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Abstract A semi-analytical approach is proposed for modelling the plane dynam-
ics of a masonry arch, treated as a system of rigid elements with friction and
unilateral contacts at each joint. By generalising the method proposed in previous
research, the analytical approach is firstly applied to the plane dynamics of a
rectangular block simply supported on a moving base. In this case, where the contact
although sometimes extended is unique, dynamics is formulated as a frictional con-
tact problem, and conditions for onset of motion according to various mechanisms
are fully analytically identified; moreover, criteria for evaluating contact reactions
during either smooth or non-smooth dynamics are outlined. The method is then
extended to the case of the arch, where each element is characterized at most by
a double extended contact; criteria for the onset of motion and evaluation for each
element of contact reactions during the dynamic evolution are then identified. The
approach proposed constitutes a first step for performing dynamic analysis through
either an event-driven or a time-stepping numerical procedure.

Keywords Signorini-Coulomb law • Non-smooth contact dynamics • Masonry
arch

1 Introduction

The development of the plastic theory in the 1950s and Heyman’s basic idea of
transferring its philosophy from the steel to stone skeleton (Heyman 1969) made it
possible to state the limit analysis of masonry arches for standard behaviour as a lin-
ear complementarity problem (Gilbert and Melbourne 1994); in this case, bounding
theorems allow for determining collapse from either below or from above without
distinction. In the presence of finite friction, on the contrary, the normality rule
does not hold and non-associated flow rule invalidates bounding theorems; modified
criteria must then be defined, on the basis of which computational strategies can be
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adopted (Livesley 1978; Sinopoli et al. 1997; Baggio and Trovalusci 2000; Orduna
and Lourenço 2005). The problem is generally formulated by using non-linear
programming, and searching for the optimal solution is difficult not only because
of numerical calculations; the absence of stability criteria makes it possible to find
an optimal solution which is not a global minimum.

Recently, a simple method has been proposed (Sinopoli et al. 2007), in the
framework of contact mechanics, for the collapse analysis with finite friction of
a semicircular arch under its own weight. In this respect, it is worthwhile observing
that, if the collapse condition is considered as that separating equilibrium from
starting motion, the best framework for identifying it is in dynamics; the collapse
condition thus transforms into the starting mechanism of the motion. Moreover,
dynamics formulated as a contact problem, through the decomposition in sub-
problems for which appropriate flow rules can be defined, eliminates the typical
indeterminacy of any static approach.

While numerous papers have been produced on limit analysis, it is surprising
that masonry arch dynamics is a subject to which little attention has been paid in the
literature, despite the fact that the preservation of the monumental patrimony against
seismic risk has promoted research during the last decades on stone or masonry
structures, modelled as assemblage of blocks with frictional contacts. Starting with
Housner’s model (Housner 1963), the main aspects of dynamics became a new
field of research: classical questions of Coulomb friction (Lötstedt 1982); structural
behaviour (Spanos and Koh 1984; Sinopoli 1987); stability of the responses and
transition to chaos (Hogan 1990; Ageno and Sinopoli 2005, 2010); impact and
dynamic modelling (Sinopoli 1987, 1997; Moreau 1988, 1999, 2005; Augusti and
Sinopoli 1992); and, finally, numerical codes (Glocker and Pfeiffer 1992; Jean
1999).

Oppenheim (1992) was the first to propose a semi-analytical model to investigate
the dynamics of an arch, treated as a four-link mechanism—that is, a single degree of
freedom system—subjected to a base impulse acceleration; the dynamics equation
was obtained by a classical Lagrangian formulation and numerically integrated.
The same model was adopted in later papers (Clemente 1998; De Lorenzis et al.
2007). De Lorenzis et al. (2007) also made a comparison with results obtained using
the commercial program UDEC (Cundall and Strack 1979). More recently, a stone
arched structure has been investigated (Rafiee et al. 2008) with a discrete elements
method using the platform LMGC90, based on the non-smooth contact dynamics
method (Jean 1999).

It is obvious that difficulties inherent in analytical modelling encourage the use of
numerical methods. Nevertheless, although mechanical modelling of un-reinforced
masonry remains a challenging problem, the focusing of numerical methods has
mainly been concentrated in discussing computational algorithms.

In this present paper I extend my previous research on the dynamics of a rigid
body simply supported on a moving boundary (Sinopoli 1997). The new approach
for the dynamics, formulated as a contact problem governed by Signorini’s and
Coulomb’s laws (Sinopoli 2010), is oriented to the dynamical modelling of the
masonry arch treated as a system of n rigid voussoirs, with frictional and unilateral
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contacts at each joint. First, the modelling is given for the single block, to guide the
understanding on how contact laws can be checked, by identifying at the contact
point both the value of the generalised reaction and persistency or variation of
the activated mechanism; we refer to the relationships between initial conditions,
active forces and contact reactions. The formulation is then extended to the arch;
new questions related to its typology—indeterminacy due to double contacts and
elements number—are then discussed and solved. The formulation allows the
implementation of a numerical platform, based on either implicit time-stepping or
explicit event-driven numerical method for integrating the equations of motion; the
platform, outside the scope of the present paper due to its complexity, is a target of
future research.

2 Single Block Dynamics

Consider a rectangular rigid block free-standing with Coulomb friction on rigid
ground � , which moves by a translational horizontal motion RxO D ks.t/g, where g is
the gravity acceleration. Refer the dynamics to the system (O, x, y) fixed on � , with
which unit vectors (t, n) are associated; n is outwards oriented (For the definition of
the symbols used in what follows, see the Appendix “List of Symbols”).

