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Preface

This volume contains the papers presented at CMSB 2014. The 12th Inter-
national Conference on Computational Methods in Systems Biology was held
during November 17–19, 2014, at the Manchester Institute of Biotechnology of
the University of Manchester.

The conference is an annual event that brings together computer scientists,
biologists, mathematicians, engineers, and physicists from all over the world
who share an interest in the computational modeling and analysis of biological
systems, pathways, and networks. It covers computational models for all levels,
from molecular and cellular, to organs and entire organisms.

There were 31 regular and 18 poster submissions. Each regular submission
was reviewed by at least two, and on average 2.77, ProgramCommittee members.
Each poster submission was reviewed by an average of 1.38 Program Committee
members. Selected poster flashes were all reviewed by three Program Committee
members. The committee decided to accept 16 regular papers, and all the sub-
mitted posters. The program also included three invited talks, by Ruth Baker,
Dagmar Iber, and Magnus Rattray.

We thank the Program Committee for their hard work in reviewing submis-
sions. We especially thank François Fages, Monika Heiner, and Carolyn Talcott
for their advice on matters relating to the organization of the conference. We
acknowledge support by the EasyChair conference system during the reviewing
process and the production of these proceedings, see http://www.easychair.org
(managed by our Manchester colleague Andrei Voronkov and his team). We
thank Tommaso Mazza and the IEEE Computer Society Technical Commit-
tee on Simulation for supporting the best student paper award. We thank the
Manchester Institute of Biotechnology for providing the conference venue.

September 2014 Pedro Mendes
Joseph O. Dada

Kieran Smallbone
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Experimental and Modelling Investigation

of Monolayer Development with Clustering

Ruth Baker

Mathematical Institute, Radcliffe Observatory Quarter,

Woodstock Road, Oxford, OX2 6GG, UK

Abstract. Standard differential equation models of collective cell
behaviour, such as the logistic growth model, invoke a mean-field as-
sumption which is equivalent to assuming that individuals within the
population interact with each other in proportion to the average popula-
tion density. Implementing such assumptions implies that the dynamics
of the system are unaffected by spatial structure, such as the formation
of patches or clusters within the population. Recent theoretical develop-
ments have introduced a class of models, known as moment dynamics
models, that aim to account for the dynamics of individuals, pairs of
individuals, triplets of individuals, and so on. Such models enable us
to describe the dynamics of populations with clustering, however, lit-
tle progress has been made with regard to applying moment dynamics
models to experimental data. Here, we report new experimental results
describing the formation of a monolayer of cells using two different cell
types: 3T3 fibroblast cells and MDA MB 231 breast cancer cells. Our
analysis indicates that the 3T3 fibroblast cells are relatively motile and
we observe that the 3T3 fibroblast monolayer forms without clustering.
Alternatively, the MDA MB 231 cells are less motile and we observe
that the MDA MB 231 monolayer formation is associated with signifi-
cant clustering. We calibrate a moment dynamics model and a standard
mean-field model to both data sets. Our results indicate that the mean-
field and moment dynamics models provide similar descriptions of the
3T3 fibroblast monolayer formation whereas these two models give very
different predictions for the MDA MD 231 monolayer formation. These
outcomes indicate that standard mean-field models of collective cell be-
haviour are not always appropriate and that care ought to be exercised
when implementing such a model.



From Networks to Function —

Computational Models of Organogenesis

Dagmar Iber

Department of Biosystems Science and Engineering (D-BSSE)

ETH Zürich, Mattenstraße 26, 4058 Basel, Switzerland

Abstract. One of the major challenges in biology concerns the integra-
tion of data across length and time scales into a consistent framework:
how do macroscopic properties and functionalities arise from the molec-
ular regulatory networks and how do they evolve? Morphogenesis pro-
vides an excellent model system to study how simple molecular networks
robustly control complex pattern forming processes on the macroscopic
scale in spite of molecular noise, and how important functional variants
can evolve from small genetic changes. Recent advancements in 3D imag-
ing technologies, computer algorithms, and computer power now allow
us to develop and analyse increasingly realistic models of biological con-
trol. To also incorporate cellular dynamics and cell-cell interactions in
our simulations, we have now also developed a software tool that allows
us to solve our regulatory network models on dynamic 2D and 3D tis-
sue domains at cellular resolution. I will present our recent work where
we use data-based modeling to arrive at predictive models to address
the mechanism of branching in lungs and kidneys, the mechanism by
which an asymmetry emerges in our hand (thumb to pinky), as well as
a mechanism by which proportions are maintained in differently sized
embryos.



Integrating mRNA and Polymerase Time Course

Data to Model the Dynamics of Transcription

Magnus Rattray

Faculty of Life Sciences, The University of Manchester, Oxford St.,

Manchester, M13 9PL, UK

Abstract. We are developing methods to model transcription using
mRNA expression (RNA-Seq) and RNA polymerase (pol-II ChIP-Seq)
time course data. In our first application we model the motion of RNA
polymerase during pre-mRNA elongation. We model the pol-II dynam-
ics by using a spatio-temporal Gaussian process to described changes in
pol-II density profiles across sites of the transcribed region [1]. We apply
our model to infer the elongation speed and promoter-proximal pol-II
activity for early targets of estrogen receptor in MCF7 breast cancer
cells. Bayesian methods are used to infer the model parameters and as-
sociate our parameter estimates with levels of confidence. By clustering
the inferred promoter-proximal pol-II activity profiles we can associate
early-activated target genes with specific transcription factor binding
patterns.

In our second application we link the pol-II dynamics with mRNA
production and degradation in the same system using a simple linear
differential equation. We again represent the pol-II dynamics as a Gaus-
sian process and are able to exactly compute the data likelihood by ex-
ploiting the fact that a linear operation on a Gaussian process remains
a Gaussian process. We find that for a certain number of target genes it
is necessary to include an RNA-processing delay to get a reasonable fit
to the data. We use Bayesian inference to infer the delay parameter and
identify genes with strong evidence of a significant delay, about 11% of
the genes where the signal is strong enough to fit the model. This delay
appears to be related to splicing: we find that short genes tend to exhibit
longer splicing-associated delay and there is also a positive association
with genes that have a relatively long final intron.

References

1. wa Maina, C., Matarese, F., Grote, K., Stunnenberg, H.G., Reid, G., Honkela, A.,
Lawrence, N., Rattray, M.: Inference of RNA Polymerase II Transcription Dynam-
ics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational
Biology 10(5), e1003598
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Fabian Fröhlich, Fabian J. Theis, and Jan Hasenauer

Radial Basis Function Approximations of Bayesian Parameter Posterior
Densities for Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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On Defining and Computing “Good”

Conservation Laws

François Lemaire and Alexandre Temperville

Université Lille 1, LIFL, UMR CNRS 8022, Lille, France
francois.lemaire@univ-lille1.fr, a.temperville@ed.univ-lille1.fr

Abstract. Conservation laws are a key-tool to study systems of chemi-
cal reactions in biology. We address the problem of defining and comput-
ing “good” sets of conservation laws. In this article, we chose to focus
on sparsest sets of conservation laws. We present a greedy algorithm
computing a sparsest set of conservation laws equivalent to a given set
of conservation laws. Benchmarks over a subset of the curated models
taken from the BioModels database are given.

Keywords: conservation analysis, sparse conservation laws, biological
models, sparse null space, greedy algorithm.

1 Introduction

Many biological processes can be modelled by systems of chemical reactions. In
order to study such systems, one usually computes its (linear) conservation laws
(i.e. linear combinations of number of species) which have the property of being
constant along the time. In this article, we only consider (linear) conservation
laws. For a given chemical reaction system, a complete set of conservation laws
is easily computed by computing a basis of the kernel of the transpose of the
stoichiometry matrix of the system [10].

This paper tries to answer to the difficult question: “what is a good conserva-
tion law ?”. Consider for example the well known enzymatic degradation given
by the reactions E + S ↔ C and C → E + P . It admits for example E + C
and S + C + P as conservation laws. One could as well consider their sum (i.e.
E + 2C + S + P ), their difference (i.e. E − S − P ), . . . On the example, the
laws E + C and S + C + P seem less artificial and closer to the physics of the
system, than the two laws E+2C+S+P and E−S−P . Indeed the law E+C
corresponds to the conservation of the enzyme E, and S + C + P corresponds
to the conservation of the substract S (which is either in the form S, C or P ).

In an attempt to define “good conservation laws”, we think that a good con-
servation law should have many zero coefficients (i.e. sparse laws) and many
positive coefficients. Concerning the sparse property, we think that a practi-
tioner would understand better sparse laws than dense laws, since sparse laws
are shorter and thus easier to read. Moreover, a sparse conservation law can
also be useful when doing substitutions in differential equations to preserve the

P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 1–19, 2014.
c© Springer International Publishing Switzerland 2014



2 F. Lemaire and A. Temperville

sparsity of the differential equations. For example, if one has a sparse system
Ẋ = F (X) (where X is a vector of species X1, X2, . . . ), one can use a conser-
vation law involving X1 (say X1 + X5 − X8 = c0) to discard the variable X1

by substituting X1 by an expression in the other species (c0 −X5 +X8 on the
example). Consequently, a sparse conservation law will more likely preserve the
sparsity of the differential equations. Concerning positive coefficients, we think
that conservation laws with positive coefficients are more likely to represent a
conservation of matter.

Those two criteria (sparsity and positiveness) are sometimes impossible to
satisfy at the same time. For example, if we have a basis of two conservation
laws X1 +X2 +X3 and X2 +X3 +X4, then the difference X1 −X4 is sparser
than any of the two laws but involves a negative coefficient. Moreover, in some
particular examples, there are no conservation laws with positive coefficients
only (like in A+B → ∅ which only admits A−B as a conservation law).

In this paper, we have chosen to compute a sparsest basis of conservation
laws, leaving the positivity argument for a further work. As a consequence, our
approach differs from computing minimal semi-positive P-invariants (i.e. con-
servation laws with non-negative coefficients with minimal support [13]).

Our approach corresponds to the well known Nullspace Sparsest Problem
(NSP) which is proven to be NP-hard in [3]. NSP consists in finding a matrix
with the fewest nonzeros, whose columns span the null space of a given matrix.
Approximate algorithms to solve NSP are given in [3,4].

We chose to develop our method by testing it on the Biomodels database [1].
Our hope was that biological models might have special properties and might
be solved easily even if the problem is NP-hard. Even if we could not exhibit
special properties of the biological models, our method computes the sparsest
basis of conservation laws for most curated models of the Biomodels database
(see Section 5), thus validating our approach.

Some usual linear algebra algorithms can sometimes produce a sparser basis,
with no guarantee it is a sparsest one. The Hermite normal form is such a
technique, the (reduced or not) row echelon form is another. In the context of
Z-lattices, [5] introduces and computes “short” (pseudo-) bases using the LLL
algorithm [7] and a variant of the Hermite normal form. In a numerical context
(i.e. using floating point coefficients), there are methods to compute sparser basis
(as in [2] where the turnback algorithm computes a sparse and banded null basis
of a large and sparse matrix).

[14,10] present method based on numerical computations (QR decomposition,
SVD,. . . ) to compute exact conservation laws of large systems. Finally, we won-
der if the techniques used in the extreme pathways [12,11] could be used to
compute sparse conservation laws.

The paper is organized in the following way. Section 2 presents, on an example,
the idea of our algorithm ComputeSparsestBasis(B), which computes a sparsest
basis equivalent to B. Section 3 presents the algorithm ComputeSparsestBasis and
its sub-algorithms, and Appendix A details their proofs. Section 4 details the
implementation and improvements. Finally, Section 5 shows our benchmarks.
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2 A Worked Out Example

We illustrate our method on the model number 361 (BIOMD0000000361) of the
BioModels database [1,8]. For clarity reasons, one renames the species in the
following way : V IIa TF → V , V IIa TF X → V X , V IIa TF Xa → V Xa,
TFPI → T , Xa TFPI → XaT , Xa TFPI V IIa TF → XaTV , Xa → Xa.

The model contains the five following chemical reactions:

X + V ↔ V X , V X → V Xa, V Xa ↔ Xa + V
Xa + T ↔ XaT , V +XaT ↔ XaTV .

By choosing the vector of species t
(
XaTV,Xa, X, V Xa, V X, T, V,XaT

)
, one

can compute the stoichiometry matrix M and a basis of conservation laws (writ-

ten row by row) B =

⎛

⎝
1 1 1 1 1 0 0 1
1 0 0 1 1 0 1 0
0 −1 −1 −1 −1 1 0 0

⎞

⎠ by computing a basis of the

nullspace of the transpose of M (denoted tM). Thus, the matrix B represents
the three conservation laws:

1. XaTV +Xa +X + V Xa + V X +XaT
2. XaTV + V Xa + V X + V
3. −Xa −X − V Xa − V X + T

Our method for decreasing the number of nonzeros consists in finding a linear
combination w = tvB of the rows of B such that w contains less nonzeros than
one row Bi of B. If one can find such a combination w, it feels natural to
replace the row Bi by w in order to decrease the total number of nonzeros in
B. Repeating this process until no such linear combination can be found, one
obtains a sparsest basis in terms of nonzeros. This approach is greedy and is
justified in Section 3.

However, replacing a row of B by w should only be done if one maintains a
basis. This last requirement is fulfilled by replacing the row Bi of B by w only
if vi �= 0 (which loosely speaking means that the information in the row Bi has
been kept).

Consider the linear combination w = tvB with v = (α, β, γ), so one has
w = (α+β, α−γ, α−γ, α+β−γ, α+β−γ, γ, β, α). The number of nonzeros of
w clearly depends on the values of α, β and γ. In order to compute the number of
nonzeros of w, one considers all possible cases, corresponding to the cancellation
or the non cancellation of each element of w. In theory, if w has n components,
one has 2n cases to consider. For example, if we request w to have the form
(�= 0, 0, 0, 0, 0, �= 0, 0, �= 0) one considers the following system of equations and
inequations: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α+ β �= 0 (column 1)
α− γ = 0 (columns 2 and 3)

α+ β − γ = 0 (columns 4 and 5)
γ �= 0 (column 6)
β = 0 (column 7)
α �= 0 (column 8)
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This last system admits for example the solution α = γ = 1 and β = 0. The
corresponding linear combination w = tvB is w = B1 +B3 = (1, 0, 0, 0, 0, 1, 0, 1)
which contains 3 nonzeros, and is thus better than the rows B1, B2 and B3

(which respectively involves 6, 4, and 5 nonzeros). Since w involves the rows
B1 and B3 (i.e. α �= 0 and β �= 0), one can replace B1 or B3 by w. Note that
replacing B2 by w would lead to a matrix of rank 2, meaning that our basis has
been lost. For example, replacing B1 by w, one obtains an equivalent basis:

B′ =

⎛

⎝
1 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0
0 −1 −1 −1 −1 1 0 0

⎞

⎠ .

In practice, one does not enumerate all the possible patterns of zeros and
nonzeros for the vector w. Instead, one considers the columns of B one by one
from left to right, and one builds systems of equations (corresponding to the zeros
in w) and inequations (corresponding to the nonzeros in w). Since each column
of B yields two cases, one builds a binary tree of systems of equations and in-
equations. By doing this, many branches are hopefully cut before all the columns
of B have been treated. For example, if one tries to cancel the first five columns

of w, one gets the system of equations

⎧
⎨

⎩

α +β = 0 (1st column of B)
α −γ = 0 (2nd, 3rd columns of B)
α +β −γ = 0 (4th, 5th columns of B)

.

which only admits the useless solution α = β = γ = 0.
Let us continue the improvement of B′. Following the same ideas as above,

one can find the following linear combinations of the rows of B′:

w′ = B′
1 −B′

2 −B′
3 = (0, 1, 1, 0, 0, 0,−1, 1)

which has less nonzeros than B′
3. By replacing B′

3 by w, one gets the basis

B′′ =

⎛

⎝
1 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0
0 1 1 0 0 0 −1 1

⎞

⎠ .

Finally, further computations would show that there does not exist a linear
combination of the rows allowing to improve our basis B′′. In that case, one
knows that our basis is a sparsest one. If one replaces the third line of B′′ by(
1 1 1 1 1 0 0 1

)
, then one gets three conservation laws with a total of 13 non-

negative coefficients (instead of 11 nonzero coefficients for B′′). One can show
that computing the minimal semi-positive P-invariants (as done in [13]) would
retrieve these three conservation laws with 13 nonzeros.

To summarize, our method adopts a greedy approach by successively improv-
ing the initial basis (each time by only changing one row), until it reaches a
sparsest basis. Each improvement consists in a binary tree exploration where
each node is a system of equations and inequations.
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3 The Algorithm ComputeSparsestBasis

3.1 Sparsest Basis of Conservation Laws

As mentioned in the introduction, we have chosen to compute sparsest basis of
conservation laws. We define that notion precisely in this part.

Let B be a matrix of dimensions m × n over Q, with m ≤ n. The matrix B
is called a basis matrix if B is a full rank matrix i.e. Rank(B) = m. In this
paper, a basis matrix contains a basis of conservation laws written row by row.
Let B and B′ be basis matrices of same dimensions. B and B′ are equivalent
if and only if there exists an invertible matrix Q such that B = QB′. Let M
(resp. v) be a matrix (resp. vector), we denote N (M) (resp. N (v)) the number
of nonzero coefficients of M (resp. v). Let v be a vector, we denote Nk(v) the
number of nonzero coefficients in the first k coefficients of v. A basis matrix B′

is a sparsest basis matrix if and only if for any basis matrix B equivalent to B,
one has N (B′) ≤ N (B).

For any basis matrix B, it is clear that there exists a sparsest matrix B′

equivalent to B. Indeed, consider the set of all equivalent matrices to B, and
pick one matrix B′ in that set such that N (B′) is minimal.

3.2 A Greedy Approach

Our method follows a greedy approach. Given a basis matrix B, one looks for a
vector v and an index i such that N (tvB) < N (Bi) and vi �= 0. If such v and i
exists, one can decrease the number of nonzeros of B by replacing the row Bi

by tvB. Moreover, the rank of B does not drop since one has vi �= 0. When such
suitable v and i do no exist, our method stops and claims that our basis has
become a sparsest one. This last claim is not obvious, since one could have fallen
in a local minimum. The following theorem justifies our greedy approach.

Theorem 1. A basis matrix B is not a sparsest one if and only if there exist a
vector v and an index j such that N (tvB) < N (Bj) and vj �= 0.

Proof. ⇐: Taking B′ = B and replacing the row B′
j by

tvB, one gets a matrix B′

equivalent to B such that N (B′) < N (B), which proves that B is not a sparsest
one.

⇒: Assume B has dimensions m × n. There exists B′ equivalent to B such
that N (B′) < N (B). By permuting the rows of B and the rows of B′, one can
assume N (B1) ≥ N (B2) ≥ · · · ≥ N (Bm) and N (B′

1) ≥ N (B′
2) ≥ · · · ≥ N (B′

m).
As N (B) =

∑m
i=1 N (Bi) >

∑m
i=1 N (B′

i) = N (B′), there exists an index k such
that N (Bk) > N (B′

k). Since B and B′ are equivalent, each row of B′ is a linear
combination of rows of B. If all the m−k+1 rows B′

k, B
′
k+1, · · · , B′

m were linear
combinations of the m− k rows Bk+1, . . . , Bm, then B′ would not be a full rank
matrix. Thus, there exist a vector v and indices j, l with j ≤ k ≤ l such that
B′

l = tvB with vj �= 0. Since N (B′
l) ≤ N (B′

k) < N (Bk) ≤ N (Bj), one has
N (tvB) = N (B′

l) < N (Bj) with vj �= 0. 
�
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3.3 Description of a Task

As explained in Section 2, our method builds a (binary) tree of systems of equa-
tions and inequations. In practice, one only stores the leaves of the tree in con-
struction. One introduces the notion of task which basically represents one leaf
of the tree. In order to cut useless branches as soon as possible, one also requires
a task to satisfy the extra properties LCP and IZP of Definition 1. Let v be a
vector of dimension n. The notation v �≡ 0 means that ∀i ∈ �1, n�, vi �= 0.

Definition 1. Let B be a basis matrix. Let A,Λ be matrices with m columns. Let

(S) :
{
Ax = 0
Λx �≡ 0

be a system in the variable x. Let c be the number of rows of Λ.

Let k be the sum of the number of rows of A and Λ. A task t = task[A,Λ, c, k],
stemming from B, is defined as follow :

• the union of the rows of A and Λ coincides with the first k columns of B (up
to the order),

• (A,Λ) satisfies the so-called LCP property (Linear Combination Property)
i.e. there exists a solution v of (S) with at least two nonzero coefficients,

• (A,Λ, c, k) satisfies the so-called IZP property (Increase Zeros Property) i.e.
there exist a solution v of (S) and an index j such that vj �= 0 and Nk(

tvB) <
N (Bj).

Proposition 1. Consider a task t = task[A,Λ, c, k] stemming from a basis
matrix B, and the system (S), as defined in Definition 1. Consider U = {i ∈
�1,m�, c < N (Bi)}. Then one has the following properties:

1. A ∈ Q
(k−c)×m and Λ ∈ Q

c×m with 0 ≤ c ≤ k ≤ n,

2. For each nonzero solution v of (S), Nk(
tvB) = c i.e. c is the number of

nonzeros in the first k coefficients of any solution of (S),
3. There exist a solution v of (S) and j ∈ U such that vj �= 0 and c < N (Bj).

Proof. 1. Trivial.

2. Take a nonzero solution v of (S) and consider w = tvB. Consider a column j
of B with j ≤ k. Then the transpose of this column is either a row of A
or a row of Λ. If it is a row Ai of A (resp. a row Λi of Λ), then the jth

coefficient of w equals zero (resp. is nonzero) since Aiv = 0 (resp. Λiv �= 0).
Consequently, the number of nonzero elements among the first k coefficients
of w = tvB equals c (i.e. the number of rows of Λ).

3. It is a consequence of the IZP property and Nk(
tvB) = c. 
�

The task t0 = task[the 0×m matrix, the 0×m matrix, 0, 0] is called the ini-
tial task. A task t = task[A,Λ, c, k] stemming from a basis matrix B of dimen-
sions m× n is called a solved task if k = n.

Using Proposition 1, a solved task ensures the existence of a vector v and an
index i such that N (tvB) < N (Bi) and vi �= 0, allowing the improvement of B.
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3.4 The Algorithms

In this section, one presents the pseudo codes of the algorithms, and gives some
hints on the way they work. The rigorous proofs of the algorithms are given in
Appendix A.

Algorithm ComputeSparsestBasis(B). It is the main algorithm. It takes a
basis B as an input and returns a sparsest basis B′ equivalent to B. It re-
lies on the algorithm EnhanceBasis(B) which either returns an equivalent ba-
sis B′ with N (B′) < N (B) or proves that B was a sparsest basis. Thus,
ComputeSparsestBasis(B) iterates calls to EnhanceBasis(B) until the basis is a
sparsest one.

Input: B a basis matrix of dimensions m× n
Output: B′, a sparsest basis matrix equivalent to B

1 begin
2 B′ ← B ; a ← true ;
3 while a do
4 a,B′ ← EnhanceBasis(B′) ;

5 return B′ ;

Algorithm 1. ComputeSparsestBasis(B)

Algorithm EnhanceBasis(B). It relies on the algorithms BasisToSolvedTask
and EnhanceBasisUsingSolvedTask. The algorithm BasisToSolvedTask(B) builds
a solved task stemming from B if it exists, or returns the empty set if no
such solved task exists. If such a solved task can be computed, Algorithm
EnhanceBasisUsingSolvedTask is used to improve the basis B.

Input: B a basis matrix of dimensions m× n
Output: One of the two cases: false and B if B is a sparsest basis matrix ;

true and a basis matrix B′ equivalent to B such that N (B′) < N (B)
otherwise

1 begin
2 t ← BasisToSolvedTask(B) ;
3 if t �= ∅ then
4 B′ ← EnhanceBasisUsingSolvedTask(t,B) ;
5 return true, B′ ;

6 else
7 return false, B ;

Algorithm 2. EnhanceBasis(B)

Algorithm BasisToSolvedTask(B). It looks for a solved task by exploring a
binary tree. It makes use of a stack, initially filled with the initial task. At each
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step of the loop, a task t (where k columns of B have been processed) is popped
and two new candidate tasks t1 and t2 are built by processing the column k+1 of
B. These candidates are pushed onto the stack if they are actually tasks (which
is checked by Algorithm IsTask).

Input: a basis matrix B
Output: a solved task t, stemming from B, or ∅ if no such solved task exists

(i.e. B is a sparsest basis)
1 begin
2 Let St be an empty stack ;
3 Push the initial task t0 onto St ;
4 while St �= ∅ do
5 Pop a task t = task[A,Λ, c, k] from St ;
6 if k < n then
7 // The task t is not solved

8 Let w be the transpose of the (k + 1)th column of B ;

9 A′ ←
(
A
w

)
; Λ′ ←

(
Λ
w

)
;

10 t1 ← [A′, Λ, c, k + 1] ; // t1 may be a task
11 if IsTask(t1, B) then Push t1 onto St ;
12 ;
13 t2 ← [A,Λ′, c+ 1, k + 1] ; // t2 may be a task
14 if IsTask(t2, B) then Push t2 onto St ;
15 ;

16 else
17 return t ;

18 return ∅ ;

Algorithm 3. BasisToSolvedTask(B)

Algorithm EnhanceBasisUsingSolvedTask(t, B). It basically finds a vector v
and an index i such that N (tvB) < N (Bi) and vi �= 0, which necessarily exist
since t is a solved task. It then builds an improved basis B′ by making a copy
of B and replacing the row B′

i by
tvB.

Algorithm IsTask(t). It checks where a candidate task t is indeed a task, by
checking if t satisfies the LCP and IZP properties. The goal of this function is
to detect as soon as possible useless tasks (i.e. tasks that will not help improving
our basis).

Algorithm NextVector(u). The goal of NextVector is to iterate the p-tuples
of Z

p. This is needed in Algorithm EnhanceBasisUsingSolvedTask to obtain a
solution v of the system (S), which is composed of equations (i.e. Ax = 0) and
inequations (i.e. Λx �≡ 0). Indeed, the only way we have found to obtain solutions
of Ax = 0 also satisfying Λx �≡ 0 consists in iterating some solutions of Ax = 0
until Λx �≡ 0 is satisfied.
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Input: a solved task t = task[A,Λ, c, n], stemming from B of size m× n
Output: B′ a basis matrix equivalent to B such that B and B′ only differ by

one row and N (B′) < N (B)
1 begin
2 B′ ← B ;
3 Compute a basis of Ker(A) and store it columnwise in the matrix K of

dimensions m× p, where p = m− Rank(A) ;
4 Compute U = {i ∈ �1, m�, c < N (Bi)} ;
5 if p = 1 then
6 v ← the unique column of K ;
7 Choose i ∈ U such that vi �= 0 ;

8 else
9 i ← 0 ; u ← 0 ; // u is the zero vector of dimension p

10 while i = 0 do
11 u ← NextVector(u) ;
12 v ← Ku ;
13 if Λv �≡ 0 then
14 // v is a nonzero solution of (S)
15 Choose i ∈ U such that vi �= 0 if it exists ;

16 B′
i ← tvB ;

17 Multiply B′
i by the LCM of the denominators of the elements of B′

i ;
18 Divide B′

i by the GCD of the elements of B′
i ;

19 return B′ ;

Algorithm 4. EnhanceBasisUsingSolvedTask(t, B)

Input: t = [A,Λ, c, k], satisfying all conditions of a task stemming from a basis
matrix B of dimensions m× n, except LCP and IZP properties

Output: true if t satisfies LCP and IZP (i.e. t is a task), false otherwise
1 begin
2 // LCP (resp. IZP) is true if the tests lines 6 (resp. 11) and 3 are false

3 if

(
∃i ∈ �1, c�,Rank

(
A
Λi

)
= Rank(A)

)
or (Rank(A) = m) then

4 return false ;

5 // One has

(
∀i,Rank

(
A
Λi

)
= Rank(A) + 1

)
and (Rank(A) ≤ m− 1)

6 if (Rank(A) = m− 1) and A contains at least one zero column then
7 return false ;

8 // One has (Rank(A) ≤ m− 2) or A does not have any zero column
9 Compute ARREF , the RREF form of A ;

10 Compute U = {i ∈ �1, m�, c < N (Bi)} ;
11 if ∀j ∈ U, ARREF is row-unit of index j then
12 return false ;

13 return true ;

Algorithm 5. IsTask(t, B)
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Input: an integer vector u of dimension p
Output: the vector following u for some fixed ordering on Z

p

Algorithm 6. NextVector(u)

4 Complexity and Improvements

4.1 Complexity

The bottleneck of ComputeSparsestBasis is located in BasisToSolvedTask. Indeed,
the number of while loops performed in BasisToSolvedTask can be close to 2n+1−
1 in the worst case (i.e. when the binary tree is almost completely explored). It is
the only place where an exponential complexity occurs, since all other operations
rely on linear algebra operations (such as computing a nullspace, a RREF, . . . ).

However, many branches are cut thanks to the line 11 in the algorithm IsTask.
The sparser the matrix B is, the more branches are cut. Indeed, let us de-
note d = max{N (Bi), i ∈ �1,m�}. Suppose that, in our binary tree, the left
(resp. right) child corresponds to adding an equation (resp. an inequation). If
the number of inequations c of some task is greater than or equal to d, the
set U at line 10 in IsTask is empty, thus IsTask returns false. This implies that
only the branches starting from the root and going through the right children
at most d times will be explored. The number of processed nodes at depth k
is equal to

∑d
i=0

(
k
i

)
. Thus the total number of processed nodes is bounded

by

n∑

k=0

d∑

i=0

(
k

i

)
=

d∑

i=0

n∑

k=i

(
k

i

)
=

d∑

i=0

(
n+ 1

i+ 1

)
. Easy computations show that

d∑

i=0

(
n+ 1

i+ 1

)
≤ 2(n+1)d+1 which can be much smaller than 2n+1− 1 (for exam-

ple when d is much smaller than n). Experimentally, we observed that models
with small values d were easily solved.

Finally, the number of calls to EnhanceBasis is bounded by the number of
nonzeros of the initial basis B, which is bounded by nd (since the number of
nonzeros decreases at least by 1 at each call of EnhanceBasis, except for the last
call).

4.2 Implementation

We chose to implement algorithms given in Section 3 using the Computer Al-
gebra software Maple, which natively handles long integers and contains many
linear algebra routines with exact coefficients. With no surprise, those algorithms
can be improved because many useless computations are performed. For exam-
ple, many useless rank computations are done in Algorithm IsTask. The next
section describes the improvements of the algorithms given in Section 3.
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4.3 Improvements

Computation and Choice of the Solved Task. Algorithm BasisToSolvedTask
stops when it first encounters a solved task. This solved task may change if one
pushes t2 before t1 in the Algorithm BasisToSolvedTask. This change has no real
impact since it speeds up some examples, and slows down others.

We have experimented another strategy consisting in computing the set of
all the solved tasks stemming from B instead of stopping at the first solved
task. Once this set is computed, one can choose the solved task that leads to
the biggest decrease of the number of nonzeros, and only keep solved tasks with
Rank(A) = m−1 if one encounters a solved task with Rank(A) = m−1 at some
point. Indeed, solved tasks with Rank(A) = m− 1 lead to easy computations in
Algorithm EnhanceBasisUsingSolvedTask since p = 1.

It is not clear whether the strategy of computing all the solved tasks is better
or worst than stopping on the first solved task. Indeed, searching all solved tasks
is obviously more costly, but choosing a suitable solved task might decrease the
number of subsequent calls to Algorithm EnhanceBasis.

Using Reduced Row Echelon Forms. It is possible to request more proper-
ties for a task task[A,Λ, c, k]. For example, one can request A to be in reduced
row echelon form with no zero rows. Moreover, one can request the rows of Λ to
be reduced w.r.t. the matrix A in the following sense: a row b is reduced w.r.t.
A if the row contains a zero at the location of the pivots of A (reducing a row
Λi by A can be done by subtracting multiple of rows of A to Λi to get zeros at
the positions of the pivots of A).

Those requirements have several advantages, especially in Algorithms 4 and
5. In Algorithm 4, the computation of Rank(A) is immediate since it equals the

number of rows of A. Moreover the condition Rank

(
A
Λi

)
= Rank(A)+1 can be

checked immediately: indeed, since Λi is reduced w.r.t. A, the condition is true
if and only if the row Λi is not the zero row. In Algorithm 5, the computation of
the matrix K is immediate and can be done by simply rearranging the entries
of A in a new matrix K.

Finally, since the rows Λi are reduced w.r.t. A, it is easier to detect that two
rows Λi and Λj are equal modulo a linear combination of lines of A. Indeed, if
this is the case, both lines are necessarily proportional (and then one can discard
one of them).

5 Benchmarks

We have tested our methods on some models taken from the BioModels database
[1] (accessed on June 16th, 2014). Among the curated models, we have selected
all the models involving only one compartment, with rational and integer sto-
ichiometric coefficients. After rejecting models without conservation laws, we
ended up with 214 models.
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After computing a basis of linear conservation laws for each of the 214 models,
our method detected that 141 bases were already sparsest ones. In the rest of
the section, one only considers the remaining 73 models.

In this section, the CSB version denotes the non-improved version of the
algorithm ComputeSparsestBasis, as described in Section 3, and the CSB’ version
denotes the version based on RREF computations as described in Section 4.3.
Timings were measured on a Pentium Xeon 3.40GHz with 32Gb of memory.

Model Size of B d
Time (in s)
CSB CSB’

068 3× 8 4 0.15 0.06
064 4× 21 18 28.4 1.99
183 4× 67 61 505.1 36.50
086 5× 17 12 15.99 3.12
336 5× 18 7 3.68 0.30
237 6× 26 17 57.93 0.91
431 6× 27 15 70.68 10.93

Model Size of B d
Time (in s)
CSB CSB’

475 7× 23 14 309.8 10.59
014 8× 86 45 > 3000 235.9
478 11× 33 11 419.4 1.85
153 11× 75 38 > 3000 964.6
152 11× 64 32 > 3000 97.46
334 13× 73 50 > 3000 132.6
019 15× 61 13 > 3000 24.36

Fig. 1. Timing comparison between the basic version and the improved version
(with B basis matrices of the models and d = max{N (Bi), i ∈ �1,m�} as described Section 4.1)

Checking that the 141 bases are indeed sparsest ones takes at most 1s for
each model. The improved CSB’ version takes less than 3000s for 69 models out
of the 73 models. The remaining 4 models involve heavier computations: model
332 takes around 4000s, model 175 takes around 1 day, computation of models
205 and 457 were stopped after 2 days. These 4 models involve between 15 and
40 conservation laws (i.e. B has between 15 and 40 rows), and between 50 and
200 species (i.e. B has between 50 and 200 columns). As shown in [3], finding a
sparsest basis for the null space of a matrix is NP-hard, so it is not surprising
that some models are challenging.

The CSB’ version is faster than the basic version, usually by a factor of at
least 10. Figure 1 shows some timings for a sample of the 69 models. Note that
the timings can be different between models with bases of similar sizes (like
models 153 and 152).

For each basis B, one can define the ratio x = N (B′)
N (B) where B′ is a sparsest

basis equivalent to B. For a non sparsest basis B, this ratio satisfies 0 < x < 1.
Figure 2 represents the frequency of the 69 models, plus the models 332 and 175
involving heavier computations, as a function of the ratio x.

Appendix B shows a comparison between the number of nonzeros obtained
after some usual linear algebra methods and our algorithm.
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6 Conclusion

We plan to implement our method in Python, for different reasons: it is a free
software, it handles large integers natively, and it is easy to interface with other
software. One could also implements our method in C (by using the multipreci-
sion arithmetic library GMP [6]) for performance reasons.

Looking back to the problem of getting “good” sets of conservation laws we
discussed in Section 1, it is not always possible to have a basis with the less
possible negative values and a sparsest basis at the same time. There probably
exists a compromise between these two properties, which is left for further work.

Acknowledgements. We would like to thank the reviewers for their help-
ful comments and Sylvain Soliman for his help on the Nicotine software
(http://contraintes.inria.fr/~soliman/nicotine.html).
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A Proof of Algorithms

Each subsection of this section proves an algorithm, by proving it stops and re-
turns the correct result. When needed, some mathematical properties are proved
at the beginning of the subsections.

A.1 ComputeSparsestBasis(B)

Halting. The algorithm halts because EnhanceBasis returns either false, B or
true, B′ and this last case cannot happen indefinitely as the number of nonzeros
in B′ is strictly decreasing and bounded by 0.

Correction. The algorithm halts when a = false, i.e. when EnhanceBasis de-
tects that B′ is a sparsest basis.

A.2 EnhanceBasis(B)

Halting. Trivial.

Correction. BasisToSolvedTask returns either a solved task or ∅ if no such
solved task exists. If t �= ∅, EnhanceBasisUsingSolvedTask computes a new basis
matrix B′ with N (B′) < N (B), otherwise no solved task exists, which proves
that B is a sparsest basis.

http://gmplib.org/
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A.3 EnhanceBasisUsingSolvedTask(t, B)

Lemma 1 (Finite union of vector subspaces). Let K be an infinite field.
If E is a K-vector subspace, then every finite union of proper subspaces of E is
strictly included in E.

Proof. See [9]. 
�
Theorem 2 (Characteristic theorem of solutions of (S)). Consider A ∈
Q

r×m, Λ ∈ Q
c×m, K ∈ Q

m×q a matrix representing a basis of Ker(A) stored

columnwise, and the system (S) :
{
Ax = 0
Λx �≡ 0

.

The following assertions are equivalent:

1. (S) has nonzero solutions in Q
m,

2.

(
∀i ∈ �1, c�,Rank

(
A
Λi

)
= Rank(A) + 1

)
and (Rank(A) ≤ m− 1),

3. ∃u ∈ Z
q \ {0}, ΛKu �≡ 0.

Proof. (1) ⇒ (3): Take a nonzero solution v in Q
m of (S). Thus, there exists u′

in Q
q \ {0} such that v = Ku′ (since the columns of K are a basis of Ker(A)).

Taking u = λu′ (with a suitable integer λ such that u belongs to Z
q \ {0}), one

has Ku = λv. Since λv is also a nonzero solution of (S), one has ΛKu �≡ 0.
(3) ⇒ (1): Take v = Ku. Then Av = 0 and Λv �≡ 0, so v is a nonzero solution

of (S).
(1) ⇒ (2): Consider a nonzero solution v of (S). Since v is nonzero and satisfies

Av = 0, one has Ker(A) �= {0} thus Rank(A) ≤ m − 1 (according to the rank-

nullity theorem). Let us suppose that Rank

(
A
Λi

)
= Rank(A) for some i. Then,

Λi is a linear combination of rows of A so Λiv = 0, hence v is not a solution

of (S), contradiction. We conclude that ∀i ∈ �1, c�, Rank

(
A
Λi

)
= Rank(A) + 1

and Rank(A) ≤ m− 1.
(2) ⇒ (1): The set of solutions of (S) is V = Ker(A) \ ⋃c

i=1 Ker(Λi) =

Ker(A) \ ⋃c
i=1 Ker

(
A
Λi

)
. For any i ∈ �1, c�, Ker

(
A
Λi

)
is a proper vector

subspace of Ker(A) as Rank

(
A
Λi

)
= Rank(A) + 1. According to Lemma 1,

⋃c
i=1 Ker

(
A
Λi

)
is strictly included in Ker(A). Moreover, since Rank(A) ≤ m−1,

one has Ker(A) �= {0} which implies V \ {0} �= ∅. 
�

Halting. If p = 1, it is trivial that the algorithm halts. If p �= 1, one needs to
check that the while loop halts:

• As t is a solved task, there exists a nonzero solution v in Q
m of (S) and

j ∈ U such that vj �= 0 and c < N (Bj) according to Proposition 1.
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• Using the third point of Theorem 2, there exists a vector u in Z
q such that

the vector v = Ku is a nonzero solution of (S). Hence, the while loop will
eventually reach such a u since NextVector enumerates all elements of Zq.

Correction. At line 2, B′ ← B. At the end of the algorithm, B′
i is modified and

contains more zeros than Bi. Indeed, N (B′
i) = c and since i ∈ U , c < N (Bi).

Finally, B′ is also a basis matrix since B′
i =

tvB with vi �= 0.

A.4 NextVector

There is some freedom in coding this algorithm (which is not given in this paper),
in particular the ordering in which the p-tuples are output. However, to ensure
the termination of Algorithm EnhanceBasisUsingSolvedTask, one requires the Al-
gorithm NextVector(u) to iterate all the p-tuples of Zp. This can be achieved
for example by starting from the zero tuple, and enumerating the tuples of Zp

by increasing 1-norm (where the 1-norm of a tuple is the sum of the absolute
values), and by lexicographic order for tuples of the same 1-norm. For example,
when p = 2, the p-tuples can be enumerated in the following way: (0, 0), (−1, 0),
(0,−1), (0, 1), (1, 0), (−2, 0), (−1,−1), (−1, 1), (0,−2), (0, 2), . . .

One could also rely on a random number generator, provided it has the prop-
erty to eventually generate any p-tuple with a nonzero probability (in order to
ensure the halting of Algorithm EnhanceBasisUsingSolvedTask).

A.5 BasisToSolvedTask(B)

Halting. Consider a current task t. The algorithm stops if t is solved (i.e.
k = n). Otherwise, t is not a solved task and generates new tasks, obtained
from t, with k+1 columns processed (instead of k). This last case cannot occur
indefinitely.

Correction. Consider a non solved task t inside the while loop. One creates the
object t1 (resp. t2) corresponding to the cancellation (resp. the non cancellation)
of the coefficient number k+ 1 of the linear combinations of the lines of B. The
objects t1 and t2 are possibly discarded thanks to the function IsTask if they
are not tasks (i.e. if they cannot be used to increase the number of zeros).
Consequently, all cases are considered and the function will return ∅ if and only
if there does not exist any solved task stemming from B.

A.6 IsTask(t, B)

Proposition 2. Let M be a matrix. Then M has a zero column if and only if
Ker(M) contains at least one vector with exactly one nonzero coefficient.

Proof. Trivial 
�
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Corollary 1. Let M be a matrix. Then M does not have any zero column if and
only if Ker(M) \ {0} only contains vectors with at least two nonzero coefficients.

Proposition 3. Take A ∈ Q
r×m, Λ ∈ Q

c×m and the system (S) :
{
Ax = 0
Λx �≡ 0

. If

(S) has nonzero solutions and Rank(A) ≤ m−2, then (S) has nonzero solutions
with at least two nonzero coefficients.

Proof. Rank(A) ≤ m − 2 ⇔ Dim(Ker(A)) ≥ 2 with the rank-nullity theorem.
Consequently, there exist at least two independent nonzero vectors v1 and v2 so-
lutions of Ax = 0. Consider a nonzero solution v of (S). By a topology argument
the vector v+ε1v1+ε2v2 is also solution of (S) for any ε1 and ε2 satisfying |ε1| < ε
and |ε2| < ε (for a suitable small fixed ε > 0). Suppose that v + ε1v1 + ε2v2 has
exactly one nonzero coefficient for any |ε1| < ε and |ε2| < ε. That would imply
that both v1 and v2 have exactly one nonzero coefficient at the same position,
which is impossible since v1 and v2 are linearly independent. Consequently, V
contains at least one nonzero vector with two nonzero coefficients.

Theorem 3. Consider A ∈ Q
r×m, Λ ∈ Q

c×m and the system (S) :
{
Ax = 0
Λx �≡ 0

.

The following assertions are equivalent :

1. (S) has nonzero solutions with at least two nonzero coefficients,

2. (S) has nonzero solutions and at least one of the two following conditions is
true:

– Rank(A) ≤ m− 2,

– A does not have any zero column.

Proof. (1) ⇒ (2): Since (S) has nonzero solutions, then Rank(A) ≤ m − 1. If
the condition Rank(A) ≤ m − 2 is not true, then one has Rank(A) = m − 1.
Consequently, Ker(A) is generated by one vector containing at least two nonzero
coefficients. According to Corollary 1, A does not have any zero column.

(2) ⇒ (1): Direct consequence of Corollary 1 if Rank(A) = m − 1, or Propo-
sition 3 if Rank(A) ≤ m− 2. 
�

Definition 2. A matrix A is row-unit of index j if there exists a row of A
with only one nonzero coefficient, which is at position j.

Theorem 4. Consider a matrix A′ in Q
r×m under reduced row echelon form.

Let K be a matrix containing a basis of Ker(A′) stored columnwise. Suppose that
Ker(A′) �= {0}. For any index j, the following assertions are equivalent:

1. A′ is row-unit of index j,

2. Kj = 0.
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Proof. (1) ⇒ (2): There exists a row A′
i =

(
0 · · · 0 1 0 · · · 0) where the 1 is at

position j, for some i in �1, r�. Thus, any solution v (in particular all elements
of the basis K) of A′v = 0 must satisfy vj = 0, hence Kj = 0.

(2) ⇒ (1): From A′K = 0, one has tKtA′ = 0. Since Kj = 0, the column j

of tK is zero, which implies that the canonical vector ej belongs to Ker(tK)
using Proposition 2. Hence, the row l = tej =

(
0 · · · 0 1 0 · · · 0), where the 1 is

at position j, is a linear combination of the rows of A′. Since A′ is in reduced
row echelon form, if the combination l of rows of A′ involved strictly more than
one row of A′, l would at least involve two nonzero coefficients (corresponding
to the pivots). Thus, l is a row of A′ and A′ is row-unit of index j. 
�

Halting. Trivial.

Correction

1. If the first condition (line 3) is true, then (S) has no nonzero solutions in
Q

m, so t does not satisfy condition LCP, and one returns false. Otherwise,

one has (∀i ∈ �1, c�,Rank

(
A
Λi

)
= Rank(A)+ 1) and (Rank(A) ≤ m− 1) so

(S) has nonzero solutions according to Theorem 2.
2. If the second condition (line 6) is true, since (S) admits nonzero solutions and

thanks to Theorem 3, (S) does not have solutions with at least two nonzero
coefficients, so t does not satisfy LCP, and one returns false. Otherwise, t
satisfies LCP.

3. If the third condition (line 11) is true, then for any j ∈ U , one has Kj = 0
thanks to Theorem 4. Consequently, any solution v of (S) satisfies vj = 0
for all j ∈ U . Therefore, t does not satisfy IZP and one returns false.
Otherwise, there exists a j ∈ U such that Kj �= 0 thanks to Theorem 4,
so there exists a column w of K such that wj �= 0. It may happen that
wj is not solution of (S). In that case, consider a nonzero solution u of (S)
with at least two nonzero coefficients. By a topology argument, the vector
ū = u + ε1w is also solution of (S) for any rational ε1 satisfying |ε1| < ε
(where ε is a small rational). Finally, one can choose a suitable ε1 to obtain
the condition ūj �= 0, and (S) satisfies IZP. One then returns true.

B Comparison with some Matrix Algorithms

We consider a sample of 10 models taken from the 61 models where computations
end in less than 3000s.We present here the number of nonzeros of the initial bases
and of the bases obtained after using our algorithm (CSB), the Reduced Row
Echelon Form (RREF), the LLL algorithm [7] and the Hermite Normal Form
(HNF). When comparing our algorithm with the usual linear algebra algorithms
we used, one sees that the sparsest bases are not always reached by these linear
algebra algorithms and that they sometimes make it worst.
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Abstract. Elementary flux modes (EFMs) are commonly accepted tools for
metabolic network analysis under steady state conditions. They can be defined
as the smallest sub-networks enabling the metabolic system to operate in steady
state with all irreversible reactions proceeding in the appropriate direction. How-
ever, when networks are complex, the number of EFMs quickly leads to a combi-
natorial explosion, preventing from drawing even simple conclusions from their
analysis. Since the concept of EFMs analysis was introduced in 1994, there has
been an important and ongoing effort to develop more efficient algorithms. How-
ever, these methods share a common bottleneck: they enumerate all the EFMs
which make the computation impossible when the metabolic network is large
and only few works try to search only EFMs with specific properties. As we will
show in this paper, enumerating all the EFMs is not necessary in many cases and
it is possible to directly query the network instead with an appropriate tool. For
ensuring a good query time, we will rely on a state of the art SAT solver, work-
ing on a propositional encoding of EFMs, and enriched with a simple SMT-like
solver ensuring EFMs consistency with stoichiometric constraints. We illustrate
our new framework by providing experimental evidences of almost immediate
answer times on a non trivial metabolic network.

1 Introduction

Constraint-based modeling methods allow to predict phenotypes by calculating steady
state flux distributions in a metabolic network. The notion of elementary flux mode
(EFM) is a key concept derived from the analysis of metabolic networks from a pathway-
oriented perspective [27]. An EFM is defined as the smallest sub-network that enables
the metabolic system to operate in steady state with all irreversible reactions proceeding
in the appropriate direction [29,28]. Every steady-state flux distribution can be repre-
sented as a non negative combination of EFMs. Applications of network-based path-
way analyses have been presented for predicting functional properties of metabolic
networks, measuring different aspects of robustness and flexibility, and even assessing
gene regulatory features [35,14]. Actually, EFMs can only be enumerated in small to
medium-scale metabolic networks because the number of EFMs increase exponentially
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with the network size [21]. The huge number of EFMs associated with large biochem-
ical networks prevents from drawing simple conclusions from their analysis. Studies
have been carried out on the analysis of sub-networks. Kaleta et al. [18] showed that
the analysis of small sub-networks can be misleading. To overcome this problem, they
introduced the concept of elementary flux patterns that takes into account the steady-
state fluxes through a metabolic network at the genome-scale when analyzing pathways
in a sub-network. Several approaches have been developed to deal with the combinato-
rial explosion. ACoM [24,25] which was a first attempt to classify the EFMs helped to
give biological meaning to the different EFMs and to the relatedness between reactions.

Being a computationally demanding task, several approaches to parallel or distributed
computation of EFMs have been proposed through parallelization techniques [15] or al-
gorithmic reformulations [39,20,36]. To reduce their number, Jol [16] charaterized the
flux solution space by determining EFMs that are subsequently classified as thermo-
dynamically feasible or infeasible on the basis of experimental metabolome data. To
speed up the computation of EFMs, gene regulatory information has been taken into
account to eliminate mathematically possible EFMs [17]. Some analyses on minimal
cut set allowed network analyses without enumerating all the EFMs [3,38]. Neverthe-
less, although several improvements have been introduced for computing EFMs in large
networks, tools are still needed to allow their large-scale analysis and interpretation. In-
deed the existing approaches for analyzing the network, despite the insights they have
provided, have their capabilities limited because the calculation requires the complete
set (or a major part) of EFMs in prior given a metabolic network, whose computation is
notoriously hard due to the combinatorial explosion when the network size grows.

We were inspired by the seminal paper on Knowledge Base Compilation Techniques
[10]. Instead of explicitly compute all the EFMs, we only answer a set of queries on the
network. We propose to develop a method similar to Just in Time Knowledge Compi-
lation [1], based on SAT solving to determine network properties. Consequently, using
our method of selection EFMs under constraints will now allow studying the EFMs of
large metabolic networks almost instantly.

2 SAT/SMT Encoding of Metabolic Pathways Queries

Since the introduction of so-called ”modern” SAT solvers [31,23,13], the practical solv-
ing of NP Complete problems (and above) has known a series of performances scale
up. Inspired by the central position of the SAT problem in the polynomial hierarchy,
the first approaches were relying on a direct SAT translation of the considered problem.
However, most of these reductions were addressing academic problems (graphs, puz-
zles, [32]) until the Blackbox planner [19] was proposed. The idea was to solve planning
problems by unrolling time steps and using propositional logic. Thanks to the imple-
mentation of zChaff [23], and its lazy data structures, this approach was proved very
efficient, even on planning problems encoding huge SAT formulas. A few year after,
Bounded Model Checking [7,6] was also successfully proposed. Once again, time steps
were unrolled and SAT solvers were called on huge formulas, with success. Most of the
progresses observed in practice were due to algorithmic and data structures improve-
ments [13]. Indeed, ”Modern” SAT solvers rely on Conflict Driven Clause Learning
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scheme (CDCL) that deeply changed the backtrack search algorithm proposed before
[11]. More recently, SAT solvers were used as SAT oracles for Model Checking [9] or
hardest problems [5,40]. Thanks to this technique, the field knew a new scaling up in its
practical applications. Problems are nowadays solved with thousands of SAT calls on
a set of almost identical successive formulas (this technique is called incremental SAT
solving).

However, despite this success, some problems are still unreachable for SAT solvers.
For instance, enumerating all the models of a formula is not attacked with the same
techniques [26]. Typically, each SAT call can only answer Yes or No (in the latter case,
some additional information can be gathered like, for instance, the set of initial clauses
used to derive the contradiction), and harder questions (minimization and/or enumera-
tion of solutions) are still very hard tasks that even SAT solvers cannot solve efficiently.
Another limitation of plain SAT approach is the lack of expressiveness of the proposi-
tional logic. One solution for this is to allow more powerful reasoning techniques by
using, intuitively, two-levels solvers. One solver is working on an abstraction of the
initial problem (typically the SAT solver) and sends abstract (candidates) solutions to a
more powerful reasoner (that can, for instance, count or reason with Gaussian elimina-
tion) that checks if the abstract solution is indeed a solution of the initial problem. This
framework, called DPLL(T) in the literature allows SAT solvers to be used as the corner
stone of most of the efficient SMT solvers (Satisfiability Modulo Theory) [4]. The name
DPLL(T) comes from the first SAT solvers using backtrack search techniques [12,11].
Often, both solvers are more tightly connected (the Theory solver can also force some
propositional variables to take some values during the propagation process), but the
general idea remains. The T is the theory used by the more powerful reasoner. In this
paper, we will use the CDCL(T) notation, given the fact that SAT solvers used cannot
be identified anymore with the DPLL algorithm.

In this paper, we propose to address Metabolic Pathways Analysis based on a SAT
solver for quickly finding pathway candidates and a theory solver for ensuring the con-
sistency of stoichiometric constraints on the reactions. We thus have to deal with three
levels of problems. The first one is to deal with a SAT encoding of the original metabolic
network, and to be able to answer queries efficiently. The second level of problems we
will face is to be able to produce minimal pathways only (at the SAT level) before
sending them to the theory solver. The third one is to able to produce pathways consis-
tent with stoichiometric constraints. For this, we will use a theory solver with Gaussian
elimination, which is more powerful than plain resolution used in SAT solvers.

We will first use a modified version of the SAT solver Glucose in order to enumerate
solutions. To minimize them, we will use a solution similar to [34], e.g. a minimization
strategy inspired by [22]. Then, we propose to use a very simple theory solver based
on matrix kernel computation that will check that candidates at the abstract level are
indeed consistent with stoichiometric constraints.

2.1 Previous Work on SAT and Metabolic Pathways Analysis

In a couple of seminal papers [33,34], it was proposed to encode metabolic path-
ways into SAT problem. Their technique relies on time unrolling, each time step being
the execution of one reaction in the network. They propose a computation method to
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predict gene knockout effects by identifying minimal active pathways using the SAT
solver Minisat2. Tiwari et al. [37] propose a method using a weighted Max-SAT solver
to analyze pathways. They translate reaction laws into soft constraint represented in
weighted clauses to compute ordered solutions. However, its ordering is sometimes not
acceptable from a biological viewpoint since reaction laws must be held are sometimes
violated.

The missing property of these methods is the stoichiometry of the metabolites in
reactions which can lead to find non viable pathways and can miss important pathways.

2.2 A Simple Abstraction of the Metabolic Network

We will use in this paper the classical propositional logic notation, with the usual
boolean connectors (∨,∧,¬). A propositional variable v can be either true or false (resp.
� or ⊥). When set, the value of a variable is called its assignment. A literal is a variable
or its negation (v or ¬v). A clause is a disjunction of literals (for instance a ∨ ¬b ∨ c).
A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. The SAT
problem is, given a formula f in CNF, to check if f has a model, i.e. there exists an
assignment of its variables (the assignment can be partial) that makes f true given the
usual semantic of boolean connectors.

The idea in this section is to propose a very simple SAT encoding of our problem,
without stoichiometric constraints at this level. We note by M the set of metabolites
Mi, and R the set of reactions ri. We will use the set P (Mi) as the set of reactions that
produces the metabolite Mi and the set C(Mi) as the set of reactions that consumes
Mi. We note each reaction ri by ri :

∑|M|
j=1 S(Ii,j)Ii,j → ∑|M|

j=1 S(Oi,j)Oi,j . I stands
for input metabolites, O for output metabolites. S(M) is the stoichiometric coefficient
associated to the metabolite M .

