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Preface

We are pleased to present the book Masonry Structures: Between Mechanics and
Architecture, sponsored by the Associazione Edoardo Benvenuto per la ricerca sulla
Scienza e I’ Arte del Costruire nel loro sviluppo storico in collaboration with the
Dipartimento di Scienze per 1’ Architettura of the University of Genoa.

The idea of a book on masonry structures arises from the privileged context
in which the Associazione Edoardo Benvenuto has carried out its activities in
recent years. In fact the Associazione has been able to count on the participation
of scholars of international prestige to its research and editorial initiatives, under
the honorary presidency of Jacques Heyman. The book belongs to the series
Between Mechanics and Architecture, born in 1995 from the collaboration of several
internationally renowned scholars, including Edoardo Benvenuto. The first book
in the series was Entre Mécanique et Architecture/Between Mechanics and Archi-
tecture, edited by Patricia Radelet-de Grave and Edoardo Benvenuto (Birkhduser
1995).

As is well known, the topic of masonry structures is very complex and subject to
multiple interpretations. In addition to historical studies, the mechanical behaviour
of masonry arches and structures has been studied according to different lines of
research (structural analysis, limit analysis, elastic analysis, plasticity, mathematical
approaches, etc.), sometimes difficult to reconcile, sometimes intertwined with each
other and complementary. Although we are aware that it is not possible to include
in a single book the diversity of the studies on masonry structures, we have tried to
represent the main approaches in order to make it easier for the reader to compare
and evaluate their significance and interest.

In addition to selecting the papers published here, the editors have also played
the role of reviewers of the manuscripts in conformance with the standards of peer
review. In one case, in which one of the co-editors was also the co-author of a
contribution, recourse was made to an external referee of international experience.

The introductory chapter, “Between Mechanics and Architecture: The Quest
for the Rules of the Art” by Salvatore D’ Agostino, addresses a fascinating topic:
the quest for the “rules of the art”, that is, the methods and procedures defined
by complex experiences and verified by a practice which may be centuries old.
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Continuing in the context of the search for such rules, in “Designing by “Expéri-
ence”: Lecreulx Model Tests for the Design of the Abutments of the Bridge of
Fouchard”, Santiago Huerta investigates the role of experimentation to assess the
stability of masonry arches. In the 1770s, the French engineer Jean-Rodolphe
Perronet introduced a new type of masonry bridge, with very slender piers and
extremely surbased segmental arches. Huerta examines the tests made by Francois
Michel Lecreulx in 1774 during the construction of the bridge of Fouchard. The
results demonstrated the enormous danger of a catastrophic failure by sliding.
Huerta points out that Fouchard’s experiments must have been influential in the
great increase of the size of buttresses from the original designs of the 1770s in
all the bridges built (most of them completed after 1780). In the Appendix to his
chapter, Huerta provides the transcription of the original Memoir by Lecreulx, never
before published.

The complexity of the mechanics of masonry structures emerges clearly in
the chapter by Mario Como, “Statics of Historic Masonry Constructions: An
Essay”, author of Statics of Historic Masonry Constructions (Springer 2013). Como
discusses the adopted hypotheses and the key passages of the main issues involved:
the special features of the masonry behaviour, Heyman assumptions and their
extension to the masonry continuum, the definition of the admissible equilibrium for
the masonry solid by employing the principle of virtual work for masonry bodies.

From a historical point of view, the first approach to the study of mechanical
behaviour is limit analysis, rooted in the contributions of Philippe de La Hire and
Charles-Augustin de Coulomb. According to this line of reasoning, the masonry
structures, in particular the arches, are conceived as a system of rigid blocks,
focusing on the collapse mechanism and the determination of the ultimate load.
In the twentieth century, this type of approach was taken up by various scholars
from the point of view of the modern theory of plasticity. On the other hand, elastic
analysis starts from the work of Claude-Louis Navier and from subsequent studies
by Francesco Crotti, Carlo Alberto Castigliano, Ferdinand Gros de Perrodil and
Antonio Signorini that little by little have contributed to define masonry structures
as statically indeterminate elastic structures. This approach aims to describe the
evolution of the stress and strain fields with increasing applied loads. If the solution
of Castigliano is the outcome of nineteenth-century research on the statics of
masonry vaults conceived as systems with linear elastic behaviour, in the twentieth
century the issue about an adequate modelling of masonry material arises. This topic
has led—even recently—to a renewed interest in the study of no-tension materials
and in nonlinear elastic analysis of masonry arches.

The present volume contains some contributions focused on the mechanics of
arches and masonry constructions, providing an overview of the recent state of the
art on the matter.

In “Equilibrium Analysis”, Jacques Heyman underlines the fact that only rarely
do deformations of a masonry structure need to be computed; deformations arise,
almost without exception, from displacements imposed by movements of the
environment (sinking of foundations, spread of abutments), and such deformations,
notably cracking, do not depend on the elastic properties of the masonry.
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Anna Sinopoli, in “A Semi-analytical Approach for Masonry Arch Dynamics”,
proposes an analytical approach, firstly applied to the plane dynamics of a rectan-
gular block simply supported on a moving base and then extended to the case of
the arch, where each element is characterized at most by a double extended contact.
This approach constitutes a first step for performing dynamic analysis through either
an event-driven or a time-stepping numerical procedure.

The chapters that follow examine the mechanical behaviour of masonry struc-
tures found in historical buildings. In ““ On the Statics of the Dome of the Basilica of
S. Maria Assunta in Carignano, Genoa ”, Andrea Bacigalupo, Antonio Brencich and
Luigi Gambarotta study in depth the sixteenth-century dome designed by Galeazzo
Alessi, in which meridian cracking, rather common in masonry domes, requires
the assessment of the dome’s safety. In order to set a general procedure for the
assessment, limit analysis approaches are discussed and compared. On the basis of
classic limit analysis, local (dome only) and global (dome-drum system) collapse
mechanisms are examined considering the different behaviour of several structural
elements (lantern, shells of the dome, drum, colonnade). Comparisons between
the results obtained are carried out in order to discuss a general approach to the
assessment of dome—drum systems based on both numerical tools and standard limit
analyses approaches; they provide a first glance in the assessment of the dome of
the Basilica.

In “The Panthéon’s Stability Already Questioned by Pierre Patte in 1770”
Patricia Radelet-de Grave analyses some aspects of great historical interest related
to the construction of the Panthéon in Paris. Conceived and initiated by Jacques
Germain Soufflot, the construction of the Pantheon was continued after his death
by Jean Baptiste Rondelet. This impressive structure was the object of various
publications. As early as 1770, Pierre Patte pointed out stability problems in his
Mémoire. Rondelet, a spokesman for Soufflot, does not answer to Patte, but writes
a few notes on his copy of Patte’s Mémoire.

In the chapter that follows, “Transcription of Patte’s 1770 Mémoire on the
Panthéon’s Stability Together with Rondelet’s Marginalia”, Radelet-de Grave
provides her transcription of the historical text of 1770, along with the Marginalia
written by Rondelet on Patte’s Mémoire.

Other authors of chapter in this volume use the approach of elastic analysis to
study different types of masonry arches and structures.

In “Notes on Limit and Nonlinear Elastic Analyses of Masonry Arches”, Danila
Aita, Riccardo Barsotti and Stefano Bennati suggest a parallel study of masonry
arches via both non-linear elastic analysis, taking up the groundbreaking work of
Signorini, and the so-called “method of stability areas”, originally proposed by
Alfred Durand-Claye in 1867. Rather than offering two alternative paths, the two
approaches may be considered complementary points of view on the same problem:
the stability area method represents a particularly simple means for determining
collapse load under conditions of limited material compressive strength, whereas
the non-linear elastic analysis provides a helpful and, in some aspects, essential
check of the former’s mechanical significance by following the evolution of the
displacement field and the extension of the non-linear regions.
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In his chapter “Some Aspects on the Statics of Masonry Arches”, Elio Sacco
writes the equilibrium equations for the arch subjected to a distribution of point-
wise forces acting on nodes lying on the line of thrust. He then determines the line
of thrust for a prescribed arch geometry and loading distribution by solving a non-
linear constrained minimization problem and formulates the problem of the elastic
arch making use of the force method. Furthermore, the effects of the horizontal
settlement of the impost of the arch are investigated.

Massimiliano Lucchesi, Miroslav §ilhav3’/ and Nicola Zani, in “A Direct
Approach to Membrane Reinforced Bodies”, deal with membrane reinforced
bodies. The membrane is treated as a two-dimensional surface with concentrated
material properties. Its response is linearized and depends linearly on the surface
strain tensor. The response of the matrix is treated separately in three cases: as a
non-linear material, as a linear material and finally as a no-tension material. An
example presenting an admissible stress solution is given for a rectangular panel
with membrane occupying the main diagonal plane.

The chapter by Piero Villaggio, “The Thrust of an Elastic Soil of Variable Density
against a Rigid Wall”, is one of the last works written by the Professor, who passed
away in January 2014, and it is a great honour for us to publish it. Villaggio
examines the thrust of an elastic soil of variable density against a rigid wall, with
reference to soil mechanics and complex variable method in elasticity. The theory
of the equilibrium of a wall retaining earth masses was formulated by Coulomb in
1773. This topic is of great interest today, since Coulomb’s theory is still applied
by engineers in order to design walls. However, while Coulomb assumes that the
material is earthy, like sand of soft clay, in actual fact soil often behaves elastically,
and thus the stress state inside the mass and the associated pressures on the retaining
walls are different. Thus, the question arises of how to analyse the elastic stress
state in a heavy medium in contact with a rigid plane, and how to determine the
stress distribution at the interface. The chapter by Villaggio certainly provides an
important perspective on this issue, which remains an open question to date.

We have chosen to conclude the book with a few pages written by Stefano
Bennati to honour the memory of Piero Villaggio. Bennati, who worked with
professor Villaggio for many years, offers us the opportunity to remember his
selfless love for knowledge, his unconditional dedication to work and his rectitude
and integrity. To Piero Villaggio, we are grateful for giving us a valuable paradigm
of a scholar who is coherent, passionate and humble.

The present volume is intended to offer a useful tool and interesting insights
for further research, since it contains important contributions to an overall picture
of the state of the art on masonry structures. The reader is offered the possibility
to compare different theoretical lines of inquiry (construction history, structural
analysis, limit analysis, elastic analysis, plasticity, mathematical approaches, etc.)
and is thus invited to go towards new horizons of research.
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In closing, we wish to thank co-editor Kim Williams for her careful revision of
all chapters following peer review.

Genova, Italy Danila Aita
Orietta Pedemonte
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Between Mechanics and Architecture:
The Quest for the Rules of the Art

Salvatore D’Agostino

Abstract The ancient conception of construction, from the fourth millennium
B.C. through the entire eighteenth century A.D., was based on the transmission of
the ‘rules of the art’ of building. In the nineteenth century it was based on the
development of mechanics applied to construction. It was revolutionised in the
twentieth century by the creation of construction science and industrial material.
Ancient architecture is now re-read in terms of mechanics, with the serious risk of
betraying the ancient concepts. Instead, these should be examined with the aim of
discerning the rules that governed the original construction.

Keywords Mechanics ¢ Architecture * Masonry structures ¢ Rules of the art

1 The Ancients’ Concept of Construction

Living and building were the primordial requisites of Homo sapiens for a stable
occupation of the territory and the construction of the earliest communities. He
observed nature in its infinite configurations and continuous evolution, picking up
ideas and hints about his own activities whether in hunting, agriculture, dwelling.
The need to live together, grow produce and defend themselves prompted men to
gather together in communities, which in turn tended to occupy the most strategic
territories. In this long evolutionary process man drew on his powers of reasoning
to conceive abstract forms suggested by natural shapes, and, in a lengthy rational
process, man also drew on nature to tackle and solve his own needs.

In order to build, ancient man needed materials which he could only obtain from
nature. Hence our use of those materials which, on account of their existence over
millennia, we now define as traditional: earth, wood, the infinite variety of stone,
followed by the first complex elaborations: mud and fired bricks, binding agents
and metals. This is how the ancients’ concept of construction evolved in its infinite
formal varieties: volume conceived in space and defined by geometric forms which,
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Fig. 1 Reconstruction of a temple at Eridu by Seton Lloyd, after a photograph by D. E. Woodall
(Singer 1966)

through their dimensions, determined among other things by the quality of the
materials, fulfil a range of functions in an indivisible unity, according to a spatial
global conception in which load-bearing is just one of the functions that inform the
project.

This conception spread with incredible tenacity from the fourth millennium B.C.
through to the end of the eighteenth century (Fig. 1).

We can recall that this process also took the same course in civilizations whose
practices developed in isolation, such as the pre-Columbian civilizations and those
in the Far East. This lengthy process, which went hand in hand with man’s historical
development, could not have come about except through repeated experimentations
and their constant rationalization: in this way the “rules of the art” developed in all
sectors of man’s activity, through failures, modifications, successes and evolutions,
over the millennia (Cairoli Giuliani et al. 2007).

This process has left its mark on the evolution of human civilization; in particular,
over five millennia it produced the built fabric and monumental constructions which
form the material evidence of the evolution of the various civilizations. In fact,
underlying the realization of both simple artefacts and of sophisticated monuments
are the rules of the art (D’ Agostino 2003).

2 The Rules of the Art

The rules of the art are methods and procedures defined by complex experiences and
verified by practices which may be centuries old. They were formulated in response
to material requirements and have informed everyday life since the dawn of time.
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When they have specialised in the production of material products they have taken
on a connotation of craftsmanship which gives rise to a professionalism that usually
gained recognition as a specific trade.

A trade was acquired as standard practice by means of successive phases, and
can aspire to ever higher levels of technical competence. When a craftsman both
attains peaks of technical excellence and possesses a profound culture, he shows
himself to be an artist capable of transmitting his own world view. This happened,
and happens, in music, painting, sculpture, and so on. In architecture the process
is the same, but in certain respects more complex, in that the realization of a work
of architecture requires a range of processes which often take place over a lengthy
period of time, involving a number of experts and kinds of expertise.

The rules of the art are still widespread and disseminated in today’s world as
“instructions for use”. They take tangible form in a series of mechanical actions
which cause a car, iPod or computer to function, without the user having to grasp
the complex technical operations that enable him to exercise this control.

In the ancient world, on the contrary, the rules of the art developed through the
slow, day by day acquisition of good practices passed down from one generation to
the next, occasionally being improved by the genius of outstanding figures. Thus
a trade was acquired not by means of an instructions manual, but through the
everyday, laborious participation in the workshop or building site. In the artistic
field this process actually survives in painting, sculpture and the so-called “minor
arts”, from ceramics to working with gold and silver, etc.

The slow acquisition of the rules of the art, together with outstanding personal
abilities, created, as we have said, the “master craftsman” as well as, sometimes, the
artist who realized an entire new work of art. In architecture the process was similar
but not identical on account of the vast scale, complexity and often the lengthy
time scale required for the completion of the work. In building the rules of the art
sometimes manifested themselves in a simple, readily assimilable manner, and other
times in a much more complex way, which may have involved strict secrecy. This
gave rise, up until the mid-nineteenth century, to a widespread culture of building
which enabled the peasant to make a house of his own, while complex, sophisticated
rules, often revised in the course of operations by outstanding architects, informed
the realization of large scale monumental complexes (Fig. 2).

This millennia-long process developed above all in the practice of construction,
while with the advent of the Galilean revolution, both geometric forms and the
resistance of the materials became objects of scientific interest, paving the way
for the development of the disciplines of rational mechanics and building science
(D’ Agostino 2008).
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Fig. 2 Palazzo Ducale,
Urbino. Photo courtesy of
Gastone Segala, 2008

3 The Tradition of Manuals

In antiquity we know of no treatises that set out the rules of the art and construction
methods, with the partial exception of Vitruvius, who makes passing reference to
them. In the Renaissance there were great architects like Alberti and Palladio who,
rather than systematic rules, bequeathed certain pieces of evidence and annotations
on the art of building. Only Leonardo, typically, gave us some prodigious intuitions,
such as the one concerning the behaviour of arches in which, with remarkable
prescience, he demonstrated the fundamental presence of thrust.

In practice, for over five millennia (up to 1500 A.D.), through a constant
succession of new construction methods and materials, the rules of the art of
building remained quite deliberately confined to an oral and material tradition,
which, as we have said, in the most significant cases were kept secret. It was only
with the advent of the Galilean scientific method that, above all in the triangle
formed by Italy, France and Britain, a scientific reflection began to develop focusing
on the fundamental construction elements—columns, arches, vaults—while not as
yet paying any attention to the way they were assembled into a built organism.

Galileo Galilei (1564-1641), who chose to enquire into the world of construction
in his Discourses (1638), was responsible for the first reflections on the behaviour
of columns and curved beams (Fig. 3). Thereafter, in the new scientific spirit of the
age, numerous treatises were written which sought, on primarily geometric grounds,
to define the static behaviour of the construction elements.

In the meantime, the development of architecture continued its prodigious course
and, in view of the new cultural stimulus for a rational and systematic analysis
of human activities, works began to circulate, alongside the treatises we have
mentioned, which sought to describe the complex art of construction by pursuing
knowledge, both experimental and rational, of building materials and construction
elements. A first series of manuals, appearing from the mid-seventeenth to the
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Fig. 3 Galileo’s depiction of a beam (1638, p. 114)

end of the eighteenth century, featured the study of construction elements through
geometric constructions which in practice remained far removed from actual
building.

The writings of Philippe de La Hire (1640-1718), in particular Sur la con-
struction des voiites dans les édifices of 1731, can be considered an important
contribution to the rise of a theory embracing geometry and mechanics, but which
has “no real practical counterpart and leads to various paradoxes” (Benvenuto 2006,
p- 326, my trans.). In view of his geometric outlook La Hire can be considered the
precursor of graphic statics, but over a century was to pass before this became, in
the hands of engineers, a powerful method of calculation.

The manual by Bernard Forest de Bélidor (1693-1761), Science des Ingénieurs
dans la conduite des travaux de fortification et d’architecture civile, published
in Paris in 1719, proved to have more of an impact. In it, he developed de La
Hire’s theory of arches analytically, calculating the imposts and elaborating a first,
incorrect, model of ground thrust. In addition he wrote about the construction of
walls in fortifications, describing how the walls were erected.

The 1738 Traité de la coupe des pierres by J.B. de La Rue is full of interest for its
analysis of the manufacture of the stone blocks that went into various construction
elements, from vaulting to jack arches and flights of steps. The way in which stone
was cut was highly important for the finished building but was even more crucial for
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Fig. 4 Model of a vault. Photo: Centro Interdipartimentale di Ingegneria per i Beni Culturali,
Cabinet of Structural Models, reproduced by permission

its resistance, since a construction made from well hewn-stone could be considered
practically as isodomic, with a minimum of joints—perhaps none at all—requiring
fixing (Fig. 4).

Even though the manual by Vincenzo Lamberti (17407-1790), Statica degli
edifici, published in Naples in 1781, described itself as an eminently theoretical
work, the author was aware of the mystification of the art of building and sought to
make the mathematical principles and general formulae available to builders (Cirillo
2007; Lippiello 2008). Lamberti anticipated the methods of modern experimental
science, carrying out trials with tufa, piperno, mortar and pozzolan. He was also
probably the first author to deal with the origin of lesions and map the development
of cracks (Fig. 5).

The weighty tome by Jules Dupuit (1804—1866), Traité de I’équilibre des voiites
et de la construction des ponts en magonnerie dates from 1870. Published after
its author’s premature demise, the manual starts from the mechanical properties
of masonry, showing the influence of form and height on stability. Describing the
practical evolution of a vault, it sets out a theory on the way the stress curve varies
and introduces, for the limit state, the concept of pivot point, which would in time
lead to the plastic pivot, the key to limit state calculation. In addition, it elaborates
the conditions of stability for a set of vaults, discussing the question of thickness in
order to ensure stability. It analyses the problem of thermic variations and defines
the thickness of the shoulders, providing formulae for the keystones of vaulting.
Lastly it describes a series of major stone bridges, including the Pont de I’ Alma, the
Pont d’ Austerlitz and the Pont Napoleone III over the Seine in Paris (Fig. 6).

These then are examples of the extensive production of manuals concerning
the interpretation of the art of building based on geometrics and mechanics, from



Between Mechanics and Architecture: The Quest for the Rules of the Art 7

B S, Sl 5

Fig. 5 Map of development of cracks (Lamberti 1781, Tav. 8)
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Fig. 6 Stone bridge as depicted by Dupuit (1870, P1. 10)

the mid-seventeenth to the end of the nineteenth century. They illustrate the way
in which the new scientific method was used to rationalise that art of building
which for millennia had raised impressive constructions, although it was essential
to take into account the behaviour of the construction in its entirety. While this
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Fig. 7 Constructive scheme A g h B
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rationalisation proved unable to measure up to the emerging “brave new world”,
some important studies appeared, in particular in the nineteenth century, illustrating
the art of building and conserving its traditions. The Traité théorique et practique de
U’art de batir (1817) by Jean Rondelet (1734—1829) was fundamental in this respect,
describing the construction features and illustrating the rules of the art for gauging
the size of load-bearing elements together with the modalities for their realization.

In Italy between 1864 and 1884 Giovanni Curioni (1831-1887) saw into print
no fewer than eleven editions of his manual L’Arte del construire, undoubtedly the
most popular textbook used for the formation of Italian engineers in the nineteenth
century. It deals not only with civil constructions but also roads, aqueducts and
railways, illustrating the most common theoretical and technical construction
methods in use. In particular, it describes the design of a model building and verifies
its stability.

In 1850]J. Claudel and L. Laroque brought out in Paris an elaborate volume called
Pratique de I’art de construire, magonnerie, terrasse et platrerie which enjoyed at
least three later editions (1859, 1863 and 1870). It describes traditional materials,
evaluating resistance and specifying the tools used in their employment (Fig. 7). In
addition it speaks of some construction elements, in particular vaults, describing the
collapse mechanisms, and outlines the Méry method for the graphic verification of
arches.

I cannot end this brief summary without mentioning the general manual on civil
constructions, Allgemeine Bau-Constructions-Lehre, by Gustav Adolf Breymann
(1807-1859) (Breymann 1849), which was fundamental for the formation of
engineers in the second half of the nineteenth century and still stands as a work
of reference for the concept of construction and technical knowledge pertaining to
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Fig. 8 Model of a vault. Photo: Centro Interdipartimentale di Ingegneria per i Beni Culturali,
Cabinet of Structural Models, reproduced by permission

the historical built heritage. It sets out numerous rules of the art, many provided with
graphic constructions and analytical calculations, and is even more important for its
accurate description of construction techniques.

The dissemination of this culture did not stop at the fundamental production
of comprehensive manuals but, in keeping with a venerable tradition, sought to
communicate the sort of building being dealt with by means of models illustrating
in detail the most complex construction issues; they still stand today as evidence of
the refined artisanal sensibility of ancient culture (Fig. 8).

Regrettably, modern structural engineering has not been able to learn from these
important manuals, which with the onset of the twentieth century were largely
forgotten. This has played a dramatic part in the total ignorance of the ancients’
concept of construction, having very serious consequences for the conservation
and maintenance of the historical and archaeological built heritage. This has been
possible because, in parallel with the process we have illustrated, another line of
research into the resistance of materials and the analytical interpretation of structural
behaviour was developing.

Isaac Newton (1642-1727) put forward a hypothesis concerning the elastic
behaviour of materials as the macroscopic result of molecular actions, while in an
address to the Académie des Sciences in 1773 Charles Augustin de Coulomb (1736—
1806) set out a preliminary theory of the beam based on equilibrium equations,
expounding a theory of the wedge to determine ground thrust.

In 1798 Pierre-Simon Girard (1765-1836) published his Traité analytique de la
résistance des solides et des solides d’égal résistance, combining a theoretical and
experimental approach. He investigated the stresses of traction, compression and
bending and the relationship between stress and tension; he carried out extensive
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experiments on wooden beams, analysing movements and deformations. His manual
was esteemed by Edoardo Benvenuto, who pointed out how Girard “perceived
with singular clarity the ‘epistemological’ difference between general equilibrium
equations and the constitutive equations linking tension and deformation” (2006:
284, my trans.).

A fundamental step forward was marked by the Lecons sur I’application de la
méchanique published by Claude-Louis Navier (1785-1836) in 1826. This uses the
results obtained by Jakob Bernoulli (1654—1705) and Leonhard Euler (1717-1783)
in studies of elastic and flexible bodies to develop technical design procedures. This
gave birth to building science in terms of both topics and methodology, applied to
problems of the straight beam, reticular beams, arches and so on. In practice, with
the memoir he presented to the Académie des Sciences in 1821, Navier laid the
foundations for the theory of elasticity, whose fundamental law had been foreseen
over a century earlier by Robert Hooke (1635-1702), and subjected to analytical
enquiry by Robert Young (1773-1829), who introduced the elastic module foreseen
by Euler.

Meanwhile, Carl Culmann (1821-1881) founded graphic statics, while in 1853
Arthur Morin (1795-1880) brought out Resistance des Matériaux in four parts, deal-
ing with traction, compression, bending and torsion, with numerous experimental
demonstrations. The time was ripe for the painstaking work of Jean-Claude Barré
de Saint Venant (1797-1886) elaborating the modern theory of elasticity and the
solution of the problem of beams in his analytical conception of a one-dimensional
solid.

The years 1882 to 1884 saw the appearance in Turin of the Manuale practico
degli Ingegneri by Alberto Castigliano (1847-1884). The conceptual approach
relied on the new building science through the study of simple and composed
stresses, given homogeneous and isotropic solids, and illustrating Barré de Saint
Venant’s formulae based on the mathematical theory of the elasticity of solids.
Using this manual, engineers were able to calculate the structural elements involved
in a one-dimensional solid.

All this was far removed, both epistemologically and practically, from the
ancients’ concept of construction, but times (and technology) had changed, quite
apart from the theoretical process of the formation of building science. The
nineteenth century saw the first constructions in ironwork: in 1811 the dome of the
Halle au Bl¢ in Paris by Francois-Joseph Bélanger (1744—1818), in 1818 the Royal
Opera Arcade in London by John Nash (1852-1835),in 1825 an interior passageway
roofed with ironwork in Palazzo San Giacomo, Naples, by Stefano Gasse (1788—
1840), and in 1832 the exploit of the bridge over the Garigliano built by Luigi Giura
(1795-1864).

There was a natural affinity between Barré de Saint Venant’s one-dimensional
solids and the structural elements of constructions in iron, and hence building
science spread throughout construction practice, first in iron-based architecture and
then in the new technology of reinforced concrete which, also during the nineteenth
century, had undergone a lengthy phase of experimentation quite separately from
the dictates of the new science.
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4 The Modern Concept of Construction

As has always been the case for the art of building, technical development has been
led by a succession of intuitions. In fact, with the new building science still in its
infancy, in 1850-1851 the Crystal Palace in London was erected in the space of just
9 months with metal parts and other mass-produced components assembled on site,
with hydraulic rams used for testing the girders (Fig. 9). Then in 1894—1895 a large
steel building, the Marquette Building, was constructed in Chicago, while during the
first decade of the twentieth century the Manhattan Bridge was built in New York
with a central span of 447 m and two side spans measuring 210 m.

In 1850 the firm of Demarce and Conquety began large-scale production of
cement, making it an economic material that was malleable and resistant to
compression; shortly afterwards Frangois Coignet (1814—1888) provided his factory
with a concrete roof. In 1877 in the United States Thaddeus Hyatt (1816-1901)
illustrated the characteristics of resistance of the solidified cement when combined
with iron reinforcing, along with the protection that the concrete provided to the
iron in case of fire. Ten years later Matthias Koenen (1849-1924) set out the
first scientific theory of reinforced concrete, and in 1892 Francois Hennebique
(1842-1921) patented reinforced concrete girders. These new construction elements
eventually replaced the traditional construction in masonry, rapidly paving the way

Fig. 9 Crystal palace
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Fig. 10 Villa Savoye. Photo: Alessio Antonetti, 2006

for the emergence of “structure”: an autonomous organism, calculated according
to a technical theory and cogent norms, comprising above all standard elements
which, once assembled, produce a composition that occupies space and responds
exclusively to the load-bearing function.

The new material and technology spread very rapidly, and there were dramatic
collapses which drew attention to the need for regulations. In fact, a new concept
of construction had come into existence which, abandoning the unitary conception
of ancient building work, was divided up into load-bearing elements (structure)
and accessory elements (finishing). This marked the beginning of a process of
industrialization in building which has become more prevalent ever since. This
development has been very rapid and, in some respects, highly disconcerting.

The new conception evolved rapidly, giving rise to the rational architecture
epitomised by Le Corbusier’s Villa Savoye, denoting a new mode of occupancy
(Fig. 10). Building in reinforced concrete became more and more common,
while constructions using metal continued to spread in industrial complexes and
infrastructures.

The first decades of the twentieth century were characterised, especially in day
to day construction projects, by a significant pioneering spirit seen in the spread
of constructions in a combination of masonry with some construction elements,
in particular staircases, in reinforced concrete. The theoretical findings concerning
the new building science did not spread so rapidly, even though as early as 1897
the first course featuring reinforced concrete was given in the Ecole Nationale des
Ponts et Chaussées, followed in 1900 by a course taught by Camillo Guidi in Turin,
and in the same year the first Italian manual about reinforced concrete, Costruzioni
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in calcestruzzo ed in cemento armato, written by engineer Giuseppe Vacchelli and
published by Hoepli.