2.1 Kinematics

Assume the position of the mass centre G and rotation angle to be Lagrangian coor-
dinates; thus, the motion of the body transforms into the path of its representative
point in the configuration space, where the kinetic energy metrics is assumed in
order to preserve the Euclidean structure (Moreau 1988; Sinopoli 1997). Through
the linear mapping induced by Lagrangian coordinates, the velocity of any point P
of the body becomes:

PrP D NT
P Pu (1)

where NT
P is the [2 � 3] gradient operator of the mapping, Pu the generalised

velocity and apex T indicates transposition. According to (1), tangential and normal
components of PrP are:

PrP;t D NP;t
T Pu

PrP;n D NP;n
T Pu (2)

Note that NP,t and NP,n are generalised directions starting at P and associated with
t and n, respectively (Fig. 1).

If the body, initially at rest, is in contact with the ground along the side AB,
the boundary impenetrability allows only positive or null values of the normal
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Fig. 1 The rigid block

virtual displacement of contact points. Since virtual displacements and velocities
have the same structure, the impenetrability transforms into a unilateral constraint
to be satisfied by admissible velocities Pu of the body:

PrP;n D NT
P;n Pu � 0 8P 2 AB (3)

The set (3) contains the velocity at instant t, if it exists; on the contrary, it must be
interpreted as the right-sided velocities set if velocity does not exist, as is the case
of an impact occurring when either one or multiple points enter into contact coming
from a no-contact situation.

2.2 Normal and Tangential Contact Laws

Normal contact (3) is guaranteed by reaction Rn � 0, acting at the unknown contact
centre Q. According to mapping, forces are transformed through the invariance of
the work, so that normal and tangential generalised reactions become:

� Q;t D Rt NQ;t

� Q;n D Rn NQ;n
(4)

At any time t, contact is lost if PrQ;n > 0, so that Rn D 0; while contact is
maintained if PrQ;n D 0, with Rn � 0. The law of normal contact is thus the well-
known Signorini’s law (Fig. 2):

PrQ;n � 0

Rn � 0

� T
Q;n Pu D 0

(5)
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Fig. 2 Signorini’s law

Fig. 3 Coulomb’s law

m

m

Note that vector NQ,n is orthogonal to Pu, while values of Rn determines a positive
flux along NQ,n giving � Q,n.

The tangential contact is governed by Coulomb’s law (Fig. 3):

(6)

corresponding to maximal dissipation if � *
Q,t is a generic solution belonging to

Coulomb’s cone:

(7)
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Normal and tangential contact laws also hold during an impact, where reactions
are associated with Dirac’s distributions. By assuming inelastic impact, that is when
the impact ends as soon as the normal velocity of Q becomes zero, contact laws in
terms of right-sided velocities (apex C) are, respectively:

PrC
Q;n D 0

In � 0

„T
Q;n PuC D 0

(8)

and:

It D �� sgn
�

PrC
Q;t

�
In for W PrC

Q;t ¤ 0

jItj � � In for W PrC
Q;t D 0

„T
Q;t PuC � 0

(9)

The unilateral frictional contact results thus into two sub-problems which are
connected to each other since tangential reaction depends on the normal one, and
reciprocally. Dynamics with friction and unilateral contact can therefore be tackled
by solving in turns the two sub-problems until convergence.

2.3 Dynamics Equation

Derive the equation of dynamics from d’Alembert’s principle; in terms of gener-
alised forces—active S and reactive � Q—and virtual velocity Pu it is:

RuT Pu D �
S C � Q;t C � Q;n

�T Pu (10)

Since the contact laws do not reduce the degrees of freedom, the equation of
motion can have a time-variant structure; thus, the transition from one mechanism
to another consistent with contact laws induces a strongly non-linear character of
dynamics, which can also exhibit phases of impulsive motion. In this last case, the
dynamics equation (10) becomes:

� PuT PuC D �
„Q;t C „Q;n

�T PuC
(11)

A unilateral frictional contact introduces two kinds of difficulties: firstly, contact
reactions are unknown; secondly, when the system is at rest or after an impact,
the starting mechanism is also unknown. The starting mechanism is extremely
important for practical purposes, as is the protection of art objects or technical
instruments, which can be damaged during earthquakes. Knowing how the starting
mechanism depends on the excitation and system features could provide useful
indications for passive protection devices.
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2.4 Starting Motion and Dynamic Balance

With reference to Eq. (10), observe that reactive forces are requested to modulate
dynamics in accordance with contact laws; so, their virtual power cannot be positive.
The necessary condition for starting motion is therefore that in correspondence to
an admissible mechanism Pu:

ST Pu � 0 (12)

For conservative active forces and friction large enough, inequality (12) satisfied
as equality corresponds to a stability criterion; thus, if satisfied for the lowest value
of S:

min
S

�
ST Pu

�
D 0 (13)

it gives the closest unstable equilibrium configuration. For finite friction, on the
contrary, relationship (13) must be interpreted as a necessary but not sufficient
condition; among admissible mechanisms Pu it selects the candidates with no
sliding at the contact point. The activation of the actual mechanism—the sufficient
condition—requires that contact laws be satisfied. For example, in the case of the
block of Fig. 1 subjected to its own weight and excited by a horizontal ground
motion RxO D ks.0/g with ks.0/ > 0, in accordance with inequality (3), admissible
mechanisms maintaining normal contact without sliding are: the null mechanism
Pu D 0, corresponding to resting and contact at any point of AB, and the rocking
mechanism PuA ¤ 0 with contact at point A. This means that identification of the
starting mechanism coincides with that of unknown contact centre Q; therefore,
consider mechanism PuQ with the centre of instantaneous rotation at Q, and express
the tangential position of Q as a linear combination of A and B positions:

rQ;t D .1 � e/ rA;t C e rB;t 0 � e � 1 (14)

Mechanism PuQ in Eq. (13) allows for identifying the value of e and contact centre
Q, that is, the mechanism as a function of ks(0). If b and h are the base and height
lengths, respectively, and friction is large enough, for ks.0/ < b=h the contact centre
Q is internal to AB, with PuQ D 0, so that the block remains at rest; while the contact
centre is at point A, corresponding to both resting Pu D 0 and rocking mechanism
PuA for ks.0/ D b=h, so that the equilibrium configuration becomes unstable and
rocking can start for ks.0/ � b=h.