In order to handle reversible reactions, we first have to duplicate each reversible
reaction ri into ri (left to right reaction) and a new rrevi (right to left reaction). The
SAT encoding is the conjunction of the following set of formulas:

– Producing an output implies at least one of its rules was activated (one clause per
produced metabolite):

Oi,j →
∨

r ∈ P (Oi,j) (1)

– The rule ri was activated implies all its output metabolites were produced:

ri →
∧

Oi,j (2)

– The rule ri was activated implies all its input metabolites were available:

ri →
∧

Ii,j (3)

– An internal metabolite I must be consumed in at least one reaction (number of
internal metabolites clauses)

I →
∨

C(I) (4)
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Fig. 1. Small example of a trivial metabolic pathway. The metabolites A, B and D are internal
metabolites. Aext, Bext, Cext and Dext are external metabolites. It describes the following set
of reactions : R1 : A + 3 C = B + 3 D, R2 : B = 2 A, TA : Aext = A, TB : Bext = B, TD : Dext =
D. Metatool[39] returns 4 reversible EFMs: -TB (2 TA) -R2; (-3 TD) -TA R1 R2; (-6 TD) -TB (2
R1) R2; (-3 TD) -TB TA R1.

– In case of reversible reactions, we must ensure that reactions are only activated
one-way (number of reversible reactions binary clauses):

¬ri ∨ ¬rrevi (5)

– And, to prevent any empty trivial answer, at least one reaction must be activated

∨
ri
∨

rrevj (6)

It is clear that this encoding does not perfectly match the requirements for enumerat-
ing EFMs. For instance, there is no reason, with this encoding, that all internal metabo-
lites are consumed by some rule. However, once again, in our architecture, the SAT
solver will send candidates solution only to the theory solver.

Example 1. Let us consider here, for clarity, the small example figure 1.
If we apply the SAT encoding, we have:

– A metabolite can be produced only if it is produced by at least one reaction (rule 1) :
¬A ∨R2 ∨ TA ∨R1 rev, ¬B ∨R1 ∨ TB ∨R2 rev, . . .

– An activated reaction produces all its metabolites (rule 2) : ¬R1∨B, ¬R1∨D, . . .
– A reaction can be activated only if all its reactants are presents (rule 3) : ¬R1 ∨ A,

¬R1 ∨ Cext, . . .
– A produced internal metabolite must be consumed by at least one reaction (rule 4) :

¬A ∨R1 ∨R2 rev ∨ TA rev, ¬B ∨R2 ∨R1 rev ∨ TB rev, . . .
– A reversible reaction shouldn’t be used at the same time in both ways (rule 5) :

¬R1 ∨ ¬R1 rev, ¬R2 ∨ ¬R2 rev, ...
– A valid pathway must have at least one reaction (rule 6) : R1 ∨ R1 rev ∨ R2 ∨

R2 rev ∨ TA ∨ TA rev ∨ TB ∨ TB rev ∨ TD ∨ TD rev
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2.3 Ensuring Minimality of Candidates

Before checking the consistency of stoichiometric constraints, we need to send minimal
EFM candidates only to the theory solver. For this, we will specialize the SAT solver
to be able to produce a minimal solution w.r.t. the set of target reactions. In our encod-
ing the set of propositional variables Target(R) encodes the set of target reactions.
Thus, finding a minimal set of targeted reactions is exactly the problem of finding an
assignment S such that the number of true literal (literals assigned to true in the final
solution) TT = {x ∈ var(S) s.t.x = �}/Target(R)} is minimal. This problem is
called “Minimal Model Generation” [22]. var(S) is the set of variables occurring in the
assignment (S can be partial over a formula f ) and TT stands for “True Target literals”.
We must ensure its minimality in terms of subset of true literals on TT . More formally,
given TT , we have: ∀TT ′ ⊂ TT and ∀ S′ s.t. x = � ∈ S′ iff x ∈ TT ′, at least one
clause in f is not satisfied by S′.

For this, we used the method described in [22] (which is also used in [34]). In-
tuitively, each time a solution is found, multiple SAT calls ensure its minimality by
successively trying to remove at least one true literal from the initial solution.

2.4 Validating the Pathway with the Stoichiometry Using SMT

To check if the pathway obtained with SAT is consistent with the stoichiometry of the
network, we examine if it is contained in the kernel of the stoichiometric matrix. At
this step, the pathway is represented by a set of reactions. If this pathway is consistent
with the stoichiometry of the network, there exists a vector with non-null coefficients
belonging to the kernel of the sub-matrix of the set of reactions of the pathway. If
the solution vector (which represents the pathway) has only strictly positive values or
only strictly negative value, it is selected to be a potential solution of the network. If
it contains opposite sign values, it is rejected because all the reversible reactions are
splitted into forward and backward reactions. If it contains null values (but not all), it
is rejected because this pathway is not minimal, taking into account the stoichiometry.
If all the values are null, there is no solution, the pathway is not at steady state with the
stoichiometry and so, it is not complete. This solution returns to the SAT solver to be
completed, if possible.

After minimization in the small example of the figure 1, there are still 14 minimal
possible solutions. Each solution must be examined by the SMT solver. It creates a
sub-matrix of the stoichiometric matrix which only contains the reactions of the found
solution. Then, three cases have to be considered:

– Incomplete : there is no vector with non-null coefficients in the kernel. This solution
is not at steady state for some metabolites and needs one or more activated reactions
to be valid with the stoichiometry of the network. For example, R1∧R2∧TD rev
has been found as a potential solution; the only vector belonging to the kernel which
contains only these reactions is the null vector. This solution returns to the SAT
solver to be completed, if possible.

– Impossible : if the solution is false because the vector of the kernel contains null
values (not all) or opposite sign values, it cannot be transformed into a valid one.
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For example, the SAT solver found R1 rev ∧R2 rev ∧ TA rev ∧ TD. The coef-
ficients of this solution in the kernel are (1 1 − 1 3)t the stoichiometry imposes to
product more metabolite A to be at steady state. This solution is rejected.

– Valid : if the solution is a correct pathway (i.e. an EFM). The coefficients found in
the kernel have all their values non null and with the same sign. For example, the
kernel vector of R2 ∧ TA rev ∧ TB is (1 2 1)t.

2.5 Optimizing EFM with Our CDCL(T) Architecture

The SAT solver works on an abstraction of the original network. Thus, even a mini-
mized solution will have no guarantee to comply with the stoichiometric constraints.
Each time Glucose is producing a solution, it first minimizes it on the target set of reac-
tions. Then, the candidate solution is sent to the Theory solver. Three cases can occur,
as described section 2.4: (1) The solution is compliant with stoichiometric constraints
and the solution can be considered. Then a clause is added to the SAT solver to block
further solutions subsumed by it. (2) The solution is not possible w.r.t. stoichiometric
constraints. The solution is discarded and exactly the same clause is added to the SAT
solver to prevent further solutions like it. At last (3), the solution can be incomplete
with stoichiometric constraints, i.e. it may be possible to find a Kernel to the matrix but
at least one reaction must be added to it. Once again, a special clause is added to the
SAT solver exactly meaning that.

For each of these special cases, the SAT solver must add a special clause to express
the result.

1. The candidate solution
∧
ri is compliant with the stoichiometric constraints. Then

a clause
∨¬ri is added to the clause database.

2. The candidate solution
∧
ri is not compliant. Again, a clause

∨¬ri is added to the
clause database.

3. Now, if the candidate solution
∧
ri is incomplete from a stoichiometry point of

view, we cannot add the same clause. Otherwise the matching EFM, if it exists,
will not be found by the SAT solver (it is a superset of all ri). To handle this, we
add the following clause

∨¬ri
∨
rj where rj are all the reactions that does not

occur in the initial candidate.

In the small example of figure 1, our solver returns the same EFMs as Metatool.

3 Experiments on the Yeast Mitochondrial Energetic Metabolism

We implemented our tool on top of Glucose, an award winning SAT solver [2]. We
added minimization features, as described in the previous section, and added it the
simple Theory module to reason on stoichiometric constraints. Tests were conducted
on 64 bits 4 cores workstation Intel I7 at 3GHz, with 16Gb, running under Linux. Note
that our tool only uses one core.

We applied this method to the mitochondrial bioenergy metabolism of the yeast S.
cerevisiae which includes the TCA cycle, transaminases, oxidative phosphorylation,
ethanol metabolism and carriers. The model contains 36 reactions, 10 irreversible reac-
tions, 32 internal metabolites and 25 external metabolites. We identified 11, 121 EFMs
with metatool [39].
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Fig. 2. ATP synthesis of yeast mitochondrial metabolism without ATP synthase. The rectangu-
lar nodes represent the reactions and the oval nodes represent the metabolites. The bold edges
describe the pathway.

3.1 Enumerating the First 100 EFMs

As we pointed out, the goal of our method is to be able to directly query any metabolic
network without needing to enumerate all EFMs. We however want to report here the
behavior of our tool in the enumeration of the first 100 EFMs on the above example,
when no queries are asked. This is not our typical application but reporting this should
allow the reader to compare the performances and the behavior of our method with more
traditional, compilation-based, methods (7 seconds is needed by efmtool to find the
11, 121 EFMs).

A few conclusions can be drawn from our analysis reported figure 3. First, 50 EFMs
are almost instantly found (less than 0.1s), which clearly demonstrates that interactive
queries over this kind of network is possible without any compilation. The short compu-
tation effort will be transparent for the user. We also noticed that, surprisingly enough,
the number of SAT calls is larger than the number of conflicts. Conflicts are essentials
in modern SAT solvers. They occur when a clause is falsified by the current partial as-
signment, when searching for a model, before backtracking. At each conflict, a clause
is learnt by the solver, and added to its clauses database. Observing that the number
of conflicts is smaller than the number of SAT calls clearly states that each solution is
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Fig. 3. Behavior of our tool on the first 100 EFMs for the yeast mitochondrial metabolism

almost trivially found by the SAT solver at each call. Recall that SAT calls are used
either to find a first solution or to minimize it recursively (and thus this observation
shows how simple is this example from a SAT point of view). The third sub-figure also
shows that the minimization process at the SAT level is relatively efficient, despite its
relatively high level of abstraction: each call to the theory solver is done on a minimized
formula on the abstract network, and we observed only a few additional SAT calls for
minimizing purpose. On average, around 12 calls to the theory solver are needed to find
a solution with possible stoichiometric constraints. The last observation is about the
size of EFMs the solver is able to produce. We clearly observe, on the last figure, that
the solver has a natural tendency to produce short EFMs first. Adding features that will
allow the solver to find most interesting EFMs (defined by the user) first is however an
ongoing work.

3.2 Querying the Mitochondrial Network

The above example demonstrated that our tool may be used to enumerate all EFMs.
However, we observed the same limitations of SAT solvers for enumerating solutions
(or even minimal solutions). Clearly enough, an important number of solutions is a
practical limitation for our tool. Thus, we would like to demonstrate that it is indeed
possible to query the above network with no compilations and be able to test/check
some hypothesis on it.
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The first query is about finding a classical EFM in this network. We retrieve classical
pathways such that the production of ATP from pyruvate uptake through TCA cycle
and respiratory chain in 0.044 CPU time (s) with the following formulae:

T 6∧R7 ∧R8 ∧R9 ∧R10∧R11∧R12∧R13∧R14∧R15∧R1 ∧R2 ∧R3 ∧ T 4

We also retrieve not well-known pathways. Schwimmer et al. [30] showed that ATP
production in the TCA cycle (substrate-level phosphorylation) can be important partic-
ularly in special conditions. Citrate produced in the glyoxylate cycle and transported
into the mitochondria by Odc1p (gene encoding an oxodicarboxylate carrier) can en-
ter the TCA cycle and lead to the production of succinate coupled to substrate-level
phosphorylation. Either malate or oxaloacetate can then be transported to the cytosol
via Odc1p and enter the glyoxylate cycle. This gives an increase of flux through TCA
cycle giving advantage to the ATP synthesis. We looked for EFMs which can represent
the experimental data. We searched the EFMs which contain respiratory chain (without
ATP synthase), Odc1p and TCA cycle (between citrate and malate) with the following
formulae:

¬R3 ∧ T 4 ∧R1 ∧R2 ∧R9 ∧R10 ∧R11 ∧R12 ∧R13 ∧R14 ∧ T 1 rev

We found 20 EFMs in 3.068 CPU time (s) which satisfy this constraint. We selected
the EFMs which does not contain other supplementary reactions but only transports. So
we added the literals ¬Ri with i 
= 1, 2, 9, 10, 11, 12, 13, 14. We found one EFM (in
less than a second) where two more transports were needed to have the steady state:
the proton leak and phosphate transport. Figure 2 shows the calculated EFM. We do
the same with T 10 rev instead of T 1 rev. We found 12 EFMs in 2.036 CPU time (s)
which satistify the constraint. As before, we selected the EFMs which does not contain
other supplementary reactions but only transports. The same EFM has been found with
T 10 rev instead of T 1 rev. We see here a typical run case of our algorithm. Each query
is built and answered without the need of computing all the EFMs.

4 Conclusion

If this work is still preliminary in some aspects, it demonstrates that new approaches for
manipulating EFMs are possible. We showed that a SMT-like architecture (CDCL(T))
can be efficiently used to enumerate EFMs, thanks to an efficient SAT solver. This
implies a new interaction between the SAT solver and the theory solver, in order to
ensure the minimality of each EFM. As a main result for our work (this was our initial
motivation), it may be not necessary to compute a priori all the EFMs before reasoning
on them.

Our tool was able to recover interesting EFM from non trivial metabolic networks.
We think it can answer complicated queries on very large metabolic networks, or be
used when other methods fail. It also allows for a high degree of flexibility in possible
constraints to add to the networks.
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Abstract. Methods for model integration have become increasingly
popular for understanding of the interplay between biological processes.
In this work, we introduce an approach for coupling models taking
uncertainties concerning the crosstalk into account. Using constraint-
based modeling and formal verification techniques, a pool of possible
integrated models is generated in agreement with previously validated
behavior of the isolated models as well as additional experimental obser-
vations. Correlation- and causality-based analysis allows us to uncover
the importance of particular crosstalk connections for specific function-
alities leading to new biological insights and starting points for exper-
imental design. We illustrate our approach studying crosstalk between
the MAPK and mTor signaling pathways.

Keywords: Systems Biology, Logical Modeling, Crosstalk Analysis.

1 Introduction

With rapidly growing technical progress and more accessibility of experimen-
tal data, more and more models are built to decipher the mechanisms control-
ling cellular processes. Often, these models are focused on capturing a specific
local observation. To obtain a more global understanding, techniques for inte-
grating validated models to more comprehensive systems are of interest [14].

In this article, we address this issue in the context of Boolean network mod-
eling, which has been shown to yield meaningful results for systems biology
applications (see e.g. [17] and references therein). Here, finite parameter and
state spaces allow for a top-down modeling approach considering sets of mod-
els in agreement with the available data rather than having to exclude viable
models on the basis of unsupported assumptions. This is a key feature in
our model integration procedure allowing us to evaluate different possible
crosstalk connections between models and thus distinguishing our approach
from coupling methods via predefined crosstalk such as in [10].

Starting with two or more validated models describing systems known to
be connected within the organism, we construct the basis for an integrated
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model by introducing crosstalk interactions between components belonging
to different isolated models. These are labeled according to the available data
as, e.g., activating or inhibiting, but also possibly as not necessarily having
an observable effect. A pool of models in agreement with these constraints
is then generated and further reduced to obtain models satisfying a list of
desired properties. First, we filter for the models that preserve the validated
behavior of the isolated models. Second, we incorporate new experimental
data pertaining to the integrated models. This can be implemented using for-
mal verification techniques such as presented in, e.g., [15] and [6]. Analysis
of the model pool should then focus on elucidating commonalities and differ-
ences between the remaining models in the pool. Here, we propose a statistical
analysis focusing on topological characteristics of the networks.

Our approach is illustrated on two signaling pathways, MAPK and mTor,
which are known to be connected, but the details are still unclear. Of particular
interest is to uncover the crosstalk in cancer cell lines. To tackle this problem
we explicitly address how to translate the specificities of such cell lines into
constraints to adapt the underlying generic models. Our results, although ob-
tained from strongly simplified models, are in agreement with experimental
findings, provide biological insights and may give rise for experimental design.

We start by providing the terminology used within the Boolean formalism
and then present our general approach for model integration and crosstalk
analysis. The following two sections introduce our statistical pool analysis
method and the approach for incorporating genotype information as, e.g.,
specifics of particular cancer cell lines. The concepts are then illustrated on
the MAPK-mTor pathway.

2 Background

Due to limitation of space, a formal description of the formalism is given here
and the application is illustrated in Section 6 (for detailed description see [9]).
Throughout the paper, we consider Boolean network models where compo-
nents can only adopt the values 0 or 1. We capture a regulatory network as
a directed graph R = (V, E, l), where V = {1, . . . , n} is a set of components,
E ⊆ V × V is a set of interactions and l : E → L is an edge labeling where L is
a set of well-formed formulas with variables + and −.

The dynamical behavior of such a network is described via so-called logical
parameters that must be explicitly specified. Denote v− = {u ∈ V | (u, v) ∈ E}
the set of regulators of v ∈ V. For each v ∈ V we then need to specify the
parametrization function Kv : 2v− → B = {0, 1}. This function defines the value
the component v evolves to based on what regulators are currently active.

The parametrization functions need to be consistent with the edge labels
given by l [9]. For each v ∈ V, we say that Kv is a solution of the edge labeling
iff the l(u, v) evaluates to true for each u ∈ v−. Here, we say that the variable
+ adopts the value true for an edge (u, v) iff there exists ω ⊆ v− such that
Kv(ω) = 1 and Kv(ω − {u}) = 0. Likewise, − is interpreted as true for an
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edge (u, v) iff there exists ω ⊆ v− such that Kv(ω) = 0 and Kv(ω − {u}) = 1.
The parametrization K = (Kv)v∈V is a solution to l if Kv is a solution to l
for each v ∈ V. The set of all K that are solution to l is called the model pool,
denoted K(V, E, l).

Having a parametrization K we can describe the complete dynamical be-
havior of the network R as a state transition graph (STG) R(K) = (S,→).
This is again a directed graph where S = ∏v∈V B is the set of states and
→⊆ S × S is a transition relation. To define the state transitions, we employ
the asynchronous update schedule [16] where only one component can change
its value at a time, often yielding more realistic trajectories than synchronous
update. For a state s = (s1, . . . , sv, . . . , sn) denote sv = (s1, . . . ,¬sv, . . . , sn) the
state which differs from s in the value of the component v. The transition rela-
tion is then obtained as follows: s → sv ⇐⇒ Kv({u ∈ v− | su = 1}) �= sv. In
the STG, a strongly connected set of states that cannot be left by any trajectory
is called an attractor. In case this set consists of a single state, we call it a fixpoint
or steady state, otherwise a cyclic attractor.

3 Model Integration and Crosstalk Analysis

We developed our approach to model coupling with different requirements
in mind. First, the method should allow to decide which characteristics of
the original models should be preserved in the integrated model. Second, we
wanted to be able to handle uncertainty w.r.t. to the crosstalk connections be-
tween the original models. Lastly, the constraints posed by the original charac-
teristics as well as experimental observations pertaining the integrated system
should be exploited to obtain a clearer understanding of the crosstalk, possibly
linking particular edges to specific functionalities of the integrated system.

We have implemented these ideas in a four step procedure illustrated in
Fig. 1. In the following we give a general description of all steps. While here
we restrict ourselves to the case of coupling two models, extension to several
models is straightforward.

1. Single Model Analysis. We start out with two networks R1 = (V1, E1, l1)
and R2 = (V2, E2, l2) with their parametrizations K1 and K2, that we assume
to be validated and analyzed w.r.t. some features of interest. For each model,
we decide on a set P of properties to be preserved by an integrated model.
Here, both structural properties such involvement of components in feedback
circuits and dynamical properties such as attractor characteristics or input-
output behavior can be considered. In application, these properties should
describe experimentally validated behavior or characteristics of the systems
that should not be lost when combining the models.

2. Model Integration. Model integration is accomplished in two steps: first, the
regulatory graphs are combined to one network by merging identical compo-
nents and adding crosstalk edges, and in a second step the model pool com-
prising all possible parametrizations consistent with this network is generated.
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We define the coupled network R = (V, E, l) in the following way. The
component set V is given by V1 ∪ V2, where we assume that vertices that
represent the same biological component coincide in both original models, i.e.,
they are merged within the integrated model. Dependencies and regulations
within the single networks are kept and additionally new regulations between
components of the uncoupled networks are introduced, so E = E1 ∪ E2 ∪ Enew

with Enew ⊆ V × V \ ((V1 × V1) ∪ (V2 × V2)) the so-called crosstalk. Lastly,
denote lnew the labeling of the edges from Enew. The labeling l : E → L of the
integrated network is defined as:

l(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(l1(u, v))∨ (l2(u, v)) if (u, v) ∈ E1 ∩ E2

l1(u, v) if (u, v) ∈ E1 \ E2

l2(u, v) if (u, v) ∈ E2 \ E1

lnew(u, v) otherwise

.

To generate the model pool, we keep the parametrizations Kv of the single
models for those components v that are not influenced by new edges resulting
from the model integration or crosstalk inclusion. For all other component we
consider all parametrizations in agreement with the edge constraints.

In general, the integrated model will have a higher dimensional state space
than the single models. In order to interpret the properties P within this new
context, we may have to translate them into this new setting. This might not
necessarily be straightforward. For example, consider that an attractor A1 of
the model R1 should be preserved. One possibility would be to demand that
A1 is the projection of some attractor of the integrated model. A weaker con-
dition would be that A1 is an attractor of the state transition graph derived
from projection from the state transition graph of R. Also it is important to
consider whether a property is an observed behavior for the elements of the
single model in context of the joint system or might be an artifact of the iso-
lated model. In application, the decision on how to translate the properties
might be supported by biological knowledge or reasonable assumptions.

3. Model Pool Refinement. The model pool generated in the second step con-
tains all models consistent with the integrated network R. In general, many of
these models will not satisfy the properties P . Therefore, the pool is filtered
for these properties using a suitable method. Structural properties can be val-
idated using graph algorithms, which in some cases might also be useful to
test dynamical properties encoded in the state transition graph. For the latter,
formal verification approaches have also proved useful as shown e.g. in [2].
In our work we describe dynamical properties as formulas in Computation
Tree Logic (CTL) [1]. A parametrized regulatory network is then consistent
with a property if and only if its transition system is a model of the respec-
tive formula, which can be checked efficiently with available tools [15]. For P
comprised of such dynamical properties, we formally create the refined model
pool K(V, E, l,P) where K ∈ K(V, E, l,P) ⇐⇒ ∀P ∈ P : R(K) |= P. More
detail on this is provided in Sec. 6.2.
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In addition, data available for the integrated model can now also be ex-
ploited to refine the pool further using the same methods. Here, experimental
observations need to be translated into formal properties as can easily be done
for, e.g., time series data [9,15].

4. Model Pool Analysis. Our overall aim in this approach is to gain new insight
about the underlying biology by analyzing the model pool. Properties shared
by all models can be viewed as strongly supported by the available data while
distinguishing features highlight different possibilities of implementing bio-
logical functionalities and can be exploited for experimental design.

Depending on the analysis focus different structural and dynamical prop-
erties can be used for classification of the pool models, e.g., network connec-
tivity or input-output behavior. The resulting classes can be further analyzed
and evaluated. For the crosstalk analysis meaningful information can be gained
by, e.g., considering the models with the minimal number of functional
crosstalk edges and by correlating crosstalk edges with newly emerging be-
havior. Again, there are different strategies to investigate such questions, one
of which we will introduce in more detail in the next section.

Fig. 1. Overview about the model integration and crosstalk analysis approach

4 Statistical Analysis of Large Model Pools

Even after incorporating numerous constraints, the resulting set K may be
too large for manual analysis. In that case we propose to employ statistical
methods that capture the nature of the set. Here, we focus mainly on com-
puting correlations between the state of the system and kinetic parameters of
the individual component to evaluate the effect of regulations. Note that the
parametrization function describes a causal relationship—the dynamical be-
havior of a component is implied by the state of the system. For each pair
(u, v) ∈ E and a parametrization K we therefore compute the impact of u on v
as the correlation between the current value of u and Kv.

Formally, for each K ∈ K we define the impact function impK : E →
[−1, 1] ⊂ R as impK(u, v) = corr((su){s∈S}, (Kv(s)){s∈S}) where corr is the
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Pearson product-moment correlation coefficient. Note that impK(u, v) = 0 is
equivalent with l(u, v) = (¬+) ∧ (¬−), meaning the edge is non-functional.

This notion can be easily extended to parametrization sets by employing the
mean. Formally we create an extended impact function impK : E → [−1, 1] as
impK(u, v) = ∑K∈K impK(u,v)

|K| . Lastly we are also interested in how often an edge
is functional in the resulting set, which we describe by the frequency function
f reqK : E → [0, 1] defined as f reqK(u, v) = |{K∈K|impK(u,v) �=0}|

|K| .

5 Incorporating Genotype Information

Often processes in cells with changes in the genotype are of interest, since they
show abnormal behavior leading to diseases, such as cancer. Often generic
rather than cell line specific models are build. Under the assumption that the
more specific are derived from the generic models by adapting node param-
eter values or edge labels, two scenarios can be directly implemented in our
coupling approach.

Component mutations resulting in knock-outs or overexpression, can be
modeled by requiring their value to remain constantly at 0 resp. 1 along all
considered system trajectories. This can be phrased as additional property for
model refinement in the third step in Sec. 3, which is added to each constraint
derived from the experimental data used for filtering. This ensures that the
observed behavior is tested under the conditions imposed by the mutation.

Mutations can also alter the character of interactions, i.e., affecting the edges
in the model. In case a crosstalk edge is targeted by a mutation, we can find
this as result of the analysis provided that there is meaningful data. However,
if an edge from a single model is lost or a new edge is gained the information
must be directly included on the level of the edge constraints in the single
models, see Step 1 in Sec. 3.

6 Application on MAPK-mTor Crosstalk

In the following, we illustrate the method on the MAPK and the mTor path-
ways since they are known to be connected via crosstalk, but the exact in-
formation about interactions are sparse and unclear [11]. Mutations in these
pathways are very prominent in tumors, motivating research for medical pur-
poses. Several comprehensive logical models are available used for studying
input-output behavior [5,12]. Since we aim at a more complex analysis under
uncertainty w.r.t. the crosstalk connections, we focus for our illustration on a
very much reduced representation of both MAPK and mTor networks which
is still able to reproduce the essential pathway behavior.

The single models are built based on literature information. The MAPK
model is extracted from Kholodenko et al. [8], the mTor model from Engel-
man et al. [3]. The resulting interaction graph is shown in Fig. 2 A, along with
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the logical rules governing the component behavior in B. Here, we only em-
ploy the strictest edge labels + ∧ ¬− for activating or ¬ + ∧− for inhibiting
edges, so that the logical rules immediately imply the edge constraints and
parametrization of the components resulting in KMAPK and KmTor.

6.1 Single Model Analysis

Both systems exhibit a fixpoint representing a quiescent stable state and a
cyclic attractor. Oscillations in agreement with the cyclic attractors were exper-
imentally shown for the components Erk and Akt in [7], the quiescent stable
state represents the behavior of the inactive pathway. Both are biologically rel-
evant and the corresponding behavior should be preserved in an integrated
model. The following properties thus make up the set P :
MAPK P1: ∃ fixpoint in SMAPK with (RTK=0, Raf=0, Mek=0, Erk=0)

P2: ∃ attractor in SMAPK with RTK=1, s.t. Raf, Mek and Erk oscillate
mTor P3: ∃ fixpoint in SmTor with (RTK=0, PI3K=0, Akt=0, Tsc=1, mTorC1=0)

P4: ∃ attractor in SmTor with RTK=1, s.t. PI3K, Akt, Tsc and mTorC1 oscillate

6.2 Generating and Refining the Model Pool

According to the second step in Sec. 3 we integrate the MAPK and mTor model
by combining components and edges of both models. Here, the component
RTK featuring in both models is merged to one component, since both path-
ways are activated by this receptor. Lastly, the crosstalk edges are added. We
selected 5 possible crosstalk connections from the literature, which are given
in Fig. 2 C. Based on the available biological information, they are labeled with
¬+ and ¬−, respectively. This translates to edges being either inhibiting resp.
activating or not functional.

The parametrizations of components not targeted by any crosstalk edge are
determined by the single models. The other components, namely RTK, Raf,
PI3K, Tsc and mTorC1, have new regulatory contexts. For them, we consider
all parametrizations in agreement with the edge labels, as defined in Sec. 2,
leading to a model pool K(V, E, l,P) of size 13,266.

Now, the properties P1 − P4 observed in the single models need to be trans-
ferred to the dimension of the coupled system:

• P1 and P3 both characterize the steady state without stimulus and are fused
to one property: FP1 : ∃ fixpoint in S with (RTK=0, Raf=0, Mek=0, Erk=0,
PI3K=0, Akt=0, Tsc=1, mTorC1=0).

• P2 and P4 both describe cyclic attractors, assumed to be preserved in MAPK
and mTor components as 2 distinct attractors in the state space:
P2 → Cyc.MAPK : ∃ attractor in S where Raf, Mek and Erk oscillate,
P4 → Cyc.mTor : ∃ attractor in S where Akt and mTor oscillate.

To obtain the set K of parametrizations satisfying the properties in P we use an
appropriate model checking tool [9]. The exact specification is given in Tab. 1 B.
Here, FP1 is chosen to have the strictest verification criterion w.r.t. the choice
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of initial states (see Tab. 1 D), since the quiescent state should be reached for all
states with inactive receptor, while we allow for the cyclic attractors to emerge
dependent on the initial value of the internal components. After filtering, only
2263 models remain that all share the validated asymptotic behavior of the
single models.

B
MAPK: RTK = RTK,

Raf = RTK ∧ ¬ Erk,
Mek = Raf, Erk = Mek

mTor: RTK = RTK, mTorC1 = ¬ Tsc,
PI3K = RTK ∧ ¬ mTorC1,
Akt = PI3K, Tsc = ¬ Akt

C
Interaction Reference

PI3K activates Raf [18]
Akt inhibits Raf [11]
Erk inhibits PI3K [11]
Erk inhibits Tsc [19]
Erk activates mTorC1 [11]

Fig. 2. Model setup for crosstalk analysis. A Network structure of MAPK and mTor
in black and crosstalk edges in dashed green lines. B Logical rules for regulations of
components. C List of crosstalk edges added to the single pathways.

To reduce the pool further, experimental data from literature containing
information about the integrated system is used. A study from Will et al. in-
vestigated the effect of Akt and PI3K inhibitors in connection with MAPK sig-
naling in a breast cancer cell line [18]. The genotype of the cell line needs to be
considered when exploiting cancer data. This specific cell line (BT-474) carries
an amplification in HER2, which belongs to the RTK family and a mutation
in PI3K (PIK3CA) which causes increased levels of activity. As described in
Sec. 5, we add the genotype information which amounts to adding the �����

���	�
�
� constraint (see Tab. 1 D) to the properties derived from the corre-
sponding experimental observations, fixing RTK and PI3K to value 1 unless
explicitly indicated otherwise in the experimental set-up.

In the paper, time series experiments without inhibitor are performed (see
Figure S2B in [18]), indicating that the quiescence state shows active Akt (P-
Akt) and active Erk (P-Erk). We can translate this observation into CTL for-
mula FP2 shown in Tab. 1 C. Moreover, Will et al. performed measurements
perturbing with Akt inhibitor MK2206 and PI3K inhibitor BAY 80-694 hypoth-
esizing that PI3K is upstream of MAPK and blocking this kinase should affect
Erk activity. We used these western blots (shown in Fig. 2 in [18]) to further
refine the model pool. In order to avoid discretization errors, time points with
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unambiguously active or inactive states are chosen, discretized and collected
in Tab. 1 A. The table shows the states of Akt, Erk and P-S6, which is a ki-
nase dependent on mTorC1 and therefore used as its read-out. For the PI3K
inhibitor 3 measurements and for the Akt inhibitor 4 measurements are im-
plemented as CTL formulas BAY and MK, listed in Tab. 1. After filtering, the
resulting pool contains 240 models that are in agreement with the properties
derived from the single networks and the experimentally observed behavior.

Table 1. Filtering model pool using model checking. A Table with discretized western
blot data from Will et al. [18] for PI3K inhibitor Bay 80-6946 and Akt inhibitor MK2206.
B CTL formulas for properties FP1, Cyc.MAPK and Cyc.mTor. C CTL formulas derived
from western blot data. D Description of CTL operators and verification options.

A
BAY MK2206

Time [h] 0 0.5 2 0 0.5 2 8

P-Akt 1 0 0 1 0 0 0
P-S6 1 1 0 1 1 0 1
P-Erk 1 0 1 1 1 1 1

B
FP1: ��� �������������������������������������

�
�����  ���� � �!��" #����������
� ���$��

Cyc.MAPK: ��� ���$%������������&�����

�
�����  ���� � �!��" #����������
� ���'���

Cyc.mTor:
��� ���$%��������������&������������$��&�����

�
�����  ���� � �!��" #����������
� ���'���

C
FP2: ��� �����������������$�����" �
�����  ���� � �!��

����� ���	�
�
� � �!��()�*!��" #����������
� ���$��

MK: ��� �����������������������������������������������������

�
�����  ���� � �������(�����

#����������
� ���$��" ����� ���	�
�
� � $����( �!��( )�*!��

BAY: ��� ���$����������������������$��������������������

�
�����  ���� � $����(�������(�����

#����������
� ���$��" ����� ���	�
�
� � �!��( )�*!��

D
���+�: is a CTL operator exists finally. This states that on some path from an

initial state the + holds true at some point.
$%�+�: is a CTL operator all globally. This states that on every successor of this

state, + holds true.
�������: states that no change is possible, i.e. we are in a steady state.
,�-: where , ∈ V, - ∈ B states that value of a component , is set to -.
�
�����  ����: is a list of boolean constraints on the values of the components.

A state is considered initial if all the constraints are satisfied.
#����������
: specifies the verification strictness. We can either decide that it

is sufficient if the property is satisfiable (���'���), meaning there exists some
initial state where it holds. Or we can require that the property is valid
(���$��), meaning it holds in all the initial states.

����� ���	�
�
�: constrains the listed components to the assigned values for
the whole path. This property allows for modeling knock-outs and stimuli.
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6.3 Model Pool Analysis

We employ the statistical analysis approach presented in Sec. 4 to investigate
the topological characteristics of the integrated models. For identifying impor-
tant influences and structures in the model pool, the frequency of the edges
and correlations between the components is calculated, depicted as edge width
and edge color, respectively. In Fig. 3 the statistical analysis of both the refined
model pool KR resulting after the filtering as well as a reference pool Kre f and
the difference between the two is visualized. The reference pool contains all
models of the originally generated pool K(V, E, l,P) that have been discarded
in the filtering process. The result for KR is shown in graph A, where the
crosstalk edge from PI3K to Raf has a frequency of 1. Thus, in every model in
the pool this edge is functional. In order to evaluate possible enrichments of
other edges, we need information about Kre f , shown in C. Here, the frequency
and correlation is given by the edge constraints and the arising combinations
of parametrizations. Finally, the difference between the filtered and the refer-
ence pool is depicted in B. Again, the connection PI3K and Raf is shown to
be more prominent and highly correlated comparing the filtered models to all
possible models. This result is in line with findings of Will et al., where it was
concluded that PI3K is upstream of the MAPK cascade [18]. The crosstalk from
Erk to PI3K is less frequent in KR, which is reasonable since in the data PI3K
is a fixed component and therefore this edge cannot be functional here.

Fig. 3. Visualization of the statistical analysis of the model pool. The edge width repre-
sents the frequency of occurrence in the pool and the heads show the sign. A illustrates
the refined pool KR, and C the reference pool Kre f . In B the difference graph is shown,
where the edge signs has been dropped, solid lines are drawn for connections more
frequent on average in KR than in Kre f and dashed lines for lower frequency in the
refined pool. Figures generated using Cytoscape (http : //www.cytoscape.org/).
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Moreover, the influence of Erk on Tsc and mTorC1 is strongly enriched in
the selected model pool. Further investigation shows that every model in KR
contains at least one of these edges. They are directly linked to the experimen-
tal data showing value changes in mTorC1. Further experiments could clarify
which of the two crosstalk edges are actually functional in this setting.

7 Conclusions

Biological processes do not work isolated, but in concert with other cellular
mechanisms. For many of these processes exist validated models, but their
interactions among each other are often unclear. Here, we present a novel
approach for integrating discrete models allowing for uncertainty concern-
ing their connections and subsequent crosstalk analysis. Prior models, candi-
date crosstalk and constraints derived from validated properties of the original
models and new experimental observations give rise to a model pool whose
analysis allows to uncover essential features and provides pointers for exper-
imental design, as illustrated with the MAPK-mTor system. Recognizing par-
ticular requirements in application, we address, on the modeling side, ways
to integrate genotype information and, concerning the analysis, statistical ap-
proaches to evaluate the relevance of the crosstalk edges.

Here, we reduce the pool as much as possible and then perform the pool
analysis. Another possibility would be to add constraints stepwise and per-
form analysis after each step. This may allow to link specific network charac-
teristics to the properties and functionalities encoded in each constraint.

One difficulty that needs to be addressed in application is the translation
of experimental data into logical constraints for a Boolean model. For check-
ing CTL formulas, for example, the choice of verification type, i.e., whether
the property needs to hold for all or only for some initial states, will gener-
ally strongly impact the results. Similar problems arise when discretization
data. Often, biological knowledge allows for well-supported decisions in these
matters. Otherwise, comparative analysis of different interpretations might be
useful. In some cases, multi-valued models are more suited to capture certain
biological aspects. Our method can easily be extended to this setting.

To make the approach accessible, we plan to develop a tool using, as a
starting point, available model-checking software and extending our existing
model pool analysis methods. Depending on the nature of the constraints used
for filtering, integration of other verification techniques might also prove use-
ful. The biggest challenge to be addressed is certainly scalability of the method,
as the problem is exponential in both the number of components and the max-
imum degree of the network. For smaller models, as shown for the simplified
MAPK-mTor system, comprehensive analysis is quite simple. For larger sys-
tems, more elaborate methods are needed. We plan to exploit methods yield-
ing significant reduction while preserving meaningful properties, as e.g. in
[10], as well as methods identifying core network modules governing the sys-
tem behavior in subspaces of state space [13]. This will allow for a balance
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of efficiency and property resolution that can be tailored to the requirements
of a given application. Lastly, the size of the problem can be also tackled by
incorporating more involved algorithms as recently shown in [4].
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Abstract. Kinetic models are being increasingly used as a systematic
framework to understand function in biological systems. Calibration of
these nonlinear dynamic models remains challenging due to the noncon-
vexity and ill-conditioning of the associated inverse problems. Noncon-
vexity can be dealt with suitable global optimization. Here, we focus
on simultaneously dealing with ill-conditioning by making use of proper
regularization methods. Regularized calibrations ensure the best trade-
offs between bias and variance, thus reducing over-fitting. We present
a critical comparison of several methods, and guidelines for properly
tuning them. The performance of this procedure and its advantages are
illustrated with a well known benchmark problem considering several
scenarios of data availability and measurement noise.

Keywords: Dynamic models, parameter estimation, Tikhonov regular-
ization, regularization tuning.

1 Introduction

Dynamic mathematical models (i.e. kinetic models) are central in systems bi-
ology as a way to understand the function of biological systems [16], to gener-
ate new hypotheses, and to identify possible ways of intervention, especially in
metabolic engineering [1]. Recent efforts are focused on the development and
exploitation of large-scale kinetic models [28].

Parameter estimation aims to find the unknown parameters of the model
which give the best fit to a set of experimental data. Parameter estimation be-
longs to the class of so called inverse problems, where it is important to include
both, a priori (i.e. structural) and a posteriori (i.e. practical) parameter identi-
fiability studies. In this way, parameters which cannot be measured directly will
be determined in order to ensure the best fit of the model with the experimental
results. This will be done by globally minimizing an objective function which
measures the quality of the fit.

Global optimization methods must be used in order to avoid convergence to lo-
cal solutions [2,3]. However, we also need to deal with the typical ill-conditioning
of these problems [14], arising from (i) models with large number of parameters,
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(ii) experimental data scarcity and (iii) significant measurement errors. As a
consequence, we often obtain over-fitting of such kinetic models, i.e. calibrated
models with reasonable fits to the available data but poor capability for gener-
alization (low predictive value).

Regularization methods have a rather long history in inverse problems [9] as
a way to surmount ill-posedness and ill-conditioning. The regularization pro-
cess introduces additional information, usually by penalizing model complexity
and/or wild behaviour. It also has links with Bayesian estimation in the sense
that it can be regarded as a way of introducing prior knowledge about the param-
eters. It has been mainly used in fields dealing with estimation in distributed
parameter systems, such as tomography (with applications in geophysics and
medicine) and other image reconstruction techniques. Recently, it has enjoyed
success in machine learning, gaining attention from the systems identification
area [17].

However, the use of regularization in systems biology has been marginal [8],
especially regarding kinetic models. Bansal et. al [4] compared Tikhonov and
truncated singular value decomposition regularization for the linear regression
model of green fluorescent protein reporter systems to recover transcription sig-
nals from noisy intensity measurements. Wang and Wang [31] presented a two
stage Bregman regularization method for parameter estimations in metabolic
networks. A clear conclusion from these studies is that for nonlinear inverse
problems, there is no general recipe for the selection of regularization method
and its tuning. Further, it is known that even for linear systems, choosing a
method from the plethora of existing techniques is nontrivial [6].

Here we present a critical comparison of a wide range of regularization meth-
ods applicable to nonlinear kinetic models. Further, we detail a procedure with
guidelines for regularization method selection and tuning. Finally, we use numer-
ical experiments with a challenging benchmark problem to illustrate the usage
and benefits of regularization.

2 Parameter Estimation in Dynamic Models

We consider kinetic models given by arbitrary nonlinear ordinary differential
equations (ODEs) formulated as

dx(t, θ)

dt
= f(u(t), x(t, θ), θ), y(x, θ) = g(x(t, θ), θ),

x(t0) = x0(θ), t ∈ [t0, tf ] ,

(1)

where the dynamics of the states x ∈ Rnx
+ are determined by the vectorfield

f(·), θ ∈ P ⊂ Rnθ is the vector of model parameters (e.g. Hill-coefficients, re-
action rate coefficients, Michaelis-Menten parameters, etc.), u(t) ∈ Rnu denotes
the time dependent stimuli, and ỹ(t) are measured values of the observed vari-
ables y(x(t), θ) ∈ Rny . The latter are related with the dynamic states via the
observation function g(x, θ).
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The parameter estimation problem is usually formulated as the maximiza-
tion of the likelihood function. The measurement of the j-th observed quantity,
taken at time ti in the k-th experiment is assumed to be contaminated by ran-
dom measurement error distributed according to the normal distribution, i.e.
ỹijk = yijk(x(ti), θ)+ εijk and the error term εijk ∼ N (0, σ2

ijk), where σ
2
ijk is the

error variance. Then, the maximization of the likelihood function leads to the
minimization of the weighted least squares cost function [30].

QLS(θ) =
1

2

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(
yijk(x(ti, θ), θ)− ỹijk

σijk

)2

=
1

2
R(θ)TR(θ) , (2)

where Ne is the number of experiments, Ny,k is the number of observed com-
pounds in the k-th experiment, Nt,k,j is the number of measurement time points
of the j-th observed quantity in the k-th experiment, and R(θ) is the normalized
residual vector.

2.1 Optimization Method

It is well known that the cost function (2) can be highly nonlinear and noncon-
vex in the model parameters, so one should use global optimization in order to
avoid local optima. However, the current state of the art in global optimization
for this class of problems is still somewhat unsatisfactory. Deterministic global
optimization methods [22,18] can guarantee global optimality but their compu-
tationally cost increases exponentially with the number of estimated parameters.
Thus, stochastic methods [19], or meta-heuristic approaches [26] are better al-
ternatives, given adequate solutions in reasonable time, although at the price of
no guarantees.

Here, we have used a global-local hybrid metaheuristic which combines scatter
search [25] with the very efficient adaptive nonlinear least squares algorithm
NL2SOL [7]. In order to further increase the convergence rate of NL2SOL, the
Jacobian of the normalised residual vector is computed based on the solution
of the forward sensitivity equations corresponding to (1) via the SUNDIALS
CVODES [11] software package.

3 Regularization Methods

Here we consider general family of penalty type regularization methods, which
incorporate a term Γ (θ) in the optimization cost function

QReg(θ) = QLS(θ) + αΓ (θ) . (3)

Specific methods differ in the form of the penalty; e.g. for Tikhonov regular-
ization ΓT(θ) = ||Wθ||2, where W ∈ Rnθ×nθ is a weighting matrix; for Breg-
man regularization [31] ΓB(θ) =

∑nθ

i=1 θi log(θi); for LASSO regularization [29]
ΓL(θ) =

∑nθ

i=1 |θi|; and the so-called elastic net [32] combines the Tikhonov and
the LASSO regularization.



48 A. Gábor and J.R. Banga

The Tikhonov regularized optimization problem can be formulated as

minimize
θ

1

2
R(θ)TR(θ) + α(Wθ)T (Wθ)

subject to θ ∈ P , Eqs. (1).
(4)

Since (4) is still a nonlinear least squares problem, the above mentioned op-
timization procedure, with NL2SOL as local method, is still fully applicable.
Optimization methods for the LASSO regularization has been reviewed in [27].

3.1 Regularization Parameter (Tuning Methods)

One of the crucial step in the regularization of ill-posed problems is the choice of
the regularization parameter α, which balances the model fit and the regulariza-
tion penalty. Recent studies [6,24] have compared more than twenty parameter
choice methods for linear inverse problems. In our study, we consider the prob-
lem of regularization parameter selection for the nonlinear dynamic problem (4)
with the Tikhonov scheme above. However, it should be noted that the methods
below are general and applicable for other penalty types, and can also be used
in iterative regularization procedures [12]. Note that α is a continuous variable,
but below we consider the selection among the set of discrete regularization
parameters αi = αmax · qi, for 0 < q < 1, and i = 0, 1, 2 . . . I.

Optimal regularization (OR). The optimal regularization minimizes the distance
between the estimated parameters and the unknown model parameters, i.e. the
estimation error. The expected error in the estimated parameters can be decom-
posed [6] as

E||θ̂εα − θ||2 = ||θ̂0α − θ||2 + E||θ̂0α − θ̂εα||2, (5)

where θ̂εα is the estimated parameter vector using noisy measurement data, α
is the regularization parameter, θ is the (in general unknown) nominal param-

eter vector and θ̂0α is the estimated parameters from noise-free data. The first
term in the right hand side is the regularization error, which accounts for the
regularization bias and is a monotonically increasing function of α. The second,
variance term is the data noise propagated error, which monotonically decreases
with increasing α. Therefore, a minimum of the estimation error is expected for
a certain α, denoted by αopt. In the discretized framework, if the resolution is
fine enough, the problem of finding the optimal regularization parameter is re-
duced to the selection of the best candidate in the set {αi}. It should be noted
that OR can only be computed for synthetic problems where the true parame-
ters are known. In other words, the direct computation of (5) is impossible in
real problems, since θ and the noise-free data are unknown in practice. The OR
results presented below, for the sake of comparison, could be computed because
the problems considered are synthetic.
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Parameter choice methods. Since in general we do not know the true parameters
(as this is obviously the objective of the estimation problem), several parameter
choice methods have been developed to find the optimal regularization param-
eter in an indirect way. Most of the methods have been developed for linear
inverse problems (see [6,9,21] and the references therein) or for nonlinear prob-
lems in combination with a local (Newton-type) optimization method [12], which
cannot handle the nonconvexity of the objective function. In the following part
of this section we shortly summarize a selection of existing regularization pa-
rameter choice methods that can be used for nonlinear problems in combination
with our global metaheuristic optimization approach. In our implementation,
the regularized estimates are first obtained on the whole set of αi for illustrative
purposes. However note that most methods can be used in an iterative way, thus
reducing the number of regularized solutions required. Several methods require a
maximum index Im of the regularization parameter, such that the optimal index
iopt ≤ Im. Details on how the maximum index is computed for those methods
are given in Appendix B.

Discrepancy principle (DP)[20]. The discrepancy principle chooses the regular-
ization parameter such that the observed discrepancy between the data and the
model prediction is explained by the measurement error, i.e. ||y(θ̂)− ỹ|| ≈ ||ε||.
Since the residuals are normalised (2) and thus each element of the residuals
contributes equally to the cost function, the principle chooses the index nDP = i
for which

QLS(θ̂αi) ≤ τNdata ≤ QLS(θ̂αi−1),

where Ndata is the total number of data and τ is a small tuning parameter of
this method. We used τ = 1.5 according to [6] and also 2.0 [9], but did not find
significant differences. The results below correspond to τ = 1.5.

Balancing principle (BP1, BP2) [15,6]. The balancing principle chooses the

regularization parameter that balances the propagated error bound ||σ̂R(θ̂αk
)||

and the regularization error. Following [6], the balancing functional is defined

as b(i) = max
i<k≤Im

||θ̂αi
−θ̂αk

||
4||σ̂R(θ̂αk

)|| , where Im is the maximum regularization index. We

considered two submethods: in BP1 the term ||σ̂R(θ̂αk
)|| was approximated by

a local, sensitivity based analysis (A.1) as shown in Appendix B; in case BP2
we used parameter estimates from 4 independent datasets to approximate the
standard deviation of the parameters. Then, the smooth balancing functional
was computed as B(n) = max

n≤k≤Im
b(k). The optimal index (nB1 and nB2 for the

two cases respectively) according to the balancing principle is the first index i
such that B(i) ≤ κ, where κ is a tuning parameter. For our test problems κ = 1.

Hardened-balancing (HB) [5]. This method is a tuning parameter free version
of the balancing principle. The smooth balancing functional B(i) is defined as
above, but the optimal index is chosen based on the minimisation as nHB =

arg min
0≤k≤Im

B(k)

√
||σ̂R(θ̂αk

)||, where ||σ̂R(θ̂αk
)|| is computed as (A.1).
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Quasi-optimality criterion (QO) [9]. As the regularization parameter decreases,
the corresponding estimated model parameters change. When the regularization
parameter is large, the estimated parameters are heavily influenced by the reg-
ularization term, while for mildly regularized cases, the fit measure prevails.
Quasi-optimality is achieved, when the variability of the estimated parame-
ters is minimized, i.e. the optimal regularization index is defined as nQO =

arg min
0≤k≤Im

||θ̂αk
− θ̂αk+1

||. This method showed high sensitivity to the maximum

regularization parameter index Im.

L-curve method (LC1,LC2)[10]. When ||θ̂αi || is plotted against QLS(θ̂αi) for
i = 1, 2 . . . I, an L-shaped curve is obtained (see Figure 1). The L-curve method
chooses the corner point of the curve balancing the propagated error and the reg-
ularization error. We considered two variants: method LC1, which identifies the
corner by finding the point of the L-curve that has the highest curvature. The cor-
responding regularization index is nLC1. Method LC2 [23] finds the corner where

the tangent of curve is −1, equivalently nLC2 = arg min
0≤k≤Im

QLS(θ̂αk
)||θ̂αk

||.

Cross validation (CVχ2 ,CVRSS)[17,24]. When further data is at hand, one can

evaluate the performance of the calibrated models with parameters θ̂αi , i =
1, 2, . . . I on a second dataset that was not used for the calibration. The perfor-
mance of the models is measured either by residual sum of squares RSSCV or
by the χ2

CV defined in Appendix C. The optimal regularization parameter index
is chosen as the index of the estimated parameter vector that performed the
best in cross validation, i.e. the index selected by the method CVRSS is nCV

RSS =

arg min
0≤k≤Im

RSSCV(θ̂αk
) and by the method CVχ2 is nCV

χ2 = arg min
0≤k≤I

χ2
CV(θ̂αk

).

4 Numerical Experiments

4.1 Test Problems

We have constructed 45 parameter estimation problems as test cases using the
three-step metabolic pathway model [13], described in Appendix A. For a given
stimuli, the model was simulated using the parameters in Table A.1 and the com-
puted trajectories were sampled. These parameters and sampled trajectories are
called the nominal parameters and the nominal model predictions, respectively.
Then, random noise was added to the samples that generated an experimental
dataset. We considered parameter estimation problems with:

– 3 levels of experimental data (8, 12 and 16 experiments),
– 3 noise levels per experiment (1, 5 and 10% additive Gaussian noise),
– 5 realizations of each scenario.

Therefore, the total number of scenarios is 45. For the cross validation based
method 8 further sets of data were generated by the same procedure. The cor-
responding stimuli is indicated by “CV” in Table A.1. This data contains 5%
error.
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Each test problem is solved for a set of regularization parameters: I = 24 reg-
ularization parameters were chosen a-priory ranging from 103 to 10−8 equidis-
tantly on logarithmic scale. Equivalently, αi = 103 · qi, for i = 1, . . . I and
q = 0.3325. Altogether, this results 24 · 45 = 1080 nonlinear, nonconvex estima-
tion problems to be solved. We have not applied any scaling in the regularization,
i.e. W is the unity matrix. The set of regularization parameters was chosen this
way to give a uniform base for each regularization tuning method and for illus-
trative purposes. As mentioned above, a careful implementation of each method
could reduce the required points.

4.2 Comparison Criteria

Each tuning method selected a regularized parameter estimate θ̂αm by solving (4)
for the whole set of αl, l = 1, . . . I and applying the above tuning procedures.
Then, the methods are compared based on well known metrics, such as the
residual sum of squares RSS(θ̂αm), χ2(θ̂αm) and model prediction error PE(θ̂αm)
(for details see Appendix C). The inefficiency IE of a tuning method measures
the estimation error EE in the chosen regularized estimate compared to the
optimal regularized estimate

IE(θ̂αm) =
EE(θ̂αm)

EE(θ̂αopt)
=

||θ − θ̂αm ||
||θ − θ̂αopt ||

, (6)

where θ̂αopt is the parameter estimate based on the optimal regularization pa-

rameter αopt, for which the index is nopt = arg min
0≤l≤I

||θ − θ̂αl
||.

5 Results

Figure 1A) shows the trade-off (3) between model fit QLS(θ̂α) and regularization

penalty ΓT(θ̂α) for a typical estimation scenario. Large regularization biases the
estimation and cause large discrepancy between the model and the measured
data (large QLS). As the regularization parameter decreases, the discrepancy
decreases towards a lower limit, but the variability of the estimated parameters
(given by the parameter norm) increases drastically. Some methods, such as the
L-curve method, try to come up with an optimal trade-off between the two effects
by finding the so-called knee-point of the curve (in other words, they treat the
problem as a bi-criteria optimization where the L-curve is a Pareto-optimal set).

5.1 Estimation Error and Optimal Regularization

The parameter estimation error (A.6) was calculated for each of the 1080 esti-
mation problem. Figure 2 shows this magnitude for the 5 replicates of a selected
scenario (estimation using 8 datasets containing 10% noise). The error curves
can be divided into three regions, as the regularization index increases (i.e., the
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Fig. 1. Results of a regularized estimations. A) Trade-off between model fit and
the penalty (3): for a given estimation scenario the regularization penalty ΓT(θ̂αi) is
plotted against the fit of the model QLS(θ̂αi) for each regularization parameter (denoted
by the text next to each point), that results in an L-shape curve. Figure B) shows the
curvature of the L-shape curve.

regularization parameter decreases). For large regularization parameters, the er-
ror in the estimated parameters is dominated by the regularization term (rE
domain), while for small regularization parameter the noise propagated error is
the main contributor (pE domain). In most cases we found that the propagated
error levels off at some value EElim as the regularization parameter reaches a
certain limit αlim, which varies with replicates. Below this limit, not only the
error in the estimated parameters, but generally the estimated parameters them-
selves did not change, i.e. θ̂αi ≈ θ̂αi+1 for all αi < αlim. The theory of inverse
problems [9] shows that the regularization parameter must be larger than the
smallest eigenvalue of the Hessian of the objective function (2), which can justify
our results. Between the rE and pE regions one can find a domain qO, in which
the estimation error is smaller than EElim. The minimum of the curve (EEmin)
is taken at the optimal regularization parameter αopt.

Similar trends and domains can be identified for all the estimation problems,
in which the noise level is medium or high. Further, in these cases, the optimal
regularization parameter index only slightly varies between 6 and 8. However, in
the cases of small measurement noise (1%), the error in the estimated parameters
due to the noise propagation is negligible, the pE region is flat and there is not
a unique, optimal regularization parameter.

