBase to
keep all replicas up to date, which may lead to high write latency. Asynchronously
writing brings lower latency, however, in which replicas may be outdate.

We need to benchmark these tradeoffs to give answers to the above questions. In
this work, we elaborate the benchmark methodology and show some results of this
benchmarking effort. We report the performance results for two databases: HBase and
Cassandra. We focus on the changes in request latency and throughput when the
strategy of replication and consistency changes.

The paper is organized as follows. Section 2 provides a brief introduction to the
strategy designs on replication and consistency in HBase and Cassandra. Section 3
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discusses the methodology behind this benchmarking effort. Details about the bench-
mark and the testbed are also included in this section. Benchmark results are illustrated
with corresponding analyses in Sect. 4. Section 5 reviews several related work on
benchmarking efforts in this filed. We look to the future work in Sect. 6 and make
conclusions in Sect. 7.

2 Database Design

This section investigates how each of HBase and Cassandra has been designed on data
replication and how they try to keep consistency between replicas.

HBase provides strong consistency for both read and write. The clients cannot read
inconsistent records until the inconsistency is fixed [6]. HBase doesn’t write updates to
disk instantly, instead, it saves updates in a write-ahead-log (WAL) stored in hard drive
and then does in-memory data replication across different nodes, which increases the
write throughput. In-memory files are flushed into HDFS when the size of them reaches
the upper limit. HBase uses HDFS to configure the replication factor and save replicas.1

Apparently, HBase prefer consistency to availability when it makes the CAP tradeoff.
Unlike HBase, Cassandra supports a tunable consistency level. There are three well

known consistency levels in Cassandra: level ONE, level ALL and level QUORUM.
Literally, the names represent the number of replicas on which the read/write must
succeed before response to the client. The consistency level for read and write can be
set separately in Cassandra. Reasonable choices on consistency are listed below:

• ONE: This level is the default setting in Cassandra. It returns a response from one
replica for both read and write. For read, the replicas may not always have the most
recent write, which means that you have to tolerate reading stale data. For write, the
operation should be successfully performed on at least one replica. This strategy
provides high level of availability and low level of consistency. Apparently, Cas-
sandra prefers availability to consistency by default.

• Write ALL: This level writes to all replicas and read from one of them. A write will
fail if a replica doesn’t make a response. This level provides high level of consis-
tency and read availability, but low level of write availability.

• QUORUM: For write, the operation must be successfully performed on more than
half of replicas. For read, this level returns the record with the most recent time-
stamp after more than half of replicas have responded. This strategy provides high
level of consistency and strong availability.

Similar to HBase, Cassandra updates are first written to a commit log stored on hard
drive and then to an in-memory table called memtable. Memtables are periodically
written to replicas stored on the disk. Cassandra determines the responsible replicas in
fixed order when handling requests. The first replica, also called main replica, is always
performed, no matter which consistency level is used.

1 HBase also supports replicating data across datacenter for disaster recovery purpose only.
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3 Benchmarking Replication and Consistency

We conduct several benchmarking efforts to give performance results for different
replication/consistency strategies. These results are obtained through different work-
loads under specified system stress level. This work is based on YCSB [7]: Yahoo!
Cloud Serving Benchmark. YCSB has become the de facto industry standard bench-
mark for cloud serving databases since its release. The core workloads in YCSB are
sets of read/insert/update/scan operations mixed in different proportions. The operated
records are selected use some distributions. Such workloads are apt to test the tradeoff
strategies in different scenarios. What’s more, YCSB is good at extensibility:
Researchers can implement its interfaces to put new databases into this benchmark. To
date, NoSQL databases like HBase, Cassandra, PNUTS [8], Voldemort [9] and many
others have been benchmarked using YCSB.

3.1 Benchmark Methodology

In this work, all the tests are conducted on the same testbed to obtain comparative
performance of databases using different replication and consistency strategies. In order
to get credible and reasonable test results, several additional considerations should be
carefully taken:

• The number of test threads: The number of client test threads of YCSB should be
carefully chosen to prevent side effects of latencies caused by clients. If we use a
heavy benchmark workload but a small number of test threads, each thread will be
burdened with too many requests, as a result of which, the request latency rises for
non-database-related reasons. The right number of client test threads can be set by
analyzing the average system load of the client.

• The number of records: The number of records should be large enough to avoid a
local trap. The local trap means that most of the operations are handled by only a few
cluster nodes, as a result of which, we cannot obtain the overall performance of the
cluster. This issue usually happens when there are not enough test data. The small
number of records will also cause the fit-in-memory problem: The majority of the test
data is cached in memory, as a result of which, benchmarking read performance
become meaningless. The proper number of records should ensure that the test
operations can be performed with disk access on the whole database cluster evenly.

• The number of operations: The number of operations should be large enough to
generate substantial and stable load across all nodes evenly and make sure that the
test can run for a long time to overcome side effects of cold start and memory
garbage collect.

3.2 Benchmark Types

What make a benchmarking effort reasonable, reliable and meaningful? The reason-
ability and reliability of a benchmarking effort can be guaranteed by including some
micro tests, because univariate results from such tests can be used to predict and
explain results of comprehensive tests. The meaningfulness of a benchmarking effort
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can be archived by doing some stress tests, for stress tests can give an overview of the
performance of the database system and are more similar to reality. Therefore, we
introduce the following benchmarks into this effort:

• Micro benchmark for replication: This benchmark uses different replication strat-
egies to compare the throughput and latency of databases. In order to get the most
basic aspects of the performance, this benchmark uses workloads consisting of
atomic operations. In order to reduce the latency variance introduced by the various
size of transaction data, the test data consists of records of tiny size.

• Stress benchmark for replication: This benchmark uses different replication strat-
egies to compares the throughput and latency of databases running at full speed.
This benchmark can present an overview of the system performance and is more
similar to reality for its scenario-based workloads.

• Stress benchmark for consistency: This benchmark uses different consistency levels
to check out the changes in database throughputs. The workload of this benchmark
is the same as that of the stress benchmark for replication.

3.3 Benchmark Workloads

As we mentioned above, the workloads in micro tests and stress tests are different. In
micro tests, the test data consists of 1 billion records of 1 byte, and the workloads are
basic insert/read/update/scan operations. In stress tests, the test data consists of 100
million records of 1000 bytes, the target records are chosen using some distributions,
and the workloads are borrowed from YCSB with adjustments on the insert/read/
update/scan ratio to simulate the real life workloads of different scenarios:

• Read mostly: This workload consists of reads mixed with a small portion of writes.
This workload represents real life applications like reading on social website mixed
with remarking actions.

• Read latest: This workload reads the newest updated records. The typical usage
scenario is reading feeds on Twitter, Google plus etc.

• Read & update: This workload concerns reads and updates equally. The typical real
life representative is the online shopping cart: People review the cart and change
their choices.

• Read-modify-write: This workload reads some records to modify, then write them
back. A typical real life usage is that people often review and change their profiles
on websites.

• Scan short range: This workload retrieves records satisfying certain conditions.
A typical application scenario is that people view news retrieved by recommended
trends or topics on the social media websites.

We conclude the benchmark workloads used in the stress benchmark in Table 1.

3.4 Testbed

We use 16 server-class machines in the same rack as the testbed, which can reduce
inferences from the partition problem (a.k.a. the P in the CAP theorem). Each machine
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owns two Xeon L5640 64 bit processers (each processer owns 6 cores and each core
owns 2 threads), 32 GB of RAM, one hard drive and gigabit ethernet connection. In
HBase tests, we configure 15 nodes as HRegion servers, leaving the last node serving
as both HMaster and the YCSB client. In Cassandra tests, we also use 15 nodes to do
the server job, leaving one machine to emit the test requests. We run Cassandra 2.0.8
and HBase 0.96.1.1 with recommended configurations in these tests. In order to make
YCSB compatible with Cassandra 2.0.8 and HBase 0.96.1.1, we compile YCSB from
the latest source code with modifications on library dependencies.

4 Experimental Results

The experimental results are shown and analyzed separately for different benchmarks.

4.1 Micro Benchmark for Replication

In this benchmark, we keep the load of the testbed in unsaturated state by limiting the
number of concurrence requests, and conduct six rounds of testing. In each round,
the replication factor is increased by one, and the update/read/insert/scan test is run one
after another. Our expectations on changes in latency when the replication factor
increases are:

Table 1. Workloads of the stress benchmarks for replication and consistency

Workload Typical usage Operations Records
distribution

Read mostly Online tagging Read/update ratio: 95/5 Zipfian
Read latest Feeds reading Read/insert ratio: 80/20 Latest
Read & update Online shopping

cart
Read/update ratio: 50/50 Zipfian

Read-modify-
write

User profile Read/read-modify-write
ratio: 50/50

Zipfian

Scan short
ranges

Topic retrieving Scan/insert ratio: 95/5 Zipfian

Fig. 1. Results of the micro benchmark for replication in HBase and Cassandra
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• The read/scan latency changes slightly in both HBase and Cassandra tests. This is
because no matter how many replicas exist, either HBase or Cassandra can only
read from the main replica when using the default consistency strategy.

• The insert/update latency becomes higher in HBase tests. This is because HBase
need to guarantee writing to all replicas successfully, and the write overhead
become heavier when the replication factor increases.

• The insert/update latency changes slightly in Cassandra tests. This is because no
matter how many replicas exist, Cassandra only need to guarantee writing to one
replica successfully when using the default consistency strategy.

The experimental results are illustrated in Fig. 1, from which we can learn:

• Both the curve of read/scan latency in HBase tests and the curve of insert/update
latency in Cassandra tests fluctuate smoothly, which is in line with the expectations.

• There is no significant change in the insert/update latency in HBase tests, which do
not meet the expectation. The possible reason for such results is that when HBase
writes, it do in-memory data replication instead of writing to replicas on hard drive
instantly, which significantly reduce the write overhead.

• The read/scan latency in Cassandra tests increases rapidly as the replication factor is
higher than 3, which is beyond the expectation. Such a result may be due to the
extra burden introduced by the read repair process which issues writes to the
out-of-date replicas in background to ensure that frequently-read data remains

Fig. 2. Results of the stress benchmark for replication in HBase and Cassandra
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consistent. Cassandra enables this feature by default [10], and the read-after-write
test pipeline can trigger the read repair processes. When the replication factor
increases, the burden of read repair continue to increase, which results in higher
read latencies.

4.2 Stress Benchmark for Replication

In this benchmark, we use a constant number of test threads and a variety of target
throughputs to detect the peak runtime throughput and the corresponding latency of
databases. We conduct six rounds of testing. In each round, the replication factor is
increased by one, and the read latest/scan short ranges/read mostly/read-modify-write/
read & update test is run one after another. Our expectations on changes in latency and
throughput when the replication factor increases are:

• The runtime throughput is inverted-related with the latency in all tests. This is
because when we use stress workloads to exam the upper limit of processing
capacity, the latency depends on the capacity of the database cluster. The
YCSB client will not emits a new request until it receives a response for the prior
request— higher latencies will slow down the request emitting rate and then lead to
lower runtime throughputs.

Fig. 3. Results of the stress benchmark for consistency in Cassandra
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• The latency in all HBase tests changes insignificantly, which can be derived from
the results of the HBase micro tests: All the five stress workloads simply consist of
basic read/write operations. If the read/write latency in micro tests changes slightly,
there is no reason for dramatic changes in latency in the stress tests.

• The latency in all Cassandra tests increases significantly, which can be derived from
the changes of the read/scan latency in the Cassandra micro tests, because in all the
stress workloads, at least 50 percent of operations are reads.

The throughput/latency versus replication factor results for HBase and Cassandra for
the five stress workloads are illustrated in Fig. 2, from which we can learn that all the
test results are in line with the expectations.

4.3 Stress Benchmark for Consistency

In this benchmark, we use a replication factor of 3, a constant number of test threads
and a variety of target throughputs to detect the runtime throughput of Cassandra.
There is no convenient method to adjust the default consistency strategy of HBase,
hence we can only use Cassandra to do this job. Cassandra allows specifying the
consistency level in request time, which makes the tests feasible. We conduct three
rounds of testing, the consistency levels of which are respectively ONE, write ALL and
QUORUM, and the read latest/scan short ranges/read mostly/read-modify-write/read &
update test is run one after another in each round. Our expectations on changes in
runtime throughput when the consistency level changes are:

• In the read latest test, level ONE performs worst, and level QUORUM and level
ALL perform closely better. This is because the read repair process is frequently
triggered in the read latest test. In this test, reads are intensively performed on new
written records. Each write produces two inconsistent replicas in level ONE and
almost zero inconsistent replica in level QUORUM/ALL. Apparently, more
inconsistent replicas lead to heavier overhead of the read repair process.

• In the scan short ranges test, all the three levels perform closely. This is because
overhead of the read repair process dramatically declined in this test, for we run
this test after the read latest test which has repaired the majority of inconsistency.
Moreover, there are only reads in this test, and in the perspective of YCSB client,
reading from which of the replicas in the same rack is indifferently, as a result of
which, the read latency can hardly be affected by the number of replicas too.

• In other tests, level ONE, level QUORUM and level ALL perform best, almost
worst and worst respectively. This is because the write overhead becomes heavier
when using a higher consistency level.

Figure 3 presents the runtime throughput versus target throughput with different con-
sistency levels. We observe that all the expectations are confirmed by the experiment
results with narrow biases. What’s more, the bigger write proportion, the more obvious
performance difference in these tests.
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5 Related Work

It is complicated to conduct benchmarking efforts in the cloud serving database field:
There are many tradeoffs need to think about when we evaluate a specific aspect of
cloud serving databases. However, the YCSB framework brought a relatively easy way
to do apple-to-apple comparisons between cloud serving databases, and has inspired
some other benchmark tools in this field. The BigDataBench [11, 12], for example, has
adopted YCSB as one of its components with extensions like the new metric on energy
consumption.

With the help of YCSB, several meaningful efforts have been done in this filed.
Pokluda et al. [13] benchmarked the availability of the failover characteristics of two
representative systems: Cassandra and Voldemort. They used YCSB to monitor the
throughput and latency of individual requests during a node failed and came back
online, and found that transaction latency increased slightly while the node was down
and that recovery. Bermbach et al. [14] evaluated the effects of geo-distributed replicas
on the consistency of two cloud serving database: Cassandra and MongoDB. They used
YCSB to generate workloads and Amazon EC2 to deploy these two databases. Rep-
licas were distributed in same/different regions (Western Europe, northern California
and Singapore) to compare the degree of inconsistency.

However, there are few efforts like this work to benchmark the replication factor.

6 Future Work

In this work, we specify the stress level using different target throughputs, which is
inaccurate and lack of versatility for the comparison between different clusters. Another
way to specify the stress level is using the service level agreement, SLA. An SLA is
commonly specified like this: At least p percentage of requests get response within
l latency during a period of time t. Using the SLA, We can keep user experiences at
same level to compare throughputs of different systems. However, it is hard to specify
an SLA using YCSB. We need to extend it.

There is cold start problem when we run benchmark workloads using YCSB, which
leads to inaccurate results in latency tests. We have to run the tests for a long time, and
repeat the tests several times to overcome this flaw. Consequently, the whole running
time become long, and the benchmarking effort become inefficient in energy consump-
tion. We need to optimize the method of test and result measurement used in YCSB.

Furthermore, this work has shown that a single rack of nodes cannot form a
convincing testbed for more complicated tests such as geo-read latency test, partition
test and availability test. We need to build a geo-distributed testbed to conduct such
tests.

7 Conclusion

In this paper, we present our benchmarking effort on the replication and consistency
strategies used in two cloud serving databases: HBase and Cassandra. This work is
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motivated by the tradeoff between latency, consistency and data replication. This
benchmarking effort consists of three parts: Firstly, we use the atomic read/insert/
update/scan operations to do micro tests to fetch the basic performance aspects of the
target database. This part makes the foundation of further comprehensive benchmarks.
Secondly, we change the replication factor to compare the performance of cloud
serving databases. This part sketches an overview of the whole system performance.
Finally, we use different consistency levels to compare the runtime throughputs. This
part figures out the proper consistency strategy for some scenarios. We have observed
some interesting benchmark results from a single-rack testbed:

• More replicas can hardly accelerate the read/write operation (in HBase), and even
harm the read performance (In Cassandra using low level of consistency).

• The write latency dramatically increases when using higher level of consistency in
Cassandra.

• High consistency level is not suitable for read latest and write heavy scenarios in
Cassandra.

These results can give answers to the questions we mentioned in the introduction part
within a SINGLE-RACK scope of validity.

In this effort, we also find the testbed is not suitable for read latency tests, and the
benchmark tool has some efficiency affecting flaws. We will optimize the testbed and
benchmark tools to conduct more rational and stable tests in the future.
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Abstract. As the amount of data explodes rapidly, more and more orga-
nizations tend to use data centers to make effective decisions and gain
a competitive edge. Big data applications have gradually dominated the
data centers workloads, and hence it has been increasingly important to
understand their behaviour in order to further improve the performance
of data centers. Due to the constantly increased gap between I/O devices
and CPUs, I/O performance dominates the overall system performance,
so characterizing I/O behaviour of big data workloads is important and
imperative.

In this paper, we select four typical big data workloads in broader areas
from the BigDataBench which is a big data benchmark suite from inter-
net services. They are Aggregation, TeraSort, Kmeans and PageRank.
We conduct detailed deep analysis of their I/O characteristics, including
disk read/write bandwidth, I/O devices utilization, average waiting time
of I/O requests, and average size of I/O requests, which act as a guide
to design highperformance, low-power and cost-aware big data storage
systems.

1 Introduction

In recent years, big data workloads [20] are more and more popular and play an
important role in enterprises business. There are some popular and typical appli-
cations, such as TeraSort, SQL operations, PageRank and K-means. Specifically,
TeraSort is widely used for page or document ranking; SQL operations, such as
join, aggregation and select, are used for log analysis and information extraction;
PageRank is widely used in search engine field; and Kmeans is usually used as
electronic commerce algorithm.

These big data workloads run in data centers, and their performance is crit-
ical. The factors which affect their performance include: algorithms, hardware
including node, interconnection and storage, and software such as programming
model and file systems. This is the reason for why several efforts have been
made to analyse the impact of these factors on the systems [17,20]. However,
data access to persistent storage usually accounts for a large part of applica-
tion time because of the ever-increasing performance gap between CPU and I/O
devices.
c© Springer International Publishing Switzerland 2014
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With the rapid growth of data volume in many enterprises and a strong desire
for processing and storing data efficiently, a new generation of big data storage
system is urgently required. In order to achieve this goal, a deep understanding
of big data workloads present in data centers is necessary to guide the big data
systems design and tuning.

Some studies have been conducted to explore the computing characteristics
of big data workloads [16,18], meanwhile, lots of work also have been done to
depict the storage I/O characteristics of enterprise storages [5,9]. However, to
the best of our knowledge, none of the existing research has understood the
I/O characteristics of big data workloads, which is much more important in the
current big data era. So understanding the characteristics of these applications
is the key to better design the storage system and optimize their performance
and energy efficiency.

In this paper, we choose four typical big data workloads as mentioned above,
because they have been widely used in popular application domains [1,20], such
as search engine, social networks and electronic commerce. Detailed information
about I/O metrics and workloads are shown in Sect. 3.2. Through the detailed
analysis, we get the following four observations. First, the change of the number
of task slots has no effects on the four I/O metrics, but increasing the number
of task slots appropriately can accelerate the process of application execution.
Second, increasing memory can alleviate the pressure of disk read/write, and
effectively improve the I/O performance when the data size is large. Third, the
compression of intermediate data mainly affects the MapReduce I/O perfor-
mance and has little influence on HDFS I/O performance. However, compres-
sion consumes some CPU resource which may influence the job’s execution time.
Fourth, the I/O pattern of HDFS and MapReduce are different, namely, HDFS’s
I/O pattern is large sequential access and MapReduce’s I/O pattern is small ran-
dom access, so when configuring storage systems, we should take several factors
into account, such as the number of devices and the types of devices.

The rest of the paper is organized as follows: Sect. 2 discusses related work.
Section 3 describes the experimental methodology. Section 4 shows the experi-
mental results. Section 5 briefly brings up future work and concludes this paper.

2 Related Work

Workloads characterization studies play a significant role in detecting prob-
lems and performance bottlenecks of systems. Many workloads have been exten-
sively studied in the past, including enterprise storage systems [7,10], web server
[15,19], HPC cluster [14] and network systems [12].

2.1 I/O Characteristics of Storage Workloads

There have been a number of papers about the I/O characteristics of storage
workloads [8,11,15].
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Kavalanekar et al. [15] characterized large online services for storage sys-
tem configuration and performance modeling. It contains a set of characteristics,
including block-level statistics, multi-parameter distributions and rankings of file
access frequencies. Similarly, Delemitrou et al. [11] presented a concise statistical
model which accurately captures the I/O access pattern of large-scale applica-
tions including their spatial locality, inter-arrival times and type of accesses.

2.2 Characteristics of Big Data Workloads

Big data workloads have been studied in recent years at various levels, such as
job characterization [16–18], storage systems [5,9].

Kavulya et al. [16] characterized resource utilization patterns, job patterns,
and source of failure. This work focused on predicting job completion time and
found the performance problems. Similarly, Ren et al. [18] focused on not only
job characterization and task characterization, but also resource utilization on
a Hadoop cluster, including CPU, Disk and Network.

However, the above researches on big data workloads focused on job level,
but not on the storage level. Some studies have provided us with some metrics
about data access pattern in MapReduce scenarios [4,6,13], bur these metrics
are limited, such as block age at time of access [13] and file popularity [4,6]. Abad
et al. [5] conducted a detailed analysis about some HDFS characterization, such
as file popularity, temporal locality, request arrival patterns, and then figure
out the data access pattern of two types of big data workloads, namely batch
and interactive query workloads. But this work concentrates on HDFS’s I/O
characterization, does not study the intermediate data, and also this work only
involves two types of workloads.

In this paper, we focus on I/O characteristics of big data workloads, the
difference between our work and the previous work is that first, we focus on
the I/O behaviour of individual workload and choose four typical workloads
in broader areas, including search engine, social network, e-commerce, which
are popular in the current big data era; Second, we analyze the I/O behavior of
both HDFS and MapReduce intermediate data from different I/O characteristics,
including disk read/write bandwidth, I/O devices’ utilization, average waiting
time of I/O requests, and average size of I/O requests.

3 Experimental Methodology

This section firstly describes our experiment platform, and then presents work-
loads used in this paper.

3.1 Platform

We use an 11-node (one master and ten slaves) Hadoop cluster to run the four
typical big data workloads. The nodes in our Hadoop cluster are connected
through 1 Gb ethernet network. Each node has two Intel Xeon E5645 (Westmere)
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Table 1. The detailed hardware configuration information

CPU Type Intel R Xeon E5645

# Cores 6 cores@2.4 G

# threads 12 threads

Memory 32 GB, DDR3

Disk 6 disks (one disk for system, three disks for HDFS data, the other two
disks for MapReduce intermediate data)

Disk Model Seagate: ST1000NM0011

Capacity: 1TB

Rotational Speed: 7200 RPM

Avg. Seek/Rotational Time: 8.5 ms/4.2 ms

Sustained Transfer Rate: 150 MB/s

Table 2. The detailed software configuration information

Hadoop 1.0.4

JDK 1.6.0

Hive 0.11.0

OS Distribution and Linux kernel Centos 5.5 with the 2.6.18 Linux kernel

TeraSort BigDataBench2.1 [2]

SQL operations BigDataBench2.1

PageRank BigDataBench2.1

Kmeans BigDataBench2.1

processors, 32 GB memory and 7 disks(1TB). A Xeon E5645 processor includes
six physical out-of-order cores with speculative pipelines. Tables 1 and 2 shows
the detailed configuration information.

3.2 Workloads and Statistics

We choose four popular and typical big data workloads from BigDataBench
[20]. BigDataBench is a big data benchmark suite from internet services and it
provides several big data generation tools to generate various types and volumes
of big data from small-scale real-world data while preserving their characteristics.
Table 3 shows the description of the workloads, which is characterized in this
paper.

Iostat [3] is a well-used monitor tool used to collect and show various system
statistics, such as CPU times, memory usage, as well as disk I/O statistics. In
this paper, we mainly focus on the disk-level I/O behaviour of the workloads,
and we extract information from iostat’s report, and the metrics which we focus
on are shown in Table 4.
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Table 3. The description of the workloads

Workloads Performance bottleneck Scenarios Input Data size

TeraSort (TS) I/O bound Page ranking; document
ranking

1TB

Aggregation (AGG) CPU bound Log analysis; information
extraction

1TB

K-means (KM) CPU bound in iteration;
I/O bound in
clustering

Clustering and
Classification

512GB

PageRank (PR) CPU-bound Search engine 512GB

Table 4. Notation of I/O characterization

I/O Description Notes

characterization

rMB/s and wMB/s The number of megabytes read from or
written to the device per second

Disk Read or Write
Bandwidth

%util Percentage of CPU time during which
I/O requests were issued to the device

Disk utilization

await (ms) The average time for I/O requests issued
to the device to be served. This
includes the time spent by the
requests in queue and the time spent
servicing them

average waiting
time of I/O
request =
await - svctm

svctm (ms) The average service time for I/O requests
that were issued to the device

avgrq-sz (the
number of
sectors)

The average size of the requests that
were issued to the device. And the size
of sectors is 512B

average size of I/O
request

4 Results

In this section, we describe HDFS/MapReduce I/O characteristics from four
metrics, namely, disk read/write bandwidth, I/O devices’ utilization, average
waiting time of the I/O requests, and average size of the I/O requests. Through
the comparison of each workloads, we can obtain the I/O characterization of
HDFS and MapReduce respectively, and also the difference between HDFS and
MapReudce.

In addition, different Hadoop configurations can influence the workloads’
execution. So in this paper, we select three factors and analyse their impact
on the I/O characterization of these workloads. The three factors are as fol-
lows. First, the number of task slots, including map slots and reduce slots. In
Hadoop, computing resource is represented by slot, there are two types of slot:
map task slot and reduce task slot. Here computing resource refers to CPU.
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Second, the amount of physical memory of each node. As we know that memory
plays an important role in I/O performance, so memory is an important factor
which affects the I/O behaviour of workloads. So, the second factor we focus on
is the relationship be-tween memory and I/O characterization. Third, whether
the intermediate data is compressed or not. Compression involves two types of
resources: CPU and I/O. what’s the influence on the I/O behaviour of workloads
when CPU and I/O resources both change. So, the final factor we focus on is
the relationship between compression and I/O characterization.

4.1 Disk Read/Write Bandwidth

Task Slots. Figure 1 shows the effects of the number of task slots on the disk
read/write bandwidth in HDFS and MapReduce respectively. In these experi-
ments, each node configured 16 GB memory and the intermediate data is com-
pressed. “10 8”, “20 16” in the figures mean the number of map task slots and
reduce task slots respectively.

Fig. 1. The effects of the number of task slots on the Disk Read/Write Bandwidth in
HDFS and MapReduce respectively

From Fig. 1 we can get the following two conclusions. First, when the num-
ber of task slots changes, there is barely any influence on the disk read/write
bandwidth in both scenarios for every workload. Second, the variation of disk
read/write bandwidth of different workloads in both scenarios are disparate
because the data volume of each workload in different phases of execution are
not the same.

In a word, there is little effect on disk read/write bandwidth when the number
of task slots changes. However, configuring the number of task slots appropriately
can reduce the execution time of workloads, so we should take it into account
when workloads run.

Memory. Figure 2 displays the effects of the memory size on the disk read/write
bandwidth in HDFS and MapReduce respectively. In these experiments, task
slots configuration on each node is 10 8 and the intermediate data is not com-
pressed. “16G”, “32G” in the figures mean the memory size of node.

As Fig. 2 shows, the influence of the memory size on disk read/write Band-
width depends on the data volume. There is a growth of disk read bandwidth
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Fig. 2. The effects of memory on the Disk Read/Write Bandwidth in HDFS and
MapReduce respectively

in HDFS when memory increases as shown in Fig. 2(a) due to the large amount
of raw data, but after handling and processing the raw data, the disk write
band-width of each workloads in HDFS are different because of the final data
volume. When the final data volume is small, memory has no effects on the disk
write bandwidth, such as Kmeans, as shown in Fig. 2(c). This result can also be
reflected in MapReduce.

Compression. Figure 3 exhibits the effects of intermediate data compression
on the disk read/write bandwidth in MapReduce. In these experiments, each
node configured 32 GB memory and task slots configuration is 10 8. “off”, “on”
in the figures mean whether the inter-mediate data is compressed or not.

As Fig. 3 shows, due to the reduction of intermediate data volume with com-
pression, the disk read/write bandwidth increase in MapReduce.

Fig. 3. The effects of compression on the Disk Read/Write Bandwidth in MapReduce.

In addition, compression has little impact on the HDFS’s disk read/write
bandwidth, so we do not present the result.

4.2 Disk Utilization

Task Slots. Figure 4 depicts the effects of the number of task slots on the disk
utilization in HDFS and MapReduce respectively.

From Fig. 4 we can get the following two conclusions. First, the trends of
workloads in disk utilization are the same when the number of task slots changes,
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Fig. 4. The effects of the number of task slots on the Disk Utilization in HDFS and
MapReduce respectively.