If the sticking assumption is removed, admissible sliding-rocking mechanisms
Pu ¤ 0 exist with normal contact maintained at A. Thus, Eq. (13) gives, for any
force centre internal to AB, that is for ks.0/ < b=h, sliding-rocking mechanisms
corresponding to indifferent equilibrium condition, that is to resting; the unique
sliding-rocking mechanism corresponding to unstable equilibrium configuration is
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Fig. 4 Vectors NA,t and NA,n and Coulomb cone, in plane �

PuA, for ks.0/ D b=h, so that necessary conditions to activate sliding-rocking and
rocking coincide with contact at point A and ks.0/ � b=h.

To identify the sufficient condition, perform the dynamic balance of equation
(10) for rocking with contact at point A:

RuA D S C � A;t C � A;n (15)

The analysis here proposed, although aimed at identifying the starting motion,
holds also at any time of dynamics according to a given mechanism, if the tangential
velocity of the contact point is zero. Assume ks.0/ � b=h, and observe that, if both
tangent and normal contact have to be maintained, from relationships:

PrA;t D NA;t
T PuA D 0

PrA;n D NA;n
T PuA D 0

(16)

it follows that both vectors NA,t and NA,n lie on the plane � orthogonal to the
mechanism PuA (Fig. 4).

Moreover, both acceleration components of point A consists of two terms:

RrA;t D NA;t
T RuA C PNA;t

T PuA D 0

RrA;n D NA;n
T RuA C PNA;n

T PuA D 0
(17)

the first parallel to the corresponding component of RrA and the second—the
centripetal acceleration—depending on initial conditions and oriented from A to
G. For the reciprocity between points A and G considered as rotating each with
respect to the other, it follows that acceleration üA is composed of two terms, the
first parallel to PuA and the second lying on plane � with components:

RuA;t D � PNA;t
T PuA

RuA;n D � PNA;n
T PuA

(18)
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Fig. 5 Dynamic balance in the plane �

both strictly negative and oppositely directed with respect to RNA;t and RNA;n,
respectively.

By projecting Eq. (15) on plane � , that is, ignoring active force and acceleration
components parallel to PuA, which are allowed for maintaining contact, the dynamic
balance becomes:

RuA;t C RuA;n � S  D � A;t C � A;n (19)

where üA,t and üA,n—the centripetal acceleration components—are known quanti-
ties and � A;t D RtNA;t and � A;n D RnNA;n are the unknowns to be determined
according to Signorini’s and Coulomb’s laws. As shown in Figs. 4 and 5 (without
subscript indicating contact point), vectors NA,t and NA,n identified in plane �

Coulomb’s cone through its boundaries:

NA
C D NA;n C �NA;t

NA
� D NA;n � �NA;t

(20)

which are symmetric with respect to NA,n along the conjugate direction NA,t.
Since centripetal terms are known, the dynamic balance is of a merely static

nature. In particular, if the system is initially at rest, with null centripetal accelera-
tions, and �S  is internal to Coulomb’s cone, generalised reactions are obtained by
decomposing �S  along NA,t and NA,n (Fig. 5).
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Fig. 6 Unbalance between active force and generalised reaction, for sliding-rocking

Note that since NA,t and NA,n are not orthogonal, the projection of � A,t along
NA,n gives the variation of � A,n due to friction; this is the interplay between tangent
and normal reactions of a frictional contact.

If the contact tangential velocity is zero, the sufficient condition for activating
rocking is that: � A;t � �RnNA;t, otherwise tangential contact cannot be maintained
and tangential reaction is along the boundary of Coulomb’s cone; both tangential
and normal reactions are varied with respect to rocking, and the unbalanced
component of S  determines an acceleration opposite to NA,t (Fig. 6).

Similarly, for ks.0/ < b=h the possibility of resting or the activation of sliding
can be checked. The regions where each mechanism of the block, initially at rest, is
activated are reported in Sinopoli (1997).

In conclusion, having satisfied the necessary condition to activate rocking and
sliding-rocking, friction alone decides the activated mechanism. Thus, it is nonsense
to say that sliding-rocking requires different values of ks(0) with respect to rocking,
since the energy dissipated by friction is balanced by the acceleration variation along
NA,n.

2.5 Dynamic Evolution for Smooth and Non-smooth Dynamics

During the motion, until both tangential and normal contact are maintained, the
dynamic balance is in plane � , where Eq. (19) holds; in this case, vector PuA lies on



A Semi-analytical Approach for Masonry Arch Dynamics 87

Fig. 7 Decomposition of tangential reaction, for sliding-rocking

the plane orthogonal to NA,n, while NA,t and NA,n belong to the plane � orthogonal
to PuA (Fig. 4). For lost tangential contact, that is, for RrA;t —projection of RuA along
NA,t—different from zero, NA,n is still orthogonal to PuA, but vectors NA,t and NA,n

lie on a plane �* which is not orthogonal to PuA. Nevertheless, since the contact
balance is always on the positive hemi-space associated with NA,n, the friction
reaction � A;t D RtNA;t can be evaluated by decomposing it into two components
(Fig. 7): the first parallel to PuA, which determines a reduction of the velocity, and the
second lying on plane � orthogonal to PuA; both components depend on Rt through
the corresponding decomposition of NA,t. Thus, the problem can be solved on plane
� by determining first Rt and then the resultant � A,t along NA,t.