In engineering schools the new building science took root together with the
techniques of iron and reinforced concrete, while any reference to constructions
in masonry rapidly fell by the wayside. In the first half of the twentieth century
the methods used for calculations were essentially linked to graphic statics, while
for obvious practical reasons there was very little analysis. This is clearly seen in
Italian regulations issued in 1932, which require the calculation of pillars subject to
normal stress and the beams of the frameworks calculated as being inserted into the
supports and semi-inserted into clamps at mid-span.

The time was ripe for the emergence of structural engineering, in the years
following the World War II. The new construction techniques radically excluded
masonry from their terms of reference and in the space of a few decades the
grand building tradition of the ancients was completely eliminated from the cultural
and technical formation of engineers and architects. This was also the inevitable
consequence of, first, the building boom associated with post-war reconstruction
throughout Europe, and then the advent of the digital era, which as early as the 1960s
had dispensed with graphic statics. In its most significant achievements the new
specialization was capable of unprecedented architectural feats which have come
increasingly to characterise the world as we know it.

5 A Theoretical Return to the Historic Built Fabric

In the second half of the twentieth century the discipline of structural engineering
emerged, accompanied by the complete obsolescence of the ancient concept of
construction. Building science has been “democratized”, to use Pier Luigi Nervi’s
felicitous expression, entering the curriculum for both engineers and architects. At
the same time the world of engineering has elaborated sets of regulations which
follow hard on the heels of one another, providing coercive guidance for structural
design. In its prevalently geometric definition, the structural aspects of this design
are calculated using specialised software that entails the automatic observance of
the regulations and proceeds directly to the formulation of the construction details.
In this way the design process is fundamentally standardized and organized by the
suppliers of software.

In parallel, from the mid-twentieth century structural engineers have had to
cope with the conservation of the historical built heritage, and in particular its
monumental and archaeological aspects. Unfortunately, having no knowledge of
ancient architecture, they have intervened in confused and inappropriate ways, using
some ‘“consolidation” techniques which can lay no claim to being scientific and
are in complete contrast to the construction concept of the ancients. Perforations,
cement bindings, injections of cement, cladding and insertions using reinforced
concrete have been introduced wholesale into the historical architecture throughout
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Europe, doing irreparable damage to the material history of ancient building
(Carbonara 1981-1984).

Following heated cultural debates it has been possible to limit the widespread
cementification and introduce a more informed attitude concerning material history.
In practice, for structural engineers the entire historical built heritage should be
configured as an archaeological construct, since it belongs to a different, ancient
civilization of construction. We have already seen how the research carried out
over the course of recent centuries in the major manuals which characterised the
evolution of the mechanics of masonry has had very little influence on the realization
of historical architecture. The goal has always been to formulate a theory focusing
on the construction elements that can be extrapolated from ancient construction,
above all arches and vaults. This is in fact clearly set out in the fine volume by
Antonio Becchi and Federico Foce, Degli Archi e delle Volte (2002). As the authors
say: “our purpose is ... to bring into focus the real innovative contributions thanks
to which the theory of vaults ... has acquired that character of rigour and generality
required in a solid discipline of mechanics”. In spite of this, the gap that exists
between the tradition of treatises and the complex genius of ancient architecture is
highlighted by Antonio Becchi:

In 1676 work was finished on the construction of the Hotel de Ville in Arles and its unique
vaulted roof designed by Mansart and built by Peytret. The achievement still stands, as
proof of the soundness of both the construction and its conception. However, we lack the
instruments to account for its durability: we no longer possess these instruments because
they formed part of the stock of experience of those maitres macons who, from one
generation to another, reinvented their own expertise by means of daring intuitions which
were eccentric with respect to the best performance set out in the manuals of the time (2002,
pp- 25-26, my trans.) (Fig. 11).

Fig. 11 Vault by Mansart ad Arles. Photo: Giuseppe Fallacara, reproduced by permission
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More recently research has focused on the reinterpretation of the historical built
fabric in terms of mechanics using the powerful resources of modern structural
analysis. This has involved two orientations: theoretical research and numerical
elaboration.

The theoretical research has been grounded in Jacques Heyman’s classic The
Stone Skeleton (1982), which right from the title sets out to reconsider the art of
building in the light of the modern science and technique of constructions. The
masonry fabric of walls, seen as a complex spatial whole, can thus be schematized
as the wall block and panel. This produced a long theoretical development which
regrettably has not had a considerable influence on the drawing up of the most
recent regulations affecting the historical built fabric. This approach, which over
recent decades has permeated the research of structural engineers, has recently
produced an exhaustive exposition in the hefty volume by Mario Como (2013), on
the statics of historical constructions in masonry. Case by case the author suggests a
possible static behaviour for the various construction elements found in the edifices,
identifying solutions which are statically admissible to justify its static efficiency.
He goes on to examine the global behaviour of various monuments, demonstrating
the reliability of their static conception. A clear example is the Colosseum, for which
he presents a seismic verification showing that “the average acceleration of collapse
is equivalent to circa 0.12 g, i.e. to 1.2 m/s?, approximately 10 times greater than the
acceleration of 0.136 m/s> which can have affected the masses of the Colosseum”
(Como 2013, p. 372).

It is evident that the interpretative approach derives from the author’s vision of
static behaviour. Another emblematic example are the flights of steps referred to as
“Roman-style” (Fig. 12).

For a long time, structural engineers considered, and in many respects still
do today, such flights of steps to be insecure, inflicting a range of so-called
standardizations on them. Even the Italian ministerial decree of 24 January 1986
regarding structures in seismic zones prescribed: “Non-loadbearing flights of steps
in masonry (so-called “Roman-style”) should as a rule be replaced by stairs in
reinforced concrete or steel”, persisting in an ill-informed static approach of the kind
prescribed by legislation 219 of 14 May 1981, article 10, which actually prescribed
the elimination of connecting arches between buildings, and wooden structures,
suggesting that arches and vaults should be made so as not to exert strains, regardless
of the millennia-old ancient concept of construction.

Recently, flights of steps have been carefully studied by both Alessandro Baratta
(2007) and Mario Como (2013), but the static schemes they suggest differ widely
(see Figs. 13, 14), and are certainly very distant from the rules of the art used by the
ancient builders.

By virtue of his exemplary intellectual honesty Como has to say:

Still today, in the technical literature, there is no sign of the presence of a unitary,
consolidated approach to the analysis of the static behaviour of structures in masonry that
can, in some way, be compared to what exists for constructions in reinforced concrete or
steel (2013, vii).
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Fig. 12 Flight of steps referred to as “Roman-Style” in the Palazzo dello Spagnolo, Naples. Photo:
courtesy of the Comune di Napoli
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Fig. 13 Flight of steps referred to as “Roman-Style”. Image: (Baratta 2007), reproduced by

permission
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Fig. 14 Flight of steps referred to as ‘“Roman-style”. Image: (Como 2013), reproduced by
permission

This is due to the fact that works in masonry have always been approached in the
framework of a historical and experimental conception which is profoundly different
from the mechanics-based conception. The mechanics-based conception:

— designs and realises modern structures according to pre-established analytical
models;

— analyses and studies constructions in masonry, envisaging “a posteriori” a
compatible mechanical model.

A more common means for analysing constructions in masonry, widely used in
recent decades, is the analysis of the finite elements of the construction in its entirety.
Such analysis is carried out in the first place in a linear elastic phase, and since each
material, even masonry, initially shows a behaviour that can be assimilated to elastic
behaviour. This method made it possible, in most cases, to obtain an accurate vision
of the tension state, hence also suggesting the static behaviour of the construction.
Unfortunately, however, recently a mandatory set of seismic norms has been brought
in for most of the Italian territory. These make the seismic verification of monuments
in general and archaeological remains even more arid and systematic by imposing a
numerical evaluation of the intended upgrading. All this has eliminated the on-going
reflection which characterised structural design in the second half of the twentieth
century, while permitting any technician to elaborate standardized calculations, with
absolutely no regard to the original construction concept of the monument.
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6 Conserving the Historic Built Fabric by Making Sense
of the Past: Retrieving the Rules of the Art

As said, for more than half a century senseless interventions have cementified a
large part of the monumental and archaeological heritage throughout Europe, in
total ignorance of the ancients’ construction concept.

In Ttaly, starting in the early 1980s, some voices were raised in alarm and
protest, but ignorance and a ‘get rich quick’ attitude prevailed over the dissent. In
addition a capricious fate brought to an untimely end Edoardo Benvenuto, Antonino
Giuffre, Salvatore Di Pasquale and Alfredo Corsanego, all authoritative scholars
who championed with well-argued reasoning the cause of a conscious conservation
of the historical built fabric. Yet all that was necessary for structural engineering was
to recognise the problem and introduce courses in the statics of ancient buildings,
building on the teaching of Breymann, Curioni, and so on, without allowing the
widespread culture of construction based on experience of craftsmanship dating
back centuries to be dispersed. It would have been sufficient for the Faculties of
Architecture to undertake a systematic survey of the monuments, taking into account
construction dimensions and quality of the materials so as to grasp the secrets of
their deployment. All this would have set in motion a “virtuous circle”, making it
possible to retrieve the rules of the art and at the same time create engineers and
architects well-versed in the ancients’ concept of construction.

Some modest progress has been made, both in exorcising the all-pervading
cementification and in the retrieval of the rules of the art that informed the realization
of Roman constructions (Conforto and D’Agostino 1995, 2001), or residential
architecture in the nineteenth century, even if this is all very limited with respect
to an accurate knowledge of ancient architecture, in particular the religious edifices.
Fortunately the industry of building materials has proven to be receptive to these
instances, producing mortars which are much more compatible than cement-based
fillers, as well as fibres in composite material that can be used to bind a construction
together without excessive violence, even if the efficacy of these products over time
has yet to be seen.

Furthermore, the new generations tend to be more aware of the need to safeguard
the territory and landscape, as well as to conserve the built heritage. And there are
interesting stimuli for design experts in the cultural sphere (D’ Agostino et al. 2009).
All this can and must serve to support the conservation authorities, who should
not only dispense with undue deference towards contemporary technical expertise
but unhesitatingly impose respect for the construction concept of the monumental
heritage, its material conception and, at the end of the dayj, its integrity.
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Designing by “Expérience’’: Lecreulx Model
Tests for the Design of the Abutments
of the Bridge of Fouchard

Santiago Huerta

Abstract In the 1770s the French engineer J.-R. Perronet introduced a new type of
masonry bridge, with very slender piers and extremely surbased segmental arches.
Circa 20 bridges of these kind were designed by Perronet and his disciples. The ratio
height of arch to span was between 1/9 and 1/18. The flat arches would have exerted
a great inclined thrust. The piers were equilibrated, but the abutments at both ends of
the bridge had to support the thrust. The danger of failure by some kind of fracture of
the buttress on the upper part was evident; in particular then danger of sliding failure.
The thrust could be calculated following the La Hire theory, which, though incorrect,
was safe, i.e., led to greater, more inclined thrust. However, to know the effect of
the thrust in the massive abutments it was necessary to make tests on models. These
were carried out in 1774 by F.-M. Lecreulx during the construction of the bridge of
Fouchard. The results demonstrated the enormous danger of a catastrophic failure
by sliding. He then proposed some dispositions to avoid this danger, prolonging the
voussoirs of the arch inside the mass of the arch. Fouchard’s test must have been
influential in the great increase of the size of buttresses from the original designs of
the 1770s in all the bridges built (most completed after 1780). Eventually, this type
of bridge was abandoned, but their short history (about 30 years) demonstrated the
audacity, courage and faith in reason and experiment of Perronet and his disciples.

Keywords History of the theory of structures * Bridge design ¢ Masonry arches *
Frangois Michel Lecreulx ¢ Jean-Rodolphe Perronet * Surbased arches

In the second half of the eighteenth century the French engineer Jean-Rodolphe
Perronet (1708-1794) initiated a revolution in bridge design. He proposed two
radical changes: to reduce drastically the thickness of the piers, to facilitate the
course of the water, and to use arches with a greater surbasement to ease the access to
the bridge road, without the need of long ramps (Perronet 1777). The arches evolved
from surbased ovals (anse de panier) with cornes de vache (the best example is the
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Fig. 1 Bridge of Neuilly, 1764—1774 (Perronet 1788: Plate IX)
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A Pont Saxre MHaxence

Fig. 2 Bridge of Saint-Maxence by Perronet (Perronet 1788: Plate XXX)

bridge of Neuilly by Perronet, 1768—1774,Fig. 1), to very flat segmental arches with
the springings over the level of the maximum floods on slender piers (Fig. 2).

It was in the decade of the 1770s when Perronet set himself to design these
flat segmental arch bridges. Never before had arch bridges been built with such
extremely surbased proportions, with ratios height/span around 1/10 (to be more
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precise, between 1/9 and 1/18) supported on very slender piers (sometimes less than
1/10 of the span). He was followed enthusiastically by some of his disciples.'

The first design of this type was made by Perronet for the bridge of Nemours
in 1771, with arches of 16.25 m span and a height of 1/15.6 of the span. It was an
audacious design, with the manifest intention of breaking drastically with the past.
However the bridge was constructed after Perronet’s death (1795-1804) by Louis-
Charles Boistard (1763—-1823). The first segmental arch bridge built was that of
Pesmes, completed in 1772; it was designed by Philippe Bertrand and consisted of
three arches of 13.70 m span and a height of 1.19 m, i.e., nearly 1/12 of the span. The
same year, Jean-Baptiste de Voglie (1723?7-1777) presented a design for the bridge
of Fouchard (about which we will speak in detail below). It too consisted of three
equal arches, with a span of 26 m and a height of 1/10 of the span. Shortly after, in
1774, Perronet began the construction of the bridge of Saint-Maxence over the Oise;
the bridge was finished in 1784, with three arches of a 23.4 m span and a height
of 1/12 (Fig. 2). Other bridges designed by Perronet in the early 1770s remained
unbuilt: the bridge for Melun (one arch of 48.7 m surbased 1/10); the bridge of
Pontoise over the Oise (3 arches of 29.24 m surbased 1/13); and the bridge of Moret
over the Loing (3 arches of 25.34 m surbased 1/14). The highest surbaissement was
attained in the bridge of Saint-Diez over the Meurthe (3 arches of 10 m surbased to
1/18, Fig. 3), designed by Francois Michel Lecreulx (1729-1812) in 1785 and built
1804—1821. In the nineteenth century this type of extremely flat arch disappeared
almost as suddenly as it had appeared 30 years earlier.

These greatly surbased arches posed new problems, both for the practice of
construction and the theory of arches. The thin piers implied the centering and
construction of the whole bridge and the simultaneous decentering. The construc-
tion, usually over cintres retroussés (another invention by Perronet; the centering
consists on a series of parallel arches or trusses which abut on the piers, leaving
the river free of supports, as in the central span of Fig. 3) which showed some
flexibility, made it obligatory to equilibrate the centering during the construction,
placing provisional weights adequately; the great thrust produced a considerable
lowering of the keystone that had to be considered. Further, some constructive
precautions also had to be taken to avoid the chipping of the stones on the joints
of rupture, etc. In the Oeuvres of Perronet (1788) there is a complete description
of all these problems, which were carefully registered by the engineers during the
construction and decentering of the bridges. Another invaluable source is the Traité
des ponts (Gauthey 1809-1816) by Emiland-Marie Gauthey (1732-1806), edited
and published posthumously by Claude-Louis Navier (1785-1836), with large
annotations and additions; later editions in 1832 (revised and enlarged) and 1843
(reprint). Finally, Louis Bruyere (1758-1831) compiled some reports of engineers
on the construction of stone bridges with the intention of completing the information
of the previous works (Bruyere 1823).

A detailed list of Perronet bridges with dates and dimensions, and a discussion of this type of
design in Dartein (1906).
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Fig. 3 Bridge of Saint-Diez over the Meurthe by Lecreulx (Dartein 1906)

As for the theory, these flat arches posed a new problem: never before had
arches with such a degree of surbasement been designed. In the second half of the
eighteenth century the French engineers still used La Hire’s theory formulated in
1712. La Hire considered that when an arch collapses a joint of rupture forms at
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Fig. 4 The thrust of arches in the eighteenth century after La Hire’s theory: (a) La Hire (1712);
(b) Bélidor (1729); (c) Perronet (ca. 1750); (d) Perronet/Lecreulx (ca. 1770). Image: author

Later, Bernard Forest de Bélidor (1698—1761) modified the method supposing
the joint of rupture to be always at the mid-point between the intrados and the
crown and the thrust acting tangent to the middle-line of the arch (Bélidor 1729)
(Fig. 4b). Bélidor’s interpretation was that the upper part of the arch between the
two symmetrical joints of rupture acted as a wedge sliding without friction over the
joints, and therefore thrusts against the buttresses with forces normal to the joints.
It was evident that the friction between stones is very high, but the theory gave
dimensions similar to that of existing constructions and the empirical rules. As a
consequence, the so-called “wedge theory” of La Hire-Bélidor was in use for more
than 100 years (Huerta 2004).

In the 1750s Perronet (Perronet and Chezy 1810) studied the problem for
surbased arches en anse de panier (ovals made of segment of circles) and concluded
that the joint of rupture was at the point of change of curvature for an arch surbased
to 1/3 and with the form proposed by Henri Pitot (1726) (Fig. 4c). For other forms
of ovals he explicitly said it would be necessary to make trials which would involve
long calculations.

For surbased segmental arches, the joint of rupture would be obviously at the
springings (Fig. 4d). Perronet didn’t state this, but it was implicit in the observed
cracking and movements of the arches after the decentering (Perronet 1773). As
we shall see, Lecreulx stated this explicitly, in passim, as a matter of common
knowledge among engineers.

Thus, to calculate the thrust of the new flat arches presented no problem (and as
we will see is “safe”, i.e., the calculated thrust is greater than the “actual thrust”).
The thickness assigned to the arches was substantial, between 1/15 and 1/20 of the
span, and could reach the level of the road; in fact these proportions precluded the
collapse of the arch, as long as the buttresses remained unmovable.? The problem
concentrated on the abutments: What would the effect of such a great inclined thrust
be on the massive abutments?

2There is no possible pattern of hinges leading to a collapse mechanism; see (Heyman 1982, pp.
40-42).
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Fig. 5 Elevation of the bridge of Fouchard (Bruyere 1823)

1 Lecreulx’s “expériences”

In this situation, it was logical to turn to the expérience. This word refers in French
both to the observation of existing constructions and the actual performance of
experiments. There were no examples to make a direct comparison and the only
empirical rule available referred to straight arches (called flat arches or plate-
bandes): according to Gautier (1717, p. 14) the buttress must be more than half the
span (Huerta 2012, p. 405). Of course, the cracking and movements of previous
surbased bridges during construction and after decentering had been carefully
registered (Perronet 1773, 1788). Engineers were familiar with cracks, and the
visible cracks at the springings confirmed the concentration of the thrust at this
point, as predicted by the theory. But observations on the failure of buttresses were
very difficult, if not impossible, as this failure would lead to an immediate and
catastrophic collapse. The only way was, then, to make tests on models to study
the different patterns of collapse and extract some clues for the design.

These kind of tests were carefully made by Lecreulx during the construction
of the bridge of Fouchard in the year 1774 (Fig. 5). He registered and discussed
the results in a detailed Memoir entitled, Mémoire sur la nature de la poussée des
voiites, formées d’un seul arc de cercle, contre les culées, et expériences sur les éfféts
qui en résultent (1774). In addition, Bruyere (1823, pp. 10-12) published part of the
Journal written by Lecreulx during the year 1774, corresponding to the construction
of the vaults and abutments.

Lecreulx’s Memoir was never published. Today the manuscript is preserved in
the library of the Ecole nationale des ponts et chaussées; we found the reference
in the old catalogue of manuscripts published in 1886. The drawings are missing,
but fortunately they were published by Bruyere (1823, P1. 8) (Fig. 6), and the tests
briefly described in a note.> The drawings have been grouped by expériences in
Fig. 7. The Memoir has been transcribed and is reproduced in full in the Appendix.

3Navier quoted Lecreulx’s tests in a footnote of the second edition of Gauthey’s Traité des ponts
(1832, vol. I, p. 244), confusing the name of the bridge (“Frouart” instead of “Fouchard”). The
same quotation, with the same error, appears in the “Translations from Gauthey” in Weale (1843, p.
83). Eventually, Cresy (1865, pp. 1498-9) transcribed the note and reproduced Bruyere’s drawings.
Most recently the memoir was cited briefly by Marrey (1990, p. 58).
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Fig. 6 Fouchard bridge (Bruyere 1823, Plate 8). At the bottom are the drawings of Lecreulx tests,
reproduced below in Fig. 7, grouped by expériences

In the discussion that follows, the numbers in parentheses correspond to the pages
of the volume in which the manuscript is bound.

The Memoir begins by discussing the thickness of the central piers. Lecreulx
remarks that the piers support no horizontal thrust and should resist only the vertical
load of the two demi-arches; the stone is of a good quality, pierre de Champigny
with a specific weight of 25 kN/m?. He states that they could support arches with
spans more than three times greater, though he does not explain how he arrives at
this figure.* He remarks that special attention should be given to the foundations (p.
81).

The rest of the Memoir is dedicated to discussing the results of the tests on the
scale models. Lecreulx believes that the theory would make it possible to calculate
the thrust. However, “as it often relied on assumptions that are not always consistent

“4Perronet made expériences on the strength of different kinds of masonry, both by comparison with
existing buildings and by using a machine of his invention. Following the idea of Gautier (1716, p.
102), he calculated the height of the equivalent column which will support at its base the same load
of the pile and the two semi-arches, and, then compared this height with those obtained in existing
buildings. The first systematic strength tests on stones ever published were made by Gauthey in
1774 (Huerta 2004, pp. 362-4).
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with the nature” (p. 82) (he is probably referring to the absence of friction), he
considers it necessary to make the tests to check and refine the theory.

Lecreulx planned the model “exactly conform with the proportions of the design”
(p- 82), without the ornaments, so that the elevation represents a section of the
bridge. Before going further, it will be helpful to explain the units of measurements
used in the Memoire. For lengths and widths, Lecreulx cites the dimensions using
pieds, ponces, lignes, and toises. 1 pied (or pied-du-roi) is equal to 32.48 cm in
today’s units, and was subdivided into 12 pouces; a pouce was further subdivided
into 12 lignes. A toise is equal to 6 pieds. The scale of the models is 14 lignes to
one foise, i.e., approximately 1:62. Therefore, the span of each of arches, cited as
80 pieds (p. 81), was equal to about 42 cm in the models. The breadth of the bridge
is given as 19 pieds 26 pouces, and thus the breadth of the model was about 11 cm.
For weight, instead, he cites the units of /ivres (equal to 489.51 g in today’s units),
subdivided into 16 onces.

The models were made of tufa stone, easier to carve and more homogeneous than
that of Champigny which was employed for the bridge: “We have chosen this stone
to make the model because it is more homogeneous and easy to carve, particularly
in small pieces” (p. 82).

Lecreulx recognises that the tufa stone is lighter, but “as the purpose is to
establish proportions, it would be possible to use any kind of stone” (p. 82). This
statement is crucial: Lecreulx is conscious of the geometric character of the design
of masonry structures. It is stability, which depends on form and not scale, which
governs the design of masonry structures (Heyman 1995).

Next he explains the way the arches thrust against the abutments. Following the
theory of La Hire/Perronet, he states that the action depends directly on the degree
of surbasement of the arch: “It is easy to see that the vaults under consideration act
against the abutments in a different way depending on whether the portion of the
arc of the circle contains a greater or lesser number of degrees” (p. 82) (see Fig. 4d,
above). Indeed, the direction of the thrust is indicated in the first drawing of the
model, Fig. 7(1, I). He then gives the main geometric data: the radius (108 pieds or
35 m) and angle of aperture 44° 42’, and the corresponding lengths of the chord or
span (82 pieds, 1 pouce, 6 lignes, or 26.68 m) and the height (8 pieds, 1 pouce, 4
lignes, or 2.62 m).

The vaults were mounted on a centering that could be raised or lowered at will.
They are divided into three segments or voussoirs; the weight of the whole vault is
4 livres 6 onces (2.142 kg). (Due to this division, a slight yielding of the buttresses
produces, instead of the usual crack at the crown, two symmetrical cracks on the
joints of the central keystone. This reduces slightly the thrust with reference to an
actual vault made of more voussoirs.)

Lecreulx is systematic in his exposition. First, he describes the model, giving the
structure and dimensions of the abutments; afterwards, he discusses the éfféts, that
is, the results of the thrust of the arch on the abutments.
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Fig. 7 Lecreulx tests on the strength (stability) of buttresses (re-elaborated from Fig. 6)

1.1 First “expérience”

The vault rests on two monolithic buttresses which have, on the left 18 pieds 6
pouces, and on the right 24 pieds, at the level of the springings [Fig. 7(1)]. The
buttresses are monolithic.

After the decentering the vault remains standing; the buttress of 18 pieds 6
pouces, resists the thrust. But if 4 onces (120 g) are added (1/20 the weight of the
vault), then the abutment fails. In Fig. 8a, the proportions of collapse are shown: a
buttress of 17 pieds 2 pouces (7 % less than the buttress of the model), will be just
in equilibrium supporting the vault. Therefore, Lecreulx had to put a small load to
provoke the collapse. However, it seems clear that Lecreulx tried to obtain the limit
proportion, probably making several trials.

It is interesting to note that the thickness of the right buttress, 24 pieds,
corresponds to that obtained by applying the theory of La Hire (Fig. 8b). The
thrust of the vault, tangent to the intrados at the springings, produces an overturning
moment obtained by multiplying its magnitude by the lever arm respect the border of
the base; this must be balanced by the moment of stability provided by the buttress
weight. Of course, the actual collapse thickness corresponds to the minimum thrust
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Fig. 8 (a) Limit buttress; (b) limit buttress for the thrust of La Hire. Image: author

of the vault, with the thrust line rising to the extrados at the crown. As can be seen
by comparing Fig. 8a, b, the position of the thrust line varies significantly and the
La Hire thrust is 65 % greater than the actual collapse thrust. La Hire’s buttress has
a thickness 33 % greater than that of collapse.

Lecreulx then performs another tests on a slightly thicker monolithic buttress. A
buttress of 21 pieds 6 pouces, if sliding is precluded, supported a load on the crown
of 19 onces (580 g); the La Hire buttress of 24 pieds, supported a load of 1 livre, 8
onces (734 g), until the failure occurred due to sliding on the base.

Looking again at Fig. 8a, b, it is easy to see that increasing the width of the
buttress increases the collapse load by overturning, but as the angle of the thrust at
the base of the buttress grows it may happen that the buttress fails by sliding instead
of overturning, the thrust being outside the friction cone. In Fig. 8b, the angle of
thrust with the horizontal is nearly 30° (tan 30 = 0.6), and the friction coefficient
between stone and the wood is around 0.4 (angle of friction 22°).

Immediately, Lecreulx warns that these experiments have been made with
monolithic abutments, which “is contrary to the real state [of the construction],
which must be regarded, on the contrary, as formed by horizontal courses [of
masonry]” (p. 84). He acknowledges that these courses will be laid with good
mortar, but as the setting of the mortar could take years, it is not advisable to
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consider the cohesion of the masonry after the decentering, since, he maintains,
“the moment just after the decentering is precisely when the vault exerts the greatest
thrust” (p. 85).

He remarks that once the mortar joints have set, the buttress will form a monolith
and the thrust will diminish with time until it will eventually disappear: ... after
centuries, when the mortar will have acquired the hardness of stone, a barrel vault
can be considered as a single piece, and its thrust reduced to nothing” (p. 85).
However, he insists that he wishes to investigate the thrust of the vaults at the worst
moment. Of course, the idea that the vault and the buttress together (or either of
them singly) would form a monolith after the setting of the mortars is a fantasy, or
perhaps the expression of a desire; even Roman vaults thrust and crack.’

1.2 Second “expérience”

The vault rests on the left side on the La Hire buttress of 24 pieds, and on the other,
on a buttress of 36 pieds, consisting of three blocks with three horizontal joints, as
shown in Figure 7(2). After the decentering the buttress of 36 pieds fails due to the
sliding of the upper block. Lecreulx remarks that the number of joints under the
joint of collapse is irrelevant: when the upper joint slides, the remaining joints make
no movement.

In Fig. 9 a static analysis has been made; the inclined thrust forms with the joint
an angle of 33°, similar to the friction angle between stones. In a small model the

.
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Fig. 9 Failure due to sliding of the upper part of the buttress. Image: author

3The idea of, and the desire for, monolithism (a masonry structure without thrusts) appears in the
second half of the eighteenth century. It was not until the invention of reinforced concrete that this
aspiration could be fulfilled. The same idea appears in the context of the theory of tile vaults, and
can be traced to the present day (Huerta 2003).
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Fig. 10 Test on an already fractured buttress. A point load is needed to produce the collapse.
Image: author

stones may have been polished so that the friction angle is less than 30°; this would
explain the collapse.

