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Attila Gábor and Julio R. Banga

BioProcess Engineering Group, IIM-CSIC, Vigo, Spain
{attila.gabor,julio}@iim.csic.es

Abstract. Kinetic models are being increasingly used as a systematic
framework to understand function in biological systems. Calibration of
these nonlinear dynamic models remains challenging due to the noncon-
vexity and ill-conditioning of the associated inverse problems. Noncon-
vexity can be dealt with suitable global optimization. Here, we focus
on simultaneously dealing with ill-conditioning by making use of proper
regularization methods. Regularized calibrations ensure the best trade-
offs between bias and variance, thus reducing over-fitting. We present
a critical comparison of several methods, and guidelines for properly
tuning them. The performance of this procedure and its advantages are
illustrated with a well known benchmark problem considering several
scenarios of data availability and measurement noise.

Keywords: Dynamic models, parameter estimation, Tikhonov regular-
ization, regularization tuning.

1 Introduction

Dynamic mathematical models (i.e. kinetic models) are central in systems bi-
ology as a way to understand the function of biological systems [16], to gener-
ate new hypotheses, and to identify possible ways of intervention, especially in
metabolic engineering [1]. Recent efforts are focused on the development and
exploitation of large-scale kinetic models [28].

Parameter estimation aims to find the unknown parameters of the model
which give the best fit to a set of experimental data. Parameter estimation be-
longs to the class of so called inverse problems, where it is important to include
both, a priori (i.e. structural) and a posteriori (i.e. practical) parameter identi-
fiability studies. In this way, parameters which cannot be measured directly will
be determined in order to ensure the best fit of the model with the experimental
results. This will be done by globally minimizing an objective function which
measures the quality of the fit.

Global optimization methods must be used in order to avoid convergence to lo-
cal solutions [2,3]. However, we also need to deal with the typical ill-conditioning
of these problems [14], arising from (i) models with large number of parameters,
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(ii) experimental data scarcity and (iii) significant measurement errors. As a
consequence, we often obtain over-fitting of such kinetic models, i.e. calibrated
models with reasonable fits to the available data but poor capability for gener-
alization (low predictive value).

Regularization methods have a rather long history in inverse problems [9] as
a way to surmount ill-posedness and ill-conditioning. The regularization pro-
cess introduces additional information, usually by penalizing model complexity
and/or wild behaviour. It also has links with Bayesian estimation in the sense
that it can be regarded as a way of introducing prior knowledge about the param-
eters. It has been mainly used in fields dealing with estimation in distributed
parameter systems, such as tomography (with applications in geophysics and
medicine) and other image reconstruction techniques. Recently, it has enjoyed
success in machine learning, gaining attention from the systems identification
area [17].

However, the use of regularization in systems biology has been marginal [8],
especially regarding kinetic models. Bansal et. al [4] compared Tikhonov and
truncated singular value decomposition regularization for the linear regression
model of green fluorescent protein reporter systems to recover transcription sig-
nals from noisy intensity measurements. Wang and Wang [31] presented a two
stage Bregman regularization method for parameter estimations in metabolic
networks. A clear conclusion from these studies is that for nonlinear inverse
problems, there is no general recipe for the selection of regularization method
and its tuning. Further, it is known that even for linear systems, choosing a
method from the plethora of existing techniques is nontrivial [6].

Here we present a critical comparison of a wide range of regularization meth-
ods applicable to nonlinear kinetic models. Further, we detail a procedure with
guidelines for regularization method selection and tuning. Finally, we use numer-
ical experiments with a challenging benchmark problem to illustrate the usage
and benefits of regularization.

2 Parameter Estimation in Dynamic Models

We consider kinetic models given by arbitrary nonlinear ordinary differential
equations (ODEs) formulated as

dx(t, θ)

dt
= f(u(t), x(t, θ), θ), y(x, θ) = g(x(t, θ), θ),

x(t0) = x0(θ), t ∈ [t0, tf ] ,

(1)

where the dynamics of the states x ∈ Rnx
+ are determined by the vectorfield

f(·), θ ∈ P ⊂ Rnθ is the vector of model parameters (e.g. Hill-coefficients, re-
action rate coefficients, Michaelis-Menten parameters, etc.), u(t) ∈ Rnu denotes
the time dependent stimuli, and ỹ(t) are measured values of the observed vari-
ables y(x(t), θ) ∈ Rny . The latter are related with the dynamic states via the
observation function g(x, θ).
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The parameter estimation problem is usually formulated as the maximiza-
tion of the likelihood function. The measurement of the j-th observed quantity,
taken at time ti in the k-th experiment is assumed to be contaminated by ran-
dom measurement error distributed according to the normal distribution, i.e.
ỹijk = yijk(x(ti), θ)+ εijk and the error term εijk ∼ N (0, σ2

ijk), where σ
2
ijk is the

error variance. Then, the maximization of the likelihood function leads to the
minimization of the weighted least squares cost function [30].