In the case of an impact, the main problem is the identification of the post-
impact mechanism. In accordance with contact laws (8) and (9), the dynamic
balance (11) is:

PuCT PuC D � Pu� C „Q;t C „Q;n
�T PuC (21)

By comparing Eqs. (21) and (10), it follows that during an impact the role of the
acceleration of smooth dynamics is played by the post-impact velocity, and that of
the active force by pre-impact velocity. The procedure will therefore be the same
followed for the starting mechanism of smooth dynamics, by treating pre-impact
velocity Pu� as “active force”, which makes it possible to determine both the velocity
of post-impact motion and generalised impulses.

3 Arch Dynamics as an Assemblage of Discrete Elements

Consider an arch made of n rigid voussoirs, free standing with Coulomb friction
on rigid ground � , which moves with a translational horizontal motion. Refer the
dynamics of each voussoir to the system (O, x, y) fixed on � , with which unit vectors
(t0, n0) are associated; n0 is outwards oriented (Fig. 8).
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Fig. 8 Scheme of the arch as an assemblage of rigid voussoirs

Denote by i the counter of voussoirs, and number them from 1 to n; similarly,
denote by j the counter of joints, and number them from 0 to n. When the arch is at
rest, j-th joint is unique. During the motion, on the contrary, j-th joint can open and
be split into two, the j(i)-th and j(iC1)-th joints, bounding i-th and (i C 1)-th voussoirs,
respectively.

3.1 Kinematics and Contact Laws

Assume for generic i-th voussoir the position of the mass centre G(i) and rotation
angle as Lagrangian coordinates, evaluated with respect to the system (O, x, y) fixed
on � , and assume the kinetic energy metrics. If the arch is initially at rest, each
voussoir is in full contact with two adjacent ones. In particular, at j-th joint, contact
is maintained at point Q.iC1/, belonging to the lower boundary of (i C 1)-th voussoir,
and at point P(i) belonging to the upper boundary of i-th voussoir; denote points
Q.iC1/ and P(i) as candidate and antagonist contact points at j-th joint. Thus, the
couples of points maintaining contact for the i-th voussoir are (Q.iC1/, P(i)) at the j-
th joint, and (Q(i), P.i�1/) at (j � 1)-th joint (Fig. 9). Through the mapping, velocities
of points Q.iC1/ and P(i) become:

Pr.iC1/
Q D N.iC1/

Q Pu.iC1/

Pr.i/
P D N.i/

P Pu.i/
(22)

with analogous expressions for points (Q(i), P.i�1/) at (j � 1)-th joint.
The impenetrability condition in this case bounds the normal velocity of the

candidate point with respect to that of antagonist one, both evaluated on the local
reference system fixed on the antagonist, and reciprocally; the unilateral constraint
at each joint thus splits into two conditions. As an example, the impenetrability
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Fig. 9 Scheme of the contact, between i-th and (iC1)-th voussoirs

condition at j-th joint requires admissible velocities, evaluated in the local unit
vectors system ( t(i)j , n(i)

j ), fixed on P(i):

Pr.iC1/

Q;n.i/
j

� Pr.i/

P;n.i/
j

D n.i/
j

T �
Pr.iC1/

Q � Pr.i/
P

�
D n.i/

j

T �
N.iC1/

Q

T Pu.iC1/ � N.i/
P

T Pu.i/
�

D

D H.iC1/
T

Q;n
.i/
j

Pu.iC1/ � H.i/
T

P;n
.i/
j

Pu.i/ � 0
(23a)

and, reciprocally, in the local system
�

t.iC1/
j ; n.iC1/

j

�
:

Pr.i/

P;n.iC1/
j

� Pr.iC1/

Q;n.iC1/
j

D n.iC1/
j

T �
Pr.i/

P � Pr.iC1/
Q

�
D n.iC1/

j

T �
N.i/

P

T Pu.i/ � N.iC1/
Q;n

T Pu.iC1/
�

D

D H.i/
T

P;n.iC1/
j

Pu.i/ � H.iC1/
T

Q;n.iC1/
j

Pu.iC1/ � 0

(23b)

where vectors H are generalised directions associated at contact points with local
unit vectors n(i)

j and n.iC1/
j . Inequalities (23a) and (23b) are in general different;

they coincide only if the joint is closed. The consequence is that the contact laws
imply different generalised directions H and reactions ˚ . Relationship (23a) gives
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Signorini’s contact law:

R.i;iC1/

n.i/
j

�
Pr.iC1/

Q;n.i/
j

� Pr.i/

P;n.i/
j

�
D

�
˚

.iC1/

Q;n.i/
j

T Pu.iC1/ � ˚
.i/

P;n.i/
j

T Pu.i/
�

D 0 (24)

while Coulomb’s law governing friction is:

R.i;iC1/

t.i/j

�
Pr.iC1/

Q;t.i/j

� Pr.i/
P;t

�
D

�
˚

.iC1/

Q;t.i/j

T Pu.iC1/ � ˚
.i/

P;t.i/
j

T Pu.i/
�

� 0 (25)

Analogous, although different, expressions are obtained from (23b).