5.2 Performance of the Methods

The statistics described in Section 4.2 were calculated for each scenario and
each value of the regularization parameter. The different regularization tuning
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Fig. 2. Parameter estimation error. The estimation error is plotted against the
regularization parameters for the 5 replicates of a selected scenario. The notations
corresponding to the lowest, green curve: the regularization bias is dominating in do-
main rE; the noise propagated error is the main contributor to the estimation error in
pE. Typically, the propagated error levels off at EElim as the regularization parameter
reaches a certain limit αlim. Any regularization parameter in the qO region gives lower
estimation error, than without the regularization (α = 0). The optimal regularization
parameter αopt corresponds to the minimum of the estimation error curve.

methods (Section 3.1) were used to find the regularization parameter for each
scenario. To serve as a reference, we also computed the scores corresponding to
the estimations without regularization (NR), i.e. α = 0. Figure 3 shows the dis-
tribution of the inefficiencies given by (6), i.e. the relative parameter estimation
error, computed for each regularization method. For the sake of clarity, only the
estimation scenarios corresponding to the 10% noise are depicted in the figure.
More detailed numerical results for all scenarios can be found in Table A.2 in
Appendix D.

From Figure 3 we see that the estimation error grows rapidly as the number
of experimental datasets decreases in the non-regularized estimations (NR), i.e.
these estimations are greatly affected by ill-conditioning. The same trend can
be observed based on the numerical results when the noise level of the data in-
creases, leading to larger inefficiencies of the non-regularized estimations. These
results also indicate that, using regularization, such estimation error is reduced
up to 2 orders of magnitude. For the more ill-conditioned scenarios (more noise
and less data), almost all regularization methods perform better than the non-
regularized estimation. For the mildly ill-conditioned cases (more data with less
noise), the discrepancy principle (DP) and the L-curve method based on the
tangent condition (LC2) perform rather poorly due to over-regularization.

The cross validation based methods (CVχ2 , CVRSS) result in a generally low
estimation error and perform the best for the cases when the calibration data
is highly contaminated by noise. For the situations where there is no additional
data set, the L-curve method based on the maximal curvature detection (LC1),
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the quasi-optimality (QO) criteria and the balancing principle (BP1) are the best
alternatives from estimation error point of view. All these methods performed
similarly well for almost all cases. Among them, the LC1 performed also very
well in the mildly ill-posed cases. Furthermore, the LC1 method outperformed
the NR case in almost all scenarios from the prediction error (PE) point of view,
too (see Table A.2).
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Fig. 3. Inefficiencies of tuning method for three selected scenarios. The in-
efficiency shows the parameter estimation error normalized by the estimation error
with optimal regularization. The color indicates the number of datasets used in the
estimations according to the legend. Each column represents the distribution of the 5
measurement error realizations: the circle with the black dot shows the median, the
filled area spreads between the 25th and 75th percentiles of the points, the rest of the
points are shown individually. NR: non-regularized solution, DP: discrepancy principle,
BP: balancing principle, HB: hardened balancing, QO: quasi optimality criteria, LC:
L-curve method, CV: cross validation based tuning methods.

6 Conclusions

In this study we considered regularization as a way to improve the calibration of
(nonlinear) kinetic models in systems biology, reducing the typical ill-conditioning
of these problems. We considered the Tikhonov regularization framework coupled
with a global optimization solver. We focused on the specific question of regu-
larization method selection and tuning. We compared several regularization pa-
rameter tuning methods, including the discrepancy principle, balancing principle,
hardened balancing, quasi optimality criteria, L-curve method and cross valida-
tion basedmethods. The different methods were tuned and tested considering sev-
eral scenarios of a challenging kinetic model.
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Overall, the results obtained indicate that regularization can reduce the pa-
rameter estimation error very significantly (up to 2 orders of magnitude for the
example considered). The results also indicate that, for the situations where a
second data set is available, the cross validation (CV) χ2 score based method
gives the best tuning results. When no further data is available for cross-
validation, the L-curve method based on the maximum curvature detection
(LC2) is the most robust tuning algorithm.
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A Kinetic Model of a Three-Steps Metabolic Pathway –
Details

The parameters, initial values and stimuli conditions corresponding to the esti-
mation problems can be found in Table A.1. The ODEs read as:

Ġ1 =
V1

1 + ( P
Ki1

)ni1 + (Ka1

S )na1
− k1G1

Ġ2 =
V2

1 + ( P
Ki2

)ni2 + (Ka2

M1
)na2

− k2G2

Ġ3 =
V3

1 + ( P
Ki3

)ni3 + (Ka3

M2
)na3

− k3G3

Ė1 =
V4G1

K4 +G1
− k4E1

Ė2 =
V5G2

K5 +G2
− k5E2

Ė3 =
V6G3

K6 +G3
− k6E3

Ṁ1 =
kcat1E1(

1
Km1

)(S −M1)

1 + S
Km1

+ M1
Km2

− kcat2E2
1

Km3
(M1 −M2)

1 + M1

Km3
+ M2

Km4

Ṁ2 =
kcat2E2

1
Km3

(M1 −M2)

1 + M1

Km3
+ M2

Km4

− kcat3E3
1

Km5
(M2 − P )

1 + M2

Km5
+ P

Km6

B Finding the Maximal Regularization Index

We see from Figure 2, that the estimation error is levelling off for small regular-
ization parameters, i.e. the regularization parameter does not influence the esti-
mation problem any more. The goal of the maximal index is to find the minimum
regularization parameter after which the estimation error levels off. However, the
curve is not available in practice, since the nominal parameters is required to
compute the estimation error. Alternatively, an estimate of the second term
in (5) can be made based on the Hessian of the regularized cost function. Let
R̃(θ, α) = [R(θ)T

√
α(Wθ)T ]T be the augmented regularized residual vector (c.f.

(4)) and define FR : Rnp×1 �→ Rnp×np as FR(θ, α)
.
= ∂R̃(θ,α)

∂θ

T
∂R̃(θ,α)

∂θ . Note that,



58 A. Gábor and J.R. Banga

Table A.1. Nominal parameter values, parameter estimation bounds, stimuli (input)
values and initial conditions (I.C.) for the dynamic model of the 3-Steps Metabolic
Pathway

Param. Value [plb, pub] Param. Value [plb, pub] Param. Value [plb, pub]

V1 1 [10−12, 106] V3 1 [10−12, 106] V6 0.1 [10−12, 106]
Ki1 1 [10−12, 106] Ki3 1 [10−12, 106] K6 1 [10−12, 106]
ni1 2 [0.1, 1] ni3 2 [0.1, 1] k 6 0.1 [10−12, 106]
Ka1 1 [10−12, 106] Ka3 1 [10−12, 106] kcat1 1 [10−12, 106]
na1 2 [0.1, 1] na3 2 [0.1, 1] Km1 1 [10−12, 106]
k 1 1 [10−12, 106] k 3 1 [10−12, 106] Km2 1 [10−12, 106]
V2 1 [10−12, 106] V4 0.1 [10−12, 106] kcat2 1 [10−12, 106]
Ki2 1 [10−12, 106] K4 1 [10−12, 106] Km3 1 [10−12, 106]
ni2 2 [0.1, 1] k 4 0.1 [10−12, 106] Km4 1 [10−12, 106]
Ka2 1 [10−12, 106] V5 0.1 [10−12, 106] kcat3 1 [10−12, 106]
na2 2 [0.1, 1] K5 1 [10−12, 106] Km5 1 [10−12, 106]
k 2 1 [10−12, 106] k 5 0.1 [10−12, 106] Km6 1 [10−12, 106]

Inputs: [S] [P] [S] [P] [S] [P]
exp. #1 0.1 0.050 exp. #7 10 0.368 exp. #13 10 0.050
exp. #2 0.1 1.0 exp. #8 10 1.0 exp. #14 0.1 0.368
exp. #3 0.464 0.136 exp. #9 0.1 0.136 exp. #15 0.464 0.050
exp. #4 0.464 1.0 exp. #10 0.464 0.368 exp. #16 2.15 0.136
exp. #5 2.15 0.05 exp. #11 2.15 1.000
exp. #6 2.15 0.368 exp. #12 10 0.136
CV. #1 1.0 0.02 CV. #4 4.0 0.02 CV. #7 8.0 0.02
CV. #2 1.0 0.2 CV. #5 4.0 0.2 CV. #8 8.0 0.2
CV. #3 1.0 0.8 CV. #6 4.0 0.8 CV. #9 8.0 0.8

Sampling time points: equidistantly 21 points on [0s 120s].

States I.C. States I.C. States I.C.
G1 0.6667 E1 0.4 M1 1.419
G2 0.5725 E2 0.3641 M2 0.9346
G3 0.4176 E3 0.2946

as α → 0, FR(θ̂α, α) becomes the observed Fisher Information matrix (FIM).
The inverse of the FIM (if exists) is the Cramer-Rao lower bound (CRLB) of
the covariance matrix of the parameters [30]. Although, the FIM is practically
non-invertible when the estimation is highly ill-posed, the inverse of FR always
exists for sufficiently large α > 0 and invertible weighting matrix W . Thus, the
α-dependent regularized CRLB is estimated by CRLBR(θ̂αl

) = FR(θ̂αl
, αl)

−1.
The regularized variance is therefore bounded by

σ2
R(θ̂αl

) ≥ diag(CRLBR(θ̂αl
)) = σ̂2

R(θ̂αl
). (A.1)

The maximum regularization parameter corresponds to the index

Im = max
1≤i≤I

(i | ||σ̂R(θ̂αi)|| < 0.9 max
1≤k≤I

(||σ̂R(θ̂αk
)||)), (A.2)



Improved Parameter Estimation in Kinetic Models 59

where 0.9 is a tuning parameter that tries to avoid the small numerical distur-
bances.

C Computational Details of Comparison Criteria

Some quantities, such as the residual sum of squares

RSS(θ̂αl
) =

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(
yijk

(
x(ti, θ̂αl

), θ̂αl

)
− ŷijk

)2

(A.3)

and

χ2(θ̂αl
) =

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(
yijk

(
x(ti, θ̂αl

), θ̂αl

)
− ŷijk

)2

σ2
ijk

(A.4)

can be easily computed from the model prediction and the data. They measure
the explanatory potential of the model with estimated parameter θ̂αl

.
Some quantities, as the nominal parameters θ and nominal model prediction

(i.e. the measurement error free concentrations), are not known in practice. How-
ever, a synthetic framework let us compute these values and we can compare the
regularization methods based on these quantities. The prediction error defined
as

PE(θ̂αl
) =

Ne∑

k=1

Ny,k∑

j=1

Nt,k,j∑

i=1

(yijk(x(ti, θ̂αl
), θ̂αl

)− yijk(x(ti, θ), θ))
2 (A.5)

measures the distance of the model prediction y(x, θ̂) and the noise-free under-
lying data y, that is unknown in practical applications. A model that tends to
over-fit the data, i.e. fits also the noise in the data, likely to generate a good fit
to the estimation data (small RSS value), but performs worst according to the
PE.

The accuracy of the estimated parameters is measured by the estimation error:

EE(θ̂αl
) = ||θ̂αl

− θ|| , (A.6)

which is the 2-norm measure of the deviation of the estimated parameters from
the nominal parameters.

D Detailed Numerical Results

Table A.2 contains the averaged statistics corresponding to each tuning method.
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Table A.2. Performance of the Parameter Choice Methods. Each statistics
is obtained by taking the average of the five replicates. Nexps number of experiments
used for the estimations, N.: amplitude of the noise in %.NR: non-regularized solution,
DP: discrepancy principle, B: balancing principle, HB: hardened balancing, QO: quasi
optimality criteria, LC: L-curve method, CV: cross validation based

Inefficiency averages: 〈IE(θ̂αm)〉
Ne N. NR DP B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 1.34 6.09 3.50 12.41 1.06 1.06 1.33 3.50 1.65 1.08
5 1.34 2.98 1.46 4.12 1.25 1.23 1.25 2.43 1.06 1.12
10 85.31 2.61 7.46 20.60 63.52 9.10 8.44 2.61 1.99 1.85

12 1 1.07 6.44 3.60 14.48 1.12 1.12 1.07 3.60 2.59 1.23
5 1.37 3.55 1.66 4.92 1.29 1.31 1.10 3.55 1.23 1.23
10 34.05 3.24 3.42 11.57 32.25 12.81 9.39 3.24 1.11 6.39

16 1 1.24 8.75 2.84 12.73 1.25 1.24 1.24 2.84 2.50 1.24
5 1.59 4.17 1.90 6.20 1.56 1.60 1.60 4.17 1.16 1.33
10 6.91 3.61 2.02 4.14 6.91 6.88 6.91 3.53 1.12 2.05

χ2 averages: 〈χ2(θ̂αm )〉
Ne N. NR DP1 B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 1254.3 1635.4 1342.8 5597.5 1256.7 1256.7 1254.3 1342.8 1267.5 1256.2
5 1305.5 1740.1 1324.2 6444.3 1305.6 1305.6 1305.6 1452.8 1307.1 1308.4
10 1297.0 1767.5 1297.6 4543.6 1297.0 1486.9 1298.7 1767.5 1300.3 1301.5

12 1 1909.3 2215.6 1971.4 6474.4 1910.2 1910.2 1909.3 1971.4 1940.6 1911.8
5 2041.2 2565.4 2064.4 6095.7 2041.4 2041.8 2041.6 2565.4 2042.5 2041.8
10 1988.2 2477.8 1990.6 5137.9 1988.2 1988.3 1989.7 2477.8 1996.2 1994.7

16 1 2676.7 3845.5 2730.6 6997.3 2677.3 2677.3 2676.7 2730.6 2722.1 2676.6
5 2593.2 3120.8 2622.4 6857.5 2593.4 2593.7 2593.2 3120.8 2599.1 2605.2
10 2636.2 3514.7 2645.3 6374.5 2636.2 2636.2 2636.2 3344.3 2639.3 2637.4

RSS averages: 〈RSS(θ̂αm)〉
Ne N. NR DP1 B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 0.15 0.21 0.17 0.78 0.15 0.15 0.15 0.17 0.16 0.15
5 4.45 6.11 4.53 15.49 4.45 4.45 4.45 4.99 4.45 4.47
10 15.11 20.45 15.14 33.08 15.11 17.66 15.16 20.45 15.17 15.20

12 1 0.24 0.28 0.25 0.80 0.24 0.24 0.24 0.25 0.24 0.24
5 6.25 7.74 6.32 16.33 6.25 6.26 6.26 7.74 6.25 6.26
10 22.39 28.15 22.47 41.76 22.39 22.39 22.41 28.15 22.47 22.46

16 1 0.31 0.47 0.32 0.86 0.31 0.31 0.31 0.32 0.32 0.31
5 7.24 8.93 7.35 18.62 7.24 7.24 7.24 8.93 7.26 7.29
10 31.32 41.37 31.51 58.06 31.32 31.33 31.32 40.03 31.42 31.37

PE averages: 〈PE(θ̂αm )〉
Ne N. NR DP1 B1 B2 HB QO LC1 LC2 CVχ2 CVRSS

8 1 0.069 0.244 0.126 0.799 0.069 0.069 0.069 0.126 0.080 0.070
5 0.392 1.361 0.472 3.299 0.390 0.390 0.389 0.852 0.390 0.398
10 0.729 2.383 0.718 3.520 0.731 1.446 0.703 2.383 0.719 0.716

12 1 0.069 0.215 0.115 0.760 0.071 0.071 0.069 0.115 0.091 0.074
5 0.437 1.266 0.466 3.158 0.431 0.429 0.429 1.266 0.416 0.423
10 0.696 2.353 0.723 3.765 0.698 0.698 0.645 2.353 0.624 0.657

16 1 0.080 0.401 0.111 0.742 0.082 0.081 0.080 0.111 0.103 0.080
5 0.376 1.215 0.382 3.315 0.368 0.366 0.376 1.215 0.321 0.318
10 0.770 3.041 0.852 4.762 0.770 0.765 0.771 2.809 0.788 0.775
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Abstract. Dynamical systems are widely used to describe the behaviour
of biological systems. When estimating parameters of dynamical systems,
noise and limited availability of measurements can lead to uncertainties.
These uncertainties have to be studied to understand the limitations
and the predictive power of a model. Several methods for uncertainty
analysis are available. In this paper we analysed and compared boot-
strapping, profile likelihood, Fisher information matrix, and multi-start
based approaches for uncertainty analysis. The analysis was carried out
on two models which contain structurally non-identifiable parameters.
We showed that bootstrapping, multi-start optimisation, and Fisher in-
formation matrix based approaches yield misleading results for param-
eters which are structurally non-identifiable. We provide a simple and
intuitive explanation for this, using geometric arguments.

Keywords: parameter estimation, uncertainty analysis, bootstrapping,
profile likelihood, identifiability.

1 Introduction

In systems and computational biology, mechanistic models are used to advance
our understanding of a process of interest. In order to test whether the model
can adequately reproduce measured behaviour, it is necessary to fit the model
parameters to the measurement data. This process of inferring model parameters
is usually termed parameter estimation.

In general, it is not possible to measure every biochemical component. Fur-
thermore, measurements are noise corrupted. These two factors can result in
a non-negligible uncertainty of the estimated parameters [1]. These parameter
uncertainties have to be studied, to determine limitations of the model and its
predictive power. Moreover, the resulting uncertainties in parameter estimates
are building blocks for subsequent investigation, such as model predictions or
experimental design [2,3].
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The model parameters are commonly estimated using maximum likelihood
and maximum a posteriori estimators. For the analysis of the uncertainty of
such estimators, several methods have been established: asymptotic analysis,
bootstrapping, profile likelihoods and Bayesian statistics.

Asymptotic analysis based on the Fisher information matrix (FIM) is related
to a local approximation of the objective function at the current optimum [4].
Bootstrapping exploits data resampling and estimation using the resampled data
to construct confidence intervals. [5]. The profile likelihood approach approxi-
mates the extent of super-level-sets of the likelihood function by constrained
optimisation [4]. Some researchers also exploit uncertainty estimates derived
from multiple optimiser starts [6]. However, these uncertainty estimates have no
statistical foundation. There also exist Bayesian methods for uncertainty anal-
ysis, such as marginal densities [7] or profile posteriors [8]. Nonetheless, in the
scope of this paper, we will only consider the frequentist perspective of uncer-
tainty analysis, as the comparison between the frequentist perspective and the
Bayesian perspective has already been covered in a recent study [8].

Several papers are available which show that bootstrapping, profile likeli-
hood, and FIM derived confidence intervals are rather similar, given that pa-
rameters are identifiable [5,9,10]. Similar studies, in the presence of structural
non-identifiability (cf. Definition 1), are however missing.

In this paper, we will compare the performance of several methods for un-
certainty analysis based on their prediction of confidence intervals. The com-
parison will be carried out on two examples which both contain structurally
non-identifiable parameters. Based on these two models, we will conclude that
most methods for uncertainty analysis yield misleading results for parameters
that are structurally non-identifiable.

This paper is organised as follows: In Section 2, we will formulate the general
problem considered in parameter estimation and introduce methods for param-
eter estimation, as well as uncertainty analysis. In Section 3, we will compare
the previously introduced methods for uncertainty analysis based on two models
where structural non-identifiability of parameters is present. In Section 4, we
will summarise the results and respective conclusions and give some advice on
how to cope with the presented shortcomings of methods in practice.

2 Methods

In the following sections, we will describe the general problem of parameter
estimation and methods for parameter estimation. Subsequently, we will intro-
duce several methods for uncertainty analysis, namely the Fisher information
matrix approximation (FIM), the Bootstrapping approach (BS), the
Profile Likelihood approach (PL), and the Multi-start approach (MS).
Eventually, we will present the concept of structural non-identifiability.
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2.1 Problem Formulation

We consider ordinary differential equation models, in which the time-dependence
of states x of the biological system are captured by a set of differential equations
and the observable components y are described by a mapping of these states:

y(t; θ) = h(x(t; θ), θ) with x solution to ẋ = f(x, θ) , (1)

where f is the right hand side of the differential equation of the dynamical sys-
tem, x is the state vector of the dynamical system and h is the function that
maps states of the system to the observable components. Under the assumption
of additive, independent noise, the measurement of the i-th observable compo-
nent ȳi at time point tk is

ȳi(tk) = yi(tk; θ) + εik i = 1, . . . , ny k = 1, . . . , nt , (2)

where ny is the number of observable components, nt is the number of observed
time points and εik ∼ N (0, σ2

ik) is the measurement noise.
The maximum likelihood estimate of the parameters is obtained from mea-

surement data D = {(tk, ȳ(tk))} nt

k=1, by minimising the negative log-likelihood

JD(θ) = − logP (D|θ) = 1

2

ny∑

i=1

nt∑

k=1

(

log
(
2πσ2

ik

)
+

(
ȳi(tk)− yi(tk; θ)

σik

)2
)

. (3)

The likelihood of θ is equal to the conditional probability P (D|θ) to observe
the data D, given the parameter vector θ. In the following, the optimiser of the
objective function for the respective measurement data will be denoted as

θ̂D = argmin
θ

JD(θ) . (4)

In practice, the optimisation problem is often reformulated by transforming the
parameters [11]. This can improve the numerical properties of optimisation al-
gorithms, as well as its convergence.

2.2 Parameter Estimation

A multitude of different optimisation algorithms are available for the minimi-
sation of the function JD(θ). Most commonly, global optimisation schemes like
simulated annealing or particle swarm are used [12,13,14,15]. A recent study also
suggests a good performance of multi-start local optimisation, when provided
with high-quality gradients [11]. In this paper we employ the particle swarm
method [15], as well as multi-start local optimisation. For the local optimisation
scheme, the gradient ∇JD(θ) is computed using sensitivity equations.

2.3 Uncertainty Analysis

In the frequentist perspective, the uncertainty of a parameter estimate is usually
described in terms of confidence intervals. Confidence intervals to the level δ, will
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contain the true parameter θ∗ in (δ ∗ 100)% of the times, given that they are
computed from realisations of the true parameter θ∗.

To facilitate the direct analysis of the extent of confidence intervals across a
multitude of values for δ we will study the function

Rθi(c) = min
δ

{δ : c ∈ CIi,δ} , (5)

which describes the minimal confidence level δ such that the parameter θi = c
is contained in the respective confidence interval CIi,δ.

Profile Likelihood Approach (PL). The confidence interval to the confidence
level δ for a parameter θi can be interpreted as the sub-level-set to the level
log(δ) of the objective function JD(θ). The extent of these sub-level-sets can be
determined using the profile likelihood ratio

RPL
θi (c) = exp

(
min
θj �=i

JD(θ) − JD(θ̂D)
)

s.t. θi = c , (6)

which internally uses the profile likelihood [1]

PLθi(c) = min
θj �=i

JD(θ) . (7)

Fisher Information Matrix Approximation (FIM). The FIM approxi-
mation relies on a local quadratic approximation of JD(θ), which yields the
approximation

RFIM
θi (c) = exp

(

− (θ̂Di − c)2

2(F−1)ii

)

(8)

where F is the Fisher information matrix [16].

Bootstrapping Approach (BS). For the bootstrapping approach, the model
is fitted to the true experimental data, yielding a parameter estimate θ̂D. Sub-
sequently nD datasets Dk are generated by simulating the system y(·, θ̂D) and
corrupting the simulation results with measurement noise. The parameter esti-
mation is repeated for these artificial datasets by minimising JDk

(θ), yielding
θ̂Dk . The uncertainty of parameter estimates is then derived from the spread of
the estimates θ̂Dk .

Apparently, different parameter estimation methods can be used to determine
the bootstraps. In this study we consider:

• a single local optimisation scheme initialised at θ̂DMS to obtain {θ̂Dk

LG}nD
k=1

(BS-LG)
• a multi-start local optimisation scheme to obtain {θ̂Dk

MS}
nD
k=1 (BS-MS)

• a particle swarm based optimisation scheme to obtain {θ̂Dk

PSO}nD
k=1. (BS-

PSO)
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Fig. 1. Illustration of the bootstrapping process. (a) Schematic illustration of
the model for the turnover reaction introduced in Section 3.1 (b) Depiction of original
dataset D1 and bootstrapped dataset D2. Data-points yDi

k are shown as red (i = 1)

and blue (i = 2) circles. Simulations y(t; θ̂Di

MS) of the system for corresponding optimal
parameters are shown as solid lines of respective colour. (c) The continua of optimal
parameters corresponding to Di are plotted as red (i = 1) and blue (i = 2) solid lines.
The optimal parameter θ̂D1

MS is shown as teal circle. The respective optimal parameter

θ̂D2

LG that was obtained by optimisation initiated at θ̂D1

MS is shown as teal star. The
difference in the location of the continuum of optimal points induced by bootstrapping
is illustrated in black.

The normalised histograms over these three sets yield three approximations
RBS-LG

θi
, RBS-MS

θi
, and RBS-PSO

θi
to Rθi(c). The histograms were normalised,

such that the height of the bin with highest frequency is equal to 1.

Multi-start Approach (MS). Another approach, which is often used by prac-
titioners, is to use the normalised histogram RMS

θi
(c) over the best optima found

by multi-start optimisation. At a first glance, MS approaches for uncertainty
analysis may seem similar to bootstrapping approaches. However, for a problem
where all parameters are identifiable and the optimiser converges always to the
global optimum, the MS approach would suggest no parameter uncertainty.

2.4 Structural Identifiability

The aforementioned methods are used to assess the parameter uncertainties,
given a certain set of experimental data D. In addition, also the structural iden-
tifiability or non-identifiability might be assessed:

Definition 1 (Structural Identifiability [17]). A parameter θi, i = 1, . . . , nθ

is structurally identifiable, if for almost any θ
′
,

y(·, θ) = y(·, θ′
) ⇒ θi = θ

′
i . (9)
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Fig. 2. Comparison of constrained and unconstrained multi-start local opti-
misation. Histograms for results of multi-start local optimisation (105 starting points)
in logarithmic parameters using the MATLAB functions fminunc and fmincon (con-
strained to [−3, 3]3). Initial points are uniformly drawn from [−3, 3]3. The analytical
solution for gradient descent method is shown in black.

Except for pathological cases, structural non-identifiability of a parameter will
lead to infinitely extended sets of parameters on which y is invariant. In fact, in
most cases the invariant set will also be infinitely extended. It is evident that
Rθi(c) must be constant on the invariant set.

The assessment of structural identifiability and non-identifiability for large
scale system is challenging and can yield inconclusive results [17]. In the fol-
lowing, we will study the practical identifiability of system. In particular, we
will study the uncertainty intervals predicted by different methods, investigate
whether the methods properly reflect the structural non-identifiabilities and in-
vestigate how the results depend on parameter transformations.

3 Results

In this section, we will compare the previously introduced methods for uncer-
tainty analysis based on two example models. The first model is relatively simple
and allows for an in-depth analysis and discussion of the results. The second
model is more complex and describes a signal transduction pathway. For the
second model, experimental data is available.

3.1 Example 1: Turnover Reaction

The first example we consider is a turnover reaction with synthesis rate k1 and
degradation rate k2. The one observable of the system is y = sx. The initial
value for the state x is 0. This yields the following system of equations:

ẋ = k1 − k2x x(0) = 0
y = sx .

(10)
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Fig. 3. Illustration of traces of local optimisers and arising histogram of
multi-start optimisation results (a) Optimiser traces (◦—•) from initial point (◦)
to final point (•) along the vector field ∇J (→). (b) The one half of the lines γk are
shown in black. The triangular shape shown in Fig. 2 can already be anticipated in
this figure.

The analytical solution to this system is y = s
k1
k2(1 − exp(−k2t)). Thus, the

parameter k1 and s are structurally non-identifiable.
For this model, we generated the data D by simulating the system with pa-

rameters k1 = 0.75, k2 = 0.25, s = 1 for 30 equi-spaced time points tk in the
interval [0, 30] and adding i.i.d. noise εk ∼ N (0, 1).

We used multi-start local optimisation with nM = 105 multi-starts in loga-
rithmic coordinates in the hypercube Ω = [−3, 3]3. The multi-start optimisation
was carried out both as constrained optimisation problem (MATLAB function
fmincon with default parameters), with parameters restricted to the hyper-
cube Ω, as well as an unconstrained optimisation problem (MATLAB function
fminunc with default parameters). For both algorithms the convergence of the
algorithm to a local minimum was verified.

A multi-start local optimisation yields an ensemble {θ̂D(k)}nM

k=1 of parameter
estimates. The distribution of parameter estimates is depicted in Fig. 2, for the
case where constrained and unconstrained optimisation is used. We find that for
parameter k2 all estimates are identical, which can be expected as this parameter
is structurally identifiable. For k1 and s a triangular histogram shape is observed.
This is surprising as the parameters are non-identifiable and a flat distribution
should be expected.

The triangular shape of the histogram can be explained by studying the emer-
gence of the distribution in more detail. Initial guesses for the parameters are
drawn uniformly from the domain Ω and a local optimisation is performed. It is
well known that the optimised parameters evolve roughly along the gradient of
the objective function ˙̂

θ = −∇θJD(θ̂) (gradient descent) or a rescaled version of
that ˙̂

θ = −H−1(J)(θ̂)∇θJD(θ̂) (steepest descent). The optimisers stop as soon
as a point with negligible gradient, i.e. the global optimum, a local optimum or
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Fig. 4. Comparison of uncertainty analysis using different methods for the
turnover model across logarithmic and linear parametrisation. The number
of bootstraps was 105 for the BS-LG method and 104 for the BS-MS and BS-PSO
methods. Number of multi-starts was 10 for the BS-MS method. Bin size is chosen
according to optimal bin size from Scott’s Rule [18].

a point on a non-identifiable manifold, is reached. Accordingly, the optimisation
can be interpreted as an optimisation-method-dependent projection of starting
points on the subset of points with zero gradient. In addition to the dependence
on the optimisation method, the distribution of optimal parameters depends on
the choice of the parameter domain Ω. For the considered example, the vector
field in the k1 - s plane (cf. Fig. 3), we find that if we draw random starting points
from a square and follow the vector field, the resulting distribution corresponds
to the observed triangular. The histograms for constrained and unconstrained
optimisation are slightly different, as the projection is altered.

This simple example illustrates that multi-start local optimisation results are
insufficient for uncertainty analysis, as they depend on the selected optimisation
method and the parameter domain. Furthermore, for identifiable parameters and
perfect convergence of the optimiser, a delta-distribution will be observed which
also does not reflect the uncertainty correctly.

In a second step, bootstrapping methods using different optimisation schemes
have been studied for logarithmic as well as linear parametrisation. For BS-MS
and BS-LG we used the MATLAB function fmincon with default parameters
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was used. For BS-PSO we used the MATLAB function pso, also with default
parameters. The results were compared with profile likelihoods and FIM derived
approximations and are shown in Fig. 4.

For the identifiable parameter k2 all four methods yield similar predictions for
the uncertainty. In contrast, for the structurally non-identifiable parameters k1
and s there are distinct differences. The PLs are flat and suggest structural non-
identifiability of k1 and s. In the case of logarithmic parameterisation, roughly
the same is true for BS-PSO, while for linear parameterisation BS-PSO indicates
identifiability. This might be due to differences in the distribution of the starting
points and indicates the sensitivity of this method to the choice of the param-
eterisation. BS-MS in logarithmic parameterisation yields a triangular shape,
indicating a large uncertainty, but no structural non-identifiability. For the lin-
ear parameterisation, the distribution is even tighter.

The most alarming result is revealed by comparing FIM and BS-LG derived
uncertainties. In the literature, this comparison seems to be often used to vali-
date the results of the uncertainty analysis [5]. However, we find that although
both results agree, they are misleading as they indicate a small uncertainty for
structurally non-identifiable problems.

In conclusion, we find already for this simple problem that results of boot-
strapping approaches and MS methods depend significantly on the parameteri-
sation, the parameter domain and the optimisation method. FIM-based methods
only provide a local approximation. PL is seemingly the only approach to yield
reasonable results.

3.2 Example 2: JAK/STAT Pathway

To analyse whether the same problems occur for a more realistic example, we
consider the central module of the JAK-STAT signalling pathway [19]. The ex-
perimental data presented in [19] has already been studied in great detail and
it is well established that the parameters x1(0), s1 and s2 are structurally non-
identifiable [1,16,2,3,7,20]. A schematic of the model kinetics, as well as the ex-
perimental data is shown in Fig. 5. In this study we employed the D2D-Toolbox,
which implements state-of-the-art simulation and estimation methods [11].

Figure 5 shows the resulting uncertainty analysis from BS-LG, the FIM ap-
proximation, and the PL approach. For the structurally identifiable parameters
p1, p2, and p3 all three methods yield similar uncertainty estimates.

For the three structurally non-identifiable parameters x1(0), s1, and s2 the
profile likelihood ratio is flat up to some deviations at the border of the shown
intervals. The FIM approximation for all three parameter is quite narrow, which
indicates identifiability of the respective parameters.

The histograms for x(0), s1, and s2 are bimodal. This is surprising and we
expect that this is caused by the numerics of the problem. We can conclude
that the results of the bootstrapping approach again do not properly reflect the
uncertainty of structurally non-identifiable parameters.
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Fig. 5. Model schematic, data and uncertainty analysis for the JAK-STAT
model. (a) Schematic illustration of the states and reactions described in the JAK-
STAT pathway. Figure taken from [19]. (b) Experimental measurement and respective
best fit for the JAK-STAT model. Experimental data is shown as black stars, the
optimal fit is shown as solid black line. (c) Uncertainty Analysis for the JAK-STAT
model. The number of bootstraps was 104. For x1(0), s1, p2, and s2 there is evident
difference in the approximation of Rθi(c) between different methods. For p1, p2 and p3
all methods yield comparable results.

4 Discussion

In this paper we investigated the effect of structural non-identifiabilities on the
performance of frequentist methods for uncertainty analysis. We reviewed multi-
start, bootstrapping, FIM, as well as the profile likelihood based methods for
uncertainty analysis.

In Section 3.1, we considered a model, which is simple, but for which two
of the three parameters are structurally non-identifiable. Despite the simplicity
of the model, none of the methods for uncertainty analysis could indicate the
structural non-identifiability of parameters, except for the profile likelihood ap-
proach. FIM, and BS-LG approaches even yielded finite confidence intervals and
that parameters are identifiable. Similarly, for the model considered in Section
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3.2, we observe that the profile likelihood approach also is the only method that
properly identifies structural non-identifiability of parameters.

We provided detailed explanations for the emergence of the observed effects
which allow for the generalisation of the results to other models and imple-
mentations. According to our results, a preceding investigation for structural
non-identifiable parameters [17] is advisable in practice, as the emphasised short-
comings of the studied methods could otherwise give rise to misleading results
regarding parameter identifiability and uncertainty when using FIM, multi-start
and bootstrapping based uncertainty analysis.
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Abstract. Dynamical models are widely used in systems biology to de-
scribe biological processes ranging from single cell transcription of genes
to the tissue scale formation of gradients for cell guidance. One of the
key issues for this class of models is the estimation of kinetic parame-
ters from given measurement data, the so called parameter estimation.
Measurement noise and the limited amount of data, give rise to uncer-
tainty in estimates which can be captured in a probability density over
the parameter space. Unfortunately, studying this probability density,
using e.g. Markov chain Monte-Carlo, is often computationally demand-
ing as it requires the repeated simulation of the underlying model. In the
case of highly complex models, such as PDE models, this can render the
study intractable. In this paper, we will present novel methods for analy-
sis of such probability densities using networks of radial basis functions.
We employed lattice generation algorithms, adaptive interacting particle
sampling schemes as well as classical sampling schemes for the generation
of approximation nodes coupled to the respective weighting scheme and
compared their efficiency on different application examples. Our analysis
showed that the novel method can yield an expected L2 approximation
error in marginals that is several orders of magnitude lower compared to
classical approximations. This allows for a drastic reduction of the num-
ber of model evaluations. This facilitates the analysis of uncertainty for
problems with high computational complexity. Finally, we successfully
applied our method to a complex partial differential equation model for
guided cell migration of dendritic cells.

1 Introduction

In computational biology, parameter estimation is of crucial importance to build
predictive models. In Bayesian parameter estimation, parameters are considered
to be distributed according to a multi-variate probability density. This interpre-
tation emanates from the application of Bayes’ Rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (1)

P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 73–85, 2014.
c© Springer International Publishing Switzerland 2014
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Here, p(θ|D) is the posterior density, a multivariate probability density of the
parameter vector θ, given some dataset D. p(D|θ) is the likelihood, which de-
scribes the probability of observing the dataset D given the parameter vector
θ. p(θ) is the prior, which encapsulates information about the parameter which
is available before experiments are carried out. p(D) is the evidence which
normalises the posterior.

To study the uncertainty of individual parameters, the one dimensional
marginal densities

p(θi|D) =

ˆ
. . .

ˆ
p(θ|D)dθ1 . . . dθi−1dθi+1 . . . dθnθ

(2)

are analysed. In many applications, however, no closed form of the likelihood or
the posterior can be deduced. In those applications, the computation of the evi-
dence p(D) =

´
p(θ|D)dθ requires the numerical multivariate integration over all

parameters. However, it is usually sufficient to only consider the non-normalised
posterior q(θ|D) = p(D|θ)p(θ), which does not require computation of integrals.

Still, for the computation of marginal densities, a multivariate integration is
necessary. For high-dimensional integration, Markov chain Monte Carlo (MCMC)
generally is the method of choice [1]. There have been many developments for
efficient computation of marginals using MCMC [2,3]. For example, the MCMC
method can be combined with the Variational Bayes approach, which assumes
that the posterior factorises over a partition of latent variables [4].

For posterior densities with heavy tails or non-linear correlation structure,
MCMC methods can have slow convergence rates [5]. Moreover, the derivation
of the factorisation of the posterior can be intractable for many densities. Both of
these issues frequently arise when estimating parameters in dynamical systems
[3]. The evaluation of the likelihood, and thus also of the posterior, requires
the solution of the dynamical system which often is not available in analytical
form. Hence, one has to rely on numerical solutions to the dynamical systems
which can take several seconds up to minutes when considering PDEs. A good
approximation to the marginal density might require millions of samples and thus
also millions of simulations of the dynamical system. Therefore, the computation
of marginal densities can easily be intractable, even for dynamical systems with
a small number of parameters.

In this paper we present a novel method for the approximation of poste-
rior densities using radial basis functions. Radial basis functions are commonly
employed in scattered data approximation of multivariate functions, solvers for
partial differential equations [6,7] and global optimisation algorithms [8], as they
yield good approximations even for small numbers of approximation nodes. In
the following, we show how this method can be exploited for uncertainty analysis
for parameter estimation. In particular we consider the problem of approxima-
tion node generation and compared sampling, lattice and interacting particle
based methods. Furthermore, we discuss the advantages and disadvantages of
the different methods. Using an example from image-based systems biology, we
show that for computationally demanding problems, which for instance require
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the simulation of PDEs, the proposed scheme is significantly more efficient than
classical Monte-Carlo methods.

2 Methods

In the following section, we will first describe the deduction of the multivari-
ate probability densities in Bayesian parameter estimation. Subsequently, we
will describe three different methods to approximate the multivariate densities.
Eventually we will discuss the approximation of marginal densities, based on
marginals of the approximation.

2.1 Bayesian Inference

Recalling Equation (1), the parameter density is the product of likelihood, prior
and a normalisation factor. The likelihood p(D|θ) describes the probability of ob-
serving measurement data D = {(tk, ȳ(tk))} nt

k=1 , consisting of nt time-points tk
and respective ny-dimensional vector of observations ȳ(tk), given the parameter
vector θ:

p(D|θ) =
ny∏

i=1

nt∏

k=1

√
1

2πσ2
ik

exp

(

−1

2

(
ȳi(tk)− yi(tk; θ)

σik

)2
)

. (3)

Here we assumed that yi(tk; θ) is the simulation of the underlying model for
species i, which describes the measurement data up to some additive normally
distributed measurement noise with variance σ2

ik at time-point tk :

ȳi(tk) ∼ N (yi(tk; θ), σ
2
ik) . (4)

Bayesian inference is especially challenging for dynamical systems, as the ob-
servables are given by the map of the solution to differential equations

y(t; θ) = h(u(t; θ), θ) , (5)

where u is the solution to some dynamical system with parameters θ, which
could be a ordinary or partial differential equation and h is the function that
maps states u of the system to the observable components.

2.2 Radial Basis Function Approximation

One of the most common tools for the approximation of probability densities is
kernel density estimation. For kernel density estimation, the probability density
p(θ|D) is approximated by a equally weighted convex combination of kernel
functions Φj . By introducing weighting factors wj , the approximand ϕ can be
written in a more general form:

ϕw,Φ,N(θ) =
1

∑
j wj

N∑

j=1

wjΦj(θ) . (6)
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Fig. 1. Illustration of estimated densities from Kernel Density Estimation
(KDE), Radial Basis Function interpolation (RBF), and Moving Least
Squares Approximation. The approximated density is a univariate normal density
with mean 0 and variance 1. The estimation was carried out using 5 random samples
from the normal density.

These weighting factors introduce new degrees of freedom which can be used to
incorporate additional information on the density such as values of point-wise
evaluation.

In the following, we will discuss three different choices for the weighting factors
wj :

• Kernel density estimation (KDE): wj = 1
• Radial Basis Function interpolation (RBF): wj = wj(θ

(j), Φ)
• Moving least squares approximation (MLS): wj = �q(θ(j)|D)

The approximation of a standard normal density using these kernels is schemat-
ically illustrated in Fig. 1.

In this paper, we will only consider Gaussian kernels with mean θ(j) and
covariance matrix 2εM :

Φj(θ) =

√
1

πnθ det(εM)
exp

(
−1

ε
(θ − θ(j))TM−1(θ − θ(j))

)
, (7)

in which θ(j), j = 1, . . .N , are the approximation nodes, M ∈ R
N×N
sym � 0 de-

scribes the correlation structure, ε ∈ R+ is the kernel bandwidth parameter and
nθ is the number of parameters. Although a multitude of alternatives are avail-
able, this choice for the kernel allows for analytical formulas for the marginals
of ϕ and efficient evaluations schemes [9]. Moreover, Gaussian kernels are radial
basis functions and hence positive definite kernels, which ensures uniqueness
of interpolations and allows for efficient numerical interpolation algorithms [6].
However, all methods presented in the following easily translate to other kernel
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functions, such as the non-smooth Wendland Kernels which should be employed
when considering a non-smooth posterior [6].

For Gaussian kernels, the one-dimensional marginals are given by

ϕw,Φ,N(θi) =

∑N
j=1 wj

√
1

πnθ det(εM) exp
(− 1

ε (θ − θ(j))TM−1(θ − θ(j))
)

∑
j wj

. (8)

The convergence rate for such kernel approximations is usually quantified in
terms of the asymptotic mean integrated square error (AMISE)

AMISEi =

ˆ +∞

−∞
E(ϕw,Φ,N (θi)− p(θi|D))2dθ . (9)

KDE: Kernel density estimation is the common method for estimating prob-
ability densities and has been employed for decades [10,11]. As the weight wj

is always 1, no additional computations are necessary. The free parameter ε is
usually determined using Scott’s rule [11]. For the convergence of the KDE, it
is necessary that the approximation nodes Θ =

{
θ(j)

}N

j=1
are samples of the

density p(θ|D) which is approximated. The theoretical lower convergence bound
for all non-negative KDE kernels is

AMISE∗ = O(N− 4
5 ) , (10)

which is slower than linear convergence. This lower bound is independent of the
dimensionality of θ. However, this is only this bound is only asymptotic and for
realistic regimes of N , dimensionality dependent effects and will often dominate.
MLS: In contrast to KDE, MLS exploits the available function values q(θ(j)|D)
at the interpolation nodes. Indeed, the MLS approximation is obtained by min-
imising a locally weighted distance function [6]. Accordingly, the weights are
given by the scaled value of the density at that approximation point, wj =
�q(θ(j)|D). The scaling parameters ε and � are obtained by minimising
∑N

j=1

(
ϕw,Φ,N(θ(j))− q(θ|D)

)2
, while M is in general provided. The convergence

of the MLS approximation has high regularity requirements on the distribution
of points in Θ. In the next section we will discuss options for such regular sets
of points.
RBF: Radial basis function interpolation is a common tool employed in scat-
tered data approximation [6,7]. Here the weights are computed based on the
interpolation conditions:

⎡

⎢
⎣

Φ1(θ
(1)) · · · ΦN (θ(1))

...
. . .

...
Φ1(θ

(N)) · · · ΦN (θ(N))

⎤

⎥
⎦

︸ ︷︷ ︸
AΘ,Φ

⎡

⎢
⎣

w1

...
wN

⎤

⎥
⎦ =

⎡

⎢
⎣

q(θ(1)|D)
...

q(θ(N)|D)

⎤

⎥
⎦ . (11)

Thus, a linear system of equations must be solved to compute the weights wj .
It can be shown that the condition number of the interpolation matrix AΘ,Φ
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Fig. 2. Illustration of different node construction schemes. The methods are
ordered by the regularity in the generated samples. All samples are generated for the
density given by (14).

depends on the mesh distance dΘ = 1
2min
y �=x

‖x− y‖ with x, y ∈ Θ. For the se-

lection of the parameter ε, leave-one-out cross-validation (LOOCV) is the most
commonly used approach [6]. For RBF interpolation, the interpolation error de-
pends on the local fill distance hρ(x) := max

y∈B(x,ρ)
min
θ∈Θ

‖y − θ‖ ≤ h0 of the set

Θ [12]. Therefore, the performance of RBF can be tremendously increased by
imposing certain regularity based on dΘ and hρ, although RBF interpolation
will theoretically work on any set Θ. We will discuss the exact details of these
regularity conditions in the next section.

2.3 Construction of Approximation Nodes

As discussed in the previous section, the different approximation schemes for
p(θ|D) have different requirements on the regularity of Θ. In the following we will
present methods for the construction of Θ that comply with these requirements.
The resulting sets Θ are schematically depicted in Fig. 2.
Sampling: For the convergences of KDEs, the set of approximation nodes Θ
has to be a statistically representative sample from the posterior distribution
of p(θ|D). This can be achieved by constructing a Markov chain which has the
distribution associated with p(θ|D) as equilibrium distribution. Markov chain
methods enjoy great popularity as method of choice for numerical computation of
high-dimensional integrals. Despite numerous improvements [2,3] of the original
methods, the number of function evaluations required to obtain a converged
Markov chain for multi-modal and heavy-tailed posterior distributions is often
large [5].
Lattice: The MLS approach requires regular sets Θ. One possibility to obtain
such regular sets are lattices. Lattices are integer linear combinations of basis
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vectors and in general infinite and thus must be restricted to finite subsets for all
practical purposes. It is reasonable to assume that super-level-sets of the density
functions are a reasonable choice, as approximation of the density should be
carried out in areas of high mass [13]. For the generation of such lattices we used
the algorithms presented in [13] and also used the suggestion to motivate the
level of super-level-sets using chi-square based confidence levels [13]. In the case
of non-identifiable parameters, further restrictions of the domain of interest are
necessary for the validity of the method. Theoretically, there exists an infinite
number of different lattices as there is no restriction on the choice of basis vectors.
However, [13] describes the optimality of A∗ root lattices as minimiser of the
mesh distance dΘ and the global maximiser of the local fill distance hρ for
dimensions up to three. Hence these lattices also constitute a viable choice for
RBF interpolation. However, the number of lattice points grows exponentially
with the number of dimensions, which limits their applicability. Sparse grids
could also be a valid approach for lattice generation [14], however no efficient
methods for the restriction to super-level-sets are available.
Interacting Particles: Also for the RBF method, lattices are a viable choice.
RBF interpolation, however, allows for more flexibility in the choice of Θ and
should also benefit from local refinements in the point density [7]. In general,
the generation of locally finer lattices is difficult and a more elegant solution can
be obtained by using interacting particle methods [15].

Such an interacting particle system is given by an energy function

E(Θ) =

N∑

p=1

N∑

q=1

V
(∥∥∥θ(q) − θ(p)

∥
∥∥
)
, (12)

where V (r) is the potential which defines the interacting forces between particles.
Here, argmin

Θ
E(Θ) is the ground state of the particle system. By locally rescaling

the potential of the function by the inverse of the density function

D̃(θ) =
D0√

1 + ‖∇p(θ|D)‖ , (13)

a higher density in θ can be achieved in areas where the non-normalised density
p(θ|D) exhibits large fluctuations [16].

In summary, there are three commonly used density approximation methods
and three methods for the generation of approximation nodes. In the following,
we will study the performance of the four most reasonable combinations: (i) KDE
with sampling; (ii) MLS with lattices; and (ii) RBF with lattices and interacting
particles.

3 Results

The evaluate the performance of the different methods, we consider two com-
plementary examples. Firstly, we study a 2-dimensional numerical example for
which analytical solutions are available. Secondly, the parameter inference for
the PDE model from imaging data is considered.
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Fig. 3. Posterior density and its marginals for Example 1. The posterior density
is plotted in the lower right. The respective marginal densities are plotted above and to
the left of the posterior. Both marginal densities and the posterior density are bimodal.

3.1 Example 1: Numerical Example

In the first example, we assume that the posterior distribution P (θ|D) of the
dynamical system is described by the sums of two normal distributions,

P (θ|D) = (
4

5
N (μ(1), Σ(1)) +

1

5
N (μ(2), Σ(2)) (14)

with covariance matrices and means

Σ(1) =

[
0.1 0.25
0.25 1

]
, Σ(2) =

[
0.01 −0.01
−0.01 0.5

]
, μ(1) =

[
1
1

]
, μ(2) =

[
0.5
−1.5

]
.

(15)
The posterior density as well as the respective marginals are plotted in Fig. 3.

For this example the marginal densities can be computed explicitly, which
allows for exact error analysis. We carried out two different comparisons. First
we compared KDE on samples, MLS on lattice and RBF on lattice (Fig. 4
(left)). Secondly, we also considered RBF with interacting particles with different
particle numbers (Fig. 4 (right)). The MCMC samples were generated using
the DRAM toolbox [2]. For the generation and restriction of the lattice and
the particle method the implementation previously described methods [13] have
been used.
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Fig. 4. Comparison of the approximation error in marginals for the KDE, the
MLS and the RBF approach. The L2 error in marginal approximation is plotted
for the KDE method using MCMC samples is plotted for several sample numbers of
a single Markov chain and compared to the MLS and RBF approach on the lattice.
Lattices with different numbers of nodes were obtained by rescaling of the basis vectors.
For the RBF method coupled to the particle method, the initialisations were generated
using lattices with varying resolution.

The number of function evaluations for the lattice based approaches is de-
termined by the scaling of the basis for the lattice generation. By decreasing
the scaling factor of the basis vector, the distance between points in the lattice
decreases and the total number of points and thus the total number of function
evaluations increases. For low numbers of samples, KDE on MCMC samples and
MLS and RBF on lattice yield similar results. However, for higher sample num-
bers both MLS, as well as RBF yield significantly lower errors. The error which
is attained by the MLS approach at about 103 samples is obtained by the KDE
approach between 104 and 105 samples. For the same number of samples, the
RBF approach already yields an error which is approximately one magnitude
lower than both the error from the KDE and the MLS approach.

To avoid additional function evaluations for the interaction particle method,
the gradient ∇p(θ|D) was approximated using the MLS approach. The number of
function evaluation is therefore the number of points in the initial configuration
plus the final number of particles. The number of particles is determined by the
characteristic length of the inter-particle forces given by D0 in (13).

Despite the required number of function evaluations for the initialisations, the
combination of RBF approximation and interacting particles methods provides
slightly better performance, for low and medium resolution, than the lattice-
based approach. The fluctuations are a result of stochasticity in the interacting
particle scheme [16]. This suggests that, for this example, the resolution of the
approximation to ∇p(θ|D) has only a negligible influence on the resulting error
of the marginal approximation.
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Fig. 5. Schematic of the model and synthetic data for the chemokine gra-
dient model. The upper left plot shows the schematic of the underlying geometry
for the generated synthetic data. The synthetic data for the measurement of CCL21
concentration at various time-points is shown in the other subplots.

Summarising, we could show that for this example both the MLS and the RBF
approximation schemes coupled to the respective sampling schemes yielded lower
errors in marginals compared to the KDE approximation scheme.

3.2 Example 2: PDE Model for Chemokine Gradient Formation

In this section we consider a PDE model describing the formation of gradients
of the cytokine CCL21 around lymphatic vessels [17]. Such gradients are, among
other processes, responsible for the migration of dendritic cells towards the lym-
phatic vessels. The subsequent dendritic cell traffic through the lymphoid vessels
towards the lymph nodes is a key process in adaptive immune response.

The model considered here utilises a reaction diffusion equation to describe
the secretion of CCL21 by the lymphoid vessels and the subsequent diffusion.
The secreted CCL21 is then stabilised by complex formation with heparan sul-
fates in the surrounding tissue, which is modelled by an additional ODE. A
schematic of the model as well as the utilised synthetic data is shown in Fig. 5.
Of biological interest are the five unknown parameters: diffusion D, secretion α
and degradation rate γ of CCL21 as well as the association k1 and dissociation
constant k−1 of the complex. For the detailed model, parameter inference and
uncertainty analysis for those parameters we refer to the original publication [17].
In the original work the posterior probability was not calculate as it requires the
simulation of the discretised PDE with several thousand state variables and is
nearly infeasible with traditional methods.
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Fig. 6. Comparison of marginal densities computed using KDE and RBF
approaches. The RBF approach was employed using a lattice of about 104 points.
For the KDE approach a total of 106 MCMC samples were generated and percentile
based confidence intervals calculated using a sliding window bootstrapping scheme with
103 bootstraps and a window size of 104.

In the following we applied the KDE and RBF approach to this problem to
approximate the posterior probability and the resulting estimated marginal den-
sities are shown in Fig 6. First 106 MCMC samples were generated using the
DRAM toolbox [2], as these samples passed all convergence tests and its ap-
proximated marginal was considered as reference solution. Second, we generated
approximation nodes for the RBF approach based on 104 lattice points. The
resulting marginal is a reasonable approximation as it is close to the reference
solution (see Fig. 6). Last, we used a sliding window approach to generate sub-
samples of size 104 from the original MCMC. Based on those samples we derived
KDE based marginals comparable to the RBF approach.

If we compare both approaches we see that the 95% confidence intervals of
the KDE-derived marginal show a rather large uncertainty although a highly
efficient adaptive sampling scheme has been employed. In comparison the RBF
approximation is often closer to the reference solution. Furthermore, the sample
generation took several weeks compared to several days for the RBF lattice
points. This suggests that that for this problem, RBF approximation can indeed
reduce the number of required function evaluations.
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4 Discussion

The problem of posterior densities approximation is omnipresent in Bayesian pa-
rameter estimation. One of the common approaches is KDE in combination with
MCMC sampling. For some simple examples also analytical approximations are
available. In this manuscript we suggest two alternative methods introduced in
the context of scattered data approximation, namely MLS and RBF approxima-
tion. As these methods require a higher regularity of the approximation nodes,
we also introduced lattices and interacting particle methods for node generation.

The resulting methods have been evaluated based on examples. For a
2-dimensional example we showed superior convergence properties for the RBF
and MLS approach over the KDE approach. For a computationally demand-
ing PDE model with 5 parameters, for which the MCMC sampling took sev-
eral weeks, we showed that RBF methods provide a valid alternative which can
provide better approximations with smaller samples sizes. This PDE example
suggests that the method is suited for problems with a low dimensional param-
eter space but high computational complexity. In this case, the RBF and MLS
approach could significantly reduce the number of required simulations of the
systems. As this is one of the first application of MLS and RBF approxima-
tions in the context of parameter estimation [18], further studies are necessary
to determine the full potential of the methods.
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Abstract. We consider the problem of synthesising rate parameters for
stochastic biochemical networks so that a given time-bounded CSL prop-
erty is guaranteed to hold, or, in the case of quantitative properties, the
probability of satisfying the property is maximised/minimised. We de-
velop algorithms based on the computation of lower and upper bounds
of the probability, in conjunction with refinement and sampling, which
yield answers that are precise to within an arbitrarily small tolerance
value. Our methods are efficient and improve on existing approximate
techniques that employ discretisation and refinement. We evaluate the
usefulness of the methods by synthesising rates for two biologically mo-
tivated case studies, including the reliability analysis of a DNA walker.

1 Introduction

Biochemical reaction networks are a convenient formalism for modelling a mul-
titude of biological systems, including molecular signalling pathways, logic gates
built from DNA and DNA walker circuits. For low molecule counts, and under
the well-mixed and fixed volume assumption, the prevailing approach is to model
such networks using continuous-time Markov chains (CTMCs) [11]. Stochastic
model checking [17], e.g. using PRISM [18], can then be employed to analyse
the behaviour of the models against temporal logic properties expressed in CSL
(Continuous Stochastic Logic) [2]. For example, one can establish the reliability
and performance of DNA walker circuits by means of properties such as “what
is the probability that the walker reaches the correct final anchorage within 10
min?”. Since DNA circuits can implement biosensors and diagnostic systems,
ensuring appropriate levels of reliability is crucial to guarantee the safety of
deploying molecular devices in healthcare applications.