QLS(θ) =
1

2

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(
yijk(x(ti, θ), θ)− ỹijk

σijk

)2

=
1

2
R(θ)TR(θ) , (2)

where Ne is the number of experiments, Ny,k is the number of observed com-
pounds in the k-th experiment, Nt,k,j is the number of measurement time points
of the j-th observed quantity in the k-th experiment, and R(θ) is the normalized
residual vector.

2.1 Optimization Method

It is well known that the cost function (2) can be highly nonlinear and noncon-
vex in the model parameters, so one should use global optimization in order to
avoid local optima. However, the current state of the art in global optimization
for this class of problems is still somewhat unsatisfactory. Deterministic global
optimization methods [22,18] can guarantee global optimality but their compu-
tationally cost increases exponentially with the number of estimated parameters.
Thus, stochastic methods [19], or meta-heuristic approaches [26] are better al-
ternatives, given adequate solutions in reasonable time, although at the price of
no guarantees.

Here, we have used a global-local hybrid metaheuristic which combines scatter
search [25] with the very efficient adaptive nonlinear least squares algorithm
NL2SOL [7]. In order to further increase the convergence rate of NL2SOL, the
Jacobian of the normalised residual vector is computed based on the solution
of the forward sensitivity equations corresponding to (1) via the SUNDIALS
CVODES [11] software package.

3 Regularization Methods

Here we consider general family of penalty type regularization methods, which
incorporate a term Γ (θ) in the optimization cost function

QReg(θ) = QLS(θ) + αΓ (θ) . (3)

Specific methods differ in the form of the penalty; e.g. for Tikhonov regular-
ization ΓT(θ) = ||Wθ||2, where W ∈ Rnθ×nθ is a weighting matrix; for Breg-
man regularization [31] ΓB(θ) =

∑nθ

i=1 θi log(θi); for LASSO regularization [29]
ΓL(θ) =

∑nθ

i=1 |θi|; and the so-called elastic net [32] combines the Tikhonov and
the LASSO regularization.
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The Tikhonov regularized optimization problem can be formulated as

minimize
θ

1

2
R(θ)TR(θ) + α(Wθ)T (Wθ)

subject to θ ∈ P , Eqs. (1).
(4)

Since (4) is still a nonlinear least squares problem, the above mentioned op-
timization procedure, with NL2SOL as local method, is still fully applicable.
Optimization methods for the LASSO regularization has been reviewed in [27].

3.1 Regularization Parameter (Tuning Methods)

One of the crucial step in the regularization of ill-posed problems is the choice of
the regularization parameter α, which balances the model fit and the regulariza-
tion penalty. Recent studies [6,24] have compared more than twenty parameter
choice methods for linear inverse problems. In our study, we consider the prob-
lem of regularization parameter selection for the nonlinear dynamic problem (4)
with the Tikhonov scheme above. However, it should be noted that the methods
below are general and applicable for other penalty types, and can also be used
in iterative regularization procedures [12]. Note that α is a continuous variable,
but below we consider the selection among the set of discrete regularization
parameters αi = αmax · qi, for 0 < q < 1, and i = 0, 1, 2 . . . I.