3.2 Dynamics Equations and Outlines of the Method Proposed

With reference to system (O, x, y) fixed on � consider the equation of motion for
the arch, obtained from d’Alembert’s principle:

nX
iD1

�
�Ru.i/ C S.i/ C �

.iC1;i/
P C �

.i�1;i/
Q

�T Pu.i/ D 0 (26)

where ü(i) is the acceleration, S(i) the active force, Pu.i/ the admissible velocity, and
�

.iC1;i/
P and �

.i�1;i/
Q the reactions transmitted to i-th voussoir by the contiguous ones.

Since Signorini’s and Coulomb’s laws do not reduce the degrees of freedom, it
seems that the dynamics of i-th voussoir:

�
�Ru.i/ C S.i/ C �

.iC1;i/
P C �

.i�1;i/
Q

�T Pu.i/ D 0 i D 1; : : : ; n (27)

cannot be solved, as for the single block, unless the whole arch dynamics is, since
reactions transmitted by the two contiguous voussoirs depend on their dynamics.
A classical procedure (Lötstedt 1982; Glocker and Pfeiffer 1992) would be that of
adopting an augmented Lagrangian multipliers method, by using reactions as mul-
tipliers and Eqs. (23a)–(25) as constraints. In this case, the fulfilment of Signorini’s
and Coulomb’s laws is equivalent to the Kuhn-Tucker condition corresponding to
the optimal solution of a quadratic programming problem; an iterative procedure is
thus necessary and the mathematical problem requires inversion of matrices of great
dimension, equal to the number of degrees of freedom plus constraints. In the case
of the arch, however, matrices have elements different from zero only at the sides
of the principal diagonal, since only contiguous voussoirs interact with each other;
furthermore, activated mechanisms involve a number of mega-voussoirs lower than
that of all the voussoirs.
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Moreover, since the dynamics evolves starting from given initial positions and
velocities according to a given mechanism, the instantaneous rotation centres are
given. This means that the starting of relative either rocking or sliding-rocking,
as of relative sticking or sliding, corresponds—as for the single block—to the
same contact centres; whether the mechanism changes in the following motion
depends only on the values and directions of reactions, which determine possible
new instantaneous rotation centres. This is the reason why limit analysis with finite
friction seems undetermined, unless contact laws are verified.

Both persistency and variation of the activated mechanism thus depend on either
the fulfilment of Signorini’s and Coulomb’s laws or reaching the limit of their
admissible sets; both require the determination of contact reactions—the main
unknowns of the problem.

It will be demonstrated that the indeterminacy of arch dynamics can be elim-
inated by appropriate considerations on the relationship between the centre of
instantaneous rotation of a central mega-voussoir and allowed reactions transmitted
to it. A hierarchical iterative procedure is thus required, concerning at each step
a number of joints at most equal to that of activated mega-voussoirs. A first
level of iteration concerns only the boundary joints of mega-voussoirs; while a
second level—at which intermediate joints are checked—can restart the first level
of iteration. Observe that any numerical algorithm of mathematical programming
requires an iterative procedure, involving at each step a number of unknowns equal
to the number of all the degrees of freedom plus constraints.

Once the indeterminacy at boundary joints of mega-voussoirs has been
eliminated—albeit tentatively –, contact reactions at intermediate joints can be
determined by propagating the dynamic balance in the respect of contact laws.
Note that it is the reaching of Coulomb’s cone limit that requires the use of the
iterative procedure, while that of Signorini’s corresponds to loss of contact and then
to probable collapse of the arch.

The starting of sliding-rocking of a mega-voussoir with respect to the contiguous
one can be detected; since the new mechanism starts with null relative velocity at
contact points, sliding-rocking effects are obtained in the motion that follows as a
consequence of the dynamics and reaction along Coulomb’s cone. Only for open
joints, since Signorini’s and Coulomb’s laws are both split into two, which contact
point slides with respect to the joint of contiguous mega-voussoir can be foreseen. In
this case, the reaction is along Coulomb’s cone at one joint, and internal at the other
one; otherwise, if both reactions are along Coulomb’s cone, as for closed joints,
which point slides is given only by dynamics.

With reference to intermediate joints, the starting of either relative sliding or
sliding-rocking for reaching Coulomb’s cone limit depends on the contact points
position, internal to the joint or at its boundary, respectively; the last case occurs
when one contact centre at the boundary of a mega-voussoir is split into two,
the second lying at the nearest joint and at the same side (extrados or intrados).
The imposed reactions both along Coulomb’s cone at the considered intermediate
joint—since it is initially closed—vary with respect to those of relative sticking
and determine a variation also at successive joints until the boundary of the
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mega-voussoir is reached. As a consequence, the reaction acting on the opposite
boundary also varies, and both the first and second levels of iteration restart until
convergence.

In contrast, when the contact centre bounding a mega-voussoir is split into two—
the second lying on same side at the extrados or intrados—and Coulomb’s law is
respected the iterative procedure is not required.

The greatest number of steps of iteration are therefore required only when
Coulomb’s limit is reached for variation of both size and number of elements of
a mega-voussoir, while any numerical algorithm of mathematical programming is
characterised by a number of steps exponentially proportional to that of unknowns.

Finally, note that numerical platforms of the literature use the discrete elements
method with great difficulties related to the elimination of high frequencies, while
the present formulation is based on the rigidity assumption.

These among others are the reasons why an analytical approach is proposed
by propagating dynamics balance from a mega-voussoir to its contiguous and all
intermediate joints.

3.3 Starting Motion and Dynamic Balance: First Level
Iteration

By referring to the results obtained for the single block, remember that both rocking
and sliding-rocking mechanisms require contact centre at joint boundaries, while
resting and sliding correspond to contact centre internal to the joint. Moreover,
remember that it is friction, which decides the loss of tangential contact, so that we
can assume tentatively that it is maintained unless contact laws impose the contrary.