It should be noted that Lecreulx places the joint of fracture OP (Fig. 9) about two
pieds below the joint LM at the springings of the vault. He does not mention this.
It may be that he thought that the height of the masonry courses would produce the
fracture below. It also makes the tests easier.

1.3 Third “expérience”

In the third test the vault is supported on the left side on a monolithic buttress of 32
pieds and the other side on a buttress of 32 pieds divided into four pieces, of which
he says, three are en coupe, that is, they have radial joints. After the decentering,
the vault stood, and a weight of 10 onces (305 g), 1/8 of the weight of vault, must
be added on the crown to provoke the collapse, as shown in Fig. 7(3). It should be
noted that, due to the division of the buttress, the inclination of the thrust with the
base has been reduced, and sliding does not occur (Fig. 10).

It is obvious that the form of collapse is determined by the joints dividing the
buttress. Why this pattern of joints was chosen? Surely Lecreulx must be imitating
or reproducing some observations which he doesn’t cite. The buttress, trying to
rotate around the exterior limit, breaks and leaves a wedge of masonry on the
ground. This mode of fracture must have been known to any experienced engineer
who have observed de collapse of buttresses or demolished some old bridge.

The first published observation about this fracture mode was made by Gauthey:
La chiite d’un pont ne pourrait guére arriver sans qu’il ne se fit quelques
disjonctions dans ses culées, “The collapse of a bridge can scarcely happen without
there having been some disjunctions in its abutments” (Gauthey 1809, vol. I, p.
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Fig. 11 Fracture of a buttress or retaining wall during the collapse: (a) Mayniel (1808); (b)
Monasterio (ca. 1800). In this case, the form of the fracture is determined by the size and form
of the stones. If they have a ratio of 1:2, as in the drawing, the crack will form an angle of 45°.
Image: author
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Fig. 12 Limit thickness of masonry buttress considering the failure by overturning: (a) assuming
the plane of fracture at 45°; (b) exact solution. Image: author
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24). This fact should have been well known by the French engineers of the late
eighteenth century. The first to study this phenomenon was the Spanish engineer
Joaquin Monasterio around 1800 (Huerta and Foce 2003; Huerta 2010; Albuerne
and Huerta 2010) (Fig. 11b). At about the same time the French military engineer
K. Mayniel (1808) discovered the fracture in his tests on the thrust of soils against
retaining walls (Fig. 11a).

If the inclination of the surface of fracture is known, it is straightforward to
calculate the thrust and the collapse thickness of buttress. For an inclination of 45°,
considered both by Lecreulx and Monasterio, the collapse thickness is 21 pieds,
representing a reduction of 38 % of the thickness of buttress tested (Fig. 12a). The
shape and inclination of the fracture can be calculated for a homogeneous masonry
buttress which resists only compressive forces: it can be shown that the fracture
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surface is a plane. Knowing this it is easy to calculate its slope and the buttress
thickness of collapse (Ochsendorf et al. 2004). In this case, the fracture is formed at
35° and the collapse thickness is just over 19 pieds (Fig. 12b).

1.4 Fourth “expérience”

This test is analogous to the second. This time, Lecreulx seems interested in finding
out what the thickness of the buttress needs to be to preclude the sliding failure at the
top. He observes that for a buttress of 65 pieds formed by four pieces [Fig. 7(4)], the
sliding failure is about to happen. He adds more weight, increasing gradually from
4 to 9 onces, and the collapse occurs. This leads to an angle of friction between the
pieces of about 24°. The buttress had an unusual proportion, since its thickness is
80 % of the span (see Table 1 below). Lecreulx makes no comment on this, but later
he comes back to the solution en coupe, with radial joints.

In the Memoir some reference to letters in the corresponding figure is made.
Although these letters are missing in the drawings of Bruyere, the meaning is quite
clear. At the beginning of the decentering (probably the centre is slightly shaken),
he affirms that “Just when the decentering begins the vault thrusts at the joint ef”
(p- 87). Apparently he does not fix the point of action. Then, he resolved this thrust
into two forces: “the force could be resolved into the two forces OD and BD, where
the vertical force BD [sic OD] is annulled by the upper joint, and the force BD ...
tends to provoke the sliding of the upper part” (p. 87). He notes that at this first
instant, “the keystone descends slightly, the joint f opens, and the vault exerts its
thrust through E” (p. 87)). He then makes a crucial statement: due to the opening of
the crack at the joint ef, the thrust is reduced and the movement stops: ““. . . and since
it has less advantage in continuing to make the superior parts slide, [the movement]
stops” (p. 87). Lecreulx is describing the effect of a slight yielding of the abutments
in the vault thrust, which acquires its minimum value. (There is detailed description
of the decentering, cracking and movements of the vaults of the bridge of Fouchard
in Lecreulx’s Journal of 1774 (Bruyere 1823, p. 11)). The theory of the arch was
not sufficiently developed to interpret this, but nonetheless his deep understanding
of vault behaviour is remarkable.®

5The concept of minimum thrust and its relation with the cracking of arches was first exposed
by Méry (1840). It is however clear in the detailed registers of bridge vault movements made by
Perronet and his disciples, that the French engineers of the second half of the eighteenth century
understood the relationship between cracks and movements on the vaults.
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1.5 Fifth “expérience”

The buttresses are 36 pieds and the left one is divided en coupe in five pieces
[Fig. 7(5)]. After the decentering the vault stands. Weight is added to the crown;
when the load reaches 14 onces (1/5 of vault’s weight), the collapse occurred, this
time by sliding of the buttress as a monolith [Fig. 7(5.X)]. Lecreulx attributed this
sliding failure to the low friction between the stone and the wooden base. He notes
that the tests should be made on a stone surface to be reliable and advises against
the use of polished wooden platforms; eventually he made this test “on an old flat
plank; but the surface was only moderately smooth” (p. 88). Then, he fixed the
external lower point to prevent the sliding, but not the overturning [Fig. 7(5.XI)]. In
this situation , the load on the crown reached a value of three livres 6 onces, more
than 3/4 of the weight of the vault.

1.6 Sixth “expérience”

In the sixth and final test, Lecreulx used two vaults, with a central pier of the same
proportion of the actual design [Fig. 7(6)]. The left buttress is 36 pieds thick divided
en coupe, as in the previous test; on the right side, the buttress is 72 pieds thick and
consists of six pieces. The joint of failure is the same as in tests two and four. After
the decentering both vaults remain standing. Then, both vaults were loaded at the
same time at the crown: under a load of 6 onces the vaults stand, but under 7 onces
failure occurs by sliding on the right side.

This result must have been quite disturbing. Although the buttress is considerably
thicker than that of the test 4, collapse occurred for practically the same load.
Moreover, as Lecreulx remarked, the collapse of the right vault implied the collapse
of the left vault, because the central pier is unable to resist the vault thrust. The
conclusion is clear: an abutment of 36 pieds with pieces en coupe resists much
more (in a ratio of 1:9), than a 72 buttress pieds with horizontal joints: “It can be
seen also that, in this hypothesis, an abutment of 36 pieds divided in radial parts
[en coupe], resists more than an abutment of 72 pieds made of horizontal courses,
even though we have considered the most unfavourable situation, giving the first
one the possibility of sliding along the platform™ (p. 90). Obviously, he says, the
friction over the platte-forme above the foundation will be much greater than over
the wooden table, but, he insists again that, if sliding is precluded, the division en
coupe allows for a much greater load than the usual division by horizontal courses.

Lecreulx ends his description of his expériences by remarking that all of them
have been made and repeated in the presence of other people, of the chief engineer
de Voglie, young engineers and many entrepreneurs des Ponts et Chaussées.
Eventually, he stresses the usefulness of going forward with the expériences.
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2 Conclusions

Lecreulx concludes that the tests show clearly that the segmental surbased vaults
exert an enormous thrust against the abutments: “the vaults made of a portion of a
circle, have a very considerable horizontal action against the abutments” (p. 90). The
disposition en coupe, with radial joints, allows the direction of the thrust to change,
making it more vertical and mobilizing much more weight, “by diverting this action,
and pointing it towards the platform, it opposes a more considerable mass to the
action”. In this way the strength of the abutment increases considerably and the
failure by sliding is precluded, “and it increases the resistance of the abutments; and
there would also be a gain in preventing the foundation from slipping” (p. 90).

He then proposes a completely original design for the abutment. He takes
the dimension of 36 pieds of expériences 4—6, adjoining to this mass two small
counter-forts of 6 pieds, following the advice given to him by Perronet, reaching
a thickness of 42 pieds.” (It is doubtful that this counter-forts would make any
noticeable improvement, but it would probably have been unthinkable not to follow
the suggestion of the greatest French engineer.)

The main feature is that the vault should be prolonged inside the mass of masonry
of the abutment 12 pieds, reaching almost the center of gravity of the abutment (see
Fig. 6, above).® In this way, he feels confident in maintaining that the abutments
will resist with all its weight the thrust of the vaults: “I feel sufficiently authorized
to establish that these abutments will resist with all their mass, and will be more
than sufficient to support the thrust of the vaults of this bridge”.

In fact, the only weight which helps to prevent the sliding, is that which is above
the springings of the internal arch, which is only 60% of the total weight of the
buttress. In this situation, a friction coefficient of 0.40, equivalent to a friction angle
of 22°, will be sufficient to avoid the sliding failure. The value is low enough so that
the masonry, even just after the decentering, with the setting of some part of the lime

"The suggestion appears in a letter of Perronet (1774) to Lecreulx. Here he praises the expériences
and describes the dimensions and gives a detailed description of the abutments with counterforts
he had designed for the bridge of St. Maxence (which were considerably increased during
construction, see below). He recommends the dimension of 42 pieds for the abutments of
Fouchard’s bridge. He then discusses at length the kind of construction to be used to avoid
the failure by sliding: making irregular courses, incorporating large stones (/ibages), etc. The
recommendations are similar to that suggested later by Gauthey (see note 10 below), who probably
read Perronet’s letter in the Library de I’ of the Ecole.

8The same description appears in the Journal, where he attributes to this disposition the small
yielding of the abutments after the decentering: Il ne doute méme pas que cette différence de
tassement n’eiit été bien plus grande, sans la précaution qu’on a prise de contrebutter le derriére
de assise des culées qui regoit les naissances, par de forts libages posés en coupe, et comme
formant le prolongement de la voiite dans le massif de ces culées ... (He had no doubt that this
differential settlement would have been much greater without the care they took of counterforting
the rear of the seat of the abutments receiving springings, by strong blocks of stone laid radially,
and as though forming an extension of the vault in the solid mass of the abutments. . .) (Bruyere
1823, p. 11).
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mortar not yet completed (in the thick masses of abutments this may take months or
even years), the abutment would be safe enough.

Actually, the friction between two surfaces of dry stone or masonry with mortar
not yet dried, should be well above the friction between two surfaces of the same
stone. (However, as far as I know, tests on structures of real size have never been
made.) If this were true , it would explain the absence of catastrophic collapse in the
construction of this type of highly surbased bridges.’

In any case, the dangers of such constructions were evident. Boistard (1822,
p. 15) explains how Gauthey tried to dissuade him from continuing the original
project by Perronet. Gauthey said that he had made tests on wooden models and
that the bridge would collapse just after the decentering. On the other hand, Bruyere
(1823, p. 16 note C) maintains that Pierre-Antoine Demoustier (1755-1803) was
overcautious in giving the abutments of the bridge of St. Maxence a thickness of 60
pieds (19.5 m) (Fig. 13), instead of the 40.5 pieds (13.2 m) of the original design
(see Fig. 3).

In fact, very few highly surbased arch bridges (say, with a surbasement under
1/8 of the span) were built. Navier, in the third edition of Gauthey’s Traité des
ponts, lists ten (Gauthey 1843, p. 197). In Table 1 we give the dimensions and main
geometrical ratios of the best known. The bridge of Fouchard has the most slender
buttresses, but it is still of unusual dimensions. The fear of sliding collapse can be
easily seen.!”

°Tt appears that the first to assess the effect of the friction and the cohesion of the masonry on the
safety of masonry buttresses was Boistard (1822, pp. 132-134). He made shear tests to calculate the
cohesion between stone prisms jointed with mortar and, also, friction tests. (The tests were made
ca. 1800 (Boistard 1804), and the results were reported later by Gauthey (1809, pp. 339-344.) He
then applied these results to assess the safety of the abutments of the bridge of Nemours. The
analysis is correct in approach but plagued with numerical errors. Gauthey repeated, correctly, the
calculations for a “standard” segmental vault with a span of 20 m, with a height of 3 m. He obtained
extremely slender proportions for the abutments: 1/6.7, compared with the traditional rules which
assigned 1/3-1/4 of the span. He was apparently unaware that he was obtaining the collapse
dimension of the buttress. However, he concluded “...on sera ¢onvaincu de la nécessité de les
augmenter encore, et de se rapprocher ainsi des regles pratiques” (. ..one will be convinced of
the need to increase further, and thus get closer to the rules of practice) (Gauthey 1809, pp. 327-8).
The first to handle the problem of buttress safety correctly, within the frame of Coulomb theory of
vaults, was Audoy in 1820 (Audoy 1820; Huerta 2010).

10The necessity of linking firmly the different courses of masonry was expressed several times.
Boistard, after his analysis remarked: Ces calculs ... justifient en méme temps les précautions
que nous nous proposons de prendre dans la construction des derniéres assises qui doivent étre
faites en libages pleins, posés en liaison, tant avec les assises inférieures, qu’avec celles des murs
d’épaulement (These calculations ... justify at the same time the precautions we propose to take in
building the last beds to be made in solid stone, set in connection with both the lower courses, and
those of shoulder walls) (Boistard 1810, p. 212). Gauthey insists also in the necessity of connecting
firmly the courses of masonry placing vertically big stones and, even, to construct the core of the
buttress of irregular rubble masonry: I/ serait sur-tout fort avantageux de distribuer dans ’intérieur
de la magonnerie des libages placés debout, qui relieraient les assises les unes avec les autres, et
qui contribueraient puissamment a ce qu’elle ne formdt presque qu’un seul corps. On tendrait
au méme but en évitant de construire l’intérieur des massifs par assises, et en le remplissant, au
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Fig. 13 Constructive bridge section Sainte Maxence (Bruyere 1823)

Table 1 Arch bridges with high surbasement

/ g
f
h
PR 2|
Bridge dimensions | & (m) c(m) S(m) Si=c+f(m) i (m) t(m)
proportions a,=c/s oy=f/s Wara)=fis a;=h/s p=t/s
Nemours 16.2 0.98 1.12 2.10 422 10,2
(Perronet, Boistard; 1771, 1795-1804) 1/16.7 1/14.6 1/7.8 1/3.84 0.63
St. Maxence 234 1.46 1.95 341 5.84 19.5
(Perronet; 1774-1784) 1116 112 /6.9 1/4 0.83
Fouchard 26.0 1.3 2.63 393 5.20 14.50
(De Voglie, Lecreulx; 1772; 1774-1782 ) 1/20 1110 116.6 15 0.56
Louis XVI-Concorde 28.6 1.41 3.00 4.41 5.84 19.5
(Perronet; 1786-1791) 1/20.3 1/9.5 1/6.5 1/4.9 0.68

s span; ¢ thickness of keystone; f height of the vault; & height to the springings of the arch; ¢
thickness of the abutments
Dimensions taken mainly from (Gauthey 1843, pp. 199, 251).

contraire, en magonnerie de blocage (It is above all very advantageous to distribute inside the
masonry blocks of stone placed upright, which would connect the foundation with each other, and
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The Memoir by Lecreulx describes “I’esprit” of the French engineers of the
second half of eighteenth century, who, under the supervision of Perronet, full of
courage and intelligence, revolutionised bridge design. It is true that the type of
bridge at which they eventually arrived, with thin piers and extremely surbased
vaults, was eventually abandoned, but this does not diminish the merit of one of
the most audacious enterprises in the history of engineering.
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Appendix: Mémoire sur la nature de la poussée des voutes,
Jormées d’un seul arc de cercle, contre les culées, contenant des
Experiences sur les éfféts qui en resultent by Francois Michel
Lecreulx

What follows is a diplomatic transcription of the original Memoir of 1744, Ms. 233,
Tome 21 (pp. 81-90), Bibliothéque de 1’Ecole des Ponts et Chaussées. The numbers
in square brackets refer to the page numbers of the manuscript in the volume in
which it is bound. It should be noted that the numbering of the figures and some
letters in them, when cited in the text, referred to the original illustrations, are
missing in the figures reproduced by Bruyere (Fig. 6).

Mémoire sur la nature de la poussée des voutes, formées d’un
seul arc de cercle, contre les culées, contenant des Experiences
sur les éfféts qui en resultent

[p. 81] Il est évident que dans les vofiites dont il s’agit, chacune des piles etant
également préssée de part et d’autre, et restant en equilibre entre ces deux pressions
n’éprouvent aucune poussée mais leurs fonctions se reduisent & supporter chacune
le poids de deux demi-voutes; c’est pour quoi, lorsque la pierre est de bonne qualité,

that would contribute greatly so that it forms almost a single body. We tend to the same end, without
building within the mass in courses, and filling, to the contrary, in stone masonry) (Gauthey 1809,
pp. 330-1).
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leur épaisseur est beaucoup plus que suffisante pour porter le poids des voutes. Dans
le pont que 1’on construit ou les arches ont chacune 80 pieds, et les piles 12 pieds
au dessus des retraites, reduites a 9 pieds 4 pouces a la naissance, on est convaincu
qu’avec la qualité de la pierre de Champigny, dont on se sert, qui pese environt
180 L le pied cube, les piles sont en état de supporter des arches plus de trois fois
plus grandes surtout avec 1’attention de ne pas faire les joints des lits excessivement
petits, et de les laisser ouverts, pour ne point laisser pincer les arrétes; de sorte que
les précautions doivent se borner a bien assurer les fondations, pour que 1’assiette
soit inébranlable et a 1’abri des affouillemens; c’est pour quoi, apres s’étre bien
assuré de la nature et qualité du terrein, et s’€tre établi sur un pilottage bien battu au
refus, I’on a observé au dessus des eaux trois larges retraites, d’un pied chacune.

La poussée des vofites agissant principalement sur les culées, on a cru de la
derniere importance de réflechir sur les éffets [p. 82] qui en peuvent resulter; et
quoique le théorie les fasse aisement prévoir, comme elle est souvent appuyée sur
des hypotheses qui ne sont pas toujours conformes a la nature, 1’on a cri qu’il etoit
important de s’assurer des résultats par de nouvelles experiences que 1’on a tenté et
que d’autres pourront perfectionner.

Pour y parvenir on a fait un modele du Pont Fouchart sur une échelle de 14
lignes par toise, exactement conforme aux dimensions du project: on a retranché les
ornemens des tétes du pont a fin de rendre les éfféts plus uniformes; de sorte que
I’élévation resemble & une coupe du dit pont, prise sur la longueur, a la quelle on a
donné, suivant I’échelle, une épaisseur égale de 19 pieds 26 pouces: Ce modele est
fait en pierre tendre de Tuffeau autrement dit Bourré: on a choisi cette pierre pour
le modele de préference a celle de Champigny, tant parce qu’elle est plus facile a
tailler, que parce qu’elle est plus homogene, surtout en petit volume; et comme il
n’est question que d’établir des rapports, on pourra également les appliquer ensuite
a toute nature de pierre.

Nota. Il est facile de reconnoitre que les voites dont est question agissent
differemment sur les culées, suivant que la portion d’arc de cercle contient un plus
grand ou un moindre nombre de dégres. Dans le cas dont il s’agit ici, les voites sont
décrites a I’intrados par un rayon de 108 pieds, comprenant un arc de 44 degrés 42
minutes; ce qui donne a la corde mesurée a la naissance 82 pieds 1 pouce 6 lignes,
en égard au talud des pie-droits des piles et culées; par ce moyen la montée de 1’arc
se trouve de 8 pieds, 1 pouce, 4 lignes; et le developpement du dit arc 84 pieds, 3
pouces, 9 lignes, 10 points, suivant le calcul. Pour faire les experiences cy apres,
les voutes sont posées sur des cintres que 1’on leve ou que I’on baisse a volonté, et
de facon a causer aux vofites le moins de mouvement qu’il est possible, cy [p. 83]
décintrant. Les figures sont faites sur une échelle qui est le tiers de celle du modele.

Prémiere Experience

On suppose une volite des dimensions susdites, soutenue, d’une part par une culée
de 24 pieds d’epaisseur au dessus des retraites; et de I’autre par une autre culée de 18
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pieds, 6 pouces d’epaisseur au dessus des mémes retraites, posée sur des cintres, qui
sont disposés pour s’abaisser ou se relever a volonté; toutes les parties de la vofite
dans le modele pesoient ensemble 4 livres 6 onces. On suppose aussi les culées
faites d’une seule piece et homogenes.

Effets

Lors qu’on abaisse les cintres la voute se soutient: la culée de 18 pieds, 6 pouces
d’épaisseur au dessus des retraites suffit pour I’équilibre mais 3 ou 4 onces de charge
sur son milieu; c’est a dire environ la 20e partie de son poids, la font écrouler; et
elle prend, en écroulant la figure que 1’on voit. On a éprouvé qu’une culée d’un pied
moins épaisse ne pouvoit soutenir 1’équilibre.

On voit, en observant I’éffet, que 1’éffort de la volite se partageant sur les deux
culées, la portion de vofite qui agit contre la culée AEB, la pousse dans la direction
EB, que le mouvement se faisant a lors au tour du point A, I’effort de la volte a pour
bras le levier AD determiné par la distance de la direction du centre de gravité de la
culée, au point d’appuy A. La quelle hypothése a été employée, par divers auteurs,
pour base de la théorie, et des calculs qu’ils ont donnés; mais il faut, pour ce cas
que la culée puisse €tre supposée d’une seule piece sans des unions et 1’on verra
par la suite que les éfféts sont fort differents quand les culées sont composées d’une
grande quantité de parties.

Si I’on avoit donné 21 pieds, 6 pouces d’épaisseur au dessus [p. 84] des retraites
a la culée la plus foible, toujours supposée d’une seule piece; et si on I’empéchoit
de glisser sur la platte-forme, a lors la volite pourroit porter sur son milieu 19 onces,
avant de renverser; mais elle a de la peine a resister a la poussée, sans glisser sur
la platte-forme; de sorte que 1’éffort de la volite agit dans ce cas, plus fortement
pour faire glisser cette culée, que pour la renverser. Si la méme culée avoit 24 pieds
d’épaisseur, la volite porteroit, avant d’écrouler 1 Livre 8 onces, et alors la culée ne
renverseroit pas; mais glisseroit sur la platte-forme.

Nous avons supposé dans I’experience précedente que les culées etoient faites
d’un seul morceau, ce qui est contraire & 1’état des choses: on doit les regarder
au contraire, comme composées d’assises horizontales. Il est bien vray que les
assises etant scellées avec mortier, elles ont entr’elles une adhésion qui augmente
par laps de tems; mais les mortiers sont longs a secher dans I’interieur des grosses
maconneries, et quoique la consistance du bon mortier augmente jusqu’a devenir
plus dure que la pierre; il faut des siécles pour qu’ils acquierent cette dureté.
Tout le monde sait aujourd’huy que c’est le tems qui a donné de la réputation
au mortier des anciens Romains qui n’employient pas d’autres élemens que nous;
C’est pour quoi, si I’on a tant de facilité a démolir les grosses maconneries faites
avec le meilleur mortier, lors qu’elles n’ont que deux ou trois ans; s’il est vray,
comme on I’assure, que I’on trouve encore alors dans le milieu des grosses masses,
des mortiers humides; peut étre paroitra-t’il prudent dans le calcul, d’avoir peu
d’égard a 1’adhésion des mortiers dans la resistance des culées contre la poussée
des voltes: vii, d’ailleurs, qu’il reste une autre consideration qui peut compenser ce
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que I’on néglige sur 1’adhérence des mortiers: c’est que nous avons supposé dans nos
Experiences, [p. 85] que les culées etoient homogenes avec les voiites; cependant,
on fait le corps entier des voites en pierre de taille dure tandis qu’il n’y a que les
parements des culées qui soyent pareillement en pierre-de-taille; le reste devant étre
fait en fort libage et moélon qui laisse beaucoup plus de vuide pour le mortier;
il est évident que ces derniers especes de maconneries pesent moins que celle en
pierre de taille; et dans ce cas, la resistance de la culée se trouveroit au dessous de
I’éxperience, sans 1’adhésion des mortiers que 1’on a négligé.

On ajoutera encore que le moment qui suit le décintrement, en étant toujours
celui de la plus grande poussée des voites, son éffet doit diminuer de jour en jour,
a mesure que les mortiers prennent de la consistance; de sorte, qu’apres des siecles,
lorsque le mortier aura acquis la dureté de la pierre, une vofite en plein cintre
pourroit étre considerée comme formée d’un seul morceau, et sa poussée reduite
arien.

Mais, comme il est question ici, de considerer 1’éffét de la poussée des arcs de
cercle, dans le moment le plus désavantageux on va suivre les éffets des experiences
Cy apres.

Deuxiéme Experience

La méme volite que dessus, posée sur les cintres est appuyée d’une part par une culée
de 24 pieds d’épaisseur au dessus des retraites, faite d’un seul morceau; de 1’autre
part, soutenue par une culée de 36 pieds d’épaisseur de méme au dessus des retraites,
faite de trois morceaux; savoir, une piece inferieure, coupée horizontalement, a 12
pieds 6 pouces au dessus des dites rétraittes; ensuite une assise horizontale de [p. 86]
deux pieds; et en fin un morceau superieur de dix pieds de hauteur, terminé de méme
horizontalement, et qui peut équivaloir a 8 & 9 assises contre les quelles la voiite

s’appuye.

Efféts

Aussitdt le décintrement, la culée de 24 pieds reste fixe, et la partie superieure de
la culée de 36 pieds glisse horizontalement, et la voiite écroule en prenant la forme
decrite par la figure.

Nota. Soit que la partie OB soit d’une seule piéce, ou soit composée de plusieurs
assises horizontales 1’éffét est le méme: et lorsque la partie superieure glisse les
assises inferieures ne font aucune mouvement.
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Troisiéme Experience

On suppose la méme vofite, posée sur les cintres, appuyée d’une part, par une culée
de 32 pieds au dessus des retraites d’un seul morceau, servant de point fixe: Et de
I’autre part, par une culée de 32 pieds, composée de 4 piéces, dont 3 sont en coupe.

Efféts

Apres le décintrement, la culée de plusieurs morceaux resiste ainsi que celle d’une
piece; et la voite se soutient: elle porte 9 onces, sans tomber; c’est a dire, le 8°. de
son propre poids; et elle n’écroule qu’avec 10 onces.

La figure 3 fais voir 1’éffet, lors de I’écroulement.

Quatriéme Experience

La méme vofite etant sur les cintres, on suppose d’une part une culée de 36 pieds
au dessus des retraites, d’un seul morceau, [p. 87]servant de point fixe: et de I’autre
une culée de 65 pieds d’épaisseur mesurés de méme au dessus des retraites; mais
formée de 4 morceaux, suivant la figure ou I’on voit que les deux parties superieures
ont alors ensemble 62 pieds 6 pouces de longueur, reduite.

Prémier Effet

Au moment ou I’on commence le décintrement, 1’éffort de la votite pressant le joint
ef dans la direction de AO, la pression peut se decomposer dans les deux forces OD
et BD; ou la force BD verticale est detruite par le plan superieur: et la force BD,
horizontale, située dans la direction du centre de gravité des portions superieures
de la culée, tend a les faire glisser: En fin se fait, au prémier moment, un petit
mouvement: la cléf baisse un peu, le joint s’oeuvre en f; et la volite ne presse plus
qu’en E; et comme elle a alors moins d’avantage pour continuer a faire glisser les
parties superieures, elle s’arréte.

Deuxi¢me Effet

On achéve la décintrement, et la volite se soutient; mais aussitdot qu’on la charge de
4 2 9 onces, elle écroule conformement a la figure.
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Cinquiéme Experience

La méme voiite posée sur les cintres et appuyée d’une part contre un culée de 36
pieds d’épaisseur au dessus de retraites, d’un seul morceau, servant de point fixe: Et
de I’autre par une culée aussi, de 36 pieds; mais formée de 5 morceaux

Effét Prémier

Apres le décintrement, la voiite se soutient: on la charge [p. 88] de plusieurs petits
poids successivement, et elle porte 14 onces; c’est a dire le cinquiéme de son poids:
Ensuite la partie de derriere glisse; et la vofite s’écroule, suivant 1’éffet décrit dans
la figure.

Nota. Il faut éviter de faire ces Experiences sur des planches nouvellement
corroyées et polies au Rabeau. Il faudroit méme, a fin que les circonstances du
Frottement fussent semblables a I’Experience cy dessus, ou I’on a fait glisser une
portion de culée, que dans le cas present la culée glissat sur de la pierre; néanmoins
on s’est contente de faire cette cinquieme Experience, sur une vieille table de niveau;
mais dont la surface etoit médiocrement unie.