Optimal regularization (OR). The optimal regularization minimizes the distance
between the estimated parameters and the unknown model parameters, i.e. the
estimation error. The expected error in the estimated parameters can be decom-
posed [6] as

E||θ̂εα − θ||2 = ||θ̂0α − θ||2 + E||θ̂0α − θ̂εα||2, (5)

where θ̂εα is the estimated parameter vector using noisy measurement data, α
is the regularization parameter, θ is the (in general unknown) nominal param-

eter vector and θ̂0α is the estimated parameters from noise-free data. The first
term in the right hand side is the regularization error, which accounts for the
regularization bias and is a monotonically increasing function of α. The second,
variance term is the data noise propagated error, which monotonically decreases
with increasing α. Therefore, a minimum of the estimation error is expected for
a certain α, denoted by αopt. In the discretized framework, if the resolution is
fine enough, the problem of finding the optimal regularization parameter is re-
duced to the selection of the best candidate in the set {αi}. It should be noted
that OR can only be computed for synthetic problems where the true parame-
ters are known. In other words, the direct computation of (5) is impossible in
real problems, since θ and the noise-free data are unknown in practice. The OR
results presented below, for the sake of comparison, could be computed because
the problems considered are synthetic.
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Parameter choice methods. Since in general we do not know the true parameters
(as this is obviously the objective of the estimation problem), several parameter
choice methods have been developed to find the optimal regularization param-
eter in an indirect way. Most of the methods have been developed for linear
inverse problems (see [6,9,21] and the references therein) or for nonlinear prob-
lems in combination with a local (Newton-type) optimization method [12], which
cannot handle the nonconvexity of the objective function. In the following part
of this section we shortly summarize a selection of existing regularization pa-
rameter choice methods that can be used for nonlinear problems in combination
with our global metaheuristic optimization approach. In our implementation,
the regularized estimates are first obtained on the whole set of αi for illustrative
purposes. However note that most methods can be used in an iterative way, thus
reducing the number of regularized solutions required. Several methods require a
maximum index Im of the regularization parameter, such that the optimal index
iopt ≤ Im. Details on how the maximum index is computed for those methods
are given in Appendix B.

Discrepancy principle (DP)[20]. The discrepancy principle chooses the regular-
ization parameter such that the observed discrepancy between the data and the
model prediction is explained by the measurement error, i.e. ||y(θ̂)− ỹ|| ≈ ||ε||.
Since the residuals are normalised (2) and thus each element of the residuals
contributes equally to the cost function, the principle chooses the index nDP = i
for which

QLS(θ̂αi) ≤ τNdata ≤ QLS(θ̂αi−1),

where Ndata is the total number of data and τ is a small tuning parameter of
this method. We used τ = 1.5 according to [6] and also 2.0 [9], but did not find
significant differences. The results below correspond to τ = 1.5.

Balancing principle (BP1, BP2) [15,6]. The balancing principle chooses the

regularization parameter that balances the propagated error bound ||σ̂R(θ̂αk
)||

and the regularization error. Following [6], the balancing functional is defined

as b(i) = max
i<k≤Im

||θ̂αi
−θ̂αk

||
4||σ̂R(θ̂αk

)|| , where Im is the maximum regularization index. We

considered two submethods: in BP1 the term ||σ̂R(θ̂αk
)|| was approximated by

a local, sensitivity based analysis (A.1) as shown in Appendix B; in case BP2
we used parameter estimates from 4 independent datasets to approximate the
standard deviation of the parameters. Then, the smooth balancing functional
was computed as B(n) = max

n≤k≤Im
b(k). The optimal index (nB1 and nB2 for the

two cases respectively) according to the balancing principle is the first index i
such that B(i) ≤ κ, where κ is a tuning parameter. For our test problems κ = 1.

Hardened-balancing (HB) [5]. This method is a tuning parameter free version
of the balancing principle. The smooth balancing functional B(i) is defined as
above, but the optimal index is chosen based on the minimisation as nHB =

arg min
0≤k≤Im

B(k)

√
||σ̂R(θ̂αk

)||, where ||σ̂R(θ̂αk
)|| is computed as (A.1).
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Quasi-optimality criterion (QO) [9]. As the regularization parameter decreases,
the corresponding estimated model parameters change. When the regularization
parameter is large, the estimated parameters are heavily influenced by the reg-
ularization term, while for mildly regularized cases, the fit measure prevails.
Quasi-optimality is achieved, when the variability of the estimated parame-
ters is minimized, i.e. the optimal regularization index is defined as nQO =

arg min
0≤k≤Im

||θ̂αk
− θ̂αk+1

||. This method showed high sensitivity to the maximum

regularization parameter index Im.