Admissible velocities for the generic voussoir require that admissible mecha-
nisms for the whole arch be identified. Moreover, in any rotational arch mechanism,
if i-th voussoir rotates around intrados at (j � 1)-th joint, its maximal interaction with
(i C 1)-th voussoir is at the extrados of j-th joint. Therefore, rotational mechanisms
are characterized by alternate hinges at the extrados and intrados respectively, even
if each of such hinges can be split into two for a dynamical thrust line going out from
a single voussoir; while, if the arch is at rest and external excitation is increasing
starting from zero, the most probable mechanism is characterised by the lowest
number of alternate hinges at the extrados and intrados.

Consider the dynamics excited by increasing horizontal ground motion RxO D
ks.t/g starting from zero, and determine the rotational starting mechanism; by
disregarding reactions since contacts are governed by normality rules, the necessary
condition for starting motion becomes:

min
ks

nX
iD1

S.i/T Pu.i/ D 0 (28)
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Fig. 10 Scheme of the starting rotational mechanism

By increasing the ground acceleration, null mechanisms Pu.i/ are firstly admissi-
ble; they correspond to thrust lines with at most three alternate hinges at the extrados
and intrados. In this case, the possibility of a mechanism with pure relative sliding at
some intermediate joint, even improbable, could be examined; for arches subjected
only to their own weight this is the mixed mechanism identified in (Sinopoli et al.
2007).

Once four alternate hinges are formed, the well-known mechanism for asym-
metric loads usually determined by an upper approach appears. The arch can thus
be considered as made of only three mega-voussoirs; label them by index k, with
k D 1,2,3, and contact centres positions (Fig. 10) by C1, C1,2, C2,3, and C3. Contact
centres define the instantaneous rotation centre C2 of second mega-voussoir, lying
at the intersection of straight lines crossing points C1 and C1,2, and C3 and C2,3,
respectively; C2 does not vary in the following motion only if tangential contacts at
all voussoirs contact centres are maintained.

The identification of contact centres at intermediate joints inside each mega-
voussoir and checking of Signorini’s and Coulomb’s conditions at each joint require
that reactions acting on each mega-voussoir be determined. To this aim, since the
main role is played by second mega-voussoir, consider its dynamics equation:

Ru.2/ � S.2/ D C�
.3;2/
C2;3

C �
.1;2/
C1;2

(29)
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If Coulomb’s law is verified at C1,2 and C2,3, but also at C1 and C3, reactions
R(1,2) and R(3,2) evaluated in the system ( to, no) are parallel to unit vector n(1,2) and
n(3,2), in line with points C1,2 and C2, and C2,3 and C2, respectively; thus: R.1;2/ D
�R.2;1/ D R.1;2/n.1;2/ and, similarly: R.3;2/ D �R.2;3/ D R.3;2/n.3;2/. In fact, since
the dynamics of second mega-voussoir is modulated by reactions R(1,2) and R(3,2)

crossing contact centres C1,2 and C2,3 and second mega-voussoir rotates around C2,
the resultant of R(1,2) and R(3,2) necessarily crosses the instantaneous rotation centre
C2.

Thus, since inequalities (23a) and (23b) give: Pr.1/
C1;2

D Pr.2/
C1;2

, reactions R(1,2) and

R(2,1) are orthogonal to Pr.2/
C1;2

and Pr.1/
C1;2

, respectively; and, similarly, R(3,2) and R(2,3)

are orthogonal to Pr.2/
C2;3

and Pr.3/
C2;3

. A normality rule therefore governs generalised
reactions and velocities at relative contact centres:

�
.1;2/
C1;2

T Pu.2/ D �
.2;1/
C1;2

T Pu.1/ D 0

�
.3;2/
C2;3

T Pu.2/ D �
.2;3/
C2;3

T Pu.3/ D 0
(30)

Moreover, since reactions �
.1;2/
C1;2

and �
.3;2/
C2;3

can be rewritten as:

�
.1;2/
C1;2

D R.1;2/N.2/
C1;2

n.1;2/ D R.1;2/H.2/
C1;2

�
.3;2/
C2;3

D R.3;2/N.2/
C2;3

n.3;2/ D R.3;2/H.2/
C2;3

(31)

scalar values of reactions R(1,2) and R(3,2) become flux along the generalised
directions H.2/

C1;2
and H.2/

C2;3
associated with n(1,2) and n(3,2), and similarly for R(2,1)

and R(2,3). Equation (29) assumes therefore a form very useful for dynamic balance:

Ru.2/ � S.2/ D R.3;2/H.2/
C2;3

C R.1;2/H.2/
C1;2

(32)

In fact, from (30) to (31) it follows that both H.2/
C1;2

and H.2/
C2;3

, as �
.1;2/
C1;2

and �
.3;2/
C2;3

,

belong to the plane � (2) orthogonal to Pu.2/. By projecting (32) on plane � (2):

Ru.2/
� -S.2/

� D R.3;2/H.2/
C2;3

C R.1;2/H.2/
C1;2

(33)

since the centripetal acceleration Ru.2/
� D � PN.2/T

C2
Pu.2/ is a known quantity, the

dynamic balance assumes a static character; values R(1,2) and R(3,2) of transmitted
reactions, like their generalised expressions �

.1;2/
C1;2

and �
.3;2/
C2;3

, can be evaluated.
Contact laws must now be verified at each of the two joints bounding second

voussoir, by decomposing �
.1;2/
C1;2

and �
.3;2/
C2;3

along the corresponding generalised
normal and tangential directions; having satisfied contact laws, which can also imply
starting of sliding-rocking, reactions �

.1;2/
C1;2

and �
.3;2/
C2;3

are tentatively determined.
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By a similar procedure through the dynamic balance of first and third mega-
voussoirs, the opposites of R(1,2) and R(3,2) allow us to determine �

.0;1/
C1

and �
.4;3/
C3

and, if Coulomb’s limit of admissible solutions is reached at either or both joints,
both �

.1;2/
C1;2

and �
.3;2/
C2;3

vary and the iteration continues until convergence.