Deuxi¢me Effét

On a mis derriere la culée faite de plusieurs piéces, un point fixe capable de
I’empécher de glisser sur la platte forme sans nuire a son renversement: Et apres
avoir décintré, on a chargé la volite de plusieurs poids; et elle a porté, avant
d’écrouler 3 livres 6 onces: c’est a dire, une charge de plus de trois quarts de son
poids.

Sixiéme Experience

N

On suppose deux voutes semblables a celle cy dessus, separées par une pile,
des dimensions sus dites de projet. Les deux vofites posées sur les cintres, sont
appuyées I'une contre un culée de 72 pieds d’épaisseur, en six morceaux, posés
horizontalement: Et I’autre, contre une culée de 36 pieds composée, comme dans
la précedente experience de cinq morceaux; mais en liberté de glisser sur la Platte-
forme.
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Prémier Effet

On baisse ensemble les cintres des deux volites: et elles se soutiennent: ensuite on
charge ensemble ces deux volites, avec des petits poids égaux: on met d’abord 4
onces sur le milieu de chaque vofite; puis on ajoute deux onces sur chacune; Et les
[p. 89] voiites sont en équilibre et prétes a écrouler.

Deuxi¢me Effet

On ajoute une once sur chaque voite; ce qui fait en total 14 onces sur les deux
voltes: alors la partie superieure de la culée de 72 pieds glisse; et une des vofites
s’écroule: Et la voiite qui repond a la culée en coupe reste en place.

Nota 1. Le poids de la portion glissante etoit d’environ 6 livres: et la moitié de la
voiite pesoit 2 livres, 3 onces.

Nota 2. Il est évident que, si les cintres, apres 1’écroulement n’avoient pas appuyé
les morceaux de la voite écroulée qui butoient encore contre la pile elle n’auroit
pU, seule, en soutenir la poussée.

On voit aussi que, dans I’hypothese dont il s’agit une culée de 36 pieds dont
les parties sont en coupe; resiste plus qu’une culée de 72 pieds dont les assises
sont horizontales, quoiqu’on ait pris le cas la plus désavantageux qui est celui ou
la culée de 36 pieds a la liberté de glisser sur la platte-forme; néanmoins, on ne
peut disconvenir qu’un modele n’ait plus de facilité a glisser sur une table, qu’un
culée sur la platte-forme, toutes considerations faites et I’on a vii cy dessus qu’en
I’empechant de glisser, la culée en coupe portoit la voiite avec une charge de 54
onces sur son milieu.

On croit devoir prévenir que toutes les experiences cy dessus ont été faites et
repetées souvent devant plusieurs personnes, et notamment devant M. De Voglie,
Messr. Le Grand et M.Benoit, éleves; ainsi que plusieurs entrepreneurs des Ponts
et Chaussées; et que les resultdts ont été les mémes, ou avec des differences tres
petites.

On avoit médité, pour completter les observations, dont les cas cy dessus,
paroissent susceptibles, d’entreprendre dans un ordre déterminé des experiences que
I’on auroit suivi pendant quelques années dans un ordre détermine et qui auroient pd
par la suite étre continuées [p. 90] par quelques autres qui y auroient pris le méme
interét.

Pour resumer, on voit par les resultat des Experiences cy dessus, que les vofites
faites d’une portion de cercle, ont une action horizontale trés considerable contre les
culées; et qu’en détournant cette action, et en la dirigeant vers la platte forme, on
oppose une masse plus considerable a 1’action: et I’on augmente, la resistance des
culées; et qu’il y auroit aussi a gagner en empechant les assises de glisser.

La culée du Pont-Fouchard, a Tours, a trente six pieds d’épaisseur au dessus des
retraites, et avec les contreforts ajoutés par I’avis de M. Perronet, de 42 pieds, et les
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assises de la voiite doivent étre prolongées en coupe dans I’interieur des culées, sur
douze pieds de developpement, suivant le dévis; ce qui les fait arriver a peu pres
au centre de gravité des dites culées; moyenant quoy, I’on se croit suffisamment
authorisé a établir, que ces culées resisteront avec toute leurs masse, et seront plus
que suffisantes pour soutenir la poussée des vofites de ce Pont.
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Statics of Historic Masonry Constructions:
An Essay

Mario Como

Abstract 1 feel honoured to present the findings published in my recent book
Statica delle Costruzioni Storiche in Muratura to the Association Edoardo Ben-
venuto. I like to add that, during the phase of preparation for this present essay,
the English edition of the book, Statics of Historic Masonry Constructions, has
also been published by Springer. My research took shape gradually, during thirty
years of research, professional experience and teaching. The book firstly gives
fundamentals of statics of the masonry solid from its mathematical groundings and
then applies them to the study of the static behaviour of arches, piers and vaults.
Further, combining engineering and architecture and through an interdisciplinary
approach, my research highlights the deep connections existing between statics and
architecture and investigates the static behaviour of many historic monuments, as
the Pantheon, the Colosseum, the domes of S. Maria del Fiore in Florence and of
St. Peter in Rome, the Tower of Pisa, the Gothic cathedrals etc. In the end the book
considers the behaviour of masonry buildings under seismic actions. Here I will
discuss the adopted hypotheses and some key passages of the main issues involved.

Keywords Strength and deformability of masonry materials ¢ Deformation and
equilibrium of masonry solids ¢ Static behaviour of arches and vaults

1 Special Features of Masonry Behaviour

Under a given loading path a masonry structure can reach a collapse condition solely
due to loss of equilibrium, that is to say, in the absence of any material failure. Such
a condition, due to the very low—near zero—material tensile strength, can thus arise
even in masonry with infinite compression strength. Masonry structures can suffer,
in fact, cracks or detachments that may in turn generate displacement fields, called
mechanisms, which develop without any internal opposition from the material. So,
as soon as the pushing loads begin to exceed the action of the resistant loads
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along one of these mechanisms, the structure fails. Moreover, if a small settlement
occurs at one of the external constraints of a masonry structure, it freely follows
the settlement, maintaining constant its stresses and constraint reactions. It is thus
easy to understand how the presence of a negligible tensile strength can disrupt
the behaviour of structures as compared to the common elastic ones. These are the
essentials of the masonry behaviour, fully realized by ancient builders and which
have shaped the course of architecture from the origins up to the nineteenth century.

2 Heyman Assumptions

The constitutive assumptions that control the masonry behaviour, discussed in depth
in Como (2010, 2013), were originally formulated by Heyman (1966) and are as
follows:

(i) masonry is incapable of withstanding tensions;
(ii) stresses are so low that masonry has effectively an unlimited compressive
strength;
(iii) shear strains cannot occur

The other assumption: elastic strains are negligible, was not directly expressed
by Heyman but constantly considered.

The foregoing assumptions turn out to be very clear if we refer to the elementary
resistant cell of the masonry structure, represented by two idealized rigid masonry
bricks compressed one against the other by the stress vector X, whose components
are the more or less eccentric axial load N and the shear force T (Fig. 1). The two
rigid bricks of the unit resistant cell cannot deform internally, but they can detach
from each other. A crack can occur in the cell.

The first two of Heyman’s assumptions involve stresses; the last one strains. The
first and the second assumptions are the most important. The third assumption can
be considered a consequence of the first two. We can make reference in fact to the
Coulomb criterion (1776). In this framework the ratio between compression and
tensile strengths o, and o, can be expressed in the following form:

O 1+ sin¢
0, l—sing

Fig. 1 The ideal resistant
masonry cell and the
corresponding components of
the stress vector X
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where ¢ is the angle of the internal friction. By gradually reducing the ratio o,,/0 .,
at the limit, we obtain
Oy

g
— > 00 => ¢ > —
o 2

The internal friction strength, depending on tg¢, becomes unbounded. The
first two Heyman assumptions thus imply unbounded sliding strength (Como and
Grimaldi 1985). This result will be considered further on.

Following the above assumptions, Statics of masonry constructions moves
immediately towards the Limit Analysis. We remark that according to the above
assumptions no local failures in the masonry structures are considered.

3 Extension of Heyman Assumptions to Masonry Continuum

A lack of knowledge reveals, on the other hand, as soon as the behaviour of the
general masonry solid is inquired. A vast number of researches spread to fill this
gap. In-depth studies into the behaviour of elastic no-tension bodies have been
conducted by many authors, among whose works I recall Di Pasquale (1984), Del
Piero (1989), Lucchesi et al. (2008), Romano and Romano (1985), Romano and
Sacco (1984), Baratta (1999), Angelillo et al. (2010), Trovalusci and Masiani (2005)
and Bacigalupo and Gambarotta (2010). All have addressed the general problem
of the elastic equilibrium of no-tension bodies and numerous, noteworthy stress
solutions have been provided (Lucchesi et al. 2008). Nevertheless, the much more
complex goal of solutions expressed in terms of displacement and strain fields
remains still today substantially unsolved. These difficulties stem from the fact
that the no-tension elastic model cannot easily account for the presence of shear
strains. In order to overcome these difficulties (Como 2010, 2013) assumes the
rigid-in-compression no-tension material and aims to extend the Heyman model
to the masonry continuum, on the wake of some previous results presented in Como
(1992). This extension, which allows to go into the equilibrium of the masonry
solid with a suitable mathematical formulation, wants also to pay homage to the
outstanding description of the behaviour of masonry constructions given by Heyman
in the far 1966. I will outline its main points of this extension in what follows.

A masonry solid can be considered an assemblage of rigid particles held
together by the compressive stresses produced by loads. The small size of the
stones compared to the dimensions of the body enables it to be considered a
continuous body instead of a discrete system of many individual particles. When
the compression stresses that held stones together cancel out in some regions of the
masonry solid, it can get deformed. Cracks can thus occur in the masonry mass: they
represent discontinuities or detachments of the displacement fields u(P), describing
the deformation of the body. The research of compatibility conditions that the
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functions u(P), called mechanisms, have to satisfy to describe the deformation of
the solid, is then tackled in Como (2010, 2013).

The definition of the impenetrability condition is the starting point: it requires
that the displacement function u(P) cannot produce any contraction between points
connected by segments entirely contained within the body. Thus, if (P;, P») is
such a pair of points in €2, the region occupied by the body, and (Q;, Q>) is the
corresponding pair after the transformation u(P), we have

d(Q1,02) = d(P1,P>) (N

where d(Q;, O>) denotes the distance of the segment connecting the points Q;, 0>
(Como 1992) (Fig. 2). According to this condition no internal sliding can occur.
Impenetrability condition (1) in a different form still represents both the assumptions
(i) no tension, and (ii) the infinite compression strength.

In short, masonry material can only be widened or opened. Thus, the relative
displacement between a pair of points located across the line of a crack will occur
only along the direction normal to the crack. Let us consider the line f of the crack
and its two edges f~ and fT (Fig. 3). We choose the point P~ on the edge f~ and
P* on the other edge f of the crack. These points are obtained by intersecting f~
and f* with the direction of the unit vector n~, located along the outward normal to
f~ and passing through P~. Cracks can thus open only along the direction of n™ (or
of n*). We can thus define, for instance, the crack opening vector or the detachment

Fig. 2 The impenetrability

condition
friagc.k3 The opening of a u(P- ) u(P+ :
R e [U(P )—u(P )]
PP o

A
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vector as follows:
A" u(P) =[u(Pt) —u®P)]n",
with
[wPT)—uP)] 0~ =u(Pt)—u(P)>0

and where u (P) and u (P™) are the scalar values of u (P*) and u (P™). This is
the first local kinematical compatibility condition to be satisfied by the mechanism
displacement u(P). Consequently, we can define the scalar crack opening by means
of the positive quantity

A"DuP) =u(P)—u®P7) > 0. ()

The stress vector is null along the crack. From this result other kinematical
compatibility conditions follow. A displacement field u(P) satisfying all these
kinematical conditions, defined in detail in Como (2010, 2013), represents a mech-
anism and M is the set of all the mechanisms. Likewise, other local compatibility
conditions involving stresses and loads are also given.

4 The Principle of Virtual Work for Masonry Bodies

An important topic tackled in Como (2010, 2013) is the definition of the admissible
equilibrium state for the masonry solid. Developing a general equilibrium analysis
of masonry bodies is a very difficult task due to the discontinuities present in the
corresponding displacement functions u(P). The idea of Vol’pert and Hujiadev’s
(1985) for the study of discontinuous functions of including the set of all discon-
tinuity points within the body’s boundary, turns out to be quite fruitful. Following
this suggestion and in step with Como (1992), we can consider the set

I (u)

of all the points of discontinuities, that is, the set of all the cracks, each with its two
edges, for any mechanism u(P) of the masonry body. This set becomes a new part of
the boundary of the body, generated by the cracks associated to u(P). Consequently,
we can define, the free cracks region Q2(u), associated to mechanism u(P)

Q@ =Q/T ()

Only in this region Q2(u) will the displacement fields u(P) be represented by
regular functions, for instance, continuous with their first derivatives, so that strains



54 M. Como

¥

Fig. 4 The boundary of the masonry body and the new boundary of the cracked body correspond-
ing to mechanism u

€(P) can be defined in €2(u). The new boundary of the cracked body, corresponding
to the mechanism displacement u(P), is thus represented as

0Q ) =0QUT (u)

As per customary representations, the left-hand scheme in Fig. 4 shows the
boundary of the masonry body crossed by the crack f; the right-hand scheme instead
shows the boundary 92 (u) that includes the two edges of the crack f. We can cover
the entire boundary d<2 (u) by circling the region €2(u), for instance, in the counter
clockwise direction, that is, with region €2(u) always remaining on the left.

The equilibrium of the body is governed by the principle of virtual work. This
principle will take a particular form for the compressionally rigid no-tension bodies,
analysed in Como (2010, 2012, 2013) along the lines previously set forth in Como
(1992).

Let us consider a masonry body under the action of the loads p in an admissible
equilibrium state. The body occupies the region €2, whose boundary is denoted as
92, which we assume to be sufficiently regular. The body is loaded by mass and
surface loadings p(2) and p. The loaded part of the body surface <2 is 9€2,.

Let u(P) € M be a mechanism field, representing a kinematically admissible
virtual displacement of the body. Cracks will arise during the development of the
virtual mechanism 8u(P) and I"(du) will be the region representing the cracks’
boundaries. At any point P within the region Q(8u), the stress field o and the
body forces p will satisfy the associated compatibility inequalities and the following
internal equilibrium equation:

oijj+pi=0 3)

Now let dV be a generic volume element around P in 2(8u). The virtual work
done to displace this element is

(O','jJ + p,) 8u,dV
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Fig. 5 The boundary of the arch and of the cracked arch with its new boundary associated to the
virtual mechanism 8u

According to the equilibrium equation (3), this work vanishes. Integration of (9)
over the volume Q2(u) thus yields

f (04j + pi) SuidV = 0. (4)
Q(Su)

Applying the Gauss-Green theorem (Fig. 5), together with some tensor calcula-
tions and the previous specifications, enables us to obtain

[ yspegav = [ {Psuds+ | piswav, )
Q(Su) 39 (Su) Q(Su)

where n is the unit vector along the outward normal to the crack surface, Fig. 5a
shows a masonry arch in an admissible equilibrium state under the action of loads p
and internal stress ¢ . Figure 5b also shows the displacement field u with hinges A,
B, C and D, together with the corresponding internal cracks BB’ and CC’. Figure 5a,
b also show:

— the cracks’ boundaries I'(§u);

— the region © (§u) = Q/T" (§u) lacking cracks;

— the overall boundary of the body, including the crack boundaries 92 (Su) =
dQ UT (fu).

The entire boundary can also be specified by the union of the boundaries I"(fu),
092, and 922,

The internal work can now be written in a more explicit form. In fact, according
to (5), we have

f UijJ'SSijdV = f tfn)SuidS+ frfn)SuidS+ fpf")8uid5 + f piSI/lidV
Q(6u) T'(§u) 092, 0, Q(6u)

(6)
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To work out the first integral in the second member of (6), by moving around the
whole contour of the body, the virtual work of the interactions tl(.“) can be evaluated
along each of the two edges of the cracks (Fig. 5b). For the sake of simplicity, we
can refer to a single crack alone and write

I (Su) = ' (Su) U T (Su),

where I"{(8u) and I",(6u) are the two equal surfaces representing the two edges of
the crack. Evaluating the first integral in the second member of (6) thus gives

_ +
[ dsuds = [ &5 @Eyas+ [ 4" )8ui(P+)dS. )
T (8u) T1(8u) T (8u)

On the other hand, using expression (2) for the crack opening A" u(P), we
have

Su; (P7) = 8u; (P¥) — A" $ui(P): ®)
Substituting (8) into (7) gives

[ d6uas = [ 4" su (PHyas— [ 4 A su(P)ds

T'(6u) Iy (5) I') (8)
+
+ o )8u,~(P+)dS.
s 60

Furthermore, by taking into account that
- +
tl(n ) _ti(n ),
we get

[ isuas =~ [ " su (Pryas— [ AT su(pyds

T (8u) T1(8u) T2 (8u)
+
+ [ A" su(p)as.
2 (8u)
On the other hand,

[ s, (pryas = | ti(n+)8ui<P+)dS.

T1(8u) T2 (8u)
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In fact, the integral is evaluated on the same surface because I'{(du) and I";(6u) are
equal. Hence

ftf")SuidSz - f 1" A sy,
T'(8u) T2 (8u)
or
+ -
[ d™suas = [ ") A suds
T'(5u) Ty (8u)
Summing up the work along all the crack surfaces, we get the virtual work equation
[ oyssesav =3 [ 1" A 5uas + j K5uds + [ p®suds
Q(8u) k rk(gu) 9,

+ j piuidV )
Q(Su)

With the following definitions:

oD a5l =3 RN T j ™ §u,ds:

k Fk (8u)

(p, Su) fpl(“)Su dS + j pidu;dV; (o, 8e) j chSeUdV
92, Q(6u) Q(8u)

condition (9) becomes
(0,88) = {t(n*), A<n’>5u} 4 (r,8u) + (p.du)  VéueM  (10)
together with the associated compatibility conditions
(0,8e) < 0 {t("+), A<n*>5u} >0 (r,8u) >0 (11)

where the symbol in parentheses is the integral of the product of stress tensors,
stress vectors and reactions with the corresponding virtual strains or detachments.
Vice versa, working back from eq. (10), we arrive at equation (39). The two systems
of forces and deformations, respectively statically and kinematically admissible, are
together connected by the virtual work equation (10) (Fig. 6). Conditions (10) and
(11) are necessary and sufficient for the existence of the admissible equilibrium
between external and internal forces.
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A™su

l
4 du; !
ou;

Fig. 6 The two systems of forces and deformations, respectively statically and kinematically
compatible. connected together by the virtual work equation

Comparing the current formulation of the same principle for the linear elastic
solids with this one for no-tension bodies, the difference is that here the work of
the stress vectors on the virtual detachments ASu must be added, as must also be
associated the compatibility conditions (16).

Many relevant properties originate from (10) and (11): particularly the nonex-
istence of self-equilibrated stresses. In this case we speak of deformable masonry
structures that can be considered statically determinate systems.

In Como (2010, 2013) I pay special attention to the passage from the general
masonry body to the common masonry structures, generally made by assembling
piers and arches. Como (2010, 2013) shows that all the foregoing conditions
governing the admissible equilibrium of masonry bodies take simpler forms when
referred to a one-dimensional structure. For one-dimensional systems distributions
of stretching strains in the voussoirs lead to displacements negligible with respect
to those produced by relative rotations at hinges. In defining the corresponding
mechanisms, it is thus possible to consider only detachments A®™ )u arising among
voussoirs, where hinges can develop, and consequently neglect any strain & that
may spread into the voussoirs. We can also assume that the external constraints are
fixed. Hence, in this simple case neither the work of the reactions r, nor the work of
stresses ¢ on the strains €, distributed internally in the voussoirs, will appear in the
virtual work equation. With these restrictions, Eq. (10) takes the simpler form

{t("*), A(‘r)(Su} f(pSu)=0 VéueM (10)

associated to the admissibility condition
{t(“ﬂ, A(‘r)Su} > 0. (1)
With reference, for instance, to a masonry arch, the forces acting on the lateral
sections of a small element of the arch are equal and opposite to the resultant of the

stress vectors, (™) and t®7), acting on the anterior sections (Fig. 7). Consequently,
if the work of t(") on the detachment A® ) §u is non-negative, the work of the
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Fig. 7 Actions and reactions
inside the masonry arch R{/

t" (P) %&x £ (P")

equal and opposite actions on the detachments themselves will be non-positive. The
resultant of forces t(®) or t@7) acting on the transverse sections delimiting the
detachment, where a hinge is formed, can be decomposed into the components axial
force N, bending moment M and shear T of the resultant vector X.

At the same time, the detachments, A® )§u, can, in turn, be expressed in terms of
the virtual deformation vector, E(6u), whose components are the axial displacement
8A and the relative rotation §¢. In brief we can write

{t(“+), A<n‘>3u} — —(Z,E(Su)),
and the equation of virtual work (10) becomes
(p,éu) = (X,E(Su)) Véue M, (10"
and the admissibility conditions on the stresses are
(X,E(6u)) <0. 11”)

The virtual work equation (10”) thus takes the typical simple form.

Although conditions (10) and (11) or (10”) and (11”), are necessary and
sufficient to guarantee the existence of admissible equilibrium, they must be satisfied
by both the loads and the internal stresses. However, these latter may be a priori
unknown. It is on the other hand possible to prove that the variational inequality on
loads p alone

(p,du) <0, Véue M (12)

is necessary and sufficient to guarantee the existence of the admissible equilibrium
state. It should be noted that the mechanisms 8u represent the various deformation
modes of the body. Inequality (12) thus simply means that the body is in an
admissible equilibrium state under loads p iff the work of these loads p is not
positive along any possible deformation of the body. Necessity follows immediately
from (10) and (11). In the context of elastic no-tension models, proofs of the
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sufficiency of condition (12) have been furnished in Romano and Romano (1985)
and Romano and Sacco (1984). A simple proof, in the framework of the rigid no-
tension model, was presented in Como (1992). The main lines of this latter proof,
analysed in depth in Como (2010, 2013), are the following.

If the variational inequality (12) was only necessary, but insufficient, it could be
also satisfied by unsustainable loads p. Such a situation is however impossible. It is
in fact shown that any load p that is unsustainable by the body and that consequently
sets the body in motion, does positive work on displacement v along which the body
begins to move. This contradiction with the assumption proves the statement.

S Weight and Geometry: Essential Resources of Masonry
Strength

Loads can be considered composed as

p=g+Aq (13)

where g and q are respectively the dead and live loads and A a load multiplier.
Properties of these loads differ considerably. Live loads q, affected by the loading
parameter A, can exert a pushing action along some mechanism. As a rule, the
weight, g, on the contrary, represents the resistant load for a masonry structure.
This statement is frequently stressed in Como (2010, 2013). Consequently, recalling
condition (12), the structure will certainly be safe under the action of its own weight
g if the following condition is satisfied:

(g.v) <0, VveM (14)

The weight will always oppose any deformation of a safe masonry structure.
For a safe arch, for instance, the pressure line corresponding to the weight alone
will always be contained within the arch: it can never touch the arch extrados or
intrados, at any section. The contribution to strength of the weight g comes by
virtue of the structure’s geometry. Masonry structures must be designed so that the
mechanisms produce vertical displacements in which lifting is always dominant,
thereby satisfying condition (14) for any mechanism. It is the geometry that ensures
that the structure’s weight counters the emergence of any mechanisms.

Weight and geometry represent the essential elements in the strength of masonry
structures. More precisely, it is the proportions among a structure’s various con-
stituent parts and the structure itself that define its geometry, irrespective of the
actual absolute dimensions. This aspect of the masonry behaviour is examined in
particular depth in Como (2013).
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6 Mechanism State

Como (2010, 2013) examines various admissible equilibrium states that occur in
a masonry body. Among them the mechanism state is the more relevant. In this
condition a structure at an admissible equilibrium under loads p can be freely
deformed along a given mechanism displacement ku,,, defined by an arbitrary, but
small, constant k. In such a state internal stresses and constraint reactions do not
counter the emergence of the mechanism. Consequently also the external loads p
also offer no opposition to the development of the mechanism displacement u,, and

(p,un) =0. (15)

7 Collapse State

Como (2013) also shows that the collapse state is a particular mechanism state.
Let us, in fact, consider a masonry structure under a loading path p(1), where A
is the loading parameter. According to (13), the loads p(4) will be made up of the
resistant component g, i.e., the dead loads, and of the pushing forces Aq. At some
stage of the loading process, when A attains a critical value A., the structure will
reach a mechanism state defined by the mechanism u.. The work done by the forces
p = g + A.q vanishes along the mechanism u,, which is to say

(g+2qu) = 0, A >0, u eM.
We admit that the live loads q push along u,, so that
(q.u;) > 0. (16)

Condition (16) evidences the presence of a pushing action by live loads q along
displacement u, the failure mechanism. Thus, as soon as the loading parameter A is
further increased beyond A., we have

(few ) =@w>o
Accordingly, condition (12), necessary and sufficient for the existence of an
admissible equilibrium state, is violated and the structure fails. At this collapse
state an exchange occurs from conditions of existence to those of non-existence of
the admissible equilibrium state. The development of the failure mechanism can be
represented by a sequence ku. of mechanisms of increasing amplitude. Collapse
thus occurs under constant loads, because by gradually increasing the constant
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k > 0, we consistently have
(g, ku.)+A.(q, ku,) =0, ku.eM, k>0

for any amplitude of mechanism ku.. Constant loads also imply constant stresses.
The failure mechanism thus develops under frozen loads and stresses. Como (2010,
2013) points out the extraordinary situation that occurs at the collapse. There is no
energy dissipation. Nevertheless, the masonry structure is able to maintain its limit
strength during the development of the failure mechanism, as occurs for a steel bar
upon yielding. Despite the lack of dissipation, the behaviour at collapse of masonry
structures is similar to that of ductile steel structures, as predicted by Limit Analysis.

8 The Theory of Proportionality in Architecture

Let us examine the two similar arches a and A in Fig. 8. Arch A, on the right, is k
times larger than the arch a, on the left; in other words, arch A is a k times magnified
copy of arch a. In the transverse direction, i.e., in the direction orthogonal to their
plane, the structures have the same width s. Each segment in structure A is thus k
times longer than the corresponding segment in structure a.

Let us now assume that structure a is stable under its own weight g, as defined
according to (14). Thus we have

N
(g.v) = Zgivi <0
1

for any mechanism v. The work (g,v) is evaluated considering the work of the
weight forces g; of the various voussoirs composing the arch on the corresponding

Fig. 8 Geometries of two similar arches and of the two corresponding mechanisms governed by
the dimension ratio k
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vertical displacements v; of the mechanism. Consequently the k£ magnified structure
A is thus also stable under its own weight. In fact, for any mechanism V correspond-
ing to v, we will have

N N
(G.V) =) _GVi=kK) gwi <0.
1 1

Thus, to conclude, if a structure under its own weight is stable, a k times
magnified copy will also be stable. The same outcome holds in a more general
sense. These results, proved in Como (2013) as a direct consequence of the essential
features of the masonry behaviour, were already known to architects of the past
and formed the basis for their fundamental rules of construction. As set down in
the theory of proportions by Andrea Palladio and Leon Battista Alberti, statics
of masonry structures is governed solely by their geometry and, consequently, by
their basic measurement, the modulus, irrespective of their absolute measurements.
Knowledge of the most suitable proportions among the various components of
a masonry structure, often jealously guarded by past masters, represented the
essence of the art of construction. These results arrived to us through centuries of
long experience, and are direct consequence of the unique, fundamental masonry
behaviour. This theory of proportions was strongly opposed by Galileo Galilei in
his Discorsi e dimostrazioni matematiche intorno a due nuove scienze (1638) by
means some sharp arguments involving the local states of stresses in the material but
not pertaining to the behaviour of masonry structures, behaviour only marginally
influenced by local stresses. The argument of the theory of proportions has been
also debated by other scholars (Heyman 1997; Huerta 2006; Di Pasquale 1996;
Benvenuto 1981, 1991; Baratta 1999). We observe that compressions increase in
the larger structure by increasing the ratio k, while the masonry strength remains
constant. Hence the proportionality rule holds as long as compression stresses
remain low. This is indeed all that it happens in masonry structures, as clearly shown
by Heyman (1997) and Huerta (2006).

9 Settlement State: The Minimum Thrust Theorems

The case that a mechanism state can be attained at a settlement state is frequently
met in Como (2010, 2013). This is another aspect of the masonry equilibrium. Let
us consider a masonry structure that is at a safe admissible equilibrium state at
the configuration C; under the actions of loads g. Inequality (14) thus holds. The
structure becomes now deformed as a consequence of a slight settlement occurring
at one of its external constraints. The structure deforms with the mechanism
displacement vy, due to this settlement. By way of example, consider the arch in
Fig. 9, which undergoes a slight increase in span due to settling.
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Fig. 9 The settled arch
o g \l\ \
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For sake of simplicity in what follows we will make reference to the case of one-
dimensional structures and, therefore, to the simpler formulation (10”) of the virtual
work equation. However, the internal stresses, represented by the vectors X having
components N, M and T, and the strain vectors E, with components A and ¢, for
sake of simplicity, will still be denoted by o and .