L-curve method (LC1,LC2)[10]. When ||θ̂αi || is plotted against QLS(θ̂αi) for
i = 1, 2 . . . I, an L-shaped curve is obtained (see Figure 1). The L-curve method
chooses the corner point of the curve balancing the propagated error and the reg-
ularization error. We considered two variants: method LC1, which identifies the
corner by finding the point of the L-curve that has the highest curvature. The cor-
responding regularization index is nLC1. Method LC2 [23] finds the corner where

the tangent of curve is −1, equivalently nLC2 = arg min
0≤k≤Im

QLS(θ̂αk
)||θ̂αk

||.

Cross validation (CVχ2 ,CVRSS)[17,24]. When further data is at hand, one can

evaluate the performance of the calibrated models with parameters θ̂αi , i =
1, 2, . . . I on a second dataset that was not used for the calibration. The perfor-
mance of the models is measured either by residual sum of squares RSSCV or
by the χ2

CV defined in Appendix C. The optimal regularization parameter index
is chosen as the index of the estimated parameter vector that performed the
best in cross validation, i.e. the index selected by the method CVRSS is nCV

RSS =

arg min
0≤k≤Im

RSSCV(θ̂αk
) and by the method CVχ2 is nCV

χ2 = arg min
0≤k≤I

χ2
CV(θ̂αk

).

4 Numerical Experiments

4.1 Test Problems

We have constructed 45 parameter estimation problems as test cases using the
three-step metabolic pathway model [13], described in Appendix A. For a given
stimuli, the model was simulated using the parameters in Table A.1 and the com-
puted trajectories were sampled. These parameters and sampled trajectories are
called the nominal parameters and the nominal model predictions, respectively.
Then, random noise was added to the samples that generated an experimental
dataset. We considered parameter estimation problems with:

– 3 levels of experimental data (8, 12 and 16 experiments),
– 3 noise levels per experiment (1, 5 and 10% additive Gaussian noise),
– 5 realizations of each scenario.

Therefore, the total number of scenarios is 45. For the cross validation based
method 8 further sets of data were generated by the same procedure. The cor-
responding stimuli is indicated by “CV” in Table A.1. This data contains 5%
error.



Improved Parameter Estimation in Kinetic Models 51

Each test problem is solved for a set of regularization parameters: I = 24 reg-
ularization parameters were chosen a-priory ranging from 103 to 10−8 equidis-
tantly on logarithmic scale. Equivalently, αi = 103 · qi, for i = 1, . . . I and
q = 0.3325. Altogether, this results 24 · 45 = 1080 nonlinear, nonconvex estima-
tion problems to be solved. We have not applied any scaling in the regularization,
i.e. W is the unity matrix. The set of regularization parameters was chosen this
way to give a uniform base for each regularization tuning method and for illus-
trative purposes. As mentioned above, a careful implementation of each method
could reduce the required points.

4.2 Comparison Criteria

Each tuning method selected a regularized parameter estimate θ̂αm by solving (4)
for the whole set of αl, l = 1, . . . I and applying the above tuning procedures.
Then, the methods are compared based on well known metrics, such as the
residual sum of squares RSS(θ̂αm), χ2(θ̂αm) and model prediction error PE(θ̂αm)
(for details see Appendix C). The inefficiency IE of a tuning method measures
the estimation error EE in the chosen regularized estimate compared to the
optimal regularized estimate

IE(θ̂αm) =
EE(θ̂αm)

EE(θ̂αopt)
=

||θ − θ̂αm ||
||θ − θ̂αopt ||

, (6)

where θ̂αopt is the parameter estimate based on the optimal regularization pa-

rameter αopt, for which the index is nopt = arg min
0≤l≤I

||θ − θ̂αl
||.

5 Results

Figure 1A) shows the trade-off (3) between model fit QLS(θ̂α) and regularization

penalty ΓT(θ̂α) for a typical estimation scenario. Large regularization biases the
estimation and cause large discrepancy between the model and the measured
data (large QLS). As the regularization parameter decreases, the discrepancy
decreases towards a lower limit, but the variability of the estimated parameters
(given by the parameter norm) increases drastically. Some methods, such as the
L-curve method, try to come up with an optimal trade-off between the two effects
by finding the so-called knee-point of the curve (in other words, they treat the
problem as a bi-criteria optimization where the L-curve is a Pareto-optimal set).