Table 5. The HDFS/MapReduce Disk %util ratio

>90 %uitl >95 %uitl >99 %util

AGG 22.6 % / 0 16.4 % / 0 9.8 % / 0

TS 5.2 % / 27.2 % 3.8 % / 15.6 % 2.4 % / 5.5 %

KM 0.4 % / 0 0.3 % / 0 0.2 % / 0

PR 0.5 % / 0.1 % 0.3 % / 0.1 % 0.2 % / 0.1 %

i.e. the number of task slots has little impact on the disk utilization in both sce-
narios. Second, workloads have different behaviour about disk utilization in both
scenarios. From the Table 5, the HDFS disk utilization of Aggregation is higher
than the others, so Aggregation HDFS disk may be the bottleneck. Similarly,
the MapReduce disk utilization of TeraSort is higher than the others; From the
Fig. 4(b), the MapReduce disk utilization of workloads is 50 % or less at their
most of execution time, so the disks are not busy, except TeraSort because of
the large amount of TeraSort’s intermediate data.

Memory. Figure 5 depicts the effects of the memory size on the disk utilization
in HDFS and MapReduce respectively. As Fig. 5(a) shows, increasing memory
size has no impact on the disk utilization in HDFS. However, from Fig. 5(b) we
can see that there is a difference between HDFS and MapReduce. In MapReduce,
the disk utilization of Aggregation and Kmeans has no changes when memory
size changes because the devices are not busy before memory changes. However,
the disk utilization of TeraSort and PageRank is reduced when memory increases
as shown in Fig. 5(b). So, increasing memory size can help reduce the number of
I/O requests and ease the bottleneck of disk.

Compression. From Fig. 6(a), we can know that when intermediate data is com-
pressed, the HDFS’s disk utilization essentially unchanges. As Fig. 6(b) shows,
there is no influence on intermediate data’s disk utilization of TeraSort, Aggrega-
tion and Kmeans, except PageRank in MapReduce.
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Fig. 5. The effects of memory on the Disk Utilization in HDFS and MapReduce
respectively.

Fig. 6. The effects of compression on the Disk Utilization in HDFS and MapReduce
respectively.

4.3 Average Waiting Time of I/O Request

Memory. Figure 7 shows the effects of Memory on the disk waiting time of I/O
requests in HDFS and MapReduce respectively.

From Fig. 7, we can learn that the disk average waiting time of I/O requests
of workloads varies with different memory size, in other words, the memory size
has an impact on the disk waiting time of I/O requests and the MapReduce disk
waiting time of I/O request is larger than the HDFS’s.

Fig. 7. The effects of memory on the Disk waiting time of I/O requests in HDFS and
MapReduce respectively.

Compression. Figure 8 depicts the effects of compression on the disk waiting
time of I/O requests in HDFS and MapReduce respectively.
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Fig. 8. The effects of compression on the Disk waiting time of I/O requests in HDFS
and MapReduce respectively.

From Fig. 8, we can see that the disk average waiting time of I/O requests
remains unchanged in HDFS because HDFS’s data is not compressed, however,
due to the reduction of intermediate data volume with compression, the disk
waiting time of I/O request in MapReduce is decreased. And the MapReduce
disk waiting time is larger than the HDFS’s because of their different I/O mode
in access pattern, i.e. HDFS’s access pattern is domated by large sequential
accesses, while MapReduce’s access pattern is dominated by smaller random
access. This result can be seen in Fig. 9.

4.4 Average Size of I/O Requests

Task Slots. Figure 9 depicts the effects of the number of task slots on the disk
average size of I/O request in HDFS and MapReduce respectively.

As the task slots is a kind of computing resource, there is little impact on
the disk average size of I/O requests when the number of task slots changes
from the figures. Also, the average size of HDFS I/O requests is larger than the
MapReduce’s because they have different I/O mode in I/O granularity. In other
words, HDFS’s I/O granularity is larger than the MapReduce’s.

Fig. 9. The effects of the number of task slots on the Disk average size of I/O request
in HDFS and MapReduce respectively.

The same result also can be achieved by the effects of memory on the disk
average size of I/O requests. However, due to the compression, the effects of
memory on the disk average size of I/O requests is different from the effects of
the number of task slots on the disk average size which is reflected in Fig. 10.
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Fig. 10. The effects of compression on the Disk average size of I/O request in
MapReduce.

Compression. In addition, whether the intermediate data is compressed or not
has no impact on the HDFS’s disk average size of I/O requests, so we do not
present the result.

Figure 10 displays the effects of compression on the disk average size of I/O
requests in MapReduce. It is seen from figure that as the intermediate data is
compressed, the disk average size of I/O requests is decreased, and the percentage
of reduction varies with the types of workloads due to the intermediate data
volume. As Fig. 10 shows, there is little influence on the disk average size of I/O
request when the intermediate data volume is small, such as Aggregation and
Kmeans.

5 Conclusion and Future Work

In this paper, we have presented a study of I/O characterization of big data
workloads. These workloads are typical, which are representative and common
in search engine, social networks and electronic commerce. In contrast with pre-
vious work, we take into account disk read/write bandwidth, average waiting
time of I/O requests, average size of I/O requests and storage device utilization,
which are important for big data workloads. Some observations and implica-
tions are concluded as follows. First, task slots has little effects on the four
I/O metrics, but increasing the number of task slots can accelerate the process
of application execution. Second, the compression of intermediate data mainly
affects the MapReduce I/O performance and has little influence on HDFS I/O
performance. However, compression consumes some CPU resource which may
influence the job’s execution time. Third, increasing memory can alleviate the
pressure of disk read/write and effectively improve the I/O performance when
the data size is large. Last, HDFS data and MapReduce intermediate data have
different I/O mode, which leads us to configuring their own storage systems
according to their I/O mode.
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Abstract. With the ever increasing demands of cloud computing services,
planning and management of cloud resources has become a more and more
important issue which directed affects the resource utilization and SLA and
customer satisfaction. But before any management strategy is made, a good
understanding of applications’ workload in virtualized environment is the basic
fact and principle to the resource management methods. Unfortunately, little
work has been focused on this area. Lack of raw data could be one reason;
another reason is that people still use the traditional models or methods shared
under non-virtualized environment. The study of applications’ workload in
virtualized environment should take on some of its peculiar features comparing
to the non-virtualized environment. In this paper, we are open to analyze the
workload demands that reflect applications’ behavior and the impact of virtu-
alization. The results are obtained from an experimental cloud testbed running
web applications, specifically the RUBiS benchmark application. We profile the
workload dynamics on both virtualized and non-virtualized environments and
compare the findings. The experimental results are valuable for us to estimate
the performance of applications on computer architectures, to predict SLA
compliance or violation based on the projected application workload and to
guide the decision making to support applications with the right hardware.

Keywords: Workload characterization � Virtualization � Performance model-
ing � Cloud computing

1 Introduction

The increasingly popular cloud computing paradigm provides on-demand access to
computing and storage with the appearance of unlimited resources [1]. Users are given
access to a variety of data and software utilities to manage their work. Users rent virtual
resources and pay for only what they use. Underlying these services are data centers
that provide virtual machines (VMs) [2]. Virtual machines make it easy to host com-
putation and applications for large numbers of distributed users by giving each the
illusion of a dedicated computer system. It is anticipated that cloud platforms and
services will increasingly play a critical role in academic, government and industry
sectors, and will have widespread societal impact.
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Resource planning and management is crucial for building cost-effective cloud
systems and services with a high service-level agreement (SLA) and customer satis-
faction rate. Current solutions to resource management usually over-provision VMs
and/or their capacity to cloud applications [3]. However, a fundamental question, i.e.,
“What are the characteristics of applications’ runtime behavior on the cloud?” or “What
impact does virtualization have on the resource demands from cloud applications?”, has
not yet been answered. There exists research on analyzing the performance traces
collected from data centers [4, 5]. Still, none of them evaluate the influence of virtu-
alization on the applications’ resource demands in cloud computing infrastructures.

The goal of this work is to characterize runtime workload of cloud applications in
the virtualized environment and compare it with traditional, non-virtualized systems.
To the best of our knowledge, this is the first work to analyze the impact of virtual-
ization on the resource demands of cloud applications. In this paper, we present the
experimental results on a cloud testbed. We run an illustrating web application, i.e.,
RUBiS (Rice University Bidding System) benchmark [6], on cloud servers. We profile
the application’s workload dynamics on both virtualized and non-virtualized envi-
ronments. We compare the resource demands of CPU, RAM, disk and network at the
three tiers (i.e., web, application and database servers) of RUBiS while serving thou-
sands of client requests. The findings and knowledge will help us accurately estimate
the performance of applications, predict SLA compliance or violation based on the
projected application workload and guide the decision making to support applications
with the right hardware in the cloud.

The rest of this paper is organized as follows. Section 2 discusses the related work.
We describe the settings of the cloud testbed and the application benchmark in Sect. 3.
The experimental results are presented in Sect. 4. Section 5 concludes the paper with
remarks on the future work.

2 Related Work

Workload characterization studies are useful for helping system operators identify
system bottlenecks and design solutions for performance optimization. Existing
research efforts target different systems and components including data centers [4, 5],
Web servers [7, 8], storage [9–11] and network [12, 13]. Several studies [14–16] focus
on workload analysis in the grid and parallel computing systems. They present various
methods for analyzing and modeling workload traces. However, the application
characteristics and resource scheduling policies in high-performance computing (HPC)
systems are different from those in the cloud [17–19].

Existing work on workload characterization can be classified into two major cat-
egories: model-driven and trace-driven methods. Model-driven approaches, such as
[20], analyze resource utilization and application performance based on assumptions of
workload distributions. The resource demand of a program is estimated by checking the
types and number of instructions of the program and its structure. The overhead of
modeling large and complex applications is prohibitive and the accuracy of the models
is compromised by static analysis.
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Trace-driven approaches study performance traces collected from real or controlled
systems in order to discover the time series of user requests and resource usage.
Distributions of profiled metrics are analyzed to describe workload characterization.
For example, Kavulya et al. [21] analyze the job patterns and failure sources based on
application execution traces from an HPC cluster. Mishra et al. [22] focus on the
characteristics of resource demands on CPU and memory. The Yahoo Cloud Serving
Benchmark [23] characterizes the activity of database-like systems at the read/write
level. Their work focus on estimating application completion time and looking for
performance problems based on application execution traces. Moreover, as applications
display various workload dynamics, it is difficult to exploit this approach in capacity
planning and real system analysis.

There is little work on understanding applications’ workload dynamics in cloud
computing environments. As virtualization has been an enabling technology for cloud
computing, it is imperative to investigate the impact of virtualization on the resource
demands of cloud applications, which is the focus of this work.

3 Cloud Testbed and Benchmark

The cloud computing system under test consists of HP ProLiant servers which are
connected by gigabit Ethernet. Each cloud server is equipped with 8 Intel Xeon
2.8 GHz cores, 32 GB of RAM and 2 TB of disk. We have installed Xen 3.1.2
hypervisors on the cloud servers. The operating system on a virtual machine is Linux
2.6.18 as distributed with Xen 3.1.2. The cloud testbed is organized and built in an
Amzon EC2-like [24] style providing IaaS cloud services. Each cloud server hosts up
to ten VMs. A VM is assigned up to two VCPUs, among which the number of active
ones depends on applications. The amount of memory allocated to a VM is set to 2 GB.

On the cloud testbed, we run the RUBiS [6] distributed online web service
benchmark as an illustrating cloud service. RUBiS provides an auction site prototype
modeling eBay.com and it is widely used as the benchmark program to evaluate the
server performance and web application designs. The RUBiS servers form a three-tier
server architecture consisted of the Web, application and database servers. RUBiS
clients send requests with different workload patterns (browsing, bidding and mixed
with adjustable composition of the two actions) to the Web server and simulate auc-
tions of items on eBay.

To profile the application’s resource demands in the cloud environment, we exploit
third-party monitoring tools, sysstat [25] to collect runtime performance data in the
hypervisor and VMs, and a modified perf [26] to obtain the values of performance
counters from the Xen hypervisor on each server in the cloud testbed. In total, 518
metrics are profiled, i.e., 182 for the hypervisor and 182 for VMs by sysstat and 154 for
performance counters by perf, periodically. They cover the statistics of every com-
ponent of cloud servers, including the CPU usage, process creation, task switching
activity, memory and swap space utilization, paging, interrupts, network activity, I/O
and data transfer, power management, and more. Table 1 lists and describes a sampling
of the performance metrics that are used to characterize the workload dynamics of
cloud applications on our testbed.
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4 Experimental Results and Analysis

We run the RUBiS benchmark system on the cloud testbed and profile the workload
dynamics with different clients’ request patterns on both virtualized and non-virtualized
environments. In this section, we present the results from the experiments and analyze
them to find the workload characteristics and the impact of virtualization on the
dynamics of resource demands.

4.1 Workload Characterization in a Virtualized Environment

In the first set of experiments, we deployed the RUBiS servers in VMs: the front-end
Apache web server and PHP application server (The two servers are integrated together
in the PHP implementation.) and the back-end MySQL database server. 1000 clients
external to the cloud testbed sent browsing, bidding and mixed type requests to the web
server. The think time was set to 7 s. We ran the experiments for around 20 min and
profiled the resource demands for CPU, RAM, disk, network, TCP socket and context
switch both in VMs and the hypervisor (dom0). Figures 1, 2, 3, 4, 5 and 6 depict the

Table 1. A sample of performance metrics used to characterize workload of the RUBiS
benchmark system on the cloud testbed.
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workloads. We tested five types of request compositions: browsing only, bidding only,
30 % browsing and 70 % bidding, 50 % browsing and 50 % bidding, and 70 %
browsing and 30 % bidding. Due to the space limitation, we only include the results of
the first two compositions in this paper.

The first two sub-figures in each set show the workload demands of the web and
application servers and the database server for virtualized resources, including CPU
cycles, amount of RAM, disk reads and writes, data received and transmitted through
networks, number of TCP sockets and number of context switches in VMs. The last
sub-figure in each set presents the overall workload demands to the physical resources.

From the figures, we can see the workload curves for different types of resources
display different shapes/distributions with different means and variances. But for each
type of resource, the workload dynamics show some patterns that can be quantified by
formal models. In addition, there exist some lags between workload changes of the
database server and the web and application servers as the client requests are received
and processed first by the web server before being sent to the back-end database server.

Between the front-end servers and back-end server, the front-end servers generate
higher workload demands as they demand 6.11, 3.29, 5.71, 55.56 and 1.85 times
more CPU cycles, RAM space, disk read/write, network data and context switches
than the back-end server, but the number of TCP sockets is almost same. When we
compare the aggregated workload demands of the VMs with that of the hypervisor,
the former is 16.84, 0.58, 0.47, 0.98, 2.67 and 0.09 times more/less than the latter with
regard to the six types of resources. This indicates the hypervisor performs additional
work other than the workload of RUBiS servers.
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Fig. 1. CPU cycle demands by the web and application servers and the database servers in VMs
and the hypervisor (dom0) to process the browsing and bidding requests from 1000 clients.
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Fig. 2. RAM demands by the web and application servers and the database servers in VMs and
the hypervisor.
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Fig. 4. Network data received and transmitted by the web and application servers and the
database servers in VMs and the hypervisor.
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Fig. 5. Number of TCP Sockets generated by the web and application servers and the database
servers in VMs and the hypervisor.
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Fig. 3. Disk read and write by the web and application servers and the database servers in VMs
and the hypervisor.
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Fig. 6. Number of context switches performed by the web and application servers and the
database servers in VMs and the hypervisor.
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Fig. 7. CPU cycle demands by the web and application servers and the database servers to
process the browsing and bidding requests from 1000 clients.

Web+App. (PM)

Time(Sample 2s)
0 100 200 300 400 500 600

ph
ys

ic
al

 u
se

d 
m

em
or

y 
in

 M
B

500

600

700

800

900

1000

browse
bid

Mysql (PM)

Time(Sample 2s)
0 100 200 300 400 500 600

ph
ys

ic
al

 u
se

d 
m

em
or

y 
in

 M
B

550

600

650

700

750

800

850

browse
bid

Fig. 8. RAM demands by the web and application servers and the database servers.
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Fig. 9. Disk read and write by the web and application servers and the database servers.
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Fig. 10. Network data received and transmitted by the web and application servers and the
database servers.
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Fig. 11. Number of TCP Sockets created by the web and application servers and the database
servers to process the browsing and bidding requests from 1000 clients.
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Fig. 12. Number of context switches performed by the web and application servers and the
database servers.
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Comparing the two client request compositions, their workload dynamics display
similar shapes except for the RAM demands. Figure 2 shows the browsing requests
experience one or more jumps demanding more RAM, while the bidding requests have
a more smooth curve. A possible explanation is that as more client browsing requests
arrive, some requests are backlogged and after a certain period of time the server
allocates more RAM to process those backlogged requests, which also causes more
disk reads/writes (the spikes in the first two sub-figures of Fig. 3). On the other hand,
the longer think time of the bidding requests allows the servers to process the requests
more smoothly. Another important finding is that although the browsing requests
demand similar or more virtualized CPU and network resources than the bidding
requests, the latter demands a little more physical resources than the former as shown in
Figs. 1 and 4. We also find that the number of context switches performed by the
hypervisor is larger than that by VMs servers as shown in Fig. 6.

4.2 Workload Characterization in a Non-virtualized Environment

In order to characterize the impact of virtualization on system’s workload, we conduct a
series of experiment on non-virtualized servers in our testbed. The front-end web and
application servers and the back-end database servers reside on separate physical
servers. 1000 clients external to the RUBiS servers send browsing and bidding requests
to the web server. Sysstat and perf profile resource usages directly from the host OS and
hardware on each physical server. Figures 7, 8, 9, 10, 11 and 12 show the experimental
results. The workload curves still display certain patterns that can be modeled.

We are interested in comparing the results with those from the virtualized environment
as shown in Sect. 4.1. The two sets of figure show that the workload curves display the
similar shapes and the front-end servers demand more resource than the back-end server.
The aggregated demands for the six types of resources in the non-virtualized setting are
3.47, 0.97, 0.6, 0.98, 2.67 and 0.12 times more/less than those in the virtualized envi-
ronment. The workload requests for RAM show themost significant difference between the
two environments. As in the non-virtualized system (Fig. 8), the bidding requests also
display abrupt increase of RAM usage and the jumps happen earlier in time than those in
the virtualized system. One reason is the longer communication delay in the non-virtualized
system. In addition, from Fig. 9 we can see disk read and write workload shows higher
variance in the non-virtualized system than the virtualized one.

Comparing the results in Sects. 4.1 and 4.2, we find application’s demand for
physical resources is higher in the non-virtualized environment than in the virtualized
one, with 88 % more CPU cycles, 21 % more RAM, 2 % more network traffic and
60 % more TCP sockets, while disk read/write is 25 % less and the number of context
switches is 87 % less. These findings will allow cloud service providers to achieve
efficient capacity planning for a desirable SLA satisfaction rate.

5 Conclusion

In this work, we study the impact of virtualization on the workload dynamics. We
present experimental results on a cloud testbed by profiling the workload dynamics on
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both virtualized and non-virtualized environments. We compare the resource demands
at the three server tiers.

This study is preliminary. Our goal is to extract the rules of thumb to aid cloud
service providers to achieve the best resource planning. We plan to design and apply
formal methods to model the workload dynamics at both resource level and transaction
level.
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Abstract. Apache Hadoop and Spark are gaining prominence in Big
Data processing and analytics. Both of them are widely deployed in
Internet companies. On the other hand, high-performance data analy-
sis requirements are causing academical and industrial communities to
adopt state-of-the-art technologies in HPC to solve Big Data problems.
Recently, we have proposed a key-value pair based communication
library, DataMPI, which is extending MPI to support Hadoop/Spark-
like Big Data Computing jobs. In this paper, we use BigDataBench,
a Big Data benchmark suite, to do comprehensive studies on perfor-
mance and resource utilization characterizations of Hadoop, Spark and
DataMPI. From our experiments, we observe that the job execution time
of DataMPI has up to 57 % and 50 % speedups compared with those of
Hadoop and Spark, respectively. Most of the benefits come from the
high-efficiency communication mechanisms in DataMPI. We also notice
that the resource (CPU, memory, disk and network I/O) utilizations of
DataMPI are also more efficient than those of the other two frameworks.

Keywords: DataMPI · Hadoop · Spark · BigDataBench

1 Introduction

Data explosion is becoming an irresistible trend with the development of Inter-
net, social network, e-commerce, etc. Over the last decade, there have been
emerging a lot of systems and frameworks for Big Data, such as Hadoop [1],
Dyrad [8], Yahoo! S4 [14] and so on. Apache Hadoop has become as the defacto
standard for Big Data processing and analytics. Many clusters in the production
environment already contain thousands of nodes to dedicatedly run Hadoop jobs
everyday. Beyond the success of Hadoop, Spark [19] provides another feasible way
to process large amount of data by introducing the in-memory computing tech-
niques. Nowadays, both of them have attracted more and more attention from
academical and industrial areas.
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However, the performance of current commonly used Big Data systems is
still in a sub-optimal level. Many studies [9,11,15,17] have been trying to adopt
state-of-the-art technologies in the High Performance Computing (HPC) area
to accelerate the performance of Big Data processing. As one example of these
attempts, our previous work [12,13,18] shows the performance of Hadoop com-
munication primitives still have huge performance improvement potentials, and
Message Passing Interface (MPI), which is widely used in the field of HPC, can
help to optimize communication performance of Hadoop. Furthermore, the key-
value pair based communication library, DataMPI [3,12], has been proposed to
efficiently execute Hadoop/Spark-like Big Data Computing jobs by extending
MPI. Since the open-source nature of these systems, it will be very interest-
ing for users to know the performance characteristics of the emerging Big Data
systems by doing a systematical performance evaluation over different aspects.

In this paper, we use BigDataBench [16], one of the benchmark suites for Big
Data Computing systems, to evaluate the performance of Hadoop, Spark and
DataMPI. By tracing the resource utilization, we analyse the execution behavior
of each system. Our contributions in this paper include

– We propose a seven-pronged approach to evaluate Big Data Computing sys-
tems, which can help researchers to understand the performance of those
systems systematically.

– Evaluation results show DataMPI can achieve up to 57 % and 50 % speedups
compared to Hadoop and Spark, respectively, for the high-efficiency commu-
nication mechanisms and lightweight software design.

The rest of this paper is organized as follows. Section 2 discusses background
and related work. Section 3 states our experiments methodology. The evaluation
results and analysis are given in Sect. 4. Section 5 concludes the paper.

2 Background and Related Work

2.1 Big Data Systems

MapReduce programming model is pivotal in Big Data Computing. Hadoop [1],
one of the open-source implementations of MapReduce, is becoming the defacto
standard. It has been widely used in various areas and applications, such as log
analysis, machine learning, search engine, etc., and achieves success for its high
scalability, built-in fault-tolerance and simplicity of programming. Spark [19],
one of the emerging Big Data Computing systems, processes task-parallel jobs
with in-memory techniques. It implements resilient distributed datasets (RDDs),
the distributed memory abstraction which builds on the lineage concept, and per-
forms efficiently in iterative algorithms of machine learning and interactive data
mining. DataMPI [12] is a key-value pair based communication library which
extends MPI for Hadoop/Spark-like Big Data Computing systems. It implements
a bipartite communication model and leverages the state-of-the-art technologies
of MPI in HPC to accelerate the execution performance of Big Data applications.
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Those three Big Data systems are respectively typical for the different imple-
mentation technologies based on their particular execution models. This moti-
vates us to comprehensively evaluate them with Big Data benchmarks. Besides,
many other Big Data systems using HPC technologies have been emerging.
The authors in [9,11,15] implement Hadoop-RDMA, which uses RDMA-capable
(Remote Direct Memory Access) interconnects to enhance the design of Hadoop.
Wang et al. [17] propose the network-levitated merge algorithm and implement
Hadoop-A which overlaps data merge and reduce operations for Hadoop Reduce
tasks.

2.2 Big Data Benchmarks

Researchers have proposed several benchmarks for evaluating Big Data Comput-
ing systems. MRBench [10] is designed for evaluating MapReduce frameworks
using TPC-H workloads. HiBench [7] is designed for Hadoop-based systems based
on micro-benchmarks, web search, machine learning and HDFS benchmarks.
BigBench [6], an end-to-end benchmark proposal based on product retailer, is
designed for parallel DBMS and MapReduce systems. BigDataBench [16] is a
benchmark suite for different Big Data Computing systems, such as Hadoop,
Spark, etc. It covers six typical application scenarios which include fundamental
workloads and Internet service applications. BigDataBench also provides a data
generator, Big Data Generator Suite (BDGS) which extracts the characteristics
of real-world data, to create synthetic data sets.

As BigDataBench contains various workloads, and synthetic data generator,
we choose it as our benchmark suite. According to the specification of Big-
DataBench, we use DataMPI to implement the benchmarks and evaluate the
performance of Hadoop, Spark and DataMPI fairly.

3 Benchmarking Methodology

3.1 Chosen Workloads

We choose five typical workloads in BigDataBench as our benchmarks, which
include three micro-benchmarks and two application benchmarks.

– Micro-benchmarks include WordCount, Grep and Sort, which are funda-
mental and widely used operations in broad analysis processes. WordCount
counts the number of each word occurrence in a collection of documents. Grep
searches strings conforming to a certain pattern in the input documents and
counts the number of the occurrence of each matched string. Sort reads each
record of the input files as a key-value pair and sorts the records based on
the keys.

– Application benchmarks include K-means and Naive Bayes, which are
typical applications in social network and e-commerce scenarios. K-means is
a classical clustering algorithm in data mining which aims to partition the
input objects to k clusters by calculating the nearest mean cluster of each
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object belongs to. Naive Bayes is a probabilistic algorithm for classification.
It is based on Bayes’ theorem with strong independence assumption, which
means the features of the model are independent with each other.

3.2 Evaluation Methodology

We record the execution time of each workload over one system, which reflects
the system performance. To understand the runtime status, we monitor the
systems with resource metrics which include:

– CPU utilization: it is recorded as a percentage of CPU usage and shows the
time the total CPU has spent on running a workload. The CPU utilization
will be recorded each second. We calculate the average CPU utilization during
one workload execution.

– Network I/O throughput: it is defined as the average amount of data trans-
mitted (send/receive) per second over the network.

– Disk I/O throughput: it is defined as the average amount of data transmitted
(read/write) per second through the hard disks.

– Memory footprint: it refers to the memory used when running a workload.
The memory footprint will dynamically change when system allocates and
releases memory during workload execution. We calculate the average memory
footprint during one workload execution to compare memory utilization.

To evaluate Hadoop, Spark and DataMPI, we follow a seven-pronged app-
roach as shown in Fig. 1. To show the performance, we calculate the average
execution time of each kind of workloads over each system. The small job is
based on the micro-benchmarks, while data size of each workload is 128 MB.
The data sizes of normal micro-benchmarks and application benchmarks vary

Fig. 1. Evaluation methodology
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Fig. 2. Parameter tuning

from 8 GB to 64 GB. The CPU efficiency is defined as the CPU usage for the
workload. The memory efficiency reflects the average amount of memory allo-
cated to the system. The less memory is used, the better memory efficiency is
achieved. We summarize the results with these seven dimensions in Sect. 4.7. To
better understand the results, we use the execution time and resource utilization
of Hadoop as the baseline and normalize the corresponding values of Spark and
DataMPI.

4 Experimental Evaluation

4.1 Experiment Setup

We use a cluster composed of 8 nodes interconnected by a 1 Gigabit Ethernet
switch as our testbed. Each node is equipped with two Intel Xeon E5620 CPU
processors (2.4 GHz) with disabling the hyper-threads. Each processor has four
physical cores. Each node has 16 GB DDR3 RAM with 1333 MHz and one 150 GB
free space SATA disk.

The operation system used is CentOS release 6.5 (Final) with kernel ver-
sion 2.6.32-431.el6.x86 64. The software stack is comprised with JDK 1.7.0 25,
MVAPICH2-2.0b, Scala 2.9.3, BigDataBench 2.1, Hadoop 1.2.1, Mahout 0.8 [2],
Spark 0.8.1 and DataMPI 0.6. For all evaluations, we report results that are
averaged across three executions.

4.2 Chosen Parameters

Hadoop, Spark and DataMPI have abundant parameters to set to achieve better
performance. In this section, we tune the parameters for fair evaluations. We
mainly focus on the HDFS block size and the number of tasks or workers, because
the disk and network will easily become the bottlenecks in our testbed, and the
concurrent execution instances have a great influence on performance.



116 F. Liang et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

8 16 32 64

Jo
b 

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Data Size (GB)

Hadoop Sort
Spark Sort
DataMPI Sort

(a) Sort

 0

 150

 300

 450

 600

 750

 900

8 16 32 64

Jo
b 

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Data Size (GB)

Hadoop WordCount
Spark WordCount
DataMPI WordCount

(b) WordCount

 0

 50

 100

 150

 200

 250

8 16 32 64

Jo
b 

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Data Size (GB)

Hadoop Grep
Spark Grep
DataMPI Grep

(c) Grep

Fig. 3. Performance comparison of different micro-benchmarks

We use DFSIO program, a file system level benchmark of Hadoop, as the
workload for tuning HDFS block size. We measure the throughput by varying the
HDFS block size and input data size. Figure 2(a) shows the throughput achieves
the best, when block size is 256 MB. When tuning the number of concurrent
tasks or workers, we execute Sort benchmark and measure the throughput by
processing 1 GB data per Hadoop/DataMPI task and Spark worker with increas-
ing the number of concurrent tasks or workers from 2 to 6 per node. Figure 2(b)
shows the systems can get the best throughput when the number of concurrent
tasks or workers on each node is 4.