Stochastic model checking, however, assumes that the model is fully specified,
including the kinetic rates. In view of experimental measurement error, these are
rarely given precisely, but rather as intervals of values. The parameter synthesis
problem, studied for CTMCs in [13], assumes a formula and a model whose rates
are given as functions of model parameters, and aims to compute the parameter
valuations that guarantee the satisfaction of the formula. This allows one, for
example, to determine the ranges of parameter values for a given level of relia-
bility and performance, which can provide important feedback to the designers
of biosensors and similar molecular devices, and thus significantly extends the
power of stochastic model checking.
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In [13], the parameter synthesis problem was solved for CTMCs approxi-
mately, and only for probabilistic time-bounded reachability. In this paper, we
address the parameter synthesis problem for stochastic biochemical reaction net-
works for the full time-bounded fragment of the (branching-time) logic CSL [2].
We formulate two variants: threshold synthesis, which inputs a CSL formula and
a probability threshold and identifies the parameter valuations which meet the
threshold, and max synthesis, where the maximum probability of satisfying the
property and the maximizing set of parameter valuations are returned.

We develop efficient synthesis algorithms that yield answers with arbitrary
precision. The algorithms exploit the recently published parameter exploration
technique that computes safe approximations to the lower and upper bounds for
the probability to satisfy a CSL property over a fixed parameter space [6]. In
contrast to the exploration technique, our algorithms automatically derive the
satisfying parameter regions through iterative decomposition of the parameter
space based on refining the preliminary answer with additional decompositions
up to a given problem-specific tolerance value. We also show that significant
computational speed-up is achieved by enhancing the max synthesis algorithm
by sampling the property at specific points in the parameter space. We demon-
strate the usefulness of the method through two case studies: the SIR epidemic
model [16], where we synthesize infection and recovery rates that maximize the
probability of disease extinction, and the DNA walker circuit [9], where we derive
the rates that ensure a predefined level of reliability.

Related Work. Parameter synthesis has been studied for discrete-time Marko-
vian models in [12,7]. The approach applies to unbounded temporal properties
and is based on constructing a rational function by performing state elimina-
tion [12]. For CTMCs and bounded reachability specifications, the problem can
be reduced to the analysis of the polynomial function describing the reachability
probability of a given target state [13]. The main limitation here is the high
degree of the polynomials, which is determined by the number of uniformization
steps. Therefore, in contrast to our method, only an approximate solution is
obtained using discretization of parameter ranges. When considering linear-time
specifications, specific restrictions can be placed on the rate function to result in
a smooth satisfaction function (i.e. having derivatives of all orders). In that case,
the function can be approximated using statistical methods which leverage the
smoothness [5]. A concept similar to smoothness, uniform continuity, can be used
to obtain an unbiased statistical estimator for the satisfaction function [14]. Both
methods approximate parameter synthesis using confidence intervals. Inference
of parameter values in probabilistic models from time-series measurements is a
well studied area of research [1,4], but different from the problem we consider. In-
terval CTMCs, where transition rates are given as intervals, have been employed
to obtain a three-valued abstraction for CTMCs [15]. In contrast to paramet-
ric models we work with, the transition rates in interval CTMCs are chosen
nondeterministically and schedulers are introduced to compute lower and upper
probability bounds.
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2 Background

We state preliminary definitions relevant to the study of Parametric Continuous
Time Markov Chains [13,6] that permit formal analysis of probabilistic models
with uncertain parameters [20].

A Continuous Time Markov Chain (CTMC) is a tuple C = (S, π0,R) where S
is a finite set of states, π0 : S → R≥0 is the initial distribution and R : S × S →
R≥0 is the rate matrix. A transition between states s, s′ ∈ S can occur only if
R(s, s′) > 0 and in that case the probability of triggering the transition within
t time units equals 1− e−tR(s,s′). The time spent in s, before a reaction occurs,
is exponentially distributed with rate E(s) =

∑
s′∈S R(s, s′), and when the

transition occurs the probability of moving to state s′ is given by R(s,s′)
E(s) . Let E

be a S×S diagonal matrix such that E(si, si) = E(si), and define the generating
matrix by setting Q = R − E. Then a vector πt : S → R≥0 of the transient
probabilities at time t is given by dπt

dt = πtQ such that πt = π0e
Qt. Using

standard uniformisation the transient probability at time t is obtained as a sum
of state distributions after i discrete-stochastic steps, weighted by the probability
of observing i steps in a Poisson process. Let P = I + 1

qQ be the uniformised

matrix, where q ≥ max{E(s) − R(s, s) | s ∈ S} is called the uniformisation

rate. The transient probabilities πt are computed as πt = π0

∑kε

i=0 γi,qtP
i where

γi,qt = e−qt (qt)
i

i! denotes the i-th Poisson probability for a process with rate

qt, and kε satisfies the convergence bound
∑kε

0 γi,qt ≥ 1 − ε for some ε > 0.
The Poisson terms and summation bound can be efficiently computed using an
algorithm due to Fox and Glynn [10].

We assume a set K of model parameters. The domain of each parameter
k ∈ K is given by a closed real interval describing the range of possible values,
i.e, [k⊥, k�]. The parameter space P induced by K is defined as the Cartesian
product of the individual intervals: P =×k∈K

[k⊥, k�]. A parameter point p ∈ P
is a valuation of each parameter k. Subsets of the parameter space are also
referred to as parameter regions or subspaces. R[K] denotes the set of polynomials
over the reals R with variables k ∈ K.

Parametric Continuous Time Markov Chains (pCTMCs) [13] extend the no-
tion of CTMCs by allowing transition rates to depend on model parameters.
Formally, a pCTMC over a set K of parameters is a triple C = (S, π0,R) where
s and π0 are as above, and in this case R : S×S → R[K] is the parametric rate
matrix. Given a pCTMC C and a parameter space P , we denote with CP the
(possibly uncountable) set {Cp | p ∈ P} where Cp = (S, π,Rp) is the instantiated
CTMC obtained by replacing the parameters in R with their evaluation in p.

We consider the time-bounded fragment of CSL [2] to specify behavioural
properties, with the following syntax. A state formula Φ is given as Φ ::= true |
a | ¬Φ | Φ ∧ Φ | P∼r[φ] | P=?[φ], where φ is a path formula whose syntax is
φ ::= X Φ | Φ UI Φ, a is an atomic proposition, ∼ ∈ {<,≤,≥, >}, r ∈ [0, 1]
is a probability threshold and I is a bounded interval. Using P=?[φ] we specify
properties which evaluate to the probability that φ is satisfied. The synthesis
methods presented in this paper can be directly adapted to the time-bounded
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fragment of CSL with the reward operator [17], but, for the sake of simplicity,
here we present our methods only for the probabilistic operator P .

Let φ be a CSL path formula and CP be a pCTMC over a space P . We denote
with Λ : P −→ [0, 1] the satisfaction function such that Λ(p) = P=?[φ], that is,
Λ(p) is the probability of φ being satisfied over the CTMC Cp. Note that the
path formula φ may contain nested probabilistic operators, and therefore the
satisfaction function is, in general, not continuous.

Biochemical reaction networks provide a convenient formalism for describ-
ing various biological processes as a system of well-mixed reactive species in
a volume of fixed size. A CTMC semantics can be derived whose states hold
the number of molecules for each species, and transitions correspond to reac-
tions that consume and produce molecules. Bounds on species counts can be im-

posed to obtain a finite-state model. The rate matrix is defined as R(si, sj)
def
=∑

r∈reac(si,sj)
fr(K, si) where reac(si, sj) denotes all the reactions changing state

si into sj and fr is the stochastic rate function of reaction r over parame-
ters k ∈ K. In this paper, we assume multivariate polynomial rate functions
that include, among others, mass-action kinetics where k ∈ K are kinetic rate
parameters.

3 Problem Definition

We consider pCTMC models of biochemical reaction networks that can be para-
metric in the rate constants and in the initial state. We introduce two parameter
synthesis problems for this class of models: the threshold synthesis problem that,
given a threshold ∼ r and a CSL path formula φ, asks for the parameter region
where the probability of φ meets ∼ r; and the max synthesis problem that deter-
mines the parameter region where the probability of the input formula attains
its maximum, together with an estimation of that maximum. In the remainder
of the paper, we omit the min synthesis problem that is defined and solved in a
symmetric way to the max case.

In contrast to previous approaches that support only specific kinds of proper-
ties (e.g. reachability as in [13]), we consider the full time-bounded fragment of
CSL with rewards, thus enabling generic and more expressive synthesis require-
ments. Moreover, the variants of the synthesis problem that we define correspond
to qualitative and quantitative CSL formulas, which are of the form P≥r[φ] and
P=?[φ], respectively. Solutions to the threshold problem admit parameter points
left undecided, while, in the max synthesis problem, the set of maximizing pa-
rameters is contained in the synthesis region. Our approach supports arbitrarily
precise solutions through an input tolerance that limits the volume of the un-
decided region (in the threshold case) and of the synthesis region (in the max
case). To the best of our knowledge, no other synthesis methods for CTMCs
exist that provide guaranteed error bounds.

Problem 1 (Threshold Synthesis). Let CP be a pCTMC over a parameter space
P , Φ = P≥r[φ] with r ∈ [0, 1] be a CSL formula and ε > 0 a volume tolerance.
The threshold synthesis problem is finding a partition {T, U, F} of P , such that:
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1. ∀p ∈ T. Λ(p) ≥ r; and
2. ∀p ∈ F. Λ(p) < r; and
3. vol(U)/vol(P) ≤ ε

where Λ is the satisfaction function of φ on CP ; and vol(A) =
∫
A
1dμ is the

volume of A.

Problem 2 (Max Synthesis). Let CP be a pCTMC over a parameter space P ,
Φ = P=?[φ] be a CSL formula and ε > 0 a probability tolerance. The max
synthesis problem is finding a partition {T, F} of P and probability bounds Λ⊥,
Λ� such that:

1. Λ⊥ − Λ� ≤ ε;
2. ∀p ∈ T. Λ⊥ ≤ Λ(p) ≤ Λ�; and
3. ∃p ∈ T. ∀p′ ∈ F. Λ(p) > Λ(p′).

where Λ is the satisfaction function of φ on CP .
Note that we need to consider a probability tolerance to control the inaccuracy
of the max probability, and in turn of region T . Indeed, constraining only the
volume of T gives no guarantees on the precision of the maximizing region.

4 Computing Lower and Upper Probability Bounds

This section presents a generalization of the parameter exploration procedure
originally introduced in [6]. The procedure takes a pCTMC CP and a CSL path
formula φ, and provides safe under- and over-approximations for the minimal
and maximal probability that CP satisfies φ, that is, lower and upper bounds
Λmin and Λmax satisfying Λmin ≤ minp∈P Λ(p) and Λmax ≥ maxp∈P Λ(p). The
accuracy of these approximations is improved by partitioning the parameter
space P into subspaces and re-computing the corresponding bounds, which forms
the basis of the synthesis algorithms that we discus in the next section. For now
we focus on obtaining approximations Λmin, Λmax for a fixed parameter space P .
The model-checking problem for any time-bounded CSL formula reduces to the
computation of transient probabilities [3], and a similar reduction is applicable
to the computation of lower and upper bounds. Following [6], to correctly handle
nested probabilistic operators, under- and over-approximations of the satisfying
sets of states in the nested formula are computed.

We now re-state the transient probabilities as given by standard uniformisa-
tion and include the dependency on the model parameters in our notation, so
that πt,p = π0

∑kε

i=0 γi,qtP
i
p =

∑kε

i=0 γi,qtτi,p where Pp is the uniformised rate

matrix obtained from the rate matrix Rp and τk,p = π0P
k
p is the probability

evolution in the discretized process. Observe that, if some functions πmin
i and

πmax
i can be obtained such that for any step i,

τmin
i ≤ min

p∈P
τi,p and τmax

i ≥ max
p∈P

τi,p (1)
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then robust approximations πmin
t =

∑kε

i=0 γi,qtτ
min
i and πmax

t =
∑kε

i=0 γi,qtτ
max
i

provide the bounds Λmin and Λmax that we seek. As usual, the vector ordering in
Equation 1 holds element-wise. If we assume that some functions fmin

k , fmax
k exist

such that fmin
k (τmin

i ) = τmin
i+k and fmax

k (τmax
i ) = τmax

i+k then recursively the terms

in Equation 1 for all i are obtained, given that the first k terms for τmin
i , τmax

i

are known. We now note that the functions

fmin
k (τmin

i ) = min
p∈P

τmin
i Pk

p and fmax
k (τmax

i ) = max
p∈P

τmax
i Pk

p (2)

can be under- and over-approximated using analytical methods when the para-
metric rate matrix Rp employs low-degree multivariate polynomial expressions.
Provided that Rp(si, sj) is a polynomial of at most degree d over the parameter
space, the degree of τk,p(s) = π0P

k
p(s) is at most kd.

An analytical treatment for the case k = 1 and d = 1 is given in [6]. Here, we
derive an effective method to obtain approximations using k = 1 for multivariate
polynomials where each variable has degree at most 1; full details are included
in [21]. More advanced methods can be used, provided that the under- and over-
approximations for Equation 2 are sound. Note that the solution πt,p(s) itself can
be expressed as a polynomial of degree at most kεd. A direct attempt to bound
the polynomial expression of πt,p(s) is difficult due to the large number of uni-
formisation steps, kε, and previous approaches in parameter synthesis have pro-
vided an approximate solution by sampling the value of πt,p over a grid in P [13],
rather than bounding the polynomial itself as in our approach. The computa-
tional complexity depends on the chosen rate function and the bounding method
for the functions in Equation 2, but for our settings it has the same asymptotic
complexity as standard uniformisation. Two approximation errors are introduced
when we compute πmax

t (or πmin
t ). Firstly, the probabilities τmax

i , τmax
i+k , τmax

i+2k, . . .
are locally maximized, so that different parameter valuations are allowed at each
step and for each state. Secondly, the error of over-approximating fmax

k (τmax
i )

accumulates in τmax
i at every iteration.

5 Refinement-Based Parameter Synthesis

We present algorithms to solve Problems 1 and 2, based on the computation
of probability bounds introduced in Section 4 and iterative parameter space
refinement. In the max synthesis case we employ parameter sampling to enhance
the synthesis procedure.

Threshold Synthesis. Algorithm 1 describes the method to solve the threshold
synthesis problem with input formula Φ = P≥r[φ]. The idea, also illustrated in
Figure 1, is to iteratively refine the undecided parameter subspace U (line 3)
until the termination condition is met (line 14). At each step, we obtain a par-
tition R of U . For each subspace R ∈ R, the algorithm computes bounds ΛR

min

and ΛR
max on the maximal and minimal probability that CR satisfies φ (line 5).

We then evaluate if ΛR
min is above the threshold r, in which case the satisfaction

of Φ is guaranteed for the whole region R and thus it is added to T . Otherwise,
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Algorithm 1. Threshold Synthesis
Require: pCTMC CP over parameter space P, CSL formula

Φ = P≥r [φ] and volume tolerance ε > 0
Ensure: T , U and F as in Problem 1
1: T ← ∅, F ← ∅, U ← P
2: repeat
3: R ← decompose(U), U ← ∅
4: for each R ∈ R do
5: (ΛR

min, Λ
R
max) ← computeBounds(CR, φ)

6: if ΛR
min ≥ r then

7: T ← T ∪ R
8: else if ΛR

max < r then
9: F ← F ∪R
10: else
11: U ← U ∪ R
12: until vol(U)/vol(P) ≤ ε � where vol(A) =

∫

A
1dμ

Fig. 1. Refinement in threshold synthesis with ≥ r. Parameter values are on the x-
axis, probabilities on the y-axis. Each box describes a parameter region (width), and
its probability bounds (height). The refinement of R yields regions in T and in U .

the algorithm tests whether R can be added to the set F by checking if ΛR
max is

below the threshold r. If R is neither in T nor in F , it forms an undecided sub-
space that is added to the set U . The algorithm terminates when the volume of
the undecided subspace is negligible with respect to the volume of the entire pa-
rameter space, i.e. vol(U)/vol(P) ≤ ε, where ε is the input tolerance. Otherwise,
the algorithm continues to the next iteration, where U is further refined.

Since, for a finite formula φ, only a finite number of refinement steps is needed
to meet the desired tolerance, the algorithm always terminates. The initial de-
composition of the parameter space is guided by a prior sampling of probability
values. For more details see [21].

Max Synthesis. Algorithm 2 is used to solve the max synthesis problem, which
returns the set T containing the parameter valuations that maximize Φ = P=?[φ]
and the set F not yielding the maximum value of Φ. Let R be a partition of T .
For each subspace R ∈ R, the algorithm computes bounds ΛR

min and ΛR
max on

the maximal and minimal probability that CR satisfies Φ (line 5). The algorithm
then rules out subspaces that are guaranteed to be included in F , by deriving an
under-approximation (MLB) to the maximum satisfaction probability (line 7). If
ΛR
max is below the under-approximation, the subspace R can be safely added to

the set F (line 9). Otherwise, it is added to the set T . The bound MLB is derived
as follows. In the naive approach, the algorithm uses the maximum over the least
bounds in the partition of T , that is, MLB = max{ΛR

min | R ∈ R}. Let R be the
region with highest lower bound. The sampling-based approach improves on this
by sampling a set of parameters {p1, p2, . . .} ⊆ R and taking the highest value
of Λ(p), that is, MLB = max {Λ(pi) | pi ∈ {p1, p2, . . .}}. Although regular CSL
model checking is nearly as expensive as the computation of the bounds for a
pCTMC, the bound obtained by the sampling method excludes more boxes (see
Fig. 2), which in turn leads to fewer refinements in the next iteration. In this
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Algorithm 2. Max Synthesis
Require: pCTMC CP over parameter space P, CSL

formula Φ = P=?[φ] and probability tolerance ε > 0

Ensure: Λ⊥, Λ�, T and F as in Problem 2
1: F ← ∅, T ← P
2: repeat
3: R ← decompose(T ), T ← ∅
4: for each R ∈ R do
5: (ΛR

min, Λ
R
max) ← computeBounds(CR, φ)

6: MLB ← getMaximalLowerBound(R)
7: for each R ∈ R do
8: if ΛR

max < MLB then
9: F ← F ∪ R
10: else
11: T ← T ∪ R
12: Λ⊥ ← min{ΛR

min | R ∈ T}
13: Λ� ← max{ΛR

max | R ∈ T}
14: until Λ� − Λ⊥ < ε

Fig. 2. Refinement in max synthesis. The two outermost regions (in red) cannot contain
the maximum, as their upper bound is below the maximum lower bound (MLB) found
at region R. The maximum lower bound is improved by sampling several points p ∈ R
and taking the highest value (MLB) of the satisfaction function Λ(p). The yellow area
highlights the improvement.

case we perform additional checks, discussed in [21], for detecting and discarding
regions containing points of jump discontinuity that might prevent the algorithm
from reaching the target accuracy and thus from terminating.

The overall time complexity of the synthesis algorithms is directly determined
by the number of subspaces that need to be analysed to obtain the desired pre-
cision. This number depends on the number of unknown parameters, the shape
of the satisfaction function and the type of synthesis. In practice, the algorithms
scale exponentially in the number of parameters and linearly in the volume of
the parameter space.

6 Results

We demonstrate the applicability and efficiency of the developed algorithms on
two case studies.

6.1 Epidemic Model

The SIR model [16] describes the epidemic dynamics in a closed population of
susceptible (S), infected (I) and recovered (R) individuals. In the model, a sus-
ceptible individual is infected after a contact with an infected individual with
rate ki. Infected individuals recover with rate kr, after which they are immune
to the infection. We can describe this process with the following biochemical

reaction model with mass action kinetics: i : S + I
ki−→ I + I, r : I

kr−→ R. We



94 M. Češka et al.

0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k
i

P

(a)

0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k
i

P

(b)

0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

P

k
r

(c)

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

k
r

P

(d)

Fig. 3. Solution to max (a,c) and min (b,d) synthesis using sampling-based refinement
for P=?[(I > 0)U [100,120](I = 0)]. Probability tolerance ε = 1% (a,c) and ε = 0.1% (b,d).

Table 1. The computation of the synthesis problems for P=?[(I > 0)U [100,120](I = 0)]
using probability tolerance ε = 1% (problems 1,3,5,6) and ε = 0.1% (problems 2,4).
The sampling-based refinement is used except for problem 5. The minimal bounding
box of T is reported in problems 5 and 6. Λ∗ denotes Λ⊥ (problems 1,3,5,6) and Λ�

(problems 2,4).

Problem ki kr Runtime Subspaces Λ∗[%] T

1. Max [0.005, 0.3] 0.05 16.5 s 9 33.94 [0.267, 0.3]
2. Min [0.005, 0.3] 0.05 49.5 s 21 2.91 [0.005, 0.0054]
3. Max 0.12 [0.005, 0.2] 99.7 s 57 19.94 [0.071, 0.076]
4. Min 0.12 [0.005, 0.2] 10.4 s 5 0.005 [0.005, 0.026]
5. Max [0.005, 0.3] [0.005, 0.2] 3.6 h 5817 35.01 [0.217, 0.272]×[0.053, 0.059]
6. Max [0.005, 0.3] [0.005, 0.2] 6.2 h 10249 34.77 [0.209, 0.29]×[0.051, 0.061]

represent the model as a pCTMC with ki and kr as parameters, and initial pop-
ulations S = 95, I = 5, R = 0. We consider the time-bounded CSL formula
Φ = P=?[(I > 0)U [100,120](I = 0)], which asks for the probability that the infec-
tion lasts for at least 100 time units, and dies out before 120 time units. Model
parameters and the property are taken from [5], where the authors estimate the
satisfaction function for Φ following a Bayesian approach1.

Figure 3 and Table 1 (problems 1-4) illustrate the solutions using sampling-
based refinement for max and min synthesis problems over one-dimensional
parameter spaces. We report that, in order to meet the desired probability tol-
erance, problems 2 (Fig. 3b) and 3 (Fig. 3c) require a high number of refinement
steps due to two local extrema close to the minimizing region and due to a bell-
shaped Λ with the maximizing region at the top, respectively. Our precise results
for problem 1 (Fig. 3a) improve on the estimation in [5], where in the equivalent
experiment the max probability is imprecisely registered at smaller ki values.

We also compare the solutions to the max synthesis problem over the two-
dimensional parameter space obtained by applying Alg. 2 with sampling (Fig.
4a, problem 5 in Table 1) and without (Fig. 4b, problem 6 in Table 1). In the

1 In [5], a linear-time specification equivalent to Φ is given.
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Fig. 4. Solutions to max synthesis with sampling-based refinement (a) and without
sampling (b) for P=?[(I > 0)U [100,120](I = 0)] using probability tolerance ε = 1%.

former case, a more precise T region is obtained (with a volume 2.04 times
smaller than in the approach without sampling), thus giving a more accurate
approximation of the max probability. Sampling also allows us to rule out ear-
lier those parameter regions that are outside the final solution, thus avoiding
unnecessary decompositions and improving the runtime (1.72 times faster than
in the approach without sampling). This is visible by the coarser approximations
of probabilities in the F region.

6.2 DNA Walkers

We revisit models of a DNA walker, a man-made molecular motor that traverses
a track of anchorages and can take directions at junctions in the track [22], which
can be used to create circuits that evaluate Boolean functions. PRISM models
of the walker stepping behaviour were developed previously [9] based on rate
estimates in the experimental work. The walker model is modified here to allow
uncertainty in the stepping rate, and we consider its behaviour over a single-
junction circuit. Given a distance d between the walker-anchorage complex and
an uncut anchorage, and da being the distance between consecutive anchorages,
the stepping rate k is defined as: k = ks when d ≤ 1.5da, k = c · ks/50 when
1.5da < d ≤ 2.5da, k = c · ks/100 when 2.5da < d ≤ 24nm and k = 0, otherwise.
The base stepping rate ks ∈ [0.005, 0.020] is now defined as an interval, as
opposed to the original value of 0.009. We have also added factor c for steps
between anchorages that are not directly adjacent, but we will assume c = 1 for
now. The base stepping rate may depend on buffer conditions and temperature,
and we want to verify the robustness of the walker with respect to the uncertainty
in the value of ks.

We compute the minimal probability of the walker making it onto the correct
final anchorage (min synthesis for the property P=?[F

[T,T ] finish-correct]) and
the maximum probability of the walker making it onto the incorrect anchorage
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Table 2. The computation of min-synthesis for P=?[F
[T,T ] finish-correct] and max-

synthesis for P=?[F
[T,T ] finish-incorrect] using ks ∈ [0.005, 0.020], c = 1 and probability

tolerance ε = 1%. The runtime and subspaces are listed only for the min-synthesis (the
results for the max-synthesis are similar).

Runtime Subspaces
Time bound Min. correct Max. incorrect ∅ Sampling ∅ Sampling

T = 15 1.68% 5.94% 0.55 s 0.51 s 22 11
T = 30 14.86% 10.15% 1.43 s 1.35 s 35 15
T = 45 33.10% 12.25% 3.53 s 2.14 s 61 21
T = 200 79.21% 16.47% 213.57s 88.97 s 909 329

(max synthesis for the property P=?[F
[T,T ] finish-incorrect). We list the proba-

bilities at T = 15, 30, 45, 200 minutes in Table 2. For time T = 30, 45, 200, we
note that the walker is robust, as the minimal guaranteed probability for the cor-
rect outcome is greater than the maximum possible probability for the incorrect
outcome. For time T = 15 this is not the case.

We also consider a property that provides bounds on the ratio between the
walker finishing on the correct versus the incorrect anchorage. The rates c ·ks/50
and c · ks/100 correspond to the walker stepping onto anchorages that are not
directly adjacent, which affects the probability for the walker to end up on the
unintended final anchorage. For higher values of c, we expect the walker to end
up in the unintended final anchorage more often. Now we add uncertainty on
the value of c, so that c ∈ [0.25, 4], and define the performance related property
P≥0.4[F

[30,30] finish-correct] ∧ P≤0.08[F
[30,30] finish-incorrect], that is, the prob-

ability of the walker to make it onto the correct anchorage is at least 40% by
time T = 30 min, while the probability for it to make it onto the incorrect an-
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Fig. 5. The computation and results of the threshold synthesis for different formulae,
using volume tolerance ε = 10%. a) Φ1 = P≥0.4[F

[30,30] finish-correct], runtime 443.5
s, 2692 subspaces. b) Φ2 = P≤0.08[F

[30,30] finish-incorrect], runtime 132.3 s, 807 sub-
spaces. c) Φ1∧Φ2. d) P≥0.8[F

[200,200] finish-correct]∧P≤0.16[F
[200,200] finish-incorrect],

runtime 12.3 h, 47229 subspaces.
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chorage is no greater than 8%. In other words, we require a correct signal of at
least 40% and a correct-to-incorrect ratio of at least 5 by time T = 30 min. We
define a similar property at time T = 200 min, this time requiring a signal of at
least 80%: P≥0.8[F

[200,200] finish-correct]∧P≤0.16[F
[200,200] finish-incorrect]. The

synthesized ranges of ks and c where the properties hold are shown in Fig. 5.

7 Conclusion

We have developed efficient algorithms for synthesising rate parameters for
biochemical networks so that a given reliability or performance requirement,
expressed as a time-bounded CSL formula, is guaranteed to be satisfied. The
techniques are based on the computation of lower and upper probability bounds
of [6] in conjunction with region refinement and sampling. The high computa-
tional costs observed in our case studies can be reduced by parallel processing of
individual subspaces, or by utilizing advanced uniformisation techniques [19,8].
We plan to include the synthesis algorithms in the param module of the PRISM

model checker [7,18].
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98 M. Češka et al.

7. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for Markov decision processes. In: Theoretical Aspects of Software Engineering
(TASE), pp. 85–92. IEEE (2013)

8. Dannenberg, F., Hahn, E.M., Kwiatkowska, M.: Computing cumulative rewards
using fast adaptive uniformisation. In: Gupta, A., Henzinger, T.A. (eds.) CMSB
2013. LNCS, vol. 8130, pp. 33–49. Springer, Heidelberg (2013)

9. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.: DNA walker
circuits: Computational potential, design, and verification. Natural Computing
(to appear, 2014)

10. Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. CACM 31(4), 440–445
(1988)

11. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Jour-
nal of Physical Chemistry 81(25), 2340–2381 (1977)

12. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. International Journal on Software Tools for Technology Transfer
(STTT) 13(1), 3–19 (2011)

13. Han, T., Katoen, J., Mereacre, A.: Approximate parameter synthesis for prob-
abilistic time-bounded reachability. In: Real-Time Systems Symposium (RTSS),
pp. 173–182. IEEE (2008)

14. Jha, S.K., Langmead, C.J.: Synthesis and infeasibility analysis for stochastic mod-
els of biochemical systems using statistical model checking and abstraction refine-
ment. Theor. Comput. Sci. 412(21), 2162–2187 (2011)

15. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

16. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory
of epidemics. ii. the problem of endemicity. Proceedings of the Royal Society of
London. Series A 138(834), 55–83 (1932)

17. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

19. Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast Adaptive Uniformization
of the Chemical Master Equation. IET Systems Biology 4(6), 441–452 (2010)

20. Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006)
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Abstract. A central problem in systems biology is to identify param-
eter values such that a biological model satisfies some behavioral con-
straints (e.g., time series). In this paper we focus on parameter synthesis
for hybrid (continuous/discrete) models, as many biological systems can
possess multiple operational modes with specific continuous dynamics
in each mode. These biological systems are naturally modeled as hy-
brid automata, most often with nonlinear continuous dynamics. How-
ever, hybrid automata are notoriously hard to analyze — even simple
reachability for hybrid systems with linear differential dynamics is an
undecidable problem. In this paper we present a parameter synthesis
framework based on δ-complete decision procedures that sidesteps unde-
cidability. We demonstrate our method on two highly nonlinear hybrid
models of the cardiac cell action potential. The results show that our pa-
rameter synthesis framework is convenient and efficient, and it enabled
us to select a suitable model to study and identify crucial parameter
ranges related to cardiac disorders.

1 Introduction

Computational modeling and analysis methods are playing a crucial role in un-
derstanding the complex dynamics of biological systems [1]. In this paper we
address the parameter synthesis problem for hybrid models of biological sys-
tems. This problem amounts to finding sets of parameter values for which a
model satisfies some precise behavioral constraints, such as time series or reach-
ability properties. We focus on hybrid continuous/discrete models, since one of
the key aspects of many biological systems is their differing behavior in various
‘discrete’ modes. For example, it is well-known that the five stages of the cell
cycle are driven by the activation of different signaling pathways. Hence, hybrid
system models are often used in systems biology (see, e.g., [2–9]).

Hybrid systems combine discrete control computation with continuous-time
evolution. The state space of a hybrid system is defined by a finite set of contin-
uous variables and modes. In each mode, the continuous evolution (flow) of the
system is usually given by the solution of ordinary differential equations (ODEs).
At any given time a hybrid system dwells in one of its modes and each variable
evolves accordingly to the flow in the mode. Jump conditions control the switch
to another mode, possibly followed by a ‘reset’ of the continuous variables. Thus,
the temporal dynamics of a hybrid system is piecewise continuous.

P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 99–113, 2014.
c© Springer International Publishing Switzerland 2014
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Hybrid models of biological systems often involve many parameters such as
rate constants of biochemical reactions, initial conditions, and threshold values
in jump conditions. Generally, only a few rate constants will be available or
can be measured experimentally — in the latter case the rate constants are
obtained by fitting the model to experimental observations. Furthermore, it is
also crucial to figure out what initial conditions or jump conditions may lead to
an unsafe state of the system, especially when studying hybrid systems used to
inform clinical therapy [10]. All such questions fall within the parameter synthesis
problem, which is extremely difficult for hybrid systems. Even simple reachability
questions for hybrid systems with linear (differential) dynamics are undecidable
[11]. Therefore, the parameter synthesis problem needs to be relaxed in a sound
manner in order to solve it algorithmically — this is the approach we shall follow.

In this paper, we tackle the parameter synthesis problem using δ-complete
procedures [12] for deciding first-order formula with arbitrary computable real
functions, including solutions of Lipschitz-continuous ODEs [13]. Such proce-
dures may return answers with one-sided δ-bounded errors, thereby overcoming
undecidability issues (note that the maximum allowable error δ is an arbitrarily
small positive rational). In our approach we describe the set of states of in-
terest as a first-order logic formula and perform bounded model checking [14]
to determine reachability of these states. We then adapt an interval constrains
propagation based algorithm to explore the parameter space and identify the
sets of resulting parameters. We show the applicability of our method by carry-
ing out a thorough case study characterized by highly nonlinear hybrid models.
We discriminate two cardiac cell action potential models [15, 16] in terms of cell-
type specificity and identify parameter ranges for which a cardiac cell may lose
excitability. The results show that our method can obtain biological insights that
are consistent with experimental observations, and scales to complex systems.
In particular, the analysis we carried out in the cardiac case study is difficult to
be performed by — if not out of the scope of — state-of-the-art tools [17–20].

Related Work. A survey of modeling and analysis of biological systems using
hybrid models can be found in [21]. Analyzing the properties of biochemical net-
works using formal verification techniques is being actively pursued by a number
of researchers, for which we refer to Brim’s et al. recent survey [22]. Of particular
interest in our context are parameter synthesis methods for qualitative behav-
ior specifications (e.g., temporal logic formulas). The method introduced in [23]
can deal with parameter synthesis for piecewise affine linear systems. For ODEs,
Donzé et al. [24] explore the parameter space using adaptive sampling and sim-
ulation, while Palaniappan et al. [25] use a statistical model checking approach.
Other techniques perform a sweep of the entire (bounded) parameter space, af-
ter it has been discretized [26, 27]. Randomized optimization techniques were
used for parameter estimation in stochastic hybrid systems [28], while identi-
fication techniques for affine systems were used in [29]. The techniques above
can handle nonlinear hybrid systems only through sampling and simulation, and
so are incomplete. Our approach is instead δ-complete. It is based on verified
numerical integration and constraint programming algorithms, which effectively
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enable an over-approximation of the system dynamics to be computed. Thus, if
a model is found to be unfeasible (i.e. an unsat answer is returned, see Section 2
for more details), then this is correct. This behavior better fits with the safety
requirements expected by formal verification.

2 δ-Decisions for Hybrid Models

We encode reachability problems of hybrid automata using a first-order language
LRF over the reals, which allows the use of a wide range of real functions including
nonlinear ODEs. We then use δ-complete decision procedures to find solutions
to these formulas to synthesize parameters.

Definition 1 (LRF -Formulas). Let F be a collection of computable real func-
tions. We define:

t := x | f(t(x)), where f ∈ F (constants are 0-ary functions);

ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

By computable real function we mean Type 2 computable, which informally
requires that a (real) function can be algorithmically evaluated with arbitrary
accuracy. Since in general LRF formulas are undecidable, the decision problem
needs to be relaxed. In particular, for any LRF formula φ and any rational δ > 0
one can obtain a δ-weakening formula φδ from φ by substituting the atoms t > 0
with t > −δ (and similarly for t ≥ 0). Obviously, φ implies φδ, but not the vice
versa. Now, the δ-decision problem is deciding correctly whether:

– φ is false (unsat);
– φδ is true (δ-sat).

If both cases are true, then either decision is correct. In previous work [12, 13, 30]
we presented algorithms (δ-complete decision procedures) for solving δ-decision
problems for LRF and for ODEs. These algorithms have been implemented in
the dReal toolset [31]. More details on δ-decision problems are in Appendix.

Now we state the encoding for hybrid models. Recall that hybrid automata
generalize finite-state automata by permitting continuous-time evolution (or
flow) in each discrete state (or mode). Also, in each mode an invariant must
be satisfied by the flow, and mode switches are controlled by jump conditions.

Definition 2 (LRF -Representations of Hybrid Automata). A hybrid au-
tomaton in LRF -representation is a tuple

H = 〈X,Q, {flowq(x,y, t) : q ∈ Q}, {invq(x) : q ∈ Q},
{jumpq→q′(x,y) : q, q

′ ∈ Q}, {initq(x) : q ∈ Q}〉

where X ⊆ R
n for some n ∈ N, Q = {q1, ..., qm} is a finite set of modes, and the

other components are finite sets of quantifier-free LRF -formulas.
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Example 1 (Nonlinear Bouncing Ball). The bouncing ball is a standard hybrid
system model. It can be LRF -represented in the following way:

– X = R
2 and Q = {qu, qd}. We use qu to represent bounce-back mode and qd

the falling mode.

– flow = {flowqu(x0, v0, xt, vt, t), flowqd(x0, v0, xt, vt, t)}. We use x to denote
the height of the ball and v its velocity. Instead of using time derivatives, we
can directly write the flows as integrals over time, using LRF -formulas:

• flowqu(x0, v0, xt, vt, t) defines the dynamics in the bounce-back phase:

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1− βv(s)2)ds)

• flowqd(x0, v0, xt, vt, t) defines the dynamics in the falling phase:

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1 + βv(s)2)ds)

where β is a constant. Again, note that the integration terms define Type 2
computable functions.

– jump = {jumpqu→qd
(x, v, x′, v′), jumpqd→qu(x, v, x

′, v′)} where

• jumpqu→qd(x, v, x
′, v′) is (v = 0 ∧ x′ = x ∧ v′ = v).

• jumpqd→qu(x, v, x
′, v′) is (x = 0∧v′ = αv∧x′ = x), for some constant α.

– initqd is (x = 10 ∧ v = 0) and initqu is ⊥.

– invqd is (x >= 0 ∧ v >= 0) and invqu is (x >= 0 ∧ v <= 0).

We now show the encoding of bounded reachability, which is used for encoding
the parameter synthesis problem. We want to decide whether a given hybrid
system reaches a particular region of its state space after following a (bounded)
number of discrete transitions, i.e., jumps. First, we need to define auxiliary
formulas used for ensuring that a particular mode is picked at a certain step.

Definition 3. Let Q = {q1, ..., qm} be a set of modes. For any q ∈ Q, and i ∈ N,
use biq to represent a Boolean variable. We now define

enforceQ(q, i) = biq ∧
∧

p∈Q\{q}
¬bip

enforceQ(q, q
′, i) = biq ∧ ¬bi+1

q′ ∧
∧

p∈Q\{q}
¬bip ∧

∧

p′∈Q\{q′}
¬bi+1

p′

We omit the subscript Q when the context is clear.

We can now define the following formula that checks whether a goal region of
the automaton state space is reachable after exactly k discrete transitions. We
first state the simpler case of a hybrid system without invariants.
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Definition 4 (k-Step Reachability, Invariant-Free Case). Suppose H is
an invariant-free hybrid automaton, U a subset of its state space represented by
goal, and M > 0. The formula ReachH,U (k,M) is defined as:

∃Xx0∃Xxt
0 · · · ∃Xxk∃Xxt

k∃[0,M ]t0 · · · ∃[0,M ]tk.
∨

q∈Q

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

)

∧
k−1∧

i=0

( ∨

q,q′∈Q

(
jumpq→q′ (x

t
i,xi+1) ∧ enforce(q, q′, i)

∧flowq′(xi+1,x
t
i+1, ti+1) ∧ enforce(q′, i+ 1)

))

∧
∨

q∈Q

(goalq(x
t
k) ∧ enforce(q, k))

where ∃Xx is a shorthand for ∃x ∈ X.

Intuitively, the trajectories start with some initial state satisfying initq(x0) for
some q. Then, in each step the trajectory follows flowq(xi,x

t
i, t) and makes a

continuous flow from xi to xt
i after time t. When the automaton makes a jump

from mode q′ to q, it resets variables following jumpq′→q(x
t
k,xk+1). The auxiliary

enforce formulas ensure that picking jumpq→q′ in the i-the step enforces picking

flow′
q in the (i+ 1)-th step.

When the invariants are not trivial, we need to ensure that for all the time
points along a continuous flow, the invariant condition holds. We need to uni-
versally quantify over time, and the encoding is as follows:

Definition 5 (k-Step Reachability, Nontrivial Invariant). Suppose H con-
tains invariants, and U is a subset of the state space represented by goal. The
LRF -formula ReachH,U (k,M) is defined as:

∃Xx0∃Xxt
0 · · · ∃Xxk∃Xxt

k∃[0,M ]t0 · · · ∃[0,M ]tk.
∨

q∈Q

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

∧∀[0,t0]t∀Xx (flowq(x0,x, t) → invq(x))
)

∧
k−1∧

i=0

( ∨

q,q′∈Q

(
jumpq→q′(x

t
i,xi+1) ∧ flowq′(xi+1,x

t
i+1, ti+1) ∧ enforce(q, q′, i)

∧enforce(q′, i+ 1) ∧ ∀[0,ti+1]t∀Xx (flowq′(xi+1,x, t) → invq′(x)))
))

∧
∨

q∈Q

(goalq(x
t
k) ∧ enforce(q, k)).

The extra universal quantifier for each continuous flow expresses the requirement
that for all the time points between the initial and ending time point (t ∈
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[0, ti+1]) in a flow, the continuous variables x must take values that satisfy the
invariant conditions invq(x).

Parameter Identification. The parameter identification problem we tackle is ba-
sically a k-step reachability question: Is there a parameter combination for which
the model reaches the goal region in k steps? If none exists, then the model is
unfeasible. Otherwise, a witness (i.e., a value for each parameter) is returned.
Note that because we ask for δ-decisions, the returned witness might correspond
to a spurious behavior of the system. The occurrence of such behaviors can be
controlled via the precision δ, but in general cannot be eliminated. We have
developed the dReach tool (http://dreal.cs.cmu.edu/dreach.html) that au-
tomatically builds reachability formulas from a hybrid model and a goal descrip-
tion. Such formulas are then verified by our δ-complete solver dReal [31].

3 Case Study

To exemplify different aspects of our parameter synthesis framework, we carried
out a case study on models of cardiac cell electrical dynamics. All experiments
reported below were done using a machine with an Intel Core i5 3.4GHz processor
and 8GB RAM. The precision δ was set to 10−4. The model files are available
at http://www.cs.cmu.edu/~liubing/cmsb14/.

3.1 Hybrid Models of Cardiac Cells

The heart rhythm is enabled by the electrical activity of cardiac muscle cells,
which make up the atria and ventricles. The electrical dynamics of cardiac cells
is governed by the organized opening and closing of ion channel gates on the cell
membrane. Improper functioning of the cardiac cell ionic channels can cause the
cells to lose excitability, which disorders electric wave propagation and leads to
cardiac abnormalities such as ventricular tachycardia or fibrillation. In order to
understand the mechanisms of cardiac disorders, hybrid automata models have
been recently developed, including the Fenton-Karma (FK) model [15] and the
Bueno-Cherry-Fenton (BCF) model [16].

BCF Model. In this model, the change of cells transmembrane potential u, in
response to an external stimulus ε from neighboring cells, is regulated by a fast
ion channel gate v and two slow gates w and s. Figure 1(a) shows the four modes
associated with the BCF model. In Mode 1, gates v and w are open and gate s
is closed. The transmembrane potassium current causes the decay of u. The cell
is resting and waiting for stimulation. We assume an external stimulus ε equal
to 1 that lasts for 1 millisecond. The stimulation causes u to increase, which
may trigger jump1→2 : u ≥ θo. When this jump takes place, the system switches
to Mode 2 and v starts closing, and the decay rate of u changes. The system
will jump to Mode 3 if u ≥ θw. In Mode 3, w is also closing; u is governed by
the potassium current and the calcium current. When u ≥ θv, Mode 4 can be
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Fig. 1. Hybrid models of cardiac cells. (a) BCF model. (b) FK model.

reached, which signals a successful action potential (AP) initiation. In Mode 4,
u reaches its peak due to the fast opening of the sodium channel. The cardiac
muscle contracts and u starts decreasing.

FK Model. As shown in Figure 1(b), this model comprises the same four modes
and equations of the BCF model, except that the current change induced by
gate s is reduced to an explicit term which is integrated in the right-hand side
of du/dt. Similarly to the BCF model, an AP can be successfully initiated when
Mode 4 is reached.

We specified both the BCF and the FK models using dReach’s modeling
language. Starting from the state (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1])
in Mode 1 (note that the value of s does not matter to FK, which does not
contains s), we checked whether Mode 4 is reachable using the parameter values
presented in [16]. This was true (i.e., dReach returned δ-sat) for both models
(Table 1, Run#1 and Run#2). The simulation of a few witness trajectories are
shown in Figure 2 (the stimulus ε was reset every 500 milliseconds).

3.2 Model Falsification

Both the BCF and the FK models were able to reproduce essential characteris-
tics (e.g., steady-state action potential duration) observed in human ventricular
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Fig. 2. The simulated witness trajectories of the BCF and the FK models

cells [15, 16]. However, ventricular cells comprise three cell types, which pos-
sess different dynamical characteristics. For instance, Figure 3 shows that time
courses of APs for epicardial and endocardial human ventricular cells have dif-
ferent morphologies [32]. The important spike-and-dome AP morphology can
only be observed in epicardial cells but not endocardial cells. Hence, in a model-
based study, one needs to identify cell-type-specific parameters to take account
into cellular heterogeneity. The feasibility of this task will depend on the model
of choice, as for certain models it would be impossible to reproduce a dynamical
behavior no matter which parameter values are used. Here we illustrate that
such models can be ruled out efficiently using our δ-decision based parameter
synthesis framework.

Robustness. We first considered the robustness property of the models. To ensure
proper functioning of cardiac cells in noisy environments, an important property
of the system is to filter out insignificant stimulation. Thus, we expected to
see that AP could not be initiated for small ε. Starting from the state (u = 0,
v = 1, w = 1, s = 0, ε ∈ [0.0, 0.25]) in Mode 1, we checked the reachability of
Mode 4. The unsat answer was returned by dReach for both the BCF and FK
model (Table 1, Run#3 and Run#4), showing that the models are robust to
stimulation amplitude.

AP morphology. Next we tested whether the models could reproduce the spike-
and-dome AP morphology of epicardial cells. We introduced three auxiliary
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Epicardial AP Endocardial AP 

Fig. 3. Different AP morphologies observed in epicardial and endocardial cells [32]

modes (Mode 5, 6 and 7). If time ≥ 1, the system will jump from Mode 4
to Mode 5, in which ε will be reset to 0. The system will jump from Mode 5
to Mode 6 if time ≥ 10, and will jump from Mode 6 to Mode 7 if time ≥ 30.
In Modes 6 and 7, we enforced invariants 1.0 ≤ u ≤ 1.15 and 1.18 ≤ u ≤ 2.0,
respectively, to depict the spike-and-dome morphology observed experimentally
[32]. We then checked reachability of Mode 7, starting from Mode 1 in state
(u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1], τsi ∈ [1, 2], us ∈ [0.5, 2]), where
τsi and us are two model parameters that govern the dynamics of u and s in
Mode 3 and 4 (see Figure 1). The δ-sat answer was returned for BCF (Table 1,
Run#5), while unsat was returned for FK (Table 1, Run#6), indicating that the
FK model cannot reproduce spike-and-dome shapes using reasonable parameter
values. Hence, FK is not suitable to study the dynamics of epicardial cells.

We remark that any unsat answer is guaranteed to be correct. This effectively
means that we proved that the FK model cannot reach Mode 7 for any starting
state in the rectangle (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1], τsi ∈ [1, 2],
us ∈ [0.5, 2]). Sampling-based approaches cannot have the same level of certainty,
while other approaches cannot handle the complexity of the flows in the model.

3.3 Parameter Identification for Cardiac Disorders

When the system cannot reach Mode 4, the cardiac cell loses excitability, which
might lead to tachycardia or fibrillation. Starting with Mode 1, our task was
to identify parameter ranges for which the system will never go into Mode 4.
In what follows, we focused our study on the BCF model. Grosu et al. [33]
have tackled this parameter identification problem by linearizing the BCF model
into a piecewise-multiaffine system (referred as MHA). With this simplification,
parameter ranges could be identified using the Rovergene tool [23]. However,
the BCF and MHA models have different sets of parameters. Here we identify
disease-related ranges of the original BCF parameters. It can be derived from
the model equations that τo1 and τo2 govern the dynamics of u in Mode 1 and
Mode 2 respectively, and hence determine whether jump1→2 and jump2→3 can
be triggered. For τo1, we performed a binary search in value domain (0, 0.01]
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to obtain a threshold value θo1 such that Mode 4 is unreachable if τo1 < θo1
while Mode 4 is reachable if τo1 ≥ θto1. The search procedure is illustrated in
Algorithm 1. Specifically, we set candidate θio1 to be the midpoint of the search
domain. We then checked the reachability of Mode 4 with the initial state (u = 0,
v = 1, w = 1, s = 0, θo1 = θio1). If δ-sat was returned (e.g., Table 1, Run#7), we
would recursively check the left-hand half of the search domain; otherwise (e.g.,
Table 1, Run#8), we would check the other half.

Algorithm 1. Identify parameter threshold value using binary search

1 BinarySearch(M , vmin, vmax, δ)
input : A dReach model M ; lower and upper bounds of parameter v: vmin,

vmax; precision δ
output: A threshold value θv

2 initialization: θv ← (vmin + vmax)/2;
3 if |vmin − vmax| ≤ δ then
4 return θv ;
5 else
6 Res ← dReach(M , θv, δ) ;
7 if Res = δ-sat then
8 return BinarySearch(M , vmin, θv, δ)
9 else

10 return BinarySearch(M , θv, vmax, δ)
11 end

12 end

In this manner, we identified θo1 to be 0.006, which suggest that when τo1 ∈
(0, 0.006), the system will always stay in Mode 1 (Table 1, Run#9). Similarly,
we also obtained a threshold value of 0.13 for τo2, such that Mode 3 cannot
be reached when τo2 ∈ (0, 0.13) (Table 1, Run#10). Furthermore, whether the
system can jump from Mode 3 to Mode 4 depends on the interplay between τso1
and τso2. For each value τ iso2 of τso2 sampled from domain [0, 100], we performed
the binary search in [0, 5] to find the threshold value θso1 such that Mode 4
is unreachable when τso1 ∈ [0, θso1] and τso2 = τ iso2. By linear regression of
the obtained values of θso1, we identified one more condition that Mode 4 is
unreachable: 6.2 · τso1 + τso2 ≥ 9.9 (e.g., τso1 ∈ [10, 40] ∧ τso1 ∈ [0.5, 2], see
Table 1, Run#11). Taken together, we identified the following disease-related
parameter ranges:

τo1 ∈ (0, 0.006) ∨ τo2 ∈ (0, 0.13) ∨ 6.2 · τso1 + τso2 ≥ 9.9

Figure 4 visualizes these results by showing the simulated trajectories using
corresponding parameter values.
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Fig. 4. Simulation results using disease related parameter values. (a) Normal condition
(original parameters) (b) τo1 = 0.0055 (c) τo2 = 0.125 (d) τso1 = 1.2, τso2 = 1.0.

Table 1. Experimental results. Var = number of variables in the unrolled formula,
Result = bounded model checking result, Time = CPU time (s), δ = 10−4.

Run Model Initial State Var Result Time

1 BCF (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1]) 53 δ-sat 303
2 FK (u = 0, v = 1, w = 1, ε ∈ [0.9, 1.1]) 53 δ-sat 216
3 BCF (u = 0, v = 1, w = 1, s = 0, ε ∈ [0, 0.25]) 53 unsat 2.09
4 FK (u = 0, v = 1, w = 1, ε ∈ [0.0, 0.25]) 53 unsat 0.78
5 BCF (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1]) 89 δ-sat 7,904
6 FK (u = 0, v = 1, w = 1, ε∈[0.9, 1.1], τsi∈[1, 2], us∈[0.5, 2]) 119 unsat 0.06
7 BCF (u = 0, v = 1, w = 1, s = 0, τo1 = 30.02) 53 δ-sat 0.89
8 BCF (u = 0, v = 1, w = 1, s = 0, τo1 = 0.0055) 53 unsat 1.33
9 BCF (u = 0, v = 1, w = 1, s = 0, τo1 ∈ (0.0, 0.006)) 62 unsat 0.76
10 BCF (u = 0, v = 1, w = 1, s = 0, τo2 ∈ (0.0, 0.13)) 62 unsat 0.32
11 BCF (u = 0, v = 1, w = 1, s = 0, τso1∈[10, 40], τso1∈[0.5, 2]) 71 unsat 0.11

4 Conclusion

We have presented a framework using δ-complete decision procedures for the
parameter identification of hybrid biological systems. We have used δ-satisfiable
formulas to describe parameterized hybrid automata and to encode parame-
ter synthesis problems. We have employed δ-decision procedures to perform
bounded model checking, and developed an algorithm to obtain the resulting
parameters. Our verified numerical integration and constraint programming al-
gorithms effectively compute an over-approximation of the system dynamics. An
unsat answer can always be trusted, while a δ-sat answer might be due to the
over-approximation (see Section 2 for more details). We chose this behavior as
it better fits with the safety requirements expected by formal verification. We
have demonstrated the applicability of our method on a highly nonlinear hybrid
model of a cardiac cell that are difficult to analyze with other verification tools.
We have successfully ruled out a model candidate which did not fit experimental
observations, and we have identified critical parameter ranges that can induce
cardiac disorders.
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It is worth noting that our method can be applied to ODE based models
with discrete events, which are special forms of hybrid automata. Such models
are often specified using the Systems Biology Markeup Language (SBML) and
archived in the BioModels database [34]. Currently, we are currently developing
an SBML-to-dReal translator to facilitate the δ-decision based analysis of SBML
models. Further, our method also has the potential to be applied to other model
formalisms such as hybrid functional Petri nets [35] and the formalisms realized
in Ptolemy [36]. We plan to explore this in future work. Another interesting
direction is applying our method for parameter estimation from experimental
data. By properly encoding the noisy wet-lab experimental data using logic for-
mulas, bounded model checking can be utilized to find the unknown parameter
values. In this respect, the specification logic used in [25] promises to offer helpful
pointers.
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24. Donzé, A., Clermont, G., Langmead, C.J.: Parameter synthesis in nonlinear dy-
namical systems: Application to systems biology. J. Comput. Biol. 17(3), 325–336
(2010)

25. Palaniappan, S.K., Gyori, B.M., Liu, B., Hsu, D., Thiagarajan, P.S.: Statistical
model checking based calibration and analysis of bio-pathway models. In: Gupta,
A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 120–134. Springer,
Heidelberg (2013)

26. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning bio-
chemical networks from temporal logic properties. In: Priami, C., Plotkin,
G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI),
vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

27. Donaldson, R., Gilbert, D.: A model checking approach to the parameter esti-
mation of biochemical pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)

28. Koutroumpas, K., Cinquemani, E., Kouretas, P., Lygeros, J.: Parameter iden-
tification for stochastic hybrid systems using randomized optimization: A case
study on subtilin production by Bacillus subtilis. Nonlinear Anal.-Hybrid Syst. 2,
786–802 (2008)



112 B. Liu et al.

29. Cinquemani, E., Porreca, R., Ferrari-Trecate, G., Lygeros, J.: Subtilin production
by Bacillus subtilis: Stochastic hybrid models and parameter identification. IEEE
Trans. Automat. Contr. 53, 38–50 (2008)

30. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: FMCAD, pp.
105–112 (2013)

31. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214.
Springer, Heidelberg (2013)

32. Nabauer, M., Beuckelmann, D.J., Uberfuhr, P., Steinbeck, G.: Regional differ-
ences in current density and rate-dependent properties of the transient outward
current in subepicardial and subendocardial myocytes of human left ventricle.
Circulation 93, 169–177 (1996)

33. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bar-
tocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidel-
berg (2011)

34. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L.,
He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Novere, N.L., Laibe, C.:
BioModels Database: An enhanced, curated and annotated resource for published
quantitative kinetic models. BMC Sys. Biol. 4, 92 (2010)

35. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopath-
ways representation and simulation on hybrid functional petri net. In Silico
Biol. 3(3), 389–404 (2003)

36. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II
(2014), Ptolemy.org

37. Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)

Appendix: LRF -Formulas and δ-Decidability

We will use a logical language over the real numbers that allows arbitrary com-
putable real functions [37]. We write LRF to represent this language. Intuitively, a
real function is computable if it can be numerically simulated up to an arbitrary
precision. For the purpose of this paper, it suffices to know that almost all the
functions that are needed in describing hybrid systems are Type 2 computable,
such as polynomials, exponentiation, logarithm, trigonometric functions, and
solution functions of Lipschitz-continuous ordinary differential equations.

More formally, LRF = 〈F , >〉 represents the first-order signature over the reals
with the set F of computable real functions, which contains all the functions
mentioned above. Note that constants are included as 0-ary functions. LRF -
formulas are evaluated in the standard way over the structure RF = 〈R,FR, >R〉.
It is not hard to see that we can put any LRF -formula in a normal form, such
that its atomic formulas are of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
with t(x1, ..., xn) composed of functions in F . To avoid extra preprocessing of
formulas, we can explicitly define LF -formulas as follows.