5.1 Estimation Error and Optimal Regularization

The parameter estimation error (A.6) was calculated for each of the 1080 esti-
mation problem. Figure 2 shows this magnitude for the 5 replicates of a selected
scenario (estimation using 8 datasets containing 10% noise). The error curves
can be divided into three regions, as the regularization index increases (i.e., the
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Fig. 1. Results of a regularized estimations. A) Trade-off between model fit and
the penalty (3): for a given estimation scenario the regularization penalty ΓT(θ̂αi) is
plotted against the fit of the model QLS(θ̂αi) for each regularization parameter (denoted
by the text next to each point), that results in an L-shape curve. Figure B) shows the
curvature of the L-shape curve.

regularization parameter decreases). For large regularization parameters, the er-
ror in the estimated parameters is dominated by the regularization term (rE
domain), while for small regularization parameter the noise propagated error is
the main contributor (pE domain). In most cases we found that the propagated
error levels off at some value EElim as the regularization parameter reaches a
certain limit αlim, which varies with replicates. Below this limit, not only the
error in the estimated parameters, but generally the estimated parameters them-
selves did not change, i.e. θ̂αi ≈ θ̂αi+1 for all αi < αlim. The theory of inverse
problems [9] shows that the regularization parameter must be larger than the
smallest eigenvalue of the Hessian of the objective function (2), which can justify
our results. Between the rE and pE regions one can find a domain qO, in which
the estimation error is smaller than EElim. The minimum of the curve (EEmin)
is taken at the optimal regularization parameter αopt.

Similar trends and domains can be identified for all the estimation problems,
in which the noise level is medium or high. Further, in these cases, the optimal
regularization parameter index only slightly varies between 6 and 8. However, in
the cases of small measurement noise (1%), the error in the estimated parameters
due to the noise propagation is negligible, the pE region is flat and there is not
a unique, optimal regularization parameter.

5.2 Performance of the Methods

The statistics described in Section 4.2 were calculated for each scenario and
each value of the regularization parameter. The different regularization tuning
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Fig. 2. Parameter estimation error. The estimation error is plotted against the
regularization parameters for the 5 replicates of a selected scenario. The notations
corresponding to the lowest, green curve: the regularization bias is dominating in do-
main rE; the noise propagated error is the main contributor to the estimation error in
pE. Typically, the propagated error levels off at EElim as the regularization parameter
reaches a certain limit αlim. Any regularization parameter in the qO region gives lower
estimation error, than without the regularization (α = 0). The optimal regularization
parameter αopt corresponds to the minimum of the estimation error curve.

methods (Section 3.1) were used to find the regularization parameter for each
scenario. To serve as a reference, we also computed the scores corresponding to
the estimations without regularization (NR), i.e. α = 0. Figure 3 shows the dis-
tribution of the inefficiencies given by (6), i.e. the relative parameter estimation
error, computed for each regularization method. For the sake of clarity, only the
estimation scenarios corresponding to the 10% noise are depicted in the figure.
More detailed numerical results for all scenarios can be found in Table A.2 in
Appendix D.

From Figure 3 we see that the estimation error grows rapidly as the number
of experimental datasets decreases in the non-regularized estimations (NR), i.e.
these estimations are greatly affected by ill-conditioning. The same trend can
be observed based on the numerical results when the noise level of the data in-
creases, leading to larger inefficiencies of the non-regularized estimations. These
results also indicate that, using regularization, such estimation error is reduced
up to 2 orders of magnitude. For the more ill-conditioned scenarios (more noise
and less data), almost all regularization methods perform better than the non-
regularized estimation. For the mildly ill-conditioned cases (more data with less
noise), the discrepancy principle (DP) and the L-curve method based on the
tangent condition (LC2) perform rather poorly due to over-regularization.

The cross validation based methods (CVχ2 , CVRSS) result in a generally low
estimation error and perform the best for the cases when the calibration data
is highly contaminated by noise. For the situations where there is no additional
data set, the L-curve method based on the maximal curvature detection (LC1),
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the quasi-optimality (QO) criteria and the balancing principle (BP1) are the best
alternatives from estimation error point of view. All these methods performed
similarly well for almost all cases. Among them, the LC1 performed also very
well in the mildly ill-posed cases. Furthermore, the LC1 method outperformed
the NR case in almost all scenarios from the prediction error (PE) point of view,
too (see Table A.2).
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Fig. 3. Inefficiencies of tuning method for three selected scenarios. The in-
efficiency shows the parameter estimation error normalized by the estimation error
with optimal regularization. The color indicates the number of datasets used in the
estimations according to the legend. Each column represents the distribution of the 5
measurement error realizations: the circle with the black dot shows the median, the
filled area spreads between the 25th and 75th percentiles of the points, the rest of the
points are shown individually. NR: non-regularized solution, DP: discrepancy principle,
BP: balancing principle, HB: hardened balancing, QO: quasi optimality criteria, LC:
L-curve method, CV: cross validation based tuning methods.