Let C; be the configuration taken on by the structure once the settlement has
occurred. By assuming that Cy is very near to C;, we can refer to the geometry
of the initial configuration C; when expressing the equilibrium equations. The
settlement mechanism, v, is the displacement field that moves the structure from
C; to C;. As the settlement occurs, the structure’s internal equilibrium shifts from
initial configuration C; to the displaced one Cy. Changes in the internal stresses and
constraint reactions will occur during the transition from C; to Cs, so that the initial
stress state o; is altered and becomes o

This internal stress state, o, which accounts for settlement vj, is statically
admissible and thus satisfies the inequality

(05,8 (6u)) <O.

Likewise, the settled constraint which, before the settling, produced the reaction
Wir, after the settling produces the new reaction

I“LSra

where r is a given force having the direction of reaction of the settled constraint and
M is the corresponding multiplier. In brief, during the development of the settlement
mechanism v; the structure will remain in a state of admissible equilibrium while
the stresses vary from o; to o, the corresponding pressure line shifts from ;to
and the reaction of the settled constraint changes from w;r to u,r. For instance, in
the case of the masonry arch that has undergone a slight increase in span, its pressure
line ¢ will pass through the hinges corresponding to mechanism v,.. Consequently,
no work will be done by the internal stresses o on the deformations corresponding
to v. The same occurs for any structure that is deformed by a mechanism and adapts
itself to settling. Thus, at the settlement state the following mechanism state holds

(05,8 (vy) =0. (17)
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We can release the structure by removing the settled constraint by applying the
reaction w,r to the eliminated constraint. The set of all the mechanisms of the
released structure is denoted by M. In the released structure at the settled state,
the applied loads are represented by both the weights g and the reactions p,r. Thus,
considering the released structure at the admissible settled equilibrium state, from
the virtual work equation (10”) we get

(g, 8u) + uy (r.8u) = (o, (Su)), VYéueM
which for §u = vy, according to (17), yields

(g, Vs) + s (r,v5) = 0.

Loads g perform positive work along the mechanism displacements v, while the
reaction yu,r of the released constraint opposes settling, so that

(g, vs) >0
and
Uy (r,vs) < 0. (18)

In spite of the settling that occurred, the work of the loads due to any mechanism
du is still the same as the work evaluated at the initial configuration C;, assuming that
displacements vy, are very small, as above stated, and that the changes in geometry
are consequently negligible. Thus, if at the initial state C;, the admissibility condition
(g, 0u) < 0, Vdéu € M is satisfied, the same condition will still be satisfied
by the new configuration C;. In this regard we meet Heyman’s statement: “if the
foundations of a stone structure are liable to small movements, such movements will
never, of themselves, promote the collapse of the structure” (Heyman 1966, p. 255).
Moreover, if settlement v, increases and becomes

kvg, k>1

the static arrangement of the structure will not change, and the internal stresses
will remain fixed at o . In short, the structure freely follows any increase in
the settlement, maintaining its configuration in admissible equilibrium. Settling
develops with frozen internal stresses o and constraint reactions, ur. The actual
degree of settling is difficult to quantify. Despite this uncertainty, the internal stress
state of the structure is, to the contrary, well-defined. No equilibrium loss will occur
during the settling. This is a peculiar aspect of masonry structures that can explain
the great durability and longevity of so many historic buildings.

How do we evaluate this stress state and the corresponding reaction of the settled
restraint? (Como 2013) shows that we have, in a reversed form, the static and the
kinematical theorems of the minimum thrust. The static theorem of the minimum
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thrust affirms that

u(e)=ps €S

i.e., the multiplier, u, of the settled thrust r is thus lower than all the statically
admissible multipliers p . This general finding (Como 1996, 1998) relates to the
particular property of the masonry arch that undergoes an increase in span due to
settling at its springings: such an arch is at the state of minimum thrust because its
pressure line corresponds to the minimum span and the maximum sag, as shown by
Heyman (1966).

Como (2010, 2013) examines specifically the settlement equilibrium from a
kinematical point of view. This last point is very interesting and produces new
approaches to tackle the problem of the static analysis of settled structures. The
actual settlement mechanism is unknown: for instance, for the case of the arch
of Fig. 9, we cannot know the position of the internal hinge of the settlement
mechanism. We only know that, during the development of the mechanism, loads g
will do positive work, while the work of the reaction of the settled constraint is, to
the contrary, negative. Let us consider any settlement mechanism

veM
of the released structure. The loads g will push along v and consequently
(g,v) > 0. (19)
We define the kinematic multiplier A of the reaction r of the settled constraint
as that multiplier able to ensure equilibrium of the structure along the assumed
settlement mechanism v, or, in other terms, such that the following condition holds

(g, V) + A(r,v) =0.

Reaction Ar(v) opposes the development of settling v, given that, by taking (18)
into account, we get

A{r,v) <O. (20)
The kinematical multiplier A(v) of reaction r is thus defined as

(&v) | i @1)
(r,v)

A(v) =—

With these definitions it is easy to prove that (Como 1996, 1998)

A(V)<pus VYveM. (22)
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For any settlement mechanism, v € M, the corresponding kinematic multiplier,
A (v eM ), can never be greater than the actual settlement multiplier p;. Thus pu; is

the maximum of all kinematic multipliers, A (v € M), for varying v in the set of all
settlement mechanisms M, or in other terms

11, = MAX (— (. V>) vell (23)
(r,v)

This result makes it possible to analyse the actual equilibrium states of structures
with a new easier approach than the static one, that make use of funicular polygons.

10 Actual Equilibrium States of Masonry Structures

Stress analysis of a masonry costruction, rigidly constrained to a rigid environment,
cannot be developed in the context of the rigid-in-compression no-tension model.
The admissible equilibrium equations alone are not enough to evaluate the internal
stresses, as such a problem is statically indeterminate. To this end, additional
equations are required: the compatibility equations, as in the case of elastic
structures. On the other hand, the assumption of constraints rigidly connected to a
rigid external environment is physically meaningless. A certain degree of settlement,
as a rule, occurs in the external constraints of the structure. The same deformation
of the supporting structures drives displacements of the structure placed above.

The presence of elastic strains in the analysis of settled structures is really
insignificant. As soon as the settlement starts, after a very negligible elastic stage,
the masonry structure transforms immediately into a mechanism. The same occurs
for the rigid in compression no tension structure. This aspect of the problem
is particularly studied in Como (2010, 2013). Useful information can thus be
obtained in the same context of the simple rigid no-tension model providing that
the deformability of the structure constraints is taken into account. A minimal
thrust state takes place. The degree of settling can be predicted only with difficulty.
Thankfully, the compatibility equations expressing the occurrence of settling do not
require defining the magnitude of the settlement, but only indication of the settled
constraints. According to this approach, the problem of the determination of the
actual stress state in masonry structures becomes statically determinate and Limit
Analysis can once again be fruitfully applied, as thoroughly shown in Como (2010,
2013).
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11 Minimum Thrust States in Masonry Domes: Application
of the Kinematical Approach

Useful applications of this last approach are described in Como (2010, 2013), as in
the study of the actual equilibrium states of arches, domes, cross and cloister vaults,
with particular attention to the more relevant cases in architecture.

With reference to domes, for instance, the occurrence of unavoidable deforma-
tions of their supporting structures yield the vanishing of hoop stresses and meridian
cracks, starting from the dome springings, will occur. The cracked dome tends to
open along a large band breaking up into slices and behaves as a set of independent
pairs of semi-arches leaning on each other. Predictably, cracking brings about a
profound change in the dome’s statics.

A small cap at the top of each slice will be subjected to the thrusting action
transmitted by the other slices, which will be transmitted all the way to the springing.
Figure 10 shows an approximate sketch of the pressure curve of a cracked hemi-
spherical dome. The dotted line shows the position of this curve, which inclines
towards the horizontal at the springing. The horizontal component of the reaction of
the supports represents the thrust S per unit length of the dome’s base circumference.
The thrust thus occurs in the passage of the stresses from the initial membrane state
to the no tension state.

The emergence of thrust in the dome represents the most consequential outcome
of meridian cracking in typical masonry round domes. Loaded by the dome’s thrust,
the sustaining structures, e.g., the drum or underlying piers, deform and splay. The
slices, no longer restrained from deforming by rings, bend under the loads and can
form mechanisms. The weight of a particularly heavy lantern, for example, could
even cause the dome to fail on cracking. Thrust yields a more or less relevant
further deformation of the dome supporting structures. The settled dome mobilizes
a thrust that it is the minimum from among all the thrusts S transmitted by statically
admissible pressure curves. The minimum thrust Syy;, can be obtained via the static,
as well as the kinematic approach. The static approach calls for tracing the statically
admissible funicular curves of the loads. In the settled state the pressure curve passes

Fig. 10 Rising thrust due to
meridian cracking
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Fig. 11 Minimum thrust evaluation according to the kinematic approach

through the extrados at the key section of the slices and then runs within their
interior, skimming over the intrados of the dome (Fig. 10). The kinematic approach
is dual with respect to the static one and is ruled by (21) and (23) given earlier.
In (23) (g,v) represents the work, undoubtedly positive, of the dead loads on the
vertical displacements of mechanism v, and (r, v) the work, undoubtedly negative,
performed by the thrust on the corresponding horizontal displacement. Figure 11
shows a generic dome mechanism produced by a base widening. In this mechanism
the position of the internal hinge K is unknown.

The set of all these kinematically admissible mechanisms is described by varying
the position of the hinge K between the springing and the key section of the
slice. Identifying the maximum of function A(v) by varying the position of hinge
K enables us to obtain the sought-for thrust. Many applications of this approach
are described in Como (2010, 2013). It is, in fact, a relatively simple matter to
apply the kinematic approach to evaluate the minimum thrust of masonry domes.
The settlement mechanisms are obtained releasing the slices by positioning hinges
to allow horizontal sliding of the dome at its springings. Hinges must thus be
positioned (Fig. 11):

— at the extrados, on the section linking the slice with the central closing ring
sustaining the lantern;

— at the intrados, at the haunches. The position of this hinge is unknown and is
indicated by the angle o (Fig. 11). Thus, the minimum thrust p,,;,S is evaluated
by seeking the maximum of the function

(g, v(0))

HminS = Max(S(—a)

by varying angle o along the intrados and where

8(0) =(h—Rsino) 0
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is the horizontal displacement of the slice at springing. According to the kine-
matic theorem the search for the minimum thrust thus translates into searching
for the maximum of the function

(g.v(9))
S = Max————"——
S (0) = Max G o) 0
by varying the angle o along the dome intrados. This approach has been applied
to study the statics of the domes of S. Maria del Fiore in Florence and of St.
Peter’s in Rome.

12 Book Contents

Como (2010, 2013) is divided into nine chapters, each of which begins with
historical notes and an introduction highlighting the main aspects of the topics
covered. The strength and deformability of masonry materials are addressed in
the first chapter. The second chapter deals with the deformation and equilibrium
of masonry solids. The third and fourth chapters examine the static behaviour of
the main basic masonry structures, such as arches and vaults. By way of example,
static analysis are conducted of a number of renowned examples from the world’s
architecture heritage, such as ancient Mycenaean domes, the Pantheon in Rome, the
large cross vaults of the Baths of Diocletian, and the domes of Santa Maria del Fiore
in Florence and Saint Peter’s in Rome. The fifth chapter turns to a detailed analysis
of the statics of the Colosseum in Rome and examines the reasons for its actual
state of damage. The sixth chapter describes and analyzes the statics of cantilevered
stairways, a typical element whose structural behaviour is still somewhat unknown.
Chapter seven then takes up the structural analysis of walls, piers and towers under
vertical loads. The stability of such structures is heavily affected by the non-linear
interactions between the destabilizing effects of the axial loads and masonry’s no-
tension response. The instability of towers, leaning towers in particular, is addressed
in a specific section of the chapter. In this regard, a detailed stability analysis is
conducted of the famous leaning Tower of Pisa, which has recently undergone a
successful restoration work. The eighth chapter then analyzes the statics of Gothic
cathedrals, with particular reference to analysis of their resistance to wind actions.
The 1,294 collapse of the Beauvais cathedral is also examined in depth. The last
chapter deals with the seismic behaviour of historic masonry buildings.

Como (2010, 2013) is addressed especially to researchers, engineers and archi-
tects operating in the field of masonry structures and of their consolidation and
restoration, as well as to students of civil engineering and architecture.



Statics of Historic Masonry Constructions: An Essay 71

References

Angelillo, M., Cardamone, L., & Fortunato, A. (2010). A new numerical model for masonry-like
structures. Journal of Mechanics of Materials and Structures, 5, 583-615.

Bacigalupo, A., & Gambarotta, L. (2010). Second-order computational homogenization of hetero-
geneous materials with periodic microstructure. ZAMM—Journal of Applied Mathematics and
Mechanics/Zeitschrift fiir Angewandte Mathematik und Mechanik, 90(10-11), 796-811.

Baratta, A. (1999). Scale Influence in the Static and Dynamic Behaviour of No-Tension Solids. In
J. Holnicki-Szulc & J. Rodellar (Eds.), Smart Structures. NATO Science Series (Vol. 65, pp.
9-18). Heidelberg: Springer.

Benvenuto, E. (1981). La scienza delle costruzioni e il suo sviluppo storico. Firenze: Sansoni.

Benvenuto, E. (1991). An Introduction to the History of Structural Mechanics, Part II, Vaulted
Structures and Elastic Systems. Berlin: Springer.

Como, M. (1992). On the Equilibrium and Collapse of Masonry Structures. Meccanica, 27(3),
185-194.

Como, M. (1996). Multiparameter loadings and settlements in masonry structures. In: Atti del
Convegno nazionale “La meccanica delle Murature tra teoria e Progetto”, Messina, Sett. 1996
(pp- 197-205). Bologna: Pitagora

Como, M. (1998). Minimum and maximum thrust states in Statics of ancient masonry buildings.
In A. Sinopoli (Ed.), Proceedings of the Second International Arch Bridge Conference, Venice,
Italy, 6-9 October 1998 (pp. 133-138). Rotterdam: Balkema.

Como, M. (2010). Statica delle Costruzioni Storiche in Muratura. Aracne: Roma.

Como, M. (2012). On the Statics of bodies made of compressionally rigid no tension materials.
In M. Frémond & F. Maceri (Eds.), Mechanics, Models and Methods in Civil Engineering (pp.
61-78). Berlin: Springer.

Como, M. (2013). Statics of Historic Masonry Constructions. Berlin: Springer.

Como, M., & Grimaldi, A. (1985). An unilateral Model for the Limit Analysis of Masonry Walls. In
G. Del Piero & F. Maceri (Eds.), International Congress On Unilateral Problems in Structural
Analysis, CISM Courses and Lectures (Vol. 288, pp. 25-45). Berlin: Springer.

Coulomb, C. (1776). Essai sur une application de régles de maximis et minimis a quelques
problemes de Statique, relatifs a 1’ Architecture. In: Mémoires de Mathématique et de Physique
présentés a I’Académie Royale des Sciences, par divers Savans, et liis dans les Assemblées,
année 1773 (pp. 343-382). 7. Paris.

Del Piero, G. (1989). Constitutive equation and compatibility of the external loads for linear elastic
masonry-like materials. Meccanica, 24(3), 150-162.

Di Pasquale, S. (1984). Statica dei solidi murari: teorie ed esperienze. In: Atti del Dipartimento di
Costruzioni. Firenze: Universita di Firenze.

Di Pasquale, S. (1996). L’Arte del Costruire, Tra conoscenza e scienza. Venezia: Marsilio.

Galilei, G. (1638). Discorsi e dimostrazioni matematiche intorno a due nuove scienze. Leyden:
Elzevir.

Heyman, J. (1966). The Stone Skeleton. International Journal of Solids and Structures, 2, 249—
279.

Heyman, J. (1997). The Stone Skeleton. Cambridge: Cambridge Press.

Huerta, S. (2006). Galileo was Wrong: The geometrical Design of Masonry Arches. Nexus Network
Journal, 8(2), 25-52.

Lucchesi, M., Padovani, C., Pasquinelli, G., & Zani, N. (2008). Masonry Constructions: Mechan-
ical Models and Numerical Applications. Lecture Notes in Applied and Computational
Mechanics (Vol. 39). Berlin: Springer.

Romano, G., & Romano, M. (1985). Elastostatics of structures with unilateral conditions on strains
and displacements. In: G. Del Piero & F. Maceri (Eds.), Unilateral problems in structural
analysis. Proceedings of the second meeting on unilateral problems in structural analysis,
Ravello, September 22-24, 1983 (Vol. 288, pp. 315-338). International Centre for Mechanical
Sciences. Vienna: Springer



72 M. Como

Romano, G., & Sacco, E. (1984). Sul calcolo di strutture murarie non resistenti a trazione. In: Azti
del VII Congresso Nazionale AIMETA, Trieste, 2-5 ottobre 1984.

Trovalusci, P., & Masiani, R. (2005). A multifield model for blocky materials base on multiscale
description. International Journal of Solids and Structures, 42(21-22), 5778-5794.

Vol'pert, A. 1., & Hudjaev, S. L. (1985). Analysis in Classes of Discontinuous Functions and
equations of Mathematical Physics. Netherland: Nijoff.



Equilibrium Analysis

Jacques Heyman

Abstract There are occasional opportunities for the design of masonry—of a
new vault, for example, or of a highway bridge. However, the structural analysis
of masonry is concerned in the main with the determination of the state of an
existing structure. Analysis is of great theoretical interest, but it is also of practical
importance. In repair work it may be necessary to replace a major structural
element, and it is clear that estimates must be made of the structural forces. Indeed,
the main objective of a structural analysis is the determination of such forces.
It is only rarely that deformations of a masonry structure need to be computed;
deformations arise, almost without exception, from displacements imposed by
movements of the environment (sinking of foundations, spread of abutments), and
such deformations, notably cracking, do not depend on the elastic properties of the
masonry. An elastic analysis will, in fact, shed no light on the deformation of a
masonry structure. Equally, the magnitudes and distribution of the internal structural
forces are determined by the (in general, unknown) movements imposed by the
environment, and again an elastic analysis will be of no help in estimating these
forces. It is fortunate that an “equilibrium” analysis, making no reference to elastic
properties of the masonry, can nevertheless be made to give reliable values for the
key structural quantities.

Keywords Equilibrium analysis * Masonry structures * Vaults ¢ Deformation

It is in the nature of a masonry structure that it should be cracked. Individual
components (brick, stone) may have good tensile strength, but weak (or no)
mortar in the joints between these components will not allow tensile forces to be
transmitted. By contrast, the compressive stresses in a large span masonry bridge,
or in a cathedral, are very low compared with the crushing stress of the masonry.
These observations have enabled the establishment of a structural theory on the
assumption that masonry is a “unilateral” material, having zero tensile strength
and infinite compressive strength. In applying this theory to the analysis of a real
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structure, it is possible to make adjustments to allow for the actual as opposed to
assumed material properties, but in general the simple theory gives meaningful and
useful results. Further, since stresses are low, so are internal deformations, and the
material of the structural components is virtually rigid (Heyman 1966).

The cracking of such an idealized structure (and the cracking of a real structure)
results from movements imposed by the external environment. A single-span
masonry bridge will thrust against the river banks; the abutments will inevitably
give way, and the arch must accommodate an increased span (Heyman 1982), or the
footing beneath one of the piers supporting a crossing tower will settle, and cracking
will be observed in the neighbouring bays of a cathedral. Such cracking is not due
to the potential development of internal tensile stresses in the structure, but results
solely from a disturbance to its original geometry. In the case of the simple voussoir
arch bridge, an increase in span results in the well known pattern of three “hinges”
between voussoirs, and this pattern is independent of the magnitude of the small
movements of the abutments.

Such anomalous movements imposed on a structure by the environment are
unpredictable: they are unknown and by their nature unknowable. It is however a fact
that even tiny geometrical imperfections can have a grossly disproportionate effect
on the “state” of a structure, that is, on the values of the internal stress resultants
induced by given loading.

1 Elastic Analysis

This sensitivity to small imperfections is at once evident from the results of
conventional elastic analysis. Such an analysis is not possible for a structure made of
rigid material; in addition to the master equations of statics (internal stress resultants
must be in equilibrium with the external loads), a statement must be made of the
elastic properties of the material. Finally, boundary conditions must be satisfied; a
masonry arch must fit exactly between its abutments. It is precisely the positions
of those abutments that are unknown, and the engineer using elastic theory is
forced to assume that they are perfectly fixed. It is when the engineer examines
the consequences of a 2 or 3 mm displacement of an arch abutment that the theory
shows the sensitivity of the calculations to such a movement.

2 The Purpose of Structural Analysis

A masonry structure (and in fact any structure) responds almost invisibly but
violently to small movements of the environment; these movements are not known,
so that, inevitably, as said, the “actual” state of the structure is also unknowable.
Moreover, the state is impermanent; the passage of a heavy load, an earth tremor, a
hurricane, may all profoundly change the internal stress resultants in the structure.
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What, then, is the purpose of a structural analysis? Any calculations will result in a
solution which could not be observed in a real structure, and the values of internal
stress resultants do not correlate with the observed defects imposed by movements
of the environment. An answer to the question may be found by examination of the
historical record of attempts by scientists to analyse the masonry structure.

3 Brief Historical Notes

As is well known, structural design of masonry, from the earliest times to the end of
the seventeenth century, was incorporated in empirical rules of proportion (Heyman
1998). That these rules were effective is evidenced by the continued survival of
ancient and medieval buildings (there were of course failures). In one sense there
is no purpose in demonstrating by structural analysis that a particular building is
stable, since its very presence confirms its stability. However, such modern analyses
do at least confirm that rules of proportion, proper shapes, geometry, are precisely
the criteria needed for safe designs.

The science of mechanics was added to that of geometry late in the seventeenth
century, for example in the work of La Hire (1695, 1712), and of Couplet (1731,
1732). It is in these studies that the proper end of structural analysis of masonry
becomes evident. The abutments of a masonry arch must be designed, and one of
the major objectives of eighteenth-century work was the determination of the value
of the thrust exerted by an arch on its abutments. La Hire used the positions of
the hinges in a cracked arch to unlock the statics of the problem, and he was able
to demonstrate that a value of the thrust could be found. His calculations were of
course correct, but there is no consideration of the fact that a different hinge pattern
would give a different value of the thrust.

It is noteworthy that Coulomb (1776) made no attempt to calculate the “actual”
state of the arch that he studied (Heyman 1997). He introduced another mathemat-
ical tool, that of “analysis”, where the word is used in its technical sense to denote
the use of algebra, and above all, calculus. He was able to show that the value of a
structural quantity (say, the thrust of an arch) could be contained between calculable
limits; indeed, the title of his paper includes the words “maximum and minimum”.
Implicitly, although he did not express these ideas, he was demonstrating that a safe
state could be found for the equilibrium of an arch, even though that “actual” state
could be determined only within limits.

Such calculations are of great importance to those engaged in the repair of
masonry structures. As a single example, a flying buttress may have to be dismantled
and rebuilt, and temporary props may be designed with confidence to continue to
support the high vault of a great church.
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4 Equilibrium Design

The concept of safety lies at the heart of the modern theories of plastic (or limit)
analysis. The labels “plastic” and “limit” are misleading, implying as they do
that a structure is on the point of collapse; they result from the twentieth-century
development of structural analysis, in which indeed ultimate states were examined.
However, it is the concern of the engineer that a structure should be stable in its
working state, in comfortable equilibrium with whatever loading it is required to
carry. The “plastic” engineer examines only the equations of statics, ensuring that
the internal stress resultants in masonry are everywhere compressive; no use is made
of the “boundary conditions” (e.g., the positions of the abutments of an arch). The
master theorem of this twentieth-century analysis is that if such a solution can be
found, then the structure is safe (moreover, it is possible to calculate a “factor of
safety” for the design).

The power of this theorem lies in the fact that if the engineer can find
any satisfactory state of equilibrium, then this gives absolute assurance that the
(unknowable) actual state of the structure is also satisfactory. This whole process
should now perhaps be called “equilibrium analysis”.
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A Semi-analytical Approach for Masonry Arch
Dynamics

Anna Sinopoli

Abstract A semi-analytical approach is proposed for modelling the plane dynam-
ics of a masonry arch, treated as a system of rigid elements with friction and
unilateral contacts at each joint. By generalising the method proposed in previous
research, the analytical approach is firstly applied to the plane dynamics of a
rectangular block simply supported on a moving base. In this case, where the contact
although sometimes extended is unique, dynamics is formulated as a frictional con-
tact problem, and conditions for onset of motion according to various mechanisms
are fully analytically identified; moreover, criteria for evaluating contact reactions
during either smooth or non-smooth dynamics are outlined. The method is then
extended to the case of the arch, where each element is characterized at most by
a double extended contact; criteria for the onset of motion and evaluation for each
element of contact reactions during the dynamic evolution are then identified. The
approach proposed constitutes a first step for performing dynamic analysis through
either an event-driven or a time-stepping numerical procedure.

Keywords Signorini-Coulomb law ¢ Non-smooth contact dynamics ¢ Masonry
arch

1 Introduction

The development of the plastic theory in the 1950s and Heyman’s basic idea of
transferring its philosophy from the steel to stone skeleton (Heyman 1969) made it
possible to state the limit analysis of masonry arches for standard behaviour as a lin-
ear complementarity problem (Gilbert and Melbourne 1994); in this case, bounding
theorems allow for determining collapse from either below or from above without
distinction. In the presence of finite friction, on the contrary, the normality rule
does not hold and non-associated flow rule invalidates bounding theorems; modified
criteria must then be defined, on the basis of which computational strategies can be
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adopted (Livesley 1978; Sinopoli et al. 1997; Baggio and Trovalusci 2000; Orduna
and Lourenco 2005). The problem is generally formulated by using non-linear
programming, and searching for the optimal solution is difficult not only because
of numerical calculations; the absence of stability criteria makes it possible to find
an optimal solution which is not a global minimum.

Recently, a simple method has been proposed (Sinopoli et al. 2007), in the
framework of contact mechanics, for the collapse analysis with finite friction of
a semicircular arch under its own weight. In this respect, it is worthwhile observing
that, if the collapse condition is considered as that separating equilibrium from
starting motion, the best framework for identifying it is in dynamics; the collapse
condition thus transforms into the starting mechanism of the motion. Moreover,
dynamics formulated as a contact problem, through the decomposition in sub-
problems for which appropriate flow rules can be defined, eliminates the typical
indeterminacy of any static approach.

While numerous papers have been produced on limit analysis, it is surprising
that masonry arch dynamics is a subject to which little attention has been paid in the
literature, despite the fact that the preservation of the monumental patrimony against
seismic risk has promoted research during the last decades on stone or masonry
structures, modelled as assemblage of blocks with frictional contacts. Starting with
Housner’s model (Housner 1963), the main aspects of dynamics became a new
field of research: classical questions of Coulomb friction (Lotstedt 1982); structural
behaviour (Spanos and Koh 1984; Sinopoli 1987); stability of the responses and
transition to chaos (Hogan 1990; Ageno and Sinopoli 2005, 2010); impact and
dynamic modelling (Sinopoli 1987, 1997; Moreau 1988, 1999, 2005; Augusti and
Sinopoli 1992); and, finally, numerical codes (Glocker and Pfeiffer 1992; Jean
1999).

Oppenheim (1992) was the first to propose a semi-analytical model to investigate
the dynamics of an arch, treated as a four-link mechanism—that is, a single degree of
freedom system—subjected to a base impulse acceleration; the dynamics equation
was obtained by a classical Lagrangian formulation and numerically integrated.
The same model was adopted in later papers (Clemente 1998; De Lorenzis et al.
2007). De Lorenzis et al. (2007) also made a comparison with results obtained using
the commercial program UDEC (Cundall and Strack 1979). More recently, a stone
arched structure has been investigated (Rafiee et al. 2008) with a discrete elements
method using the platform LMGC90, based on the non-smooth contact dynamics
method (Jean 1999).

It is obvious that difficulties inherent in analytical modelling encourage the use of
numerical methods. Nevertheless, although mechanical modelling of un-reinforced
masonry remains a challenging problem, the focusing of numerical methods has
mainly been concentrated in discussing computational algorithms.

In this present paper I extend my previous research on the dynamics of a rigid
body simply supported on a moving boundary (Sinopoli 1997). The new approach
for the dynamics, formulated as a contact problem governed by Signorini’s and
Coulomb’s laws (Sinopoli 2010), is oriented to the dynamical modelling of the
masonry arch treated as a system of n rigid voussoirs, with frictional and unilateral
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contacts at each joint. First, the modelling is given for the single block, to guide the
understanding on how contact laws can be checked, by identifying at the contact
point both the value of the generalised reaction and persistency or variation of
the activated mechanism; we refer to the relationships between initial conditions,
active forces and contact reactions. The formulation is then extended to the arch;
new questions related to its typology—indeterminacy due to double contacts and
elements number—are then discussed and solved. The formulation allows the
implementation of a numerical platform, based on either implicit time-stepping or
explicit event-driven numerical method for integrating the equations of motion; the
platform, outside the scope of the present paper due to its complexity, is a target of
future research.