Based on the two tests, we run our following evaluations based on 256 MB
HDFS block size and 4 concurrent tasks or workers per node. The replication
of each block in HDFS is set to three for the high data availability and flexible
data locality.

4.3 Micro-benchmark Performance

In this section, we evaluate the performance of micro-benchmarks among Hadoop,
Spark and DataMPI. We use BDGS in BigDataBench to produce the data
sets and upload them on the HDFS with the uncompressed text format. The
seed model used in BDGS is lda wiki1w which is trained from wikipedia entries
corpus.
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Fig. 4. Resource utilization of Sort benchmark with 8 GB data

We vary the input data size from 8 GB to 64 GB. Figure 3(a) shows DataMPI
has 30 %–44 % (averagely 39 %) improvement compared to Hadoop and 38 %–
50 % (averagely 44 %) improvement compared to Spark, when running Sort.
Figure 3(b) shows DataMPI and Spark have similar performance and achieve
47 %–57 % (averagely 52 %) performance improvement compared to Hadoop,
when running WordCount. The Grep evaluation results in Fig. 3(c) show that
DataMPI cuts down the execution time by 29 %–34 % (averagely 32 %) compared
to Hadoop, and by 26 %–45 % (averagely 38 %) compared to Spark.

DataMPI can achieve the best performance for those benchmarks, while
Spark is not performing better than Hadoop in Sort and Grep cases, which
means for batch jobs, Hadoop is still relatively good.

4.4 Profile of Resource Utilization

We profile the resource utilization of Hadoop, Spark and DataMPI based on
the workloads of 8 GB Sort and 32 GB WordCount from four aspects, i.e. CPU
utilization, disk throughput, network throughput and memory footprint. We
record the total CPU usage percentage and the CPU wait I/O percentage. A
higher CPU wait I/O percentage means CPU costs more time to wait for I/O
operations to complete. For the sake of page limitation, we only show the figures
of Sort benchmark with 8 GB case.
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For the Sort benchmark, DataMPI costs 69 s while Hadoop and Spark cost
117 s and 114 s, respectively. Hadoop has Map/Reduce phases, DataMPI has
O/A phases, and Spark has map phase (Stage0), sort-by-key phase (Stage1) and
save phase (Stage2). The Map phase of Hadoop costs 36 s, the Stage 0 of Spark
costs 38 s, and the O phase of DataMPI costs 28 s. As shown in Fig. 4(a), the
average CPU utilizations of Hadoop, Spark and DataMPI are 37 %, 38 % and
45 %. The average CPU wait I/O percentages of Hadoop, Spark and DataMPI are
15 %, 12 % and 10 %. This means Hadoop costs more time to wait I/O operations.
Figure 4(b) shows the disk throughput. The average disk read throughputs of
Hadoop Map phase, Spark Stage 0 and DataMPI O phase are 49 MB/s, 46 MB/s
and 50 MB/s. The average disk write throughputs of Hadoop Shuffle-Reduce
phase, Spark Stage 2 and DataMPI A phase are 67 MB/s, 66 MB/s and 69 MB/s.
Figure 4(c) shows the network throughput of DataMPI is averagely 62 MB/s,
which is 59 % higher than that of Hadoop (39 MB/s) and 55 % higher than
that of Spark (40 MB/s). This means MPI-based communication mechanism
can use network resource more efficiently. Figure 4(d) shows the average memory
footprints of Hadoop, Spark and DataMPI are 5 GB, 9 GB and 8 GB.

When running WordCount, Spark and DataMPI cost 169 s and 158 s, and
have 47 %, 43 % speedups compared to Hadoop (301 s), respectively. The CPU
utilizations of Hadoop, Spark and DataMPI are 82 %, 58 % and 84 %, respec-
tively. The average read throughput of DataMPI is 44 MB/s, which is approxi-
mately equal to that of Spark and is higher than that of Hadoop (20 MB/s). We
observe that DataMPI and Hadoop have few network transmissions, while Spark
transmits more intermediate data for the RDDs creation. The average memory
footprints of Hadoop, Spark and DataMPI are 8 GB, 6 GB, and 5 GB.

From the above two cases, we observe that DataMPI can leverage the resources
to run jobs more effectively than Hadoop and Spark for the high efficient data
communication and computation.
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4.5 Small Jobs

According to the recent study [5], more than 90 % of MapReduce jobs in Face-
book and Yahoo! are small jobs, which means the input data sizes of the jobs
are usually kilo or mega bytes. The system overheads of the initialization and
the finalization have serious impacts on the performance. In this section, we
compare the performance of Hadoop, Spark and DataMPI when they run the
micro-benchmarks of Sort, WordCount and Grep with smaller input data sets.
The input data size of each workload is 128 MB. The number of the concurrent
tasks or works is set to one per node. Figure 5 shows that DataMPI has simi-
lar performance with Spark, and performs averagely 54 % more efficiently than
Hadoop. The benefits of Spark and DataMPI are contributed by the lightweight
software designs.

4.6 Application Benchmark Performance

In this section, we present the results of the application evaluations. The Hadoop
implementations of K-means and Naive Bayes in BigDataBench are based on
Mahout, while the Spark implementation of K-means is based on Spark MLlib [4].
We implement K-means and Naive Bayes over DataMPI according to the Big-
DataBench specification. Because BigDataBench 2.1 lacks the implementation
of Naive Bayes in Spark, we only compare the performance of this benchmark
between DataMPI and Hadoop. We first explain the processing characteristics
of the applications from the implementation-level and then give the performance
results.

K-means: We use BDGS to generate the input data sets based on five seed
models, amazon1-amazon5. Using genData Kmeans of BDGS, text files are con-
verted to sequence files from directories, then transformed to the sparse vectors
as the input data of training clusters. Our evaluations are based on the sparse
vectors and mainly focus on the performance of training execution. As stated
in Sect. 3.1, K-means trains the cluster centroids iteratively. Each iteration of
K-means is a MapReduce job. In one job, Map tasks read the initial or previous
cluster centroids from HDFS, afterwards, assign the input vectors to appropriate
clusters according to the distance calculation and train the new centroids inde-
pendently. At the end of Map tasks, new centroids will be sent to the Reduce
tasks according to the cluster indexes. Reduce tasks receive and update the
centroids for the next iterative execution. We observe that most of K-means
calculation happens in Map phase, and few intermediate data is generated.

Our tests show Spark has outstanding performance when running the itera-
tive computations based on the RDDs. Since Hadoop is not designed for iterative
jobs, for fair comparison, we record the execution time of the first iteration from
the job start, which considering the overheads of loading data, computation and
communication, and outputing results. Figure 6(a) shows that DataMPI has at
most 39 % improvement than Hadoop and 33 % improvement than Spark when
the input data size varies from 8 GB to 64 GB.
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Fig. 6. Performance comparison of application benchmarks

Naive Bayes: The input document data sets are generated by BDGS, and are
classified into five categories. The procedure of Naive Bayes mainly contains
two steps, including converting sequence files to sparse vectors and training the
Naive Bayes model. Mahout runs several MapReduce jobs to create the sparse
vectors. Firstly, one document is converted to a token array. After that, some
MapReduce jobs are launched to count the term frequency in one document and
document frequency of all terms. The sparse vector of one document is calculated
according to the term frequency and document frequency. The main operation
in above steps is counting, including term counting and document counting,
which means that the behavior of Naive Bayes is similar to WordCount. In our
evaluation cases, the data sizes of sparse vector and term-counting dictionary
are within several mega bytes. The model training contains two MapReduce
jobs to execute the probabilistic computations. The two jobs cost less time than
the sparse vectors generation because of the simple calculating operations and
small input data sizes. Figure 6(b) shows DataMPI has 33 % improvement than
Hadoop averagely.

4.7 Discussion of Performance Results

We summarize the performance comparisons with different benchmarks using
seven-pronged diagram, depicted in Fig. 7. We normalize the values of Spark
and DataMPI according to the corresponding Hadoop values. Besides, we only
take the K-means results to calculate the values of the application benchmarks.
Compared to Hadoop, DataMPI can averagely achieve 41 %, 54 % and 38 %
performance improvements when running micro-benchmarks, small jobs and
application benchmarks, respectively, while Spark has 10 %, 54 % and 31 % per-
formance improvements, respectively. From the Sort and WordCount cases, the
average CPU utilizations of Hadoop, Spark and DataMPI are 60 %, 48 % and
64 %, which means DataMPI has similar CPU efficiency with Hadoop, and lever-
ages the CPU resource 33 % more efficiently than Spark. The average disk
I/O throughputs of Spark and DataMPI are 15 %, 20 % higher than that of
Hadoop, respectively. DataMPI achieves 56 % and 55 % network throughput
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Fig. 7. Evaluation results

improvements than those of Spark and Hadoop, respectively. The average mem-
ory footprints of Hadoop, Spark and DataMPI are 6.5 GB, 7.5 GB and 6.5 GB,
which means Hadoop and DataMPI can efficiently utilize memory when running
the workloads. The benefits of DataMPI come from the lightweight software
design and the high performance communication design which is able to lever-
age system resources to pipeline the computation and communication operations
efficiently [12].

5 Conclusion

In this paper, we provide a systematical performance evaluation of Hadoop,
Spark and DataMPI based on BigDataBench. We choose three micro bench-
marks (Sort, WordCount and Grep) and two application benchmarks (K-means
and Naive Bayes) as our testing experimental workloads. Based on the Sort,
WordCount benchmark cases, we present a detailed resource utilization analy-
sis of the three systems. Our evaluation shows that with the mirco-benchmarks,
DataMPI can achieve 29 %–57 % performance improvement compared to Hadoop,
and up to 50 % performance improvement compared to Spark. The small job
evalutions show the low overheads of DataMPI and Spark make them gain 54 %
performance improvement compared to Hadoop. Evaluations of K-means and
Naive Bayes benchmarks show DataMPI can achieve 33 %–39 % application-level
performance improvement compared to Hadoop and Spark.
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Abstract. To provide a high performance and reliable big data plat-
form, this paper proposes a comprehensive invariant-based performance
diagnosis approach named InvarNet-X. InvarNet-X not only covers per-
formance anomaly detection but also root cause inference, both of which
are conducted under the consideration of operation context of big data
applications. The performance anomaly detection procedure is adopted
to trigger the cause inference procedure and accomplished by checking
the ARIMA model drift on Cycle Per Instruction (CPI) data of big data
applications. The oracle of cause inference is the unobservable root causes
of performance problems always expose themselves via the violations
of the associations amongst directly observable performance metrics.
In InvarNet-X, such observable associations as the likely invariants are
established by the Maximal Information Criteria (MIC) and each perfor-
mance problem is signified by a set of violations of those likely invariants.
Finally, the root cause is uncovered by searching a similar signature in
the signature database. With such a comprehensive analysis, InvarNet-X
can provide much detailed clues for performance problems and even pin-
point the root causes if the signature database is given. Through exper-
imental evaluations in a small prototype, we find out InvarNet-X can
achieve an average 91 % precision and 87 % recall in diagnosing some real
faults reported in software bug repositories, which is superior to several
state-of-the-art approaches. Meanwhile, the local modeling methodology
makes InvarNet-X easily facilitated in real-time and large scale big data
platforms.

Keywords: Big data · Hadoop · Observable likely invariant · Perfor-
mance diagnosis

1 Introduction

Big data becomes an inevitable trend at present and in the foreseeable future.
The popularity of big data attracts many researchers and engineers to devote
c© Springer International Publishing Switzerland 2014
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themselves to mining the valuable knowledge in the scrambled data piles. How-
ever, during the transformation from ‘big data’ to ‘big value’, the performance
and reliability of the big data platform deserves the same attention. As a general
case, the big data platforms, most if not all, are deployed in large scale distrib-
uted systems with thousands of machines using parallel programming such as
MapReduce as their program paradigm. In such a huge platform, performance
anomalies, faults and failures become commonplace due to the complex interac-
tions in the intricate software stacks [1]. In our previous study [2], we summarized
the causes of faults in several widely used open software systems such as Hadoop.
One part of the causes are the operational environment changes such as resource
utilization hog, workload fluctuation and misconfiguration and the other part
are the bugs rooted in the software stacks such as memory leak and lock race.
In the big data software stacks, hadoop, no-sql databases, et al. are all the can-
didate hotbeds of these faults. In addition to that, new faults emerge in the big
data platform due to the inherent complexity and three “V”s (i.e. Velocity, Vol-
ume and Variety1) of big data. The typical bugs are out of memory (OOM) and
disk space exhaustion. For instance a bug, MapReduce-1182, shows OOM when
the data becomes huge. The bug tells us under the low data-intensive workloads,
“shuffle” in memory may be all right but under high data-intensive workloads,
the memory is bloated. The faults and failures mentioned above abate the profit
brought by big data technology. Thus both of performance and reliability should
be the important concerns when setting up a big data platform.

Performance diagnosis as the first line of defending software faults is in charge
of finding out the hidden root causes of performance problems. However due to
the huge cardinality of suspicious cause set, precise diagnosis in large distrib-
uted system is an extraordinarily difficult target to achieve. The difficulty is
exacerbated in big data platform embodied in the following aspects.

a. Unlike the web-based applications, the execution duration of big data appli-
cation is long ranging from several hours to several days (e.g. human genome
analysis). Therefore the commonly used QoS metrics like response time or
throughput are not suitable any more to monitor in real time. A new key
performance indicator (KPI) is urgently needed.

b. The type of big data application varies a lot including both of the batch
type and interactive type workloads. These two types of workloads exhibit
completely different characteristics and need distinct considerations.

c. The big data platform always possesses tens of thousands of heterogeneous
machines which requires the performance diagnosis approach can flexibly
adapt to the scale and heterogeneity.

A wide spectrum of research has been done in this field. But most of them
focus on fault location in a coarse granularity (e.g. VM or node level [3–5]). Few
of them emphasize the root cause inference in a fine granularity (e.g. metric
level). Recently an invariant-based performance diagnosis approach is proposed
1 New properties like “Veracity” are added recently. But we still use the widely

accepted three “V”s.
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in [6,7] which shares a similar idea with ours. It constructs an invariant network
by capturing the stable temporal and spatial relationships amongst the perfor-
mance metrics collected from the whole distributed system in a pair-wise manner.
This approach can work in real time and infer the root causes at fine granularity.
However it’s insufficient due to its workload agnostic, linear modeling and com-
putationally intractable global invariant construction.

Considering the aforementioned challenges and the weakness of the current
research, we propose a comprehensive invariant based performance diagnosis
approach, InvarNet-X. The goal of InvarNet-X is to pinpoint the root causes
for those problems whose causes are recurrent and investigated2 and provide
some hints for the unknown problems on the fly. To reduce the cost of unnec-
essary performance diagnosis, InvarNet-X first conducts the anomaly detection
procedure by checking the autoregressive integrated moving average (ARIMA)
model drift on CPI data of big data applications then triggers cause inference
procedure. In InvarNet-X, each performance problem is signified by a set of vio-
lations of likely invariants constructed by MIC [10] and stored in a signature
database. Finally, the real culprits are captured by searching the similar sig-
natures in the signature database. InvarNet-X works under the consideration
of operation context in order to adapt to the varying workloads and hardware
heterogeneity. Via experimental evaluations in a small prototype, we find out
InvarNet-X can achieve an average 91 % precision and 87 % recall in diagnos-
ing some real faults which is superior to several state-of-the-art approaches.
Our contribution is three-fold:

– We propose a new performance anomaly detection method by checking
ARIMA model drift on CPI data for big data applications.

– We introduce a novel invariant construction method with MIC and build a
signature database for each performance problem using the MIC invariant.

– We design and implement InvarNet-X to evaluate the accuracy and efficacy
of our approach. The experimental results show that our approach can find
out the culprits accurately.

The rest of this paper is organized as follows. Section 2 depicts the basic idea
and problem formulation of InvarNet-X. Section 3 demonstrates the details of
InvarNet-X. Section 4 shows the experimental evaluation and comparisons with
several state-of-the-art approaches. Section 5 shows the related work. And Sect. 6
concludes this paper.

2 Problem Formulation

Our work is motivated by the methodology in medical science. The diseases have
distinct behaviors from the perspective of some observable symptoms. Thus
a conventional method to diagnose a disease is to look for a similar charac-
teristic of observable symptoms from historical knowledge of investigated dis-
eases. The historical knowledge is organized as a ‘symptom-disease’ database.
2 These problems take up 50 %–90 % in the known performance problems [8].
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In the same manner, the software system can exhibit the distinct behaviors
from the viewpoint of performance metrics. The unobservable root causes of
performance problems can be investigated via the directly observable runtime
performance metrics. The essential work is to build the mapping function from
the characteristics of performance metrics to hidden root causes. An ideal func-
tion is a one-to-one mapping. As a new exploration, Jiang [6,7] proposed an
invariant-based mapping which means the performance states are characterized
by the space spanned by the invariants. Our approach shares the similar idea
with Jiang’s work but makes some improvements. The invariants in this paper
are the statistically invariant associations between performance metrics, defined
as “observable likely invariant”, rather than invariant statements or variables
which are stated in previous study [9]. For instance, if the correlation coefficient
between “used memory” and “CPU utilization” stays constant, we say these two
metrics forms an invariant. Let H denote the monitoring data collected from nor-
mal period and F denote the monitoring data from the same system during a
recent performance problem (e.g. system hang). Both of H and F comprise n
performance metrics: (M1,M2, · · ·,Mn). We construct all the invariants of H in
a pair-wise manner and make them as the baseline of metric associations. These
invariants are denoted by matrix I where each entry IMi,Mj

(i �= j) represents an
invariant formed by metric Mi and Mj . Next, we use the same method to calcu-
late the metric associations of F denoted by matrix A, where each entry AMi,Mj

denotes the association between metric Mi and Mj . If |IMi,Mj
− AMi,Mj

| ≥ ε a
violation occurs where ε is the preset threshold, say ε = 0.2 in this paper. All the
violations constitute a binary tuple (0, 1, 1, 0, · · ·, 0) (“0” implies no violation,“1”
implies violation) which is used to signify a performance problem uniquely. The
length of the tuple is determined by the number of entries in matrix I. Aggre-
gating all the binary tuples constructed for multiple performance problems, a
signature database is established and will be used in the future performance
diagnosis. Different from Jiang’s work, we adopt MIC to calculate the metric
associations instead of “ARX” [6,7] due to the excellent association discovery
power of MIC.

As we know, performance diagnosis is laborious and time-consuming. Hence
choosing the right time to conduct performance diagnosis can reduce some unnec-
essary cost. In our previous work [11], we use the ARIMA model drift on several
performance metrics (e.g. CPU utilization) to detect the performance anomaly.
However, that method shows weak power to resist the system noise such as the
resource utilization fluctuation. Therefore we set up the ARIMA model on CPI
instead of other performance metrics. If a performance anomaly is detected, the
cause inference procedure is triggered. We first calculate the violation tuple under
the current abnormal situation then retrieve a similar signature in the signature
database. If a similar signature is found, the culprit is pinpointed otherwise we
provide some hints and leave the problem to the system administrators who will
manually investigate the problems. Once the performance problems is resolved,
a new signature will be added into the signature base.
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To adapt to the varying workloads and heterogeneous hardware, we propose
the concept of “operation context”. The operation context contains the workload
type and node ID in this paper. InvarNet-X works under the consideration of
operation context which means the performance model and signature database
are built for each workload on each node.

Restrictions: In this paper we only validate our approach in Hadoop-based big
data platforms due to its open source and widespread use. When a batch job
submitted to Hadoop, Hadoop works in the FIFO mode which means the job
takes up the cluster exclusively [12]. This makes InvarNet-X distinguish the
jobs clearly. But the restriction doesn’t exist when Hadoop processes interactive
jobs. The performance problem is restricted on performance degradation rather
than sudden crash in order to guarantee InvarNet-X can collect enough data to
proceed diagnosis. From our previous work [2], we observe that large number of
bugs can cause performance degradation such as memory leak bug. And Tan [13]
also claimed 31 % bug manifested as degraded performance problem in Hadoop.
Therefore our system focuses on diagnosing these problems.

Figure 1 demonstrates the basic idea of the this paper. From the figure, we
can see the invariant associations between M1 −M2 and M2 −M3 on slave-3 are
violated. By searching a similar signature in the signature database, we find out
the root cause is a CPU-hog.

3 System Design

We adopt a centralized mode to implement InvarNet-X. Figure 3 shows the archi-
tecture of InvarNet-X. InvarNet-X leverages the performance metrics and CPI
data collected from the Hadoop nodes to build the performance model, invariants

Fig. 1. The basic idea of InvarNet-
X. Each small circle denotes a per-
formance metric. The line between
two performance metrics denotes the
invariants and the dash line denotes the
violated invariants.

Fig. 2. The CPI and execution time
changes of Wordcount before and after
CPU utilization disturbance. The CPU
disturbance starts at 450 point and
ends at 480 point
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and problem signature database for each batch job and interactive job separately.
The output of InvarNet-X is a list of root causes which puts the most probable
causes in the top. The fault injection module is used to inject faults in Hadoop
JobTracker, configuration files, data blocks or operating system in order to vali-
date the effectiveness of InvarNet-X. In the following, we will discuss the details
of InvarNet-X.

InvarNet-X mainly contains two parts and five modules shown in Fig. 3.
The offline part contains three modules: performance model building, invari-
ant construction and signature base building. The performance model building
module establishes ARIMA models for specific types of workloads to describe
the dynamics of CPI data. If the model on CPI data drifts, an anomaly occurs.
The invariant construction module is responsible in discovering the MIC invari-
ants amongst the performance metrics. Next, the MIC invariants are fed into the
signature base building module which will find out all the violations of invari-
ants under specific performance problems and store the violation tuples as the
signatures of corresponding performance problems in a signature database. The
online part contains two modules: performance anomaly detection and cause
inference. When an anomaly of CPI is detected in performance detection mod-
ule, the cause inference is triggered. Firstly, a violation tuple is generated by
checking all the violations of invariants when the performance problem occurs.
Secondly, the signatures in the signature database with a high similarity score
to the violation tuple are selected. Finally the root causes corresponding to the
selected signatures are reported. Compared to our previous work [11], we make
several improvements on two modules including performance anomaly detection
and invariant construction, other modules keep the same as before. Before we
discuss the details of improvements, we first demonstrate that CPI can be a KPI
of big data applications in order to detect the performance anomaly in real time.

Fig. 3. The architecture of InvarNet-X



130 P. Chen et al.

3.1 CPI as a KPI

In our preliminary work [11], we utilized a specific resource (e.g. CPU or mem-
ory) utilization as the KPI. It indeed indicates some performance problems in
most cases. But it may mislead anomaly detection result under the disturbance
of system noise. To validate this perspective, we inject resource utilization dis-
turbance to mimic the system noise when the job (e.g. Wordcount) is running.
From the results we observe that the execution time of some jobs have no changes
although they are suffering from anomalies. Figure 2 shows the CPI changes of
Wordcount before and after the CPU utilization disturbance (additional 30 %
CPU utilization for 300 s). The CPU disturbance doesn’t enlarge the execution
time while the CPI keeps unaffected. Therefore a more robust KPI should be
proposed to reflect the performance of the big data application.

For a specific program compiled to run on a specific machine, the execution
time of this program could be expressed as:

T = I ∗ CPI ∗ C,

where I denotes the total instructions of this program, CPI denotes cycles per
instruction, C denotes the time length (second) of one cycle. In this equation, I
and C are fixed. Hence the execution time T only depends on CPI and CPI can
be a candidate KPI of the big data application. To further validate this new KPI,
we choose several types of jobs in BigDataBench [14] including batch type: Word-
count, Sort, Bayes classifier and interactive type: TPC-DS workloads (8 queries
run in a mixed mode). 15 GB test data is generated using the BigDataBench.
Four-group tests are designed. In each group, only one type of job is repeated for
25 times. And during the job running, we inject several faults such as network
jam, CPU hog and disk hog to make the execution time of these jobs varies.
During each time of running we collect the CPI data every 10 s and employ the

Fig. 4. The CPI changes with the execution time of Hadoop jobs
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95 % percentile of CPI data as a sufficient statistics for one run. Other statistics
like average are also applicable. For each job, the execution time and the 95 %
percentile of CPI data is normalized to the minimum value respectively in one
group. Due to the limited space, we only show the CPI data and execution time
of wordcount and sort in Fig. 4. From Fig. 4 (a) and (b), we observe that the
CPI changes with the execution time consistently. The correlation coefficient of
these two metrics is 0.97 and 0.95 for wordcount and sort respectively. Figure 4
(c) and (b) demonstrate the scatter plot of CPI and execution time. And we use
a 2-order polynomial function to fit these data and conclude that CPI increases
monotonously with the job execution time. All the evidences show that CPI
can be a stable performance indicator of big data applications. Actually, Zhang
et al. [16] also utilize CPI as a performance indicator of CPU interference.

3.2 Performance Anomaly Detection

We employ the method proposed in our previous work [11] to detect the perfor-
mance anomaly. But this paper uses CPI data rather than conventional perfor-
mance metrics to build ARIMA model. If the reader wants to know the detail
of ARIMA model building, please refer to [11]. The ARIMA model of CPI data
in the normal state is first established and stored in an XML file in a five-tuple:
(p, d, q, ip, type) format where the first three elements are the parameters of
ARIMA, ip is the ip address of a Hadoop node and type is the workload type. To
model the distinct characteristics of CPI data at “Map” and “Reduce” phases
of Hadoop workloads, we utilize N (e.g. 10) complete normal execution traces
of CPI data of a specific type of workload to train the ARIMA model. When
a new job arrives at the platform, InvarNet-X selects a performance model for
performance anomaly detection from the archived models instantly. A simple
threshold based anomaly detection method is proposed in [11]. That is if

ξ = |M ′
cpi(t) − Mcpi(t)| > α

a performance anomaly occurs where Mcpi(t) is the CPI data at time t, M ′
cpi(t)

is the CPI data predicted by ARIMA model using previous CPI data and α is
the preset threshold. But how to set the threshold still remains a problem. In
this paper, we propose three guiding rules to set the threshold. Each type of
workload is repeated for N times, say 20 under normal state. Next, we use the
trained ARIMA model to fit the CPI data during N runs. The absolute value of
fitting residual is denoted by R. The three rules are listed below. To make the
performance anomaly detection more robust to resist system noises, we report
a performance problem when the anomaly occurs for three times continuously.
The effectiveness of these rules will be discussed in the Sect. 4.

– max-min. Use max(R) as the upper bar, min(R) as the lower bar. If ξ >
max(R) or ξ < min(R), an anomaly occurs.

– 95-percentile. Use the 95 % percentile of R as the threshold.
– beta-max. Use β ∗ max(R) as the threshold where β is a fluctuation factor

which is used to cover the unobserved value escaped from the test. We set
β = 1.2 in this paper.
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3.3 Invariants Construction

We use MIC to discover the association between two performance metrics. The
detailed description of MIC could be found in [10]. Fore each metric pair X,Y ,
their association coefficient is represented by the MIC(X,Y ) score which falls in
the region [0, 1]. In this paper, a simple but exhaustive pair-wise search method is
adopted to calculate all the associations. Suppose M metrics are collected from a
specific node, in theory, M(M −1)/2 association pairs should be generated. How-
ever not all of the association pairs are invariants. The stable ones which don’t
fluctuate too much under the normal state are regarded as the invariants. Under
the normal state, one type of workload is repeated for N times. We use an asso-
ciation matrix to save the association pairs, denoted as Ai where the superscript
denotes the ith run and each entry Ai(m,n) denotes the MIC score of metric
m and metric n. Let the vector V (m,n) = (A1(m,n), A2(m,n), · · · , AN (m,n))
denote the association coefficients of metric pair (m,n) over N runs. If a asso-
ciation pair doesn’t exist in one run, the MIC score is assigned 0. We further
select the association pairs satisfying the following condition: Max(V (m,n)) −
Min(V (m,n)) < τ . The threshold τ is a tunable parameter and is set 0.2 in this
paper. The invariant selection algorithm is shown in Algorithm1. When all the
invariants for one type of workload are discovered, we store them in an XML file
as a three-tuple (I, ip, type) where I stores all invariants in a matrix format, ip
is the ip address of a Hadoop node and type is the workload type.