6 Conclusions

In this study we considered regularization as a way to improve the calibration of
(nonlinear) kinetic models in systems biology, reducing the typical ill-conditioning
of these problems. We considered the Tikhonov regularization framework coupled
with a global optimization solver. We focused on the specific question of regu-
larization method selection and tuning. We compared several regularization pa-
rameter tuning methods, including the discrepancy principle, balancing principle,
hardened balancing, quasi optimality criteria, L-curve method and cross valida-
tion basedmethods. The different methods were tuned and tested considering sev-
eral scenarios of a challenging kinetic model.
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Overall, the results obtained indicate that regularization can reduce the pa-
rameter estimation error very significantly (up to 2 orders of magnitude for the
example considered). The results also indicate that, for the situations where a
second data set is available, the cross validation (CV) χ2 score based method
gives the best tuning results. When no further data is available for cross-
validation, the L-curve method based on the maximum curvature detection
(LC2) is the most robust tuning algorithm.
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A Kinetic Model of a Three-Steps Metabolic Pathway –
Details

The parameters, initial values and stimuli conditions corresponding to the esti-
mation problems can be found in Table A.1. The ODEs read as:

Ġ1 =
V1

1 + ( P
Ki1

)ni1 + (Ka1

S )na1
− k1G1

Ġ2 =
V2

1 + ( P
Ki2

)ni2 + (Ka2
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1
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Ṁ2 =
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Km3
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− kcat3E3
1

Km5
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1 + M2

Km5
+ P

Km6

B Finding the Maximal Regularization Index

We see from Figure 2, that the estimation error is levelling off for small regular-
ization parameters, i.e. the regularization parameter does not influence the esti-
mation problem any more. The goal of the maximal index is to find the minimum
regularization parameter after which the estimation error levels off. However, the
curve is not available in practice, since the nominal parameters is required to
compute the estimation error. Alternatively, an estimate of the second term
in (5) can be made based on the Hessian of the regularized cost function. Let
R̃(θ, α) = [R(θ)T

√
α(Wθ)T ]T be the augmented regularized residual vector (c.f.

(4)) and define FR : Rnp×1 �→ Rnp×np as FR(θ, α)
.
= ∂R̃(θ,α)

∂θ

T
∂R̃(θ,α)

∂θ . Note that,
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Table A.1. Nominal parameter values, parameter estimation bounds, stimuli (input)
values and initial conditions (I.C.) for the dynamic model of the 3-Steps Metabolic
Pathway

Param. Value [plb, pub] Param. Value [plb, pub] Param. Value [plb, pub]

V1 1 [10−12, 106] V3 1 [10−12, 106] V6 0.1 [10−12, 106]
Ki1 1 [10−12, 106] Ki3 1 [10−12, 106] K6 1 [10−12, 106]
ni1 2 [0.1, 1] ni3 2 [0.1, 1] k 6 0.1 [10−12, 106]
Ka1 1 [10−12, 106] Ka3 1 [10−12, 106] kcat1 1 [10−12, 106]
na1 2 [0.1, 1] na3 2 [0.1, 1] Km1 1 [10−12, 106]
k 1 1 [10−12, 106] k 3 1 [10−12, 106] Km2 1 [10−12, 106]
V2 1 [10−12, 106] V4 0.1 [10−12, 106] kcat2 1 [10−12, 106]
Ki2 1 [10−12, 106] K4 1 [10−12, 106] Km3 1 [10−12, 106]
ni2 2 [0.1, 1] k 4 0.1 [10−12, 106] Km4 1 [10−12, 106]
Ka2 1 [10−12, 106] V5 0.1 [10−12, 106] kcat3 1 [10−12, 106]
na2 2 [0.1, 1] K5 1 [10−12, 106] Km5 1 [10−12, 106]
k 2 1 [10−12, 106] k 5 0.1 [10−12, 106] Km6 1 [10−12, 106]