2 Single Block Dynamics

Consider a rectangular rigid block free-standing with Coulomb friction on rigid
ground I”, which moves by a translational horizontal motion Xy = k,(f)g, where g is
the gravity acceleration. Refer the dynamics to the system (O, x, y) fixed on I", with
which unit vectors (¢, n) are associated; n is outwards oriented (For the definition of
the symbols used in what follows, see the Appendix “List of Symbols”™).

2.1 Kinematics

Assume the position of the mass centre G and rotation angle to be Lagrangian coor-
dinates; thus, the motion of the body transforms into the path of its representative
point in the configuration space, where the kinetic energy metrics is assumed in
order to preserve the Euclidean structure (Moreau 1988; Sinopoli 1997). Through
the linear mapping induced by Lagrangian coordinates, the velocity of any point P
of the body becomes:

ip=Npi (1)

where N} is the [2x 3] gradient operator of the mapping, & the generalised
velocity and apex T indicates transposition. According to (1), tangential and normal
components of 7p are:

. T
ipy = Npi it
' ’ 2
;’P,n = NP,nTl.l @
Note that Np; and Np,, are generalised directions starting at P and associated with

t and n, respectively (Fig. 1).
If the body, initially at rest, is in contact with the ground along the side AB,
the boundary impenetrability allows only positive or null values of the normal
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Fig. 1 The rigid block A

virtual displacement of contact points. Since virtual displacements and velocities
have the same structure, the impenetrability transforms into a unilateral constraint
to be satisfied by admissible velocities & of the body:

Fon =Np,i >0 VPeAB 3)

The set (3) contains the velocity at instant ¢, if it exists; on the contrary, it must be
interpreted as the right-sided velocities set if velocity does not exist, as is the case
of an impact occurring when either one or multiple points enter into contact coming
from a no-contact situation.

2.2 Normal and Tangential Contact Laws

centre Q. According to mapping, forces are transformed through the invariance of
the work, so that normal and tangential generalised reactions become:

Normal contact (3) is guaranteed by reaction R,, > 0, acting at the unknown contact

WQ’[ - Rt NQ’[ (4)
WQ,H = Rn NQ,n
At any time ¢, contact is lost if g, > 0, so that R, = 0; while contact is

maintained if 7q, = 0, with R, > 0. The law of normal contact is thus the well-
known Signorini’s law (Fig. 2):

iQ,n >0
Ry, >0 ®)
wi=0
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Fig. 2 Signorini’s law A
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Fig. 3 Coulomb’s law A
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-uR,

Note that vector Nq , is orthogonal to &, while values of R, determines a positive
flux along Nq , giving ¥ qn-
The tangential contact is governed by Coulomb’s law (Fig. 3):

R =-pusgn(iy )R, for :7g, # 0
‘Rl‘ <uR, for:7y, =0
T .
¥, u<0 (6)

corresponding to maximal dissipation if lpal is a generic solution belonging to
Coulomb’s cone:

(Y’;l - Y’Qvl)Tl‘l 20 (7)



82 A. Sinopoli

Normal and tangential contact laws also hold during an impact, where reactions
are associated with Dirac’s distributions. By assuming inelastic impact, that is when
the impact ends as soon as the normal velocity of Q becomes zero, contact laws in
terms of right-sided velocities (apex +) are, respectively:

Fgn =0
I,>0 (8)
gl it =0
and:
=—psgn(ig )b for: i #0
L) < p I for : i’&tzo 9

Eatiﬁ <0

The unilateral frictional contact results thus into two sub-problems which are
connected to each other since tangential reaction depends on the normal one, and
reciprocally. Dynamics with friction and unilateral contact can therefore be tackled
by solving in turns the two sub-problems until convergence.

2.3 Dynamics Equation

Derive the equation of dynamics from d’Alembert’s principle; in terms of gener-
alised forces—active S and reactive ¥ o—and virtual velocity # it is:

i = (S+ Vo +%an) (10)

Since the contact laws do not reduce the degrees of freedom, the equation of
motion can have a time-variant structure; thus, the transition from one mechanism
to another consistent with contact laws induces a strongly non-linear character of
dynamics, which can also exhibit phases of impulsive motion. In this last case, the
dynamics equation (10) becomes:

Ad"a" = (Bqi+ Bon) (1)

A unilateral frictional contact introduces two kinds of difficulties: firstly, contact
reactions are unknown; secondly, when the system is at rest or after an impact,
the starting mechanism is also unknown. The starting mechanism is extremely
important for practical purposes, as is the protection of art objects or technical
instruments, which can be damaged during earthquakes. Knowing how the starting
mechanism depends on the excitation and system features could provide useful
indications for passive protection devices.
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2.4 Starting Motion and Dynamic Balance

With reference to Eq. (10), observe that reactive forces are requested to modulate

dynamics in accordance with contact laws; so, their virtual power cannot be positive.

The necessary condition for starting motion is therefore that in correspondence to
an admissible mechanism :

ST >0 (12)

For conservative active forces and friction large enough, inequality (12) satisfied

as equality corresponds to a stability criterion; thus, if satisfied for the lowest value
of S:

min (STE) =0 (13)

it gives the closest unstable equilibrium configuration. For finite friction, on the
contrary, relationship (13) must be interpreted as a necessary but not sufficient
condition; among admissible mechanisms i it selects the candidates with no
sliding at the contact point. The activation of the actual mechanism—the sufficient
condition—requires that contact laws be satisfied. For example, in the case of the
block of Fig. 1 subjected to its own weight and excited by a horizontal ground
motion Xo = ks(0)g with ks(0) > 0, in accordance with inequality (3), admissible
mechanisms maintaining normal contact without sliding are: the null mechanism
u = 0, corresponding to resting and contact at any point of AB, and the rocking
mechanism 5 7# 0 with contact at point A. This means that identification of the
starting mechanism coincides with that of unknown contact centre Q; therefore,
consider mechanism g with the centre of instantaneous rotation at Q, and express
the tangential position of Q as a linear combination of A and B positions:

rqi=0—-e)ra+ergy 0=<e=<l (14)

Mechanism i in Eq. (13) allows for identifying the value of e and contact centre
0, that is, the mechanism as a function of k4(0). If b and / are the base and height
lengths, respectively, and friction is large enough, for k,(0) < b/h the contact centre
Q is internal to AB, with izg = 0, so that the block remains at rest; while the contact
centre is at point A, corresponding to both resting # = 0 and rocking mechanism
s for ks(0) = b/h, so that the equilibrium configuration becomes unstable and
rocking can start for k5(0) > b/h.

If the sticking assumption is removed, admissible sliding-rocking mechanisms
i # 0 exist with normal contact maintained at A. Thus, Eq. (13) gives, for any
force centre internal to AB, that is for k,(0) < b/h, sliding-rocking mechanisms
corresponding to indifferent equilibrium condition, that is to resting; the unique
sliding-rocking mechanism corresponding to unstable equilibrium configuration is
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Fig. 4 Vectors Ny and N4, and Coulomb cone, in plane

up, for ks(0) = b/h, so that necessary conditions to activate sliding-rocking and
rocking coincide with contact at point A and ks(0) > b/h.

To identify the sufficient condition, perform the dynamic balance of equation
(10) for rocking with contact at point A:

ia=S+Var+¥an (15)

The analysis here proposed, although aimed at identifying the starting motion,
holds also at any time of dynamics according to a given mechanism, if the tangential
velocity of the contact point is zero. Assume k5(0) > b/h, and observe that, if both
tangent and normal contact have to be maintained, from relationships:

i’A,t = NA,tTuA =0 (16)
. T.

Fan =Nan ta =0
it follows that both vectors Na; and N, lie on the plane s orthogonal to the
mechanism i, (Fig. 4).

Moreover, both acceleration components of point A consists of two terms:

. . o T

Fac = Na liia + Nay iia =0 an
. .. o 1.

Fan = Nan'iia +Nan ita =0

the first parallel to the corresponding component of 74 and the second—the
centripetal acceleration—depending on initial conditions and oriented from A to
G. For the reciprocity between points A and G considered as rotating each with
respect to the other, it follows that acceleration @i is composed of two terms, the
first parallel to @ and the second lying on plane 7= with components:

.7
liae=—Nas 0t
“A,I .A,I T‘A (18)
UAn = _NA,n /N
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Fig. 5 Dynamic balance in the plane &

both strictly negative and oppositely directed with respect to Ny, and Ny,
respectively.

By projecting Eq. (15) on plane 7, that is, ignoring active force and acceleration
components parallel to iz, which are allowed for maintaining contact, the dynamic
balance becomes:

liag +iian—8S =Wai+Wan (19)

where iis; and iis ,—the centripetal acceleration components—are known quanti-
ties and Yo = R Na: and ¥ o, = RyNa, are the unknowns to be determined
according to Signorini’s and Coulomb’s laws. As shown in Figs. 4 and 5 (without
subscript indicating contact point), vectors Na; and N, identified in plane m
Coulomb’s cone through its boundaries:

NAt =Nan+ iNay 20)
Nao~™ =Nan— uNay
which are symmetric with respect to N , along the conjugate direction Ny ;.

Since centripetal terms are known, the dynamic balance is of a merely static
nature. In particular, if the system is initially at rest, with null centripetal accelera-
tions, and —S is internal to Coulomb’s cone, generalised reactions are obtained by
decomposing —S along Na and N, (Fig. 5).
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Fig. 6 Unbalance between active force and generalised reaction, for sliding-rocking

Note that since N and Na , are not orthogonal, the projection of ¥ 5 along
N gives the variation of ¥ 4, due to friction; this is the interplay between tangent
and normal reactions of a frictional contact.

If the contact tangential velocity is zero, the sufficient condition for activating
rocking is that: ¥ o < wR,Na,, otherwise tangential contact cannot be maintained
and tangential reaction is along the boundary of Coulomb’s cone; both tangential
and normal reactions are varied with respect to rocking, and the unbalanced
component of § determines an acceleration opposite to Ny (Fig. 6).

Similarly, for k;(0) < b/h the possibility of resting or the activation of sliding
can be checked. The regions where each mechanism of the block, initially at rest, is
activated are reported in Sinopoli (1997).

In conclusion, having satisfied the necessary condition to activate rocking and
sliding-rocking, friction alone decides the activated mechanism. Thus, it is nonsense
to say that sliding-rocking requires different values of k(0) with respect to rocking,
since the energy dissipated by friction is balanced by the acceleration variation along
Nan.

2.5 Dynamic Evolution for Smooth and Non-smooth Dynamics

During the motion, until both tangential and normal contact are maintained, the
dynamic balance is in plane &, where Eq. (19) holds; in this case, vector &, lies on
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Fig. 7 Decomposition of tangential reaction, for sliding-rocking

the plane orthogonal to Ny ,, while Na; and Ny , belong to the plane m orthogonal
to ua (Fig. 4). For lost tangential contact, that is, for 74 , —projection of iis along
N —different from zero, Ny , is still orthogonal to 4, but vectors Na and Ny
lie on a plane 7* which is not orthogonal to iz,. Nevertheless, since the contact
balance is always on the positive hemi-space associated with Ny ,, the friction
reaction ¥ o = RN can be evaluated by decomposing it into two components
(Fig. 7): the first parallel to i o, which determines a reduction of the velocity, and the
second lying on plane 7 orthogonal to @4 ; both components depend on R; through
the corresponding decomposition of N (. Thus, the problem can be solved on plane
7 by determining first R; and then the resultant ¥ 5 ; along Na ;.

In the case of an impact, the main problem is the identification of the post-
impact mechanism. In accordance with contact laws (8) and (9), the dynamic
balance (11) is:

it it = (@ + o+ Eqn) it @1

By comparing Eqgs. (21) and (10), it follows that during an impact the role of the
acceleration of smooth dynamics is played by the post-impact velocity, and that of
the active force by pre-impact velocity. The procedure will therefore be the same
followed for the starting mechanism of smooth dynamics, by treating pre-impact
velocity &2~ as “active force”, which makes it possible to determine both the velocity
of post-impact motion and generalised impulses.

3 Arch Dynamics as an Assemblage of Discrete Elements

Consider an arch made of n rigid voussoirs, free standing with Coulomb friction
on rigid ground I, which moves with a translational horizontal motion. Refer the
dynamics of each voussoir to the system (O, x, y) fixed on I", with which unit vectors
(to, no) are associated; n is outwards oriented (Fig. 8).
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Fig. 8 Scheme of the arch as an assemblage of rigid voussoirs

Denote by i the counter of voussoirs, and number them from 1 to n; similarly,
denote by j the counter of joints, and number them from O to n. When the arch is at
rest, j-th joint is unique. During the motion, on the contrary, j-th joint can open and
be split into two, the jV-th and ji+V-th joints, bounding i-th and (i + 1)-th voussoirs,
respectively.

3.1 Kinematics and Contact Laws

Assume for generic i-th voussoir the position of the mass centre G and rotation
angle as Lagrangian coordinates, evaluated with respect to the system (O, x, y) fixed
on I', and assume the kinetic energy metrics. If the arch is initially at rest, each
voussoir is in full contact with two adjacent ones. In particular, at j-th joint, contact
is maintained at point QU1 belonging to the lower boundary of (i + 1)-t voussoir,
and at point P% belonging to the upper boundary of i-th voussoir; denote points
Q*D and PV as candidate and antagonist contact points at j-th joint. Thus, the
couples of points maintaining contact for the i-th voussoir are (QU+D, P®) at the j-
th joint, and (Q®, P4~V at (j — 1)-th joint (Fig. 9). Through the mapping, velocities
of points Qi+ and P® become:

.(i+1) _ agGt+D - (i+1)
o —NQ u

) , (22)
iy =Ny a®
with analogous expressions for points (Q®, Pi=1) at (j — 1)-th joint.

The impenetrability condition in this case bounds the normal velocity of the
candidate point with respect to that of antagonist one, both evaluated on the local
reference system fixed on the antagonist, and reciprocally; the unilateral constraint
at each joint thus splits into two conditions. As an example, the impenetrability
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Fig. 9 Scheme of the contact, between i-th and (i+1)-th voussoirs

condition at j-th joint requires admissible velocities, evaluated in the local unit
vectors system ( tj(l) , nj(l)), fixed on PD:

D 0 — 07 (-g+1> —f{f’) — a0t (N<i+1)Td(i+1) _ Ng)Tu(l)
Q.n .‘ p _‘ J ] Q
v (23)
— H(l+(,) u(1+l) H(l) (l_)l-l(l) >0
n; P,nj
and, reciprocally, in the local system ( tj(i+l) , nj(iH)):
0 D DT o G0 DT (O NGO T D)
Pn('+1) rQ R = n (rP — iy )—nj (NP ) — N, at )_
M i G+D +1
= Hl <1+1) Hl <x+1>“(l '>0
(23b)

where vectors H are generalised directions associated at contact points with local
unit vectors n'” and nY. Inequalities (23a) and (23b) are in general different;
they coincide only if the joint is closed. The consequence is that the contact laws
imply different generalised directions H and reactions @ . Relationship (23a) gives
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Signorini’s contact law:

.. . . T . N T .
R(l(,i1)+1) ’-,(1+(1i)) _ ;,(1) o) = ¢(1+(1i)) it(l_H) _ ¢(1) o 1'4(1) -0 (24)
n Q,nj P,nj Q,nj P,nj

while Coulomb’s law governing friction is:

- ) ) N LT
R((li’)l+l) ’-,(l-i-(il)) B r;l)l _ ¢(1+(il)) u(1+l) _ ¢(1)(i) l'l(l) <0 (25)
g Qf , Qf P

Analogous, although different, expressions are obtained from (23b).

3.2 Dynamics Equations and Outlines of the Method Proposed

With reference to system (O, x, y) fixed on I" consider the equation of motion for
the arch, obtained from d’ Alembert’s principle:

n
Z (_ii(l) + 80 4+ !PS“"’ + !pg—l,l)) a® =0 (26)

i=1
where i is the acceleration, SO the active force, 2" the admissible velocity, and
v g+1’1) and ¥ g_l’l) the reactions transmitted to i-#h voussoir by the contiguous ones.
Since Signorini’s and Coulomb’s laws do not reduce the degrees of freedom, it

seems that the dynamics of i-th voussoir:
(<a® + 8O+ w0 L w0 W0 =0 i=1,. 0 27)

cannot be solved, as for the single block, unless the whole arch dynamics is, since
reactions transmitted by the two contiguous voussoirs depend on their dynamics.
A classical procedure (Lotstedt 1982; Glocker and Pfeiffer 1992) would be that of
adopting an augmented Lagrangian multipliers method, by using reactions as mul-
tipliers and Eqgs. (23a)—(25) as constraints. In this case, the fulfilment of Signorini’s
and Coulomb’s laws is equivalent to the Kuhn-Tucker condition corresponding to
the optimal solution of a quadratic programming problem; an iterative procedure is
thus necessary and the mathematical problem requires inversion of matrices of great
dimension, equal to the number of degrees of freedom plus constraints. In the case
of the arch, however, matrices have elements different from zero only at the sides
of the principal diagonal, since only contiguous voussoirs interact with each other;
furthermore, activated mechanisms involve a number of mega-voussoirs lower than
that of all the voussoirs.
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Moreover, since the dynamics evolves starting from given initial positions and
velocities according to a given mechanism, the instantaneous rotation centres are
given. This means that the starting of relative either rocking or sliding-rocking,
as of relative sticking or sliding, corresponds—as for the single block—to the
same contact centres; whether the mechanism changes in the following motion
depends only on the values and directions of reactions, which determine possible
new instantaneous rotation centres. This is the reason why limit analysis with finite
friction seems undetermined, unless contact laws are verified.

Both persistency and variation of the activated mechanism thus depend on either
the fulfilment of Signorini’s and Coulomb’s laws or reaching the limit of their
admissible sets; both require the determination of contact reactions—the main
unknowns of the problem.

It will be demonstrated that the indeterminacy of arch dynamics can be elim-
inated by appropriate considerations on the relationship between the centre of
instantaneous rotation of a central mega-voussoir and allowed reactions transmitted
to it. A hierarchical iterative procedure is thus required, concerning at each step
a number of joints at most equal to that of activated mega-voussoirs. A first
level of iteration concerns only the boundary joints of mega-voussoirs; while a
second level—at which intermediate joints are checked—can restart the first level
of iteration. Observe that any numerical algorithm of mathematical programming
requires an iterative procedure, involving at each step a number of unknowns equal
to the number of all the degrees of freedom plus constraints.

Once the indeterminacy at boundary joints of mega-voussoirs has been
eliminated—albeit tentatively —, contact reactions at intermediate joints can be
determined by propagating the dynamic balance in the respect of contact laws.
Note that it is the reaching of Coulomb’s cone limit that requires the use of the
iterative procedure, while that of Signorini’s corresponds to loss of contact and then
to probable collapse of the arch.

The starting of sliding-rocking of a mega-voussoir with respect to the contiguous
one can be detected; since the new mechanism starts with null relative velocity at
contact points, sliding-rocking effects are obtained in the motion that follows as a
consequence of the dynamics and reaction along Coulomb’s cone. Only for open
joints, since Signorini’s and Coulomb’s laws are both split into two, which contact
point slides with respect to the joint of contiguous mega-voussoir can be foreseen. In
this case, the reaction is along Coulomb’s cone at one joint, and internal at the other
one; otherwise, if both reactions are along Coulomb’s cone, as for closed joints,
which point slides is given only by dynamics.

With reference to intermediate joints, the starting of either relative sliding or
sliding-rocking for reaching Coulomb’s cone limit depends on the contact points
position, internal to the joint or at its boundary, respectively; the last case occurs
when one contact centre at the boundary of a mega-voussoir is split into two,
the second lying at the nearest joint and at the same side (extrados or intrados).
The imposed reactions both along Coulomb’s cone at the considered intermediate
joint—since it is initially closed—vary with respect to those of relative sticking
and determine a variation also at successive joints until the boundary of the
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mega-voussoir is reached. As a consequence, the reaction acting on the opposite
boundary also varies, and both the first and second levels of iteration restart until
convergence.

In contrast, when the contact centre bounding a mega-voussoir is split into two—
the second lying on same side at the extrados or intrados—and Coulomb’s law is
respected the iterative procedure is not required.

The greatest number of steps of iteration are therefore required only when
Coulomb’s limit is reached for variation of both size and number of elements of
a mega-voussoir, while any numerical algorithm of mathematical programming is
characterised by a number of steps exponentially proportional to that of unknowns.

Finally, note that numerical platforms of the literature use the discrete elements
method with great difficulties related to the elimination of high frequencies, while
the present formulation is based on the rigidity assumption.

These among others are the reasons why an analytical approach is proposed
by propagating dynamics balance from a mega-voussoir to its contiguous and all
intermediate joints.

3.3 Starting Motion and Dynamic Balance: First Level
Iteration

By referring to the results obtained for the single block, remember that both rocking
and sliding-rocking mechanisms require contact centre at joint boundaries, while
resting and sliding correspond to contact centre internal to the joint. Moreover,
remember that it is friction, which decides the loss of tangential contact, so that we
can assume tentatively that it is maintained unless contact laws impose the contrary.

Admissible velocities for the generic voussoir require that admissible mecha-
nisms for the whole arch be identified. Moreover, in any rotational arch mechanism,
if i-th voussoir rotates around intrados at (j — 1)-th joint, its maximal interaction with
(i + 1)-th voussoir is at the extrados of j-th joint. Therefore, rotational mechanisms
are characterized by alternate hinges at the extrados and intrados respectively, even
if each of such hinges can be split into two for a dynamical thrust line going out from
a single voussoir; while, if the arch is at rest and external excitation is increasing
starting from zero, the most probable mechanism is characterised by the lowest
number of alternate hinges at the extrados and intrados.

Consider the dynamics excited by increasing horizontal ground motion Xo =
ks(f)g starting from zero, and determine the rotational starting mechanism; by
disregarding reactions since contacts are governed by normality rules, the necessary
condition for starting motion becomes:

N 0T
nﬁnz SYou 0 (28)

i=1
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Fig. 10 Scheme of the starting rotational mechanism

(G

By increasing the ground acceleration, null mechanisms # ) are firstly admissi-
ble; they correspond to thrust lines with at most three alternate hinges at the extrados
and intrados. In this case, the possibility of a mechanism with pure relative sliding at
some intermediate joint, even improbable, could be examined; for arches subjected
only to their own weight this is the mixed mechanism identified in (Sinopoli et al.
2007).

Once four alternate hinges are formed, the well-known mechanism for asym-
metric loads usually determined by an upper approach appears. The arch can thus
be considered as made of only three mega-voussoirs; label them by index &, with
k=1,2,3, and contact centres positions (Fig. 10) by C;, C; 2, C»3, and C3. Contact
centres define the instantaneous rotation centre C, of second mega-voussoir, lying
at the intersection of straight lines crossing points C; and C;,, and C3 and C,3,
respectively; C, does not vary in the following motion only if tangential contacts at
all voussoirs contact centres are maintained.

The identification of contact centres at intermediate joints inside each mega-
voussoir and checking of Signorini’s and Coulomb’s conditions at each joint require
that reactions acting on each mega-voussoir be determined. To this aim, since the
main role is played by second mega-voussoir, consider its dynamics equation:

i — 8@ = 4wl? wl? (29)
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If Coulomb’s law is verified at C;, and C,3, but also at C; and Cj3, reactions
R and R®? evaluated in the system ( Z,, n,) are parallel to unit vector (> and
n®?_in line with points C), and C;, and C,3 and C, respectively; thus: R =
—R*Y = RUD{(D) gnd, similarly: R®? = —R?¥ = RG-DpGD In fact, since
the dynamics of second mega-voussoir is modulated by reactions R"""» and R*?
crossing contact centres C; » and C,3 and second mega-voussoir rotates around C,,
the resultant of R1-? and R®? necessarily crosses the instantaneous rotation centre
Cs.

Thus, since inequalities (23a) and (23b) give: F (1) = "(c) reactions R1? and

R®Y are orthogonal to 75 )

()

, and 7 rCl L respectlvely; and, similarly, R*?» and R??

are orthogonal to 7 and r(” A normality rule therefore governs generalised

reactions and Velocmes at relatlve contact centres:

T
qp(l 2) ,I,(Z nT =0 0
G. 2>T <2 %)
lPCZ 5 =W =0
. . 1.2) (3.2) : .
Moreover, since reactions ¥ Cia and lPCZ , can be rewritten as:
(1.2) _ p12N® 12 —_ p1.2)g®

lPCLZ =R NCLG =R HCL2 a0

(32 _ pB2AN® ,32 _ pGR2»g?
WC2.3 =R NC2.3n =R HCz.s

scalar values of reactions R1? and R®? become flux along the generalised
directions H . (2) , and H¢ @) ., associated with n""? and n®?, and similarly for RV
and R®3 Equatlon (29) assumes therefore a form very useful for dynamic balance:

@ _§@ = RCIHY + RIVHE) (32)

In fact, from (30) to (31) it follows that both H.) and HE) , as (> and w37,
belong to the plane 7 orthogonal to ®. By projecting (32) on plane 7®:

.. 2 2

iD-8? = ROVHE + RIPHY (33)
. . . . 2 .
since the centripetal acceleration uf) = N(C) u'” is a known quantity, the

dynamic balance assumes a static character; values R(1 2 and R®? of transmitted
reactions, like their generalised expressions lII(Cl1 i) and 011(3 23) can be evaluated.
Contact laws must now be verified at each of the two joints bounding second
voussoir, by decomposing W(Cllzz) and ¥ @ 23 along the corresponding generalised
normal and tangential directions; having satlsﬁed contact laws, which can also imply

starting of sliding-rocking, reactions !P(Cll i) and !P(C3223) are tentatively determined.



A Semi-analytical Approach for Masonry Arch Dynamics 95

By a similar procedure through the dynamic balance of first and third mega-
voussoirs, the opposites of R!'"? and R®? allow us to determine ¥ (0 D and 28 (4 3
and, if Coulomb’s limit of admissible solutions is reached at elther 0r both ]omts
both ¥ . (1 2) and ¥ (3 2) vary and the iteration continues until convergence.

Havmg tentatlvely determined lII(Ol) and !P(4 ¥ and !P(Cllzz) and !P(C3223) at the
first level, the evaluation of contact reactlons and checkmg of contact laws can be
extended at intermediate joints of second mega-voussoir, as to those of first and third
mega-voussoirs.

3.4 Second Level of Iteration at Intermediate Contact Centres

The evaluation of reactions acting at intermediate joints is performed starting from
either boundary of second mega-voussoir, and checking all the joints up to the other

boundary. At the first joint nearest either boundary, lP(l 2) or lP(3 2) is treated as a

known force, which determines an augmented S * and gives the reaction at the
successive joint. In this case, however, candidate and antagonist contact centres are
unknown; they are identified by checking the possibility of relative motion, as for a
starting mechanism. As an example, with reference to j-th joint by starting from the
(j — 1)-th one, express the tangential position of the unknown centre P as a linear
combination of intrados A® and extrados BY positions:

m=0—erd +ery, 0<e<l (34)

and determine the contact centre of the virtual mechanism of relative rotation u(1 i+D)

satisfying:

——T .
a0 = 0 (35)

The value of e so obtained identifies the contact centre P and the reaction
w D ransmitted at j-th joint by i-th to (i 4 1)-th voussoir. If point P is internal
to the joint and Coulomb’s law is satisfied, the mechanism does not change in
the motion which follows, and checking can continue at successive intermediate
joints; alternatively, pure sliding can start and the reaction along Coulomb’s cone
determines the variation of contact reactions from that joint to successive ones, until
the boundary of mega-voussoir is reached. As a consequence, the reaction at the
opposite boundary varies, and both first and second levels of iteration restart until
convergence. On the contrary, if point PY lies either at extrados or intrados of the
joint nearest that bounding the mega-voussoir, at same side of its contact centre,
the mechanism changes in the following motion with no need of iterative procedure
unless sliding-rocking is activated.
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Similarly, reactions transmitted at all intermediate joints of first and third mega-
voussoirs can be evaluated and checked up to the springing, and if necessary
the iterative procedure is restarted until convergence. Having determined contact
reactions through the method proposed, the equation of motion for each mega-
voussoir can finally be integrated.

3.5 Dynamic Evolution and Mechanism Variation

The analysis here proposed, although aimed at identifying the starting motion, also
holds during dynamics evolution according to a given mechanism.

The dynamics evolves starting from given initial positions and velocities; thus,
if the activated mechanism is known, adherence to Signorini’s and Coulomb’s laws
can be checked at each contact centre and, if verified, allows the maintainance of
the mechanism in the motion which follows.

On the contrary, if the reaction required at any contact centre reaches Coulomb’s
limit of admissible solutions, the mechanism changes in the following motion
depending on the position of the contact centre.

If it is either at the extrados or intrados of contiguous mega-voussoirs, with
open contact joints, the projection of the determined contact reactions along the
two local unit vectors systems identifies which contact point slides with respect to
the contiguous joint, only if the reaction is along Coulomb’s cone at either joint,
and internal at the other one; otherwise, if both reactions are along Coulomb’s cone,
as for a closed joint, which contact point slides is given by dynamics. If the contact
centre belongs to an intermediate joint of a mega-voussoir, relative either sliding—
if allowed—or sliding-rocking can start with consequent variation of the number of
mega-voussoirs involved in the mechanism.