Ptolemy.org
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Definition 6 (LRF -Formulas). Let F be a collection of computable real func-
tions. We define:

t := x | f(t(x)), where f ∈ F (constants are 0-ary functions);

ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces
atomic formulas t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches
∧ and ∨, and switches ∀ and ∃.
Definition 7 (Bounded LRF -Sentences). We define the bounded quantifiers
∃[u,v] and ∀[u,v] as ∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ) and ∀[u,v]x.ϕ =df

∀x.((u ≤ x ∧ x ≤ v) → ϕ) where u and v denote LRF terms, whose variables
only contain free variables in ϕ excluding x. A bounded LRF -sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn),

where Q
[ui,vi]
i are bounded quantifiers, and ψ(x1, ..., xn) is quantifier-free.

Definition 8 (δ-Variants). Let δ ∈ Q
+ ∪ {0}, and ϕ an LRF -formula

ϕ : QI1
1 x1 · · ·QIn

n xn ψ[ti(x,y) > 0; tj(x,y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k+ 1, ...,m}. The δ-weakening ϕδ of ϕ is defined as
the result of replacing each atom ti > 0 by ti > −δ and tj ≥ 0 by tj ≥ −δ:

ϕδ : QI1
1 x1 · · ·QIn

n xn ψ[ti(x,y) > −δ; tj(x,y) ≥ −δ].

It is clear that ϕ → ϕδ (see [13]).

In [12], we have proved that the following δ-decision problem is decidable, which
is the basis of our framework.

Theorem 1 (δ-Decidability [12]). Let δ ∈ Q
+ be arbitrary. There is an al-

gorithm which, given any bounded LRF -sentence ϕ, correctly returns one of the
following two answers:

– δ-True: ϕδ is true.
– False: ϕ is false.

When the two cases overlap, either answer is correct.

The following theorem states the (relative) complexity of the δ-decision problem.
A bounded Σn sentence is a bounded LRF -sentence with n alternating quantifier
blocks starting with ∃.
Theorem 2 (Complexity [13]). Let S be a class of LRF -sentences, such that
for any ϕ in S, the terms in ϕ are in Type 2 complexity class C. Then, for any
δ ∈ Q

+, the δ-decision problem for bounded Σn-sentences in S is in (ΣP
n )

C.

Basically, the theorem says that increasing the number of quantifier alternations
will in general increase the complexity of the problem, unless P = NP (recall
that ΣP

0 = P and ΣP
1 = NP). This result can specialized for specific families of

functions. For example, with polynomially-computable functions, the δ-decision
problem for bounded Σn-sentences is (Σ

P
n )-complete. For more details and results

we again point the interested reader to [13].
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Abstract. Calibrating dynamical models on experimental data time se-
ries is a central task in computational systems biology. When numerical
values for model parameters can be found to fit the data, the model can
be used to make predictions, whereas the absence of any good fit may
suggest to revisit the structure of the model and gain new insights in
the biology of the system. Temporal logic provides a formal framework
to deal with imprecise data and specify a wide variety of dynamical
behaviors. It can be used to extract information from numerical traces
coming from either experimental data or model simulations, and to spec-
ify the expected behaviors for model calibration. The computation time
of the different methods depends on the number of points in the trace so
the question of trace simplification is important to improve their perfor-
mance. In this paper we study this problem and provide a series of trace
simplifications which are correct to perform for some common tempo-
ral logic formulae. We give some general soundness theorems, and apply
this approach to period and phase constraints on the circadian clock
and the cell cycle. In this application, temporal logic patterns are used
to compute the relevant characteristics of the experimental traces, and
to measure the adequacy of the model to its specification on simula-
tion traces. Speed-ups by several orders of magnitude are obtained by
trace simplification even when produced by smart numerical integration
methods.

1 Introduction

Calibrating dynamical models on experimental data time series is a central task
in computational systems biology. When numerical values for model parameters
can be found to fit the data, the model can be used to make predictions, whereas
the absence of any good fit may suggest to revisit the structure of the model
and gain new insights in the biology of the system, see for instance [23,15].

Temporal logic provides a formal framework to deal with imprecise data and
specify a wide variety of dynamical behaviors. In the early days of systems
biology, propositional temporal logic was proposed by computer scientists to
formalize the Boolean properties of the behavior of biochemical reaction sys-
tems [11,5] or gene regulatory networks [4,3]. Generalizing these techniques to
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quantitative models can be done in two ways: either by discretizing the differ-
ent regimes of the dynamics in piece-wise linear or affine models [8,2], or by
relying on numerical simulations and taking a first-order version of temporal
logic with constraints on concentrations, as query language for the numerical
traces [1,13,14]. Such language can be used not only to extract information from
numerical traces coming from either experimental data or model simulations,
but also to specify the expected behaviors as constraints for model calibration
and robustness measure [20,21,9].

The general idea of model-checking a single finite trace has been well known
for years, notably in the framework of Runtime Verification [17]. It usually re-
lies on the classical bottom-up algorithm, which is bilinear [22]. This extends
even to quantitative model-checking like the continuous interpretation of Signal
Temporal Logic [10] since the combination of two booleans or two reals by min/-
max is cheap. However, when using the full power of First-Order Linear Time
Logic (FO-LTL) to compute validity domains, the dependency of the complex-
ity on the size of the trace is no longer linear but exponential in the number of
variables [13], reflecting the computational cost of combining complex domains.
The question of trace simplification [14] is therefore important to improve the
performance of FO-LTL constraint solving, and with it of the corresponding
calibration methods.

Fig. 1. Traces of some elements of the coupled cell cycle (MPF and Wee1 in grey,
respectively solid and dashed lines) and circadian clock (PerCry, Bmal1 and RevErbα
in black, respectively solid, dashed and dotted lines) models with different parameter
sets

In this paper we provide a series of trace simplifications which are correct to
perform for some common temporal logic formulae. We give some general sound-
ness theorems, and apply this approach to period and phase constraints on the
circadian clock and the cell cycle. The traces shown in Fig. 1, and detailed in
Sect. 6, contain each several thousands of time-points. Computing the domains
of the formula describing the period between each pair of successive peaks by
polyhedral methods [13] becomes quite computationally expensive. In this appli-
cation, temporal logic patterns are used to compute the relevant characteristics
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of the experimental traces, and to measure the adequacy of the model to its
specification on simulation traces. Speed-ups by several orders of magnitude are
obtained by trace simplification, even when produced by smart numerical inte-
gration methods (e.g. Rosenbrock’s implicit method), making trace simplification
comparable with ad-hoc solvers.

2 Temporal Logic Patterns

The Linear Time Logic LTL is a temporal logic [6] which extends classical logic
with modal operators for qualifying when a formula is true in a series of timed
states. The temporal operators are X (”next”, for at the next time point), F
(”finally”, for at some time point in the future), G (”globally”, for at all time
points in the future), U (”until”, for a first formula must be true until a second
one becomes true), andW (” weak until”, a dual operator ofU). These operators
enjoy some simple duality properties, ¬Xφ = X¬φ, ¬Fφ = G¬φ, ¬Gφ = F¬φ,
¬(ψ U φ) = (¬φ W ¬ψ), ¬(ψ W φ) = (¬ψ U ¬φ), and we have Fφ = true U φ,
Gφ = φ W false.

In this paperwe consider a first-order version ofLTL, denotedbyFO-LTL(Rlin),
with variables and linear constraints overR, and quantifiers. The grammar of FO-
LTL(Rlin) formulae is defined as follows: φ ::= c | ¬φ | φ ⇒ ψ | φ ∧ φ | φ ∨ φ |
∃x φ | ∀x φ | Xφ | Fφ | Gφ | φUφ | φWφ
where c denotes linear constraints between molecular concentrations (written
with upper case letters) their first derivative (written dA/dt), free variables (writ-
ten with lower case letters), real numbers, and the state time variable, denoted
by Time; e.g., F(A < v) is an FO-LTL(Rlin) formula. To denote the value of
state variable A in the state si we shall use a subscript notation such as Asi .

Temporal logic formulae are classically interpreted in a Kripke structure, i.e. a
transition relation over a set of states such that each state has at least one
successor [6]. In this paper, we consider finite traces obtained either by biological
experiments, or by numerical integration. To give meaning to LTL formulae, a
finite trace (s0, ..., sn) is thus complemented in an infinite trace by adding a
loop on the last state, (s0, ..., sn, sn, ...). The practical assumption behind this
classical convention for interpreting temporal logic on finite traces [22] is that the
time horizon considered is sufficiently long for properly evaluating the formulas of
interest. We also replace the computed value of dA

dt by 0 in the last state, in order
to maintain the coherence between the concentrations and their derivatives. In
this interpretation over finite traces, the formula Gφ is thus true in the last state
if φ is true in the last state. The semantics of formulae containing free variables
is given by the validity domains of the variables.

Definition 1. The validity domain D(s0,...,sn),φ of the free variables of an FO-
LTL(Rlin) formula φ on a finite trace T = (s0, ..., sn), is a vector of least do-
mains for the variables, noted D(s0,...,sn),φ, satisfying the following equations:

– DT,φ = DT
s0,φ

,

– DT
si,c(x)

= {v ∈ R
k | si |= c[v/x]} for a constraint c(x),
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– DT
si,φ∧ψ = DT

si,φ
∩ DT

si,ψ
, and DT

si,φ∨ψ = DT
si,φ

∪ DT
si,ψ

,

– DT
si,¬φ = � DT

si,φ
,

– DT
si,∃xφ = ΠxDT

si,φ
, and DT

si,∀xφ = DT
si,¬∃x¬φ,

– DT
si,Xφ = DT

si+1,φ
if i < n, and DT

sn,Xφ = DT
sn,φ,

– DT
si,Fφ =

⋃n
j=i DT

sj ,φ
, and DT

si,Gφ =
⋂n

j=i DT
sj ,φ

,

– DT
si,φUψ =

⋃n
j=i(DT

sj ,ψ
∩⋂j−1

k=i DT
sk,φ

).

where � is the set complement operator over domains, and Πx is the domain
projection operator out of x, restoring domain R for x, and the other operators
are defined by duality.

3 Trace Simplifications

The usual computation of the validity domains involves computing domains for
each subformula on each point of the trace si. When dealing with temporal data
coming from numerical integration, especially of stiff systems, n can be very
high, which induces a high computational cost, O(nk), where k is the number
of variables. As mentionned in [14], and justified in the following sections of
this paper, a practical solution to this issue involves simplifying the numerical
trace without changing the generic domain solving algorithm. In this section
we therefore define more precisely the formal framework for defining such trace
simplifications.

Definition 2 (Trace simplification). Let T be a finite trace (s0, . . . , sn) and
φ an FO-LTL(Rlin) formula with constraints over the states of T .

T ′ is a simplification of T for φ at i, written T ′ 
i
φ T if:

– T ′ = (sj0 , . . . , sjk) for J = {j0, . . . , jk} a subset of the indices {0, . . . , n}
such that j0 < ... < jk, i.e., T

′ is a subtrace of T ;
– DT

si,φ
= DT ′

sji ,φ
, where ji is the smallest index in J such that ji ≥ i, i.e. the

validity domains on T at i and T ′ at ji are equal.

T ′ is a simplification of T for φ, written T ′ 
φ T when it is a simplification of
T at s0, i.e., DT,φ = DT ′,φ.

T ′ is a strict simplification of T for φ, written T ′ ≺ T if J � {0, . . . , n}.
T ′ is an optimal simplification of T for φ if its cardinal is minimal in the set

of the simplifications of T for φ.

Property-driven reduction of the system under analysis is a technique that has
been addressed many times in the history of computer science. In the framework
of abstract interpretation [7], not only the states but also the transitions can be
abstracted in a new system for simplifying the analysis of some given properties.
The definition above can be seen as a particular instance of this framework
where a subset of states on the trace is preserved without abstraction, and the
transitions are abstracted accordingly to this subset. This abstraction reflects
our motivation of computing exact validity domains for formula variables (no
state domain abstraction) more efficiently (transition abstraction).
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4 Examples

Most of the equations for DT
si,φ

in Definition 1 are local, in the sense that they
only need information about the state at si. One obvious case of simplification
is when the unions or intersections involved in the domains for F, G and U can
be computed on a strict subset of the points, sometimes even a singleton. Since
it will come up often in the following examples, let us define a simple subtrace
containing all the local extrema and the initial point of the trace.

Definition 3 (Extrema Subtrace). Let T = (s0, . . . , sn) be a trace, T e
x is the

subtrace of T defined as follows:

T e
x = {si ∈ T | (dx/dt)i−1 > 0 ∧ (dx/dt)i ≤ 0}

∪ {si ∈ T | (dx/dt)i−1 < 0 ∧ (dx/dt)i ≥ 0} ∪ {s0}
We shall write T e =

⋃
x T

e
x

In the following examples, we will use the formulae given in [14] plus a few
other ones, and for each, we will compute the corresponding domain and examine
possible trace simplifications.

Example 1 (Minimal Amplitude).

Formula: φ = ∃v | F(A < v) ∧ F(A > v + a)

Validity Domain. Let sminA and smaxA be some points of the trace where A
is respectively minimum and maximum.

DT,φ = Πa(DT
s0,F(A<v) ∩ DT

s0,F(A>v+a))

= Πa((

n⋃

i=0

DT
si,A<v) ∩ (

n⋃

i=0

DT
sj ,A>v+a)) (*)

= Πa(DT
sminA,A<v ∩ DT

smaxA,A>v+a) (*)

Trace Simplification. From the computation of the domain, equations marked
with a (∗), one can see that both unions are actually equal to a single domain,
only dependent on the state but not on T . Therefore any choice of sminA, smaxA

leads to an optimal trace simplification TJ where J = {minA,maxA}.
Note that because of the semantic link between A and dA

dt , T
e
A contains sminA

and smaxA and therefore will result in the same unions in the computation of
the domain, hence T e

A is a simplification of T for φ.

Example 2 (Threshold).

Formula: φ = F(Time > 20 ∧ A < v)
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Validity Domain. Let T be a trace (s0, . . . , sn) and T>20 its subtrace on the
points J = {0 ≤ i ≤ n | Timesi > 20}. As before, we chose some sminA>20 , a
point where A is minimum on T>20.

DT,φ = DT
s0,F(Time>20∧A<v) =

n⋃

i=0

DT
si,Time>20∧A<v

=

n⋃

i=0

(DT
si,Time>20 ∩ DT

si,A<v) (*)

=
⋃

i∈J

DT
si,A<v = DT

sminA>20 ,A<v (*)

Trace Simplification. As shown by the marked equations, the single point
{sminA>20} is enough to compute the big union of the domain, it defines an
optimal trace simplification of T for φ.

Notice that T e
A is not a simplification unless it does contain a local minimum

such that Time > 20: if that is not the case, e.g. always increasing trace, sminA>20

will be the first state after Time = 20, which is not a local extremum.

Example 3 (Crossing).

Formula: φ = F(A > B ∧X(A ≤ B ∧ Time = t))

Validity Domain DT,φ =
n⋃

i=0

(DT
si,Asi

>Bsi
∩ (DT

si+1,Asi
≤Bsi

∩ DT
si+1,Time=t))

=
⋃

i∈{0,...,n}]|Asi
>Bsi

∧Asi+1
≤Bsi+1

{Timesi+1}

The computation above simply discards from the union the trace points where
the intersection is empty because one of the two first members is empty.

Trace Simplification. Once again, for any trace T = (s0, . . . , sn), the validity
domain is a big union that can be restricted to the points of J = {i, i + 1 ∈
{0, . . . , n}] | Asi > Bsi ∧ Asi+1 ≤ Bsi+1}, which defines a simplification TJ of T
for φ. As in Example 2, T e

A is not a simplification of T for φ since it obviously
misses the points at which Time has to be computed.

Example 4 (Peak).

Formula: φ = F(dAdt > 0 ∧X(dAdt ≤ 0 ∧ Time = t))
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Validity Domain. The reasoning is the same as for Example 3.

DT,φ = DT
s0,φ =

n⋃

i=0

(DT
si,

dA
dt >0

∩ (DT
si+1,

dA
dt ≤0

∩ DT
si+1,Time=t))

=
⋃

i∈{0,...,n}]|( dA
dt )si>0∧(dA

dt )si+1
≤0

DT
si+1,Time=t

=
⋃

i∈{0,...,n}]|( dA
dt )si>0∧(dA

dt )si+1
≤0

{Timesi+1}

Trace Simplification. As above, for any trace T = (s0, . . . , sn), J = {i, i+1 ∈
{0, . . . , n}] | dA

dt si
> 0 ∧ dA

dt si+1
≤ 0} defines a simplification TJ of T for φ.

Note that T e
A is also a simplification of T for φ since it contains all i + 1 at

which Asi is used and a predecessor with the right sign of the derivative, either
s0 or a nadir preceding the peak. Note also that |T e

A| ≤ |TJ |+ 2 since there can
be one nadir more than there are peaks, plus the origin s0.

Example 5 (Period).

Formula: φ =∃(t1, t2) | p = t2 − t1 ∧ t1 < t2

∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t1))

∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t2))

∧ ¬∃t3 | t1 < t3 < t2 ∧F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t3))

φ encodes the fact that t1 and t2 are peaks, with no peak in between.

Trace Simplification One can notice that the domain is formed of the same
kind of union as in Example 4, repeated three times, and under top-level projec-
tions/intersections/complementations. Now, remark that a simplification for the
formula of Example 4 will, by definition, allow to compute correctly the domains
for all three F formulae, and therefore is a simplification for the compound φ.
This is a special case of Theorem 1 detailed in the next section.

It follows that TJ of Example 4 and T e
A are simplifications of T for φ.

Equivalent Formula:

φ = ∃(t1, t2) | p = t2 − t1 ∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ T ime = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ T ime = t2)))))
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Validity Domain. Note first that the validity domain of the subformula ψ =
dA
dt > 0 ∧ ((dAdt > 0)U(dAdt ≤ 0 ∧ T ime = t2)) is computed at each time point si
like this:

DT
si,ψ = DT

si,
dA
dt >0

∩
n⋃

j=i

(DT
sj ,

dA
dt ≤0∧Time=t2

∩ (

j−1⋂

k=i

(DT
sk,

dA
dt >0

))

Since DT
si,

dA
dt >0

is either empty or equal to the whole space when dA
dt si

is re-

spectively negative or strictly positive, it holds that DT
si,ψ

is empty if dA
dt si

≤ 0,
otherwise:

DT
si,ψ =

n⋃

j=i

(DT
sj ,

dA
dt ≤0∧Time=t2

∩ (

j−1⋂

k=i

(DT
sk,

dA
dt >0

))

=
n⋃

j=i

(DT
sj ,

dA
dt ≤0

∩ DT
sj ,T ime=t2 ∩ (

j−1⋂

k=i

(DT
sk,

dA
dt >0

))

=
⋃

j∈{i,...,n}|(dA
dt )sj≤0∧∀k∈{i,...,j−1},( dA

dt )sk>0

DT
sj ,Time=t2

=
⋃

j∈{i,...,n}|(dA
dt )sj≤0∧∀k∈{i,...,j−1},( dA

dt )sk>0

{Timesj}

This union is in fact restricted to the first point sj after siwhere
dA
dt is no longer

strictly positive.
With the same reasoning, the validity domain for the whole formula becomes:

DT,φ =

n⋃

(i,j)∈P

{Timesj+1 − Timest+1}

where P is the set of pairs of successive peaks:

P = {(i, j) |(dA
dt

)si > 0 ∧ (
dA

dt
)si+1 ≤ 0 ∧ (

dA

dt
)sj > 0 ∧ (

dA

dt
)sj+1 ≤ 0

∧ ¬∃i < k < j | (dA
dt

)sk > 0 ∧ (
dA

dt
)sk+1

≤ 0}

T e
A is a simplification of T for φ since it contains all the peaks of the trace.

5 General Simplification Results

Example 5 shows that if one can simplify subformulae, one might obtain a sim-
plification for the whole formula. Indeed, with some hypotheses, the patterns
described in the previous section can actually be composed.

The first theorem simply notices that if the highest-level temporal subformulae
have a simplification, it also holds for the compound formula.
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Theorem 1. Let T be a trace containing a state si, φ and ψ two formulae and
T ′ such that T ′ 
i

φ T and T ′ 
i
ψ T . Then T ′ 
i

μ T for μ equal to

φ ∧ ψ or φ ∨ ψ or ¬φ or ∃xφ or ∀xφ
Proof. We have DT

si,φ
= DT ′

sji ,φ
and the same for ψ, therefore DT

si,φ∧ψ = DT
si,φ

∩
DT

si,ψ
= DT ′

sji ,φ
∩DT ′

sji ,ψ
= DT ′

sji ,φ∧ψ and the same for the other operators. ��
Note that it is not true that if T ′ is a simplification for φ and T ′′ a simplifi-

cation for ψ, then the union of the points in T ′ and T ′′ defines a simplification
for φ∨ψ: indeed, adding points to a simplification can invalidate it, for instance
if the formula contains X. Now, remark that if a subtrace contains extreme
domains, it is a simplification for F and G:

Theorem 2. Let T = (s0, . . . , sn) be a trace, φ a formula and T ′ = TJ a sub-
strace of T such that:
∀j ∈ J, T ′ 
j

φ T and ∀0 ≤ i ≤ n, ∃j ∈ J, DT
si,φ

⊂ DT ′
sj ,φ

(resp. DT
si,φ

⊃ DT ′
sj ,φ

)

then: T ′ 
Fφ T (resp. T ′ 
Gφ T )

Proof. We have, ∀0 ≤ i ≤ n, DT
si,φ

⊂ DT ′
sj ,φ

it follows that
⋃n

i=0 DT
si,φ

⊂
⋃

j∈J DT ′
sj ,φ

. The other inclusion is immediate since J is a subset of the indices

{0, . . . , n} and we have simplification for φ at those indices. The result for G is
obtained similarly. ��

Consider now the case of formulae without free variables, their domain is
either empty or full, which can be taken advantage of:

Corollary 1. Let T = (s0, . . . , sn) be a trace, φ a formula, c a constraint without
free variables and Jc be the subset of indices defined by Jc = {0 ≤ i ≤ n | si |= c}
If ∀i ∈ Jc, TJc 
i

φ T then TJc 
F(c∧φ) T and TJc 
G(¬c∨φ) T

Proof. Let us prove the result for F, then Thm. 1 can give it for G. We will
simply apply the above theorem to c ∧ φ. The first hypothesis of Thm. 2 is
satisfied by TJc since TJc 
i

φ T ⇒ TJc 
i
c∧φ T . For the second hypothesis, it is

enough to notice that if i �∈ Jc then DT
si,c∧φ = DT

si,c ∩DT
si,φ

= ∅. ��
Note that in generalFφ∧ψ is not easy to simplify. On the contraryDT,F(φ∨ψ) =

DT,F(φ)∨F(ψ) which can benefit from Theorem 1.
In many cases it is worth noticing that T e

A satisfies the hypothesis of Thm. 2
for any formula F(dAdt > 0 ∧X(dAdt ≤ 0 ∧ c)).

Proposition 1. Let φ = F(dAdt > 0 ∧X(dAdt ≤ 0 ∧ c)) be a formula, T e
A 
φ T

Proof. We will apply Thm. 2. First note that for any extremum j in T e
A we

have T e
A 
j

φ T . Indeed, s0 is in T e
A but will not be used to compute Dc, on the

other hand it ensures that even the first extremum does have a predecessor of
the correct sign for the derivative. Now, notice that DT

si,φ
will be empty at each

point not a predecessor of a state of T e
A. At those points the domain on T is the

same as that at the preceding extremum (or s0 for the first) on T e
A. This enforces

the inclusion needed for the second hypothesis of Thm. 2. ��
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Taken together, these results prove all the simplifications of the previous ex-
amples except the second formula of Example 5, which is a deeply nested formula
with U that relies on the semantics of the Time variable.

6 Evaluation on Oscillation Constraints between the Cell
Cycle and Circadian Clock

Cellular rhythms represent an interesting field of research for systems biology,
where models should satisfy qualitative properties like oscillations, synchroniza-
tion among elements, and stability, as well as quantitative properties on the
lengths of the oscillations and phases. FO-LTL(Rlin) formulae are particularly
adequate to constraint biological oscillators models after these considerations.

We illustrate the use of FO-LTL(Rlin) constraints on a coupled model of the
cell cycle and the circadian clock, which are two such biological oscillators also
inter-regulated through clock-controlled cell cycle components. This gives rise to
complex behaviors as suggested in a detailed study by Nagoshi et al. [12].

We use a reference model of the mammalian circadian clock [16] and a model
of a generic cell cycle oscillator focusing on the G2/M transition [19]. A molecular
link between the two systems is introduced with the regulation of the cell cycle
kinase Wee1 by the clock gene bmal1 [18].

Figure 1 shows two examples of traces obtained with different sets of pa-
rameters values, simulated over a time horizon of 200 hours. They give different
dynamical behaviors with correct oscillations of the components on the first one,
and damped oscillations on the other. By applying specifications expressed with
the temporal logic formalism on these traces, we investigate the behavior of the
system, or evaluate how far each set of parameter values is from reproducing
desired properties in a calibrating process.

The chosen FO-LTL(Rlin) formulae express constraints on the periods of each
module, phases between the components, as well as stability constraints. Each
formula accept T e

M as a simplification of T , where M is the set of molecules
appearing in the formula. They correspond to patterns associated to dedicated
solvers defined in [14] and listed below with the corresponding properties. De-
tailed formulae are given in Appendix B with justifications for the simplifications.

– Constraints on the amplitude: MinAmpl(A,min). This constraints the
molecule A to an amplitude of at least min.

– Constraints on the period: DistanceSuccPeaks(A,d) specifies that there
should be two successive peaks of the molecule A distant by d. The results for
the evaluation on the first trace, computed either with the FO-LTL(Rlin)
formula and the generic solver or with the ad hoc pattern and dedicated
solver are the same and shown in Appendix A. This gives an example of
information extraction from a trace with a FO-LTL(Rlin) formula.

– Constraints on the phases: DistancePeaks(A,B,d). Here d take as values the
possible distances between a peak of A and the following peak of B.

– Stability constraints on the oscillations: the specification MaxDiffDistance-
Peaks(A,d) ensures that two successive peak-to-peak distances are not too
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different, with a maximum difference of d, so that the oscillations of the
molecule have a relative regularity over time. A second stability constraint,
MaxDiffDistancePeaks(A,d), constraints the differences between the peak
amplitudes, and is thus useful to filter out damped oscillations. The evalua-
tion of MaxDiffAmplPeaks(PerCry,d) on the trace gives [d > 8.48801e− 05]
as the validity domain for the first trace and [d > 1.90466] for the second
trace. Thus the evaluation of the constraint extracts the maximum difference
in amplitudes between two successive peaks, and this result can be used as
a penalty for the set of parameter values that result in damped oscillations.

We apply these constraints to the traces presented above, before and after
performing the generic trace simplification where the trace T is replaced by the
trace T e

M , that is T e
PerCry for all constrains in Table 1, except for Distance-

Peaks(MPF,PerCry) where the simplified trace is T e
MPF,PerCry.

The initial traces are obtained with two different integration methods:

– In Biocham the default simulation method is the Rosenbrock’s numerical
integration method. This implicit method with variable step-size avoids gen-
erating too many points and does an impressively good job in producing
relatively sparse traces. With this method the first trace counts 971 point,
18 of which are kept in the simplified trace T e

PerCry and 34 in T e
MPF,PerCry.

The second trace T counts 1047 points, T e
PerCry counts 35 points and

T e
MPF,PerCry counts 58 points. Since the initial traces have reasonable sizes

the computing times for the simplifications are short: between 8 and 16ms.
– However in some cases, the Rosenbrock method is less adequate than other

non-adaptive methods. For example, this is the case when the model in-
volves events, since the approximation done for numerical integration with
big steps, may not be valid for determining when an event becomes true.
Therefore we also consider the fourth order Runge-Kutta method with a
fixed step size. With this method, the trace optimisation is all the more
beneficial since the traces originally count more points: 20002 points here
for a time horizon of 200 hours. However the same trace simplifications take
longer: around 160ms for T e

PerCry and 250ms for T e
MPF,PerCry.

The execution times are compared in Table 1 where each constraint is identi-
fied by the equivalent pattern. We compare the evaluation of the constraints on a
trace with a high number of points (fixed Runge-Kutta method) or a reduced size
(adaptive Rosenbrock method), and either complete or simplified. Furthermore
the generic solver is compared to the dedicated solvers defined in [14].

Table 1 clearly shows that trace simplification provides a faster evaluation for
all constraints on all traces, with a speed-up up to 100 fold for the more complex
ones. The dedicated solvers benefit as well from this speed-up, however it has to
be noted that applying the dedicated solver on the full trace is faster than the
time needed for the trace simplification in this example. Although the simplifi-
cation can be done just once on a trace that can be then evaluated repeatedly
for different patterns, the number of evaluations would have to be unlikely high
for any real benefit. In contrast, the time gain obtained with the combined use
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Table 1. Computing time (in ms) for the validity domain of different formula patterns.
Comparison between the first and second parameter sets, with variable or fixed step-size
over 200h, before (Bef.) and after (Aft.) simplification.

First trace Second trace
variable fixed variable fixed

Formula Solver Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.

Reached(PerCry)
generic 12 0 260 4 12 0 204 0
dedicated 0 0 16 0 4 0 16 0

MinAmpl(PerCry)
generic 132 0 2728 0 132 4 2516 4
dedicated 0 0 16 0 4 0 16 0

LocalMax(PerCry)
generic 64 0 1308 4 72 4 1316 4
dedicated 0 0 36 8 4 0 44 4

DistancePeaks(PerCry)
generic 512 12 9584 12 708 80 12373 104
dedicated 4 4 40 8 32 28 80 48

DistanceSuccPeaks(PerCry)
generic 532 12 10980 12 1188 36 23101 156
dedicated 4 0 40 8 4 0 28 4

MaxDiffDistancePeaks(PerCry)
generic 1700 32 34818 32 3056 96 60776 108
dedicated 0 0 36 0 4 0 52 20

DistancePeaks(MPF,PerCry)
generic 456 16 9332 16 496 32 9365 32
dedicated 4 4 68 12 4 0 76 20

of the trace simplification and the generic solver is clear. This suggests that the
trace simplification is a good strategy when the desired constraint is not covered
by the patterns with dedicated solvers, provided that the FO-LTL(Rlin) formula
accepts a good trace simplification accordingly with the theorems presented in
Sect. 3.

7 Conclusion

We have shown that trace simplifications can result in speed-ups by several
orders of magnitude for the evaluation of temporal logic constraints. In particular
we have given some general conditions on the syntax of the formulae under
which it is correct to keep in the trace only the time points corresponding to
the local extrema of the molecules, or the crossing points between molecular
concentrations.

On an application concerning the modeling of the coupling between the circa-
dian clock and the cell cycle, we have shown that temporal logic patterns provide
an elegant way to extract information on the periods and phases from numerical
traces, and to use these formulae as constraints for parameter search. On simu-
lation traces, the speedup obtained in computation time was by several orders of
magnitude, even on relatively sparse simulation traces obtained by Rosenbrock’s
implicit method for numerical integration.

The trace simplifications described in this paper are implemented in Biocham
release 3.6.
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A Example of Computation with Both the Generic
Solver and a Dedicated One

domains(t2-t1=d & F(d([CRY_nucl-PER_nucl])/dt>0 & X(Time=t1 & d([CRY_nucl-PER_nucl
])/dt=<0 & (d([CRY_nucl-PER_nucl])/dt=<0) U (d([CRY_nucl-PER_nucl])/dt>0 & ((
d([CRY_nucl-PER_nucl])/dt>0) U (d([CRY_nucl-PER_nucl])/dt=<0 & Time=t2)))))).

Domain computed in 532 ms
d = 24.6095, t1 = 15.2848, t2 = 39.8944
| d = 24.7193, t1 = 39.8944, t2 = 64.6137
| d = 25.1225, t1 = 64.6137, t2 = 89.7362
| d = 24.7623, t1 = 89.7362, t2 = 114.499
| d = 24.7984, t1 = 114.499, t2 = 139.297
| d = 24.8047, t1 = 139.297, t2 = 164.102
| d = 24.7704, t1 = 164.102, t2 = 188.872

domains(distanceSuccPeaks([CRY_nucl-PER_nucl],[d])).
Domain computed in 4 ms
d = 24.6095
| d = 24.7193
| d = 25.1225
| d = 24.7623
| d = 24.7984
| d = 24.8047
| d = 24.7704

B Oscillation Constraints

Constraints on the Amplitude. As shown in Ex. 1, the following formula,
accepting T e

A as a simplification of T , ensures that a molecule A has an amplitude
of at least min: φ = ∃v | F(A < v) ∧ F(A > v +min).

It is equivalent to the pattern MinAmpl(A,min) described in [14] and associ-
ated to a specific solver which computes the amplitude of A directly from the
trace.
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Constraints on the Period. This formula extracts the distances between
successive peaks:

φ = ∃(t1, t2) | d = t2 − t1 ∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ T ime = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ T ime = t2))))))

This formula accepts T e
A as a simplification of T , as shown in Ex. 4 and with

Thm. 1. It is equivalent to the pattern DistanceSuccPeaks(A,d). The specific
solver associated to this pattern computes the list of peaks of A directly from
the trace and exhibits the possible distances between two successive peaks. Com-
puting the validity domain of this formula enables to extract each peak-to-peak
distance from the trace, giving an estimation of the period of the oscillations.

Constraints on the Phases

φ = ∃(t1, t2) | t2− t1 = d ∧ F(
dA

dt
≥ 0 ∧X(

dA

dt
< 0 ∧ T ime = t1))

∧ F(
dB

dt
≥ 0 ∧X(

dB

dt
< 0 ∧ T ime = t2))

corresponds to DistancePeaks([A,B],d). T e
A ∪ T e

B is a simplification of T for φ.

Stability Constraints. The following formula constraints two successive peak-
to-peak distances to be similar by setting a maximum for the difference between
the two distances.

φ = ∃(t1, t2, t3) |t2− t1 = d1 ∧ t3− t2 = d2 ∧ d2− d1 ≤ d ∧ d1− d2 ≤ d

∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ T ime = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ T ime = t2

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ T ime = t3))))))))

This formula accepts T e
A as a simplification of T and the equivalent pattern is

MaxDiffDistancePeaks(A,d). A similar formula, useful to filter out damped os-
cillations, constraints the differences between the peak amplitudes, and is equiv-
alent to the pattern MaxDiffAmplPeaks(A,d).
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Abstract. Attractors of network dynamics represent the long-term be-
haviours of the modelled system. Their characterization is therefore cru-
cial for understanding the response and differentiation capabilities of a
dynamical system. In the scope of qualitative models of interaction net-
works, the computation of attractors reachable from a given state of the
network faces combinatorial issues due to the state space explosion.

In this paper, we present a new algorithm that exploits the concur-
rency between transitions of parallel acting components in order to re-
duce the search space. The algorithm relies on Petri net unfoldings that
can be used to compute a compact representation of the dynamics. We
illustrate the applicability of the algorithm with Petri net models of cell
signalling and regulation networks, Boolean and multi-valued. The pro-
posed approach aims at being complementary to existing methods for
deriving the attractors of Boolean models, while being generic since it
applies to any safe Petri net.

Keywords: dynamical systems, attractors, concurrency, qualitative
models, biological networks.

1 Introduction

Living cells embed multiple regulation processes that lead to several emerging
phenotypes such as cell differentiation, division, or response to environmental
stress or signals. A large part of these processes are often represented as interac-
tion networks (e.g., signalling networks, gene regulation networks) that describe
the influences between numerous entities (genes, RNA, proteins). The global
dynamics of such networks can then be captured using qualitative modelling
frameworks, such as Boolean or discrete networks, that describe the possible
transitions between the qualitative states of the system.

In the landscape of dynamics of a network model, one can distinguish between
the transient and long-run dynamics, the latter being our focus in this article. In
qualitative models, the long-run dynamics are referred to as attractors, and are
formally defined as the Bottom Strongly Connected Components (BSCCs) of the
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transition graph whose nodes are the global states of the network, and directed
edges are the possible direct transitions between those states. One typically
distinguishes between two kind of attractors: the fixed points, that are the states
from which no further transition is possible; and the cyclic attractors, that are
a set of states that can be visited infinitely often.

Characterizing the attractors of network dynamics is key for capturing the
potential adaptation and differentiation processes the cell can undergo. In par-
ticular, one could verify, from a given state of the network, if the dynamics always
converges toward a unique attractor or may diverge towards different attractors.
The former indicates a deterministic long-term behaviour, whereas the latter
suggests an indeterministic differentiation, potentially controlled by additional
mechanisms not captured by the level of abstraction of the model.

In practice, given a qualitative model of a network, the computation of the
attractors reachable from one (set of) states can become very expensive as the
size of the network grows. The naive approach consisting in generating the tran-
sition graph and computing the BSSCs suffers from the combinatorial explosion
of the state space (exponential with the number of components of the network)
and the explosion of the number of transitions.

A part of the combinatorial explosion of dynamics is due to the concurrency
between the asynchronous transitions: in a given state, several transitions may
be independently fired, which results in numerous redundant interleavings of
transitions in the concrete transition space.

Contribution. In this paper, we propose a new algorithm for characterizing all
the attractors that are reachable from a given initial state in a qualitative model
expressed with safe Petri nets [18], a broad class of nets which encompasses
asynchronous Boolean or multi-valued networks. Our algorithm exploits the un-
foldings of safe Petri net in order to reduce the size of the state space to explore.

Petri net unfoldings [7,8] aim at representing the state space rechable from an
initial state by exploiting concurrency between transitions to prune redundant
interleavings of these transitions. To our knowledge this is the first algorithm for
computing all the reachable attractors which relies on unfolding structures. Our
algorithm is applicable to any safe Petri net.

Whereas experiments on particular cases of biological networks show room for
improvement, such a technique exploiting concurrency is foremost complemen-
tary to existing algorithms (which ignore this dynamical feature) and therefore
appeals for designing combinations of techniques to make tractable the analysis
of very large networks.

Related work. In the scope of Boolean networks, there has been numerous work
to link the topology of the network (the interaction graph, giving signed relations
between the components) with the fixed points - resulting in bounds or charac-
terization of a subset of fixed points (e.g., [1,23,22]); and with cyclic attractors,
e.g., [24,17]. While the full characterization of the fixed points of Boolean/multi-
valued networks can be quite efficient for large networks [20,21,12], the com-
plete characterization of cyclic attractors is still a challenging task due to the
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combinatoric explosition of the state space to explore. Symbolic representation
of the state space using binary decision diagrams has been used by [11] to charac-
terize attractors in synchronous and asynchronous Boolean networks. The rela-
tionships between attractors in synchronous and asynchronous settings has then
been exploited in [3] to speed the exploration of all possible attractors in Boolean
networks, as well as Boolean network reduction techniques in [29]. Approximate
methods are also largely considered, such as in [30], which selectively explore
appropriate regions of the state space to derive a subset of cyclic attractors of
the global network dynamics.

In this paper, we will focus on the use of unfolding to compute finite complete
prefixes [14] of safe Petri nets. Finite complete prefixes contain all the reachable
markings in a compact representation (the prefix is always smaller than the
reachability graph). Unfoldings are very well suited to capture concurrent system
dynamics, and can be efficient for reachability analysis [9], for instance.

Outline. In Sect. 2, we give a formal definition of (safe) Petri nets and their
attractors, and introduce a running example. In Sect. 3, we present the unfolding
of safe Petri nets. In Sect. 4, we detail our new algorithm to derive the attractors
of a safe Petri net using its unfolding. Finally, implementation and experimations
on Petri net models of biological networks are discussed in Sect. 5.

2 Petri Nets and Attractors

A Petri net is a bipartite graph where nodes are either places or transitions.
In this paper, we consider only safe Petri nets where a place is either active
or inactive (in oppositon to general Petri nets where each place can receive an
arbitrary number of tokens, safe Petri nets allow at most one token per place).
The set of active places form the state, or marking, of the net. A transition is
said enabled if all the places that are parents of the transition are active. In the
semantics, the firing of a transition makes inactive the parent places and then
makes active the children places, modifying the current marking of the net.

Formally, a (safe) Petri net is a tuple N = 〈P, T, F,M0〉 where P and T are
sets of nodes (called places and transitions respectively), and F ⊆ (P × T ) ∪
(T × P ) is a flow relation (whose elements are called arcs). A subset M ⊆ P of
the places is called a marking, and M0 = {p10, . . . , pn0} is a distinguished initial
marking. For any node x ∈ P ∪ T , we call pre-set of x the set •x = {y ∈ P ∪ T |
(y, x) ∈ F} and post-set of x the set x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A transition t ∈ T is enabled at a marking M if and only if •t ⊆ M . Then t

can fire, leading to the new marking M ′ = (M \ •t) ∪ t•. We write M
t→ M ′. A

firing sequence is a (finite or infinite) word w = t1t2 . . . over T such that there

exist markings M1,M2, . . . such that M0
t1→ M1

t2→ M2 . . . For any such firing
sequence w, the markings M1,M2, . . . are called reachable markings.

The Petri nets we consider are said to be safe because we will assume that
any reachable marking M is such that for any t ∈ T that can fire from M leading
to M ′, the following property holds: ∀p ∈ M ∩M ′, p ∈ •t ∩ t• ∨ p /∈ •t ∪ t•.
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p1 p2

p4 p5p3

p6

t3 t4t2t1

t5 t6

{p1,p2}{p3, p2}

{p1, p5} {p4, p5}

{p4, p2}

{p3, p5}

{p1, p6} {p4, p6}{p3, p6}

Fig. 1. A safe Petri net (left) and the corresponding marking graph (right) - the initial
marking is in bold

Figure 1 (left) shows an example of a safe Petri net. The places are represented
by circles and the transitions by horizontal lines (each one with a label identifying
it). The arrows represent the arcs. The initial marking is represented by dots (or
tokens) in the marked places.

From an initial marking of the net, one can recursively derive all possible
transitions and reachable markings, resulting in the marking graph (Def. 1).
The marking graph is always finite in the case of safe Petri nets. The attractors
reachable from the initial marking of the net can then be fully characterized by
the bottom strongly connected components of the marking graph (Def. 2).

Definition 1 (Marking Graph). The marking graph of a Petri Net N is
a directed graph G = (V,A) such that V is the set of all reachable markings
(obtained from all the possible firing sequences) and A ⊆ V × V is such that

(M,M ′) ∈ A if and only if M
t→ M ′ for some t ∈ T .

Definition 2 (Attractors). An attractor is a bottom strongly connected com-
ponent of G, that is a set A of markings such that either A = {M} and no
transition is enabled from M ; or for every M ∈ A, the set of markings reachable
from M is precisely A.

Figure 1 (right) represents the marking graph of the Petri net of Figure 1
(left). The two attractors of the Petri net of Figure 1 (left) are evidenced by the
grey parts of its marking graph in Figure 1 (right).

3 Unfoldings

In this section, we explain the basics of Petri net unfoldings. A more exten-
sive treatment of the theory explained here can be found, e.g., in [7]. Roughly
speaking, the unfolding of a Petri net N is an “acyclic” Petri net U that has
the same behaviours as N (modulo homomorphism). In general, U is an infi-
nite net, but if N is safe, then it is possible [16] to compute a finite prefix P
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of U that is “complete” in the sense that every reachable marking of N has a
reachable counterpart in P . Thus, P represents the set of reachable markings of
N . Figure 2 shows a finite complete prefix of the unfolding of the Petri net of
Figure 1.

p2p1

p4 p5p3

p1 p2

p6p3 p4 p5

p4 p6

t3t1

t2 t4

t6t1 t3

t5

Fig. 2. A finite complete prefix
of the unfolding of the Petri net
of Figure 1. Dashed events are
flagged as cut-offs: the unfolding
procedure does not continue be-
yond them.

In principle, the set of reachable markings
can also be computed by constructing the
marking graph (see Definition 1). However,
the marking graph suffers from combinatorial
explosion due to concurrency. For instance,
suppose that N simply contains n indepen-
dent concurrent actions. Then the only attrac-
tor of the net is reached by executing all n
actions in any arbitrary order. However, the
marking graph will uselessly explore all n! dif-
ferent schedules for executing them, and all 2n

intermediate markings.
Research into concurrent systems has pro-

duced a number of solutions to alleviate the
problem of combinatorial explosion due to
concurrency (and eventually other sources).
In [16], McMillan first proposed the use of fi-
nite unfolding prefixes. Esparza et al [8] later
improved this solution. For instance, the un-
folding of the previous example with n inde-
pendent actions is simply of size O(n). With
respect to the marking graph, an unfolding
represents a time-space tradeoff: in general, a
complete unfolding prefix P is much smaller
than the marking graph of N , but the prob-
lem whether a marking M of N is reachable,
given P , is NP-complete. However, this tradeoff is usually favourable [9].

We now give some technical definitions to introduce unfoldings formally.

Definition 3 (Causality, Conflict, Concurrency). Let N = 〈P, T, F,M0〉
be a net and x, y ∈ P ∪T two nodes of N . We say that x is a causal predecessor
of y, noted x < y, if there exists a non-empty path of arcs from x to y. We note
x ≤ y if x < y or x = y. If x ≤ y or y ≤ x, then x and y are said to be causally
related. x and y are in conflict, noted x # y, if there exist u, v ∈ T such that
u ≤ x, v ≤ y, and •u∩ •v �= ∅. We call x and y concurrent, noted x co y, if they
are neither causally related nor in conflict.

As we said before, an unfolding is an “acyclic” version of a net N . This notion
of acyclicity is captured by Definition 4.

Definition 4 (Occurrence net). Let N = 〈P, T, F,M0〉 be a Petri net. We
say that N is an occurrence net if it satisfies the following properties:

1. The causality relation < is acyclic;
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2. |•p| ≤ 1 for all places p, and M(p) = 1 iff |•p| = 0;
3. for every transition t, t # t does not hold, and {x | x ≤ t} is finite.

As is convention in the unfolding literature, we shall refer to the places of an
occurrence net as conditions and to its transitions as events. Due to the structural
constraints, the firing sequences of occurrence nets have special properties: if
some condition c is marked during a run, then the token on c was either present
initially or produced by one particular event (the single event in •c); moreover,
once the token on c is consumed, it can never be replaced by another token, due
to the acyclicity constraint on <.

Definition 5 (Configuration, Cut). Let N = 〈C,E, F,M 〉 be an occurrence
net. A set C ⊆ E is called configuration of N if (i) C is causally closed, i.e. for
all e, e′ ∈ E with e′ < e, if e ∈ C then e′ ∈ C; and (ii) C is conflict-free, i.e. if
e, e′ ∈ C, then ¬(e # e′). The cut of C, denoted Cut(C), is the set of conditions
(M ∪ C•) \ •C.

Intuitively, a configuration is a set of events that can fire during a firing
sequence of N , and its cut is the set of conditions marked after that firing
sequence.

We can now define the notion of unfoldings. Let N = 〈P, T, F,M0〉 be a safe
Petri net. The unfolding U = 〈C,E,G,M ′

0〉 of N is an (infinite) occurrence net
(equipped with a homomorphism h) such that the firing sequences and reachable
markings of U are exactly the firing sequences and reachable markings of N
(modulo h). U can be inductively constructed as follows:

1. The conditions C are a subset of (E ∪ {⊥})× P . For a condition c = 〈x, p〉,
we will have x = ⊥ iff x ∈ M ′

0; otherwise x is the singleton event in •c.
Moreover, h(c) = p. The initial marking M ′

0 contains exactly one condition
〈⊥, p〉 for each initially marked place p of N .

2. The events of E are a subset of 2C × T . More precisely, we have an event
e = 〈C′, t〉 for every set C′ ⊆ C such that c co c′ holds for all c, c′ ∈ C′ and
{ h(c) | c ∈ C′ } = •t. In this case, we add edges 〈c, e〉 for each c ∈ C′ (i.e.
•e = C′), we set h(e) = t, and for each p ∈ t•, we add to C a condition
c = 〈e, p〉, connected by an edge 〈e, c〉.

Intuitively, a condition 〈x, p〉 represents the possibility of putting a token onto
place p through a particular firing sequence, while an event 〈C′, t〉 represents a
possibility of firing transition t in a particular context.

Recall that a configuration C of U represents a possible firing sequence, whose
resulting marking corresponds, due to the construction of U , to a reachable
marking of N . This marking is defined as Mark (C) := { h(c) | c ∈ Cut(C) }.
Since U is infinite in general, we are interested in computing an initial portion
of it (a prefix ) that completely characterizes the behaviour of N .

Definition 6 (Complete Prefix). Let N = 〈P, T, F,M0〉 be a safe Petri net
and U = 〈C,E,G,M ′

0〉 its unfolding. A finite occurrence net P = 〈C′, E′, G′,M ′
0〉
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p4
p1

p6

p3
p4

p6

t2 t1

t5

p2p3

Fig. 3. Two attractors of the Petri net of Figure 1 represented as finite complete
prefixes U{p4,p6} (on the left) and U{p3,p2} (on the right).

is said to be a prefix of U if E′ ⊆ E is causally closed, C′ = M ′
0 ∪ E′•, and G′

is the restriction of G to C′ and E′. A prefix P is said to be complete if for
every reachable marking M of N there exists a configuration C of P such that
(i) Mark (C) = M , and (ii) for each transition t ∈ T enabled in M , there is an
event 〈C′′, t〉 ∈ E′ enabled in Cut(C).

It is known [16,8] that the construction of such a complete prefix is indeed
possible, and efficient tools [26,13] exist for this purpose. The precise details of
this construction are out of scope for this paper; for what follows it suffices to
know that it essentially follows the construction of U outlined above but that
certain events are flagged as cut-offs when they do not “contribute any new
reachable markings” (these events are represented by dashed lines in Figure 2).
The construction then does not continue “beyond” such a cut-off event.

4 Extracting Attractors from Unfoldings

Our method for finding the attractors of a Petri net N uses unfoldings in two
steps: first to find a set of markings which intersects all the attractors, second
to output the attractors as a set of finite complete prefixes.

4.1 Representation of Attractors as Finite Complete Prefixes

We first remark that finite complete prefixes of unfoldings are particularly well
suited for the representation of attractors. In fact, every attractor A is a set
of states which form a maximal strongly connected component of the marking
graph of N . For every marking M in A, the attractor A is precisely the set of
markings reachable from M . Hence it can be compactly represented as a finite
complete prefix of the unfolding of the Petri net N initialized at M . Denote this
prefix UM : the markings associated to the configurations of UM are precisely
those of the attractor, moreover the prefix shows the dynamics of the net while
in the attractor. Last, the size of UM (as number of non cut-off events) can be
up to exponentially smaller (in case of highly concurrent behaviour) than the
number of markings in the attractor, and never exceeds it.

Figure 3 shows two attractors of the Petri net N of Figure 1 represented as
finite complete prefixes. The one on the left, U{p4,p6}, represents the attractor
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containing the marking {p4, p6}. The one on the right represents the attractor
made of the single marking {p3, p2} which is a deadlock.

4.2 Maximal Configurations and Attractors

We have shown the interest of prefixes for representing attractors. What we
need is a way to find a set M of markings of the Petri net N which contains one
marking per attractor. Given such M, the set {UM | M ∈ M} gives a complete
characterization of the attractors of N .

Now we show that the desired set M of markings can be obtained from the
maximal configurations of a finite complete prefix of the unfolding of N .

Definition 7 (Maximal Configuration). A configuration of a prefix is called
maximal if no other event of the prefix can be added to the configuration. Equiv-
alently, the configuration is a deadlock of the prefix viewed as a Petri net.

For example, in the prefix shown on Figure 2, the configuration corresponding to
the firing sequence t3t2 is not maximal because it can be extended, for instance
by t4 and the other event labeled t3, yielding this time a maximal configuration,
which reaches the marking {p4, p5}. Notice that this marking is not a deadlock
in the original Petri net, yet the configuration is maximal in the prefix.

Property 1. Let N be a Petri net and U a finite complete prefix of its unfolding.
For every attractor A of N , there exists a maximal configuration of U whose
associated marking belongs to A.

Proof. Choose a marking M in A. Because U is complete, it has a configuration
C whose associated marking is M . Now because U is finite, it has a maximal
configuration C′ which extends C. The marking M ′ associated to C′ is reachable
from M , therefore it is also in A.

The prefix shown on Figure 2 has four maximal configurations. One is obtained
after firing only t1; its associated marking is the deadlock {p3, p2}. This marking
is associated to another maximal configuration: the one obtained by firing t3 and
then t2t1 concurrently with t4. The third maximal configurations is obtained by
firing t3, then t2 and t4 concurrently, and then t3 again; it reaches the marking
{p4, p5}. Finally, one can fire t3, then t2t1 and t6 concurrently, and then t5; it
reaches the marking {p4, p6}.

One can check that every attractor has a marking in this set: the dead-
lock {p3, p2} is represented twice; the marking {p4, p6} represents the attractor
{{p3, p6}, {p1, p6}, {p4, p6}}. The marking {p4, p5}, also associated to a maximal
configuration of U , is not in an attractor.

4.3 Algorithm

Property 1 allows one to use finite complete prefixes to identify attractors: the
set Mmax of markings corresponding to maximal configurations intersects all
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the attractors. But not all the markings in Mmax belong to an attractor. Also
an attractor may contain several markings in Mmax.

In order to characterize the attractors of a safe Petri net N , we filter the set
Mmax and keep only one marking per attractor. The idea is to remove itera-
tively the markings from which another marking of the set is reachable. The
reachability checking is done again using unfoldings.

The algorithm is the following:

1. Compute a finite complete prefix U of the unfolding of N .
2. Initialize M to the set Mmax of markings corresponding to maximal config-

urations of U .
3. Initialize the set of attractors to ∅.
4. Loop for M in M

– Compute a finite complete prefix UM of the net N initialized at M .
– If a markingM ′ ∈ M other thanM is reachable fromM (the reachability

check is done using UM ),
Then remove M from M,
Else add UM to the set of attractors.

5. Output the set of attractors.

Termination of the algorithm is straightforward.We prove that at every step of
the algorithm, the set M intersects all the attractors. This property is preserved
when we remove a marking M from M because, if M is in an attractor A, then
the marking M ′ ∈ M reachable from M is also in A. Notice also that, if M
is not in an attractor, then at least one attractor A is reachable from M ; and
because M∩A �= ∅, M contains a marking M ′ ∈ A which is reachable from M .
This ensures that UM is added to the set of attractors iff M is in an attractor
A and M∩A = {M}.

4.4 Illustration on the Running Example

For our running example the set M is initialized to {{p3, p2}, {p4, p5}, {p4, p6}}.
The algorithm computes the prefix UM for every M ∈ M, but outputs only
U{p3,p2} and U{p4,p6}, pictured in Figure 3. U{p4,p5} is dropped because {p4, p6}
is reachable from {p4, p5}.

5 Implementation and Experimental Results

In order to test the applicability of our approach, we implemented a prototype
of the algorithm described above using Mole[26] for computing the complete
prefixes, and Minisat[6] for extracting the maximal configurations1.

We applied our algorithm for the identification of attractors of three quali-
tative models of biological networks taken from the literature. In all cases, we

1 Executables, scripts, and Petri net models are available for Linux 64bits at
http://loicpauleve.name/cmsb2014.tbz2

http://loicpauleve.name/cmsb2014.tbz2
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applied a transformation to safe Petri net (Appendix A) that consists in hav-
ing one place for each qualitative level of each component of the network, and
transitions corresponding to the asynchronous semantics, i.e., each transition will
actually change the level of only one component. By construction, the places cor-
responding to the levels of each components are mutually exclusive. The initial
marking may then correspond either to a single state of the qualitative model, or
to several possible initial states by adding transitions that non-deterministically
select the initial state for some components (Sect. A.2). In this latter encoding,
the returned attractors are the attractors reachable from at least one of the
possible initial state of the qualitative model.

Table 1. Results of the attractors characterization using Petri net unfoldings. For each
model (which includes the initial state), we give the number of maximal configurations
and the number of attractors reachable from the initial state.

Model Nb. nodes Nb. max. conf. Nb. attractors

Lambda switch 4 15 2
Cell cycle 10 12 1
ERBB (1) 20 301 1
ERBB (2) 20 302 2
VPC C. elegans 88 1240 1

Tab. 1 sums up the results of computing the finite complete prefixes on the
following regulatory networks: a multi-valued model of the lambda switch [27],
a Boolean model of he mammalian cell cycle [10], a Boolean model of the ERBB
receptor [25], and a multi-valued model of fate determination in the Vulval Pre-
cursor Cells (VPC) in C. elegans [28]. For the ERBB model, two different initial
settings have been tested: (1) when EGF is active; (2) when either EGF is active
or inactive. For the other models, the initial state is the level 0 for all the com-
ponents. The execution times are in the order of a fraction of a second for the
two first models; in the order of a few seconds for ERBB; and around 15 minutes
for the VPC model. For the latter, we note that starting from a different initial
state leads to a combinatoric explosion of the complete prefix, showing room for
improvement to handle large model in general. It is difficult to compare with
other existing tools as most of them handle only Boolean networks and do not
support the search from a given initial state. GINsim [19] also provides attractors
computations from a given initial state, but it relies on explicit state transition
graph computation, which is always larger than a complete prefix (Section 3).
For instance on the VPC example, GINsim has been stopped after one hour.