Algorithm 1. Invariant selection
Input: A set of performance metrics in the N runs under the same workload in

the normal state: P 1 = (P 1
1 , P 1

2 , · · · , P 1
M ), P 2 = (P 2

1 , P 2
2 , · · · , P 2

M ), · · · , PN =
(PN

1 , PN
2 , · · · , PN

M ), M is the number of performance metrics;
Input: A preset threshold τ
Output: The set of invariants I;
1: for i = 1; i = N ; i + + do
2: for each metric m ∈ P i do
3: for each metric n ∈ P i do
4: Ai(m, n) = MIC(m, n);
5: end for
6: end for
7: end for
8: for each metric m ∈ P 1 do
9: for each metric n ∈ P 1 do

10: for i = 1; i = N ; i + + do
11: V (m, n) ← Ai(m, n) // V (m, n) is a vector
12: end for
13: if Max(V (m, n)) − Min(V (m, n)) < τ then
14: I(m, n) ← Max(V (m, n))
15: end if
16: end for
17: end for
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For each performance problem whose root cause is investigated (e.g. memory
leak), we build the association matrix Aabnormal when the performance problem
occurs. Then we compare Aabnormal with the invariants I of the same workload
in the same Hadoop node and find out all the violations according to Sect. 2.
The violations constitute a binary tuple and the tuple acts as the signature of
one performance problem. The signature is stored in the signature database in
the four-tuple format: (binary tuple, problem name, ip, workload type). As more
performance problems are diagnosed, the number of items in signature database
increases gradually.

If the cause inference procedure is triggered, we adopt the approach men-
tioned in [11] to report the most probable root cause whose similarity score is
the most close to the violation tuple. Until now the performance diagnosis is
finished.

4 Experimental Evaluation

We have implemented a prototype and deployed it in a controlled environment.
To collect the process and operating system performance metrics, a low over-
head and off-the-shelf tool, collectl, is employed. The collected 26 performance
metrics not only include coarse-grained CPU, memory, disk and network utiliza-
tion but also the fine-grained metrics such as CPU context switch per second,
memory page faults, etc. “perf” tool is used to collect the cycle and instruction
periodically by reading the corresponding registers in the hardware performance
counter on a per process basis. The collection interval is 10 s. Other parts of
InarNet-X are developed from scratch. In the following, we will give the details
of our experimental methodology and evaluation results.

4.1 Evaluation Methodology

Due to the lack of real operating platforms, our approach is only evaluated in a
controlled big data platform. But we believe it works well in a real system without
exceptions. The controlled platform contains five server machines hosting the
benchmark. Each physical machine is configured with two 4-core Xeon 2.1 GHZ
CPU processors, 16 GB memory, a 1 TB hard disk and a gigabit NIC and runs a
64-bit CentOS 6.2. All the servers are interconnected by a 8-port gigabit Switch.
We adopt Hadoop 1.0.2, Mahout 0.6, Hive 0.9 and Mysql 5.1 as the primary
software stack.

In this paper we choose four batch type of workloads: Sort, Wordcount, Grep
and Naive Bayesian classifier and one interactive type of workloads: TPC-DS in
BigDataBench, leaving other workloads for the future work. And the 8 queries
in TPC-DS run simultaneously in a mixed mode. During all the experiments,
15 GB data is generated by the tool in BigDataBench benchmark. According
to the reports in previous literature [13] and Hadoop bug repository [15], we
inject the following faults. For the performance problems caused by runtime
environment changes, we inject the following faults: (1) CPU-hog: a CPU-bound
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application co-locates with TaskTracker competing for CPU resource sharply;
(2) Mem-hog: a memory-bound application consumes a large number of mem-
ory on one data node; (3) Disk-hog: we use a disk-bound program to gener-
ate a mass of disk reads and writes on the data node; (4) Net-drop: we use a
fault injection tool “AnarchyApe” to mimic the packet loss on the name node;
(5) Net-delay: we use “AnarchyApe” to delay all the packets for 800 ms; (6)
Block Corruption (Block-C): we use “AnarchyApe” again to corrupt some data
blocks on one data node; (7) Misconf: we set a low value (e.g. 1M) for the item
“mapred.max.split.size” in the configure file; (8) Overload: we increase the cur-
rent number of interactive type of workloads; (9) Suspend: we use “AnarchyApe”
again to suspend the datanode or tasktracker process. For the performance prob-
lems caused by software bugs, we inject the following faults: (1) RPC-hang: the
bug HADOOP-6498 causes rpc call hang. To reproduce this bug, we use hadoop
inject framework to add a “sleep” statement to delay RPC call; (2) HADOOP-
9703 (H-7703): when the method “stop” of “org.apache.hadoop.ipc.Client” is
invoked, the thread leak happens. We use the hadoop fault inject framework to
reproduce the bug by invoking this function call. (3) HADOOP-1036 (H-1036):
we revert Hadoop to an older version and trigger the bug by throwing NullPoint-
erException; (4) Lock-R: we use hadoop fault inject framework to substitute
the method who has the property “synchronized” with a new method with-
out “synchronized”; (5) HADOOP-1970 (H-1970): hadoop fault inject frame-
work is also used to trigger this bug by interfering the communication thread;
(6) Block receiver exception (Block-R): we add an exception statement in the
“receivePacket” function of Class BlockReciever by hadoop inject framework. All
the injected faults are guaranteed to cause significant performance problems.

Each fault mentioned above is repeated for 40 times and lasts 5 min. Two of
them are used to train the signatures and the others are used to cause inference.
As the probability of multiple faults happening in the same node at the same time
is very tiny, we don’t consider multiple faults in this paper. Actually, our method
could be easily extended to multiple faults by listing multiple root causes whose
signatures are most similar to the violation tuple. We leverage two commonly
used metrics: precision and recall to evaluate the effectiveness of our prototype.

Recall =
Ntp

Ntp + Nfn
, P recision =

Ntp

Ntp + Nfp

where Ntp, Nfn, Nfp, and Ntn denote the number of true positives, false nega-
tives, false positives, and true negatives, respectively.

4.2 Performance Anomaly Detection

We use the performance anomaly detection method proposed in Sect. 3.2 to
detect the anomalies incurred by fault injections. Figure 5 shows the CPI pre-
diction residuals of Wordcount and TPC-DS using the trained ARIMA before
and after CPU-hog injection. Even a cursory glance at this figure, we can see the
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Fig. 5. The CPI prediction residuals before and after CPU-hog injection. (a) shows
the CPI prediction residuals of workload Wordcount ; (b) shows the CPI prediction
residuals of workload TPC-DS

Fig. 6. The anomaly detection results of “max-min”, “95-percentile” and “beta-max”.
(a) shows the results under workload Wordcount ; (b) shows the results under workload
TPC-DS

anomaly occurs when the CPU-hog is injected. We use the normal CPI data to
train ARIMA model and use the CPI data with CPU-hog to detect anomalies.
The result of anomaly detection is shown in Fig. 6 where “1” on y-axis denotes
anomaly. According to the ground truth, we observe that the 95 %-percentile
method has the worst detection result while the other two methods have very
similar results. However the “max-min” method has a larger computational com-
plexity than “beta-max” method due to additional “min” operation. Hence we
choose “beta-max” method as the final performance anomaly detection method.

4.3 Diagnosis Results

We evaluate InvarNet-X under both of batch type of workloads and interactive
type of workloads. Due to the limited space, we only show diagnosis results under
workload Wordcount and TPC-DS. In reality, the diagnosis results under other
workloads such as Sort are very similar to the shown results. Figure 7 shows
the diagnosis result under workload TPC-DS. From this figure, we observe that
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Fig. 7. The diagnosis result under workload TPC-DS

InvarNet-X achieves the perfect precision (100 %) and recall (99 %, 98 %) for
Overload and Suspend. Because these two faults can cause a large number of
violations of invariants which makes them easily distinguished from other faults
by InvarNet-X. However the recall of Lock-R is very low as Lock-R makes dif-
ferent violations in different runs leading to a high false positive. For these non-
deterministic problems, although InvarNet-X can’t precisely pinpoint the root
causes, it can provide some hints by showing the violated association pairs (e.g.
“lock number-cpu utilization”) Another interesting finding is the low accuracy of
Net-drop and Net-delay. Comparing the diagnosis results with the ground truth,
we find InvarNet-X mistakes Net-drop for Net-delay and vise versa sometimes
because these two faults have very similar signatures. That’s a typical “signature
conflict” which will be discussed in our future work. Figure 8 shows the diagno-
sis result under workload Wordcount. When Hadoop works in FIFO mode, one
job takes up the whole cluster exclusively. Therefore overload doesn’t happen
in this situation. Besides some similar characteristics with TPC-DS, the average
precision (91.2 %) and recall (87.3 %) of Wordcount are higher than the average
precision (88.1 %) and recall (86 %) of TPC-DS. That’s because TPC-DS is a
mixed workload including multiple different queries which may skew the per-
formance model (i.e. ARIMA) and invariants even in the normal state. While
Wordcount as a single batch job keeps a stable performance model and invari-
ants in the normal state. In other words, the batch type of workloads possess
higher quality of signatures.

Similar to our work, Jiang et al. [6,7] also propose an invariant based perfor-
mance diagnosis approach. In their work, they use autoregressive models with
exogenous inputs (ARX) to learn linear relationships between performance met-
rics. To compare with their work, we use ARX instead of MIC to implement
the invariant construction. And to further validate the necessity of operation
context, we implement another version of InvarNet-X without operation con-
text which only contains a single performance model and signature base for one
specific workload. Due to the limited space, we only show the diagnosis results
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Fig. 8. The diagnosis result under workload Wordcount

Fig. 9. The comparison of InvarNet-X, ARX and InvarNet-X (no operation context)
in precision

under workload Wordcount in Figs. 9 and 10. Figure 9 and Fig. 10 show the
diagnosis precision and recall of InvarNet-X, ARX and InvarNet-X (no opera-
tion context) respectively. From these two figures, we observe that the diagnosis
precision of InvarNet-X is about 9 % higher than the one of ARX while the diag-
nosis recall shows no significant differences. The invariants discovered by ARX
are rigorous linear relationships. The linear relationships can be broken easily
when a performance problem occurs meaning that ARX has a strong power to
capture the performance problems. However it has a weak power to distinguish
the performance problems due to many similar signatures. This is the reason
why we obtain the above observation. InvarNet-X without operation context
shows a very disappointing diagnosis accuracy no matter in precision and recall.
Therefore operation context is a necessary factor of performance diagnosis.
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Fig. 10. The comparison of InvarNet-X, ARX and InvarNet-X (no operation context)
in recall

Table 1. The overhead of InvarNet-X and ARX (/second)

Workload Perf-M Invar-C Invar-C (ARX ) Sig-B Perf-D Cause-I Cause-I

(ARX )

Wordcount 1.2 45 700 4 0.02 1.6 10

Sort 0.8 30 650 3 0.03 1.7 11

Grep 0.2 18 410 1.7 0.02 1.6 10

Interactive 0.5 16 380 1.5 0.03 1.6 12

4.4 Overhead

Here we only consider the CPU overhead because other types of overhead like
memory and disk caused by InvarNet-X are very small. The CPU overhead
contains six parts: data collection, performance model building (Perf-M), invari-
ant construction (Invar-C), signature building (Sig-B), performance anomaly
detection (Perf-D) and cause inference (Cause-I). The data collection costs no
more than 5 % CPU utilization. Table 1 shows the execution time of the other
five parts under different types of workloads. We observe that the execution
time of Perf-D and Cause-I stays below 2 s satisfying the online requirement.
While the execution time of Cause-I(ARX ) is around 10 s much larger than
Cause-I(InvarNet-X ). Although as an offline part, the execution time Invar-C
(InvarNet-X ) is up to 45 s, it is much lower than the one of Invar-C (ARX )
in one order of magnitude. Therefore InvarNet-X is computationally tractable
when it scales up in large scale big data platform.
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5 Related Work

A large quantity of work has been done in performance diagnosis of general
distributed systems. However most of them are concerned with fault location in
a coarse granularity (e.g. VM level [3–5]). Few of them emphasize the root cause
inference in a fine granularity. Towards performance diagnosis in MapReduce
(e.g. hadoop) system, the work could be roughly categorized into two classes:
log-based and correlation-based. The log-based method [13] can pinpoint the
buggy code in a very fine granularity (e.g. line of code) but it is hard to conduct
in real time. The correlation-based method [5] more often than not uses the peer-
similarity to find out the abnormal nodes assuming that the correlations amongst
the performance metrics of different nodes are stable. However an exceptional
case exists. Assume one bug exists in the platform, when the bug is triggered by
a certain job, say wordcount, all the nodes behave abnormally in a similar way
but the correlations are not deviated. In this case, the correlation-based method
will ignore this fault.

Recently an invariant-based performance diagnosis approach is proposed in
[6,7]. It constructs an invariant network by capturing the stable temporal and
spatial relationships amongst the performance metrics in a pair-wise manner.
A set of deviations of these invariants can indicate a specific fault. This app-
roach can work in real time and infer the root causes at fine granularity. How-
ever this method has the following limitations: (a) It is workload agnostic. As
pointed in [7], they selected 111 measurements form the system and 74 of them
are correlated with the workload. Moreover according to our work [11], it’s hard
to find out such a model suitable to all kinds of workloads. Hence workload is an
important factor in performance diagnosis. (b) It only considers linear relation-
ships between performance metrics leading to invariant missing. Due to highly
dynamical nature of software system, non-linearity is a more common case.
(c) The global constructions of invariant network and simultaneously checking
all the invariants in real time make it computationally intractable in the large
scale distributed environment.

6 Conclusion

This paper proposes a comprehensive invariant-based approach, InvarNet-X, to
pinpoint the culprits of performance problems in the big data platform. InvarNet-
X not only covers performance anomaly detection but also root cause inference.
The performance anomaly procedure is accomplished by checking the ARIMA
model drift on CPI data of big data applications. In InvarNet-X, the likely
invariants are established via MIC and each performance problem is signified by
a set of violations of those likely invariants. Finally, the root cause is uncovered
by searching a similar signature in the signature database. Through experimen-
tal evaluations in a small prototype, we find out InvarNet-X can achieve an
average 91 % precision and 87 % recall in diagnosing some real faults which is
superior to several state-of-the-art approaches. Meanwhile InvarNet-X causes a
low overhead to the system.
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Abstract. Hadoop is a widely used open source mapreduce framework.
Its performance is critical because it increases the usefulness of products
and services for a large number of companies who have adopted Hadoop
for their business purposes. One of the configuration parameters that
influences the resource allocation and thus the performance of a Hadoop
application is map slot value (MSV). MSV determines the number of map
tasks that run concurrently on a node. For a given architecture, a Hadoop
application has an MSV for which its performance is best. Furthermore,
there is not a single map slot value that is best for all applications.
A Hadoop application’s performance suffers when MSV is not the best.
Therefore, knowing the best MSV is important for an application. In this
work, we find a low-overhead method to predict the best MSV using a
new Hadoop counter that measures per-map task CPU utilization. Our
experiments on a variety of Hadoop applications show that using a single
MSV for all applications results in performance degradation up to 132 %
when compared to using the best MSV for each application.

1 Introduction

Hadoop is an open source mapreduce framework used by hundreds of compa-
nies for a variety of applications, which include indexing products in ecommerce
webservices, log analysis, reporting, analytics, and machine learning [2]. The per-
formance of Hadoop is important in increasing the usefulness of these products.

Performance tuning in Hadoop is a complex task as it has more than 150 con-
figuration parameters that directly or indirectly affect its resource utilization and
performance. The most common method for selecting best configuration values is
trying several possible values and manually tweaking them until a Hadoop appli-
cation completes in the least amount of time [1]. This process quickly becomes
cumbersome and inefficient when finding best values for more than one Hadoop
application. Thus, it is desirable to have a mechanism to select a best set of
configuration parameters. In this work, we find a mechanism to predict the best
value of a Hadoop parameter called map slot value.

Map slot value (MSV) is the maximum number of map tasks that run con-
currently on a tasktracker node. Its misconfiguration can create significant per-
formance degradation. We find that a Hadoop application has a select best MSV
or MSVs for which its performance is the best. Furthermore, there is not a single
c© Springer International Publishing Switzerland 2014
J. Zhan et al. (Eds.): BPOE 2014, LNCS 8807, pp. 141–153, 2014.
DOI: 10.1007/978-3-319-13021-7 11



142 K. Kc and V.W. Freeh

MSV that has the best performance for all Hadoop applications. For example, in
one of our experimental clusters there are four MSVs that have the best perfor-
mance for at least one application, but these MSVs have maximum performance
degradation as high as 132 %. Thus, it is important to know the best MSV for
an application in order to avoid its performance degradation.

In this paper, we present a method to reliably predict the best MSV with
low-overhead. Our method uses two new Hadoop counters that measure per-
map task CPU utilization and IO throughput. In the following sections of the
paper, we present the related work, describe Hadoop map phases, describe our
modifications, present the map phase completion time results, and describe the
prediction of MSV.

2 Related Work

Four areas of prior research are related to our work. The first area concerns
optimizing configuration parameters of Hadoop. Research in this area explores
different methods to obtain the optimal Hadoop configuration values. The meth-
ods include deriving the values from the optimal values of other jobs [9] or using
metrics obtained from extensive instrumentation to extrapolate the optimal val-
ues [5,7,8]. Our work does not require knowing optimal values of other jobs or
performing extensive instrumentation.

The second area of prior research is the optimization of resource utilization
by selecting the best predefined technique. These approaches offer an impor-
tant alternative method for optimizing performance behavior. They select the
best technique by using rules [3], using program analysis [11] or measuring the
completion time of several alternative implementations [13].

The third area of prior research is workload analysis of Hadoop jobs. These
studies focus on creating standardized benchmarks [6] or creating qualitative job
classes such as small, medium, and large duration jobs [10]. Our work can be
extended to correlate the previously studied job classes and their performance
behavior.

The fourth area that is closely related to our work is the research on Hadoop
schedulers. This work does not focus on optimizing the resource utilization of the
entire cluster, but rather focuses on optimizing resource utilization within the
resource bounds imposed by the fixed preconfigured MSV [12,14]. Our approach
finds the best MSV, which ensures the efficient utilization of the cluster resources.

In addition to prior research, PUMA is also used in our work [4]. PUMA is
a Hadoop benchmarking suite developed by Purdue University. PUMA includes
three mapreduce programs from the official Hadoop distribution and ten other
mapreduce programs. The collection of diverse applications makes it a useful
benchmarking suite. In our experiments, we use six PUMA Hadoop applications.
The remainder of the PUMA applications have similar characteristics on the
metrics we measure. The combination of the six with our custom applications
include the entire range of the measured metrics. In our future work, we plan to
evaluate additional benchmark programs, including all those in PUMA.
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3 Hadoop and Modifications

A Hadoop application consists of map and reduce tasks. A map task processes a
block of data and produces key-value output pairs. The map output is partitioned
according to the range of the key. A reduce task aggregates and operates on the
map output key-value pairs that fall under the assigned key range partition.

The map phase is usually the most time consuming operation of a Hadoop
application. The applications used in our work, which represent common Hadoop
applications, have an average map time of 67 % of the total job runtime. The
lowest map time for an application is 42 % of the total job runtime whereas the
highest map time is 85 % of the total job runtime. Due to this reason, in this
work we focus on optimizing the map runtime.

3.1 Map Phases

A map task consists of 6 phases, which are compute, collect, sort, spill, combine,
and merge-spill. In the compute phase, a map task applies the map function to
each input key-value pair. In the collect phase, the map task stores the processed
key-value pairs in a map output buffer. The sort phase occurs between collect
and spill operations. In this phase, the output key-value pairs are sorted before
the spilling occurs. When the map output buffer is full, the map task empties
the buffer by spilling its content to a spill file in the local disk. This is the spill
phase. The combine phase is optional and when present, the map task performs
a local reduce operation on the map output key-value pairs. In the merge-spill
phase, the spill files are merged together to produce a single map output file.

Each phase in the map task is either CPU or IO intensive. The CPU intensive
phases are compute, collect, sort, and combine. The IO intensive phases are spill
and merge-spill.

3.2 Modifications

Our approach predicts the best MSV using the CPU utilization and IO through-
put metrics of a map task. The metrics are derived from the durations of the map
phases. The best MSV is the MSV setting for which an application has the short-
est completion time. An application has the best performance when all CPUs are
fully utilized. Additionally, IO bound applications suffer performance degrada-
tion when the IO bandwidth is fully consumed. Thus, the best MSV setting either
utilizes all CPUs efficiently or in case of an IO bound application fully utilizes
the IO bandwidth. For MSVs greater than the best, the parallelism is too great,
resulting in either CPU or IO performance degradation. The CPU performance
degradation occurs due to additional system overhead for the larger number of
processes. The IO performance degradation occurs due to higher contention for
the IO bandwidth which lowers the overall IO throughput of the system. On the
other hand, for MSVs lower than the best, the parallelism is low, resulting in
either CPU or IO underutilization. When the CPU is underutilized, the CPU
user and system time is low. When the IO resource is underutilized, there is
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leftover IO bandwidth available for use. In both cases, additional tasks can be
run to use the leftover resources and improve the application completion time.

We use Hadoop counters to measure per-map task CPU utilization and IO
throughput. Counters are built-in low-overhead metrics in Hadoop. They report
important task and job related statistics. By default, a Hadoop task collects at
least 16 statistical values using the counters. An example of a Hadoop counter
is HDFS BYTES WRITTEN, which records the total amount of output data
written to HDFS by reduce tasks.

We introduce two new counters CPU UTIL and IO THRPUT to measure
per-map task CPU utilization and IO throughput. CPU UTIL is the sum of
the time taken by the CPU intensive phases of a map task, which are compute,
collect, sort, and combine. IO THRPUT is the quotient of total map output bytes
divided by the map task duration. The overhead of these counters is insignificant
and is same as maintaining other existing Hadoop counters. Additionally, as
map tasks have homogeneous CPU and IO behavior, we only need to measure
the counter values of a map task instance to estimate the best MSV for an
application.

4 Evaluation

In this section, we describe the experimental setup, analyze the performance of
the Hadoop applications for different MSVs, and describe the prediction of MSV
using the metric values.

4.1 Experimental Setup

Experiments are performed on two clusters. The first cluster consists of six IBM
PowerPC machines. Each node contains two POWER7 processors with 24 cores
and 48 total CPU threads, 90 GB RAM, and a 10 Gbps Ethernet network link.
In the PowerPC cluster, Hadoop is configured with one jobtracker and five task-
trackers. HDFS is configured with one namenode and five datanodes. The sec-
ond cluster consists of six x86 machines. Each node contains two Intel Xeon x86
processors with 8 cores and 16 total CPU threads, 24 GB RAM, and a 10 Gbps
Ethernet link. As in the PowerPC, in this cluster, Hadoop is configured with one
jobtracker and five tasktrackers. HDFS is configured with one namenode and
five datanodes.

Our experiments use thirteen Hadoop applications, among which six applica-
tions are from PUMA benchmark suite [4] and the remaining seven applications
are customized versions of terasort. The PUMA applications are grep, word-
count, invertedindex, rankedinvertedindex, terasort, and termvectorperhost. The
PUMA applications use wikipedia dataset. Terasort and its variants use the data
generated by teragen.

We use the variants of terasort in order to explore the entire spectrum of
CPU utilization and IO throughput values. Among the PUMA applications, the
lowest CPU utilization of a map task is 36 % for terasort and the highest is
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Table 1. Utilization and throughput in the ascending order of CPU UTIL for PowerPC
cluster.

Applications CPU UTIL (%) IO THRPUT (MB/s)

terasort 36 7.31

rankedinvertedindex 40 4.42

terasort(L10, D100) 46 4.79

terasort(L30, D100) 58 3.87

wordcount 58 2.84

invertedindex 65 1.99

terasort(L60, D100) 69 3.02

termvectorperhost 75 3.77

terasort(L100, D100) 77 2.29

terasort(L200, D100) 87 1.41

terasort(L500, D100) 94 0.65

terasort(L10, D1) 97 0.11

grep 97 0.01

97 % for grep. Similarly, the lowest IO throughput is 0.01 MB/s for grep and
the highest is 7.31 MB/s for terasort. However, the PUMA applications do not
include all CPU utilization values between 36 % and 97 % or all IO through-
put values between 0.01 MB/s and 7.31 MB/s. In order to include the entire
utilization spectrum, in the terasort application we add a variable number of
extra busy loops and to include the entire IO throughput spectrum we vary the
amount of map output data. Table 1 shows that after adding the terasort vari-
ants, the applications include the entire spectrum of CPU utilization from 36 %
to 99 % and IO throughput from 0.01 MB/s to 7.31 MB/s. The terasort variants
are listed by showing the number of busy loops and the amount of output data.
For the terasort variant terasort(L10, D100), L represents the number of busy
loops and D represents the percentage of input data that is converted to output.
Thus, terasort(L10, D100) executes 10 extra busy loops for each key-value pair
and outputs 100 % of the input data. The highest number of busy loops is 500
and the lowest amount of output data is 0.01 %. The variables L and D are used
to control the CPU utilization and IO throughput of a map task. Increasing the
value of L increases the amount of CPU computation performed by a map task.
Additionally, decreasing the value of D decreases the amount of output data
produced by a map task.

4.2 Performance Analysis

Table 2 shows the normalized performance behavior of the thirteen applications
for different MSVs and normalized MSVs for PowerPC cluster with 150 GB data.
The normalized MSV is the MSV relative to the number of CPU threads in a
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Table 2. Normalized performance and the best completion time (in parentheses) for
different MSVs on the PowerPC cluster with 150 GB datasize.

Data size = 150 GB, CPU cores per node = 24, CPU threads per node = 48

Job MSV(normalized)

16 24 32 40 48 56 64

(0.33) (0.50) (0.67) (0.83) (1) (1.17) (1.33)

terasort 1.17 1(258 s) 1.02 1.18 1.89 2.32 2.51

rankedinvertedindex 1.30 1.09 1.01 1(453 s) 1.11 1.09 1.23

terasort(L10, D100) 1.28 1.07 1.01 1(350 s) 1.16 1.03 1.19

terasort(L30, D100) 1.34 1.20 1.14 1.08 1.19 1(470 s) 1.17

word count 1.57 1.26 1.26 1.06 1.08 1(564 s) 1.04

invertedindex 1.49 1.21 1.21 1.06 1.09 1(620 s) 1.02

terasort(L60, D100) 1.19 1.13 1.15 1.11 1.14 1(689 s) 1.13

termvectorperhost 1.38 1.16 1.16 1.02 1.08 1(694 s) 1.02

terasort(L100, D100) 1.15 1.08 1.10 1.07 1.01 1(948 s) 1.09

terasort(L200, D100) 1.16 1.10 1.10 1.10 1.13 1(1539 s) 1.12

terasort(L500, D100) 1.15 1.08 1.11 1.09 1.06 1(3459 s) 1.05

terasort(L10, D1) 1.13 1(173 s) 1.01 1.20 1.59 1.90 1.98

grep 1.18 1.05 1.05 1(245 s) 1.11 1.39 1.40

Average 1.27 1.11 1.11 1.07 1.20 1.21 1.30

# of best values 0 2 0 3 0 8 0

node.1 The normalized MSVs are shown in parentheses alongside the MSVs in
the header of the table. For the PowerPC machines, a normalized MSV of 1
means an actual MSV of 48, which is equal to 1 map task per CPU thread (or 2
map tasks per core). The best performance value is 1 and it denotes the shortest
completion time of an application for the set of MSVs used in the experiments.
The best MSV is the one for which an application has the shortest completion
time. The shortest completion time is shown in parentheses for each application.
In the PowerPC cluster, MSV is set to values from 16 to 64 in increments of 8.
Below 16 and beyond 64, the applications suffer slowdown and those results are
omitted.

Table 2 shows that there is a best value for each application and there is not
a single MSV that is best for all applications. Every application in the table
has select best MSV or MSVs (six applications have MSV≤ 1.02). For example,
terasort and wordcount have best MSVs of 24 and 56. Additionally, the table
1 The machines used in our experiments have hyperthreading enabled. Thus the CPU

schedulable contexts as seen by operating system is greater than the number of cores.
In a hyperthreaded system, the metric CPU UTIL measures the utilization of the
threads, and a 100 % utilization occurs when all threads are busy rather than when
all cores are busy.
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Table 3. Normalized performance the best completion time (in parentheses) for
different MSVs on PowerPC cluster with 300 GB datasize.

Data size= 300GB, CPU cores per node=24, CPU threads per node=48

Job MSV(normalized)

16 24 32 40 48 56 64

(0.33) (0.50) (0.67) (0.83) (1) (1.17) (1.33)

terasort 1.13 1(519 s) 1.06 1.57 2.42 2.49 2.92

rankedinvertedindex 1.32 1.09 1.02 1(771 s) 1.22 1.47 2.09

terasort(L10,D100) 1.27 1.09 1(663 s) 1.03 1.42 1.14 1.73

terasort(L30,D100) 1.32 1.12 1.10 1.04 1.02 1(939 s) 1.11

word count 1.52 1.22 1.09 1.03 1.03 1(1110 s) 1.02

invertedindex 1.49 1.20 1.09 1.03 1.02 1.01 1(1307 s)

terasort(L60,D100) 1.19 1.14 1.09 1.05 1.03 1(1328 s) 1.09

termvectorperhost 1.35 1.18 1.12 1.07 1.02 1(1368 s) 1.03

terasort(L100,D100) 1.17 1.15 1.11 1.04 1.03 1(1800 s) 1.09

terasort(L200,D100) 1.16 1.14 1.13 1.07 1.05 1(3030 s) 1.06

terasort(L500,D100) 1.14 1.13 1.11 1.09 1.05 1(6814 s) 1.07

terasort(L10,D1) 1.08 1(248 s) 1.01 1.02 1.20 1.17 1.23

grep 1.33 1.17 1.05 1(513 s) 1.01 1.06 1.03

Average 1.27 1.13 1.07 1.08 1.19 1.18 1.34

# of best values 0 2 1 2 0 7 1

does not have a single MSV that is best for all applications. The last row shows
the number of best values for different MSVs. MSVs 24, 40, and 56 are best for
2, 3, and 8 applications. One significant MSV is 40, which has lowest average
performance value of 1.07. This is 7 % higher than the theoretical best perfor-
mance value of 1. But, it has a maximum slowdown of 20 % for terasort(L10,
D10). Thus, picking MSV 40 for all applications is not an adequate best solu-
tion. Additionally, while MSV of 56 is best for the most applications, it has a
slowdown of 132 % for terasort. This further reinforces that a single MSV is not
a best choice for all applications.