Inputs: [S] [P] [S] [P] [S] [P]
exp. #1 0.1 0.050 exp. #7 10 0.368 exp. #13 10 0.050
exp. #2 0.1 1.0 exp. #8 10 1.0 exp. #14 0.1 0.368
exp. #3 0.464 0.136 exp. #9 0.1 0.136 exp. #15 0.464 0.050
exp. #4 0.464 1.0 exp. #10 0.464 0.368 exp. #16 2.15 0.136
exp. #5 2.15 0.05 exp. #11 2.15 1.000
exp. #6 2.15 0.368 exp. #12 10 0.136
CV. #1 1.0 0.02 CV. #4 4.0 0.02 CV. #7 8.0 0.02
CV. #2 1.0 0.2 CV. #5 4.0 0.2 CV. #8 8.0 0.2
CV. #3 1.0 0.8 CV. #6 4.0 0.8 CV. #9 8.0 0.8

Sampling time points: equidistantly 21 points on [0s 120s].

States I.C. States I.C. States I.C.
G1 0.6667 E1 0.4 M1 1.419
G2 0.5725 E2 0.3641 M2 0.9346
G3 0.4176 E3 0.2946

as α → 0, FR(θ̂α, α) becomes the observed Fisher Information matrix (FIM).
The inverse of the FIM (if exists) is the Cramer-Rao lower bound (CRLB) of
the covariance matrix of the parameters [30]. Although, the FIM is practically
non-invertible when the estimation is highly ill-posed, the inverse of FR always
exists for sufficiently large α > 0 and invertible weighting matrix W . Thus, the
α-dependent regularized CRLB is estimated by CRLBR(θ̂αl

) = FR(θ̂αl
, αl)

−1.
The regularized variance is therefore bounded by

σ2
R(θ̂αl

) ≥ diag(CRLBR(θ̂αl
)) = σ̂2

R(θ̂αl
). (A.1)

The maximum regularization parameter corresponds to the index

Im = max
1≤i≤I

(i | ||σ̂R(θ̂αi)|| < 0.9 max
1≤k≤I

(||σ̂R(θ̂αk
)||)), (A.2)
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where 0.9 is a tuning parameter that tries to avoid the small numerical distur-
bances.

C Computational Details of Comparison Criteria

Some quantities, such as the residual sum of squares

RSS(θ̂αl
) =

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(
yijk

(
x(ti, θ̂αl

), θ̂αl

)
− ŷijk

)2

(A.3)

and

χ2(θ̂αl
) =

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(
yijk

(
x(ti, θ̂αl

), θ̂αl

)
− ŷijk

)2

σ2
ijk

(A.4)

can be easily computed from the model prediction and the data. They measure
the explanatory potential of the model with estimated parameter θ̂αl

.
Some quantities, as the nominal parameters θ and nominal model prediction

(i.e. the measurement error free concentrations), are not known in practice. How-
ever, a synthetic framework let us compute these values and we can compare the
regularization methods based on these quantities. The prediction error defined
as

PE(θ̂αl
) =

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(yijk(x(ti, θ̂αl
), θ̂αl

)− yijk(x(ti, θ), θ))
2 (A.5)

measures the distance of the model prediction y(x, θ̂) and the noise-free under-
lying data y, that is unknown in practical applications. A model that tends to
over-fit the data, i.e. fits also the noise in the data, likely to generate a good fit
to the estimation data (small RSS value), but performs worst according to the
PE.

The accuracy of the estimated parameters is measured by the estimation error:

EE(θ̂αl
) = ||θ̂αl

− θ|| , (A.6)

which is the 2-norm measure of the deviation of the estimated parameters from
the nominal parameters.