6 Discussion

We presented a new algorithm for computing all the attractors reachable from a
given state in the general class of safe Petri nets, i.e., Petri nets having at most
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one token in each place. This class includes Boolean and multi-valued networks
that are typically used to model the qualitative dynamics of biological networks.

Our approach relies on Petri net unfoldings that natively take into account
the concurrency between transitions to produce a compact representation of the
reachable states. Then, we use the notion of maximal configuration to derive,
from the computed unfolding, a set of states that includes at least one state of
each reachable attractor. This set of maximal configuration is then filtered to
output exactly one state per reachable attractors. The identification of attrac-
tors is complete in the sense that all the attractors reachable from the supplied
markings are detected, including fixed points and cyclic and complex attractors.

By the use of Petri unfoldings, we aim at reducing the complexity of exploring
the full reachable space by inherently pruning redundant transitions due to some
interleaving of concurrent transitions. We applied a prototype implementation of
the algorithm to four biological networks ranging from four to eighty interacting
components, either multi-valued or Boolean.

The unfolding technique mentioned in this paper is generic to any safe Petri
net. This indicates several directions for improving its computation (including
the extraction of maximal configurations) in the particular case of biological
interaction networks, such as the use of contextual Petri nets [2], merge processes
[15], unravelings [4], and the use of the network topology and static analysis to
prune non-necessary transitions and decompose the detection of attractors.
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A Encoding Asynchronous Discrete Networks with Safe
Petri Nets

A.1 Encoding with One Initial State

In literature, Boolean and multi-valued networks modelling dynamics of bio-
logical influence networks are typically represented by functions associating for
each component the levels towards which it evolves with respect to each pos-
sible level of its regulators. In order to encode their asynchronous dynamics in
Petri nets, one need to have a transition-centered representation, instead of a
function-centered. Informally, this can be achieved by having one place per possi-
ble level of each component (we note iu the place corresponding to the level u of
component i), and listing the conditions for moving a token from iu to iu+1 and
iu−1. Such conditions can typically be built from the expression of the discrete
functions of the network. Our encoding always results in safe Petri nets, which
makes it different from [5] which relies on more advanced Petri nets semantics
(multiple tokens on places and weighted arcs).

A Discrete Network gathers a finite number of components i ∈ {1, · · · , n}
having a discrete finite domain F

i that we note F
i = {0, · · · , li}, li being the

maximum level for the component i. For each component i ∈ {1, · · · , n}, a map
f i : F → F

i is defined, where F = F
1 × · · · × F

n, giving the next value of the
component with respect to the global state of the network. Typically f i depends
on a subset of components (its regulators) that we denote dep(f i). In the case of
Asynchronous Discrete Networks (ADN), a transition relation →ADN⊆ F×F is
defined such that x →ADN x′ if and only if there exists a unique i ∈ {1, · · · , n}
such that x′[i] = f i(x) and ∀j ∈ {1, · · · , n}, j �= i, x′[j] = x[j], i.e. one and only
one component has been updated. This is formalised in Def. 8.

Definition 8 (Asynchronous Discrete Network (ADN)). An ADN is de-
fined by a couple (F, 〈f1, . . . , fn〉) where F = F

1 × · · · ×F
n, and ∀i ∈ {1, · · · , n},

f i : F → F
i with F

i = {0, · · · , li}. Given two states x, x′ ∈ F, the transition
relation →ADN is given by

x →ADN x′⇐⇒∃i ∈ {1, · · · , n}, f i(x)=x′[i]∧∀j ∈ {1, · · · , n}, j �= i, x[j]=x′[j] ,

where x[i] is the i-th component of x. We note dep(f i) ⊆ {1, · · · , n} the set
of components on which the value of f i depends: ∀x, x′ ∈ F such that ∀j ∈
dep(f i), x[j] = x′[j], necessarily f i(x) = f i(x′).

In the scope of an ADN (F, 〈f1, . . . , fn〉), we use cond(x) to map a state to
the set of literals for the presence of the components at the corresponding state,

e.g., cond(〈1, 0, 1〉) = {11, 20, 31}: cond(x) Δ
= {iu | i ∈ {1, · · · , n}, x[i] = u}.

Given a component i at a state u, we note condsiu+ and condsiu− the set
of conditions where i can respectively increase or decrease. This set of condi-
tions can be read as a disjunctive normal form expressing the possibility of the

transition: condsiu+
Δ
= simplify({cond(x)|dep(i) | x ∈ F, x[i] = u, f i(x) > u});

condsiu−
Δ
= simplify({cond(x)|dep(i) | x ∈ F, x[i] = u, f i(x) < u}); where simplify
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is an operator to reduce the number of conditions, and cond(x)|dep(i) restricts
the literals to those corresponding to components influencing i.

Finally, given an ADN (F, 〈f1, . . . , fn〉) and an initial state x0 ∈ F, the
corresponding safe Petri net is defined by (P, T, F,M0) where P = {iu | i ∈
{1, · · · , n}, u ∈ {0, · · · , li}}, M0 = cond(x0), and T and F are the smallest sets
(w.r.t. inclusion) such that ∀i ∈ {1, · · · , n}, ∀u ∈ {0, · · · , li}, ∀Φ ∈ condsiu+ ∪
condsiu−, ∃t ∈ T : •t = Φ ∪ {ai} ∧ t• = (Φ \ {ai}) ∪ {aj}. By construction, the
Petri net is safe and for each i ∈ {1, · · · , n}, the places i0, · · · , ili are mutually
exclusive.

A.2 Encoding with Multiple Initial States

When studying the dynamics of a qualitative network, one may want to con-
sider several initial states, chosen nondeterministically. Using the construction
depicted in the previous section, one can encode this indeterministic choice by
adding a place, initially marked, per (independent) indeterministic choice, and
a transition per corresponding (local) state. Fig. 4 illustrate this construction
with either an indeterministic initial state for one component, or for several
components.

10 11 20 21 10 11 20 21

Fig. 4. (left) Encoding of the indeterministic choice between the initial state of 1;
(right) indeterministic choice between the initial state of the couple 1 and 2: either
〈0, 0〉 or 〈1, 1〉
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Abstract. Model development and analysis of biological systems is rec-
ognized as a key requirement for integrating in-vitro and in-vivo exper-
imental data. In-silico simulations of a biochemical model allows one to
test different experimental conditions, helping in the discovery of the
dynamics that regulate the system. Several characteristics and issues of
biological system modeling are common to the electronics system mod-
eling, such as concurrency, reactivity, abstraction levels, as well as state
space explosion during verification. This paper proposes a modeling and
simulation framework for discrete event-based execution of biochemical
systems based on SystemC. SystemC is the reference language in the elec-
tronic design automation (EDA) field for modeling and verifying complex
systems at different abstraction levels. SystemC-based verification is the
de-facto an alternative to model checking when such a formal verifica-
tion technique cannot deal with the state space complexity of the model.
The paper presents how the framework has been applied to model the
intracellular signalling network controlling integrin activation mediating
leukocyte recruitment from the blood into the tissues, by handling the
solution space complexity through different levels of simulation accuracy.

Keywords: Biochemical networks, Dynamic modeling and simulation,
SystemC.

1 Introduction

Cells are the fundamental units of the living organisms. They interact with the
environment and with other cells by processing and exchanging environmental
informations. Each different input coming from the environment produces a set of
chemical reactions, which are the answer of the cell to the input. Those reactions
depend on some parameters, such as the concentration of the reactants and the
chemical properties regulating the reaction speed, and generate linear reaction
pathways in turn organized in concurrent non-linear complex networks [16].
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Dynamic network modeling in systems biology aims at describing how such
interactions among defined elements determine the time course of the state of
the elements, and of the whole system, under different conditions. A validated
dynamic model that correctly captures experimentally observed normal behavior
allows researchers to track the changes in the system due to perturbations, to dis-
cover possible covariation between coupled variables, and to identify conditions
in which the dynamics of variables are qualitatively similar [19].

Mathematical models, such as those based on differential equations [7], have
definitely gained consensus in the network modeling community as they have
the highest potential to accurately describe the system. Nevertheless, since they
have the highest requirement for input information, they are difficult to obtain
and analyse if the number of independent variables grows and if the relationships
depend on quantitative events, such as concentration reaching a threshold value.

Computational models, such as Boolean networks [25], Petri nets [10], inter-
active state machines [24], and Process Calculi [23], offer an effective alternative
if precise quantitative relationships are unknown, if they involve many different
variables, or if they change over time [14]. A common way to explain a certain
class of complex dynamical systems is to view them as highly concurrent reactive
systems. Hand-in-hand with the central notion of reactivity go (i) the discrete
event-based execution and simulation of dynamical systems, which requires a
fundamental understanding of parallelism, interaction, and causality; (ii) the
design of complex systems from building blocks, requiring means for composi-
tion and encapsulation; and (iii) the description of systems at different levels of
granularity, requiring methods for abstraction and refinement [13].

All these issues related to concurrent reactive systems have been largely ad-
dressed in the past decades in the electronic design automation (EDA) field
and a large body of methodologies and tools are at the state of the art. In this
context, SystemC [4] has become the de-facto reference standard language for
system-level modelling and simulation of Hardware/Software/Network electronic
systems at different abstraction levels [8].

In this paper, we propose a framework for modeling and simulation of bio-
chemical networks based on SystemC. The framework relies on a state machine-
based computational model to model the behavior of each network element. The
element models are implemented and connected to realize a system-level network
in SystemC. Finally, the network is connected to a stimuli generator and monitor
of results to run a discrete and deterministic network simulation. To handle the
complexity of exploring the solution space, the proposed framework allows us
to discretize the range of the variable values with different levels of accuracy. In
addition, the framework allows us to reuse existing EDA techniques and tools
to parallelize the SystemC simulation, both on GPUs [22] and on clusters [12].

The paper presents how the framework has been applied to model the sig-
naling network controlling LFA-1 beta2 integrin activation mediating leukocyte
recruitment from the blood into the tissues, a central event during the immune
response. Such a case study has been chosen for the large number of inde-
pendent variables, for the lack of quantitative information such as molecular
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concentrations, activation and inhibition delays and lifetimes, and for the re-
lationships strongly depending on qualitative events. The dynamic simulation
of the model has been conducted with the aim of exploring the occurrence of
emergent properties in signaling events controlling leukocyte recruitment, such
as oscillating behaviors and, more in general, to help in better understanding
the overall dynamics of leukocyte recruitment.

The paper is organized as follows. Section 2 summarizes the most important
concepts and constructs of SystemC for modeling protein networks. Section 3
presents the leukocyte integrin activation case study. Section 4 presents the
proposed framework, while Section 5 reports the obtained experimental results.
Section 6 is devoted to concluding remarks.

2 Background on SystemC

SystemC [4] is a set of C++ classes and macros that provide an event-driven
simulation interface in C++. These facilities enable a designer to simulate con-
current processes, each described using plain C++ syntax. SystemC processes
can communicate in a simulated real-time environment, using signals of all the
datatypes provided by C++, some additional ones provided by the SystemC
library, as well as user defined.

SystemC has been applied to system-level modeling, architectural exploration,
performance modeling, software development, functional verification, and high-
level synthesis of digital circuits since 2000. Nowadays, SystemC is the de-facto
reference standard in the EDA community. SystemC is defined and promoted by
the Open SystemC Initiative (OSCI) - Accellera Systems Initiative, and has been
approved by the IEEE Standards Association as IEEE 1666-2005. The SystemC
Language Reference Manual (LRM) [5] provides the definitive statement of the
semantics of SystemC. OSCI also provides an open-source proof-of-concept simu-
lator, which can be downloaded from the SystemC website [4]. Several optimized
simulators are also available in the commerce [1,3,2].

SystemC offers a greater range of expression, similar to object-oriented de-
sign partitioning and template classes. Although strictly a C++ class library,
SystemC is sometimes viewed as being a language in its own right. Source code
can be compiled with the SystemC library (which includes a simulation kernel)
to give an executable. SystemC allows designers to model systems at different
abstraction levels (i.e., with different levels of details) by providing modeling fea-
tures such as structural hierarchy and connectivity, communication abstraction,
dynamic processes, timed event notifications, transaction-level modeling [9].

The most important language features, which have been used for modeling
and simulating the signaling network presented in this paper are the following:

– Modules. They are the basic building blocks of a SystemC design hierarchy.
A SystemC model usually consists of several modules that communicate via
ports. As explained in the following sections, each network element (i.e.,
protein and cofactor) has been modelled as a module, and all the elements
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have been hierarchically organized into a module representing the whole
network.

– Ports. They allow communication from inside a module to the outside (usu-
ally to other modules) via signals.

– Signals. They are the communication elements of SystemC models. They
have been used to model the activation/inhibition activity between elements.

– Processes. They are the main computation elements and they are concurrent.
Each protein behaviour has been modelled through a process, which reacts
to any activation or inhibition by an upstream protein and, in turn, activates
or inhibits a downstream protein.

– Events. They allow for synchronization between processes. Events are the
key objects in SystemC models to provide event-driven simulation.

3 The Case Study

In order to better explain how the proposed framework can be applied for mod-
elling and simulation of signaling networks, we first present the case study, which
will be used as a model system in the subsequent sections.

As a model system, we analysed the signaling mechanism controlling beta2
integrin LFA-1 affinity regulation by chemokines, a crucial event mandatory
to the fulfilment of the leukocyte recruitment process from the blood into the
tissues. This process is critical to immune system function and is modeled as
a concurrent ensemble of leukocyte behaviors under flow, including tethering,
rolling, firm adhesion, crawling, and transmigration [18]. A central step is the
integrin-mediated arrest, comprising a series of adhesive events including increase
of integrin affinity, valency and binding stabilization altogether controlling cell
avidity. In this context, modulation of integrin affinity is widely recognized as the
prominent event in rapid leukocyte arrest induced by chemokines [6,11,15,17].
Regulation of integrin activation depends on a plethora of signaling proteins [6].
At least 67 signaling molecules modulate integrin activity by chemokines [21,20].
In this context, we have previously described an integrated group of signaling
proteins including RhoA, Rac1 and CDC42 small GTPases, along with the two
effectors PLD1 and PIP5K1C, modulating conformer-selective LFA-1 affinity
triggering and homing to secondary lymphoid organs by chemokines of human
primary lymphocytes [6]. To date, signaling by rho- and rap-small GTPases are
the best-studied mechanisms of integrin activation by chemokines.

Furthermore, and more recently, we have demonstrated that, in human pri-
mary T lymphocytes, chemokines control integrin affinity triggering and in vivo
homing by means of tyrosine kinases of the JAK family acting as upstream trans-
ducer linking chemokine receptors to the activation of the rho and rap module
of integrin [20]. Overall, an integrated macro module comprising JAKs, rho and
rap small GTPases and a variety of upstream regulators and downstream effec-
tors finely control integrin triggering and mediated lymphocyte recruitment by
chemokines. Beside arrest under flow, integrin activation is also critical to sup-
port leukocyte crawling and transmigration (diapedesis) along with directional
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Fig. 1. The protein-protein interaction network of the leukocite integrin activation

movement toward a gradient of chemotactic factors that is chemotaxis. Figure
1 depicts the protein network and each different interaction between proteins or
cofactors of the case study.

Notably, cell motility needs an on-off kinetic of integrin activation, allowing
cycling between adhesion and de-adhesion event thus ensuring cell movement.
Thus, control of the duration of cell adhesion is critical to control cell migration.
This on-off, oscillatory, kinetics of integrin triggering likely depends on on-off
kinetics of the signaling transduction machinery triggered by chemokines and
controlling integrin-mediated cell adhesion. This suggests an equal relevance for
both activators as well as inhibitors on integrin triggering. Although negative
regulators of cell adhesion have been described, a comprehensive dynamic model
of signaling events controlling on-off cycling of integrin activation is still lacking.
Such a modeling is an important approach to explore the occurrence of emergent
properties in signaling events controlling leukocyte recruitment, such as oscillat-
ing behaviors characterized by frequency and amplitude of agonist triggering.
In turn, identification of these properties could help to better understand the
overall dynamics of leukocyte recruitment.

4 The SystemC Framework for Modelling and Simulation
of the Protein Network

The framework relies on three main steps. First, the behavior of each network
element (i.e., protein and cofactor) is modeled through the Finite State Machine
(FSM) formal model. The element models are then implemented in SystemC
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Fig. 2. The protein behavior representation through Finite State Machines. The pro-
tein template (a), and the JAK3 example.

modules and connected through SystemC signals to realize a system-level net-
work. Finally, the network is connected to a stimuli generator and monitor of
results to run a reactive, event-driven network simulation.

4.1 Modelling Proteins through Finite State Machines

The finite state machine model allows us to formally model each protein be-
havior and, similarly, each cofactor behaviour, in terms of states (e.g., inactive,
activated/inhibited, activating/inhibiting, etc.), transitions between states, and
guard conditions (i.e., boolean conditions).

Figure 2(a) depicts the proposed FSM template, while Figure 2(b) shows a
modelling example of the JAK3 protein of the case study in Figure 1. Each
protein changes state (i.e., a transition occurs) when the guard condition is eval-
uated to be true. The condition may be set on a particular reaction event (e.g.,
activation via phosphorylation, steric, auto-phosphorylation, cofactor or inhibi-
tion via phosphatase) generated by any upstream protein or on any environment
status. As an example, JAK3 moves from the inactive state to the activated state
(which represents the steric binding with CXCR4) as soon as CXCR4 activates
JAK3. Once activated, JAK3 seeks for the phosphorylation of its own protein
target (VAV1), which occurs after a delay time (i.e., the time spent to encounter
a molecule of VAV1, to pick up an atom of phosphorus from an ATP molecule,
and to add it to VAV1). t represents the time elapsed, which is constantly up-
dated during simulation, while lifetime represents the maximum lifetime from
the activation instant in which the protein carries out its biological function.
JAK3 continues to phosphorylate new VAV1 molecules (Behaves state) as long
as it is bounded with CXCR4 and the lifetime has not expired.
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Fig. 3. The SystemC framework

The template distinguishes two sets of input data that can affect the model
behavior and one set of generated output:

– Topological inputs (Input Ti): They are inputs whose values are calculated
at simulation time and depend on the topological interaction of the mod-
elled protein with upstream proteins. Some examples are the activation via
phosphorylation, steric, cofactor, or inhibition.

– Unknown inputs (Input Ui): They are inputs whose values depends on the en-
vironment characteristics and status, which are unknown at modeling time.
Some examples are the delay time (i.e., time spent by the protein to en-
counter a protein target), the molecular concentrations of the downstream
proteins (which affect the delay time), the protein lifetime, etc. For each
unknown input, the framework generates different values with the aim of
observing, via simulation, how such values affect the system dynamics.

– Topological outputs (Output Ti): They are outputs whose values are cal-
culated at simulation time and depend on the role of the protein towards
downstream proteins (e.g., the ouput of the JAK3 module is set to true when
JAK3 encounters and activates VAV1 via phosphorylation) .

4.2 Implementation of the Protein Models through SystemC

Each protein is implemented through a SystemC module, with both the topo-
logical and unknown inputs and outputs as SystemC ports (see Section 2). The
protein behavior represented by FSM in Figure 2 is implemented through a
SystemC process, which is sensitive to any event on the input signals. An activa-
tion/inhibition from an upstream protein is represented by an input (boolean)
signal set to true. Being event-driven, the process wakes up and updates both
the internal state and the output signals whenever a new event on inputs occurs.
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The network model consists of every protein modules connected via SystemC
signals (see right-most side Figure 3, which, for the sake of clarity, reports a part
of the network).

The protein network is connected to a testbench, which generates the values
for the unknown inputs of the protein network. The set of all input values rep-
resents a configuration. The testbench generates a configuration and runs (i.e.,
executes) a dynamic simulation of the network behavior for such a set of input
values for a given simulation time. Then, the testbench generates a new dif-
ferent configuration for a new simulation. The run ends when all the possible
configurations have been simulated.

The testbench also implements a monitor of results, which controls whether
any condition or behavior of the network occurs, in order to identify which
configurations have led to such a behavior. In the proposed case study, the mon-
itored condition consists of the on-off, oscillatory, kinetics of integrin triggering
represented, in the model, by the oscillatory state of ITGB2 between inactive
and activate affinity state. Particularly, the monitoring activity of the testbench
aims at identifying which configurations, in terms of protein lifetime, activation
delays, and protein concentrations lead to a given number of oscillations, with a
given oscillation period.

4.3 Simulation of the System-Level Network

The main problem in exploring the dynamics of protein networks is the complex-
ity of the solution space. The solution space, that is, the number of configurations
to simulate, grows exponentially over the number of unknown inputs. In addi-
tion, several inputs are continuous magnitudes (e.g., delay and lifetime), which
would lead to an intractable problem if not properly discretized.

To handle such a complexity, the proposed framework allows us to discretize
the range of the input values with different levels of accuracy. As an example,
the lifetime of CDC42 in Figure 1 is an unknown input, whose value has to be
generated by the testbench. Different values have been simulated, starting form
a minimum to a maximum value, by steps of a given time period. The finer the
step, the more accurate the space solution exploration, and, on the other hand,
the higher the configuration number and the consequent overall simulation time.
EDA techniques and tools at the state of the art can be applied to parallelize the
SystemC simulation, both on GPUs [22] and on clusters [12] in order to improve
the accuracy over the simulation time ratio.

In general, given a number of network elements, n, the total number of input
configurations to be generated by the testbench is the following:

∏n
i=1(

MConcentrationi
MCStepi

)(Targetsi)(
MaxDelayTi−MinDelayTi

DelayStepi
)(MaxLifeTi−MinLifeTi

LifetimeStepi
)

where MConcentration represents the molecular concentration of the protein
(or cofactor), Targets represents the number of the downstream targets, Max
and MinDelayT represent the observed range of delay time, Max and MinLifeT
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represent the range of the lifetime, while MCStep, DelayStep, and LifetimeStep
represent the chosen periods of discretization.

The overall simulation time is linear over the number of configurations. It
is possible to associate, before simulation, the required time for simulating the
network dynamics with a chosen space exploration accuracy. In addition, param-
eters MaxDelayT, MinDelayT, MaxLifeT, MinLifeT, MCStep, DelayStep, and
LifetimeStep can be tuned for each single element of the network. This allows us
to explore, with different levels of detail, the behavior and the influence of each
protein in the overall network dynamics.

The modular structure of the framework allows us to adopt different simula-
tion models (e.g., stochastic simulations), by modifying the testbench module.
The development of a testbench for stochastic simulations with the aim of relax-
ing the constraints on the input values is part of our current and future work.

5 Experimental Results

The case study presented in Section 3 has been implemented in SystemC with
the aim of exploring pro-adhesive signaling events and to better understand the
overall dynamics of leukocyte recruitment.

The main goal of the model simulation was identifying the system properties
that lead to oscillating behaviors, which are characterized by frequency and am-
plitude of integrin triggering. In particular, the testbench has been implemented
to monitor which configurations of input values lead to oscillations of ITGB2
with a period of 30-40 ms (15-20 ms in active state, 15-20 ms inactive state),
which represents the average stopping time of a cell when it interacts with the
blood vessel epithelium. Notably, although accurate experimental measurement
of on-off dynamics of integrin triggering is, at the present, unavailable, the ex-
tremely rapid kinetics of leukocyte arrest under-flow conditions, occurring in
the experimentally-determined range of few milliseconds clearly suggest that it
is reasonable to consider this rapid time-frame as a correct reference time to
simulate on-off dynamics of integrin triggering. Furthermore, since directional
leukocyte motility (chemotaixs) appears to maintain constant speed, at least in
the context of a chemotactic gradient, it is reasonable to expect the emergence
of regular oscillatory dynamics of signaling mechanisms controlling integrin trig-
gering.

In order to reduce the explosion of the exploration space, we assumed the
following characteristics of the system, which are summarized in Table 1. Each
protein and cofactor (listed in Table 1 with (P) and (C), respectively) have been
simulated with three different molecular concentrations (1, half, and maximum
molecular number). The delay time of each element has been fixed as a function
of the molecular concentration of the target element, with minimum value equal
to 2 ms.

The lifetime of each single protein (cofactor) has been explored by discretizing
the time intervals, which have been fixed for each element as shown in the table.
To better explore the behavior of the most interesting proteins of the network
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Table 1. The protein network characteristics

Unknown inputs Topological signals
MConcentration
(# molecules)

downstream
targets (#)

delay time
(ms)

lifetime
(ms)

inputs outputs

CXCL12 (P) [1,400] [1,1] - [250,250] - sig CXCR4

CXCR4 (P) [1,325] [1,3] [2,3] [250,250] sig CXCL12
sig JAK3
sig JAK2
sig ABG

JAK3 (P) [1,300] [1,1] [2,5] [250,250] sig CXCR4 pho VAV1
JAK2 (P) [1,175] [1,1] [2,5] [42,42] sig CXCR4 pho VAV1
ABG (P) [1,200] [1,1] [2,5] [31,37] sig CXCR4 sig PLC

VAV1 (P) [1,168] [1,3] [2,2] [45,51]
pho JAK3
pho JAK2

sig RAC1
sig RHOA
sig CDC42

RAC1 (P) [1,235] [1,1] [2,6] [34,40] sig VAV1 sig PLD1
RHOA (P) [1,146] [1,1] [2,6] [29,35] sig VAV1 sig PLD1

CDC42 (P) [1,256] [1,2] [2,2] [35,41] sig VAV1
sig PIP5K1C
sig RAP1A

PLC (P) [1,210] [1,2] [2,4] [33,33] sig ABG
syn IP3
syn DAG

IP3 (C) [1,115] [1,1] [2,5] [51,57] syn PLC syn CA
CA (C) [1,140] [1,1] [2,5] [44,50] syn IP3 sig RASGRP1
DAG (C) [1,123] [1,1] [2,5] [56,62] syn PLC sig RASGRP1

RASGRP1 (P) [1,127] [1,1] [2,4] [32,38]
sig CA
sig DAG

sig RAP1A

PLD1 (P) [1,67] [1,1] [2,4] [28,28]
sig RAC1
sig RHOA

sig PA

PIP5K1C (P) [1,234] [1,1] [2,4] [27,33]
sig CDC42

sig PA
sys PIP2

PA (C) [1,322] [1,2] [2,2] [63,69] sys PLD1
sig RAP1A
sig PIP5K1C

RAP1A (P) [1,364] [1,2] [2,2] [34,40]
sig PA

sig RASGRP1
sig CDC42

sig RASSF5
sig RIAM

PIP2 (C) [1,243] [1,2] [2,3] [55,61] sys PIP5K1C
sig FERMT3
sig TLN1

RIAM (P) [1,435] [1,1] [2,4] [39,39] sig RAP1A sig TLN1
RASSF5 (P) [1,134] [1,1] [2,5] [32,38] sig RAP1A sig ITGB2
FERMT3 (P) [1,123] [1,1] [2,5] [31,31] sig PIP2 sig ITGB2
TLN1 (P) [1,364] [1,1] [2,5] [36,36] sig PIP2 sig ITGB2

ITGB2 (P) [1,125] - - [43,49]
sig FERMT3
sig TLN1

sig RASSF5
-

(e.g., CDC42, RAP1A, and PIP5K1C that can lead to oscillations upon inhi-
bition), the lifetime ranges explored in simulation for such elements have been
extended. JAK3 and JAK2 have a fixed lifetime (40 ms and 42 ms, respectively)
since it has been accepted that, at present, there is not a known phosphatase
process that can influence their behavior.

Each protein or cofactor can activate (inhibit) one target at a time. Activation
(inhibition) of different targets are explored through different configurations. As
an example, VAV1 activates either RAC1 or RHOA or CDC42 (see Figure 1) in
a configuration run. Activation of all the targets is guaranteed and covered in
different configuration runs.

For each configuration, the network dynamics has been simulated and moni-
tored for a total time of 250 ms. For each configuration run, CXCL12 is always
active. CXCL12 and ITGB2 have not delay time. In total, we run around seven
billion configurations on a cluster of 16 dual-core CPUs for a total of 278 hours
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run time. As a result, we filtered the configurations that lead to periodic oscil-
lations (0.06% of the total) from the configurations that lead to aperiodic oscil-
lations or no oscillation (41.7% and 58.33%, respectively). Among the periodic
oscillations, the majority of configurations (57.75%) lead to three oscillations
in the overall simulated time (250 ms), 21% oscillations lead to two oscillations,
while 11.14% and 9.45% lead to five and four oscillations, respectively. Such con-
figurations represent different settings of the unknown inputs (see Section 4.1)
that lead the model behavior close enough to what experimentally observed.
These results encourage us for further model refinements and deeper investiga-
tions of the case study.

6 Concluding Remarks

The paper presented a SystemC-based framework for modeling and simulation
of the signaling network controlling LFA-1 beta2 integrin activation mediating
leukocyte recruitment from the blood into the tissues. The framework relies on
the FSM model to formally model the behavior of each network element and on
the SystemC EDA language, which allows us to implement the network elements
as concurrent and reactive processes. The framework also consists of a testbench,
which generates configurations of values for each unknown parameters (e.g.,
molecular concentrations, activation delays, etc.). The framework simulates the
system for each configuration to identify the system properties that lead to any
experimentally observed behavior, such as the periodic oscillations of ITGB2 in
the leukocyte integrin activation case study. The proposed approach allows us
to handle the solution space complexity through different levels of simulation
accuracy and to apply EDA techniques and tools at the state of the art to
parallelize the SystemC simulation, both on GPUs and on clusters, to improve
the accuracy over the simulation time ratio.
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Abstract. Recent works have demonstrated the experimental feasibility
of real-time gene expression control based on deterministic controllers.
By taking control of the level of intracellular proteins, one can probe
single-cell dynamics with unprecedented flexibility. However, single-cell
dynamics are stochastic in nature, and a control framework explicitly
accounting for this variability is presently lacking. Here we devise a
stochastic control framework, based on Model Predictive Control, which
fills this gap. Based on a stochastic modelling of the gene response dy-
namics, our approach combines a full state-feedback receding-horizon
controller with a real-time estimation method that compensates for unob-
served state variables. Using previously developed models of osmostress-
inducible gene expression in yeast, we show in silico that our stochastic
control approach outperforms deterministic control design in the regu-
lation of single cells. The present new contribution leads to envision the
application of the proposed framework to wetlab experiments on yeast.

1 Introduction

Gene expression plays a central role in the orchestration of cellular processes.
The use of inducible promoters to change the expression level of a gene from
its physiological level has significantly contributed to the understanding of the
functioning of regulatory networks. Whereas the precise time-varying perturba-
tion of the level of a target protein has the potential to be highly informative
on the functioning of cellular processes, so far inducible promoters have been
used for either static perturbations or simple dynamic perturbations with lim-
ited accuracy (see [14] for a notable exception). Alternative solutions, based
on real-time control, have recently been proposed [11,12,16,18]. In real-time, the
level of the protein is observed and gene induction is modulated based on the dis-
tance to the objective. Thanks to the implementation of such external feedback
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loops, one can maintain the mean level of a fluorescent protein at some tar-
get value over extended time durations (set point experiments) and even follow
time-varying profiles with good quantitative accuracy (tracking experiments).
However, because of the significant cell-to-cell variability and the stochasticity
of gene expression, even if the mean level of the protein follows precisely the
objective, the performance of the controller is significantly worse when applied
and measured at the single cell level. Yet if one wants to understand the effect of
a perturbation of the level of a protein on a given process, one needs to control
the level of this protein at the single cell level, that is, one needs to perform
single cell control.

In [18] we have shown that single cell control is indeed effective: we have
obtained better control performances when controlling single cells individually
than when controlling the mean of the cell population. This slightly improved
performance has been obtained by controlling the level of a particular, randomly-
chosen cell using a deterministic model of gene expression. Given the stochastic-
ity of cellular processes, one might wonder whether better control performances
can be obtained by using a more appropriate stochastic model of gene expres-
sion. This question is actually not trivial: while the stochastic model is supposed
to be closer to reality, it requires the use of complex controller architectures and
the solution of computationally challenging optimization problems under tight
time constraints.

In this work we investigate to what extent stochastic control techniques out-
perform more traditional deterministic control approaches. To do so, we con-
sider a stochastic model of gene expression at the single cell level, alongside its
deterministic counterpart, and develop state estimators and controllers for de-
terministic and stochastic control. We then compare the efficiency of the two
approaches for set point regulation and tracking control in in silico experiments.
Methodologically, in this work we introduce a stochastic receding horizon design
approach of broad applicability, and a generalizable hybrid approach to state
estimation. To our knowledge this is the first work on single cell control that
accounts for gene expression noise.

The paper is structured as follows. In Section 2, we present the biological sys-
tem, alongside the control platform used in [18] that has motivated this work, as
well as the models used, inspired from [8,21]. In Section 3 we present control algo-
rithms for deterministic and stochastic control assuming full state observability,
whereas in Section 4 we present a state estimation approach for stochastic mod-
els. The performances of deterministic and stochastic controllers are compared
in Section 5 on two in silico control experiments.

2 Osmostress-Induced Gene Expression in Yeast

2.1 Hyper-Osmotic Stress Response in Yeast

In the budding yeast S. cerevisiae, an increase of the environmental osmolarity
creates a water outflow and a cell shrinkage. The adaptation response to such
an osmotic shock is mainly mediated by the high osmolarity glycerol (HOG)
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signal transduction pathway, leading to an increase of the cellular glycerol level
via various mechanisms, one of which is the upregulation of genes involved in
glycerol production. In [18], we have used the promoter of the osmoresponsive
gene STL1 to drive the expression of a yellow fluorescent protein, yECitrine,
so as to monitor the gene expression response of the cells to repeated osmotic
stresses (Fig. 1(a)).
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Fig. 1. The experimental setup. (a) Hyperosmotic shocks trigger the activation of the
Hog1 protein and the intracellular accumulation of glycerol via short- and long-term
adaptation responses (grayed). This system can be used to induce the production of
a protein of interest, here a yellow fluorescent protein (YFP), by repeatedly apply-
ing hyperosmotic stresses. (b) Real-time control platform: single-cell and population
control problems are defined respectively as controlling the fluorescence of a single
randomly-chosen cell and the mean fluorescence of all the cells.

2.2 Platform for Control of Osmostress-Induced Gene Expression

Using microfluidic devices one can grow yeast cells in monolayers over extended
time durations. Because cells can be trapped in imaging chambers, their response
can be tracked by fluorescence microscopy and their environment can be rapidly
changed, thus enabling the repeated application of osmotic shocks (Fig. 1(b)).
The addition of software for image analysis and for state estimation, and the
computation of a control strategy closes the feedback loop. Experiments typically
last 10-15 hours, with fluorescence measurements every 5-10 minutes.

2.3 Modeling Osmostress-Induced Gene Expression

We describe the osmostress induced gene expression by the reactions [21]

pSTL1 off c1u−−⇀↽−−
c2

pSTL1 on

pSTL1 on + CR
c3−⇀↽−
c4

CR.pSTL1 on

CR.pSTL1 on c5−→ CR.pSTL1 on +mRNA

mRNA
c6−→ mRNA+YFP

YFP
c7−→ φ

mRNA
c8−→ φ

(1)
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Here pSTL1 off and pSTL1 on represent the inactive and the active states of the
pSTL1 promoter, respectively. Furthermore, the interaction of pSTL1 on with
chromatin remodeling complexes (CR) enables the formation of the CR.pSTL1 on

complex and the effective transcription of mRNA, and the subsequent produc-
tion of the fluorescent protein YFP. The degradations of the mRNA and the
YFP protein follow first order kinetics. A change in the valve status from OFF
to ON leads to an increase in the osmolarity of the cells environment, in the
activation of the Hog1 protein, and in the increase of the effective input function
u affecting promoter transition rates. The modeling of these processes is detailed
in Appendix A.1, whereas the initial concentrations and the rate coefficients are
listed in Table 2 in Appendix A.2.

A stochastic interpretation of the above reactions leads to a Chemical Mas-
ter Equation (CME) model [6], characterized by a distribution accounting for
the probability that the state of the system (represented by variables denoting
molecular count) at time instant t ∈ R

+ is x(t), given its initial state x(0) and
an input signal u(s), s ∈ [0, t]. These stochastic semantics will be employed for
testing the behavior of the model in in silico control experiments: in particu-
lar, we will use (a discrete-time version of) the Stochastic Simulation Algorithm
(SSA) [6] to simulate the model. The dynamics can be approximated by a sys-
tem of coupled deterministic dynamical equations, known as the Reaction Rate
Equations (RRE) [6], operating over the concentrations x of the species as:

ẋ[i](t) =

M∑

j=1

vijaj(x(t), u(t)), i = 1, . . . , N. (2)

Here the quantity M is the total number of reactions and N is the total number
of species (x[i] being the ith). The vector vj := (vij)

N
i=1 is the state change vector

for each reaction Rj : in particular vij represents the stoichiometry coefficients,
defined as the change in the molecular population of a species Si caused by the
reaction Rj . Finally, the coefficients aj(·) are the reaction rates, derived from
the law of mass-action applied to (1): the control input in particular directly
affects the affinity term a1. The model in (2) is employed to synthetise a deter-
ministic controller that will be used as a reference to assess the performances of
the stochastic controller newly developed in this work. For the latter objective,
a second approximation of the CME dynamics is introduced in Section 4, in
order to derive an efficient state estimation scheme developed in the context of
noisy partial observations, which combines the original CME semantics with a
Chemical Langevin Equation (CLE) approximation.

3 Single-Cell Control with Full State Information

The control of gene expression is treated as a model-based optimal control prob-
lem. The goal of the control synthesis problem is to track a given profile of
protein concentration over a finite time horizon T . As in [18], we require that
the controller complies with particular timing constraints: the valve should re-
main ON at least 5 minutes and at most 8 minutes, and two stress inputs must
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be separated by at least 20 minutes (see Appendix A.1 for more details). These
constraints are imposed in order to prevent cell adaptation to hyperosmotic en-
vironments.

In this section, the availability of full-state information (namely, knowledge of
the values of all the variables) is assumed. Above we have formulated two models:
a stochastic discrete-state one and a deterministic continuous-state one. For both
cases, a control synthesis architecture based on the classical dynamic program-
ming (DP) paradigm is proposed. As the classical DP suffers from the curse of
dimensionality, we employ an approximate DP method called Fitted Q-Iteration
(FQI) [4,9], tailored here to the finite-horizon setting. The FQI algorithm applies
the idea of value iteration to the so-called Q-functions: a Q-function approxi-
mation is used in place of a value function approximation, and it allows for an
immediate computation of the optimal actions at each optimisation stage. The
FQI algorithm offers the possibility to employ powerful regression algorithms
from supervised learning to interpolate the Q-function computed over a finite
set of states to cover the entire state space [9].

Optimal Controller Synthesis via DP. For the controller synthesis problem,
we will adopt a discrete time simulation framework. Let us denote the state space
by X , the action space by U , and the space supporting the noise term by W . For
each x ∈ X we denote by U(x) ⊆ U the set of actions enabled at x. A stochastic
discrete-time dynamical system is described by the following difference equation:

xk+1 = f(xk, uk, wk), k = 1, . . . , T − 1, (3)

where xk ∈ X is the state of the system at time k, uk ∈ U(xk) is the action
taken at time k, and wk ∈ W is the noise variable with a specified distribution:
let us remark that the recursive dynamics in (3) can be equivalently expressed
by a conditional distribution xk+1 ∼ P (·|xk, uk) [10], which in our instance can
be derived from a discrete-time version of the CME that we have discussed in
the previous section.

A control policy is a sequential decision rule π = (πk)
T−1
k=0 , where πk : X → U

has to be chosen over admissible controls only: πk(x) ∈ U(x) for all x ∈ X .
The instantaneous cost ck(xk, uk) is comprised within an (expected) additive
performance criterion over a finite time horizon, which for a fixed policy π is
given by

Qπ
0 (x0, u0) := E

[

cT (xT ) +

T−1∑

k=0

ck(xk, πk(xk))

]

. (4)

Notice that the terminal cost, cT , depends only on the state variable. In the
following, we shall employ the cost function ck(xk, uk) = |YFPk −YFPref ,k|,
which penalises deviations from the reference profile YFPref ,k, and a null ter-
minal cost cT . We are interested in the policy π∗ that minimizes the cost:

Q∗
0(x, u) := inf

π
Qπ

0 (x, u) = Qπ∗
0 (x, u).
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This cost can be obtained via DP by the backward recursion, initialised at the
value cT and propagated as:

Q∗
k(x, u) = T Q∗

k+1(x, u), (5)

where T is an operator acting on functions H : X × U → R as follows:

T H(x, u) := c(x, u) + inf
u′∈U

EH(f(x, u, w), u′). (6)

An optimal policy can be computed as

π∗
k(x) ∈ argmin

u∈U
Q∗

k+1(x, u), k = 0, . . . , T − 1. (7)

The Q-iteration in (5)-(7) is computationally unfeasible for problems with ex-
tended state spaces, and in particular with the single-cell control problem we
are dealing with: we approximate its solution by means of a stochastic FQI [9].

FQI for the Stochastic Model. The FQI is a batch-mode algorithm computed
offline, which fits an approximation architecture to the Q-function defined over
X × U using a set of tuples

F = (xi, ui, cij , zij), i = {1, . . . ,mx}, j = {1, . . . ,mz}, (8)

where xi ∈ X is the instance of the current (or reference) state, ui ∈ U(xi) is
the corresponding action, zij ∈ X is a possible successor state under the action
ui, cij is the cost associated with a transition of the state from xi to zij, mx

is the number of current states, mz is the number of successor states that are
needed for the evaluation of the expectation operator in (6) using Monte-Carlo
integration.

We adopt an offline approach, owing to the computational complexity of the
optimisation problem and to the stringent online time requirements. Using the
batch of samples in (8), Algorithm 1 (in the Appendix) computes an approxi-
mation of the Q-function through a backward recursion from time instant T to
1. Each iteration of the algorithm consists of the following two steps:

– In the first step, the backward recursion for the Q-function at time k + 1 is
evaluated using a Monte-Carlo integration. The operator T is approximated
by an empirical operation T̂F as shortly defined in (9): namely the value of
T Q̂k+1 is estimated as T̂FQ̂k+1, for all x

i, i = 1, . . . ,mx.
– The second step involves fitting the approximation function Q̂k to T̂F Q̂k+1:

the optimal fit Q̂k is achieved by means of a regression algorithm.

The overall performance and computational complexity of the FQI method
heavily hinges on the choice of the regression algorithm. The supervised learning
paradigm offers a wide range of algorithms that can be used for regression [3].
We have made use of the Fixed-Size Least-Squares Support Vector Machine
(LS-SVM) [5], due to its computational efficiency and its powerful capability
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of generalisation. The LS-SVM model provides two parameters for tuning: the
squared bandwidth σ2 and the regularization parameter γ, which have here been
tuned manually through trial and error (but could be as well be optimised over
with a more sophisticated alternative). These parameters are crucial to determine
the trade-off between the training error minimization, the smoothness and the
generalization. Algorithm 1 is detailed in the Appendix: there, we assume that
the regression algorithm is fixed, and denote by G the corresponding space of
test functions G : X × U → R. For a given tuple F we denote

T̂FH(xi, ui) := inf
u′∈U(xi)

1

mz

mz∑

j=1

[
cij +H(zij , u′)

]
(9)

and the corresponding 2-norm as ‖H ′−H ′′‖F :=
∑mx

i=1

∣∣H ′(xi, ui)−H ′′(xi, ui)
∣∣2.

FQI for the Deterministic Model. A discrete-time deterministic model is a
special case of (3) where the update law f does not depend on the noise variable
w. In our work, we refer to the deterministic dynamics discussed in (2), after
time discretization. For this simpler setup, the DP operator takes the form

T H(x, u) = c(x, u) + inf
u′∈U

H(f(x, u), u′),

and no expectation evaluations are needed. Thus, we have mz = 1, so that only
one successor state is needed for each instance of the state. As a result,

T̂FH(xi, ui) = inf
u′∈U(xi)

[
ci +H(zi, u′)

]
.

One can therefore directly tailor Algorithm 1 to the deterministic case.

Practical Implementation of the Stochastic FQI via Receding Horizon
Strategy. Although the FQI for the deterministic model works well within our
setup, the FQI algorithm for the stochastic model over the entire experimental
duration (denoted by the time horizon T ) has been found to be computationally
infeasible, since parameters achieving a good generalisation for the regression
algorithm over the complete time horizon T are not easily found, and because
of the Monte-Carlo computations that are instead absent in the deterministic
case. In order to overcome this issue, we have embedded the FQI algorithm into
a receding horizon strategy, resulting in a stochastic receding horizon scheme
(see Algorithm 2 in the Appendix) [1]. In short, over a finite prediction horizon
Tp � T , the Q-functions are approximated offline using Algorithm 1. After the
computation of the optimal control sequence and the application of the current
control action, the horizon is shifted by one sample and the optimisation is
performed again, until the whole horizon T is covered.

4 Partial Information Case: Estimation of System States

Typically not all state variables of a biological model are observed directly. This
is in particular the case for the yeast osmotic shock response system, where only
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protein levels are observable via noisy measurements:

yk = YFPk + ek, ek = (ea + eb ·YFPk)ηk, (10)

where for k = 1, . . . , T , yk is the measurement at time k for a given cell, and ηk
are i.i.d. standard normal random variables, whereas ea and eb are the intensity
of the additive and multiplicative parts of the measurement noise.

In practice, the state-feedback control must rely on estimates of the state that
are generated online from the available measurements. Here we develop a strat-
egy for real-time state estimation with reference to yeast osmotic shock response.
We observe that the strategy can be applied to other biological scenarios.

We start from the continuous-time stochastic Markov model of the CME,
which is expressed in terms of discrete-valued state variables x. One possible
approach for estimating state x from measurements yk is particle filtering [2]. In
particle filtering, N hypothetical evolutions of the system state are randomly
simulated up to the next measurement. When the latter becomes available,
state estimates are produced by weighting the simulated trajectories, where the
weights quantify the relevance of every simulated trajectory to the new (partial)
state measurement. Since particles have to explore a large (possibly infinite)
state space, in practice particle filtering requires many (e.g. N > 1000) simula-
tions of the system, which makes it poorly suited for online applications. In [2],
we have proposed an alternative approach using Unscented Kalman Filtering
(UKF) [19] and based on the CLE, a continuous-valued approximation of the
CME model [7]. In the current context, this approach is partly inappropriate,
since the promoter state variables are inherently discrete (they take values 0 or
1 only). In order to combine the flexibility of particle filtering with the compu-
tational advantages of UKF, we propose to limit the Langevin approximation to
the mRNA and protein dynamics.

We first note that promoter dynamics do not depend on mRNA and protein
abundance. Let us partition the state variables as x = (xd, xc), where

xd = (pSTL1 off , pSTL1 on , CR · pSTL1 on), xc = (mRNA,YFP).

Consider a model where the dynamics of xd (not depending on xc) are left
unchanged (i.e., follow the original CME), while for any given trajectory of xd,
the dynamics of xc are approximated by the Langevin equation

dxc[i] =

M∑

j=1

vcijaj(x
c, xd)dt+

M∑

j=1

vcij

√
aj(xc, xd)dWj , i = 1, 2. (11)

Here, for j = 1, . . . ,M , Wj are independent Wiener processes and vc·j is the
subvector of vj corresponding to xc. The relevance of the Langevin approxima-
tion to mRNA and protein dynamics has been discussed in [7] and, for filtering
applications, it has been assessed on a different but relevant system in [2]. Note
that, while xd remains discrete-valued, xc may now take continuous values.

Based on this hybrid model, a filtering procedure iterating over subsequent
measurement indices k combining importance (particle) filtering with UKF is ob-
tained as follows. At time tk−1, let x̂

c
k−1|k−1 be the estimate of the current state
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xc based on measurements y0, . . . , yk−1, and let x̂d,i
k−1|k−1, with i = 1, . . . , N , be

N putative values of the current state xd (with N small, see below). For every i,

a hypothetical discrete-state trajectory x̂d,i
k−1(t), with t ∈ [tk−1, tk), is generated

by stochastic simulation of the discrete-state dynamics starting from x̂d,i
k−1|k−1.

Over the same time horizon, for every i, mRNA and protein state predictions
x̂c,i
k−1(t) are computed along trajectory x̂d,i

k−1(t) via UKF. When the next protein
measurement yk becomes available, based on measurement model (10), an im-
portance weight wi, proportional to the likelihood of yk given the hypothetical
state value x̂c,i

k−1(tk), is computed for every particle i. Note that weights wi play
the role of a-posteriori probabilities of the different particles. Also, continuous-
state predictions x̂c,i

k−1(tk) are updated to estimates x̂c,i
k|k of the current state

xc by integrating the new piece of information provided by y(tk), in accordance
with the so-called measurement-update step of UKF. At this stage, the ensemble
(Conditional Expectation) estimate x̂c

k|k as well as an ensemble (Maximum-A-

Posteriori) estimate x̂d
k|k for the discrete state are computed as

x̂d
k|k = arg max

z∈{0,1}3

∑

i

1z
(
x̂d,i
k−1(tk)

) · wi, x̂c
k|k =

∑

i

x̂c,i
k|k · wi, (12)

where 1z(·) is the indicator function. For control purposes, these are the estimates
that are passed to the controller with entries of x̂c

k|k rounded to the nearest
integers. To proceed for the next iteration of the algorithm, the new putative
values of the discrete state x̂d,j

k|k, with j = 1, . . . , N , are set equal to the result ofN

independent random extractions from the pool of particles {x̂d,i
k−1(tk)}i=1,...,N ,

with sampling probabilities equal to wi (resampling step of particle filtering).
The whole procedure is summarized in Algorithm 3 in the Appendix.

The initialization of the procedure at the starting time k = 0 is performed
based on the a priori statistics of xd and xc. Given the small (finite) discrete
state space of xd, a number of particles N much smaller than traditional particle
filter implementations is expected to suffice. Empirical evaluation (not reported
here) has led to select N = 50, a value above which no significant improvement
of filtering performance has been observed. The implementation of the UKF pro-
cedure is analogous to that of [2] and is omitted for brevity. We just note that,
at every step k and for every particle i, UKF requires the numerical solution
of 2nc + 1 ODEs over the time span [tk−1, tk), with nc = 2 being the number
of continuous states. The solution of these ODEs can be carried on in paral-
lel with the simulation of x̂d,i

k−1. Contrary to the control module, resorting to
time discretization is not needed, although it can be considered towards higher
computational efficiency.

5 Results

5.1 Deterministic and Stochastic Control in the Full Information
Case

In this section we present the results of the control of gene expression to track
time-homogeneous and time-varying target profiles, using the deterministic and
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stochastic controllers detailed in Section 3. In order to test the effectiveness of
the proposed algorithms, the controller trained using the deterministic FQI was
first tested over the deterministic RRE model. As expected in this case, the
controller has successfully been able to track the signals (see Appendix A.4 for
implementation details). To test the control performance in a realistic biological
context, this controller has then been used over the stochastic CME model. At
the maximum, the controller is able to track the reference signal to within a
deviation of 10% as shown in Fig. 2(a)(b). The deterministic controller has then
been replaced with the stochastic controller (see Appendix A.3 for implementa-
tion details) and it has been found that the stochastic controller is able to track
the reference signal to within a deviation of 5% from the reference trajectory
(Fig. 2(d)(e)).
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Fig. 2. Comparison of stochastic and deterministic control schemes in the full infor-
mation case, run over the probabilistic model. (a)(b) Deterministic controller tracking
the desired profiles with a shown deviation of 10% from reference trajectories. (d)(e)
Stochastic controller showing improved performance with a deviation of 5%. (c)(f)
Monte-Carlo simulations validating the superior performance of the stochastic con-
troller over its deterministic counterpart: the histogram plots the number of closed-loop
trajectories falling within specific error bounds from the reference trajectory.

In order to get a quantitative comparison of the performance of the stochastic
controller over the deterministic controller, 100 runs of each algorithm have
been performed using Monte-Carlo simulations. To measure the quality of the
control, we have used ε := 1

T−T0

∑T
k=T0

|Y FP k − Y FP ref,k| /Y FP ref,k, where
T0 is the time it takes the system to reach the desired trajectory. In practice, we
have chosen T0 = 400 and T0 = 300 minutes for the set point and signal tracking
experiments, respectively. These results are presented in Fig. 2(c)(f). It is evident
from the figure that the controller developed considering the stochastic nature
of the gene expression yields superior performance than the controller developed
ignoring it.
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5.2 Stochastic Control with Partial Information

The control laws obtained in the full information case are functions of the current
state xk: at each time k it is supposed that the controller observes the exact value
of the full current state xk and that it applies the appropriate action. In reality
the measurements yk are limited to the fluorescent protein. The hybrid filter
detailed in Section 4 has been used to extract information about the states of
the gene expression network using 50 particles. The filter does not succeed to
accurately track the switching of the discrete states of the promoter but is able to
track the mRNA and YFP protein concentrations fairly accurately (Fig. 3(a)).
The filter has then been used in conjunction with the stochastic controller: the
simulation results presented in Figure 3(b)(c) show that the controller is robust
to state estimation errors and is able to successfully track the reference profiles.
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Fig. 3. Results of the stochastic control scheme run with the hybrid filter in the partial
information case. (a) State estimation shows accurate results for mRNA and YFP,
whereas the filter faces difficulties estimating the switching action of the promoter.
(b)(c) Controller robustness over state estimation errors and ability to track reference
signals to within a deviation of 5%.

6 Discussion and Conclusions

The main contribution of this paper is the development of a complete model-
based control framework adapted to stochastic models of gene expression. Al-
though the identification of stochastic models of gene expression has recently
been extensively studied, the control of gene expression using stochastic models
has been barely addressed so far. This goal requires the non-trivial development
of integrated stochastic state estimators and controllers. We have demonstrated
in silico that stochastic control has the potential to deliver superior performances
in comparison to a deterministic counterpart explored in earlier literature. This
work paves the way for the development of an experimental platform for single-
cell control based on optogenetics solutions, which enable the independent stim-
ulation of live single cells in real-time [16,20].
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A Appendix

A.1 Implementation Constraints on the Control of Gene Expression

In order to limit cell adaptation to hyperosmotic environments, we delimit the
duration of hyperosmotic shocks to 8 minutes and impose at least a 20 minute
time lag between two successive shocks. We also require that shocks last at
minimum 5 minutes.

As shown in [18], there is a known lag between the valve actuation and the
actual change of osmolarity of the cellular environment in the imaging chamber.
Formally, for a given osmotic shock, we denote by ton and toff the times at which
the valve switches to ON and to OFF positions, respectively, and represent the
osmolarity h in the imaging chamber as follows (see Figure 4).

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t < ton + 2,

t− (ton + 2) if ton + 2 < t < ton + 3,

1 if ton + 3 < t < toff + 2,

1− (t− (toff + 2))/4 if toff + 2 < t < toff + 6,

0 otherwise.

(13)

As in [8,13,17], we assume that the activity s of the Hog1 protein depends on
the osmolarity of the environment h as follows.

ṡ(t) = κh(t)− Γs(t), (14)
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Fig. 4. Temporal evolution of the osmolarity of the cellular environment h, of the Hog1
activity s, and of the promoter activation stochastic rate u, as a function of the position
of the microfluidic valve (0/1: normal/hyper-osmotic medium)

with s(0) = 0; we further assume that the pSTL1 promoter activation stochastic
rate u is a function of the Hog1 activity s, following Hill-type kinetics as

u(t) =
(s(t) + a0)

nH

Kd
nH + (s(t) + a0)

nH
. (15)

Note that we assume here that there is no significant stochasticity in signal
transduction. The rate parameters used for model simulation are listed in the
table below. Also in practice, because the controller uses a discrete time repre-
sentation, we refer to the input at instant k as uk = u(tk).

Table 1. Rates of the activation function

Parameter Value Parameter Value

κ 0.3968 (a.u.) Γ 0.9225 (a.u.)
Kd 0.34906 (a.u.) a0 0.0027998 (a.u.)
nH 2.1199 (a.u.)