In order to test if these results are generally applicable, we also run these
applications on both a larger dataset size and a different architecture (x86).
Table 3 shows the normalized performance behavior of the PowerPC cluster for
300 GB dataset. The results show performance behavior similar to the PowerPC
cluster with 150 GB data size. In Table 3, MSVs 24, 32, 40, and 56 are best for
at least one application. MSV 32 has the lowest average performance value of
1.07. It has a maximum slowdown of 13 %.

Table 4 shows the normalized performance behavior of the x86 cluster for
150 GB dataset. It shows that MSVs 8, 12, and 16 are best for at least one
application. As the number of cores and threads are different in the x86 cluster,
for the experiment, MSV is set to values from 4 to 24 with increments of 4.
Beyond 24, the applications suffer slowdown. MSV 12 has the lowest average
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Table 4. Normalized performance the best completion time (in parentheses) for dif-
ferent MSVs on x86 cluster with 150 GB datasize.

Data size = 150 GB, CPU cores per node = 8, CPU threads per node = 16

Job MSV(normalized)

4 8 12 16 20 24

(0.25) (0.50) (0.75) (1) (1.25) (1.5)

terasort 1.14 1(2688 s) 1.05 1.11 1.34 1.46

rankedinvertedindex 1.09 1(1676 s) 1.11 1.24 1.35 1.44

terasort(L10, D100) 1.13 1(2172 s) 1.09 1.21 1.31 1.44

terasort(L30, D100) 1.39 1.12 1(2670 s) 1.05 1.11 1.42

word count 1.88 1.04 1(1337 s) 1.17 1.12 1.21

invertedindex 2.36 1(509 s) 1.09 1.41 1.95 2.13

terasort(L60, D100) 1.24 1.24 1.01 1(2732 s) 1.17 1.41

termvectorperhost 1.56 1.10 1.09 1(536 s) 1.13 1.20

terasort(L100, D100) 1.61 1.29 1.14 1(2871 s) 1.23 1.40

terasort(L200, D100) 1.54 1.18 1.13 1(3114 s) 1.11 1.21

terasort(L500, D100) 1.85 1.25 1.16 1(3960 s) 1.09 1.27

terasort(L10, D1) 1.04 1(883 s) 1.05 1.08 1.06 1.07

grep 1.57 1.12 1(352 s) 1.05 1.09 1.10

Average 1.49 1.1 1.08 1.11 1.24 1.37

# of best values 0 5 3 5 0 0

performance value of 1.08, which is 8 % higher than the best average performance
value. It has a maximum slowdown of 16 %. Thus, in the three cases tested, there
is not a single MSV that is best for all applications.

4.3 Prediction

Table 1 shows an inverse linear relationship between CPU UTIL and IO THR-
PUT metrics. When CPU UTIL increases, IO THRPUT decreases and vice
versa. Using linear regression of Table 1 data, we can approximate IO THRPUT
for the PowerPC cluster. Therefore, while searching for a metric to predict best
MSV for a Hadoop application, we only use the values of CPU UTIL. Figure 1
shows the normalized best MSVs for the CPU utilization combinations of all 13
applications.

In Fig. 1, the applications are divided into three general regions: IO-intensive,
Balanced, and CPU-intensive. Each region is based on a different range of
CPU UTIL and a predictable range of best MSV. IO-intensive region has appli-
cations with low CPU UTIL (36 %–60 %). This region is called IO-intensive
because applications in this region have high IO UTIL. The normalized best
MSVs of applications in this region are less than 1.0. Balanced region has
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Fig. 1. Classification for applications running on PowerPC cluster.

Fig. 2. CPU utilization, IO throughput, and completion time (shown in relative vertical
heights) of an IO-intensive application (terasort).

applications with medium CPU UTIL (60 %–90 %). The normalized best MSVs
of applications in this region are greater than 1.0. CPU-intensive region has
applications with high CPU UTIL (90 %–100 %). Applications in this region
have low IO UTIL. The best normalized MSVs of applications in this region
are less than 1.0. The normalized best MSVs greater than 1.0 means that the
number of map tasks exceeds the number of CPU threads in the system. This
indicates that the applications are scalable. On the other hand, the best normal-
ized MSVs less than 1.0 indicate that the applications are not scalable and face
resource bottlenecks. The scalable nature of Balanced region and the bottlenecks
of IO-intensive and CPU-intensive regions are described with examples in the
following paragraphs.

Figures 2, 3, and 4 show the CPU and IO behavior of a tasktracker node
for an application of each region. The figures show the node behavior including
the completion time for all MSVs and help to explain the performance of an
application when MSV is the best. In the figures, the CPU utilization is divided
into user, system, and iowait states. The metric user is the time spent by the map
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Fig. 3. CPU utilization, IO throughput, and completion time (shown in relative vertical
heights) of a Balanced application (invertedindex).

Fig. 4. CPU utilization, IO throughput, and completion time (shown in relative vertical
heights) of a CPU-intensive application (grep).

tasks, system is the time spent by kernel, and iowait is the time spent waiting
for IO operation to complete. Each figure is described as follows.

Figure 2 shows the node behavior of terasort, which falls in IO-intensive
region. The figure shows 24 as the best MSV. In Fig. 2, the IO throughput
increases until MSV is 24. For MSV greater than 24, the IO throughput decreases
and there is an increase in iowait. This suggests that beyond 24 MSV, increasing
parallelism merely increases IO pressure and overhead due to the IO pressure.
This explains the lower relative best MSV for applications in IO-intensive region.

Figure 3 shows the node behavior of invertedindex, which falls in Balanced
region. The figure shows 56 as the best MSV. In Fig. 3, the user CPU increases
until MSV is 56. After 56, the user CPU levels off without showing performance
improvement. IO throughput on the other hand is almost constant and does not
peak, which suggests a lack of IO bottleneck. Due to this reason, there is not
any noticeable iowait. This behavior results in the applications having best MSV
greater than the number of CPU threads.



Tuning Hadoop Map Slot Value Using CPU Metric 151

Figure 4 shows the node behavior of grep, which falls in CPU-intensive region.
The figure shows 40 as the best MSV, which is 83 % of the total number of virtual
CPU threads. In Fig. 4, the user CPU steadily increases until MSV is 40. After
40, the sys CPU increases and the user CPU levels off and decreases in small
amount. This suggests that due to the high CPU utilization of grep, the system
overhead increases. The IO throughput on the other hand is 0.1 MB/s for all
MSVs.

Prediction for x86 cluster. The prediction for x86 cluster is similar to the
PowerPC, except the difference in region boundaries. The IO throughput of a
x86 node and a PowerPC node is 40 MB/s and 100 MB/s respectively.2 Due to
this reason, applications with medium CPU UTIL, which in turn have medium
IO THRPUT, suffer from IO bottleneck in the x86 cluster whereas they do not
suffer from IO bottleneck in the PowerPC cluster. As a result, the applications
with medium CPU UTIL belong to IO-intensive region of x86 cluster instead of
Balanced region. Additionally, as these applications with medium IO THRPUT
have relatively higher CPU UTIL values, the Balanced region starts at a higher
CPU UTIL value in the x86 cluster. This is observed in Fig. 5, which shows the
best normalized MSV for all CPU UTIL values. From the figure, we observe
that the Balanced region starts at 69 % which is relatively higher than 58 % for
PowerPC.

Fig. 5. Classification for applications running on x86 cluster.

Performance characteristics using predicted MSV. To find the effective-
ness of the regions, we compare the performance of applications when using the
region specific MSVs and a best single MSV for all applications. For the IO-
intensive, Balanced, and CPU-intensive regions, we select the normalized MSVs
0.67, 1.17, and 0.67 for the PowerPC cluster and 0.75, 1, and 0.75 for the x86
cluster. The best single MSV for PowerPC is 0.67 and for x86 it is 0.75. Table 5
2 A node in the x86 cluster has a single SAS hard disk, whereas a PowerPC node has

5 SAS hard disks in RAID-5 configuration.
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Table 5. Average normalized performance values and maximum slowdown percentages
(inside parentheses) for the three tested cases.

MSV selection PowerPC x86

150 GB 300 GB 150 GB

Best single MSV 1.11(20 %) 1.07(13 %) 1.08(16 %)

Predicted MSV using the regions 1.01(6 %) 1.01(6 %) 1.03(11 %)

shows the performance values for these two schemes. Using a single predicted
MSV for applications in each region has a better aggregate performance value.
For the three cases, the aggregate slowdown when using region based predicted
MSV compared to when using a single fixed MSV is 1 % and 11 %, 1 % and
7 %, and 3 % and 8 % respectively. In the parentheses alongside the performance
values, the table shows in percentage the maximum slowdown of applications
when using the predicted MSVs. It gives an upper bound of slowdown for an
application, which occurs during the worst case scenario. By using the region
based predicted MSVs, the maximum slowdown decreases to as little as 6 % from
20 % when compared to using a single best MSV.

In this section, we showed the performance results of Hadoop applications
for two clusters: PowerPC and x86, and two data sizes for PowerPC cluster:
150 GB and 300 GB. Our findings show that we can predict the performance
behavior based on the CPU UTIL metric. The performance characteristics fall
into three general regions: IO-intensive, Balanced, and CPU-intensive. The IO-
intensive region contains applications with high IO throughput and low CPU
utilization and the normalized best MSV is below 1. The Balanced region con-
tains applications with medium CPU utilization and medium IO throughput
and the normalized best MSV is 1 or above. The CPU-intensive region con-
tains applications with high CPU utilization and low IO throughput and the
best MSV is below 1. The CPU utilization or IO throughput value at which the
regions separate differs depending upon a node’s hardware characteristics. For a
new application, CPU UTIL measurement indicates the region the application
belongs to and based on that region the MSV can be set to the predicted value.

5 Conclusion

Optimizing resource allocation to improve performance in Hadoop is an impor-
tant area of research. Improved Hadoop performance adds value to hundreds
of Hadoop deployments in commercial as well as research organizations. In this
work, we explored the performance behavior of thirteen Hadoop applications
that included wide range of CPU and IO characteristics. We observed that each
Hadoop application has a select best MSV or MSVs for which it has the best per-
formance. MSV is a Hadoop configuration parameter for the maximum number
of map tasks that run concurrently on a tasktracker node. Additionally, there is
not a single MSV that is best for all applications. Based on these findings, we
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developed a method to predict the best MSV. Our method uses a new Hadoop
counter that measures per-map task CPU utilization. The results showed that
based on the counter value the applications form three distinct regions. Each
region’s application has a specific range of MSV that results in its best perfor-
mance. When using the region based predicted MSVs, the aggregate performance
degradation is only 1 %, which is comparatively less than 7 % when using a single
MSV for all applications. Furthermore, the slowdown for any application is as
low as 6 % when using region based prediction compared to 20 % when using a
single MSV. Thus, the low-overhead method of using metric values to predict
MSV is an efficient approach for estimating the best configuration parameter
value and achieving the best performance for Hadoop applications.
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Abstract. Hadoop is now the de facto standard for storing and process-
ing big data, not only for unstructured data but also for some structured
data. As a result, providing SQL analysis functionality to the big data
resided in HDFS becomes more and more important. Hive is a pioneer
system that support SQL-like analysis to the data in HDFS. However, the
performance of Hive is not satisfactory for many applications. This leads
to the quick emergence of dozens of SQL-on-Hadoop systems that try to
support interactive SQL query processing to the data stored in HDFS.
This paper firstly gives a brief technical review on recent efforts of SQL-
on-Hadoop systems. Then we test and compare the performance of five
representative SQL-on-Hadoop systems, based on some queries selected
or derived from the TPC-DS benchmark. According to the results, we
show that such systems can benefit more from the applications of many
parallel query processing techniques that have been widely studied in the
traditional MPP analytical databases.

Keywords: Big data · SQL-on-Hadoop · Interactive query · Benchmark

1 Introduction

Since introduced by Google in 2004, MapReduce [12] has become a mainstream
technology for big data processing. Hadoop is an open-source implementation of
MR (MapReduce). It has been used in various data analytic scenarios such as web
data search, reporting and OLAP, machine learning, data mining, information
retrieval, and social network analysis [19,23]. Researchers from both industry
and academia have made much effort to improve the performance of the MR
computing paradigm in many aspects, such as optimization and indexing sup-
port of the storage layout, extension to streaming processing and iterative style
processing, optimization of join and deep analysis algorithms, scheduling strate-
gies for multi-core CPU/GPU, easy-to-use interfaces and declarative languages
support, energy saving and security guarantee etc. As a result, Hadoop becomes
more and more mature.
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Hadoop is basically a batch-oriented tool for processing a large volume of
un-structured data. However, as the underlying storage model is ignored by
the Hadoop framework, when some structured layout is applied to the HDFS
(Hadoop Distributed File System) data blocks, Hadoop can also handle struc-
tured data as well [17]. Apache Hive and its HiveQL language have become a
SQL interface for Hadoop since introduced by Facebook in 2007.

Some researchers have compared Hadoop against RDBMSs [22], and they
concluded that Hadoop is much inferior in terms of structured data processing.
However, the situation has been changing recently. Traditional database vendors,
startups, as well as some researchers are trying to transplant SQL functionalities
onto the Hadoop platform, and providing interactive SQL query capability with
a response time of seconds or even sub-seconds. If the goal is accomplished,
Hadoop will be not only a batch-oriented tool for exploratory analysis and deep
analysis, but also a tool for interactive ad-hoc SQL analysis of big data.

The paper firstly reviews various SQL-on-Hadoop systems from a technical
point of view. Then we test and compare the performance of five representative
SQL-on-Hadoop systems, based on some selected workloads from the TPC-DS
benchmark. By comparing the results, strengths and limitations of the systems
are analyzed. We try to identify some important factors and challenges in imple-
menting a high performance SQL-on-Hadoop system, which could guide the
efforts to improve current systems.

2 SQL-on-Hadoop Systems

2.1 Why Transplant SQL onto Hadoop

There are so many RDBMS systems in the market that support data analysis
with SQL and provide real time response time. Why bother to transplant SQL
onto Hadoop to provide the same function? The first reason is the cost to sale.
Hadoop can run on large clusters of commodity hardware to support big data
processing. SQL-on-Hadoop systems are more cost efficient than MPP options
such as TeraData, Vertica, and Netezza, which need to run on expensive high
end servers and don’t scale out to thousands of nodes.

The second reason is the I/O bottlenecks. When the volume of data is really
big, only some portion of data can be loaded into main memory, the remaining
data has to be stored on disks. Spreading I/Os to a large cluster is one of merits
of the MapReduce framework, which also justifies SQL-on-Hadoop systems.

The third reason is that beyond the SQL query functionality, we also need
more complex analytics. SQL-on-Hadoop systems not only provide SQL query
capability, but also provide machine learning and data mining functionalities,
which are directly executed on the data, just like what has been done in BDAS
(Berkeley Data Analytics Stack) [16]. Although RDBMSs also provide some
form of in-database analytics, Hadoop-based systems however, can offer more
functions, such as graph data analysis. Hadoop systems can be not only a com-
plementary tool to RDBMSs, in some cases they can replace RDBMS systems.
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The fourth reason is that, people are getting more and more interested in
analysis of multi-structured data together in one place for insightful information.
Hadoop has been the standard tool for unstructured data processing. If struc-
tured data processing techniques are implanted onto Hadoop, all data could be
in one place. There is no need to move big data around across different tools.
SQL layer will empower people who are familiar with SQL and have a big volume
of data to analyze.

2.2 An Overview of SQL-on-Hadoop Systems

Systems coming from open source communities and startups include Hive,
Stinger, Impala, Hadapt, Platfora, Jethro Data, HAWQ, CitusDB, Rainstor,
MapR and Apache Drill, etc. Apache Hive and its HiveQL language have become
the standard SQL interface for Hadoop since introduced by Facebook in 2007.
Some works [18,20] have been done on translating SQL into MR jobs with some
optimizations. Stinger [8] is an initiative of HortonWorks to make Hive much
faster, so that people can run ad-hoc queries on Hadoop interactively. Impala [3]
uses its own processing framework to execute queries, bypassing the inefficient
MR computing model. Hadapt is the commercialized version of the HadoopDB
project [9], by combining PostgreSQL and Hadoop together, it tries to retain
high scalability and fault tolerance of MR while leveraging high performance
of RDBMS when processing both structured and un-structured data. Platfora
maintains scale-out in memory aggregates layer that roll up raw data of Hadoop.
It is also a fast in memory query engine. Jethro Data [5] uses indexes to avoid
full scan of the entire dataset, leading to dramatic reduction in query response
time. EMC Greenplum’s HAWQ [11] use various techniques to improve perfor-
mance of SQL query on Hadoop, including query optimization, in memory data
transferring, data placement optimization etc. Citus Datas CitusDB [2] extends
HDFS in the Hadoop system by running a PostgreSQL instance on each data
node, which could be accessed through a wrapper. CitusDB achieve the perfor-
mance boost by leveraging structured data processing capability of PostgreSQL
databases. Rainstor [7] provides compression techniques instead of a fully func-
tional SQL-on-Hadoop system. Compression can reduce the data space used by
50X, which leads to a rapid response time. Apache Drill [4] has been established
as an Apache Incubator Project, and MapR is the most involved startup in the
development of Drill. Columnar storage and optimized query execution engine
help to improve their query performance.

Systems from traditional database vendors include Microsoft PolyBase, Ter-
aData SQL-H, Oracles SQL Connector for Hadoop. PolyBase [13] uses a cost
based optimizer to decide whether offloading some data processing tasks onto
Hadoop to achieve higher performance. TeraData SQL-H [10] and Oracles SQL
Connector for Hadoop [1] enable users to run standard SQL queries on the
data stored within Hadoop through the RDBMS, without moving the data into
RDBMS. Systems from academia include Spark/Shark [24] and Hadoop++/
HAIL [14]. Shark [24] is a large-scale data warehouse system built on top of
Spark. By using in memory data processing it achieves higher performance
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than Hive. Hadoop++ and HAIL [14] improve Hadoop performance by opti-
mizing Hadoop query plan, creating index, and co-locating data that will join
together later during data loading.

2.3 A Closer Look at Our Benchmarked Systems

We choose five representative systems of above for benchmarking study.

Hive. Apache Hive is a data warehouse software that facilitates querying and
managing big datasets in Hadoop. Hive applies structure to Hadoop data and
enables querying the data using a SQL-like language named HiveQL. Custom
mappers and reducers could be plugged in HiveQL to express complex data
processing logic. Hive supports various file formats such as char delimited text,
Sequence Files, RCFile (Row Columnar) [17], ORC (Optimized Row Columnar),
and custom SerDe (Serialization and De-Serialization). Some query optimization
strategies are applied in Hive. For example, Hive can select from Shuffle join, Map
Join, Sort Merge Join according to the data characteristics. The performance of
Hive is limited by the fact that HiveQL is translated into MR jobs to be executed
on Hadoop cluster. Some operations such as join are translated into multiple
stages of MR tasks that are executed round by round. Each task reads inputs
from disk and writes intermediate outputs back to the disk. In our benchmark,
Hive is used as the baseline to see the performance boost by the other systems.

Stinger. HortonWorks implements Stinger in a few steps. Firstly, it tries to
make Hive as a more suitable tool for people to perform decision support queries
by adding new features to the language and making the Hive system more like the
standard SQL model. Secondly, a cost-based query optimizer is investigated for
better query plans, and a vectorized query execution engine is applied. Thirdly,
a new columnar file format is designed for higher performance of analytic tasks.
Finally, a new runtime framework, named Tez, is introduced to reduce the Hive’s
latency and throughput constraints as much as possible.

Cloudera Impala. Cloudera believes that Hadoop is the core of future gen-
eration of data warehouse. It involves in the competition of SQL-on-Hadoop
battle with its open sourced system Impala [3]. Impala uses its own processing
framework to execute queries, bypassing the inefficient MR computing model. It
disperses query plans instead of fitting them into a pipeline of map and reduce
jobs, thus enables parallelizing multiple stages of a query to avoid the overhead
of sort and shuffle if these operations are unnecessary. Moreover, (1) Impala
does not materialize intermediate results to disks, similar to MPP databases,
it uses in memory data transfers. (2) It avoids MR startup time by running as
a service. (3) The execution engine tries to take full advantage of the modern
hardware. Its uses the latest set of SSE (SSE4.2) instructions which can offer
tremendous speedups in some cases. (4) Impala uses LLVM (Low Level Virtual
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Machine) to generate assembly code for the running queries. (5) It is aware of
the disk location of blocks and is able to schedule the order to process blocks
to keep all disks busy. (6) Impala is designed with performance as the top con-
cern. Various optimization techniques are used when possible, including tight
inner loops, in-lined function calls, minimal branching, better use of cache, and
minimal memory usage. (7) Impala supports new columnar storages of Parquet
for higher performance of query intensive workloads. According to Cloudera’s
benchmarking results, for purely I/O bound queries, they typically see perfor-
mance gains in the range of 3-4X. For queries that require multiple MR phases
or reduce-side joins in Hive, they see a higher speedup than simple single-table
aggregation queries. For queries with at least one join, they have seen perfor-
mance gains of 7-45X. If the data accessed by the query is resident in the cache,
the speedup can be as more as 20X-90X over Hive even for simple aggregation
queries [3].

Spark and Shark. Shark [24] is a large-scale data warehouse system built on
top of Spark [25], designed to be compatible with Apache Hive. Spark provides
the fine granular lineage based fault tolerance required by Shark. Shark sup-
ports Hive’s query language, meta store, serialization formats, and user-defined
functions. Shark can answer HiveQL queries much faster than Hive without mod-
ification to the existing data or queries. It leverages several optimization tech-
niques, including in memory column-oriented storage layout, dynamic mid query
re-planning of execution plan. These techniques allow Shark to run SQL queries
up to 100X faster than Apache Hive, matching the speedups which are reported
for MPP analytic databases over MR. Spark can be treated as a replacement
of MR, and Shark can be treated as a replacement of Hive. The success of the
Spark and Shark projects shows that by leveraging in memory data processing
techniques and using careful data layouts, the Hadoop framework can achieve a
fast response time to support interactive analysis.

Presto. Presto [6] is an interactive distributed SQL query engine that runs
fast on a Hadoop Cluster. It is developed by Facebook for data analysis on
petabyte-sized data warehouses. Presto is optimized for ad-hoc analysis at inter-
active speed by avoiding the MR. It employs a custom query and execution
engine with operators designed to support SQL semantics. It uses its own query
processing model. The client sends SQL to the Presto coordinator. The coordina-
tor parses, analyzes, and plans the query execution. The scheduler wires together
the execution pipeline, assigns work to nodes closest to the data, and monitors
the progress. The client pulls data from output stage, which in turn pulls data
from underlying stages. Presto compiles parts of the query on the fly and does
all of its processing in memory. The pipelined execution model runs multiple
stages at once, and streams data from one stage to the next as it becomes avail-
able. Since all processing is in memory and pipelined across the network between
stages, the associated latency overhead of unnecessary I/Os is avoided. This sig-
nificantly reduces the latency for many types of queries. Presto also dynamically
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compiles certain portions of the query plan down to byte code which lets the
JVM optimize and generate native machine code. Presto can do many of the
tasks that standard ANSI SQL engines can, including complex queries, aggre-
gations, joins, left/right outer joins, sub-queries, window functions, and most
of the common aggregate and scalar functions, including approximate distinct
counts and approximate percentiles. The first version still lacks the ability to
write results back to tables and cannot create table joins beyond a certain size.
Presto supports various file formats such as Text, Sequence File, RCFile, and
ORC. It scales up to a cluster of 1,000 nodes. It is 10X better than Hive/MR in
terms of CPU efficiency and latency for most queries according to Facebook.

3 Experimental Evaluation

We select five representative SQL-on-Hadoop systems for benchmarking: Hive,
Stinger, Impala, Presto and Shark. We test their performance on some selected
or modified queries from the TPC-DS benchmark [21]. This section reports the
results of our benchmarking tests, as well as some analysis and comparison of
the performance of these systems.

3.1 Hardware and Software Configuration

Our experiments run on a cloud comprised of 50 physical nodes (as a part of
Renda Xing Cloud1). Each node has a memory of 48 GB, 2× 6 cores Intel Xeon
E5645 CPU, and a disk storage of 6 TB configured with RAID 5. By using
OpenStack, we are able to generate clusters of 25, 50 and 100 nodes respectively.
The memory size of each virtual nodes ranges from 10 GB, 20 GB to 40 GB. A
Gigabit ethernet is deployed in the clusters of our experiments.

The versions of the tested systems are listed in Table 1. The default para-
meters are typically applied to each benchmarked system, with some of the
important parameters manually optimized for better performance.

3.2 Workloads

Considering that most queries of the TPC-DS benchmark are complex SQL
analysis queries designed for data warehousing applications, they are not prac-
tical for many existing systems due to the computational complexity. For exam-
ple, in some other studies of big data analysis systems [15,22], only simple SQL
queries are executed serially to test the systems. In our study, to benchmark the
systems for workloads of different complexity, we modified some queries from
TPC-DS, and derive 11 queries (which are also executed serially) used in our
test. Among them, some are simple single-table queries, some are the original and
complex SQL queries of the TPC-DS benchmark. The applied queries include
reports, ad-hoc queries, star-join queries, and complex SQL analytic queries as
1 http://deke.ruc.edu.cn/yunyuyue.php

http://deke.ruc.edu.cn/yunyuyue.php
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Table 1. Versions of tested systems

System Version

Apache Hive 0.10

Hortonworks Stinger Hive 0.12

Berkeley Shark 0.7.0

Cloudera Impala 1.0.1

Facebook Presto 0.54

well. Here, we show two examples of them: q5Ao and q6Cgo. When naming the
queries in our benchmark, ‘A’ indicates a single table query, ‘B’ indicates a join
of two tables, ‘C’ involves 3 tables or more, ‘o’ indicates an ‘order by’ operator,
and ‘g’ means a ‘group by’ operator.

q5Ao: select ss_store_sk as store_sk, ss_sold_date_sk as date_sk
ss_ext_sales_price as sales_price, ss_net_profit as profit

from store_sales
where ss_ext_sales_price>20
order by profit
limit 100;

q6Cgo: select a.ca_state state, count(*) cnt
from customer_address a
join customer c on(a.customer_address.ca_address_sk

= c.c_current_addr_sk)
join store_sales s on(c.c_customer_sk = s.ss_customer_sk)
join date_dim d on(s.ss_sold_date_sk = d.d_date_sk)
join item i on(s.ss_item_sk = i.i_item_sk)

group by a.ca_state
having count(*) >= 10
order by cnt
limit 100;

We generate two datasets from TPC-DS for benchmarking the systems. One
has a size of 1 TB (having a scale factor of 1,000), and the other is in 3 TB
(having a scale factor of 3,000). We refer to the other benchmarks [15,22] when
choosing the dataset sizes of benchmark. The data model of TPC-DS benchmark
follows a snow flake schema, with tables store sales and store returns as two fact
tables.

3.3 Results

We conduct 4 groups of tests, with each having a different setting in terms of
the number of virtual nodes in the cluster and the sizes of dataset. The details
are listed in Table 2. In the followings, we report and compare the results from
the query, system, and workload’s point of views respectively2.
2 Due to the page limit, more details about the experimental settings, results, and

result analysis are available at http://deke.ruc.edu.cn/sqlonhadoop.

http://deke.ruc.edu.cn/sqlonhadoop
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Table 2. Experimental settings for 4 test groups

Test group No. of nodes Data size Results Relative workloads per node

1 25 1 TB Fig. 1 Heavy (40 GB/node)

2 50 1 TB Fig. 2 Normal (20 GB/node)

3 100 1 TB Fig. 3 Light (10 GB/node)

4 100 3 TB Fig. 4 Heavy (30 GB/node)

Queries. Among those 11 queries used in our benchmark, there are 6 simple
queries (query 1 to query 6) that are conducted over a large fact table. Three
simple join queries (query 7 to query 9) include a join operator between a dimen-
sion table and a fact table. Query 10 is a complex join query (includes both a star
join and a chain join) over 5 tables. Query 11 is a star join query over multiple
tables. According to the results reported in the figures, we can find that, simple
queries (without join) basically perform better than those complex queries with
join operations. Simple join queries basically perform better than those complex
queries (query 10 and query 11). However, there are two exceptions (query 2
and query 7) which both have an ‘order by’ operator. A further study over these
two queries show that the intermediate results (before the ‘order by’ operation)
are very huge, which incur large cost for the ‘order by’ operation. Query 3 is
modified from query 2 by simply applying an adjustment of the filtering condi-
tion to cause its intermediate results much less than those of query 2. As a result,
we can see that query 3 performs much faster than the query 2. We should also
note that queries q9* perform slightly slower than queries q5* because there are
aggregation operators in queries q9*.