Having tentatively determined �
.0;1/
C1

and �
.4;3/
C3

, and �
.1;2/
C1;2

and �
.3;2/
C2;3

at the
first level, the evaluation of contact reactions and checking of contact laws can be
extended at intermediate joints of second mega-voussoir, as to those of first and third
mega-voussoirs.

3.4 Second Level of Iteration at Intermediate Contact Centres

The evaluation of reactions acting at intermediate joints is performed starting from
either boundary of second mega-voussoir, and checking all the joints up to the other
boundary. At the first joint nearest either boundary, �

.1;2/
C1;2

or �
.3;2/
C2;3

is treated as a

known force, which determines an augmented S(i)* and gives the reaction at the
successive joint. In this case, however, candidate and antagonist contact centres are
unknown; they are identified by checking the possibility of relative motion, as for a
starting mechanism. As an example, with reference to j-th joint by starting from the
(j � 1)-th one, express the tangential position of the unknown centre P(i) as a linear
combination of intrados A(i) and extrados B(i) positions:

r.i/
P;t D .1 � e/ r.i/

A;t C e r.i/
B;t 0 � e � 1 (34)

and determine the contact centre of the virtual mechanism of relative rotation Pu.i;iC1/
P

satisfying:

Pu.i;iC1/
P

T
S.i/� D 0 (35)

The value of e so obtained identifies the contact centre P(i) and the reaction
�

.i;iC1/
P transmitted at j-th joint by i-th to (i C 1)-th voussoir. If point P(i) is internal

to the joint and Coulomb’s law is satisfied, the mechanism does not change in
the motion which follows, and checking can continue at successive intermediate
joints; alternatively, pure sliding can start and the reaction along Coulomb’s cone
determines the variation of contact reactions from that joint to successive ones, until
the boundary of mega-voussoir is reached. As a consequence, the reaction at the
opposite boundary varies, and both first and second levels of iteration restart until
convergence. On the contrary, if point P(i) lies either at extrados or intrados of the
joint nearest that bounding the mega-voussoir, at same side of its contact centre,
the mechanism changes in the following motion with no need of iterative procedure
unless sliding-rocking is activated.
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Similarly, reactions transmitted at all intermediate joints of first and third mega-
voussoirs can be evaluated and checked up to the springing, and if necessary
the iterative procedure is restarted until convergence. Having determined contact
reactions through the method proposed, the equation of motion for each mega-
voussoir can finally be integrated.

3.5 Dynamic Evolution and Mechanism Variation

The analysis here proposed, although aimed at identifying the starting motion, also
holds during dynamics evolution according to a given mechanism.

The dynamics evolves starting from given initial positions and velocities; thus,
if the activated mechanism is known, adherence to Signorini’s and Coulomb’s laws
can be checked at each contact centre and, if verified, allows the maintainance of
the mechanism in the motion which follows.

On the contrary, if the reaction required at any contact centre reaches Coulomb’s
limit of admissible solutions, the mechanism changes in the following motion
depending on the position of the contact centre.

If it is either at the extrados or intrados of contiguous mega-voussoirs, with
open contact joints, the projection of the determined contact reactions along the
two local unit vectors systems identifies which contact point slides with respect to
the contiguous joint, only if the reaction is along Coulomb’s cone at either joint,
and internal at the other one; otherwise, if both reactions are along Coulomb’s cone,
as for a closed joint, which contact point slides is given by dynamics. If the contact
centre belongs to an intermediate joint of a mega-voussoir, relative either sliding—
if allowed—or sliding-rocking can start with consequent variation of the number of
mega-voussoirs involved in the mechanism.

Finally, it is worthwhile to note that if at any time and at any joint Signorini’s set
reaches a zero gap, the local contact is lost with consequent probable collapse of the
arch.

4 Conclusions

The paper extends previous research of the author (Sinopoli 1997) on the dynamic
modelling of a rigid body simply supported on a moving boundary. Its main
purpose is the dynamic modelling of the masonry arch, treated as a system of n
voussoirs with frictional unilateral contacts at each joint and dynamics governed by
Signorini’s and Coulomb’s laws. The difficulties of the dynamics formulation are:

(a) the choice of the reference system and Lagrangian coordinates to write the
equations of motion for each voussoir and each mega-voussoir, obtained by
assembling one or many voussoirs in the activated mechanism;
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(b) the evaluation of the principal unknowns of the dynamics, namely, the contact
reactions acting at the two boundary joints of each mega-voussoir—and then of
each voussoir—on which accelerations and velocities of the following motion
depend.

An analytical procedure is proposed to write the equations of motion and to
identify, for each voussoir in accordance with Signorini’s and Coulomb’s laws,
the contact reactions as a function of active forces and instantaneous velocities
of contact points. First, the modelling is given for the single block, to guide the
understanding on how Signorini’s and Coulomb’s laws can be checked at contact
point by identifying both the value of the generalised reaction and the persistency or
variation of the activated mechanism. The formalism is then extended to the arch;
new theoretical questions related to the arch typology are discussed and solved.
The method is based on the key idea of transforming the dynamical modelling into
an equivalent problem of “static” balance, by using for each element projecting
techniques in the configuration space.