Finally, it is worthwhile to note that if at any time and at any joint Signorini’s set
reaches a zero gap, the local contact is lost with consequent probable collapse of the
arch.

4 Conclusions

The paper extends previous research of the author (Sinopoli 1997) on the dynamic
modelling of a rigid body simply supported on a moving boundary. Its main
purpose is the dynamic modelling of the masonry arch, treated as a system of n
voussoirs with frictional unilateral contacts at each joint and dynamics governed by
Signorini’s and Coulomb’s laws. The difficulties of the dynamics formulation are:

(a) the choice of the reference system and Lagrangian coordinates to write the
equations of motion for each voussoir and each mega-voussoir, obtained by
assembling one or many voussoirs in the activated mechanism;
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(b) the evaluation of the principal unknowns of the dynamics, namely, the contact
reactions acting at the two boundary joints of each mega-voussoir—and then of
each voussoir—on which accelerations and velocities of the following motion
depend.

An analytical procedure is proposed to write the equations of motion and to
identify, for each voussoir in accordance with Signorini’s and Coulomb’s laws,
the contact reactions as a function of active forces and instantaneous velocities
of contact points. First, the modelling is given for the single block, to guide the
understanding on how Signorini’s and Coulomb’s laws can be checked at contact
point by identifying both the value of the generalised reaction and the persistency or
variation of the activated mechanism. The formalism is then extended to the arch;
new theoretical questions related to the arch typology are discussed and solved.
The method is based on the key idea of transforming the dynamical modelling into
an equivalent problem of “static” balance, by using for each element projecting
techniques in the configuration space.

The indeterminacy of the arch is eliminated through an iterative procedure by
propagating the dynamic balance from a selected mega-voussoir to contiguous ones,
and then to all the voussoirs. The iterative procedure is activated only if Coulomb’s
cone limit is reached at any joint; it concerns a number of joints at most equal to
that of the activated mega-voussoirs. The iterative procedure is thus not limiting and
not time consuming with respect to other methods; it does not alter the solution,
since the tentative solution at the first step of iteration is that for relative sticking
or rocking, and corresponds at any step to instantaneous values of active forces,
positions and velocities.

Having determined the contact reactions at each joint, the equations of motion
can be integrated by either an explicit or implicit numerical procedure; in particular,
an implicit procedure does not require evaluation of the acceleration, since the
velocity of the following motion is obtained by that of the previous one plus the
integral of active forces and reactions.

In conclusion, the paper presents a consistent analytical formulation, indicating
also the computational procedure to implement a numerical platform for the
dynamic analysis of the masonry arch.

Appendix: List of Symbols

Cr, Cri+1 Absolute and relative instantaneous rotation centres in the arch
mechanism

g Gravity acceleration

G Mass centre of the block

GY¥ Mass centre of i-th voussoir '

HY ® Generalised direction associated with unit vector n}l) at point P®

P.n;
™
of i-th mega-voussoir



98

(k+1)
Crk+1

i,j
In, It
k

ks (1)
k)

Np

Nen, Npy
Np;, Npy
No~,Nat
Ny

(0. x,y)
P

O 4D
1 1
P, O,

I'pt

rp

PP, Fpt

Tp.n» 7Pt

o o

iy

. (i) . (i+1)
oo

Rn’ Rt

RGi+D

Rl(ji,i+l)’ Rfiqi+l)

@Li+1) pGit+1)
Rnfi) g Rl_(i)
i i

S

S

S0

t

(t. n), (t,, no)

A. Sinopoli

Generalised direction associated with n®*+1 at point Cy 41 of
(k+1)-th mega-voussoir

Counters of arch voussoirs and joints, respectively

Normal and tangential impulsive reactions

Counter of mega-voussoirs in the arch mechanism

Acceleration of the ground motion in g units

Unit vector lined with contact and rotation centres of k-th and
(k+1)-th mega-voussoirs

Gradient operator of the position of point P

Normal and tangential vectors of the gradient operator Np
Normal and tangential vectors of derivative of Np

Negative and positive generalised Coulomb’s boundaries for
contact at point A

Gradient operator of the position of point P" belonging to i-th
voussoir of the arch '
Normal and tangential vectors of gradient operator NS) of i-th
Voussoir

Reference system fixed on boundary I

Generic point of the block

Centre of contact for the block

Antagonist and candidate contact points at j-th joint of the arch
Tangential position of point P

Velocity of point P

Normal and tangential velocities of point P

Normal and tangential accelerations of point P

Post-impact normal and tangential velocities of point Q

Velocity of points P and Q% belonging to i-th voussoir of the
arch
Normal velocity of antagonist P and candidate QU+ points in

the system (tj(i), nj(i))

Normal and tangential reactions at contact point

Reaction transmitted by i-#h to (i+1)-th voussoir in (¢, n,)
Normal and tangential reactions transmitted by i-th to (i+1)-th
voussoir in (¢,, R,)

Normal and tangential reactions transmitted by i-th to (i+1)-th

voussoir in ( tj(l) , n;l))

Generalised force active on the block

Generalised active force in plane

Generalised force active on the i-th voussoir

Time instant

Unit vectors associated with system (O, x, y) for the block and
arch, respectively
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(t}l), n;l)) Local unit vectors system associated with i-th voussoir at j-th
joint

7 Generalised admissible velocity of the block

u, i Generalised velocity and acceleration of the block

at Generalised admissible post-impact velocity

a,ut Generalised pre-impact and post-impact velocities

U Mechanism with contact at point A

179N Generalised acceleration with contact at point A

Upn, Uy Normal and tangential generalised accelerations in plane for

contact at point A

i Generalised admissible velocity of i-th voussoir

it i Generalised velocity and acceleration of i-th voussoir

Xo Acceleration of ground motion

Au Generalised velocity variation

r Boundary of the rigid ground

7 Friction coefficient

b4 Plane to which N4, and N ; belong for 74 ¢ equal to zero

¥ Plane to which N4, and Ny ; belong for 74 ¢ different from zero

7@ Plane orthogonal to mechanism it of the second mega-voussoir

lII(Cll’Zz) Generalised reaction transmitted by first to second mega-
voussoir at Cj »

q)s)nf“ , g) o Local generalised normal and tangential reactions at point P of

N i-th voussoir

w it Generalised reaction transmitted at point P" by i-th to (i+1)-th
VOoussoir

Yaon You Generalised normal and tangential reactions at point Q

'I’Z),t Generic generalised reaction belonging to Coulomb’s cone

Zon, EQy Generalised normal and tangential impulses
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On the Statics of the Dome of the Basilica
of S. Maria Assunta in Carignano, Genoa

Andrea Bacigalupo, Antonio Brencich, and Luigi Gambarotta

Abstract The paper deals with the dome of the Basilica of S. Maria Assunta in
Carignano in Genoa, designed by Galeazzo Alessi and built in the sixteenth century,
for which meridian cracking, rather common in masonry domes, requires the
assessment of the dome. In order to set a general procedure for the assessment this
structures, limit analysis approaches are here discussed and compared. On the basis
of classic limit analysis, local (dome only) and global (dome-drum system) collapse
mechanisms are considered considering the different behaviour of several structural
elements (lantern, shells of the dome, drum, colonnade). A static (safe theorem)
and a kinematic approach are applied to the structure by means of equilibrium
limit conditions and kinematically admissible collapse mechanisms. Comparisons
between the obtained results are carried out so as to: (i) discuss a general approach
to the assessment of dome-drum systems based on both numerical tools and standard
limit analyses approaches; (ii) provide a first glance in the assessment of the dome.

Keywords Masonry dome ¢ Assessment ¢ Limit analysis ¢ Collapse mecha-
nism ¢ Safe theorem ¢ Galeazzo Alessi * Kinematic procedures

1 Introduction

The large masonry domes, the dome of the Pantheon in Rome being the most famous
example, are amazing structures coming from the past (Cowan 1977a, b, 1981;
Di Pasquale 1996; Huerta 2001, 2008). It is often believed that ancient structures
originate from experience, that is, through a trial and error evolution. This is not true,
as can be recognized from the early (and rather detailed) studies on the safety of St.
Peter’s dome in Rome (Le Seur et al. 1743; Poleni 1748), where the basic concepts
of equilibrium such as the inverted chain originated by Robert Hooke (Heyman
1988) and limit analysis are clearly recognized (Como 1997, 2010, 2013).
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The case of S. Peter’s dome puts forward a typical feature of masonry domes:
a rather diffused cracking along meridian lines, much more pronounced close to
the drum, and sometimes also in the drum, disappearing as the crack approaches
either the upper part of the dome, for solid domes, or the lantern in the other cases
(Di Pasquale 1979; Heyman 1988; Como 2010, 2013). A serious concern regarding
dome safety is the direct consequence of the crack pattern, which can sometimes be
discerned from the nave of the church, as in the case of St. Peter’s in Rome.

Difficulties in structural analysis of masonry domes come from the geometric
complexity (the lack of axial symmetry), and from the material response (its intrinsic
non-linear and non-isotropic response). As discussed in Huerta (2008), the structural
analysis may rely either on non-linear and incremental finite element method (FEM)
procedures or on limit analysis, for which the solution does not depend on the large
number of mechanical properties required by FEM codes and difficult to identify.

The equilibrium approach (Huerta 2001), based on the “safe theorem” (Heyman
1966), was extended to masonry domes in (Heyman 1966, 1988) assuming that
masonry: (i) is a no-tension material; (ii) has an infinite compressive strength;
(iii) no shear collapse mechanism is activated. Starting from domes where the
hoop stresses have been assumed to vanish, recent works take into account that
the crown of the dome is transversally compressed (Heyman 1988; Oppenheim
et al. 1989; Zessin et al. 2010). In this framework, optimum design of no-tension
domes (Farshad 1977; Pesciullesi et al. 1997) and other equilibrium methods relying
on the funicular analysis (O’Dwyer 1999; Andreu et al. 2007; Baratta and Corbi
2010; Fraternali 2010; Goshima et al. 2011) have been proposed. Usually, these
approaches assume the dome to be axisymmetric and do not take into account the
drum as a structure but only as an external support to the dome. Non axisymmetric
domes have been considered in (Lucchesi et al. 2007) on the basis of a no-tension
constitutive elastic model for masonry (Del Piero 1989; Como 1992). All these
approaches neglect the actual texture of masonry, that is, the orthotropic directions
of the material, so that it is always necessary to verify that the results are compatible
with the actual brickwork texture (which is not easy to identify). Such a limit has
been recently cleared up in (Milani et al. 2008), which takes into account the effect
of masonry texture by means of proper homogenization techniques of the repetitive
cell of solid clay brickwork.

In this present chapter we present the results of both a kinematic and a static
approach of limit analysis of the dome of the Basilica of S. Maria Assunta in
Carignano in Genoa, in order to verify the applicability of such procedures to
complex geometries and to obtain information about the mechanical response of
the dome-drum system and of some of its parts. The no-tension model assuming
no shear collapse is assumed, along with the hypothesis of vanishing hoop stresses
(see for instance, Oppenheim et al. 1989), due to the large meridian cracking. The
analysis aims at identifying the effect of the geometric shape on the equilibrium of
the dome and its dependence on the material strength under the dead weight only
since it is by far the largest load acting on a dome.



On the Statics of the Dome of the Basilica of S. Maria Assunta in Carignano, Genoa 103

Due to the geometric complexity of the drum, only axisymmetric collapse
mechanism could be tested for the kinematic theorem, while the safe theorem
has been applied taking into account as well a reduced compressive strength for
masonry, assuming a 1/8 scale model of the dome.

2 The Basilica, The Dome, The Drum

The Basilica of S. Maria of Carignano (Fig. 1) was built between 1552 and 1602
in Genoa after a design by Galeazzo Alessi (Ghia 1999, 2010). The dome consists
of two concentric ogival shells connected in their upper parts by the ring at the
base of the lantern, supported by the drum, and connected by flying buttresses, steel
chains and two helicoidal stairs, which represents a typical Renaissance dome very
similar to the small temple by Bramante in S. Peter in Montorio, Rome. The interest
in the monument is due to the widespread cracking in the dome and in the drum
that was recorded approximately a century ago (De Gasperi et al. 1907) and has
increased since then, raising serious concern about the building’s safety. It is not
known whether the cracks appeared shortly before 1907, or formed some years after
the completion of the dome. Archival research has demonstrated that no structural
analysis was performed on the basilica in either ancient times or in recent years,
with the exception of Baldacci and De Maestri (1975).

Fig. 1 Basilica of S. Maria of Carignano
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2.1 History of the Church

The history of the basilica (Ghia 1999, 2010) dates back to 16 October 1481, when
Bendinelli I Sauli (d. 1482), head of one of the outstanding families of the city of
Genoa, in his will leaves to the family 2410 Liras for the building of an important
church; the will stipulated that only the interest on this sum only could be used
to this aim, and not until 60 years after his death. The design of the church was
entrusted to Galeazzo Alessi on 7 September 1549. The friendly collaboration of
the Sauli family with Alessi—unusual for the times—Ilasted till 1570, when Alessi
retired, and gave the architect almost total freedom in the design of the Basilica.
The basilica was located on the Carignano Hill, where the Sauli family already had
some properties. In those times the site lay outside the city, but nowadays it is in the
city centre. The history of the church can be divided into several periods:

1549-1551: design, purchase of the areas, preparation of the building site

1552-1570:  building of the most part of the church, except for the two bell towers
and the dome

1570-1602: building of the bell towers and of the dome

1602—-1900:  completion of minor works and ordinary refurbishment

1900—present:  concern for the crack pattern in the dome, WWII damage and
related repairs.

Here is a brief list of the most relevant events:

10 March 1552:  excavations for the foundations start. According to the account
books, the excavations reached the depth of 8-10 m. in the north side and 14 m.
almost uniform on the south side. Foundations completed by December 1558.

1561: the roofs are initiated, supported by a series of parallel walls supported by
the vaults of the Basilica.

March 1563:  the outer pillars are completed (Fig. 2).

1564-1565: financial problems almost stop the works.

1566-1567: large part of the roofs, the drum and the dome are still unbuilt. Alessi
gives details of the drum, most of which were lost.

1568-1570: a dramatic plague in the city substantially stops the works. However,
by the end of 1570 the drum is completed. In 1570Alessi retires.

30 December 1572:  Galeazzo Alessi dies. By that time part of the roofs, the dome
and the four bell towers were still unbuilt.

12 January 1574: building of the first bell tower is decided. Comparing the
original drawing by Alessi (Fig. 3), to the actual bell tower (Fig. 1), we
can deduce that financial problems forced the family to simplify the original
decorations designed by Alessi. The original four bell towers were reduced to
the two of the main facade are simplified.
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Fig. 2 Original drawing by Alessi showing the large pillars to be completed in 1562-1563 (Ghia
2010)

1574-1590: decorations and the second bell tower absorb all the financial capa-
bility of the Sauli family.

15 September 1594:  the city council forces the Sauli family to complete the
church with the last element, the dome, which is thus started 25 years after the
last contribution by Alessi. This shows that any settlement of the foundations and
creep response of the structures supporting the dome should not be considered as
causes of the crack pattern.

Late 1595—spring 1596: the dome is started

1602: the dome is complete

When compared to similar structures by Alessi—above all Santa Maria degli
Angeli in Assisi—the dome (solid clay brickwork) and the drum (stone masonry)
clearly show his extraordinary design capacity: the circular drum is supported by
four pendentives and arches on four pillars of irregular hexagonal shape (Fig. 4).

The dome consists of two concentric shells: the inner one, with a diameter of
about 14 m and thickness of 1 m, is the main support of the lantern (diameter
5 m; height 9 m); the outer shell, 17.6 m in diameter, is much lighter, 25 to 30 cm
thick and apparently carries only the covering. The two shells are connected by
five elements: (i) the drum at the base through a stiff ring with a narrow internal
inspection tunnel; (ii) the ring sustaining the lantern at the top; (iii) a dozen small,
irregularly spaced flying buttresses; (iv) the stairs reaching the lantern from the drum
and running in between the two shells along a helical route; (v) some steel chains
(nowadays broken) of unclear origin.
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Fig. 3 Galeazzo Alessi
(attributed), original drawing,
original bell tower (Ghia
2010)

The drum consists of two cylinders: the inner one, 1 m thick, is a cylinder with
eight symmetrically distributed windows; the outer one, 20 m in diameter, is actually
a colonnade, separated from the inner cylinder by an ambulatory, consisting of eight
pairs of pillars connected one to the other by deep round arches; the two concentric
elements are locally connected by radial masonry walls (Figs. 4 and 5). Further
information about the history of the basilica and its geometry can be found in
(Brencich et al. 2014).
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Fig. 4 North-south (approx.) section of the basilica

2.2 The Crack Pattern in the Dome

Several meridian cracks affect the inner dome, some of which extended up to the
base of the lantern (upper ring), as in similar cases (Di Pasquale 1979; Heyman
1988; Como 2010, 2013), while many cracks originate in the drum (Figs. 6 and
7). This latter issue is quite unique to this dome and is not commonly reported for
other similar cases. The crack pattern is not recent, since monitoring of the cracking
started in approximately 1907 according to a detailed technical report on the crack
pattern and on the safety of the structure (De Gasperi et al. 1907), where a detailed
geometric description of the dome is provided, including the crack pattern, the
irregular distribution of flying buttresses and the steel chains connecting the outer to
the inner dome. Actually we know that the crack pattern in 1907 consisted in eight
major cracks, one per window (no information is available on the crack opening),
and the steel chains connecting the inner dome to the outer dome were all broken.
Assuming that the cracks in the dome were dangerous for the dome safety, the
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Fig. 5 (a) View, plan and (b) sections of the drum and dome

engineers suggested substituting the corroded chains, placing one confining chain
at the base of inner dome on its outer surface and a second confining chain half the
way to the top of the dome and connected to the first one by steel connections, and
plastering all the cracks.

According to a handwritten note on the document, only the hooping tie at the
base of the inner dome was done through a steel plate 250 x 10 mm hosted in the
inspection tunnel at top of the drum. Sometime between 1907 and the present, it
appears that some plastering of the cracks was performed.

The last analysis of the crack pattern of the dome dates back to 1975 (Baldacci
and De Maestri 1975), when a detailed survey was performed and some structural
analyses, including pioneering FEM analyses, were performed.

The crack pattern (Figs. 6 and 7) consists of: meridian cracks through the
thickness of the inner dome from the base of the lantern to the drum, and cracks
limited to the surface of the shell widespread across the dome except for the
upper portion of the shell, which remains undamaged. There are essentially four
penetrating large cracks (close to windows 1, 3, 5 and 7) which seem to be somehow
correlated to the brick arches connecting the crowns. The continuity of some cracks
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Fig. 6 Major cracks on the intrados of the (inner) dome. View from the floor of the basilica

from the drum to the base of the lantern suggests that these elements are not
independent each other.

According to the available documents, it seems that cracks in the inner shell
developed in some unidentified period between 1907 and 1975, while they seem
stable from 1975 until now, which suggests that the increase of the crack pattern
from 1907 is not be independent from the damage inflicted during World War II.

The crucial issue now—as for all the cracked domes—is whether the crack
pattern affects the structural safety of the structure, which requires the causes
of cracking to be identified or, at least, to be rationally conjectured. Material
degradation, due to environmental actions, is another issue that the assessment of
the dome needs to take into account. In what follows, some hints are discussed on
the basis of classic limit analysis approaches, aiming both at discussing the dome
safety and at identifying its mechanical response and the role of its elements.
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Fig. 7 Major (red) and minor (blue) cracks on the intrados of the drum and of the inner dome.
Windows are numbered 1-8 as in Fig. 6
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3 Simplified Limit Analysis of the Dome

The equilibrium of the dome-drum system, and the collapse mechanisms, are
studied by limit analysis approaches that, despite their limits, may help and
guide more detailed (but also computationally demanding) numerical methods. The
applicability of limit analysis to masonry structures has already been discussed in
(Kooharian 1952; Heyman 1966; Como 1992; Del Piero 1989) and is commonly
accepted as a tool for the structural analysis of masonry structures. In what follows,
only gravity loads are considered since snow and wind pressure are negligible in
comparison to the self-weight of the dome. Further, seismic and thermal loading are
not considered, since they require specific procedures that are outside the scope of
this paper

Masonry is assumed to be a no-tension material: no shear collapse is activated
(Heyman 1966) and the compressive strength is assumed either unbounded or is
given a finite value. This latter constitutive model is given only to the columns of
the outer colonnade of the drum, where material degradation is more likely, thus
affecting the residual life of the dome. Under these assumptions, limit analysis
may provide information on the existence of equilibrium conditions for the cracked
dome-drum system, not the safety margin of the structure.

This approach appears to be quite simplified if compared to the detailed results
provided by FEM models, but it must be noted that FEM models require a very
detailed knowledge of the structure (internal geometry, mechanical parameters
for all the materials, internal texture, building sequences; see Bacigalupo and
Gambarotta 2012) which are not always available and, in some cases, impossible
to obtain.

One of the simplifying assumptions requires the inner and outer shells to be
independent from the base up to the lantern, ignoring the interaction between the
shells due to the connecting flying buttresses and helical stairs and neglecting the
shear transfer that may still take place across open cracks.

3.1 Collapse Mechanisms

For the kinematic approach to be applied different local and global collapse
mechanisms need to be considered in order to investigate the dome-drum inter-
action, according to Como (1997) with reference to the case of St. Peter’s in
Rome. Collapse mechanisms are identified assuming meridian cracking, that is, the
kinematic counterpart of the static hypothesis of vanishing hoop stresses o, = 0.
Furthermore, we assume the dome-drum system to be axisymmetric, the arches
above the ambulatory being included in the base ring of the dome by proper
averaging of the cross section. Such an approximation simplifies the geometric
model but makes it impossible to identify the path of the internal forces in the
outer colonnade once the thrust line is identified in the averaged section. The
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axial-symmetric and the meridian cracking approximations allow a segment (an
“orange slice”) of the dome to be considered as the reference unit. Compatibility
in the compressed parts require the hoop strain rate ¢, = Vv,/R to be positive, V,
being the radial velocity at the end of radius R. As a consequence only positive
radial displacements (i.e., directed outside the dome) are admissible in a collapse
mechanism, v, > 0. The upper dot for displacement and strain rates is omitted from
now on for simplicity.

Under these assumptions, a collapse mechanism for the reference slice of the
dome is obtained introducing enough hinges in the slice to reduce it to a mechanism.
The concept of no-tension hinge in a dome slice is the extension of the concept
of plastic hinge for arches (Heyman 1988): hinges are located in those sections in
which relative rotations along a line (instead of a point, as for arches) are located.
Plastic deformation may take place in the compressed part of the hinge due to the
eccentricity of the axial thrust, even though the traditional approach assumed that
the collapse mechanism is activated far from material compressive strength, thus
plastic deformation is not expected or is expected to play a minor role.

If we call b the actions on the dome (i.e., gravity forces per unit volume,
17 kN/m?), a kinematically admissible displacement rate field v allows the definition
of the external power P,,; to be given as:

Poy= [b-vav= [b-v av+ [bevtav=PL+P,, >0, (D)
B B~ B+

where B~ and B are the parts of the structure B where the displacement rate field
v acts equal (b - v— > 0, v- downwards velocity, positive power) and opposite (b -
v < 0, v upwards velocity, negative power) to the direction of the body forces b,
respectively. Defining P;,, the power of internal forces due to the plastic deformation
rates in the steel chain and in the compressed parts of the hinges, the kinematically
admissible displacement rate field v turns out to be the collapse mechanism if P,,; =
P Conversely, the collapse is not attained for all the kinematically admissible
displacement rates for which:

Pint_Pe_xt _ Prex
Pj,—\:t Pacr

=n>1, 2

where the positive contribution of the external power P, is the active power Py

and the difference P;,, — P,,,, which is an algebraic operation that sums up the
stabilizing contributions of the resisting and internal forces, is called the resisting
power P. The ratio n can be considered a safety parameter that need to exceed
unity for structural safety to be guaranteed (Brencich et al. 2001; Gusella et al.
2012). Nevertheless, 1 is not a safety margin since Eq. (2) is simply a balance
between stabilizing and non-stabilizing powers that does not refer to the ultimate
load or to the actual collapse mechanism. In fact, we can expect that the larger
the ratio 7, the higher the structural safety, since large values for n mean that
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the specific displacement rate field considered is far from the actual one, but no
direct correlation between n and a safety margin can be established since the actual
collapse mechanism might not be (and in general is not) the mechanism considered
in the kinematic approach, and might depend greatly on the material compressive
strength.

If the material is assumed to be no-tension (no plastic deformation is included
in the model), as is usual in applications of kinematic limit analysis, the power P;,,
of the internal forces vanishes and Eq. (2) results in a balance between the positive
and negative powers of the external forces (dead loads in this case). In practical
applications, Eq. (2) can be verified on a number of selected collapse mechanisms
only, so that structural safety can only be conjectured from this kind of analysis.

Figures 8 and 9 show two kinematically admissible collapse mechanisms
corresponding, respectively, to a local mechanism involving the two domes only and
a global mechanism involving both the domes and the drum. For these mechanisms
to be kinematically admissible two conditions need to be respected: (i) equal
vertical displacement rates of the upper parts of the two shells due to compatibility
conditions at the base of the lantern; (ii) local mechanisms involving only the outer
shell are not possible since the two shells of the dome cannot approach one to
another due to the flying buttresses and the helicoidal stairs in-between the two
shells and due to compatibility conditions in the hoop direction. Among all the
mechanisms related to the dome only, the one of Fig. 8 makes 1 2; this suggests
that, in the framework of kinematic limit analysis and under its assumptions, the
dome should be safe. Since kinematic limit analysis is an upper bound approach,
and due to the strong assumptions that are needed for limit analysis to be applicable
to masonry structures, this value is not exactly comfortable.

The global mechanisms of Fig. 9a, involving both the shells and the drum,
assume the vertical displacement rates of the lantern H and of the drum (ring D),
named §; and §, respectively, as ruling quantities. The relative rotation centres
between the domes-drum and drum-base are assumed exactly in the corners of
the lower pillars (Fig. 9b), which is possible only under the assumption of infinite
compressive strength of masonry. Further, in the kinematic model the power
dissipated by the hooping circumferential tie (inside the tunnel at the base of the
dome, resulting from the 1907 investigations) has been taken into account. For the
steel chain is has been assumed f;, = 100 MPa, contributing to the internal dissipated
power as Py = f,érA., with Ac =250 mm? and ¢, the hoop strain rate in the tie.

The assumption of rigid body motion for blocks E (drum) and F (external
colonnade) maximizes the vertical uplift of the drum D and of most of the other
parts of the dome slice. Thus the resisting power of the dead loads and the ratio
n are maximized, the latter reaching a value not lower than 7. It seems that we
can conclude that a structural failure due to dead loads has to be excluded but
the assumption of infinite compressive strength for masonry is quite severe and
unrealistic. For these reasons, another mechanism derived from that of Fig. 9 is
considered, differing in that the hinge at the base of the drum and of the colonnade
are located not on a corner but at 1/4 of the element width (Fig. 9c); the global
mechanism remains that of Fig. 9a. Applying Eq. (2), a minimum value is obtained
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Fig. 8 Kinematically admissible mechanisms for the dome with hinges in both the shells.
Diagrams represent the vertical component of the velocity field

for n 2.15. Even though the structure is still safe, such a great change 1 shows that
the safety of the dome-drum system strongly depends on two factors: (i) the dead
weight of the drum, which provides a stabilising contribution; (ii) the compressive
strength of masonry of the external columns, which accounts for the position of
the hinges, which appears to be of critical importance since the pillars are liable to
environmental degradation due to exposure to rain and frost.
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3.2 Admissible Equilibrium States

The safe theorem guarantees the structure to be safe provided that a statically
admissible stress field can be found (Heyman 1988), that is, if an equilibrium
configuration, coherent with the material constitutive load, can be found. In this case
as well, only an estimate (but conservative, in this case) of the safety margin can be
performed. This approach, which is admissible provided that frictional sliding is not
activated (D’ Ayala and Tomasoni 2011), is again applied assuming the constitutive
model of a no-tension material with unbounded compressive strength for masonry.
In the case of the dome and drum of the Basilica of S. Maria Assunta in Carignano
the set of equilibrated forces is complex due to the geometric complexity of the
structure and to the large number of restraints of the system.
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Fig. 10 1/8 slice of the dome, blocks into which it has been divided and internal forces

The whole set of external and internal forces that need to be considered for the
equilibrium of the dome-drum system is represented in Fig. 10. The regularity of the
openings and of the colonnade allow consideration of 1/8 of the dome ( /4 angle).
The statically admissible distribution of internal and external forces equilibrated
with the dead loads, assume vanishing hoop stresses, either tensile and compressive.
This latter assumption would be quite strong for solid domes but is reasonable for
domes with an oculus, such as the one analysed in this paper, where the weight of
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the lantern makes the transversally compressed part of the dome reduced almost to
the ring at its base (Oppenheim et al. 1989).