Systems. When comparing the performance of systems in different test groups,
we find that impala performs much better than the others in most test cases.
On the other hand, Hive often performs the worst among all the systems. This
is reasonable because the other systems treat Hive as a baseline, and they try to
improve their performance over Hive. Comparatively, the performance of Stinger
and Presto is similar in many test cases. For Shark, we find that it performs well
for light workloads, especially for simple queries over single table. However, when
the workloads are heavy or when the queries are complex, Shark often fails to
evaluate the queries due to many reasons such as out of memory. Note that a
blank cell in the results of Figs. 1, 2, 3 and 4 represents that a system fails to
execute a corresponding query.

Workloads. Queries are executed serially for all tested systems. We adjust
the workloads of each node by varying the number of nodes and the size of
dataset. For Figs. 1, 2, and 3, we actually reduce the workloads of each node by
increasing the number of nodes from 25 to 100. By comparing the results of the
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Fig. 1. Results on a cluster of 25 nodes for 1 TB data

Fig. 2. Results on a cluster of 50 nodes for 1 TB data
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Fig. 3. Results on a cluster of 100 nodes for 1 TB data

same system in Figs. 1, 2 and 3, we can find that the enlargement of the cluster
size does help to improve the performance of query evaluation. This is especially
obvious for the Shark, where in Fig. 1 (with 25 nodes), only 4 queries can be
successfully conducted. The number increases to 9 in Fig. 3. By comparing the
corresponding numbers of the same query for the same system, we find that
the speedup of query processing can hardly keep up with the rate of the cluster
size enlargement. This is also reasonable because the communication cost will
be increased when enlarging the number of nodes in a cluster. By keeping the
number of node unchanged, and increasing the size of data (from Fig. 3 to Fig. 4),
we actually increase the workloads of each node. As a result, the performance of
each system drops accordingly. When the workload of each node is heavy enough
(in Fig. 4), shark fails to evaluate many queries. In the meanwhile, some systems
fails to evaluate query 2 and query 11.

3.4 Analysis

By analyzing the results of our benchmarking and referring to the system imple-
mentation, we have the following observations:

– Columnar storage is important for performance improvement, especially when
the table has many columns and the query only need to access a small part of
them. This is verified by Stinger (with ORCFile) over Hive, and Impala (with
Parquet format and the Textfile format, whose results are not shown out).

– By discarding the MR model, the performance benefits from saving the cost
of persisting the intermediate results of query processing. Impala, Shark and
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Fig. 4. Results on a cluster of 100 nodes for 3 TB data

Presto perform better than Hive and Stinger. They all benefit from the dis-
carding of MR. However, the superiority decreases when the queries are com-
plex, where the other cost will be significant.

– Techniques (e.g. distributed join processing and optimization) from MPP
databases do help a lot. This is verified by the Impala system, which per-
forms much better for join queries over two or more tables.

– Performance benefits more from the usage of large memory. Shark and Impala
perform much better for small datasets. However, when the workloads increase,
the available memory for each node may not be enough for implementing some
join operations. This leads to many problems for memory-reliant systems such
as Shark.

– Data skewness significantly affects the query performance. Systems such as
Hive, Stinger and Shark are sensitive to the data skewness. Query 2 and
query 7 shows that when the ‘order by’ operator falls in one reduce node, it
will be a bottleneck of such systems.

4 Conclusion

In this paper, we briefly review the recent efforts of SQL-on-Hadoop systems.
We test five representative systems using part of the TPC-DS benchmark. The
results shows that these systems are still not efficient enough (for the interac-
tive query processing purpose) for complex analytic queries. Even though, we
find that the existing SQL-on-Hadoop systems have benefited a lot from the
application of many state-of-the-art parallel query processing techniques (such
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as columnar storage, MPP architecture, join optimization) that have been exten-
sively studied for many years in database community. It is expected that with
more advanced parallel database techniques applied, the performance of SQL-
on-Hadoop systems can be further improved. The merit of providing high per-
formance SQL analysis functionality to the data stored in HDFS will be very
attractive to many companies surfing the big data wave.
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Abstract. Map/Reduce is a popular parallel processing framework for data
intensive computing. For overlapping the Map task’s execution phase and the
Reduce task’s intermediate data fetching and merging phase, existing Map/
Reduce schedulers always pre-launch the Reduce task at the specific threshold
where its map tasks have been launched, and this pattern incurs the occupation
of the consuming resources of the reduce task during its idle time on waiting for
fetching the intermediate data from map tasks. To address this issue, we propose
an extension version of Hadoop map/reduce framework, called Predoop, in this
paper. The basic idea of Predoop is to preempt the reduce task during its idle
time and allocate the released resource to the map tasks on schedule. To achieve
this goal, first, we introduce the preemptive mechanism for reduce tasks and
map tasks respectively to enable Map/Reduce tasks to be preempted or resumed
with correct status; second, we adopt the preempting-resuming model for the
reduce task with the consideration of the progress of Reduce task data fetching
& merging and the Map task execution so as to determine the timing of Reduce
task preemption and resuming; third, we introduce the preemption-aware task
scheduling strategy to allocate the released resources to the on-schedule Map
tasks with the consideration of data locality. Experimental result demonstrates
that Predoop outperforms Hadoop on various workload and the average job
turnaround time can be reduced by maximum of 66.57 %.

Keywords: Map/Reduce � Intermediate data dependency � Preemption � Task
scheduling

1 Introduction

Map/Reduce is a new parallel processing framework for programming the commodity
computer clusters to perform the large-scale data processing [1]. The scheduling
granularity for each scheduled job is on the task level in the Map/Reduce framework
[1]. Once a map or a reduce task is launched, it will stay in active and occupy its
allocated computing resource, such as the memory space or the CPU slots. In general,
each map task always processes one data block of total job input data sets and each
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Reduce task would process the output data from all of map tasks corresponding to its
processing partition. We call this data dependency between the Map task and the
Reduce task as intermediate data dependency.

Due to the intermediate data dependency between map tasks and reduce tasks,
existing map/reduce schedulers always pre-launch the Reduce task at the specific
threshold (often 10 %) where its map tasks have been launched. Under the ideal
situation, this setting can overlap the map task’s execution phase and the reduce task’s
intermediate data fetching and merging phase [2]. However, due to the asymmetry in
the completion time of map tasks of a job (because of the difference in the launching
time or the uneven data processing progress), the Reduce task often stays in idle and
consumes little of its occupied resources at the stage where part of its dependent map
tasks have been data-fetched while others still on execution. The reduce task’s idle time
contributes much to the inefficient resource utilization, and hence, pulls down the
efficiency of map/reduce job execution. Our examination shows that, running 20
WordCount map/reduce jobs on a 12-node cluster, the idle time of a reduce task can be,
by average, 44.5 % to its total execution time and 23.3 % to its job’s total execution
time. The situation goes worse when the resource competition becomes more intensive
(that is, more jobs in the workload) [3].

To address this performance issue, we present an extension version of Hadoop map/
reduce framework, called Predoop [4]. The motivation of Predoop is to preempt the idle
reduce tasks to mitigate the idle time, and allocate the resources to map tasks on
schedule to accelerate the job execution. To achieve this goal, Predoop introduces a
preemption model for reduce tasks to determine the time point of suspending or
resuming the reduce task. Based on the preemption model, Predoop adopts a pre-
emption-aware task scheduling strategy to guarantee that the on-schedule map tasks are
allocated with those released resources. Further, Predoop integrates the enabling pre-
emptive mechanisms for reduce tasks and map tasks to make sure that the preemption
model and task scheduling are practical. The main contributions of Predoop are as
follows:

(1) The preempting-resuming model for the reduce task. The definition of the time
point to preempt/resume reduce task is the most fundamental factor in the reduce
task preemption solution. We introduce two quantitatively estimation models—
preempting model and resuming model, to determine the reduce task preempting
and resuming occasion. To improve the preemption efficiency, the preempting
model is designed based on the ratio of the progress of the reduce task’s data
fetching & merging to the map task’s execution; the resuming model is design
based on the ratio of the number of completing map tasks after preemption to total
number of map tasks.

(2) Preemption-aware task scheduling for the reduce task preemption. Based on the
preempting-resuming model, we adopt the preemption-aware task scheduling to
schedule the preempted resources in high priority. We design a new scheduling
strategy for preempted resources, which allocates these resources to map tasks and
avoids the fragmentized execution of the map task due to its consuming resource
reclaimed by the resuming reduce tasks frequently.
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(3) Preemptive mechanisms for map tasks and reduce tasks. By recording the
boundary of <key, value> pair processed by a map task, and the boundary of map
task that has been intermediate data-fetched, the preemptive task mechanisms can
assure the map and reduce task be resumed with the correct status and not losing
previous works.

(4) We have conducted the performance evaluation for Predoop with two famous
benchmark suites: SWIM and BigDataBench [5, 6]. The experimental results
demonstrate that Predoop outperforms the native Hadoop on both the synthetic
workloads (SWIM) and real world workloads (BigDataBench). It can reduce the
average turnaround time of map/reduce jobs by up to 66.57 %.

The following sections are organized as follows: Sect. 2 describes the preempting-
resuming model of reduce tasks; Sect. 3 present the preemption-aware task scheduling
in Predoop; Sect. 4 introduces the preemptive mechanisms for the reduce task and map
task respectively; Sect. 5 analyzes the experimental results; Sects. 6 and 7 present the
related work, the conclusion and the future work of this paper respectively.

2 Preempting-Resuming Model of Reduce Tasks in Predoop

As described before, the main idea of Predoop is to preempt a reduce task during its
idle time in the fetching and merging phase and allocate its released computing
resources to some map tasks to be scheduled. Features of the preempting-resuming
model of reduce tasks are to decide the time point to perform the preempting operation
on a reduce task, and the time point to resume it and reallocate the computing resource
it occupied before.

2.1 Preempting Model of Reduce Task

On designing the preempting model, we take two factors into consideration. One is the
start point of a reduce task’s idle time. It is obviously the candidate time point to
preempt a reduce task. The second is the length of a reduce task’s idle time. This is for
that idle time of the reduce task could be too short to cover the time cost of the
backfilling map task’s deployment so that the benefit of utilizing the preempted
resources will be overthrown. To make the most use of the limited idle time, Predoop
determines the candidate time point of the reduce task preempting in an advance way
by estimating the start point and the length of reduce task’s idle time periodically. Once
the time length is long enough, the corresponding start time will be chosen as the
candidate preempting time.

For each preempting decision making, the starting point of a reduce task‘s idle time
can be calculated out with the factor of Remaining Fetch & Merge time from the
deciding time. The Remaining Fetch & Merge time can be defined as the remaining
time that a reduce task needs to complete fetching and merging the intermediate data
generated by the map tasks that has been completed. Due to that, in Predoop, a reduce
task performs the data fetching & merging with a thread pool and fetches the
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intermediate data one group after another. The Remaining Fetching & Merging time is
estimated as Trfm through the following function.

Trfm ¼ Tfm þ Nwait

k

� �
� Titer ð1Þ

Where, Tfm stands for the average time that a reduce task spends to fetch and merge
the intermediate data from a map task; Nwait is the number of map tasks that have been
completed with their intermediate data not fetched; k is the number of map tasks that a
reduce task can start to fetch their intermediate data roughly at the same time and run in
a single wave; Titer is the average time interval between two successive data fetching
waves for a reduce task. In predoop, the k is initially set as 1 and the Titer is set as the
minimal remaining execution time among all active data fetching threads. As a reduce
task makes progress in its execution, we dynamically update the Tfm, k and Titer
accordingly.

The figure out the length of a reduce task’s idle time, we need to estimate the end
time point of this time period. In predoop, the end time of a reduce task’ idle time can
be decided with the factor of Remaining execution time of map task, which the reduce
task depends on, from the decision making time point. In other word, once these map
tasks finish execution, the reduce task may be reactive to fetch and merge the new-
generated intermediate data. The Remaining execution time of map task is estimated
as Trm through the following function.

Trm ¼ 1� pmt
pmt

� Tmex ð2Þ

Where, pmt stands for the execution progress of a map task. Pmt can be calculated
out during a map task’s execution according to the proportion of data that have been
processed. Tmex is the map task’s total execution time since its beginning.

The preempting model of reduce task finally decides the candidate preempting time
point of a reduce task according to the following condition.

Min fTrm1; Trm2; � � �; Trmng � Trfm
Tmte

� Dp ð3Þ

Where, the set of Trmi ð1� i� nÞ stands for the remaining execution time of all map
tasks that the reduce task depends on; Tmte is the average execution time of the com-
pleted map tasks that the reduce task depends on; Dp is a threshold which indicates to
what extend is the reduce task’s idle time long enough to perform the preempting
operation.

In predoop, the periodical prediction of a reduce task’s preempting time will stop
when a candidate time point is generated, and restart when the reduce task resumes
from a preemption. To compensate the inaccuracy in the estimation, the preempting
operation on a reduce task will be carried out immediately once the reduce task shifts to
the idle state ahead of the candidate preempting time point. On the other hand, if the
reduce task’s data fetching & merging operation on its depending map tasks, which has
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completed on the preempting decision making time point, does not finish on the
candidate preempting time point, the preempting operation of the reduce task will be
postponed until all fetching & merging operations complete.

2.2 Resuming Model of Reduce Task

In predoop, a preempted reduce task can only be resumed when there are some map
tasks that it depends on have been completed during its preemption. The resuming
model determines the resuming of a reduce task only if the following two conditions
are satisfied.

Condition 1:

Nmap c � Nmap f

Nmap
�Dr ð4Þ

Where, Nmap_c stands for the number of completed map tasks that a reduce task
depends on; Nmap_f is the number of map tasks that a reduce task depends on and have
completed with the generated intermediate data not fetched; Nmap is the total number of
map tasks that the reduce task depends on; Dr is a threshold.

Condition 2: All map tasks allocated with the preempted computing resource of the
reduce task are not in the intermediate data partition phase.

In a word, Condition 1 guarantees that only when the number of its depending map
tasks has accumulated to be large enough, the preempted reduce task can be resumed.
Condition 1 is established to prevent the frequent preempting/resuming of reduce tasks
and make the reduce task fetch the intermediate data in a bundle way. Because the
partition phase is the last phase of map task execution and leads to heavy disk I/O cost,
Condition 2 makes the restriction that the intermediate data partitioning operation can
be performed in all-or-nothing way, so as to simplify the preemption operation of map
task, and make sure that the disk I/O cost caused by the data partitioning can be
returned with some progress in the map task execution.

3 Preemption-Aware Task Scheduling in Predoop

The most distinguished feature of task scheduling in Predoop is to allocate the
resources released from the preempted reduce tasks (we call them as preempted
resource) to the on-schedule map tasks. Similar to Hadoop, task scheduling in Predoop
is triggered with the ‘asking for the new task’ heartbeat message sent from a computing
node with the available resources information enclosed. The scheduler performs the
task scheduling on the preempted resources with the following three rules:

Rule 1: The allocation of preempted resource is prior to the regular resource.
Where, the regular resource refers to the available resource released by the map/

reduce task that completed or failed normally.
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Rule 2:

:9t t 2 PR ^ AlocðtÞ \ GR 6¼ u _ AlocðtÞ \ PR 6¼ uð Þð Þ ð5Þ

Where, PR stands for the preempted reduce task set in Predoop; GR stands for the
non-preempted reduce task set; the function Aloc() can be expressed as Aloc:T –> T,
where T is the total task set in Predoop. Function Aloc(t) defines the task set that
allocated with the computing resource that task t has released when completed or
suspended.

Rule 3:

:9t t 2 MP ^ t 2 AlocðpriÞ ^ t 2 AlocðprjÞ; pri 2 PR; prj 2 PR; pri 6¼ prj
� � ð6Þ

Where, MP stands for the map task set in Predoop.
Rule 1 is established for that the use of preempted computing resource is highly

time sensitive (only available during the idle time of a reduce task). Rule 2 guarantees
that the preempted resource can only be allocated to the map task. This is for that idea
of Predoop is to preempt the reduce task only when it is idle. However, once a reduce
task is allocated with the preempted resource, it may be interrupted during its data
fetching when the corresponding preempted reduce task needs to be resumed and
reclaim the resource. Rule 3 prevent that the resources allocated to a map task is
released from multiple reduce tasks. This is to avoid the scenario where a map task
‘gathers’ the resource fragment from multiple suspended reduce tasks and leads to its
frequent interruption because any of those reduce tasks needs to be resumed.

Based on the three rules, Predoop queues the map/reduce job in FIFO (First In First
Out) way and assigns the preempted resource to map tasks with the consideration of
node-level, rack-level and offSwitch-level data locality in sequence. On the other hand,
among the map tasks with node-level data locality, Predoop chooses the task, that has
been preempted because their consuming resources are reclaimed by the reduce tasks,
in prior. This is because that the more preempted map tasks accumulated during a job’s
execution, the larger amount of intermediate data its reduce tasks need to fetch later,
and hence increases the risk of network burst. For the regular available resources,
Predoop inherits the task scheduling strategy from Hadoop.

4 Preemptive Task Mechanism in Predoop

In predoop, map tasks and reduce tasks are applied with different preemptive task
mechanisms on their consuming resources preempted or reallocated.

As described above, the preemption of reduce task can only occur when it finishes
the intermediate data fetching and merging from part of its dependent map tasks during
its shuffle time. During its data fetching & merging phase, the reduce task ‘pull’ the
intermediate data from multiple dependent map tasks in a parallel way and store them
into data segments in memory or on disk according to the data size. The data segments
are then merged into the larger segment and stored into the disk. Figure 1(a) shows the
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preemptive mechanism of reduce task in Predoop. In Predoop, each reducae task holds
a index during it execution. The index records the dependent map tasks that have or
haven’t been completed yet, and the location of data segment files belonging to the
reduce task. The index is updated dynamically when the reduce task is in progress. On
the preemption, the reduce task first stops the updating of the index, completes the
fetching and merging of data output from all completed map tasks, and flushes all data
segments in memory into the disk (step 1). The reduce task then backups its index
information to the Preempt Executor (step 2). Finally the Preempt Executor preempts
the reduce task (actually kill the process of the reduce task) (step 3). When resuming
the reduce task, the Preempt Executor first restarts the reduce task (step 4). Once
restarted, the reduce task gets the index from Preempt Executor and makes clear of the
map tasks to fetch the intermediate data (step 5). The reduce task then pulls the map
output and merges into new data segment files (step 6).

In Predoop, the map task can only be preempted during its map phase. During the
map phase, the map tasks read and process the <key, value> pair from the distributed file
system HDFS in sequence. Figure 1(b) shows the preemptive mechanism of map task in
Predoop. In Predoop, each map task can only be preempted at the end of each <key,
value> pair and the index of the last processed <key, value> pair needs to be recorded.
On preemption, the map task first finishes processing the <key, value> pair on hand. The
map task then records the index of the last processed pair to its Application Master.
Application Master resets the status of the map task as ‘on schedule’ (step 2). Finally,
Application Master preempts the map task (actually kill it) via Preempt Executor resided
on the same node as the map task (step 3). On resuming, the Application Master restarts
the map task (step 4). The map task gets the index of last processed <key, value> pair
information from Application Master (step 5). The map task then restarts the data
processing from the <key, value> pair next to the last processed one.

5 Performance Evaluation

In this section, we present a systematic performance evaluation of Predoop. We
compare the performance of Predoop to YARN (a new version of Hadoop) with the
FIFO scheduler. This is for that FIFO is the fundamental of others schedulers. When

Fig. 1. Preemptive mechanism for reduce and map tasks
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porting to other scheduler, the advantage of preemptive scheduling may be amplified
due to the fact that there are multiple job queues in other schedulers and concurrent
preemptions can be conducted.

5.1 Experimental Methodology

We first conduct a systematic performance evaluation of Predoop with a diverse sets of
workloads, including load-shrinking and load-amplifying workload from BigData-
Bench benchmark, and the mix workload from Swim [5, 6]. Further, we study the
sensitivity of Predoop performance to the configuration of two thresholds in the pre-
emption model (Dp and Dr), due to the fact that various configurations result in the
different occasion and frequency of reduce task preemption. Finally, we evaluate
the scalability of Predoop.

Experiments are conducted in a cluster of 13 nodes. One node is dedicated as both
the ResourceManager and NameNode. Each node is equipped with two Intel(R)
Pentium(R) 4 cpus, 3 GB memory and one 160 GB SATA hard driver. On the YARN
configuration, we configure totally 2 GB memory per node and assign 1024 MB
memory for each Application Master. The HDFS block size is set as 64 MB as default.

Two benchmarks are employed. One is BigDataBench, which provides the real
world ap-plication workloads with real world data sets, and we choose two single-job
workloads from it: WordCount and Sort. WordCount represents the workload category
that includes map/reduce job which generates small amount of intermediate data so that
the reduce tasks have lighter load than map tasks (We called them load-shrinking
workload). Sort represents the workload category which generates large amount of
intermediate data so that reduce tasks have much heavier load than map tasks (We call
them load-amplifying application). The other benchmark is SWIM. SWIM can gen-
erate the synthetic workload for diverse size of Hadoop cluster according to the trace of
Facebook product map/reduce platform. We add the sleep() to the map and reduce task
function body so as to guarantee the execution time of map/reduce task in accordance
with the heavy-tail distribution [7].

We choose Average Turnaround Time as the main evaluation metric. Average
Turnaround Time is the most typical metric to reflect the efficiency of a scheduler of the
system.

5.2 Result for the Single-Application Workloads

We first conduct the experiment on single-application workload with the input data size
of 8 GB, 10 GB, 12 GB, 14 GB, 16 GB. For each job, we set the reduce task number as
8. The required memory amount of each task is set as 1024 MB as default. The
thresholds Dp and Dr in the preemption model of reduce task are set as 20 % and 40 %
respectively.

Figure 2 shows that Predoop outperform YARN on the execution of single-
application workload with various data sizes. For the Sort workload, the average job
turnaround time is reduced by 29.5 % on average and 49.07 % by maximum. Predoop
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also achieves performance improvement on the load-shrinking workload, like Word-
count. The average job turnaround time is reduced by 37.24 % on average and 66.57 %
by maximum.

According to the statistics, due to the preemptive mechanism, Predoop minifies the
reduce task’s idle time by 95.86 %–99.93 % compared to YARN, and allocates the
preempted resources to map tasks on schedule. This improvement contributes much to
the promotion of the job turnaround time. On the other hand, the performance result
shows that Predoop achieves better performance promotion on the load-shrinking
workload (like Wordcount) than the load-amplifying workload. This may be for that
when map tasks have heavier load and output smaller intermediate data, there will be
more chances for the reduce tasks to complete one round of data fetching & merging
quickly and leave more idle time to be preempted during its waiting for the next round
of map task completion.

5.3 Results for the Mix Workloads

To evaluate the performance of Predoop in the shared map/reduce cluster, we use four
mix workloads generated by SWIM. Among these mix workload, the proportion of
load-amplifying job varies from 6 % to 8.7 %, which represents the typical mixture
ratio in the product map/reduce clusters (like Facebook).The thresholds Dp and Dr in
the preemption model of reduce task are also set as 20 % and 40 % respectively. To
simulate the memory resource contention in the shared map/reduce cluster, we vary the
memory requirement of each map and reduce task as 512 MB, 1 GB (default set in
YARN), and 1.5 GB (Table 1).

Figure 3 shows that Predoop outperforms YARN on the mix workload experiment.
The average job turnaround time is reduced by up to 49.85 %. According to the
statistics, the drop rate of the average reduces task’s idle time keeps relatively stable

Fig. 2. Average turnaround time of single-application workloads

Table 1. Characteristics of mix workloads

Bin1 Bin2 Bin3 Bin4

Job number 120 150 180 200
Total size of map input data (GB) 46.66 64.19 72.32 82.94
Total size of intermediate data (GB) 6 6.25 6.47 6.58
Total size of reduce output data (GB) 1.36 1.44 2.26 7.19
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under the different memory requirements (varying from 89 % to 90.7 %). However, the
drop rate of the average job turnaround time goes up from 18.7 % to 25 %, with the
memory requirement per task increasing (In another word, the resource contention
more intensive). This is due to the fact that, with the resource contention, jobs with
larger map task size may have higher risk to launch map tasks in batch. The preemptive
scheduling can preempt the idle reduce tasks, contribute their occupied resource to help
the on-schedule map tasks hold their required memory resource more quickly, and
hence, accelerate the job completion. The statistic result shows that the performance
improvement of the jobs with larger map task size contributes much to the increasing
drop rate.

5.4 Performance Sensitivity to the Threshold Configurations

As described in Sect. 3, the preemption model of reduce tasks is designed with two
threshold parameters: Dp and Dr. Performance of Predoop may be sensitive to the
threshold configuration due to that these two thresholds control the occasion and
frequency of reduce task preempting and resuming and may incur extra cost on the task
status switch. To evaluate the performance sensitivity, we choose the mix workload

Fig. 3. Average turnaround time of mix workloads

Fig. 4. Performance sensitivity to threshold configuration
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with the job number of 120 and 200 and conduct the experiments by varying the
threshold configuration. We vary Dp in preempting model as 10 %, 20 %, 30 %, 40 %,
50 %, 60 %, 70 %, and vary Dr in resuming model as 20 %, 40 %, 60 %, 80 %, 100 %.

Figure 4(a) and (b) shows the variation of average drop rate on turnaround time by
Predoop. We find that for Dp, the best performance can be achieved when setting the
threshold as 30 %–40 % for the 120-job mix workload and 20 %–30 % for the 200-job
mix workload. To make it clear, we count the percent of risk preemption among all the
reduce task preemption. The risk preemption is defined as the reduce preemption that
leave the reduce task in preempting for less than 10 % of its dependent map tasks’
average execution time. Figure 4(c) demonstrates that the variation of percent of risk
preemption is quite in accordance with that of drop rate on trunaround time. This is due
to the fact that setting the threshold too small will lead the reduce task to be preempted
frequently and provide the preemption time not long enough to accommodate the
efficient execution of map tasks, but only induce the extra map&reduce task start/stop
cost. When setting the threshold too large, the reduce task will delay its preemption and
keep it in the idle state so as to shorten the time period that map tasks consume the
preempted resource.

When varying the configuration of Dr, we find the similar performance variation
pattern as that of Dp in Fig. 4(b) and (d). The cause is also similar. When the threshold
is set too small, the reduce task needs to be resumed quite frequently and leaves too
short preemption time. When the threshold is set too large, the reduce task will stay in
the preemption even when there is enough fetching data generated, so that delay the
completion of reduce tasks.

5.5 Scalability

We evaluate Predoop’s performance scalability according to the cluster size. We
generate five groups of workloads for the cluster size of 4, 6, 8, 10, 12. For each group,
we generate three workloads with 120 jobs each. For each group, we calculate the
average job turnaround time of the corresponding three workloads.

Figure 5 shows that with the typical synthetic workloads, Predoop outperforms
YARN on diverse cluster sizes. The average turnaround time is reduced by the max-
imum of 46.29 %, and by the minimum of 20.98 %. According to the statistics, the
average reduce task idle time is cut down by maximum of 98.37 % and by minimum of
91.28 %.

Fig. 5. Average turnaround time with diverse cluster size
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6 Related Works

Many task schedulers have been proposed for map/reduce cluster over the past several
years to pursue either the fairness among jobs or maximization of the job execution
performance. To address the fairness issue, Hadoop, the most popular open-source
implementation of Map/Reduce framework, provides three task scheduler: FIFO
Scheduler, Fair Scheduler, Capacity Scheduler [3]. In [8], based on these fundamental
task scheduling, the fair scheduler is improved in Hadoop by postponing the execution
of head-of-queue tasks when the computing node to be allocated doesn’t hold its
processing data locally. Quincy introduced a min-cost flow algorithm to achieve the
tradeoff between the fairness and data locality [9]. However, most fairness-centra
schedulers don’t adopt the preemptive mechanism and cannot prevent the long job
monopolizing the system capacity or the significant resource waste.

There are several ways to maximize the job performance: (1) overlapping or sub-
dividing some phases in a map/reduce job so as to overlap the execution of phases that
utilize different resources of CPU and disk i/o. Works in [10] split the reduce task of a
map/reduce job into the data copy task and the data computing task. However, it can
not resolve the resource waste issue during the data copy task’s idle time; (2) reducing
the i/o cost by the aware of data locality or the network status. References [11, 13]
present a data locality-aware and skew-aware reduce task scheduler to shorten the
reduce task execution time; Maestro improves the locality of map task execution by
keeping track of the data chunk and its replication location [12]. Reference [14] pro-
posed the communication-aware placement and scheduling of map tasks and predictive
load-balancing of reduce tasks so as to reduce the data i/o cost during the job execution.
All the four works focus on the optimization of data i/o cost, but ignore the data
dependence between map and reduce tasks; (3) remedying the outlier of map/reduce
task execution particularly in the heterogonous environment. Mantri can identify the
outlier in the map/reduce clusters by real-time monitoring task execution and restart
the outliers on the node chosen with network awareness [15]. Though Mantri conserves
some valuable work for the outlier task, the preemptive mechanism is not introduced in
it. What’s more, the performance optimization of the regular tasks is not Mantri’s
focus; (4) predicting the execution of map/reduce task and adjust the resource allo-
cation dynamically so as to meet the SLA. ARIA conducts the job profiling and designs
the map/reduce performance model to estimate the amount of resource a routinely
executed job required to complete within the deadline [16]. Reference [17] adopted the
preemptive mechanism for reduce task and designs the task scheduling for the fairness
issue. Hence, the scheduling algorithm is totally different from that in Predoop.