D Detailed Numerical Results

Table A.2 contains the averaged statistics corresponding to each tuning method.
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Table A.2. Performance of the Parameter Choice Methods. Each statistics
is obtained by taking the average of the five replicates. Nexps number of experiments
used for the estimations, N.: amplitude of the noise in %.NR: non-regularized solution,
DP: discrepancy principle, B: balancing principle, HB: hardened balancing, QO: quasi
optimality criteria, LC: L-curve method, CV: cross validation based

Inefficiency averages: 〈IE(θ̂αm)〉
Ne N. NR DP B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 1.34 6.09 3.50 12.41 1.06 1.06 1.33 3.50 1.65 1.08
5 1.34 2.98 1.46 4.12 1.25 1.23 1.25 2.43 1.06 1.12
10 85.31 2.61 7.46 20.60 63.52 9.10 8.44 2.61 1.99 1.85

12 1 1.07 6.44 3.60 14.48 1.12 1.12 1.07 3.60 2.59 1.23
5 1.37 3.55 1.66 4.92 1.29 1.31 1.10 3.55 1.23 1.23
10 34.05 3.24 3.42 11.57 32.25 12.81 9.39 3.24 1.11 6.39

16 1 1.24 8.75 2.84 12.73 1.25 1.24 1.24 2.84 2.50 1.24
5 1.59 4.17 1.90 6.20 1.56 1.60 1.60 4.17 1.16 1.33
10 6.91 3.61 2.02 4.14 6.91 6.88 6.91 3.53 1.12 2.05

χ2 averages: 〈χ2(θ̂αm )〉
Ne N. NR DP1 B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 1254.3 1635.4 1342.8 5597.5 1256.7 1256.7 1254.3 1342.8 1267.5 1256.2
5 1305.5 1740.1 1324.2 6444.3 1305.6 1305.6 1305.6 1452.8 1307.1 1308.4
10 1297.0 1767.5 1297.6 4543.6 1297.0 1486.9 1298.7 1767.5 1300.3 1301.5

12 1 1909.3 2215.6 1971.4 6474.4 1910.2 1910.2 1909.3 1971.4 1940.6 1911.8
5 2041.2 2565.4 2064.4 6095.7 2041.4 2041.8 2041.6 2565.4 2042.5 2041.8
10 1988.2 2477.8 1990.6 5137.9 1988.2 1988.3 1989.7 2477.8 1996.2 1994.7

16 1 2676.7 3845.5 2730.6 6997.3 2677.3 2677.3 2676.7 2730.6 2722.1 2676.6
5 2593.2 3120.8 2622.4 6857.5 2593.4 2593.7 2593.2 3120.8 2599.1 2605.2
10 2636.2 3514.7 2645.3 6374.5 2636.2 2636.2 2636.2 3344.3 2639.3 2637.4

RSS averages: 〈RSS(θ̂αm)〉
Ne N. NR DP1 B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 0.15 0.21 0.17 0.78 0.15 0.15 0.15 0.17 0.16 0.15
5 4.45 6.11 4.53 15.49 4.45 4.45 4.45 4.99 4.45 4.47
10 15.11 20.45 15.14 33.08 15.11 17.66 15.16 20.45 15.17 15.20

12 1 0.24 0.28 0.25 0.80 0.24 0.24 0.24 0.25 0.24 0.24
5 6.25 7.74 6.32 16.33 6.25 6.26 6.26 7.74 6.25 6.26
10 22.39 28.15 22.47 41.76 22.39 22.39 22.41 28.15 22.47 22.46

16 1 0.31 0.47 0.32 0.86 0.31 0.31 0.31 0.32 0.32 0.31
5 7.24 8.93 7.35 18.62 7.24 7.24 7.24 8.93 7.26 7.29
10 31.32 41.37 31.51 58.06 31.32 31.33 31.32 40.03 31.42 31.37

PE averages: 〈PE(θ̂αm )〉
Ne N. NR DP1 B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 0.069 0.244 0.126 0.799 0.069 0.069 0.069 0.126 0.080 0.070
5 0.392 1.361 0.472 3.299 0.390 0.390 0.389 0.852 0.390 0.398
10 0.729 2.383 0.718 3.520 0.731 1.446 0.703 2.383 0.719 0.716

12 1 0.069 0.215 0.115 0.760 0.071 0.071 0.069 0.115 0.091 0.074
5 0.437 1.266 0.466 3.158 0.431 0.429 0.429 1.266 0.416 0.423
10 0.696 2.353 0.723 3.765 0.698 0.698 0.645 2.353 0.624 0.657

16 1 0.080 0.401 0.111 0.742 0.082 0.081 0.080 0.111 0.103 0.080
5 0.376 1.215 0.382 3.315 0.368 0.366 0.376 1.215 0.321 0.318
10 0.770 3.041 0.852 4.762 0.770 0.765 0.771 2.809 0.788 0.775
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