According to the material density (17 kN/m?) the weight of the main parts of the
dome are: (i) ring at the base of the dome: W4 =2595 kN; (ii) lantern: W, = 150
kN; (iii) outer shell: Ws¢ = 553 kN; (iv) inner shell: W =755 kN.

The statically admissible distribution of internal and external forces, coherent
with the external restraints, is built from the upper part of the dome imposing the
equilibrium of the lantern on the top of the two shells (Fig. 11).

We assume that the stress state is axysimmetric; as an exception to the vanishing
hoop stress assumption, we need to assume compressive force, C; and C,, on the top
of the shells to sustain the lantern. At this point, forces Wy, W&, Wg are known while
forces W¢ = (1 —a) Wy, and W} = W, represent the ratio of the dead load of the

Fig. 11 Lantern and the two r
ogival shells of the dome
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lantern sustained by the external and inner shell, respectively. The parameter a€ [0,
1] is unknown, as are the vertical forces R; and R,, their application points and the
horizontal forces H; and H,, representing the horizontal reaction of the drum on the
dome.

If we impose the global equilibrium of the inner and outer shell (six independent
equations and nine unknowns (a, C;, C,, R;, R, A, B, H;, H,), the problem is three
times over-constrained; for which o, H; and H, can be assumed as independent
quantities. It is easy to observe that H, = 2C,sin (7/8) = V1 — V/2C4, a=1, e.
The assumption of vanishing tensile strength for the material makes the thrust
surface, which is a surface of revolution, lie within the meridian section of the shell.
The thrust line in the shells can be found by means of a trial-and-error procedure:

i. the points at the top of the shells where the weight of the lantern is applied are
assumed (Fig. 12);

ii. initial values for a, H; and H, are assumed and the subsequent thrust line is built;

iii. values for o, H; and H, are corrected in order to set the thrust line completely

inside the meridian section of the shells or, at least, tangent to the internal or

”;

Fig. 12 Thrust lines/surfaces in the internal and external shells
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external surface of the shells (Fig. 10), which can be expressed by a linear system
of inequalities:
iv.

Sisq+1£,<0 3)

where s; ={a, H;, H. }, S; and f; are the static matrix and the force vector of
the weight of the lantern and of the dome, respectively.

The number of rows of S; and f; equals the number of sections considered. In
Fig. 12 the thrust lines represent the case « = 0.8, H; =115.3 kN/rad, H, = 61.6
kN/rad. The thrust lines are in good agreement with the collapse mechanism of
Fig. 6 since the plastic hinges are located precisely where the axial thrust is tangent
to the surfaces of the two shells. For the external shell, the admissible thrust line
requires the horizontal force H, to lie inside a very narrow range: H, € [61.7 kN/rad;
61.9 kN/rad], while the admissible range for H; is much larger: H; € [115.3 kN/rad;
160.4 kN/rad].

The drum is first considered referring to its upper part, a ring sustaining the dome
(Fig. 13) and block D of Fig. 9, inside which there is the tunnel where the steel tie
has been found. The lower part of the drum and the columns of the outer colonnade
are considered separately, as in Fig. 10. The equilibrium of the ring of Fig. 13 is
given by the vertical R;, R, and horizontal forces H; and H,, transferred by the dome
to the drum, the weight W, of the ring, the tensile force T in the steel tie in the inner

Fig. 13 Ring at the base of the dome and related forces
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Fig. 14 (a, left) internal forces of the outer columns and of the lower part of the drum; (b, right)
reference section for the lower part of the drum

tunnel and the internal forces N;, V;, M;, and N», V>, M, (Fig. 14), due to the outer
pillars and to the lower part of the drum.

Equilibrium of the block of Fig. 13 provides three equations for seven unknowns
(T, N;, Vi, M;, N>, V,, M), the tensile force in the steel tie T and the internal
forces s.; = {N;, V;, M;} related to the outer columns (Fig. 14), are assumed as
independent quantities. The internal forces at the base of the columns are linearly
dependent on the internal forces on the upper section of the columns (Fig. 14a), that
is, on the vector s.;. Therefore, the internal forces (N;, M;), i = 1, 4, at the top and
at the base of the columns and of the drum, represented in the vector o = {N;, M,
N>, M, N3, M3, Ny, M4}T depend linearly on the vectors s; and s.; of the unknown
forces and on the tensile force T in the steel tie:

o =Ays; +aT + A.sy + £, 4)

where A, and A, are static matrices, a is the static vector of the unknown forces
S4, S¢; and the unknown tensile force in the steel tie 7, vector f,. collecting the dead
loads.

The plastic condition for the steel tie is directly expressed by inequality :

T <T,, )
with Ty, = A f, f, = 100 MPa and A, = 250 mm?, internal forces have to be checked

with regards to the vanishing tensile strength of the material and compressive plastic
limit condition set for masonry. This latter condition is checked in the sections
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shown in Fig. 14b. For unbounded compressive strength, the compressive limit
condition is:

h
H(N.M) = M| - -N =0, (6)

where / is the thickness of the column or of the internal wall of the drum, both under
eccentric loading. In case a finite compressive strength is given to the material, the
plastic limit domain, in non-dimensional form, is described as:

H(N.M)=M+2N(1+N) <0, (7)

where N = N/N,, M = M/M,, N,, =bh fy, m, = 1/4 bh? fy, (Brencich et al.
2008). If the condition for plastic admissibility are combined with Eq. (1), related
to the thrust surface, we obtain a series of inequalities on the independent static
variables s; and s.; and on the tensile force T in the steel tie:

Bys;+bT +B s, +g <0, (®)

The feasible domain in the space of the unknown quantities {a, H;, H,, T,
N;, Vi, M;} defined by Eq. (8) is a polytope and its existence as a non-void
domain guarantees that equilibrium is possible and, therefore, the structure is safe
in the sense provided by the safe theorem. Vice versa, if a polytope satisfying
conditions (8) cannot be found, we cannot say that the structure is not safe (i.e.,
that equilibrium cannot be reached), and that other, more detailed models, looking
for other plastically admissible states, need to be formulated.

We now assume o = 0.8 and the minimum admissible horizontal thrust,
H; =115.3 kN/rad, H, = 61.7, which set the thrust surface contained inside the
thickness of the outer and inner shell simultaneously, and estimate the effect of
tensile force T on the polytope of the feasible domains in the reduced space of
forces {N;, V;, M;} describing all the equilibrium states (N;, V;, M;). Figures 15 and
16 show a brief description of the polytopes admitting equilibrium states; they are
related to the dome-drum system for compressive strength of masonry fj; assumed
of 10 and 2 MPa, respectively.

Each polytope is referred to a different value for T in the plane (N;, V;) for
different values of M;. The polytopes of Fig. 16 are almost the same as those for
unbounded compressive strength (therefore omitted). If we compare the polytopes
corresponding to a reasonable value of traction 7, representing the effect of the
hooping tie (left column of Fig. 15) to the polytopes in absence of the hooping
tie (right column in Fig. 15), it is clear that the hooping tie greatly enlarges the
admissible polytopes, that is, the number of possible settings providing equilibrium.
Similar comments can be deduced from Fig. 16 where the reduced compressive
strength for masonry greatly reduces the extension of the polytopes. A compressive
strength lower and very close to 2 MPa would reduce the smaller polytope (last
row, right column of Fig. 16), related to the dome without the hooping chain, to a
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Fig. 15 Feasible domains in the {N;, V;, M;} space for different values of the tensile force 7 in
the steel tie and for masonry compressive strength f3; of 10 MPa

vanishing area. According to the safe theorem, this does not mean that equilibrium is
not possible, but that more detailed models are needed if safety has to be guaranteed.

Nevertheless, such an approach provides some useful information on the effects
of material degradation due to environmental actions: if material strength decays,
the possibilities of admissible polytopes is reduced, which is a crucial issue since
the most intense degradation takes place in those parts of the drum and of the pillars
where the stress state is more severe.
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Fig. 16 Feasible domains in the {N;, V;, M;} space for different values of the tensile force 7 in
the steel tie and for masonry compressive strength of 2 MPa

4 Conclusions

The assessment of masonry domes is a challenging and substantially unsolved
issue for several reasons: (i) brickwork is anisotropic, quasi-brittle, and difficult to
model; (ii) transversally compressed masonry, due to the high values of the friction
coefficient, exhibits a non-vanishing tensile strength which largely depends on the
amount of transversal compression; (iii) the actual brickwork texture in the shells
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is substantially unknown; (iv) equivalent mechanical properties of masonry are not
easily defined. For all these reasons the assessment of a dome structure needs to
assume several different structural models and assessment procedures, so that the
final response can be based on the comparison between the different outcomes.

Assuming the dome to be axisymmetric and masonry to be no-tension with
vanishing hoop stresses, an “orange slice” (Heyman 1967; Oppenheim et al. 1989)
of the dome can be considered if dead loads are the main concern. The static
approach showed that a thrust line contained within the shells of the dome-drum
system can be found, providing an average compressive stress at the base of the
drum of 0.5 MPa, thus concluding for the safety of the structure. The kinematic
procedures confirm this conclusion showing that the ratio between stabilizing and
active powers is never less than 2. Further, limit analysis procedures shed light on
the stabilizing effect of the dead weight of the drum, which is shown to be a crucial
element for the stability of the structural system, and of the hooping chain, thus
indicating a strategy for retrofitting this type of structures without invasive works
that would seriously threaten the cultural value of the monument.

The safety assessment of the dome-drum system is only partially fulfilled since
this present analysis gained a deeper insight only into the effects of axisymmetric
loads (i.e., dead loads), leaving completely open the issue of non-symmetric loads,
such as wind and thermal loads.
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The Panthéon’s Stability Already Questioned
by Pierre Patte in 1770
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Voyez le Panthéon, Voyez les Tuileries, Le Louvre et I’Odéon,
Notre-Dame jolie. De tous ces monuments, la France est
orgueilleuse, Elle en doit I’agrément, Aux magons de la Creuse.
(See the Pantheon, see the Tuileries, the Louvre and the Odeon,
lovely Notre Dame. Of all these monuments, France is proud,
She must give her approval, to the masons of the Creuse).

La chanson des magons de la Creuse

Abstract Conceived and begun by architect Jacques-Germain Soufflot in 1755,
the construction of the Church of Ste. Geneviéve (later the Panthéon) in Paris
was continued after his death by Jean Baptiste Rondelet. This impressive structure
was the object of various publications. As early as 1770, Pierre Patte pointed out
problems of its stability in his Mémoire sur la construction de la coupole projettée
pour couronner la nouvelle église de Sainte Geneviéve a Paris. This was the
beginning of a polemic regarding the structure’s stability that involved some of the
greatest scholars and architects of the day, and which was fundamentally a quarrel
between tradition and new ideas.
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1 Preamble

Writing about the life, work and aesthetics of Jacques-Germain Soufflot (1713—
1780), Jean Mondain-Monval had this to say:

We might say that the church of Ste. Genevieve was the result of a lifetime of work, the
fruit of thirty years of meditation: all the notes and measurements taken by Soufflot on
many churches, both in France and Italy, all memories and reports presented or read by
him at the Academies of Paris and Lyon were in his eyes only the justification for the great
novelty he wanted to bring to Architecture. !

What novelty did Soufflot have in mind? In a letter written to le Comte de la
Billarderie d’ Angiviller, Directeur et ordonnateur general des batiments du roi, Jean
Baptiste Rondelet (1734-1829) gives the answer:

The main purpose of Mr. Soufflot in building his church was to unite, in one of the most
beautiful forms, the lightness of Gothic buildings with the purity and magnificence of Greek
architecture.”

Although it may appear rather surprising to talk of lightness when speaking about
the Panthéon, I’ll nevertheless try to explain the sense in which this quotation must
be understand. But first, here is another quotation to consider. Writing some 75
years after Mondain-Monval, Robin Middleton, Jean Rondelet’s biographer, seems
to underline a completely different aspect of Soufflot’s work:

The church of Ste. Geneviéve, now known as the Panthéon, provoked more interest, stirred
more polemic, than any other building in the second half of the eighteenth century. The
interest, moreover, was wide in range. The formal qualities of its architecture were as
demanding of attention as its structural daring. It radically changed the contemporary
understanding of architecture (Middleton 1993, p. 224).

Is it possible to find a link between those two affirmations? Leaving aside the
formal qualities, as well as historical and sociological discussions, I'll try to show in
what manner the polemic around the Panthéon’s structural daring radically changed
the contemporary understanding of stability, paving a new way to lightness. I won’t
go into the crucial discussions about the resistance of materials also raised by that
polemic, but will instead restrict myself to the fundamental laws of statics used
to study stability. I also won’t enter into historical details, as this was accurately

'0n peut dire que I’église Sainte-Geneviéve a été le résultat de toute une vie de travail, le fruit de
trente ans de méditation : toutes les notes et mesures prises par Soufflot sur de nombreuses églises,
tant en France qu’en Italie, les mémoires et rapports présentés ou lus par lui aux Académies de
Lyon et de Paris n’étaient a ses yeux que la justification de la grande nouveauté qu’il voulait
apporter en architecture (Mondain-Monval 1918, p. 423).

2Le principal objet de M. Soufflot en batissant son église a été de réunir; sous une des plus belles
formes, la légereté de la construction des édifices gothiques avec la pureté et la magnificence
de 'architecture grecque. The letter is reproduced in (Middleton and Baudouin-Matuszek 2007,
pp- 302-306). The sentence is frequently quoted (Mondain-Monval 1918, p. 423) attributes it to
Brebion, another pupil of Soufflot.
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documented by Robin Middleton and Marie-Noelle Baudouin-Matuszek in their
biography of Jean Rondelet (2007), Soufflot’s spokesman.
This present chapter will be divided into the following parts:

. Presentation of the polemic and of its protagonists;

. A brief summary of the history of the mechanical principles of statics indepen-
dent of science of construction;

3. The eight anonymous articles in the Histoire de I’Académie royale des sciences

as evidence of the dissemination of the parallelogram law of forces;

4. A less brief summary of the history of stability in the context of architecture;

. The polemic as quarrel between tradition and new ideas.

6. Conclusion

N —

W

2 Presentation of the Polemic and of Its Protagonists

In 1755, Jacques-Germain Soufflot was put in charge of elaborating plans for a
church dedicated to Ste. Genvieve to be erected on the Ste. Genevieve hill, near the
Jardins du Luxembourg. The same year, Soufflot gave a first version of the plans,
which showed isolated columns supporting the vaults and four piers underpinning
the dome; iron armatures inserted into the masonry were to reinforce the structure.

The following year, when work started to hollow out the foundations, the remains
of a pottery factory were found, including 75 wells that have been dug to extract
the clay to make the pottery. Soufflot bricked them up to insure the foundations,
obtaining a series of 75 piles.> Rondelet explained this to the Comte d’ Angerviller
in 1780:

The first care of Mr. Soufflot was to ensure the ground; in doing research on the subject, he
found that the space his Church was to occupy, was riddled with an infinity of filled wells,
which had been dug earlier to extract the earth for pots ... all of these, some of which
were to 80 feet deep, were excavated again and filled with solid masonry made of moilons
[blocks] and libages [large stones] to the height of the lowest foundations, which are about
20 feet from the pavement of the square.*

3Patte gives the number as 150 piles in his Mémoires (1769, p. 178).

“Le premier soin de Monsieur Soufflot a été de s’assurer du sol ; en faisant des recherches a
ce sujet, il trouva que ’espace que devait occuper son Eglise, etoit criblé d’une infinité de puits
comblés, qui avoient autrefois été creusés pour tirer de la terre a pots ... tous ces puits dont
quelques-uns avoient jusqu’a 80 pieds de profondeur furent fouillés de nouveau et remplis de
magonnerie solide en moilons et libages, jusqu’a la hauteur des plus basses fondations, qui sont
environ a 20 pieds du pavé de la place (Rondelet 1780; see also Middleton and Baudouin-Matuszek
2007, p. 302).
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In doing so Soufflot respects the first point of his list of criteria for a building’s
stability:

The strength of a building like Ste. Genevi¢ve depends on four principals causes,
which are

1. The firmness of the soil;

2. The good construction of the foundations that establishes it;

3. The appropriate proportion of its walls and its points of support relative to the
load that must be borne;

4. The equilibrium of vaults and the intimate union of all these parts.’

Rondelet continues with his description of the way the foundations were built:

The foundation of all walls and solid parts were built of /ibages [large stones] and below
all free-standing columns cut stone piers six feet square were erected, with rusticated
facing, which formed links in all directions, and to bind and maintain these together, they
built between them block walls three feet thick. Although these walls were erected on the
foundation block, they were built on two beds of stones cut into voussoirs that together
formed a reversed double arch. These arches were built to make pressure more uniform and
advantageous, acting on a larger area and to transfer part of the load of a pier, which would
carry a bigger weight, to those surrounding it.%

Even the architect Pierre Patte (1723-1814), architecte de S.A.S. Mgr. le Prince
Palatin Duc régnant de Deux-Ponts, as he described himself, and a fierce opponent
of Soufflot’s Ste. Genevieve, as we will see below, praised these foundations in
his book Mémoires sur les objets les plus importants de 1’Architecture, giving a
careful description of the foundations and of the piles and an illustration (Patte 1769,
pp. 176-187 and P1. IV) (Fig. 1).

Slowed down by the Seven Years’ War, progress was delayed until 1764, the
year in which King Louis XV laid the foundation stone, before the foundations
were finished and work could begin with the surrounding walls as well as with the

3 La solidité d’un Edifice tel que Ste Geneviéve depend de quatre causes principals qui sont

1° La fermeté du sol ;

2° de la bonne construction des fondemens qu’on etablit dessus ;

3° de la juste proportion de ses murs et de ses points d’apuis relativement a la charge qu’ils
doivent porter ;

4° de I’équilibre des voiites et de I’union intime de toutes ces parties (Rondelet, quoted in
Middleton and Baudouin-Matuszek 2007, p. 302).

SLes fondations de tous les murs et massifs furent construites en libages et audessous de toutes
les colomnes isolées on eleva des piliers de six pieds au quarré, en pierre de taille, a paremens
rustiqués qui formoient liaisons sur tous sens, et pour lier et entretenir ces piliers les uns avec
les autres, on construisit entre eux des murs en moilons de trois pieds d’epaisseur; quoique ces
murs fussent posés sur le massif general ils furent erigés sur deux assises de pierres taillées en
voussoirs formant ensemble un double arc renversé, on construisit ces arcs pour rendre la pression
plus uniforme et plus avantageuse en agissant sur une plus grande superficie et pour transmettre
une partie de la charge d’un pilier qui porteroit un plus grand poid sur ceux qui seroit autour
(Rondelet quoted in Middleton and Baudouin-Matuszek 2007, p. 302).
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Fig. 1 The piles of Souflot’s foundations for Ste. Geneviéve, from figure 5 in Pl. IV in Patte’s
Mémoires sur les objets les plus importants de I’Architecture (1769)

columns that had to be inserted in them (Mondain-Monval 1918, p. 448):

On such solid foundations Mr. Soufflot could execute a light construction that gave all the
walls and support points only the dimensions necessary relative to their heights with respect
to the weight that they ought to bear. That is why he lightened his walls by piercing them
with arches, but he connected the construction in such an ingenious way, especially the
perpendiculars of architraves and vaults, that in these places it forms a kind of circular net
that supports all parts of the Church. The arrangement of the vaults is so well combined that
the forces of each are directed so as to eliminate the forces of the others.”

7Sur des fondemens aussi solide M. Soufflot a pu executer une construction legere en ne donnant a
tous les murs et points d’appuis que les dimensions necessaires relativement a leurs elevations et
aux poids qu’il devoient porter; c’est pourquoi il a elegit ses murs par des percés des arcades, mais
il a relié sa construction d’une maniere si ingenieuse, surtout au droit des architraves et des voutes,
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In 1769, the walls were erected and the plan of the building became easier to
discern. The next year, Patte published a rather long article criticizing Soufflot’s
work. This work, entitled Mémoire sur la construction de la coupole projettée pour
couronner la nouvelle église de Sainte Genevieve (Patte 1770a) is said to be the
origin of one of the most important disputes concerning architecture. As Middleton
and Baudouin-Matuszek put it:

... the dispute was to erupt again and again, throughout the remaining years of the century,

for a very serious issue was involved: whether established procedures should remain the

basis of structural design, or whether new theory of structures might be formulated, based

on calculation and experimental study of strength of materials (Middleton and Baudouin-
Matuszek 2007, p. 43).

They are right when underlining two aspects of the dispute. The first is theoretical
and began during the building of Ste. Genevieve; the second is experimental and
began later, in 1797, when it was decided to transform the church into a Panthéon.
When new cracks appeared in the piles, rekindling the old quarrel about their ability
to sustain the dome, new articles appeared, such as that of architect Charles Frangois
Viel de Saint Maux (1745-1819), Moyens pour la restauration des pilliers du dome
du panthéon frangois (1797).

In what follows I shall concentrate on the theoretical aspects of the first part
of the dispute, beginning right after the publication of Patte’s Mémoire, analysing
the reactions to it by Rondelet, Emiland-Marie Gauthey (1732-1806) and Jean-
Rodolphe Perronet (1708-1794). The quarrel is the eternal one opposing les anciens
et les modernes, tradition and new ideas. Those new ideas have to do with the
mechanical principles of stability or of statics. I shall attempt to show why did such
principles remain hidden in the Gothic cathedrals so admired by Soufflot, despite
the fact that the designers surely knew them at least intuitively.

3 A Brief Summary of the History of the Mechanical
Principles of Statics, Independently of Science
of Construction

There are two fundamental laws of statics, namely, the equilibrium of the lever the
parallelogram law of forces. The first one corresponds to balance to rotations and
the other one to balance to translations. The first one is translated mathematically by

the sum of momenta being zero: Z ?/I = 0 and the other one by the sum of forces

being zero as well: Z 77) =0.

qu’a ces endroits elle forme une espece d’erayure qui entretient toutes les parties de son Eglise.
La Disposition des voutes est méme si bien combinée que [’effort des unes est dirigé ensorte qu’il
sert a detruire ’effort des autres (Rondelet quoted in Middleton and Baudouin-Matuszek 2007,
p- 302).
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The first one has been known since Antiquity and was enunciated by Aristotle
(4th c. B.C.) and proven by Archimedes (3rd c. B.C.). The second one has a
more tortuous story. A parallelogram law has been known for the displacements
and for the velocities since Antiquity. It was not found for forces until the end of
the Renaissance with Simon Stevin (1548-1620). Nevertheless, it is impossible to
believe that the Gothic cathedrals could have been built without any notion of that
law. Strangely, just as the law of the lever was discovered in Antiquity in the context
of construction, the law of composition of forces was discovered experimentally by
Stevin, Gilles Personne de Roberval (1602-1675) and Christiaan Huygens (1629—
1695), all of whom were studying the way stones or weights could be kept in
equilibrium using ropes.

In one of his main works, Wisconstighe Gedachtenissen (1608), Simon Stevin
gives following explanation (Fig. 2):

But to come to set forth the properties of weights hanging on cords, let AB be a prism,

whose centre be C and which be hanging in the two fixed points D, E, with two lines CD,

CE coming from the centre of gravity C; these lines CD and CE are centre line of gravity of

the prism by the fifth definition. Therefore, if HI were drawn between DC and CF, parallel

to CE, ... Soas Cl is to CH, so is the weight of the whole prism to the weight acting on D.

And in the same way, the weight acting on E is also found, provided there be drawn from

I to CE, the line IK, parallel to DC; we can then say: as the vertical lifting line CI is to the
oblique lifting line CK, so is the weight of the whole prism, to the weight acting on E.®

Fig. 2 Stevin’s
parallelogram law

Qn

80r pour venir & la déclaration de pesanteur suspendiie par cordage. Soit AB une colonne de
laquelle C soit le centre, suspendiie a deux lignes CD, CE (venant dudit centre C) és poinct fermes
D, E, ... parquoy menant HI entre DC, CF, parallele a CE, ... Donc comme CI a CH, ainsi le
poids de la colonne entiére, au poids qui advient en D ; et de méme trouvera-on le poids qui advient
en E, en menant de I jusques a CE, la ligne IK, parallele a DC ; & disant, comme 1’élévation droite
CI, a I’élévation oblique CH, ainsi le poids de la colonne, au poids qui advient sur E (Stevin, 1608,
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Fig. 3 Stevin’s explanation
of the parallelogram law

Two years after the publication in 1634 of a French translation of that work
of Stevin, Roberval gives, without any figure a new expression, a slightly more
generalised statement of Stevin’s theorem which perfectly fits another figure of
Stevin (Fig. 3).

If from any point taken in the direction line of the weight, one leads a line parallel to one

of the cords to the other rope, the sides of the triangle formed will be homologous to the
weight and to the two powers.’

Finally, in a manuscript of Huygens (1667), one finds the decomposition of a
weight into more than two components, namely, seven (Fig. 4).

It wasn’t until 1687, the year in which Isaac Newton (1642—-1727) published
the Principia (1687), that Pierre Varignon (1654—1722) gave the parallelogram law
of forces a fundamental status in statics. In his Projet d’une nouvelle mécanique
(1687), and later, in his Nouvelle mécanique (1725), Varignon proposed replacing
the law of the lever, which had been the fundamental law of statics since Antiquity,
with the parallelogram law of forces.

Finally, a year after the posthumous publication of the Nouvelle mechanique by
Varignon, in which he reiterates and develops his proposal of 1687, Daniel Bernoulli
(1700-1782) gave the first demonstration of the parallelogram law in the case of
forces (1726).

This brief summary shows how long that story was and how difficult it was to
measure the generality and the importance of that fundamental law. It took almost
2000 years to observe the geometrical way in which forces act and to realise that

Byvough der Weeghconst, p. 182; English translation in (Dijskerhuis 1955, pp. 534-535); French
translation in (Girard 1634, p. 505).

98i, de quelque point pris en la ligne de direction du poids, on méne la ligne paralléle i I'une des
cordes jusqu’a 'autre corde, les cotés du triangle ainsi formé seront homologues au poids et aux
deux puissances (Roberval 1636, p. 28).
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(Fig. 25.]

Fig. 4 Huygens exercise with the parallelogram law

forces and velocities obeyed the same geometrical law. It then took eighty more
years to give this law its fundamental character, and another forty years to give a
proof of this law.

4 The Eight Anonymous Articles in the Histoire de
I’Académie royale des sciences as Evidence
of the Dissemination of the Parallelogram Law of Forces

It is only around 1702 that more people began to be interested in the way
forces behave. Between 1702 and 1730, Bernard Le Bouyer (or Le Bovier) de
Fontenelle (1657-1757) published anonymously in the Histoire de I’Académie
royale des sciences six articles concerning constructions: five concerning domes,
one concerning the parallelogram law and two concerning friction, in which he
speaks also of the parallelogram law.'” Each of these articles corresponds to a more
elaborate article in the Mémoires. The authors of these were Antoine Parent (1666—
1716), Philippe de La Hire (1640-1718), Pierre Couplet (16707—1744), Pierre
Varignon and Henri Pitot (1695—-1771). We may conclude that the link between the
parallelogram law and the stability of domes was at the centre of the preoccupations
of many members of the Académie des sciences de Paris.

10These articles appear in the bibliography as follows: Anon. [Fontenelle] (1702, 1704a, 1704b,
1714a, 1714b, 1726, 1729, 1730).
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As early as 1702, Fontenelle, in his introduction to an article by Varignon
concerning the resistance of solids, draws attention to the fact that forces act along
a certain direction and that they compose in a particular mode:

Whenever several forces, united or linked together, or finally changing each other in any
way, act at the same time either to impart motion to a body or to impart to him different or
opposite ones, none of these forces exerts its action through the same line, or what is the
same, in the same direction it would have had, if it had acted alone, but of all specific &
simple directions a composite one is formed, which alone moves the body.!!

In 1704, Fontenelle entitled his second article “Sur la figure de 1’extrados
d’une volte circulaire dont tous les voussoirs sont en equilibre entr’eux” (Anon.
[Fontenelle] 1704a). It shows his particular interest in domes, because the article
doesn’t correspond to any article included in the Mémoires. It in fact corresponds to
an article read to the Académie by Antoine Parent on 7 May 1704, entitled “Des
charges qu’il faut donner aux Voites, afin qu’elles tendent a s’affermir le plus
qu’il est possible”. The text was finally published by Parent himself in his Essais
et Recherches de mathématiques et de physique (1704a).

Fontenelle explains Parent’s main results.

Mr. Parent has sought what would be the external curvature or Extrados of a vault whose
Intrados would be circular and all the voussoirs in equilibrium because of their weight,
according to the rule of Mr. de la Hire, because it is clear that all these voussoirs unequal
but in a certain proportion, would form outside some regular curve. He has found it by
points, but in a very simple way, so that by his method one could easily build a vault of
which one would be sure that all voussoirs are in balance.'?

He also explains that, identifying the voussoirs to wedges considered as double
inclined plane, Parent applies to the voussoir what he calls the Regle de la Hire,
which I shall comment on in greater detail in the next section. In that way he finds

WToutes les fois que plusieurs Puissances unies, ou liées ensemble, ou enfin se modifiant les
unes les autres de quelque maniere que ce soit, agissent en méme-temps ou pour imprimer un
mouvement a un Corps, ou pour lui en imprimer de différens o