7 Conclusion and Future Work

In this paper, we propose an extended map/reduce framework called Predoop. Predoop
aims at solving the issue that the reduce task occupies the allocated resource during its
idle time when waiting for the intermediate data fetching from its dependent map tasks,
which lowers the job performance. Idea of Predoop is to preempt the reduce task during
its idle time and allocate the released resource to the map tasks on schedule. To achieve
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this goal, Predoop adopts the effective preemptive mechanism for both reduce and map
task, and defines the preempting-resuming model of reduce tasks with the consideration
of the progress of reduce task data fetching & merging and the map task execution.
Based on the preempting-resuming model, a preemptive task scheduling strategy is
present to allocate the preempted resources to map tasks concerning the data locality.
Experimental results demonstrate that Predoop outperforms Hadoop for the load-
amplified workload, the load-shrinked workload and the mix workload. The average
job turnaround time is promoted by the maximum of 66.57 %. The ongoing work
includes: (1) improving the preempting-resuming model for the map/reduce job that
has asymmetric processing time on multiple data elements; (2) the online adjustment of
the threshold in the preemption model.
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Abstract. Integrating a solid state drive (SSD) into a data store is
expected to improve its I/O performance. However, there is still a large
difference between the price of an SSD and a hard-disk drive (HDD).
One of the methods to offset the increase in cost of consisting devices
is to configure a hybrid system using both devices. In such a system,
a common method to decide the placement of data records is based on
reference locality, i.e., placing the frequently accessed records in a faster
SSD. In this paper, we propose an alternative that focuses on data skew
by storing records with values that appear less often in an SSD while
those that do more in an HDD. As we will show, this enhances the
performance of fetching records using multi-dimensional indices. When
records are fetched using one of the indices targeted for optimization,
records stored in an SSD are likely be retrieved using random access,
while those stored in an HDD using sequential access. Given the method
does not rely on reference locality, its performance is stable between first
and second accesses and it provides a performance gain even when a
host memory is large enough to contain the entire working set of the
application. Our implementation and experiments show that storing just
20 % records in an SSD achieves up to 76 % of the maximum reduction
that would otherwise be obtained when all the records are stored in an
SSD.

Keywords: SSD · Index · Hybrid data store · Data skew

1 Introduction

Integrating SSDs into data stores has been a subject of much attention given
their I/O performance is higher than that of HDDs. HDDs on the other hand
have been widely used as secondary storage of data stores and their capacity has
been doubling every 18 months [6]. However, their increase in I/O bandwidth
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has been slow and is currently just above 100 MB/s. SSDs on the other hand,
keep doubling their bandwidth every 36 months. In addition, since they do not
involve a mechanical component, their random access performance is better by
more than two orders of magnitude as compared to an HDD.

Although performance of SSDs are attractive, there is still a large difference
between the prices of SSDs and HDDs. In addition, their performance in sequen-
tial access is not so different as that in random access (and is even comparable
when RAID is applied to HDDs). Therefore, it is reasonable to configure a hybrid
system of SSDs and HDDs, and adopt a data placement method that maximizes
system I/O performance.

Some of the data placement methods have been proposed for hybrid database
application [1–3,9]. These methods are based on reference locality of data stored
in a database. By storing frequently accessed data in an SSD, system I/O perfor-
mance is improved nonlinearly to the ratio of the size of data stored in an SSD
and in an HDD. Some of them also distinguish random access from sequential
access, and give randomly accessed data priority to be stored in an SSD. The
performance gain obtained from these methods depends on both the data access
patterns and the size of the working set of application. As the hottest data is
cached in the buffer pool of the host, in order to obtain a performance gain, the
working set needs to contain warmly accessed data that is large enough to be
spilled off from the host memory and stored in an SSD.

In this paper, we propose another data placement method among SSDs and
HDDs by focusing on data skew (called Skew-Based Data Placement, SDP, here-
after). Data skew is known to be one of general characteristics that frequently
appear in stored data [5]. SDP uses it to obtain performance enhancement non-
linear to the ratio of the size of data stored in an SSD. It provides performance
enhancement from the first time when data are accessed. In addition, it provides
nonlinear gain even if the host memory is large enough to contain the working
set of application, and other cold data is accessed less frequently and uniformly.
The application of SDP is for data that is rarely updated, – such as that for log
analysis.

In SDP, the target columns for which the placement of records are optimized
are given by an administrator or an overlying application. It then decides record
placement so that the performance of fetching records using indices on any of
those columns is enhanced. SDP configures a composite key consisting of the
target columns. It then decides whether the records are to be stored in an SSD or
in an HDD depending on the value of the composite key. To optimize the overall
placement, data skews in all of the target columns are considered simultaneously.
This process is formulated as integer linear programming (ILP) problem. With
SDP, records stored in an SSD are likely to be retrieved using random access,
while those stored in an HDD are likely to be fetched using sequential access.
Concentrating random accesses to an SSD enables performance enhancement
nonlinear to the ratio of records stored in an SSD and in an HDD.

We implemented a prototype using MySQL and evaluated it using a customer
statistics table provided by an internet company, Conviva Inc. We show that by
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storing 20 % of records in an SSD we can achieve up to 76 % of the maximum
reduction that would otherwise be obtained when all the records are stored in
an SSD.

The rest of the paper is organized as follows– comparison of an SSD and an
HDD is given in Sect. 2, the data skew of the table used in the prototype evalu-
ation is discussed in Sect. 3, the proposed SDP is described in Sect. 4, the imple-
mented prototype and its evaluation results are presented in Sect. 5, the related
work is discussed in Sect. 6, and finally we conclude in Sect. 7.

2 Comparison of SSD and HDD

An SSD is generally composed of an SSD controller and multiple flash memory
packages [4]. An SSD controller is connected to a host using some host connection
interface such as SATA or PCI Express. It transforms block I/O requests from a
host to read and write I/O operations to the flash memory packages. These I/O
operations are parallelized among multiple packages to enhance performance of
an SSD.

Table 1 compares the performance [7,8] and price [6] of a SATA SSD and an
HDD. Here, we discuss read performance since that is the focus of the proposed
method. Because an SSD does not contain a mechanical component and I/O
requests are served in parallel among flash packages, its random access perfor-
mance is better by more than two orders of magnitude than that of an HDD.
On the other hand, the difference of sequential access is not as much as that of
random access. When the prices of the two devices are considered, combination
of RAID method and HDDs is a reasonable choice if majority of I/O traffic of
application are performed in sequential access.

A data placement method of a hybrid system of SSDs and HDDs need to
consider these performance characteristics. Performance gain obtained by serving
random accesses using an SSD is larger than that obtained by serving sequential
accesses. Therefore, to make the best of SSDs, data should be placed so that
random accesses be served by SSDs while sequential accesses be done by HDDs.

Table 1. Comparison of SSD and HDD.

Device Random 4K Read IOPS Sequential Read BW Price

SSD 41,000–89,000 500–550 MB/s 1 $/GB

HDD >91–118a 125–156 MB/s 0.05–0.07 $/GB

aCalculated using read seek average time.

3 Skew in Data Distribution

It is widely known that in a column of a table, the numbers of entries of values
appearing in that column are frequently not equal and have skew. For example,
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if a column is on places of residence of customers, there are many entries of big
cities such as New York and Los Angeles. On the other hand, there are many
other smaller cities which appear less often. Therefore, in general, there is a
small number of values that often appear in a column while many others do less
often.

Figure 1 shows the skew of the table we used in our prototype evaluation. It
is the table on customer statistics of an Internet company, Conviva. It has 104
attributes and we investigated the skew on the values of the combination of the
four columns, namely the endedFlag, customerId, country, and city. They are
often used to select records in the company for data analysis. The figure shows
the cumulative distribution function of the number of the occurrence of each
value appearing in the table and that of its storage consumption. It shows that
90 % of values just appear in 6 % of records in the table, while 95 % of values
does in 10 %. Therefore, 90 % of records are occupied by just 5 % of major values.

Fig. 1. Cumulative distribution function of the number of the occurrence of each value
appearing in a table.

4 Optimizing Data Placement

4.1 Skew-Based Data Placement (SDP)

SDP uses the data skew appears in records stored in a table. Unlike conventional
methods, it does not depend on the skew or locality of reference of application.

The method is intuitively illustrated using Fig. 2(a). A table which is used
as an example to explain the method has two columns: customer ID and city.
Although the cardinality of the customer ID is three, because of its data skew,
the number of occurrence of “1” is larger than that of “2” and “3”. In the same
way, on the city column, the number of occurrence of “New York” is larger than
that of “Berkeley”, because New York is a much larger city than Berkeley.

When records, which are rows of the table, are sorted according to one col-
umn to optimize fetching records using its index, the performance of fetching
records using an index on another column is not generally optimized. In a case
considered here, records are fetched using either the index on the customer ID or
the city. Figure 2(a) shows the order of records in the table that are sorted using



Record Placement Based on Data Skew Using Solid State Drives 185

a composite key of the customer ID and the city. Because the customer ID is the
first column in the composite key, sorted records are clustered on it. In other
words, records that share an identical value of the customer ID are continuously
placed in the table. When clustered records are stored in an HDD, fetching those
records are performed using sequential access. An HDD provides good perfor-
mance for sequential access. On the other hand, when records are fetched using
the index on the city – as the records that share an identical value of the city
are separated in the table – fetching is performed using random access. When
the table is stored in an HDD, fetching records that correspond to “New York”
requires three seeks. Because seek time of an HDD is considerably large, the
performance of fetching records using the index on the city is much worse than
that of the customer ID.

SDP solves this kind of cases and enhance the performance of fetching records
using indices in a multi-dimensional way. It focuses on records with less frequent
values and stores them in an SSD. In the example of Fig. 2(a), when it is allowed
to move up to three records from an HDD to an SSD, moving records with the
customer ID of “2” and “3” reduces the number of seeks to fetch the records
with “New York” from three to one. This means that by moving 33 % of records
of the table, the number of seeks is reduced by 66 %. In this way, by moving
records with less frequent values, SDP reduces the number of seeks made to an
HDD nonlinearly to the ratio of the size of records stored in an SSD and an
HDD.

Figure 2(b) schematically shows the reduction of the cardinality of the com-
posite key of records stored in an HDD, The horizontal and vertical axises cor-
respond to the columns consisting the composite key. Although the number of
axises or columns in the composite key is two for the explanation purpose, SDP
is not limited to it. Each square in Fig. 2(b) corresponds to a possible value of
the composite key which are combination of values in each column. The colored
squares represent that there are records with the corresponding value. By storing
less frequent values of the composite key in an SSD, large number of colored

Fig. 2. Enhancement of fetching records using data skew.
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squares moves to an SSD. As a result, an HDD stores a small number of colored
values that has many entries. This results in the nonlinear reduction of the num-
ber of seeks in fetching records using indices of the columns in the composite
key except for the first column.

4.2 Optimization Formulation

In this subsection, the optimization of data placement between an SSD and an
HDD is formulated. It is supposed that data are stored in a single table, and
records are retrieved using either of multiple indices. Therefore, the motivation
of the data placement is to enhance the performance of fetching records using
indices in multi-dimensional way.

It is also shown that the optimization of data placement is formulated as inte-
ger linear programming. I/O cost to fetch records is the optimized function under
the constraint of SSD resources. Because integer linear programming is known
as an NP-hard problem, we used greedy method in our prototype described in
Sect. 5 to perform optimization calculation.

Table 2. Variables to formulate I/O cost

Variable Explanation

Ni Cardinality of column ci

Ki Cardinality of combinatorial column (c1, c2, ..., ci)

Fi The number of fragmentation of column ci in HDD

BSSD, BHDD Bandwidth of SSD or HDD

SSSD, SHDD Size of data stored in SSD or HDD

Tseek Average seek time of HDD

yi(x1, x2, ..., xi) Whether records with (x1, x2, ..., xi) are stored in SSD

s(x1, x2, ..., xn) Total size of records with combinatorial values (x1, x2, ..., xn)

CSSD Constraint of SSD consumption

To formulate the I/O cost, the variables shown in Table 2 are introduced. Fi

represents the number of fragments that include records with the same value on
column ci in an HDD. i represents the order within the target columns that are
optimized for fetching records. In the example shown in Fig. 2, if the whole table
is stored in an HDD, F2 is five because “New York” appears in three fragments
while “Berkeley” does in two.

The average I/O cost to fetch records using an index of ci by specifying a
value in the column is given by dividing total I/O cost to fetch all records by
the cardinality of the column. The total I/O cost is the sum of the I/O cost to
fetch records reside in both an SSD and in an HDD. We ignored the latency of
I/O requests other than the seek time of an HDD, because our interest is the
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difference of the cost between the two devices. Then, the average I/O cost is
described as

1
Ni

(
TseekFi +

SHDD

BHDD
+

SSSD

BSSD

)
. (1)

When the size of an SSD that can be used to store records of a table is given as
the constraint of the data placement optimization, the second and third terms
in formula (1) are constant. Then, only the first term varies depending on the
placement of records. Therefore, we formulate the I/O cost to be optimized by
linearly combining the costs of each target column as

∑
i

Ri
Fi

Ni
(2)

Here, Ri adjusts the relative importance among the target columns, and Tseek is
included into it. We introduce two parameters, yi and s; yi(x1, x2, ..., xi) ∈ {0, 1}
denotes whether records with the combination of the values in target columns
of (x1, x2, ..., xi) are stored in an SSD; s(x1, x2, ..., xn) denotes the total size of
the records with the combination of the value of (x1, x2, ..., xn). n denotes the
number of columns to be optimized and 1 ≤ i ≤ n. In SDP, records which share
the same combination of the value (x1, x2, ..., xn) are stored either in an SSD or
an HDD. Then, the next relation holds for yi and yi+1.

yi+1(x1, x2, ..., xi, xi+1) − yi(x1, x2, ..., xi) � 0 (3)

That is, for yi(k1, k2, ..., ki) of the specific combination of constants of (k1, k2, ..., ki)
to be one, yi+1(k1, k2, ..., ki, xi+1) needs to be one for all possible value of xi+1.
Then, the number of fragments Fi in an HDD is described as

Fi = Ki −
∑
x1

∑
x2

...
∑
xi

yi(x1, x2, ..., xi). (4)

The constraint of the consumption of SSD resources is described as
∑
x1

∑
x2

...
∑
xn

s(x1, x2, ..., xn)yn(x1, x2, ..., xn) ≤ CSSD. (5)

Substituting formula (4) into formula (2) gives the I/O cost that are described with
variables yi(x1, x2, ..., xi). Then, calculating the combination of yi(x1, x2, ..., xi)
which minimizes the I/O cost under the constraints of formulas (3) and (5) is an
integer linear programming since yi(x1, x2, ..., xi) ∈ {0, 1}. An integer linear pro-
gramming is known as an NP-hard problem.

5 Prototype Evaluation

5.1 Implementation

To evaluate SDP, we implemented a prototype shown in Fig. 3 using MySQL. It
is consisted of two layers: data placement optimizer and MySQL. The data place-
ment optimizer optimizes the placement of records in an original table between
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an SSD an HDD. An application program is supposed to create individual index
on each of the target columns and use either of them to fetch records by speci-
fying value on that column.

The data placement optimizer takes the statistics on the occurrence of values
in the target columns. It then decides whether records with each combination
of values are stored in an SSD or in an HDD. It uses the data placement opti-
mization explained in Sect. 4 in the constraint of the SSD resources given by an
administrative interface. It also creates an additional column, ssd flag ∈ {0, 1},
to an original table. The flag denotes whether a record containing a flag is stored
in an SSD or not.

Because the calculation of the data placement optimization is NP-hard,
greedy method is used. It continued choosing the next combination of values
that reduced the I/O cost per SSD consumption described by formula (2) most
until the total consumption of an SSD reached the given constraint.

The range partition function of MySQL 5.6 was used to divide storing records
between an SSD and an HDD. Records with ssd flag of “1” were stored in an
partition made in the directory where an SSD was mounted while ones with
ssd flag of “0” were stored in the HDD directory.

In the evaluation, SSD resources consumed by the indices and the ssd flag
column was ignored because it was small compared to the original data table that
had 104 columns. We used a single host with two 8-core xeon CPUs and 128-GB
memory. It contained both a SATA SSD (Intel 520 series) and a SATA HDD
(Seagate ST91000640NS Constellation.2) that were used for SDP evaluation.

Fig. 3. Prototype implementation.

5.2 Evaluation

We performed two kinds of experiments. In the first experiment, the columns
that were frequently used to select records in the data analysis in an Internet
company, Conviva were selected as the target of optimization. However, because
these columns were correlated, records that shared the same value in the target
column were not fragmented so much and the gain of the performance by SDP
was limited. Therefore, in the second experiment, different columns were selected
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and the size of records was halved to artificially increase the affect of seek of an
HDD to the system performance. The table used in the experiment is the same
as the one analyzed in Sect. 3 that had 1,062,701 records, each record consisted
of 104 columns, and the size of each record was about 2 KB. For the simplisity
of evaluations, columns that were not in the interests were defined as a single
large blob column.

In the first experiment, data placement was optimized on the columns that
were frequently used for analysis. Table 3 shows the cardinality of each of the
four columns chosen to be optimized, namely endedFlag, customerId, country,
and city. It also shows the cardinality of their combination.

In SDP, records in an SSD and an HDD are sorted using a composite key that
is consisted of the target columns for optimization. Except for the first column
in the composite key, how much the records sharing the same value in a column
are fragmented depends on the cardinality of its preceding columns. Therefore,
to minimize the fragmentation of records in an HDD, the order of columns in
a composite key is decided in ascending order of their cardinality; in the first
experiment, the composite key was (endedFlag, customerId, country, city).

Table 3. Cardinality of each and composite column used in the experiments.

Key Cardinality

endedFlag 2

customerId 7

country 179

city 6086

connType 12

isp 130

(endedFlag, customerId) 12

(endedFlag, customerId, country) 462

(endedFlag, customerId, country, city) 10813

(city, customerId, connType, isp) 19587

The performance of SDP was evaluated by the average cost of fetching records
selecting single value on the focused column. Figure 4 shows the evaluated perfor-
mance on the select queries on city, which was the last column in the composite
key. The results show that by storing 20 % of records in an SSD, the average
response time of the queries was reduced by 52 % of the maximum reduction
which was obtained when all records were stored in an SSD. On the other hand,
the reduction of the response time of 90th percentile was 75 % of the maximum
reduction.
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The results of city in Fig. 4 also shows that the response time of the 90th
percentile is faster than that of the average. This is caused by the data skew
in the city column; a small number of major cities in the column largely increases
the average response time. In addition, the reduction of the response time of the
90th percentile is larger than that of the average. We consider this is due to
the difference of the ratio of the seek and read time between major and minor
values. On major values, because there are many records, the ratio of read time
is larger than that of minor values. Therefore the performance gain by reducing
the number of seeks could be suppressed for major values.

Fig. 4. Query response time on city and country in the first experiment.

In the first experiment, however, the nonlinear performance enhancement was
not obtained in the preceding columns to the city in the composite key. Figure 4
also shows the performance of the queries on country, which was the third column
in the composite key. Although the response time of the 90th percentile is slightly
improved nonlinearly, the reduction of the average response time is linear. This
shows that on the preceding columns including the country, the bottleneck of the
performance to fetch records is the bandwidth of the sequential read of the HDD.
Therefore, by storing some of records in an SSD, the performance is improved
linearly and its slope is decided by the difference of the bandwidth of the SSD
and the HDD.

In the second experiment, the different columns were chosen from the first
experiment and the length of the records was halved to increase the affect of
the seek of an HDD. The target columns for optimization were customerId, con-
nType, isp, and city, and the composite key was configured using these columns
in this order. However, also in this case, the bottleneck for all the column except
the city was the read bandwidth of the HDD. Therefore, the order of the column
was changed and the composite key of (city, customerId, connType, isp) was
also tried. In this case, the bottleneck for all of the column was the seek time of
the HDD. The cardinality of regarding columns are shown in Table 3.

Figure 5(a) shows the query response time on city when (customerId, con-
nType, isp, city) was used as the composite key. Because the affect of the seek
time is increased from one in the first experiment, by storing 20 % of records,
76 % of maximum reduction that is obtained when all records are stored in the
SSD is obtained. Figure 5(b) shows the cumulative distribution function of the
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Fig. 5. (a) Query response time and (b) its cumulative distribution function (CDF) on
city in the second experiment. Legend in CDF is the ratio of records stored in SSD.

query response time on the city. When the ratio of the records stored in an SSD
is increased, the response time rapidly approached to the performance with the
maximum reduction of response time.

Fig. 6. Query response time on connType and isp in the second experiment.

Next, when (city, customerId, connType, isp) was used as the composite key,
the nonlinear reduction of query response time was obtained for all of the target
columns. Figure 6 shows the query response time on the connType which was
third in the composite key and the isp which was the last. When 20 % of records
are stored in an SSD, the average response time of the select queries is reduced
by 55 % and 68 % of the maximum reduction for the connType and the isp,
respectively.

These evaluation results showed that SDP provides nonlinear reduction of
query response time against the ratio of the size of records stored in an SSD
and an HDD. It also reduces the response time in multi-dimensional way. How
large the nonlinear performance gain is depends on several factors such as the
cardinality, the correlation, and the record size of the data stored in a system.
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6 Related Work

There are several methods that have been proposed for hybrid database appli-
cation. These methods can be broadly divided into two categories – ones that
handle both an SSD and an HDD as different devices which configure the same
storage tier [1] and others that use an SSD as an intermediate cache device
between a host memory and an HDD [2,3,9]. The difference between the two
is that the former provides increased I/O performance when data are accessed
for the first time, while the latter does so from the second time. However, the
former needs profiling of application to decide as to what data should be stored
in an SSD which the latter does not.

All of these methods are based on reference locality of data stored in a data-
base. By storing frequently accessed data in an SSD, system I/O performance is
improved nonlinearly to the ratio of the size of data stored in an SSD and in an
HDD. On the other hand, in this paper, we propose an alternative that focuses
on data skew by storing records with values that appear less often in an SSD
while those that do more in an HDD.

7 Conclusions

In this paper, we proposed SDP to enhance the performance of fetching records
stored in a hybrid data store of SSDs and HDDs using indices on different
columns. It is based on the data skew of stored data, and provides nonlinear
performance gain to the ratio of records stored in SSDs and HDDs. Because
SDP uses the data skew, unlike caching, it provides stable performance enhance-
ment between first and second data accesses. It can also enhance performance
even when a system memory is large enough to contain the working set of appli-
cation. The evaluation of the implemented prototype using the data from the
internet company showed that the performance of fetching records using differ-
ent indices are simultaneously enhanced. By storing 20 % of records, up to 76 %
of the maximum reduction of query response when all records are stored in an
SSD is obtained. Our future work includes comparing the performance of SDP
and others that are based on reference locality, and evaluation using real queries
that are used in the data analysis.
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Abstract. Remote data access for data analysis in high performance
computing is commonly done with specialized data access protocols and
storage systems. These protocols are highly optimized for high through-
put on very large datasets, multi-streams, high availability, low latency
and efficient parallel I/O. The purpose of this paper is to describe how
we have adapted a generic protocol, the Hyper Text Transport Protocol
(HTTP) to make it a competitive alternative for high performance I/O
and data analysis applications in a global computing grid: the Worldwide
LHC Computing Grid. In this work, we first analyze the design differ-
ences between the HTTP protocol and the most common high perfor-
mance I/O protocols, pointing out the main performance weaknesses of
HTTP. Then, we describe in detail how we solved these issues. Our solu-
tions have been implemented in a toolkit called davix, available through
several recent Linux distributions.

Finally, we describe the results of our benchmarks where we compare
the performance of davix against a HPC specific protocol for a data
analysis use case.

Keywords: High performance computing · Big data · HTTP protocol ·
Data access · Performance optimization · I/O

1 Introduction

The Hyper Text Transport Protocol (HTTP) [9] is today undoubtedly one of
the most prevalent protocols on the internet.

Initially created by Tim Berners-Lee for the World Wide Web at CERN
in 1990 [8], HTTP is today much more than a simple protocol dedicated to
HTML web page transport. The extensions of HTTP like WebDav [21] or CalDav
[15], the HTTP based protocols like UPnP or SOAP [10] and the RESTful
[17] architecture for Web Services have transformed HTTP into an universal
versatile application layer protocol for the internet. The recent emergence of
cloud computing [13] and the popularization of big data storage [31] based on
RESTful Web services have definitively proved the universalism of HTTP.
c© Springer International Publishing Switzerland 2014
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Today, HTTP is the foundation for interactions with commercial cloud stor-
age providers like Amazon Simple Storage Service [27] or with Open Source
Cloud Storage [5] systems like OpenStack Swift [29] using REST API like S3
[26] or CDMI [36]. HTTP is fully accepted as data transfer and data manipula-
tion protocol in NoSQL databases and distributed storage systems in the Web
World. The association of REST APIs with the HTTP protocol usage offers a
simple, standard, extensible, portable alternative to the legacy data access and
file manipulation protocols or to the proprietary protocol of most distributed file
systems.

However, the popularity of HTTP was still not penetrating the High Per-
formance Computing world. HPC1 data access have highly specific and strict
requirements: very large data manipulation, low-latency, high-throughput, high-
availability, highly parallel I/O and high-scalability. For these reasons, those use
cases traditionally rely on highly specific systems and protocols adapted to such
constrains. The IBM GPFS [35] protocol, the Lustre parallel distributed file sys-
tem protocol, the Hadoop HDFS [42] streaming protocol, the gridFTP protocol
[11] or the XRootD protocol [31] are widely used in super computing and grid
computing environments.

The focus of this work is to be able to make the HPC world benefit of all
the momentum coming from the HTTP Ecosystem, like the RESTful and Cloud
Storage services, by creating a high performance I/O layer based on the HTTP
protocol, compatible with standard services and competitive with the HPC I/O
specific protocols.

To achieve this, we have created libdavix [1,38], an I/O layer implementation
optimized for data analysis and HPC I/O in distributed environments.

2 Background and Related Work

2.1 HTTP as a Data Management and Data Transfer Protocol

The stateless nature of HTTP, associated with the atomic nature of its primi-
tives, provides a simple, reliable and powerful consistency model in distributed
environment. The success and the major diffusion of the RESTful architecture
introduced by Roy Fielding [17] for the Web World illustrate perfectly this [34].

The HTTP PUT method provides an object level idempotent write operation
that can be used for an atomic resource creation or a resource content update.
The basic HTTP GET method gives a safe, cacheable, atomic and idempotent
Object level read operation and can be used to access and retrieve safely a remote
resource. These two methods, associated with the HTTP DELETE method,
are enough to satisfy the four basic functions Create, Retrieve, Update, Delete
(CRUD) [32] of any basic persistent storage system [6].

The properties of the HTTP protocol make it suitable for data transfer in
a distributed environment and easily justify the emergence of persistency and
data storage solutions using RESTful interfaces. It is the case for instance of the
1 High Performance Computing.
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NoSQL database couchdb [3], of the NoSQL key-store Ryak [2], of the distrib-
uted file system HDFS with httpFS [42], of the Amazon Simple Storage Service
(Amazon S3) [27] or of any similar RESTful Object Storage service.

Again, the universalism of HTTP and the quality of its ecosystem associated
with its simple and flexible design, makes it a first quality choice for a generic
data transfer protocol today.

2.2 Efficient Parallel I/O Operations

Intensive data analysis applications requires high degree of I/O parallelism,
robustness over large transfers and low I/O latency. A high energy physics appli-
cation typically processes in parallel a very large number of events from different
files located in large distributed data stores, triggering a significant number of
parallel I/O operations.

For such use cases in, the grid computing models in the HEP community use
a mix of I/O frameworks for HPC2 data access, the XRootD framework [16], the
GridFTP protocol [11] with the Globus toolkit [18], HDFS of Hadoop [42] and
IBM GPFS [35].

All these frameworks are highly optimized for parallel access, high through-
put and efficient I/O scheduling of multiple requests. The XRootD framework
implements its own I/O scheduler, it supports parallel asynchronous data access
on top of its own I/O multiplexing.

The GridFTPv2 protocol has separated control and data channels and sup-
ports multiple data streams from different data sources on top of TCP or UDP.

The HDFS architecture is specially designed for large file storage, high
throughput, hot file replications and data streams from multiple DataNodes.

To explore the possibilities for a solution based on HTTP, we defined a set
of criteria to meet.

– Efficiency for large data transport and parallel I/O.
– Compatibility with existing network infrastructure and services.
– Low I/O latency: avoid useless handshakes, useless reconnections and redirec-

tions.

The original design of HTTP did not match very well these points.
The HTTP 1.0 standard recommends the usage of one TCP connection per

request to the server. This approach has been already proven inefficient due to
the TCP slow start mechanism [37]. Executing a HEP3 data analysis work-flow
with a very large number of parallel small sized requests in such conditions would
lead to a major performance penalty.

To mitigate the effect of this behaviour, HTTP 1.1 introduced the persistent
connection support with the KeepAlive mechanism and the support of request
pipelining over the same connection [34] (Fig. 1).