A.2 Parameters Employed in the Simulation and Analysis of the
Model

The rate parameters and initial concentrations used for the simulation of the
model are listed in the two tables below.
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Table 2. Initial concentrations and rates of the stochastic gene expression network

Parameter Value Parameter Value

(pSTL11off )0 1 (a.u.) (pSTL11on )0 0 (a.u.)
CR0 102.51 (a.u.) (CR · pSTL11on )0 0 (a.u.)
mRNA0 0 (a.u.) Y FP0 0 (a.u.)

c1 23.604 (min)−1 c5 12.256 (min)−1

c2 180.03 (min)−1 c6 0.36113 (min)−1

c3 0.024559 (min)−1 c7 0.025091 (min)−1

c4 0.9384 (min)−1 c8 0.003354 (min)−1

Table 3. Parameters of the measurement model

Parameter Value Parameter Value

ea 1.0115 (min)−1 eb 0.0037 (min)−1

A.3 Implementation Details of the FQI Algorithm Over the
Stochastic CME Model

For the stochastic receding horizon control approach, the samples xi have been
drawn corresponding to a single system trajectory. The trajectory has been gen-
erated by simulating the system using a discrete time version of the stochastic
simulation algorithm. The intrinsic variability results from the stochasticity of
the CME.

For each xi, 250 tuples (mx = 250) of the form (xi, ui) have been generated.
For each tuple, the system has been simulated 100 times (mz = 100) to obtain
the next state zij to evaluate the Monte-Carlo integration. The cost cij has
been computed as explained in main text and a single batch of 25000 tuples
(Fs = 25000) has been obtained. The optimization has been performed for a
prediction horizon Tp of 8 minutes and for a time horizon T of 700 minutes. The
discretization interval Δt has been set to 0.008 min. The squared bandwidth σ2

and the regularization parameter γ of the regression algorithm have been tuned
by a trial and error method and the final parameters have been reported below.

Table 4. Tuned LS-SVM parameters to track time varying and time constant profiles
using the controller trained on the stochastic CME model

Squared Bandwidth (σ2) Regularization Parameter (γ)

600000 500
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The stochastic FQI and receding horizon algorithms respectively are detailed
below.

Algorithm 1. Stochastic Finite Horizon FQI (T , F)

1: Initialize the parameters of the regression algorithm σ2 and γ and set Q̂T to 0
2: for k := T − 1 to 0 do
3: Estimate T̂F Q̂k+1.
4: Find the fit that minimizes the 2-norm loss by means of a regression algorithm

Q̂k(x, u) = argmin
G∈G

‖G− T̂F Q̂k+1‖F .

5: end for

Algorithm 2. Stochastic Receding Horizon Control (T , Tp, F)

1: for k:=1 to T do
2: Initialize the parameters of the regression algorithm σ2 and γ and set QT to 0
3: for l := k + Tp to k do
4: Estimate T̂F Q̂l+1.
5: Find the fit minimizing the 2-norm loss by means of a regression algorithm

Q̂l(x, u) = argmin
G∈G

‖G− T̂F Q̂l+1‖F .

6: end for
7: end for

A.4 Implementation Details of the FQI Algorithm Over the
Deterministic RRE Model

For the deterministic control approach presented in Section 3, 400 tuples have
been generated corresponding to a single trajectory. The trajectory has been

Table 5. Tuned LS-SVM parameters to track a set-point of 1500 (a.u.) using the
controller trained on the deterministic RRE model

Time Horizon (T ) Squared Bandwith (σ2) Regularization Parameter (γ)

700 - 651 40000 10−1

650 - 601 40000 10−2

600 - 551 40000 10
550 - 501 40000 200
500 - 451 40000 1
450 - 401 40000 200
400 - 351 40000 100
350 - 301 40000 200
300 - 251 40000 100
250 - 201 40000 300
200 - 151 40000 100
150 - 1 40000 100
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obtained by simulating reactions of the gene expression network using the RRE.
A time horizon of 700 minutes has been considered and the regression algorithm
has been implemented using the LS-SVM MATLAB toolbox in [15]. The Fixed-
Size LS-SVM model provides two parameters for tuning: the squared bandwidth
σ2 and the regularization parameter γ. The parameters have been tuned manu-
ally using a trial-and-error method, and the selected ones are reported in Tables
5 and 6 below.

For the deterministic control approach, the deterministic version of the FQI
algorithm has been trained and implemented over the RRE model. The simu-
lation results in Figure 5 show that the system is able to track the reference
profiles within a maximum deviation of 5%.

Table 6. Tuned LS-SVM parameters to track the sinusoidal reference signal using the
controller trained on the deterministic RRE model

Time Horizon (T ) Squared Bandwith (σ2) Regularization Parameter (γ)

700 - 651 400000 50
650 - 601 40000 9
600 - 551 20000 1
550 - 501 400000 30
500 - 451 40000 596
450 - 401 40000 800
400 - 351 40000 300
350 - 301 100000 1
300 - 251 100000 11
250 - 201 100000 5
200 - 1 100000 4000
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Fig. 5. Results for the deterministic control scheme in the full information case. The
deterministic controller tracks time-varying and constant profiles within a deviation of
5% from the reference trajectory.
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A.5 Hybrid Estimation Algorithm

Algorithm 3. Hybrid Filter for Estimation of the Model States

1: Initialize x̂d,i
0|−1(0), x̂

i,c
0|−1(0), and wi, with i = 1, . . . , N , s.t.

∑
i wi = 1

2: for k = 0, 1, 2, . . . do
3: Acquire new measurement yk
4: Compute and normalize weights wi ∝ log p

(
yk|x̂c,i

k−1(tk)
)
, with i = 1, . . . , N

5: Compute UKF estimate x̂i,c
k|k from x̂i,c

k−1(tk) and yk, with i = 1, . . . , N

6: Compute and provide ensemble estimates (12)
7: Define N new particles x̂i,d

k|k by resampling particles {x̂i,d
k−1(tk)} with prob. {wi}

8: Simulate x̂i,d
k (t), t ∈ [tk, tk+1), from x̂i,d

k (tk) = x̂i,d
k|k, with i = 1, . . . , N

9: Compute UKF prediction x̂i,c
k (t) along x̂i,d

k (t), t ∈ [tk, tk+1), with i = 1, . . . , N
10: end for



A Rule-Based Model of Base Excision Repair�
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Abstract. There are ongoing debates in the DNA repair community on
whether the coordination of DNA repair is achieved by means of direct
protein-protein interactions or whether substrate specificity is sufficient
to explain how DNA intermediates are channeled from one repair enzyme
to the other. In order to address these questions we designed a model
of the Base Excision Repair pathway in Kappa, a rule based formalism
for modeling protein-protein and protein-DNA interactions. We use this
model to shed light on the key role of the scaffolding protein XRCC1 in
coordinating the repair process.

1 Introduction

A modern trend of Systems Biology sees high-throughput experiments being set
up, resulting in an inflation of the publication volume in Biology and medicine1.
As a consequence it has become impossible for a biologist, specialist of a certain
system, to remain up-to-date with all relevant information pertaining to her
topic of interest. To counter for this problem, biologists make an intensive use
of review papers which are regularly published on a given system2.

As an alternative to classical reviews, which are static objects with a natural
obsolescence, we propose to use rule-based modeling [1, 2] to designing formal
updatable reviews that are at the same time executable [3, 4].

More specifically, this paper presents the first executable model of the Base
Excision Repair (BER) pathway that includes protein-DNA interactions. The
outline of the paper is as follows: in Section 2 we briefly present the BER sys-
tem (reviewed for instance in Ref. [5, 6]), we discuss our tools and methods in
Section 3 and we present some results in Section 4.

2 Base Excision Repair

Figure 1 gives a possible unfolding of the abstract Base Excision Repair (BER)
pathway: Various types of damage (A) may modify a nucleotide (oxydation,

� This work has been partially supported by the French National Research Agency
(ANR), project ICEBERG.

1 In 2000 about 500,000 papers were published in Biology and Medicine. In 2012 this
number had escalated to 1,000,000 (source Pubmed.org).

2 There are 520 review papers mentioning Base Excision Repair in the title or abstract
(source Pubmed.org).

P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 173–195, 2014.
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Fig. 1. Abstract Base Excision Repair pathway

deamination) and induce a mismatch in the DNA (B.1) or a single strand break
(C.1). Enzymes from the family of DNA Glycosylase may recognize mismatches
and excise the modified base, creating an Apurinic (AP) site (B.2). Enzymes
with AP endonuclease capacity may open DNA at the lesion locus, generating a
single strand break. End cleaning enzymes may prepare the 3’ and 5’ moieties for
the polymerase step (C.2). Eventually DNA ligases can seal the DNA backbone
(D) to retrieve a well-formed DNA duplex.

This scenario corresponds to only one possible unfolding of BER and the story
could diverge at various points: for instance a direct single strand break may
induce the loss of more than one nucleotide. Also when the end cleaning enzymes
fail to prepare a proper substrate, some polymerases may synthesize more than
one new nucleotide and trigger an alternative long patch repair pathway.

Furthermore this map is abstract as several enzymes may engage in the var-
ious catalytic steps that are described. For instance the transition from (B.1)
to (B.2) or directly (C.1) is realized by different glycosylases, the identity of
which depends on the type of nucleotide modification that has occurred. Ten
glycosylases have been found so far in higher eukaryotic cells, we modeled the
activity of four of them and used UDG (for uracil excision in U/G mismatches)
as default enzyme in our simulations. We give a more concrete description of the
BER enzymes in Figure 2.

Together, Figure 1 and Figure 2 give an almost complete view of BER and
ODE based models have been proposed to formalize this part [7, 8]. However they
only reveal the catalytic steps that transform DNA, and do not take into account
important proteins that have no direct enzymatic activity but are important to
coordinate the repair process. More importantly, BER enzymes do not behave
as typical enzymes that often have little affinity for their products. We will see
that most enzymes of Fig. 2 have a non negligible affinity for various DNA
intermediates, and this feature is probably critical for channeling DNA products
to the next enzyme in the pathway, through protein-protein or protein-DNA
interactions [9].
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Fig. 2. A more concrete view of BER

This last point is the key to our modeling project, since (1) it is difficult to
model as it entails a combinatorial explosion in the number of variables of the
model, and (2) these complex interactions can give us insight into the coordina-
tion of the repair pathway i.e passing the baton between the different enzymes
of Fig. 2.

Coordination is not so much an issue of efficiency, since high enzymatic
turnover would probably yield a faster global repair rate. Figure 1 shows that
the intermediate substrates (B.2), (C.1), (C.2) and (D) of the repair pathway
are cytotoxic. In a nutshell, AP sites (a missing base), gapped and nicked DNA
induce genomic instability and BER has probably evolved so as to prevent these
substrates from being accessible to enzymes that may trigger apoptosis if such
damage is detected (such as Topoisomerases).

The main protein that is believed to act as a coordinator of BER is the X-Ray
Cross Complementing protein 1 (XRCC1). Although it has no known catalytic
activity, this protein can bind to all BER enzymes that are downstream of the
glycosylase. It is noteworthy that proteins interacting with XRCC1 are also those
operating on the cytotoxic substrates. It is therefore assumed that XRCC1 acts
as a scaffolding protein that coordinates BER, as well as a patch over the lesion
to protect it from the environment.

We give Figure 3, the protein-protein and protein-DNA contact map that
we inferred from the literature. The strength of the interaction is depicted here
through various line widths and the dissociation constant (Kd) is shown. Dotted
lines represent known interactions the Kd of which could not be found. This
map makes apparent that several proteins compete for the same family of sub-
strates. For instance APE1 and POLβ tend to bind to gapped DNA. Since DNA
substrates are complex polymers one cannot assume that binding to a partic-
ular DNA substrate is exclusive of any other binding. Notably, it is assumed
that XRCC1 can stay connected to gapped DNA throughout the whole repair
process.
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Fig. 2.

3 Methods

Data. We have assembled qualitative (mechanisms of action) and quantitative
(concentration, dissociation constant, catalytic rates) data from 59 papers per-
taining to BER or to its participants3. For lack of space we do not include the
complete references in the present paper but they are included in the model
repository as an annotated bibtex file.

Quantitative data are particularly difficult to find. For testing the model un-
der plausible conditions, we extracted BER protein copy numbers from Ref.[10]
which evaluates protein concentration for HeLa cell extracts. Note that we ex-
pect repair accuracy to be robust with respect to variation of protein numbers,
as the chromatin state might create local concentration effects on DNA [11].

Catalytic rates for enzymatic activities are easier to find although product
inhibition (enzyme with a non negligible binding affinity for its product), which
is typical of BER, complicates the interpretation of the rates which are often
given in terms of steady state kinetics. More precisely, as can be seen in Fig. 3,
most BER enzymes exhibit a scheme of the form:

E + S ↔Kd
ES →kchem

EP ↔K′
d
E + P

3 We thank Dr. S. Mitra (Houston Methodist Hospital), Dr. D. M. Wilson III (National
Institute on Ageing), Dr. S. H. Wilson (NIEHS, NIH) and Dr. K. Caldecott (Univ.
Sussex), for direct discussions which directed us to relevant publications.
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with a reasonably low K ′
d. Experimental catalytic rates kcat are measures of the

production speed of P , which, in the above case, is slowed down by product
inhibition. Some experiments [12–14] give a measure of kchem for the above
scheme, but most paper will only give kcat (which underestimates the hidden
kchem). Whenever kchem is not available we assumed the scheme:

E + S ↔Kd
ES →kcat E + P ↔K′

d
EP

which simply lets the enzyme rebind to its product according to the given K ′
d

when available.
Yet, dissociation constants for protein-protein and protein-DNA interactions

are also complicated to find. Whenever facing unknown data, we used the rate
of a similar interaction. For instance we assumed that all glycosylases have the
same facilitated diffusion on DNA, using data published for hOGG1 [15].

Importantly, KaSim requires concrete on and off rates for complex formation.
When only steady state dissociation constants are known, we used a default
kon (randomized in simulations) to deduce koff (Kd = koff /kon). Importantly,
complex formation occurring in a uni-molecular fashion are assumed to be fast
(kuni = 104s−1). Whenever the kinetic data was unknown for a given reaction,
we used a default kinetic rate k (taken from realistic values for the type of
reaction), and randomized it uniformly in the interval [ k

10 , 10 ∗ k]. The list of
complete kinetic rates is provided in the Supplementary Data A.2.

Rule-Based Modeling. The input language of KaSim simulator is Kappa [2],
a (rule-based) graph rewriting language, the syntax of which is recalled in Supp.
Data A.1.

Figure 4 illustrates how DNA polymers are encoded in our model: (A) an
apurinic -AP- site and (B) a one nucleotide gapped DNA. The ports on top
of DNA nodes allows one to connect various BER enzymes. Internal states are
mapped to the corresponding port via a green edge. There are a few key modeling
features to notice. Our DNA nodes denote either physical DNA bases, or an
empty slot on DNA. Hence a DNA node can either be part of the (physical)
DNA backbone, as in the encoding of (A), or be a place holder for enzymes that
recognize holes on DNA, as in the red part of the encoding of substrate (B). In
the latter substrate, one may read from the Kappa encoding that the middle
node is in fact a gap on DNA because it is no longer ligated to the 3’ and 5’
neighbors (internal state of the e3 and e5 ports set to NA). Notice that the e3
port of upper left DNA node of part (B) is set to P, indicating that the 3’ end of
the gap bears a phosphate group (that can be for instance recognized by APE1).

Simulation. Simulations of the model were conducted on a dedicated HP server
(1.60GHz/4-cores) with 128 GB of RAM. Iterations of simulations under various
parameters and randomization of kinetic rates are piloted by a python script
(included in the model repository) which requires python 2.7 and simplejson.
KaSim 3.5 is necessary to run simulations and is available on github4.

4 https://github.com/jkrivine/KaSim

https://github.com/jkrivine/KaSim
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Fig. 4. Two oligonucleotides in Kappa

Unless specified otherwise, simulation results are obtained as the average of
16 simulations ran on a DNA substrate of 100,000 bp randomly generated accord-
ing to the distribution: (0.6 : GC, 0.4 : AT). In addition to the DNA substrate,
initial number of BER enzymes are 2200 UDG; 30,000 APE1; 3,000 POLβ; 400
LIG3 and 1200 XRCC1 (ratios are taken from Ref. [10] and normalized so that
the lowest number of potentially modeled enzyme (TDG) is greater than 100).
Simulations are run without any damage on DNA for 2 seconds (biological time
unit) after which we induced 2% of cytosine deamination, generating U/G mis-
matches on DNA. Simulations are conducted until complete repair is observed,
on average after t ∼ 6 minutes (biological time). Efficiency of simulations is
discussed in the Supp. Data A.3.

Causality Analysis. Causality analysis of Section 4 were performed by en-
abling KaSim’s causal tracking of the ligation rule, on simulations on a 25K
bp DNA substrate. From a single simulation, KaSim computed 189 causally or-
dered traces (causal flows) leading to the ligation steps occurring between t=20s
and t=80s (ligation activity is constant after 10s, data not shown). We then
performed weak compression [16] that quotiented the number of causal flows to
122 (36% compression) incompressible scenarios5.

5 Incompressible flows are partial ordering of simulation events with the property that
all the events are (transitively) a cause of the final event (the observable) and no
trace containing a strict subset of these events may still contain the observable.
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4 Results

A Kappa Model of Base Excision Repair Including Protein-DNA
Interactions. We have assembled the first executable model of BER that in-
corporates protein-protein and protein-DNA interactions as well as enzymatic
activity on DNA substrates. The actual model contains the interaction rules for
4 glycosylases (UDG, TDG, NEIL and OGG1); the AP-endonuclease (APE1)
and the end cleaning enzyme PNKP; the polymerase (POLβ) and the ligase
(LIG3). The interactions with scaffold protein XRCC1 is also included. Various
DNA substrates for initial conditions can be generated using a python script.

The complete model as well as python and json configuration files are accessi-
ble as a github repository6 and can be tested under the requirements specified in
the Methods section. The repository also contains the complete listing of rules
with a short description, separated by file7. The Kappa syntax, used to define
the rules is described in Supp. data.

The rules of the model essentially implement the catalytic activities reported
in Fig. 2 as well as the interactions depicted in Fig. 3 using the encoding of DNA
shown in Fig. 4.

We used the module sanity.ka to detect invariant violation during the elab-
oration of the model. We included this file in the model repository because it
can be used to test further invariants. The idea is to write rules of the form
I → I + Err() where I is an invariant violation (for instance an invalid DNA
polymer) and Err() is an “error” protein. We can then use the causality analysis
features ofKaSim to have an explanation on how Err() (and hence the invariant)
was created.

DNA Glycosylase. For the simulations presented in the present paper, we focused
on the UDG glycosylase the behavior of which is similar to TDG, the other mono-
functional glycosylase of the pathway (although rates differ greatly, TDG having
a very slow chemical step, followed by a strong product binding).

The rules pertaining to glycosylases interactions are given in the DG.ka and
sliding.ka files of the model repository. We describe below the main ones, and we
give their graphical description in Fig. 5.

Glycosylases are assumed to use facilitated diffusion on DNA (i.e. a random
walk on DNA) to find mismatches at a rate that exceeds what can be achieved
by mere random binding after diffusion in the nucleus (see for instance [15]).

Facilitated diffusion can be simply modeled by a rule that enables the glyco-
sylase to ”jump” to the next base 3’ or 5’ to its current position:

’slide 3’ DG(dbd!1, cat), DNA(dg!1,e3!2), DNA(dg , e5!2) -> \

DG(dbd!1, cat), DNA(dg , e3!2), DNA(dg!1,e5!2) @ ’DG_DNA_slide’

’slide 5’ DG(dbd!1, cat), DNA(dg , e3!2), DNA(dg!1,e5!2) -> \

DG(dbd!1, cat), DNA(dg!1,e3!2), DNA(dg , e5!2) @ ’DG_DNA_slide’

6 https://github.com/ramdiv/ber-model
7 https://github.com/ramdiv/ber-model/blob/master/list.md

https://github.com/ramdiv/ber-model
https://github.com/ramdiv/ber-model/blob/master/list.md
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Table 1. Kappa files of the model. The notation (+x) indicates additional rules not
used in simulations.

File name rules # binding and catalytic activity

DG.ka 13 (+7) Glycosylase activities for UDG, TDG, NEIL and OGG1
APE1.ka 11 AP, gaped and nicked DNA; pho’diesterase; endonuclease
POLb.ka 17 (+4) gaped and nicked DNA; dRP lyase; polymerase
PNKP.ka 3 gaped DNA; phosphatase
XRCC1.ka 29 (+2) XRCC1 (in xrcc dimer.ka), APE1, POLb, PNKP, LIG3 and DNA
LIG3.ka 8 gaped and nicked DNA ; ligase

sliding.ka 2 (+1) facilitated diffusion on DNA (approx. in alter sliding.ka)
damage.ka 3 deamination and direct single strand break
sanity.ka (+9) sanity check
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Fig. 5. Main DNA Glycosylase rules

Note that sliding is no longer possible when the cat port (representing the
catalytic pocket of the DG) is bound (to a mismatch), as a consequence of the
following rule:

’UDG anchors DNA mismatch’ \

DNA(e3~lig?, base~U?, dg!1, e5~lig?), DG(dbd!1, cat, type~U) -> \

DNA(e3~lig?, base~U?, dg!1, e5~lig?), DG(dbd, cat!1, type~U) \

@ ’DG_DNA_anchors’

Once anchored on the mismatch, the DG flip the faulty base into its catalytic
pocket for excision:

’UDG mismatch excision’ \

DG(cat!1, type~U), DNA(e3~lig!_, dg!1, base~U?, e5~lig!_) -> \

DG(cat!1, type~U), DNA(e3~lig!_, dg!1, base~AP?, e5~lig!_ ) \

@ ’UDG_excision’
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An important point of the above rule is that the DNA node is still ligated
to the 3’ and 5’ neighboring base pairs after the nucleotide excision. This is a
key difference with bi-functional glycosylases such as OGG that perform both
excision and endonuclease in the same step (not included in simulations):

’OGG mismatch excision’ \

DG(dbd!1, cat, type~OGG), DNA(e5~lig!0), \

DNA(e3~lig!0,dg!1,base~oxoG?,e5~lig!2),DNA(e3~lig!2) -> \

DG(dbd, cat!1, type~OGG), DNA(e5~PUA!0), \

DNA(e3~NA!0, dg!1,base~AP?, e5~NA!2 ),DNA(e3~P!2) \

@ ’OGG_excision’

Notice also that in both cases the DG remains bound to its product.
APE1 endonuclease. We present here the main rule pertaining to APE1 ac-

tivity and give its graphical representation in Fig. 6.
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pol
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Fig. 6. APE1’s endonuclease

Whenever APE1 is bound to DNA and encounters an AP site, it may incise
DNA 5’ of the damage. The resulting gaped site has a 3’ OH and a 5’dRP
residues:

’APE1 5-endonuclease’ \

APE1(dbd!1), DNA(e3~lig!0), \

DNA(e5~lig!0, base~AP?, ape!1, e3~lig!2), DNA(e5~lig!2) -> \

APE1(dbd), DNA(e3~OH !0), \

DNA(e5~NA!0, base~AP?, ape, e3~NA!2), DNA(e5~dRP!2) \

@ ’APE1_incision’

POLβ gap filling. The main rules of POLβ concern its gap filling activity. There
are actually four variants of the rule presented below (see Fig. 7 for the graphical
representation), one for each different nucleotide insertion.

’POLb polymerase A on gap’ \

POLb(dbd!1), DNA(e3~OH !0), \

DNA(e5~NA!0, pol!1, base~AP!2, e3~NA!_), DNA(base~T!2) -> \

POLb(dbd ), DNA(e3~lig!0), \

DNA(e5~lig!0, pol , base~A !2, e3~OH!_), DNA(base~T!2) \

@ ’POLb_polymerase’
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On uni-molecular binding rules. A fundamental assumption of the model is that
uni-molecular binding events are fast. The underlying hypothesis is that steric
constraints favor complex formation. This enables XRCC1 to reinforce the prod-
uct inhibition following the scheme presented in Fig. 8 where kunary is the uni-
molecular binding rate. With a relatively weak affinity with enzyme A, and an
equally moderate affinity with DNA (both have a strong koff [ns] - for non spe-
cific), XRCC1 is able to stabilize efficiently A on both its substrate and product,
although A has little affinity for its product (koff [ns] > koff [s]).

XRCC1 Primarily Impacts Ligation Efficiency. There are a large number
of possible in silico experiments one can try with our BER model. Since it is the
first to incorporate protein-protein interactions, we naturally sought to study
the role of the scaffolding protein XRCC1. As a first approach we ran a batch
of simulations, under the conditions specified in the Methods section, with and
without XRCC1. The simulations are denoted hereafter x+ (with XRCC1) and
x− (without). Figure 9 shows the average plots for both x+ and x−. We first
observed that both series of simulations were able to process the totality of initial
damage (Fig. 9, left plot). However x− exhibited a significant decrease in repair
speed with respect to x+, with 10 healed base pairs per second (maximal speed)
vs. 17 healed base pairs per second (Fig. 9, left plot, small insert).

We then tried to narrow down the origin of that speed difference by decompos-
ing the global repair into the 4 catalytic steps that follow the gylcosylase reaction
(Fig. 9, right). No significant difference between x− and x+ could be observed
for endonuclease (APE1), lyase and polymerase (POLβ) reactions. Therefore the
only possible difference of total repair activity lies in the ligation step. These ob-
servations are consistent with the fact that XRCC1 is dispensable for complete
repair in vitro [17] and that XRCC1 deficient cells are defective in processing
nicked DNA intermediates [18], although the authors propose that this is due to
a hypothetical stabilising effect of XRCC1 on LIG3.
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Mechanistic Insights into the Transition from POLβ to LIG3. XRCC1
is commonly referred to as a scaffolding protein for BER enzymes. The intu-
itive idea is that XRCC1 maintains APE1, POLβ, and LIG3 at the lesion site,
throughout the whole repair process. As suggested by our simulations, the scaf-
folding role of XRCC1 is unevenly distributed among its potential partners. In
order to investigate whether BER enzymes are actually brought to DNA by
XRCC1, we used KaSim’s causal tracking mode for the ligation step. To do so,
we analyzed 122 (compressed) causal flows generated by a ligase event, produced
under the conditions described in the Methods section. According to the sam-
ple, approximately 80% of ligation events contained an action of XRCC1 in their
causal history (data not shown). We therefore sought to analyze more in detail
what the exact role of XRCC1 was in the ligation pathways.

The histogram of Fig. 10 indicates that nearly 45% of uni-molecular binding
events occurring on DNA, that are in the causal past of a ligation event, corre-
spond to the recruitment of LIG3 to the nicked DNA intermediate by XRCC1
(C). XRCC1 is also found recruiting POLβ to AP sites (B) and nicked DNA
(A) in about 15% of the scenarios leading to ligation. Interestingly XRCC1 is
recruited to DNA by APE1 (15%) and POLβ (7%) in a significant number of
scenarios. The little impact of XRCC1 on the recruitment of APE1 (less than
1% of scenarios) to the lesion sites is likely due to the relatively low turnover
rate of UDG coupled with the large amount of APE1 in the system which enable
a smooth transition between UDG and APE1 over the AP substrate. A charac-
teristic causal flow obtained from a simulation is given in Fig. 10 (right): nodes
correspond to rule applications and arrows represent causality between them.
As a labeling convention, X.Y indicates a complex formation between proteins
X and Y and rectangular nodes indicate uni-molecular reactions that occurred
under the scaffolding of XRCC1. Red nodes correspond to the chemical steps of
the pathway.
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Overall, causality analysis confirms the key role of XRCC1 in securing the
transition between the polymerase step and ligation.

XRCC1 Limits Cytotoxicity BER. Since XRCC1 plays an active role in
passing the baton between POLβ’s products and LIG3’s substrate, we wondered
whether this coordination impacts on the cytotoxicity of BER. To do so we an-
alyzed the amount of visible toxic DNA intermediates over time in x+ and x−.
A toxic substrate is understood here as either an AP site, a gapped DNA or a
nicked DNA node that is not bound by any BER protein. Figure 11 shows the
amount of total nicked DNA that is present in silico over the duration of BER
(Left plot). As expected, x+ and x− produce approximatively the same amount
of nicked intermediates in the pre-steady state phase, since the ligation step is
rate limiting (kcat = 0.04s−1 for LIG3 which is half the speed of the second slow-
est reaction, see Supp. Data A.2). However x+ has an apparent faster rate for
processing nicked DNA. Interestingly this results in a much higher cytotoxicity
of x− simulations (Fig. 11, right plot) which is almost entirely caused by unpro-
tected nicked DNA (data not shown). This is consistent with the experimentally
observed sensitivity of XRCC1 mutant cells to induced DNA damage [11].
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A Tradeoff between Accuracy and Efficiency Under Varying Amount
of POLβ. The nucleus is a very crowded medium and the local chromatin
state can induce local concentration effects [11]. We thus investigated further the
role of XRCC1 under decreasing amount of available POLβ (Figure 12). These
experiments showed that when the system is moderately deprived of POLβ (up
to 1/4 dilution of the default amount), XRCC1 contributes to maintaining a fast
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Fig. 12. Repair efficiency and cytotoxicity of simulations with increasing dilution of
POLβ (/2, /4 and /8 with respect to default amount)

repair rate by holding LIG3 at lesion sites, waiting for the product of POLβ’s
reactions. Surprisingly, at higher dilution of POLβ, the price of this coordination
becomes rate limiting for the overall repair speed. This is likely due to LIG3
being sequestered too long on AP sites in the absence of POLβ when ligatable
substrates are elsewhere available. Importantly, under such extremal conditions
XRCC1 still actively limits the amount of cytotoxic substrates (mainly in the
form of nicked DNA) available to the environment.

This observation could imply that partial mutant cells (XRCC1−,POLβ−)
would have a global faster repair activity than simple (XRCC1+,POLβ−) mu-
tants, although with a very likely higher sensitivity to damage.

5 Discussion

A Kappa Model of BER. We have collated a set of mechanisms of action
pertaining to BER, as a set of Kappa rules. It results in an executable model of
DNA repair that can be used to test various hypothesis on DNA repair mech-
anisms. As an instance of such applications, we have investigated the impact
of the scaffolding protein XRCC1 on repair activity. Consistent with experi-
mental observations, our model shows that complete repair can be achieved in
the absence of XRCC1. Furthermore the model successfully predicts the im-
pact of XRCC1 on BER, the absence of which resulted in the accumulation of
unprotected nicked DNA intermediates and an impaired repair speed in simu-
lations. Beyond available experiments, our model indicates that XRCC1 might
be recruited by APE1 to the damage site. It would afterward proceed with the
recruitment of POLβ and, to a higher degree, LIG3. Eventually we showed that
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XRCC1 contributes to the robustness of BER with respect to large variation of
POLβ’s concentration, preserving the repair efficiency up to a certain dilution
level (/4), and maintaining a low amount of cytotoxic substrate over time.

Towards a Comprehensive Model of BER. More studies on the dynamics
of the present model can be performed, beyond the scope of this paper. Also more
biological facts need to be incorporated. Among them, the addition of PARP1,
that plays an important role in an alternative way to recruit BER enzymes
to the damaged site, seems to be a priority. We would also like to model the
alternative long patch repair which occurs when BER is unable to produce a
ligatable substrate. It will be particularly interesting to see how XRCC1 can
regulate the switch between long patch and short patch BER, as experimental
studies indicate.

Perspectives. Our stance is to take both qualitative and quantitative data
seriously and collate them into a comprehensive model. We believe this model
can be used to raise challenges to the biologist community about missing infor-
mation and also highlight key points where the DNA repair community agrees
or disagrees. We also believe that a comprehensive model can be used to make
predictions on possible experiments and help the biologists to explore the wet
lab perturbation space in a rational manner.
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A Supplementary Data

A.1 The Kappa Language

We adapt here the presentation of Kappa, given in KaSim’s manual8.

General Remarks. The Kappa File (KF) is the formal representation of a
model. We use KF to denote the union of the files that are given as input
to KaSim (argument -i). Each line of the KF is interpreted by KaSim as a
declaration. If the line is ended by the escape character �\� the continuation of the
declaration is parsed onto the next line. Declarations can be: agent signatures,
rules, variables, initial conditions, perturbations and parameter configurations.
The KF’s structure is quite flexible and can be divided in any number of sub-
files in which the order of declarations does not matter (to the exception of
variable declarations). Comments can be used by inserting the marker # that
tells KaSim to ignore the rest of the line.

Agent Signature. In Kappa there are two entities that can be used for rep-
resenting biological elements: agents and tokens (we don’t consider token here).
Agents are used to represent complex molecules that may bind to other molecules
on specific sites.

In order to use agents in a model, one needs to declare them first. Agent sig-
natures constitute a form of typing information about the agents that are used
in the model. It contains information about the name and number of interac-
tion sites the agent has, and about their possible internal states. A signature is
declared in the KF by the following line:

%agent: signature expression

according to the grammar given Table 2 where terminal symbol are denoted in
(blue) typed font. Symbol Id can be any string generated by regular expression
[a−z A−Z][a−z A−Z 0−9 − +]∗. Terminal symbol ε stands for the empty
symbol.

Table 2. Agent signature expression

signature expression ::= Id(sig)
sig ::= Id internal state list, sig | ε
internal state list ::= ~Id internal state list | ε

For instance the line:

%agent: A(x,y~u~p,z~0~1~2) # Signature of agent A

8 http://www.pps.univ-paris-diderot.fr/~jkrivine

http://www.pps.univ-paris-diderot.fr/~jkrivine
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will declare an agent A with 3 (interaction) sites x,y and z with the site y

possessing two internal states u and p (for instance for the unphosphorylated and
phosphorylated forms of y) and the site z having possibly 3 states respectively
0, 1 and 2. Note that internal states values are treated as untyped symbols by
KaSim, so choosing a character or an integer as internal state is purely matter
of convention.

Rules. Once agents are declared, one may add to the KF the rules that describe
their dynamics through time. A pure rule looks like:

�my rule� kappa expression → kappa expression @ rate

where �my rule� can be any name that will refer to the subsequent rule that
can be decomposed into a left hand side (LHS) and a right hand side (RHS)
kappa expressions together with a kinetic rate expression . One may also declare
a bi-directional rule using the convention:

�bi-rule� kappa expression ↔ kappa expression @ rate+,rate−

Note that the above declaration corresponds to writing, in addition of �my-rule�,
a backward rule named �my rule op� which swaps left hand side and right hand
side, and with rate rate−.

Kappa and rate expressions are generated by the grammar given in Table 3.

Table 3. Kappa expressions

kappa expression ::= agent expression , kappa expression | ε
agent expression ::= Id(interface)
interface ::= ε | Id internal state link state
internal state ::= ε | ~Id
link state ::= ε | !n | ! | ?

token name ::= Id

rate expression ::= algebraic expression
| algebraic expression (algebraic expression)

Table 4. Algebraic expressions

algebraic expression ::= x ∈ R | variable
| algebraic expression binary op algebraic expression
| unary op (algebraic expression)
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Simple Rules. With the signature of A defined in the previous section, the line

�A dimerization� A(x),A(y~p) → A(x!1),A(y~p!1) @ γ

denotes a dimerization rule between two instances of agent A provided the second
is phosphorylated (say that is here the meaning of p) on site y. Note that the
bond between both As is denoted by the identifier !1 which uses an arbitrary
integer (!0 would denote the same bond). In Kappa, a bond may connect exactly
2 sites so any occurrence of a bond identifier !n has to be paired with exactly one
other sibling in the expression. Note also the fact that site z of A is not mentioned
in the expression which means that it has no influence on the triggering of this
rule. This is the don’t care don’t write convention (DCDW) that plays a key role
in resisting combinatorial explosion when writing models.

Adding and Deleting Agents. Sticking with A’s signature, the rule

�budding A� A(z) → A(z!1),A(x!1) @ γ

indicates that an agent A free on site z, no matter what its internal state is,
may beget a new copy of A bound to it via site x. Note that in the RHS, agent
A’ s interface is not completely described. Following the DCDW convention,
KaSim will then assume that the sites that are not mentioned are created in the
default state, i.e they appear free of any bond and their internal state (if any)
is the first of the list shown in the signature (here state u for y and 0 for z).

Importantly,KaSim respects the longest prefix convention to determine which
agent in the RHS stems from an agent in the LHS. In a word, from a rule of the
form a1, . . . , an → b1, . . . , bk, with ais and bjs being agents, one computes the
biggest indices i ≤ n such that the agents a1, . . . , ai are pairwise consistent with
b1, . . . , bi, i.e the ajs and bjs have the same name and the same number of sites.
In which case we say that the for all j ≤ i, aj is preserved by the transition and
for all j > i, aj is deleted by the transition and bj is created by the transition.
This convention allows us to write a deletion rule as:

�deleting A� A(x!1),A(z!1) → A(x) @ γ

which will remove the A agent in the mixture that will match the second occur-
rence of A in this rule.

Side Effects. It may happen that the application of a rule has some side effects
on agents that are not mentioned explicitly in the rule. Consider for instance
the previous rule:

�deleting A�A(x!1),A(z!1) → A(x) @ γ

The A in the graph that is matched to the second occurrence of A in the LHS
will be deleted by the rule. As a consequence all its sites will disappear together
with the bonds that were pointing to them. For instance, when applied to the
graph
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G =A(x!1,y~p,z~2),A(x!2,y~u,z~0!1),C(t!2)

the above rule will result in a new graph G′ = A(x!1,y~p,z~2),C(t) where the
site t of C is now free as side effect.

Wildcard symbols for link state ? (for bound or not), ! (for bound to some-
one), may also induce side effects when they are not preserved in the RHS of a
rule, as in

�Disconnect A� A(x! ) → A(x) @ γ

or

�Force bind A� A(x?) → A(x!1),C(t!1) @ γ

Rates As said earlier, Kappa rules are equipped with kinetic rate(s). A rate is a
real number, or an algebraic expression evaluated as such, called the individual-
based or stochastic rate constant , it is the rate at which the corresponding rule
is applied per instance of the rule. Its dimension is the inverse of a time [T−1].

The stochastic rate is related to the concentration-based rate constant k of
the rule of interest by the following relation:

k = γ(A V )(a−1) (1)

where V is the volume where the model is considered, A = 6.022 · 1023 is Avo-
gadro’ s number, a ≥ 0 is the arity of the rule (i.e 2 for a bimolecular rule).

In a modeling context, the constant k is typically expressed using molars
M := moles l−1 (or variants thereof such as μM , nM), and seconds or minutes.
If we choose molars and seconds, k’ s unit is M 1−as−1, as follows from the
relation above.

Concentration-based rates are usually favored for measurements and/or deter-
ministic models, so it is useful to know how to convert them into individual-based
ones used by KaSim.

A.2 The Kinetic Rates of the BER model

Complex Formation Rates. The contact map illustrated Fig. 3 is derived
from the papers the references of which are listed in Table 5. Italic fonts de-
note qualitative studies. Question marks denote postulated interactions without
explicit references.

Catalytic Rates. As pointed out in Section 3, the catalytic rate of an enzyme,
kcat , is usually given in terms of steady state kinetics, i.e following the scheme:

E + S ↔ ES →∗
kcat

E + P

But as we pointed out, in the presence of non negligible product inhibition,
enzymatic activity is better accounted for using the scheme:

E + S ↔ ES →kchem
EP ↔ E + P

Table 6 gives the catalytic rates and the reference paper(s) that were used in
our model. Both kcat and kchem are given when available.
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Table 5. Protein-DNA and protein-XRCC1 interactions. (†) Private conversation with
Dr. S. H. Wilson (NIH).

Protein DNA duplex Mismatch AP site Gaped DNA Nicked DNA XRCC1

XRCC1 [1] ? [2] [1] [1] [1]
APE1 [3], [4], [5] [5] (†) [6]
UDG [7] [7] [7]
TDG [8] [8] [8]
PNKP [9] [10]
POLβ [11] (†) [12]
LIG3 [13] ? [14]

Table 6. Catalytic rates used in the model. The notation [15] (from Ref X) indicates
that the number comes from reference X of paper [15].

Protein kchem (s−1) kcat (s−1) Reference

APE1 (3’ PUA cleaning) 0.05 [15] (from Ref. 60)
APE1 (Endonuclease) 1000 3 [15], [16]
PNKP 0.14 [17]
LIG3 (Ligase) 0.04 [15] (from Refs. 56 and 63)
POLβ (3’ dRP cleaning) 0.075 [15] (from Ref. 62)
POLβ (gap filling) 10 0.45 [11], [15] (from Refs. 29 and 61)
TDG 0.03 [8]
UDG 15 [18]

Default Rates. When no quantitative data is known, we used “realistic” default
rates that are randomized at each simulation from the intervals presented in the
table below:

process interval rate
general bi-molecular binding [107 − 109] M−1s−1

general uni-molecular binding [10− 104] s−1

general unbinding [10−3 − 10−1] s−1

A.3 Simulation Efficiency

The efficiency of an in silico experiment with respect to a wet lab experiment
is usually measured in terms of time and money consumption. It is interesting
to check, for a given model, how long it takes (in CPU seconds) to simulate
one (biological world) second of the real system. Fig. 13 shows the evolution
of the efficiency of one simulation running with the parameters specified in the
Methods section.

A good measure of the efficiency of a simulation at time t can be given by

eff (t)
def
= dCPUtime(t)

dt . As can be seen in Fig. 13, eff (t) has three distinguished
phases during which it becomes quasi-linear. The three phases correspond to
the pre-steady state (eff (t) ∼ 15 CPU seconds for 1 bio second) and steady
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state of BER (eff (t) ∼ 7 CPU seconds for 1 bio second) and the phase at which
no more repair is conducted (eff (t) ∼ 1 CPU seconds for 1 bio second).

Importantly in silico BER efficiency varies quite a lot as different simulations
are run with randomized dissociation constants, though they still exhibit the
same distinct phases (data not shown).
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Abstract. Radiation induced bystander effects are secondary effects
caused by the production of chemical signals by cells in response to radi-
ation. We present a Bio-PEPA model which builds on previous modelling
work in this field to predict: the surviving fraction of cells in response to
radiation, the relative proportion of cell death caused by bystander sig-
nalling, the risk of non-lethal damage and the probability of observing
bystander signalling for a given dose. This work provides the founda-
tion for modelling bystander effects caused by biologically realistic dose
distributions, with implications for cancer therapies.

1 Introduction

Radiation is often referred to as a double edged sword [14]. Whilst it is one
of the most effective treatments for several forms of cancer, exposure to radi-
ation can also cause damage to healthy cells leading to long term side effects
for the patient. Radiotherapy has been used to treat cancer for over a cen-
tury, with over half of all modern day patients receiving this treatment at some
point [15]. Due to the inherent risks associated with radiotherapy treatments,
there is a constant drive to understand the resulting physical and biological pro-
cesses in order to reduce exposures, both in terms of area exposed, and dose
delivered. For many years it has been thought that radiation causes damage
to biological cells through direct damage to the targeted DNA. However, over
the past 20 years, experimental evidence has been shown to suggest subsequent,
non-targeted effects of radiation. It has been suggested recently [1] that these
non-targeted effects are mediated through cellular signalling. These effects fall
into three distinct groups: cohort effects, mediated via gap junctions between
neighbouring cells, bystander effects between nearby cells mediated by release
of signals into a shared medium, and abscopal, or long range effects in distant
tissues [2]. In this study we consider only the second of these effects, radiation
induced bystander effects (RIBEs). Cells which have suffered DNA damage due
to radiation release signals, in the form of reactive oxygen or nitrogen species [1].
These can be transmitted to surrounding cells via dispersal into the extracellular
medium. These signalling molecules are then able induce damage responses in
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surrounding cells (Figure 1). It has been suggested that RIBEs may be used to
amplify the cell killing effect of radiation [23] and hence lead to a reduction in
potentially dangerous levels of exposure during treatment. However, RIBEs may
also contribute to the increased risk faced by low level exposures to radiation
such as those experienced during space travel [1]. These effects therefore have a
significant impact on our understanding of the biological response to radiation.
Mathematical and computational modelling is a useful tool in understanding the
mechanisms at work.

Fig. 1. Basic mechanisms of radiation induced bystander effects. Direct irradation
causes damage to the cellular DNA which leads to the production of reactive oxygen
or nitrogen species (ROS/RNS). These are released by the cell and can cause damage
to neighbouring cells.

In recent years, several mathematical and computational models have been
developed to describe aspects of this phenomenon [4,9,10,21]. Faria and Dickman
[9] present an epidemic-type model of the damage caused to a population of
cells by the spread of a decaying diffusing signal. Whilst this model has some
interesting analytic results, such as the discovery of a critical threshold between
the spreading and non-spreading phases of the signal, the assumptions used to
develop it are necessarily simplifying, and their paper provides little biological
verification. McMahon et. al. [21], on the other hand, presented a model based
largely on the experimental approaches used to assess the impact of bystander
effects.

In this paper we present a process algebra model, developed using Bio-PEPA
[7], which combines the epidemic-type structure of Faria and Dickman [9] with
the biologically verified mechanisms of McMahon et. al. [21]. Over recent years,
process algebra has been increasingly used in a wide range of biological ap-
plications [25,13,18]. Bio-PEPA has been specifically developed for use in bi-
ological applications, and allows the user to define rates of reaction between
distinct species in terms of their concentrations. The underlying continuous time
Markov-Chain (CTMC) semantics allows this type of model to be solved either
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through stochastic simulation, for example using Gillespie’s algorithm, or via
conversion of the model to a deterministic system of ordinary differential equa-
tions. The level of abstraction afforded by Bio-PEPA is a key attraction to this
computational method, allowing biological systems to be defined by a number
of species, and the reactions between these species. The versatility in analysis
techniques allows Bio-PEPA models to capture properties determined at an in-
dividual level, in a computationally less intensive way than traditionally defined
individual based models. The range of applications for which this framework has
been used has been expanded from its roots in biochemical networks [6] to areas
such as epidemic modelling [18], crowd dynamics [19], and population modelling
of aquatic invertebrates [25]. In this paper, we further extend this range to model
cellular damage caused by radiation induced bystander effects.

2 Model Structure and Assumptions

The effectiveness of a treatment such as radiation is experimentally tested using
a clonogenic survival assay [12], whereby a collection of cells is irradiated and
then split up into individual cells or small clusters of cells and left to divide to
form colonies. After a number of days (a week or more) the number of successful
colonies (those which have grown to a stated size, usually around 50 cells) is
counted and the survival fraction is calculated as

SF =
fraction of successful, treated colonies

fraction of successful (untreated) colonies in control
.

This ratio of treated to untreated colonies accounts for the fact that some colony
death may be due to the experimental techniques. The structure our model is
based on this experimental set-up and aims to predict the surviving fraction
of cell colonies for a given radiation dose. In addition to this, we predict the
proportion of cell colonies which have suffered some level of damage, but have
maintained their capacity for division. It is these cells which have the potential
to lead to long term problems for the patient, and hence this prediction gives a
measure of risk for a given dose.

Modelling in Bio-PEPA requires the definition of three components; the model
compartments, rates of reaction between these compartments, and the initial
concentrations within each compartment. In the following sections we describe
each of these components, with the Bio-PEPA model in full given in the ap-
pendix.

2.1 Model Compartments

The population considered is the fixed number, N , of possible cell colonies in
an experiment. The colonies are subdivided depending on their damaged status.
Prior to treatment, all cells will be classed as healthy (H), having suffered no
damage from irradiation. Upon treatment, cells sustain a level of damage, as
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described in section 2.3. Depending on the initial dose, the direct damage suffered
by a cell will be either a) sufficient to induce cell death, or b) sufficient to cause
a ‘recoverable’ level of damage. Those cells which fall into category a) will enter
the apoptotic class (A). Apoptosis is the process of controlled cell death or cell
suicide. This leads the cell to break down and disperse in a controlled, and
non-toxic way. Cells which suffer a recoverable level of damage enter into the
infectious class (I). Both infectious and apoptotic cells are able to produce and
emit bystander signal. The period of emission is limited by the processes of death
and recovery. Apoptotic cells will cease signalling once they have broken down
and enter the dead class (D), and infectious cells will cease emitting once they
have entered the recovered class (R).

The compartments of the Bio-PEPA model are therefore given by the five
damaged classes H,I,A,R,D, along with a class tracking the concentration of
bystander signal, C. These compartments and the network of transitions between
classes are shown in figure 2

Fig. 2. Schematic showing compartments of the model and transitions between them.
Thick arrows show signalling kinetics, dashed arrows show signal mediated transitions,
and solid thin arrows show signal independent transitions.

2.2 Model Reactions

Cell colonies change state from one compartment to another due to a number of
reactions. The functions defining these reactions are summarised in Table 1 and
can be divided into three categories; bystander signal dynamics, damage suffered
as a result of bystander signalling and natural cellular processes.
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Table 1. Table of model reactions with their corresponding rates

Process Label Description Definition Rate

emitI
emission of bystander signal

by infectious cells C → C + 1 εI
V
(100− C)

emitA
emission of bystander signal

by apoptotic cells C → C + 1 εA
V
(100 −C)

decay decay of bystander signal C → C − 1 δC

damageH
damage of healthy cells
due to bystander signal H → H − 1, R → R + 1 ρβf(C)H

deathH
death of healthy cells
due to bystander signal H → H − 1, D → D + 1 (1− ρ)βf(C)H

damageI
damage of infectious cells
due to bystander signal I → I − 1, R → R + 1 φβf(C)I

deathI
death of infectious cells
due to bystander signal I → I − 1, A → A+ 1 (1− φ)βf(C)I

recovery recovery of infectious cells I → I − 1, R → R + 1 γI

apoptosis death of apoptotic cells A → A− 1, D → D + 1 αA

Bystander Signalling Dynamics
Experimental evidence suggests that irradiated cells emit signals into their envi-
ronment which induce damage responses in nearby cells (refs). In the context of
this model, irradiated cells are those which are either infectious (I) or apoptotic
(A). The process of emission is defined in Table 1 as emitX (where X={I,A}),
and is a decreasing function of the signal concentration, C. The concentration
of bystander signal modelled here is not in fact the measurable signal quantity,
rather the percentage of the saturated quantity. This normalised concentration
brings our model in line with that of McMahon et. al., and enables us to use
published parameter values. Bystander signal decays at a rate proportional to
its concentration, and defined by decay in Table 1.

Damage Induced by Contact with Signal
It has been suggested in the literature that bystander effects are an ‘all or noth-
ing’ response [24], with damaging effects only observed at concentrations above
a threshold Ĉ. McMahon et. al. estimates this threshold to be around 21% of
the saturated concentration. In order to capture this ‘all or nothing’ property,
we use the Heaviside step function

h(C) =

{
0 if C < Ĉ

1 if C ≥ Ĉ.
(1)

This on/off switch activates the bystander signal, with no cellular response
possible if the concentration is below this threshold. Active concentrations of
bystander signal (C ≥ Ĉ) may cause novel damage to healthy cells (H) or sub-
sequent damage to those directly damaged by irradiation (I). Damaging interac-
tions occur at a rate βXh(C) (X={H,I}). If the signal concentration falls below
this threshold quantity, the reaction rate falls to zero, and no further damage
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is done. Both healthy and infectious cells, when challenged with bystander sig-
nal, may either suffer sufficient damage to cause cell death, or may survive this
challenge. When a healthy cell colony comes into contact with active bystander
signal, a proportion, ρ, of these reactions will result in the survival of the colony,
and these colonies will move to the recovered class. The rest of the reactions
(1− ρ) will result in colony death, and the healthy colony will move to the dead
class. A similar proportion, φ, of reactions between the infectious colonies and
bystander signal, will lead to infectious colony survival, with (1 − φ) of these
reactions resulting in colony death.

The proportion of bystander reactions resulting in colony death/survival will
depend on the amount of direct damage the colony has suffered. Many recent
modelling studies have formulated both direct, and bystander damage as a num-
ber of ‘hits’ [20] [21] [22] with cell death occurring at 5 ‘hits’ or more. This formu-
lation, whilst not strictly measurable is correlated with the number unrepaired
or misrepaired DNA double-strand breaks suffered by cells, with approximately
5 or more of these lesions being fatal to the cell. The number of ‘hits’ suffered
by a cell upon contact with bystander signal is assumed to be taken from a
Poisson distribution, with mean given by the parameter Hb. This probabilistic
approach to determining damage enables the model to capture the distribution
of damaged or dead cells, and to account for the stochasticity and uncertainty
in the underlying chemical kinetics without modelling these processes explicitly.
This approach also allows us to reduce the parameters ρ and φ to functions of a
single parameter Hb. These functions are given explicitly by

ρ =
P (1) + P (2) + P (3) + P (4)

1− P (0)
(2)

φ =
P (1)(I(1) + I(2) + I(3)) + P (2)(I(1) + I(2)) + P (3)(I(1))

(1 − P (0))Iinit/N
(3)

where P (i) is the probability of receiving i hits from a reaction with bystander
signal, and I(i) is the probability of receiving i hits from direct damage.

Natural Cellular Processes. The remaining reactions from Table 1 are ‘apop-
tosis’ and ‘recovery’. These processes are not dependent on the concentration
of bystander signal. The reaction ‘apoptosis’ describes the change of state of
a cell colony from apoptotic to dead. The process of apoptosis or cell suicide
can take several days to complete, and whilst the colony is clonogenically dead
(i.e. unable to continue to grow and produce clones) these cells are still able to
emit bystander signal. Without the inclusion of this class, the amount of signal
produced, and the duration when the signal is active are underestimated. The re-
action ‘recovery’ enables infectious cells to cease emitting bystander signal. The
emission period has been shown to be limited, as damaged cells will begin repair
processes. The emission period here is 1/γ, where γ is dependent on the initial
dose of radiation delivered. A high initial dose leads to a high γ, and therefore
a slow rate of recovery. Higher doses allow bystander signal to be produced for
longer periods by damaged cells.



202 R. Lintott et al.

2.3 Initial Concentrations

The final specifications necessary to complete our model are the initial species
concentrations. In order to reduce complexity, and to focus our model on the
dynamics of bystander effects, we assume that the direct damage due to the
initial dose of radiation is fixed. Ionising radiation exposures such as those used
in radiotherapy treatments fall into two main categories, electromagnetic (such
as γ- or X-rays) or particulate (such as α particles). In both cases, damage
to cells occurs due to the energy deposited within the cell, causing ionisations
which can lead to either single or double strand breaks in the DNA. This energy
deposition is dependent on the type of radiation to which cells are exposed. In
order to provide a generic model of a non-specific radiation treatment, we again
describe the damage done by a number of ‘hits’, λ, proportional to the radiation
dose, D, delivered to the cells, hence λ = sD. If a population of cells is exposed
to a uniform dose, then the number of ‘hits’ suffered by an individual cell is
Poisson distributed with mean λ.

The initial states of the colonies, immediately following irradiation (time=0)
is therefore determined as follows

Hinit = Ne−λ,

Iinit = Nλe−λ
(
1 + λ

2! +
λ2

3! +
λ3

4!

)
,

Ainit = N −Hinit − Iinit,

Rinit = 0,

Dinit = 0. (4)

These states are therefore inherently dependent on the dose delivered, with high
initial doses leading to a high number of cells which are initially apoptotic and
destined to die. Initially low doses lead to a higher number of initially healthy
cells with some infected cells and fewer apoptotic. We would expect therefore
that at high doses, the majority of the cell death observed will be due to the
initial dose, with bystander effects being a predominantly low dose phenomenon.

2.4 Parameter Estimates

Our model requires the estimation of 7 parameters, given in Table 2. Since the
dynamic behaviour of this model is based on the work of McMahon et. al [21],
there is a correspondence between the parameters described, and the relevant
estimates. In that paper, the model was parameterised against a number of cell
lines, and experiments. Here we focus on the data obtained in [5] for the human
prostate cancer cell line DU145. Where there is a correspondence in kinetic rates
between our model and McMahon’s, we use the estimate found in that paper.
The parameter s gives the average number of hits per Gy obtained from the
direct effect of radiation. Here we set this value to 1 which offers a better fit to
the obtainable data than the McMahon et. al. estimate s = 0.78. This parameter
is not easily measurable directly, and its closest biological interpretation is the
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Table 2. Table of parameter values used in simulation results

Parameter Name Symbol Estimate

Hits per Gray s 1 hit

Rate of bystander damage β 0.0028 min−1
Signalling duration 1/γ 61/Gy min Gy−1

Rate of signal emission (at low concentration) ε 0.00011 min−1
Rate of signal decay δ 0.019 min−1

Hits per interaction with bystander Hb 3.9 hits

Rate of death due to apoptosis α 0.000417 min−1

number of unrepaired DNA double strand breaks (DSB). For each Gray, this
figure is of the order 1 DSB/Gy, and hence s ≈ 1 is reasonable. The difference
in s between our model and that of McMahon et. al. is due to the structure
of the model. McMahon et. al. accounts for a heterogeneity in cell response to
direct irradiation based on the cell cycle. We avoid this level of complexity by
considering a coarser-grained, colony-level model. This difference in complexity
accounts for the slight difference in this parameter estimate.