The indeterminacy of the arch is eliminated through an iterative procedure by
propagating the dynamic balance from a selected mega-voussoir to contiguous ones,
and then to all the voussoirs. The iterative procedure is activated only if Coulomb’s
cone limit is reached at any joint; it concerns a number of joints at most equal to
that of the activated mega-voussoirs. The iterative procedure is thus not limiting and
not time consuming with respect to other methods; it does not alter the solution,
since the tentative solution at the first step of iteration is that for relative sticking
or rocking, and corresponds at any step to instantaneous values of active forces,
positions and velocities.

Having determined the contact reactions at each joint, the equations of motion
can be integrated by either an explicit or implicit numerical procedure; in particular,
an implicit procedure does not require evaluation of the acceleration, since the
velocity of the following motion is obtained by that of the previous one plus the
integral of active forces and reactions.

In conclusion, the paper presents a consistent analytical formulation, indicating
also the computational procedure to implement a numerical platform for the
dynamic analysis of the masonry arch.

Appendix: List of Symbols

Ck, Ck,kC1 Absolute and relative instantaneous rotation centres in the arch
mechanism

g Gravity acceleration
G Mass centre of the block
G(i) Mass centre of i-th voussoir
H.i/

P;n
.i/
j

Generalised direction associated with unit vector n(i)
j at point P(i)

of i-th mega-voussoir
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H.kC1/
Ck;kC1

Generalised direction associated with n.k;kC1/ at point Ck,kC1 of
(kC1)-th mega-voussoir

i, j Counters of arch voussoirs and joints, respectively
In, It Normal and tangential impulsive reactions
k Counter of mega-voussoirs in the arch mechanism
ks(t) Acceleration of the ground motion in g units
n.k;kC1/ Unit vector lined with contact and rotation centres of k-th and

(kC1)-th mega-voussoirs
NP Gradient operator of the position of point P
NP,n, NP,t Normal and tangential vectors of the gradient operator NP

ṄP,n, ṄP,t Normal and tangential vectors of derivative of NP

NA
�, NA

C Negative and positive generalised Coulomb’s boundaries for
contact at point A

N(i)
P Gradient operator of the position of point P(i) belonging to i-th

voussoir of the arch
N(i)

P,n, N(i)
P,t Normal and tangential vectors of gradient operator N(i)

P of i-th
voussoir

(O, x, y) Reference system fixed on boundary �

P Generic point of the block
Q Centre of contact for the block
P(i)

j , Q.iC1/
j Antagonist and candidate contact points at j-th joint of the arch

rP,t Tangential position of point P
ṙP Velocity of point P
ṙP,n, ṙP,t Normal and tangential velocities of point P
RrP;n, RrP;t Normal and tangential accelerations of point P
PrC
Q;n, PrC

Q;t Post-impact normal and tangential velocities of point Q

ṙ(i)
P , ṙ(i)

Q Velocity of points P(i) and Q(i) belonging to i-th voussoir of the
arch

Pr.i/

P;n.i/
j

, Pr.iC1/

Q;n.i/
j

Normal velocity of antagonist P(i) and candidate Q.iC1/ points in

the system (t(i)j , n(i)
j )

Rn, Rt Normal and tangential reactions at contact point
R.i;iC1/ Reaction transmitted by i-th to (iC1)-th voussoir in (to, no)
R.i;iC1/

n , R.i;iC1/
t Normal and tangential reactions transmitted by i-th to (iC1)-th

voussoir in (to, no)
R.i;iC1/

n.i/
j

, R.i;iC1/

t.i/j

Normal and tangential reactions transmitted by i-th to (iC1)-th

voussoir in ( t(i)j , n(i)
j )

S Generalised force active on the block
S  Generalised active force in plane �

S(i) Generalised force active on the i-th voussoir
t Time instant
(t, n), (to, no) Unit vectors associated with system (O, x, y) for the block and

arch, respectively
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(t(i)j , n(i)
j ) Local unit vectors system associated with i-th voussoir at j-th

joint
Pu Generalised admissible velocity of the block
Pu, ü Generalised velocity and acceleration of the block

PuC Generalised admissible post-impact velocity
Pu�, PuC Generalised pre-impact and post-impact velocities
PuA Mechanism with contact at point A
üA Generalised acceleration with contact at point A
üA,n, üA,t Normal and tangential generalised accelerations in plane   for

contact at point A

Pu.i/ Generalised admissible velocity of i-th voussoir
Pu.i/, ü(i) Generalised velocity and acceleration of i-th voussoir
RxO Acceleration of ground motion
� Pu Generalised velocity variation
� Boundary of the rigid ground
� Friction coefficient
� Plane to which NA,n and NA,t belong for ṙA,t equal to zero
� * Plane to which NA,n and NA,t belong for ṙA,t different from zero
� (2) Plane orthogonal to mechanism Pu.2/ of the second mega-voussoir
�

.1;2/
C1;2

Generalised reaction transmitted by first to second mega-
voussoir at C1,2

˚
.i/

P;n
.i/
j

, ˚
.i/

P;t
.i/
j

Local generalised normal and tangential reactions at point P(i) of

i-th voussoir
�

.i;iC1/
P Generalised reaction transmitted at point P(i) by i-th to (iC1)-th

voussoir
� Q,n, � Q,t Generalised normal and tangential reactions at point Q
� *

Q,t Generic generalised reaction belonging to Coulomb’s cone
� Q,n, � Q,t Generalised normal and tangential impulses
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