2 High performance computing.
3 High energy physics.
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Fig. 1. HTTP Request pipelining and Request Multiplexing

However, HTTP pipelining suffers of several problems. Contrary to a proto-
col supporting modern multiplexing, the HTTP pipelining suffers of the HOL4

problem.
The HTTP standard specifies that the treatment of a group of pipelined

HTTP requests has to be processed in order. With such a requirement, any
request pipelined suffering of a delay will cause a delay for all the following
requests [28]. This is a unacceptable performance penalty in case of parallel I/O
requests with different sizes.

The HTTP pipelining also suffers from other problems. It suffers of side
effects with the TCP’s nagle algorithm [22]. It often suffers of performance
degradation due to aggressive pipeline interruptions with some servers imple-
mentations and due to the fact that the pipelining is not respected by most of
the proxy servers. For these reasons, most of the current web browsers (Chrome,
Firefox and Internet explorer) web browser disable or do not support the HTTP
pipelining mechanism.

To resolve these problems inherent to HTTP 1.1, several proposal have been
made:

– the SPDY protocol is “an application-layer protocol for transporting con-
tent over the web, designed specifically for minimal latency”. SPDY acts as a
session layer between HTTP and TCP. It supports multiplexing, prioritization
and header compression [7]. SPDY is currently the most mature implementa-
tion of multi-plexing for HTTP and supported by a majority of modern web
browsers.

– HTTP over SCTP proposes to use the SCTP multi-homing and multi-
plexing features with HTTP [33]. SCTP is a acronym for Stream Control
Transmission Protocol, it provides a message-based alternative to TCP.

– WebMux and HTTP-NG proposes the usage of the MUX protocol as
session protocol to provide multi-plexing for HTTP [20,30].

4 Head of Line.
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None of these approaches are considered acceptable for a High performance
I/O usage.

The SPDY protocol explicitly enforces the usage of SSL/TLS for protocol
negotiation purpose. TLS introduces a negative performance impact for big data
transfers [14] and introduces a handshake latency that can not be mandatory in
High performance computing.

The HTTP over SCTP proposal implies naturally to replace the TCP pro-
tocol by SCTP. Like any other protocol aiming to replace the level 4 of the
OSI model, the SCTP protocol triggers several concerns about the compatibility
with the existing network architecture, about the NAT-traversals capability and
about the support in old operating systems.

The MUX, renamed WebMUX protocol, defined in 1998, focuses on an object
oriented approach with in mind the support for technology like RMI5, DCOM6

or CORBA7 which is not our use cases. Moreover, it has currently not been
implemented in any major HTTP server.

To satisfy our use cases, we adopted and implemented a different approach
into libdavix [1,38]. We use a hybrid solution based on a dynamic connection
pool with a thread-safe query dispatch system and a session recycling mechanism
(See Fig. 2).

Associated with the pool, we enforce an aggressive usage of the HTTP
KeepAlive feature, libdavix to maximize the re-utilization of the TCP connec-
tions and to minimize the effect of the TCP slow start.

This method gives several benefits compared to previously quoted solutions.
First, it is fully compatibility with the standard HTTP 1.1 and with existing
services and infrastructure.

Second, we supports efficient parallel request execution for repetitive I/O
operations without suffering of the problems that are specific to the classical
HTTP pipelining. nor necessitating a protocol modification to support multi-
plexing.

This dispatch approach is particularly adapted to a HPC data-analysis work-
flow: a repetitive concurrent access to a limited set of hosts exploits at the
best the session recycling and maximizes the lifetime of the TCP connections.
However, contrary to a pure multi-plexing solution that aims to the usage of
one TCP connection per host, our approach uses a connection pool whose size
is proportional to the level of concurrency. Consequently, an important degree
of concurrency can result in a more important server load compared to a multi-
plexed solution like spdy due to the number of connections allocated per client.

However, this is not a big issue for our HPC use case, the support of “vectored
queries” of libdavix explained in Sect. 2.3 reducing significantly the number of
simultaneous concurrent requests.
5 Remote Method Invocation.
6 Distributed Component Object Model.
7 Common Object Request Broker Architecture.
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Fig. 2. Dynamic connection pool with a thread-safe query dispatch

2.3 Scalable Random-Access I/O for Partial File Access
with HTTP

Very large data sets in distributed environments are generally partitioned into
separated data subset objects distributed in several storage nodes.

In High Energy Physics, a data set generally contains a important number of
particle events decomposed in ROOT [4] TTrees of events and stored in different
compressed files.

This approach allows an easy data distribution and simplify data replication.
It facilitates the partitioning the data in a distributed environment like in the
World Wide LHC Computing Grid (WLCG) [23]. At the same time, a data
analysis with this data model is I/O intensive and generates a very large number
of individual data accesses operation to the storage. In order to extract a set of
specific events spread in different remote data sets, a HEP Application needs to
read a large number of small segments of data in different remote objects.

To reduce the number of I/O requests, and, hence, the impact of latency
with such patterns, high performance computing I/O protocols implement Data
Sieving algorithms, two phase I/O algorithms [39] or sliding window buffering
algorithms.

To the best of our knowledge, no nowadays HTTP I/O toolkit before davix
implemented similar I/O optimization strategies.

We implemented in libdavix a support for vectored packed operations with
random position based on the multi-range feature of the HTTP 1.1 protocol
(Fig. 3).

This feature allows to gather and pack a large number of fragmented random
I/O requests directly in the ROOT [4] I/O framework via the TTreeCache [41]
in a large vectored query. Subsequently, this query is processed by libdavix as
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Fig. 3. Vectored I/O requests support in the ROOT framework associated with Lib-
Davix

one atomic remote I/O query. This approach reduces drastically the number of
remote network I/O operations and offers the advantage to reduce the necessity
of parallel I/O operations and thus virtually eliminates the need for I/O multi-
plexing.

2.4 Multi-stream and Multiple Replicas I/O Operations

In grid computing, the unavailability of an input data required by a job is often
the main cause of failure. Such situation leads to a redistribution of the data and
a rescheduling of the job with a substantial performance impact on the execution
time.

In an attempt to solve this issue, the XRootD protocol [16] supports a fed-
eration mechanism to offer a more resilient access to a distributed resources.
XRootD data servers can be federated hierarchically into a global virtual name-
space. In case of unavailability of a resources in the closest data repository,
the XRootD federation mechanism will locate a second available replica of this
resource and redirect the client there.

HTTP alone does not support this feature. A classical HTTP access to an
unavailable resource or a offline server will result in a I/O error. To improve the
resiliency of the data layer, davix implements natively a support for the Metalink
[25] standard file format coupled to a fail-over and filtering mechanism for the
offline replicas of a resource.

A Metalink file is a standardized XML [12] file containing several elements
of meta-data information about an online resource: name, size, checksum, sig-
nature and location of the replicas of the resource. A Metalink file is a resource
description and a set of ordered pointers to this resource.
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Davix can use the Metalink information to apply two strategies:

– The “fail-over” strategy (default). In the case a resource is not available,
davix try seamlessly to obtain the Metalink associated with this resource.
Then libdavix will try to access one per one the available replicas of this
resource until being able to access the requested data on one of the available
replica of the resource. This approach improves drastically the resiliency of
the data access layer and has the advantage to be without compromise or
impact on the performances.

– The “Multi-stream” strategy. In this case, libdavix will first try to obtain
the Metalink of the resource and then proceed to a multi-source parallel down-
load of each referenced chunk of data from a different replica. This approach
has the advantage to maximize the network bandwidth usage on the client
side and to offer the same resiliency improvement than the fail-over strategy.
However, it has for main drawback to overload considerably the servers.

The combined usage of libdavix for data analysis with a Replica catalogue or
federation system supporting able to provide Metalink files like the DynaFed sys-
tem (Dynamic Storage Federation) [19] enforces the global resilience of the I/O
layer of any HPC application in a transparent manner. It provides the guarantee
that a read operation on a resource will succeed as long as one replica of this
resource is remotely accessible and referenced by the corresponding Metalink.

3 Performance Analysis

For our performance analysis, we executed a High energy analysis job based on
ROOT framework [4] reading a fraction or the totality of around 12000 particles
events from a 700 MBytes root file. This tests has been executed using both the
XRootD framework and our libdavix solution as I/O layer.

Each test execution has been executed on WLCG through the Hammerloud
Grid [40] performance testing framework.

The execution of the test is always done on a standard Worder Node config-
uration of WLCG.

For both XRootD and davix, each test is run against the same server instance
with the following configuration: Disk Pool Manager(DPM) Storage system,
4 Core Intel Xeon CPU, 12 GBytes of RAM, Scientific Linux CERN 6, 1 GB/s
network link.

Two test executions are separated by 20 min.
Our statistics are based on an average of 576 tests executions over a period

of 12 days.
We compare here the global execution time of the analysis job over different

network configurations:

– LAN: accessing the file over a gigabit Ethernet with low latency (latency
<5 ms)

– PAN-European network: accessing the file over GEANT [24] between
Switzerland and UK (latency <50 ms)
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Fig. 4. Execution time of a ROOT data analysis job (less is better).

– WAN: accessing the file over Internet between Switzerland and USA (latency
<300 ms)

In case of “CERN-CERN” data transfer, the (Fig. 4) shows that libdavix is
respectively 0.7 % faster than XRootD in case of local access with high speed
link and low latency. This shows that HTTP with libdavix can compete with a
HPC specific I/O protocol on local area network and offers similar performances
in term of data access time and data transfer rate.

In case of “UK(GLAS)-CERN”, XRootd and libdavix offers sensibly the same
performance.

In case of “USA(BNL)-CERN” data transfer, our tests shows that XRootD
is in average 17.5 % faster than libdavix on Wide Area network links with high
latency. This difference of performance comes mainly from the sliding windows
buffering algorithm of XRootD which allows to minimize the number of network
round trips executed. Network round trips are naturally extremely costly on high
latency networks.

In a classical High Energy Physics grid computing model, a job is always sent
close to the data that it will process. Data access are in this case made over a
LAN with high speed and low latency.

In such model, these results are particularly encouraging for libdavix and
HTTP I/O.

4 Conclusion

Our results shows that for a HPC I/O use case, our solution, libdavix can pro-
vide similar performance over low latency link to a HPC specific protocol like
XRootD.
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The usage of the HTTP multi-range feature allows to reduce drastically the
number of parallel I/O operations and allows HTTP to compete with the aggres-
sive caching strategy of the HPC specific protocols in case remote partial I/O
operations on large data sets.

The lack of multi-plexing support in HTTP can be compensated by a session
recycling system for HEP uses cases and allows to be retro-compatible with the
existing network and service infrastructure.

Finally, the association of the Metalink with HTTP gives new possibilities
for transparent error recovery in HPC data access and offers an interesting alter-
native to classical hierarchical data federations.

We have demonstrated in this paper with libdavix that an optimized I/O
layer based on the HTTP protocol can be considered as a serious and performant
alternative to the common HPC specific I/O protocols.
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Abstract. Large-capacity memory system allows big data applications
to load as much data as possible for in-memory processing, which impro-
ves application performance. However, DRAM faces both scalability and
energy challenges due to its inherent charging mechanism. Thus, DRAM-
based memory system incurs excessive cost to meet both capacity and
energy requirements for the emerging big data workloads. Fortunately,
non-volatile memories(NVMs) are emerging with the advanced features
of better scalability and lower power leakage. Integrating NVMs into
main memory is non-trivial as NVMs have a few weakness, such as asym-
metric read and write latency and power. Designing memory system
comprising both DRAM and NVMs requires to understand the memory
access behaviors of big data applications. In this paper, we first inves-
tigate the memory access patterns of both typical big data workloads
and traditional parallel workloads. By doing so, we show the read/write
intensity as well as temporal/spatial locality of big data workloads. We
then replay memory access traces of big data applications to DRAM sim-
ulator and PCM simulator, respectively. We explore design implications
of hybrid memory comprising DRAM and PCM.

1 Introduction

Emerging big data applications need to process high volume of data. For instance,
Facebook keeps 75 % of its non-image data in main memory [1]. Loading as
much data into memory as possible avoids time-consuming disk IO operations,
and thus accelerates application performance. Large-capacity memory system is
expected to run big data applications. However, DRAM-based memory system
faces both scalability and energy challenges due to its working mechanism. It
is considered to be hard for DRAM to scale down to 20 nm [21]. Furthermore,
DRAM consumes 20 % to 40 % of the total server energy in data center [12]. As
such, DRAM-based memory system incurs excessive cost to provide large capac-
ity to run big data applications. Fortunately, non-volatile memories, such as
Phase Change Memory [14], Resistive RAM [8], and STT-RAM [6], are emerging
to become alternative candidates to DRAM-based memory system. Compared
to DRAM, NVMs have higher density without energy leakage. A few NVMs have
comparable operation performance with DRAM. Therefore, NVMs are desirable
to serve as large-capacity memory system for big data applications.
c© Springer International Publishing Switzerland 2014
J. Zhan et al. (Eds.): BPOE 2014, LNCS 8807, pp. 209–220, 2014.
DOI: 10.1007/978-3-319-13021-7 16
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However, NVMs also have a few drawbacks. For example, PCM has asym-
metric read/write energy consumption. The write latency of PCM is higher than
DRAM. When adopting NVMs in memory system for running big data appli-
cations, one needs to understand the memory access patterns of big data appli-
cations. Memory access patterns, such as staged bandwidth, read/write ratio,
temporal and spatial locality, are able to provide design implications to NVM-
based memory system. Without understanding these access patterns, one may
allocate PCM spaces for write-intensive data objects, which results in increased
memory performance due to the relatively slow PCM writes. Although there are
some studies characterizing the big data workloads, the opportunities of NVM
in big data area have not been examined as far as we know.

In this paper, we explore the opportunities of NVMs in big data applications.
We conduct a set of experiments to study the detailed memory access patterns
of typical big data applications. By gathering memory traces of big data appli-
cations, we analyze the staged bandwidth, read/write ratio, temporal locality
and spatial locality. In addition, we develop a PCM simulator based on DRAM-
Sim2 [16] and replay the memory access traces to PCM simulator. By doing so,
we provide design implications for integrating PCM into memory system. The
contribution of this paper is as follow.

1. We conduct experiments to analyze the memory access patterns of both big
data workloads and traditional parallel workloads. We observe that big data
workloads usually have similar read intensity and write intensity. In addition,
we observe that big data workloads have weaker temporal and spatial locality
compared to traditional ones.

2. We use PCM simulator to explore the opportunities of NVMs, especially
PCM, to serve as memory system for running big data applications. We show
the great opportunities for NVM to reduce energy consumption in big data
applications.

3. We propose the adoption of DRAM-PCM hybrid memory as a desirable design
choice when integrating NVMs into main memory. We argue that this design
choice can fully utilized advantages of PCM while reduce the negative impact
of its long write latency. To make the design more practicable, we suggest
that carefully designed data placement are essential.

The rest of the paper is organized as follows. Section 2 presents related works.
In Sect. 3, we describe the applications and methods used in our experiment
evaluations. Section 4 shows the memory access pattern analysis results as well
as the simulation results in both PCM and DRAM memory. We conclude the
paper in Sect. 5.

2 Related Work

2.1 Using NVMs in Computer Memory Architecture

Compared to DRAM, NVMs have higher density. Meanwhile, NVMs are promis-
ing to have comparable read/write performance as DRAM, and even SRAM.
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Therefore, a few research works integrate NVMs into cache hierarchy or main
memory to increase the capacity and reduce energy cost. However, current
NVMs also have several weaknesses, such as high dynamic energy and high
write latency. Smullen et al. [17] addresses the issue by redesigning the MTJ to
use a smaller free layer. Li et al. [11] adopt STT-RAM together with SRAM to
construct a hybrid adaptive on-chip cache to provide low power consumption
and low access latency. Recent works also focus on combining a small amount of
DRAM and a large amount of PCM to provide a low latency and energy memory
system [5,9,15]. These works mainly focus on the optimization technologies of
PCM to be adopted in main memory. These works target traditional workloads.
However, this paper mainly focuses on the opportunities of NVMs in big data
applications.

2.2 The Role of NVMs

Similar to our work, recently, a few works also explore the role of NVMs in
different types of workloads. Li et al. [10] perform a detailed analysis to the
access patterns of memory objects in stack, heap and global data for real large-
scale scientific applications. Their results reveal a lot of opportunities for using
NVRAM in scientific applications. Caulfield et al. [3] explores several options
for connecting solid-state storage to the host system to evaluate the role of
NVMs in storage level for high-performance and IO-intensive computing. Essen
et al. [18] develops a NVM simulator to model the impact of future generations
of I/O-bus-attached NVM on HPC application performance at scale. This paper
differs from these works in that we mainly evaluate the performance and energy
improvement when one adopts NVMs in main memory for big data workloads.

2.3 Analysis of Big Data Workloads

Recently, a few research efforts have been made to characterize and understand
the features of big data workloads. Chang et al. [4] examine the implications of
big data workloads on system design. Jia et al. [7] characterize micro-architectural
characteristics of big data workloads on the systems equipped with modern
superscalar out-of-order processors. Dimitrov et al. [13] profile the memory access
patterns of big data workloads, such as memory footprint, CPI, and cache misses
etc. However, these works do not examine the opportunities of NVMs (e.g. PCM)
on big data workloads.

3 Applications and Methodology

In this section, we present the evaluated applications and the evaluation method.



212 W. Wei et al.

Table 1. Features of Applications

Application Applications Data type Data size Software stack Application Memory

scenarios type footprint

Relational query Join query Table 7.1GB Impala,Shark,

MySQL,Hive

Realtime

analytics

7688MB

Relational query Select query Table 7.1GB Impala,Shark,

MySQL,Hive

Realtime

analytics

7867MB

Search engine PageRank Graph 4.2GB Hadoop,MPI

Spark

Offline

analytics

7892MB

Social network K-means Graph 4.1GB Hadoop,MPI

Spark

Offline

analytics

7283MB

Micro benchmarks Terasort Text 2GB Hadoop MPI

Spark

Offline

analytics

7215MB

Traditional

applications

Volrend N/A N/A N/A Parallel appli-

cations

6289MB

Traditional

applications

Radiosity N/A N/A N/A Parallel appli-

cations

7314MB

3.1 Applications

We select 5 workloads from the BigDataBench [19] as the big data workload
set, which are representative in big data scenarios. Table 1 shows the features
of these workloads. Two of the workloads are relational queries, which repre-
sents realtime analytics workload. The other three represent offline data ana-
lytics workload, which are PageRank, K-means, and Terasort. We also select
two applications radiosity and volrend from SPLASH-2 benchmark [20] as the
traditional parallel workload set. We conduct experiments using the two sets of
workloads and compare their memory access patterns.

3.2 Methodology

We first gather memory traces of the 7 workloads to analyze their memory
access patterns. For each workload, we measure stage bandwidth, read counts,
and write counts. The stage bandwidth is measured every 10 million requests
at runtime, which shows the bandwidth trend of each workload. We calculate
the total bandwidth, read bandwidth and write bandwidth for each stage. We
calculate the read-to-write ratio rwRatio for each page to show the write inten-
sity of each workload. Since memory access pattern is related to CPU cache
design, we further analyze the temporal locality of each workload by counting
the access intervals of each page. We count the page references and the reference
distribution for each workload to show its spatial locality.

We use a 5 nodes cluster to run the 4 Hadoop-based big data workloads, in
which one is the master node and others are slave nodes. Each node is configured
with 4 Intel Xeon E5 processors, 8 GB of DDR3 memory, and 1TB Disk. The
big data workload K-means runs using one single node within the cluster as it
does not employ the Hadoop stack. Similarly, the two traditional workloads run
on one node within the cluster. We use a lightweight hardware tool HMTT [2] to
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gather memory traces. The memory trace for a workload includes the timestamp
of a memory access, the memory accessing address, and the accessing size. We
develop tools to derive evaluation metrics from the raw data.

In order to explore the opportunities of NVM in big data workloads, we
use the collected memory traces to evaluate the application performance and
energy consumption when adopting PCM as memory system. We develop a
PCM simulator PCMSim based on DRAMSim2 [16] to simulate the results when
running workloads on PCM-based memory. The PCM simulator receives the
collected memory traces as input and outputs the statistical results, such as
access latency and energy. To compare the performance and energy results with
DRAM-based memory system, we also replay memory traces to the DRAMSim2
simulator. Table 2 shows the configurations of the two simulators.

Table 2. Features of DRAMSim2 and PCMSim

Features Values

DRAM PCM

Device Device width 16 16

Rank size 512(MB) 512(MB)

Latency Burst latency 9.33(NS) 6.47(NS)

Read latency 20(NS) 36.28(NS)

Write latency 20(NS) 210.54(NS)

Energy Burst read energy 23.55(PJ) 7.36(PJ)

Burst write energy 23.55(PJ) 7.36(PJ)

Array read energy 23.76(PJ) 20.86(PJ)

Array write energy 28.28(PJ) 20(PJ)

Others Rowbuffer policy close close

Transaction queue 32 32

Command queue 32 32

4 Experimental Results

In this section, we first show the analysis results of memory access patterns of
both big data workloads and traditional parallel workloads. Then, we present
the simulation results by comparing running workloads on PCM memory and
DRAM memory separately.

4.1 Memory Access Patterns

Stage Bandwidth. Figure 1 shows the stage bandwidths of 6 workloads. The
bandwidth result of workload join query is similar to that of workload select query.
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Fig. 1. Stage bandwidth of workloads

Fig. 2. CDF of rwRatio among pages

Fig. 3. CDF of average access interval

Thus, we only show the result of workload join query. For workload join query,
its write bandwidth is higher than the read bandwidth in the first half stages.
Its write bandwidth then drops and becomes close to the read bandwidth in the
second half stages. On average, all other workloads have higher read bandwidth
than write bandwidth. Especially, Fig. 1(e) shows that the traditional workload
radiosity become read-dominant in the second half stages. Meanwhile, Fig. 1(f)
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shows that workload volrend is read-intensive in the whole running process.
We further calculate the ratio of maximum read bandwidth to maximum write
bandwidth for each workload. The ratio results show that big data workloads
have similar counts of read and write operations. For example, the ratio results of
workloads Kmeans, Terasort, and Pagerank are 3.27, 32.41, and 3.12 respectively.
In contrast, the ratio result of workload radiosity is 135.25. Therefore, traditional
parallel workloads can exhibit read-intensive feature, while big data workloads
usually exhibit similar read intensity and write intensity.

rwRatio. In addition to calculate the ratio of read bandwidth to write band-
width, we further the rwRatio of each page for all workloads. By doing so, we
can investigate the read/write features of these workloads at finer granularity.
We plot the CDF curves of rwRatios for all workloads in Fig. 2(a). We observe
that the rwRatio of each page is between 0.01 and 100 in almost all workloads.
As such, we show the enlarged portion of rwRatio just between 0.01 and 100 in
Fig. 2(b). Furthermore, we show the enlarged portion of rwRatio just between
0.1 and 10 in Fig. 2(c).

In traditional workloads, volrend has 60 % pages whose rwRatios are between
1 and 10, and 35 % pages whose rwRatios are greater than 100. Therefore, it is
desirable to allocate pages in PCM for workload volrend to achieve near-DRAM
read performance while keeping low energy consumption. However, the rwRatio
results of big data workloads are much more diverse. For example, workload join
query has a very wide distribution of rwRatio. The pages whose rwRatios are
greater than 10 and smaller than 0.1 occupy 20 % respectively. Therefore, these
pages are expected to be allocated in PCM and DRAM separately. The rwRatios
of other big data workloads are nearly between 0.1 and 10, which indicates that
most pages have equal read/write references. For example, workloads Pagerank
and Kmeans both have nearly 75 % pages whose rwRatios are between 1 and 10.

Temporal and Spatial Locality. Figure 3(a) plots the CDF curves of average
access interval for pages in all workloads. In most workloads except kmeans,
80 % pages have the average access interval below 500 ms. In order to make more
detailed analysis, we plot the enlarged distributions of average access interval
between 0 and 100 ms in Fig. 3(b) and that between 0 and 20 ms in Fig. 3(c).
For workload radiosity and volrend, 60 % pages have the average access interval
below 2.5 ms. In contrast, there are no more than 10 % pages whose average
access intervals are below 5 ms in kmeans and pagerank. Similarly, workloads
terasort, select query, and join query have about 20 % pages whose average access
intervals are below 5 ms. As such, compared to traditional workloads, big data
workloads have weaker temporal locality which requires changes in CPU LLC
cache algorithm design.

In order to analyze the spatial locality of these workloads, we calculate the
references of each page in all workloads. We sort these pages according to their
references. We then calculate the percentage of the pages that contribute 80 % of
total accesses for each workload. We show the results in Fig. 4. Less than 10 % of
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Fig. 4. The percentages of the pages contributing 80 % references

Fig. 5. Comparison of Energy consumption

pages contribute 80 % references for workloads hive-join and hive-select, which
exhibits strong spatial locality. Hybrid memory comprising DRAM and NVM
either employs NVM as the extension of DRAM or places DRAM in front of
NVM as a cache. As such, the hybrid memory architecture employing DRAM as
a cache is more appropriate for the Realtime Analysis workloads, such as hive-
join and hive-select. For workloads pagerank, the 80 % references are contributed
by more than 35 % pages, which exhibits weak spatial locality. Considering the
high volume processed data processed, the big data workload with weak spatial
locality expects carefully-designed cache policy to avoid degraded performance
due to disk IO overheads.

4.2 PCM Simulation Results

In this section, we explore the opportunities of NVMs as main memory to run
big data applications. We use PCM as the candidate memory device. We show
the energy and average latency results when directly running big data workloads
in both DRAM and PCM memory systems. We use the conventional memory
management stack when using PCM memory. We use DRAM memory as the
baseline and normalize all results in PCM to the baseline.
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Energy and Latency. Figure 5 shows the energy results of all workloads run-
ning in the two types of memory devices. Since PCM has no refresh energy
consumption, all workloads achieve lower energy cost in PCM. In big data work-
loads, the maximum energy reduction is 74.28 % for terasort, meanwhile the
minimum energy reduction also reaches 70.98 % for kmeans. Big data applica-
tions typically require large-capacity memory to accelerate data processing. By
adopting low-energy NVMs into memory, one can not only fully utilize the high
density of NVM chips to increase capacity, but also significantly reduce the
energy cost of memory system and thus the total cost of data-center servers.

Fig. 6. Average latency comparison in DRAM and PCM

However, as shown in Fig. 6, the average latency observed in PCM memory
is higher than that in DRAM memory for all workloads. The minimum average
latency increase in PCM is 1 times higher than that in DRAM for workload
kmeans. Especially, the average latencies of hive-join and hive-select increase by
up to 3.6 times, compared to the baseline. This is because both workloads have
a large fraction of write operations (as shown in Sect. 4.1), and the long write
latency of PCM correspondingly results in the increase of their average latencies.
Although PCM provides better scalability and lower energy to memory system,
the long write latency limits its application in real-world systems. However, note
that we employ the conventional memory management to the underlying PCM
memory. Moreover, we only evaluate the performance with the memory model
comprising only PCM. Actually, in order to avoid the negative impact of long
write latency of PCM, one can use hybrid memory architecture to exploit advan-
tages of both DRAM and PCM while reduce the impacts of their disadvantages.
Correspondingly, one should carefully design data placement policies when using
hybrid memory, instead of simply applying current memory management stack.

ED and ED2. We further plot the energy-delay and energy−delay2 results for
all workloads in DRAM and PCM. The two metrics is able to show the trade-
off between performance gain and energy reduction when designing an efficient
memory system. Figure 7 shows the values of ED and ED2 in the two memory
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Fig. 7. Comparison of ED and ED2

devices. In terms of ED, the workloads that have significant read operations
perform better in PCM, such as kmeans, terasort, and pagerank. This is because
the read latency of PCM is close to DRAM, read-intensive workloads benefit
more from the energy reduction, which eliminates the overhead of increased
latency. However, for write-intensive workloads hive-join and hive-select, the
increased write latency becomes the main factor that reduces the memory sys-
tem efficiency. Figure 7(b) shows the ED2 results. It is obvious that the long
write latency of PCM significantly reduces the efficiency of memory system. For
example, the ED2 value of workload hive-join in PCM is 8.3 times higher than
that in DRAM. For latency-sensitive workloads, it is not a good design choice to
completely replace DRAM memory with PCM memory though PCM can pro-
vide larger capacity. We suggest that one should consider hybrid memory system
to allow more practical usage of PCM.

5 Conclusion

This paper examines the opportunity of NVMs in big data workloads, which is
not explored in previous research. We perform memory access pattern analysis
towards both emerging big data workloads and traditional parallel workloads.
We investigate the read-to-write ratios as well as temporal and spatial locality
of both workload sets. We show that big data workloads exhibit weak temporal
and spatial locality compared to traditional workloads. In order to explore the
opportunities of NVMs as memory system to run big data workloads, we further
compare the performance and energy results by directly running big data work-
loads in DRAM memory and PCM memory. We evaluate the memory efficiency
by replaying memory access traces to both DRAM and PCM simulators, respec-
tively. By doing so, we observe the great opportunity for NVMs to significantly
reduce the energy consumption for big data workloads. We also propose hybrid
memory architecture as a desirable design choice for integrating NVMs into main
memory system. This design choice can exploit the advantages of NVMs, and
meanwhile avoid their unpleasant features.
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