The rate of bystander damage, β is determined from the probability that a cell
will be damaged through an encounter with bystander signal in a time interval
δt. This probability is given in McMahon et. al. as

PB = 1− e−βδt. (5)

In order to translate this probability into a rate of damage over time, the expo-
nential term is expanded following [16], both sides divided by the time interval
δt and the limit taken as δt → 0. This gives the rate of damage over time as

dPB

dt
= β (6)

and the numerical estimate of this parameter can be taken directly from McMa-
hon et. al.

The signalling duration, 1/γ translates to a rate of recovery for infectious
cells of γ. This parameter is dependent on the initial dose of radiation: large
initial doses lead to longer signalling duration and hence slower rate of recover.
Signal emission is assumed to be a feature of cells which have been directly
irradiated, hence both the signalling duration and the rate of emission, ε, should
be the same for this model as for the McMahon model, regardless of scale, since
the initial number of irradiated cells is the same. Hence we are justified in using
the parameters found in McMahon et. al. The rate ε is the rate of emission at low
signal concentrations, with this declining linearly to zero as the concentration
reaches saturation. The mean number of ‘hits’ received by an encounter with
bystander signal is given by Hb = 3.9. This parameter is the equivalent to the
damage induced by direct effects, given by s, and is similarly slightly higher than
that used by McMahon et.al. This discrepency is once again due to the difference
in scales of the models. The final parameter to discuss is the rate of death due
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to apoptosis. We have estimated the duration of apoptosis to last an average of
approximately 40 hours, leading to a rate of death of α = 0.000417 min−1.

3 Results

The model was simulated using Gillespies stochastic algorithm, for initial doses
of between 0 and 8Gy, at intervals of 0.5 Gy. This range of initial doses relates
to a range of initial conditions for the model to be tested under. For each initial
dose, fifty simulations were run, and the 95% confidence intervals on the survival
fraction were calculated. From these experiments, we found that the largest
confidence interval of 0.95±0.0058 was found at a dose of 1Gy. This is equivalent
to a confidence interval of around 0.1% of the mean. Since the variation in
simulation outputs is so low, the mean output of the simulations is used.

In order to validate the model, the output was compared to survival data
from experiments published in [5]. This data is in the form of the surviving frac-
tion of cell colonies, taken several days after treatment with ionising radiation.
In order to simulate this, we ran the model for 10000 time steps, simulating
approximately 7 days. By this point, the system had reached equilibrium, and
simulation over longer periods provided negligibly different results. The survival
fraction predicted by the model shows a good fit to the available data, with
the predicted output falling within experimental confidence limits (Figure 3).
Comparing the bio-PEPA model to that of McMahon et. al. we see that the
McMahon et. al. predicts a lower survival fraction at low doses, and a higher
survival fraction at higher doses.

Having validated the model, against experimental data, we are able to produce
a number of predictive results. Figure 4 (a) shows the proportion of cell colonies
killed by the relative effects of either direct irradiation or bystander effect. It
is clear from this plot that for high doses, the proportion of cells killed by by-
stander signalling is small when compared to direct effects. Doses up to around
3Gy see a higher proportion of colony death being attributed to bystander ef-
fects than the direct effect of irradiation, hence it is in this range of exposures
that bystander effects are most important. This result is significant since it is
this range of dosages that is used in the clinical setting. High exposures of ra-
diotherapy treatments are often delivered as fractionated doses with a typical
fraction being around 2Gy. This same range of doses predicts the peak levels in
the number of cell colonies which are assumed to be ‘recovered’ (Figure 4 (b)).
These colonies have been damaged by the effects of radiation but maintain the
ability to divide. This class of cells is particularly important when considering
the negative, knock-on effects of radiotherapy, since these cells are more prone
to detrimental mutations, possibly leading to long term problems for the health
and well-being of the patient.

The Bio-PEPA Eclipse plug-in [8] allows direct calculation of probability and
cumulative distribution functions for a specified target output. Due to the on/off
switch in signal activity present in this model, these functions allow us to quantify
the risk of seeing an actively damaging bystander effect for a given initial dose.
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Fig. 3. Survival curve predicted by model and compared with data from Butterworth
et al [5] with error bars, and model output from McMahon et.al. [21]. Model has been
parameterised using McMahon et. al. for the human prostate cancer cell line DU145.

By specifying the target output as h(C) = 1, the PDF output gives the time at
which each simulation reached this condition. Once more, we consider the range
0-8Gy, at intervals of 0.5Gy. For each dose considered, 1000 simulations were run
for a length of 10000 time steps (minutes). The number of simulations performed
in this case has been increased to allow greater accuracy, for each dose the time
taken to simulate the model 1000 times was of the order of around 1 second.
The time to bystander onset was calculated for each simulation, as well as the
proportion of all simulations where bystander effect was observed. The median

Fig. 4. Left hand plot: Proportion of colonies killed through direct effects and bystander
signalling. Right hand plot: Recovered fraction of cell colonies. A peak in recovered
colonies is observed at low initial doses.
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time to bystander onset, along with 25% and 75% quartiles are shown in Figure
5. For the lowest dose considered (0.5Gy), only 0.6% of all simulations predicted
a bystander response. At this dosage, the risk of producing enough bystander
signal to cause damage or death to surrounding cells is therefore very low. At
doses above 1.5Gy however, all simulations predicted a bystander response..
The median time between direct irradiation and bystander onset reduces with
increasing dose, before saturating at a lower limit of around 12-13 minutes.

Fig. 5. Left plot shows the percentage of simulations resulting in the onset of bystander
effect. Right plot shows median time to bystander onset, with error bars showing upper
and lower quartiles

4 Discussion

In this paper we have presented a model of the in vitro consequences of radi-
ation induced bystander effects. By basing our model structure on that of an
epidemic type model, considering the transitions between ‘infectious’ classes, in
combination with the biologically relevant assumptions of previous modelling
work [21], we have been able to identify a number of key results. We have shown
that the dose region up to around 3Gy presents a significant risk of bystander
effect, both in terms of the proportion of death attributed to these effects (Figure
4) and the number of stable cell colonies suffering minor damage (Figure 4(b)).
This result is in line with current literature, suggesting that bystander effects
are potentially a major problem at low doses [3] [23]. By developing this model
in Bio-PEPA we have easily been able to extract information about the risk of
observing bystander effect for a given dose, given that emission of these signals is
inherently a stochastic process. Along with an evaluation of the risk of bystander
signalling, we have predicted the time between direct irradiation and bystander
onset for a range of doses, showing that this time lag reaches at a minimum of
around 12 minutes for doses above around 2Gy. Whilst this predictive result has
not been verified experimentally, experimental data using different cell lines and
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radiotherapeutic delivery have shown that bystander signal can be detected on
the order of 30 minutes or less [26].

The discovery of radiation induced bystander effects, in both the in vitro
and in vivo settings, has important consequences for the future of radiation
research. These effects must be taken into account when evaluating the risk
of low level background exposures, and also when developing radiotherapeutic
strategies for the treatment of cancer. Delivery of radiation doses and their effects
can no longer be thought of as targeted point in time damage to specific cells.
The number of cells killed by a dose of radiation has been modelled effectively
for many years, primarily through the linear-quadratic model (LQ), and the
biologically effective dose (BED) [11]. The LQ model offers a prediction of the
fraction of cell kill for a single given dose of irradiation, whilst the BED converts
the total dose delivered over a number of fractions (typically of around 2Gy)
given at discrete times into the single dose required to achieve the equivalent cell
kill. Whilst these methods of modelling cell death has been clinically effective,
this approach neglects the non-lethal effects of bystander signalling. The model
presented here shows a peak in the risk of bystander effects, leading to both cell
death and damage, at around 2-3Gy. This result has been observed in previous
experimental work [27].

Our prediction that the number of ‘recovered’ cell colonies peaks at clini-
cally relevant doses suggests that dose fractionation may increase the risk of
side effects due to bystander damage. These side effects may include long term
mutations, leading, for example, to the development of tumours. The model pre-
sented here takes into account both the lethal and non-lethal effects of bystander
signalling, this key property is novel to this approach, and has been facilitated
by the use of Bio-PEPA in this modelling work.

The model presented here is a step in investigating of the impacts of bystander
effects in clinical situations. To develop this work further, an in-depth analysis
of the parameter estimates should be done with further experimentation done
to validate our predictions, in particular those shown in Figure 5. In order to
estimate experimentally unobtainable parameters, modelling in Bio-PEPA facil-
itates the use of evolutionary computation tools for model fitting [18].

The results shown here are specific to the treatment of the human prostate
cancer cell line, with photon beam irradiation. Whilst this model and the mech-
anisms hypothesised fit this system relatively well, we can say nothing more
general about the mechanisms acting in different cell lines, or in response to
different radiotherapies such as targeted radionuclide therapy [17]. This model
provides a first approximation of the mechanisms of bystander effects. This style
of modelling enables us to test these assumed mechanisms against these other
experimental settings ultimately enabling us to deduce general trends in the
mechanisms of radiation induced bystander effects.
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A Full Bio-PEPA Model

N = 1000;

Gy = 1;

s = 1;

dose = s ∗ Gy;

initH = floor(N ∗ exp(0 − dose));

initI = floor((N ∗ (dose + ((dose2)/2) + ((dose3)/6) + ((dose4)/24))) ∗ exp(0 − dose));

initA = N − initH − initI;

beta = 0.0028;

gamma = 0.0164/Gy;

eps = 0.00011/5;

delta = 0.019;

apop = 1/2400;

thresh = 21;

fW = H(W − thresh);

Hb = 4;

Bh = 1 − exp(0 − Hb);

p = (exp(0 − Hb)) ∗ (Hb + ((Hb2)/2) + ((Hb3)/6) + ((Hb4)/24))/Bh;

rad = initI/N;

q = exp(0 − dose − Hb) ∗ (dose ∗ (Hb + ((Hb2)/2) + ((Hb3)/6))

+((dose2)/2) ∗ (Hb + ((Hb2)/2)) + ((dose3)/6) ∗ Hb)/(rad ∗ Bh);

SF = (N − D)/N;

damageH = [p ∗ beta ∗ H ∗ fW ];

killingH = [(1 − p) ∗ beta ∗ H ∗ fW ];

damageI = [q ∗ beta ∗ I ∗ fW ];

killingI = [(1 − q) ∗ beta ∗ I ∗ fW ];

recover = [gamma ∗ I];

emitI = [(eps/V ) ∗ I ∗ (100 − W )];

emitA = [(eps/V ) ∗ A ∗ (100 − W )];

deathA = [apop ∗ A];

decay = [delta ∗ W ];

H = damageH << +killingH <<;

I = killingI << +damageI << +recover << +emitI(.);

A = deathA << +killingI >> +emitA(.);

R = damageH >> +damageI >> +recover >>;

D = deathA >> +killingH >>;

W = emitI >> +emitA >> +decay << +damageH(.) + damageI(.) + killingH(.) + killingI(.);

H[initH] < ∗ > I[initI] < ∗ > A[initA] < ∗ > R[0] < ∗ > D[0] < ∗ > W [0]

Fig. 6. Bio-PEPA model in full
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Abstract. Genome-scale reconstructions are usually stoichiometric and
analyzed under steady-state assumptions using constraint-based mod-
elling with flux balance analysis (FBA). FBA requires not only the sto-
ichiometry of the network, but also an appropriate cellular objective
function and possible additional physico-chemical constraints to predict
the set of resulting flux distributions of an organism.

To compute the metabolic flux distributions in microbes, the most
common objective is to consider the maximization of the growth rate
or yield. However, other objectives may be more accurate in predict-
ing phenotypes. Since in general objective function selection is highly
dependent on the growth conditions, the quality of the constraints and
the dataset, further investigation is required for better understanding
the universality of the objective function. In this work, we explore the
validity of different classes of optimality criteria and the effect of single
(or combinations of) standard constraints in order to improve the pre-
dictive power of intracellular flux distribution. These were evaluated to
compare predicted fluxes to published experimental 13C-labelling flux-
omic datasets using two metabolic systems with different conditions and
comparison datasets.

It can be observed that by using different conditions and metabolic
systems, the fidelity patterns of FBA can differ considerably. However,
despite of the observed variations, several conclusions could be drawn.
First, the maximization of biomass yield achieves one of the best objec-
tive function under all conditions studied. For the batch growth condition
the most consistent optimality criteria appears to be described by maxi-
mization of the biomass yield per flux or by the objective of maximization
ATP yield per flux unit. Moreover, under N-limited continuous cultures
the criteria minimization of the flux distribution across the network or
by the maximization of the biomass yield was determined as the most
significant. Secondly, the predictions obtained by flux balance analysis
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using additional combined standard constraints are not necessarily better
than those obtained using only one single constraint.

Keywords: metabolic networks, constraint-based models, flux balance
analysis, objective functions, constraints, flux distributions prediction.

1 Introduction

Together with the development of high-throughput technologies in molecular
biology, the applications of system biology are becoming increasingly signifi-
cant. By integrating abundant experimental data with modelling approaches,
one could expand the field of research and also improve the models’ accuracies.
A wide class of metabolic modelling frameworks applied to study the metabolism
of organisms are stoichiometric models which do not require a large set of pa-
rameters as kinetic models do [6,18].

With the technological developments in the post genomic era there has been
an increasing focus of metabolic reconstructions for a large number of modelled
organisms [8,25]. The metabolic network usually contains only stoichiometric
information and are analyzed under steady-state assumption using constraint-
based modelling with flux balance analysis (FBA) [16,26]. The flux balance and
the constraints involving prior knowledge about the biological system could be
rewritten as mathematical expressions in FBA and used to predict possible
metabolic flux distributions when a certain cellular objective is defined [35].
One approach usually used to address this optimization problem is the linear
programming (LP) framework. The consistency of the predictive solutions ob-
tained by FBA for an organism depends on a number of important assumptions.
First, it assumes that evolutionary forces have shaped the metabolism towards
optimal cellular criteria to represent natural selection. Second, simple constraints
refer to the different limited conditions that a given biological system must sat-
isfy, such as physico-chemical (e.g. fixing known as upper and lower bounds of
individual input and output fluxes capacities), topological (e.g. connection be-
tween metabolites) and environmental factors [16]. Moreover, gene expression
data, reactions reversibility and other constraints can be added to restrict the
solution space of possible phenotypes fluxes [20,31]. Thus, the task of FBA is
to find a solution that optimizes an objective function satisfying the imposed
constraints.

Although the most common objective in microbes is to consider the maximiza-
tion of the growth yield (i.e. assumed “biomass” equation) whose validity has
been experimentally tested under some conditions [35] there are cases where this
assumption is not valid (e.g. overflow metabolism), and other objective criteria
can actually achieve better results [14,28]. Various alternative cellular objective
criteria have been suggested, such as the generation of ATP per substrate [32],
the minimization of the production rate of redox potential [17], or the maximiza-
tion of the biomass yield per flux unit. Consequently, the universal principle of
the biomass objective remains an open question [12,24]. Over the last years, some
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works have been carried out to test the use of objective function optimization
by FBA. This set of works can be divided into: (i) studies examining hypotheses
on presumed cellular objective functions through comparison to measured fluxes
generated usually by 13C-labeling methods [28,33,34], and (ii) studies develop-
ing algorithms to predict biological objective functions from experimental data
[5,11,17].

As part of the first study, an evaluation of objective functions for Escherichia
coli central metabolism model has been established by Schuetz and co-workers
[33]. In total 11 objective functions, together with 8 physico-chemical constraint
forming 99 simulations has been evaluated in attempt of finding the combina-
tion that could best predict the 13C-determined in vivo intracellular flux data
from E. coli grown under different environmental conditions. The results indi-
cate that, in unlimited resource condition (batch culture), the best objective is
the maximization of ATP yield per unit of flux while in chemostat culture with
limited nutrient, the linear maximization of ATP or biomass yield proved to be
a more suitable objective. However, in the cases tested, there was still signifi-
cant variation between predicted and experimental fluxes. It is also important
to mention that the additional constraints become unimportant if appropriate
objective function is chosen in a given condition. Recently, an expanded study
tested a large class of possible single objective functions (maximization biomass,
ATP yield and the production of each metabolite across the network, and mini-
mizing reaction fluxes). It has been shown that a combination of three efficiency
objectives, maximum ATP yield and maximum biomass yield with minimum
sum of absolute fluxes, are consistent to the experimental datasets (i.e. oper-
ate close to Pareto fronts [22]). Alternatively, other studies proposed algorithms
to systematically identify or predict a relevant objective function using experi-
mental data. For instance, ObjFind [5] is an optimization-based algorithm that
was created for that purpose. This in silico procedure attempts to solve the co-
efficients of importance (CoIs) on reaction fluxes while keeping the divergence
between resultant and experimental flux distribution to be as small as possible.
A bi-level optimization problem is used to describe this task: minimize the error
between in vivo and in silico fluxes by quadratic programming, subject to the
fundamental FBA problem. Biological objective solution search (BOSS ) algo-
rithm [11] is another tool that is claimed to be able to recapitulate the actual
objective including even excluded reaction from reconstruction model.

Since objective function selection seems to be, in general, highly depend on
the growth conditions, quality of the constraints, size of the metabolic models
and comparison datasets specific, more investigation should be established for
better understanding the universality of the objective function. This need has
been recognized also by the systems biology community [2,9]. In line with that,
the main goal of the current work is to explore different optimality principles and
the effect of single (or combinations) empirical constraints in order to improve
the predictive power of intracellular flux distribution in metabolic networks. We
test this with two E. coli metabolic subsystems in different cultures and novel
comparison datasets, expanding previous evaluations [17,28,33].
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2 Methods

The flux balance analysis (FBA) is formulated based on steady-state assump-
tion which constrains the system to follow the mass balance condition. The mass
balance equation together with specific environmental (or physico-chemical) re-
strictions form the solution space of all possible fluxes distribution. Then FBA
typically solves an optimization problem on this space, with objective functions
linearly expressed as:

Z = c.v

where v denotes the vector of flux values and c is coefficient vector that defines
the weight of each flux vi in the objective function. c can take the form of simple
sparse vector with only one non-zero element in case of objective involving single
reaction, such as maximization of biomass or ATP yield. In case of multiple fluxes
involved, such as redox potential [24], objective function Z is a linear combination
of vi with varied coefficients ci. In case of the more complex functions, mixed-
integer or non-linear programming have to be used to solve the optimization
problem. The general expression for simple FBA problem is:

min/max(Z) (1)

s.t. S .v = 0

vub ≥ v ≥ vlb

where S is the stoichiometric matrix of the model and the flux rates are limited
by upper (vub) and lower bounds (vlb) of each of the fluxes in v.

2.1 Metabolic Models and Experimental Flux Datasets

For this work two published metabolic reconstructions of Escherichia coli was
selected as the metabolic model for flux analysis. The first is a condensed stoi-
chiometric model [27] contains 72 metabolites forming in total a set of 95 cen-
tral chemical reactions, which consist of 75 internal and 20 drain fluxes (Core
model). The second model is the genome-scale metabolic reconstruction iAF1260

of E. coli [10], which contains in total 1668 metabolites and 2382 reactions
(Genome-scale model).

The mapping of available measured fluxes to corresponding reactions in FBA
model is given as in Supporting information 1. There are six experimental
datasets used to compare with model predictions. They consist of metabolic
fluxes in different cultures extracted from published phenotype analyses on
E. coli. The datasets come from various sources of literature (Table 1) to diversify
our testing environment (chemostat aerobic N- and C-limited, batch aerobic).

2.2 Objective Functions and Cellular Constraints Examined

For the sets of experimental data selected we evaluated the predictive ability
of eight different objective functions: maximization of biomass yield (max BM)
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Table 1. Experimental datasets from different sources used in this study

Reference
(data source)

Dilution rate
(D)

Culture conditions Number of
mapped reactions

Emmerling et al.
[7]

0.09h−1 chemostat, aerobic, N-limited 33

Ishii et al. [15] 0.1h−1 chemostat, aerobic, C-limited 47
0.4h−1 chemostat, aerobic, C-limited 47
0.7h−1 chemostat, aerobic, C-limited 47

Perrenoud et al.
[29]

0.62h−1 batch, aerobic 36

Holm et al. [13] 0.67h−1 batch, aerobic 37

and ATP yield (max ATP); optimization of enzymatic efficiency for cellu-
lar growth (i.e. the minimization of the absolute sum of internal fluxes)
which was formulated by linear programming with Manhattan-norm , namely
min Flux (minn

i=1

∑ | vi |); maximization of ATP and biomass yield per flux
unit: max ATP/flux (max vATP∑

n
i=1 v2

i
) and max BM/flux (max vbiomass∑

n
i=1 v2

i
), respectively;

minimization of redox potential (min Rd); and minimization and maximization of
ATP producing fluxes per unit substrate (min ATPprod and max ATPprod respec-
tively). These objective functions correspond to the most significant performed
in [33].

For the two nonlinear objective functions max ATP/flux and max BM/flux,
the l2-norm (Euclidean norm) of the fluxes vector was used in accordance with
[33] while min Flux refers to the l1-norm (Manhattan norm) of the same vector
as in [34].

For linear optimization, there are usually non-unique sets of flux values v that
give the same optimal value of objective function [23]. To avoid typical degener-
acy of FBA solutions, the principle of parsimonious enzyme usage (a derivative
of FBA called pFBA) was used [19]. This approach finds a flux distribution
with minimum absolute values among the alternative optima, assuming that
the cell attempts to achieve the selected objective function while allocating the
minimum amount of resources (i.e. minimal enzyme usage). Mathematically, the
optimization problem is described as follows:

min
∑n

i=1 | vi | (2)

s.t. Z = Zoptima

S.v = 0

vub ≥ v ≥ vlb

The cellular constraints on the biological systems were introduced together
with objective functions to better locate the ultimate solution. We systematically
tested 6 single (or combined) constraints [33] P-to-O (P/O) ratio was set to 1;
the upper limit bound for the maximal oxygen consumption rate (qO2max) was
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set to 15 mmol/gh as experimentally reported for chemostat cultures [15]; the
bounds on cellular maintenance energy (ATPM reaction) as the requirement
for growth-independent was left at the default model value of 8.39 mmol/gh
[27]; bound all fluxes (bounds) to maximal 200% of the glucose uptake rate as
observed experimently [37] and 35% of NADPH overproduction compared to
the NADPH requirement for biomass production. Finally the combination of all
above constraints is also included.

Empirical constraints related to the bounds of fluxes given in the original
models were discarded and at least the relative substrate uptake rate (glucose)
was constrained in each case.

2.3 Implementation

All calculations were implemented in Matlab 2012b (Mathworks Inc. Software)
and simulations were performed using the Constraint-Based Reconstruction and
Analysis (COBRA) toolbox (v. 2.0.5) [1]. In terms of optimization solvers, GLPK
[21] was used for linear problems. For the two non-linear non-convex objective
functions, a numeric approximation method was used. For example, with the
objective function max ATP/flux, firstly the range of ATP flux is calculated then
1000 value points are uniformly selected along the distance. After that, for each
point, the ATP reaction rate is constrained to this value and the l2-norm of all
fluxes in this system

∑
v2i is minimized simultaneously. The maximum of all

1000 ratios between ATP fluxes with their corresponding minimized flux norms
is a good approximation for the objective max ATP/flux. Similar approach was
used for max BM/flux.

Simulations were executed in parallel on a server machine with 8 AMD pro-
cessors of 2.3GHz each. The libSBML [4] was the package used for reading SBML
model files. Experimental datasets, metabolic models and ready-to-run matlab
scripts are freely available at https://github.com/hsnguyen/ObjComparison.

2.4 Calculating Distance between Predicted and Experimental Data

To evaluate the prediction ability, the definition of predictive fidelity [33] was
used. This error is defined by:

d(vcomp, vexp) = εTWε (3)

ε =
vcomp−vexp

vglucose
(4)

Wi,i =
1

σexp
i

(
∑

i
1

σexp
i

)−1 (5)

where d(vcomp, vexp) is the standardized Euclidean distance between predicted
fluxes vcomp and the experimental in vivo vexp fluxes weighted by their variances
σexp. The set of compared reactions are given as Supporting information 1.
Smaller predictive fidelity represent a better agreement between computational
predicted and experimental fluxes.

https://github.com/hsnguyen/ObjComparison
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3 Results and Discussion

The cellular objective functions for an organism are strongly dependent on the
comparison-data and size/type of the metabolic models. Thus, across two dif-
ferent metabolic systems and using available intracellular flux measurements for
E. coli, we examine the optimal criteria derived in a previous study [33]. Fur-
thermore, the effect of single (or pairs) standard constraints are also evaluated.
The metabolic models that we used are two stoichiometric models of E. coli
metabolism [27,33] and the flux distributions for eight different objective func-
tions. The experimental conditions included batch cultures but also chemostat
cultures under aerobic glucose and ammonium limitation.

The results obtained in the FBA simulations for each case were ordered ac-
cording to the fidelity error between predicted and experimental fluxes. Thus
the estimation of predictive result is based on two perspectives: (i) the predic-
tive errors represented by stem plots for different simulations and (ii) scatter
plots of separated flux-by-flux comparisons to see how each experimental flux
distribution matched to corresponding predictions.

3.1 The Impact of Objective Functions by FBA in Different
Conditions

The predictive fidelities for various objective and constraint combinations in dif-
ferent experimental conditions are shown in Figure 1 (all the remaining datasets
are given in supporting information). It can be observed that for simulations
using different growth conditions, the corresponding error patterns can differ
considerably. The 8 objective functions showed a great difference in the accu-
racy. Under nutrient scarcity (chemostat cultures) in glucose-limited, the linear
maximization of the biomass yields achieved the best predictive accuracy (Fig-
ure 1e and 1f and for other conditions see Supporting information). This result
agrees with previous works that supported the use of maximization of biomass
as the best objective function for FBA in continuous cultures [7,33,36]. An in-
teresting criteria also is the parsimony criteria (min

∑ | v |). The finding that
minimization of the overall intracellular flux plays a key role, as shown for the
genome-scale model (e.g. Fig 1f), is in line with a previous work for hybridoma
cells in continuous culture [3]. Our analysis for this growth condition indicated
that the single standard constraints namely none, qO2, maintenance energy or
NADPH improved their predictive fidelities. Although common properties with
the previous work [33], some relative alterations in our results could be observed.
Probably because the use of the relative flux values instead of the split ratios
used by Schuetz et al [33] between fluxes when comparing computational and
experimental results.

The best objective for the ammonium-limited continuous culture was obtained
by minimization of flux distribution or by maximization the biomass (Figure 1a
and 1b). On the other hand, for batch cultures the results suggest that the cells
“prefer” the maximization of biomass yield per flux unit (for example Figure
1c and 1d). In contrast to a previous work [17], this result suggest that the
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Fig. 1. Predictive fidelities for all objective functions and constraints of different cul-
ture conditions

minimization of redox potential is not a good choice as objective function for
E. coli batch cultures. In addition, the max ATP/flux also gave quite consistent
and promising fidelities on the two batch cultures (Holm and Perrenoud dataset)
in accordance with Schuetz work [33].

Additionally, in accordance with the finding of Schuetz et al [33], we found
that the effect of choice of constraints appear to be mostly insignificant to the
choice of the objective function.
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3.2 The Impact of Objective Functions by FBA in Different
Metabolic Systems

We next examined whether of these findings are consistent across different
metabolic systems. Here, the objective functions were tested using the recon-
struction models named as Core model and iAF1260 Genome-scale model re-
spectively for the same experimental dataset (Figure 2).
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Fig. 2. Predictive fidelities of pFBA simulation for each objective function in Holm
dataset (2a) and Emmerling dataset (2b) with two different metabolic systems. Values
above 1 are out of range.

Figure 2 shows the effect of the metabolic models type and size on the quali-
tative and quantitative predictions for the same dataset (Holm and Emmerling
dataset). While max BM and max BM/flux reported similar fidelities, simulation
with max ATP as objective function acted oppositely in the two metabolic sys-
tems. This difference reflects the fact that beside agreements on the most effective
functions for certain situations, using different metabolic systems could signifi-
cantly affect the conclusions for certain cases. The factors related to the model
reconstructions such as the biomass composition can be one possible reason for
this difference. For results of all other datasets see Supporting information.

3.3 Evaluation of Pairwise Constraints

Here FBA was run for all pairwise constraints to predict the fluxes. In order to
understand how the phenotype predictions vary across the different constraints, a
particular case is selected, namely the chemostat fermentation under the highest
dilution rate of 0.7h−1. This is a typical case where FBA simulations are less
accurate, since the cells were sub-optimally grown due to overflow metabolism
[14]. For this case the flux predictions behaved qualitatively well for the same
optimal criteria and well-described by maximizing biomass yield (Figure 3).
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Fig. 3. Comparison between pFBA predictive fidelities using single (3a) and pairwise
(3b) constraints for the dataset from Ishii under the dilution rate of 0.7h−1

Despite some differences, in general there is no improvement in predictive
fidelity for any of the single objective functions when the combination of two
objective functions are used instead. On the other hand, when the complete set
of constraints “all constraints scenario” are used simultaneously, its contribu-
tion was not significant compared to the “none” constrain scenario as reported
previously in [33]. Identical conclusions were obtained when repeating all these
simulations with the other datasets (data not shown).

4 Conclusions

This paper explored the effect of different optimality principles in FBA for two
metabolic systems using different conditions and comparison dataset than pre-
vious evaluations. Although the fidelity patterns of FBA can differ consider-
ably under different conditions, the classical biomass optimization was shown as
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one of the best objective. Moreover, our results show that the metabolic model
type/size could have a significant impact on the predictive fidelities.

Despite the observed variations, several generalities emerged. In agreement
with previous studies, the single objective of maximization of biomass yield
achieves the best predictive accuracy for a wide range of experimental condi-
tions and different models. For the batch growth condition the most consistent
optimality criteria appears to be described by the maximization of the biomass
yield per flux and also by the objective of maximization of ATP yield per flux.
Moreover, under N-limited continuous cultures, the criteria minimization of the
flux distribution or maximization of biomass yield was determined as the most
significant. On the other hand, the predictions obtained by flux balance anal-
ysis using additional combined standard constraints are not better than those
obtained using the single constraint or even none of them.

Although some optimal criteria give reasonable prediction under certain con-
ditions, there is no universal criteria that performs well under all conditions.
Therefore, systems biologists should perform a careful evaluation and analysis
of the objective functions case-by-case for each particular condition and appli-
cation.

Matlab code for investigation the effect of cellular objective function and con-
strains on metabolic models has been also developed. This implementation of all
objective functions and constraints can be easily adapted to test new metabolic
systems and can be evaluated by comparing its results with those reported here.
Ongoing efforts are currently directed for investigating the challenge of multi-
objective optimization formulations.
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Abstract. We consider the problem of optimal design of synthetic bi-
ological oscillators. Our aim is, given a set of standard biological parts
and some pre-specified performance requirements, to automatically find
the circuit configuration and its tuning so that self-sustained oscillations
meeting the requirements are produced. To solve this design problem,
we present a methodology based on mixed-integer nonlinear optimiza-
tion. This method also takes into account the possibility of including
more than one design objective and of handling both deterministic and
stochastic descriptions of the dynamics. Further, it is capable of handling
significant levels of circuit complexity. We illustrate the performance of
this method with several challenging case studies.

Keywords: gene regulatory network, synthetic biology, multiobjective
optimization, synthetic oscillator, optimization based design.

1 Introduction

Genetic oscillators play important regulatory roles in living organisms and, to-
gether with switches, are primary design targets in Synthetic Biology. From the
first oscillator to be successfully implemented in vivo [1], known as Repressilator,
a number of different working oscillators have been achieved in prokariotic [2]
and eukariotic cells [3] with improved robustness and tunability. These designs
are supported by mathematical models that predict the circuit behaviour in sil-
ico and help to understand the mechanistic principles leading to oscillations.
Seminal theoretical studies of biochemical oscillators based on mathematical
models go back decades [4,5] when phenomena like yeast glycolysis and periodic
enzyme synthesis revealed the importance of clocks in molecular cell biology [6].
Although helpful for understanding, traditional modeling approaches have limi-
tations from the design perspective since the system description provided is not
directly or easily translatable into a circuit that can be implemented in vivo,
i.e., into DNA sequences.

Synthetic circuits implemented to date, including oscillatory modules, are
relatively simple, attending to the number of regulatory regions and also to
the design engineering principles behind [7], and one of the challenges in syn-
thetic biology is advancing towards higher order networks with programmable
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functionalities and real world applicability [8]. In this regard, advanced mathe-
matical and computational tools for modeling and optimization are needed to
automatize the design and to explore complex circuit topologies beyond intuitive
principles. Recently, great efforts have been made that contribute to the advance
towards the automatic design of biocircuits. An increasing number of standard
biological parts or DNA components is being characterized and made available
at emerging catalogs like the library supported by the BioBricks Foundation [9]
or the open source registry platform JBEI-ICEs [10]. On the other hand, modu-
lar modeling tools and formal programming languages like GenoCAD [11], GEC
[12] or Eugene [13] are suitable for modeling biocircuits by combining standard
parts from a library.

In this work we exploit these recent advances to address the automatic design
of synthetic oscillators from standard biological parts. Modular programming
languages for synthetic biology allow to translate systems described at the logi-
cal level of interactions (for example in a rule-based grammar) into combinations
of devices compatible with the abstract circuit semantic. In [12] for example,
the Repressilator circuit configuration is programmed in GEC language and the
compilation of the program results in a series of systems complying with the
Repressilator topology. Here we approach a different problem which consists of
finding circuits with a particular performance starting from a given list of stan-
dard parts, without knowing a priori the abstract circuit configuration. The goal
is to find the combination or combinations of components which optimally per-
form a given function or show a specific pattern of behaviour, and in particular,
to find biocircuits which can work as self-sustained oscillators. The aim of this
paper is developing a methodology for the design of oscillators with the following
features:

- capability to handle high levels of circuit complexity,
- validity for both deterministic and stochastic descriptions of circuit dynam-
ics,

- modularity and easy translation of the oscillators obtained into implementable
circuits,

- possibility to incorporate more than one objective to the design.

To this aim the circuit design problem is formulated as a Mixed Integer Nonlinear
Optimization Problem (MINLP) [14,15] and efficient global solvers are used to
obtain the target oscillators. Finally an extension for multiobjective design is
presented such that multiple criteria can be included into the oscillator design.

2 Methods

2.1 Modeling Framework

A gene regulatory network consists of a collection of DNA segments and their
interactions which together control the expression levels of specific mRNA and
proteins in a cell [16]. By controlling the amounts and temporal patterns in which
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gene products appear, gene regulatory networks regulate biological functions. A
number of approaches are used to model gene regulatory networks including
logic-based methodologies, continuous models of ordinary differential equations
(ODEs) and stochastic models at the single cell level [16]. In this work we con-
sider both the continuous description based on ODEs and the discrete stochastic
description. For the automatic design of synthetic networks starting from a set of
basic parts, the modeling framework needs to be suitable for modular model com-
position [17], such that individual components can be described as self-contained
units and composed in different combinations [18].

Standard parts in synthetic biology are defined as DNA sequences encod-
ing a function that can be assembled with other standard parts. Following the
formalism from the Registry of Standard Biological Parts [9], we consider the
following basic constitutive components of genetic circuits: promoters recruit-
ing the transcriptional machinery which transcribes the downstream DNA se-
quence, ribosome binding sites controlling the accuracy and efficiency with which
the translation of mRNA begins, protein coding regions containing the sequence
information needed to create a functional protein chain and terminators sig-
naling the end of transcription. The abstraction hierarchy proposed by Endy
[19] classifies standard parts in three different layers: parts, defined as sequences
with basic biological functions (like for example DNA binding proteins), devices
(combinations of parts with a particular function) and systems (combinations of
devices). In Fig. 1, we illustrate this hierarchy through the Repressilator regula-
tory system [1], where the different devices and parts are indicated. The system
consists of three genes connected in a feedback loop. The first gene in the cir-
cuit expresses some protein A which represses the second gene, the second gene
expresses a protein B which represses the third gene, and protein C expressed
by the third gene closes the feedback loop by repressing the first gene. In order

G1 G2 G3PA PB PC

System

Device

Part

Promoter Ribosome
Binding
Site

Protein 
Coding 
Sequence

Terminator

Fig. 1. Scheme of the Repressilator circuit (SBOL visual graphical notation [20])

to build a model capturing the dynamics of a synthetic gene network we need
to know the full set of reactions of the system obtained by the combination
of parts, where parts are defined by user specified properties, either from ex-
plicit declaration or from information available at standardized repositories [13].
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A gene regulatory circuit is characterized by a reaction network consisting of a
set of species S = {X1, . . .Xs, . . . , Xns} interacting through a set of reactions
R = {R1, . . . Rr, . . . , Rnr} of the form:

∑

s∈S
αsrXsGGGA

∑

s∈S
βsrXs , (1)

where αsr and βsr denote the molecularity as a reactant or product, respectively,
of the species s in the reaction r. The state of the system at a given time is
determined by the number of molecules ζ1, . . . , ζns of the species X1, . . . , Xns ,
collected in the vector ζ. If a reaction r fires, the number of molecules of the
system evolves according to the vector of state change [21]:

νr = βr − αr , (2)

where αr and βr are the vectors containing the molecularities of educts and
products of the reaction r, such that the state of the system goes from the
state ζ to ζ + νr. Starting from the state change vectors of the reactions, the
stochiometric matrix can be defined as:

N = [ν1, . . . , νnr ] . (3)

In the discrete-stochastic approach, the numbers of molecules of every species
ζ1, . . . , ζns are considered as random variables and the evolution of the proba-
bility distribution on the state space over time is given by the Chemical Master
Equation:

˙P (ζ, t) =
∑

r∈R
ar(ζ − νr)P (ζ − νr, t)−

∑

r∈R
ar(ζ)P (ζ, t) , (4)

where ar denotes the propensity [21] associated to the reaction r. Solving the
Chemical Master Equation is often computationally intractable. Instead, single
sample trajectories of the chemical process, i.e. single realizations of Eq. (4), can
be computed with the exact stochastic simulation algorithm (SSA) by Gillespie
[21].

In the continuous-deterministic approach, the dynamics of the network (1)
are described through the evolution of the vector of concentrations z over time,
ruled by a set of ODEs of the form:

ż(t) = Nv , z(0) = z0 , (5)

where N is the stoichiometric matrix (3) and v is a vector containing the re-
action rates. At the thermodynamic limit, when the number of molecules is
sufficiently large, both stochastic and deterministic descriptions become equiva-
lent. Although the continuous approximation is widely used in systems biology,
in the design of synthetic oscillators essential parts of the system (like bound
repressors) appear always in low copy numbers and the effect of fluctuations may
be critical for the dynamics. For this reason, our design method is conceived to
handle both stochastic and deterministic descriptions.
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Regarding the properties associated to each standard part type, we adopt the
formalism proposed by Pedersen and Phillips [12]. The reactions and parameters
corresponding to every standard part are included in the Appendix. We assume
all reactions to be elementary and endowed with mass action kinetics. Within
this formalism, further extensions can be easily considered to include cooperativ-
ity in the binding, degradation of intermediate complexes, etc. The optimization
based design presented next is valid for any database complying with the formal-
ism described. In this work, databases of standard parts are coded in Matlab,
where, once a given set of parts is selected from the database, the model of the
corresponding gene network is automatically generated (more details are given
next), and the dynamics of the network are obtained numerically.

2.2 Optimization Based Design of Oscillatory Circuits

In order to formulate the automatic design of biological circuits as an optimiza-
tion problem [14], the design criteria is encoded into an objective function (or
functions) whose minimization under certain constraints (including the dynamics
of the system) yields the desired circuit behavior. Both the circuit structure and
the manipulable kinetic parameters need to be translated into decision variables
of the optimization problem.

Decision Variables and Dynamic Constraints. We start by defining the
decision variables and the dynamic constraints of the optimization problem ac-
cording to the modeling framework described in the previous section. Let us
assume that we start from a library containing g promoters, b ribosome binding
sites, p protein coding regions and t terminators, the number of possible device
configurations (in what follows we refer specifically to protein generator devices)
is n = g × b × p × t. Each standard part in the library is endowed with the
corresponding properties, sets of reactions and values of associated parameters.
In order to characterize a particular circuit configuration we can label every
possible device with an integer index i = 1 . . . , n and build a vector y ∈ Z

n of
binary variables such that:

{
yi = 1 , if the device i is part of the circuit structure,

yi = 0 , otherwise.

The vector y thus contains n binary decision variables for circuit optimization
based design. The structure of a gene regulatory network will be completely
defined by giving values to all the entries of the corresponding vector y. The
kinetic parameters of each standard part need to be specified together with the
set of reactions in the database. In case that some parameters can be tuned, they
will constitute the real decision variables for the optimization. In what follows
we denote by x ∈ R

m the vector of real tunable parameters and by k ∈ R
nr−m

the vector of parameters that remain fixed.
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The optimization based design of genetic circuits is subject to the constraints
imposed by the circuit’s dynamics. For the continuous deterministic description,
the dynamics are given by Eq. (5). With a slight abuse of notation let us rewrite
the equations making explicit the dependencies on the decision variables and
kinetic parameters as follows:

ż(t) = N(y)v(y, x, k) , z(0) = z0 , (6)

The structure of the vector v(y, x, k) depends on the active reactions in the
circuit defined by the vector y while the mass action monomial coefficients vary
according to the manipulable parameters x.

For a single cell stochastic description of a gene regulatory network the exact
dynamics are obtained by the SSA algorithm [21]. In our implementation the
inputs are the stoichiometric matrix N(y), the matrix of molecularities of the
reactants in all the reactions α(y) and the vector of stochastic kinetic rate con-
stants c(x, k) where the conversion of deterministic rate constants k to stochastic
rate constants c is done according to the definitions by Gillespie [21]. In both
cases, stochastic and deterministic, the output is encoded into a matrix contain-
ing the solutions (concentrations z in the deterministic description and numbers
of molecules ζ in the stochastic description) obtained at discrete time points.

Objective Function. Now we need to define an objective function that, once
minimized, will provide us with the desired circuit response consisting of a sus-
tained oscillation. To this aim we introduce first the notion of autocorrelation
which is used to evaluate the periodicity of time series data in different contexts,
from signal processing to biochemical clocks [22] or neuronal responses [23].

Let {st; t = 1, . . . ,M} be a time series corresponding to a process which is
ergodic and stationary. The unbiased estimate of the autocorrelation function of
st at a lag j can be defined as:

Γ (j ;M) =
1

M − j

M−j∑

t=1

stst+j , (7)

This function can be normalized Γnorm(j;M) = Γ (j;M)/Γ (0;M) such that the
maximum value is Γnorm(0;M) = 1. For st being the output of a deterministic
simulation showing sustained oscillatory behaviour, the autocorrelation function
will oscillate also in a sustained manner. For perfect (not damped) oscillations,
the first peak in the normalized autocorrelation function, in what follows denoted
by PnormΓ , will take the maximum value 1.

Provided that st represents a realization of a stochastic process with a sus-
tained oscillation, the autocorrelation estimate Γ (j;M) will show a damped
oscillation. This is due to the fact that stochastic fluctuations induce the phase
diffusion of the oscillator and affect its periodicity [22]. The precision of the
oscillators is often quantified through the so called quality factor, defined as
Q = 2πγ/T where γ is the inverse of the damping rate or characteristic time of
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the decay of the autocorrelation function [24] and T is the period of the oscilla-
tion [22]. In this way, the quality factor Q gives an estimation of the number of
oscillations over which the periodicity is maintained [25]. We consider then that
the lower the damping rate (and consequently the higher the first peak of the
autocorrelation PnormΓ ) the better the oscillator is and, in order to establish an
objective criterion to evaluate the oscillators, we measure the first peak of the
autocorrelation PnormΓ [26].

MINLP Formulation. We are now in the position to formulate the design of a
synthetic oscillator as an optimization problem. Let us start by the deterministic
ODE framework, where the design can be formulated as the Mixed Integer Non-
linear Programming problem of finding a vector x ∈ R

m of continuous variables
and a vector y ∈ Z

n of integer variables which minimize the objective function:

min
x,y

− PnormΓ (ż, z, y, x, k) (8a)

subject to:

i) the circuit dynamics in the form of ODEs with the state variables z and
additional parameters k:

ż(t) = N(y)v(y, x, k) , z(t0) = z0 , (8b)

ii) additional requirements in the form of equality and inequality constraints:

h(z, y, x, k) = 0 , g(z, y, x, k) ≤ 0 , (8c)

iii) upper and lower bounds for the real and integer decision variables:

xL ≤ x ≤ xU , yL ≤ y ≤ yU . (8d)

For the discrete single cell stochastic description of the dynamics we use an
analogue MINLP formulation, but in this case the minimization of the objective
function (8a) is subject to the (noisy) circuit dynamics obtained by simulation
with the SSA algorithm. As in the deterministic case, the minimization of the
objective function is subject also to upper and lower bounds for the real and
integer decision variables and it can be subject to additional requirements in form
of equality and inequality constraints. This formulation of the design problem
allows to impose a constraint on the maximum number of devices (Dmax) allowed
in the circuit: ∑

i

yi ≤ Dmax (9)

such that we can design oscillators with predefined complexity.
The solution of the resultant MINLP problem (both for the deterministic and

stochastic descriptions of the dynamics) is challenging from the computational
point of view. On the one hand, the design of gene circuits combines a high
number of integer variables with real variables (tunable parameters), and on
the other hand the dynamics of the systems under study are highly nonlinear
resulting in an optimization problem which is non convex and multi-modal. Here
we make use of a number of global MINLP solvers which have been tested in the
context of biocircuit design with good results [28].
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Multiple Design Criteria. The MINLP formulation of the design presented
allows to achieve the primary goal of finding oscillators starting from a library
of components. However, in a previous work [28] we have shown how the single
objective formulation of the design of biocircuits might lead to arbitrariness when
it comes to select the best solution and suggested the convenience of introducing
additional competing criteria in order to provide more realistic design settings.
In the presence of more than one competing objective the solution is not unique
and every solution represents trade-off between different criteria. One design
option is to consider the protein production cost as an additional criterion [28]
competing with the oscillator performance. Another interesting multiobjective
problem in oscillator design arises when it is needed to maximize the tunability
of the oscillator’s frequency without compromising its amplitude [29].

Following the ε-constraint proposed in [28], we can reduce the multiobjective
optimization problem into a number of MINLP where each MINLP is obtained by
minimizing one of the objectives and converting the rest of criteria into inequality
constraints. Global MINLP solvers can then be used to find the Pareto optimal
set of solutions.

3 Results and Discussion

As a proof of concept for the methodology presented we have set a number of
design problems aiming to build genetic oscillators from a prototype library of
standard parts in different scenarios. We have adapted the database from [12] to
build a Matlab library containing 4 promoters: P1 = Pλ, P2 = Ptet, P3 = Pbad,
P4 = Plac, 1 ribosome binding site, 1 terminator and 11 protein coding regions
for the proteins cIR, tetR, araC, lacI, luxI, luxR, lasR, lasI, ccdB, ccdA,
ccdA2. We have used the kinetic parameters from Pedersen and Phillips [12].

3.1 Single Objective Design of Synthetic Oscillators in
Deterministic Regime

First we search for sustained oscillators in the deterministic regime, using the
MINLP formulation (8) in the Methods section. Starting from the prototype
library, the number of integer decision variables (possible different devices) is
n = 44. We set a maximum number of devices to Dmax = 3. In order to solve
the optimization problem we use the enhanced scatter search global solver eSS
by Egea et al [30] with a multistart strategy, consisting of 20 runs of 600 sec-
onds from different random initial guesses. No solution is found even when we
increase the number of runs and the computation time per run. The same result
is obtained with the mixed-integer tabu search solver (MITS) by Exler et al [31]
and with the mixed-integer ant colony optimization solver (ACOmi) by Schlueter
et al [32].

This result is coherent with the observations in [27], where they studied the
effects of different model features in the appearance of oscillations for the Re-
pressilator scheme. According to their results, in absence of cooperativity, the
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degradation of the bound repressor is needed for oscillations in the determinis-
tic regime. In view of this observation, we have extended the library to include
degradation of bound repressor. To this aim, the properties associated with the
negatively repressed promoter are modified by adding a degradation reaction as
indicated in the Appendix. Using a multistart strategy consisting of 20 runs of
600 seconds from different random initial guesses, the solver eSS found six dif-
ferent circuits, all of them endowed with the Repressilator topology illustrated
in Fig. 1 where PA represses G2, PB represses G3, and PC represses G1. We
include the solutions in Table 1. The values of the objective function are in all
cases close to −1 (the estimation of the autocorrelation is subject to numerical
error).

Table 1. Different gene circuits with Repressilator configuration found in the deter-
ministic regime with degradation of the bound repressor, with Dmax = 3

G1 PA G2 PB G3 PC Γnorm

circuit 1 P2 lacI P4 araC P3 tetR 0.9912
circuit 2 P1 araC P3 LacI P4 cIR 0.9898
circuit 3 P1 lacI P4 tetR P2 cIR 0.9887
circuit 4 P1 tetR P2 araC P3 cIR 0.9836
circuit 5 P4 araC P3 cIR P1 LacI 0.9836
circuit 6 P1 tetR P2 lacI P4 cIR 0.9746

3.2 Single Objective Design of Synthetic Oscillators in Stochastic
Regime

Now we aim to search for sustained oscillators in the stochastic regime start-
ing from the original prototype library (without bound repressor degradation).
We formulate the MINLP problem as indicated in the Methods section where
the constraints imposed by the dynamics are obtained by simulation with the
stochastic Gillespie algorithm. Again we have that n = 44 and we set Dmax = 3.

Although no oscillators appeared in the deterministic regime, sustained oscil-
lators are found by solving the optimization problem in the stochastic regime.
Previous studies found that fluctuations modify the range of conditions in which
oscillations appear compared with the deterministic equations, and also that
deterministic and stochastic methods might not agree about the existence of
oscillations [27].

The best oscillator found by eSS in the stochastic regime consists of the three
devices P4-rbs-araC-ter, P3-rbs-cIR-ter, P1-rbs-LacI-ter following the Repres-
silator configuration. The dynamics obtained by the Gillespie algorithm (for a
single realization) are depicted in Fig. 2 together with the autocorrelation func-
tion for the cIR stochastic dynamics.
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Fig. 2. Time course and autocorrelation for the optimal circuit in stochastic regime

3.3 Multiobjective Design of Synthetic Oscillators

One important property of genetic oscillators in some biological contexts is, as
reported by [29], the ability to tune the oscillator’s frequency without compromis-
ing its amplitude. We formulate here a multiobjective design problem aiming to
maximize the period tunability (we will denote this magnitude by |T |) through
the manipulation of a circuit parameter, in this case the mRNA degradation
constant, while minimizing the impact in the circuit output. Instead of ampli-
tude differences, for simplicity we measure the differences between oscillation
peaks, denoted by |A|. We start from the extended library (including bound
repressor degradation) and set up a maximum number of devices of Dmax = 6.
The decision variables are n = 44 integers defining the circuit topology plus one
real variable (we choose the degradation rate constant of the bound repressor
kdb as the tunable parameter). We formulate the design problem as a multiob-
jective optimization one with two different objectives. The problem is solved by
means of the ε-constraint strategy in combination with the global MINLP solver
eSS, with −|T | as the objective function to minimize at different intervals of
|A| defined as constraints. The Pareto front found is depicted in Fig. 3, and the
corresponding circuits are included in Table 2.

Table 2. Circuits from the Pareto front in Fig. 3, Dmax = 6

device 1 device 2 device 3 device 4 device 5 device 6 kdb
circuit 1 P1-araC P1-lacI P1-luxI P2-cIR P3-tetR P4-tetR 0.502
circuit 2 P1-araC P1-lacI P2-cIR P3-tetR P3-luxI P4-tetR 0.515
circuit 3 P1-araC P1-lacI P1-luxI P1-luxR P2-cIR P3-tetR 0.455
circuit 4 P1-araC P2-cIR P2-lacI P3-tetR P4-araC P4-ccdA 0.569
circuit 5 P1-lacI P2-cIR P2-luxR P2-lasR P2-ccdB P4-tetR 0.587
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4 Conclusions

In this work we develop a methodology for the automatic design of genetic
oscillators based on mixed-integer nonlinear optimization. Starting from a library
of standard parts our method allows us to find circuit configurations and tunings
producing self-sustained oscillations with a number of predefined requirements.

The method is valid for any library or database complying with the formalism
proposed by [12], where each standard part has associated a set of reactions
and parameters and mass action kinetics are assumed. The advantages of this
formalism are twofold: on the one hand, libraries can be easily extended to
incorporate new elements and/or reactions, and on the other hand, the mass
action assumption allows handling both deterministic and stochastic descriptions
of the dynamics. This is of crucial importance in the design of genetic circuits
where essential parts of the system appear always in low copy numbers and the
effect of fluctuations may be critical for the dynamics.

Although optimization methods have been already used to find bifurcations
in systems biology models [33,34], our approach, where the objective function is
based on the autocorrelation function, results more practical in the design con-
text (synthetic biology). For the solution of the resultant mixed-integer nonlinear
optimization, we make use of a number of global MINLP solvers with proven
efficiency in the context of biocircuit design, allowing to handle assemblies with
significant levels of complexity.

Finally, the method allows including more than one design objective, provid-
ing a realistic design setting where every design solution represents a trade-off
between different criteria.
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Appendix: Reactions Associated to Each Standard Part

Here we include the standard part properties taken from [12] together with the
extension proposed to incorporate the degradation of bound repressor. Within
this framework a promoter negatively regulated by a protein P has associated
the reactions:

G+ P
kb

GGGGGGBF GGGGGG

ku
GP

ktb
GGGGGGA GP +mP (A1)

where G is the promoter, P is the protein, GP is the repressor-promoter complex
and mP is the mRNA of the transcribed protein. The parameters kb, ku and ktb
refer to the protein-promoter binding rate constant, protein-promoter unbinding
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rate constant and the rate of transcription in the bound state. The reactions
corresponding to a promoter not regulated by any transcription factor are:

G
kt

GGGGGGA G+mP mP
kdm

GGGGGGGGA ∅ (A2)

where kt is the constitutive rate of transcription in absence of transcription fac-
tors and kdm is the degradation rate constant for the mRNA degradation. Here
it is important to note that a promoter may show also positive regulation, multi-
regulation either positively or negatively by the levels of multiple transcription
factors, and both constitutive and regulated transcription. The ribosome binding
site part has one associated reaction:

mP
kr

GGGGGGA mP + P (A3)

where kr is the rate constant corresponding to the translation of mRNA. Finally,
the protein coding region part is endowed with:

P
kd

GGGGGGA ∅ (A4)

where kd is the degradation rate constant of the protein P . Starting from a
library of genetic parts with their respective relevant properties, one can obtain
the complete reaction network for composed devices and systems. For example,
the set of reactions for a device consisting of a promoter G1, repressed by a
protein P1, and a ribosome binding site for the expression of a downstream
protein P2 will read, in presence of the repressor protein P1 as:

G1 + P1

kb1
GGGGGGGBF GGGGGGG

ku1
G1P1

ktb1
GGGGGGGGA GP1 +mP2

mP2

kr2
GGGGGGGA mP2 + P2 P2

kd2
GGGGGGGA ∅ (A5)

In order to consider the degradation of the bound repressor, we add the reac-
tion:

GP
kdb

GGGGGGGA G (A6)

to the previous scheme (A1), where kdb represents the rate constant for degra-
dation of the bound repressor.
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Abstract. The cytoplasm of Escherichia coli is a crowded, heteroge-
neous environment. The spatial kinetics and heterogeneities of synthetic
RNA-protein complexes have been recently studied using single-cell live
imaging. A strong polar retention of these complexes due to the presence
of the nucleoid has been suggested based on their history of positions and
long-term spatial distribution. Here, using stochastic modelling, we ex-
amine likely sources, which can reproduce the reported long-term spatial
distribution of the complexes. Based on the anisotropic displacement
distribution observed at the border between the mid-cell and poles, we
conclude that the original hypothesis that the observed long-term be-
havior is the result of macromolecular crowding holds.

Introduction. Even single-celled organisms, such as Escherichia coli, possess
a far from random internal organization, as the cytoplasm is a crowded, het-
erogeneous environment. Some proteins preferentially locate at the cell poles
(e.g. those involved in chemo-taxis), while others, e.g. those involved in gene
expression, locate at mid-cell, within a structure known as the nucleoid.

Recent single-cell live microscopy measurements have studied the spatio-
temporal distributions of a large complex, composed of a synthetic RNA tagged
with multiple MS2-GFP proteins [1][2]. In one of these studies it was observed
that, at short time scales, the motion of the complexes is sub-diffusive with an
exponent that is robust to physiological changes and, at long time scales, the
complexes tend to localize at the cell poles [1]. Further, it has been shown that
these complexes are retained at the poles, as shown in Figure 1A, most likely
due to the presence of the nucleoid at mid-cell [2]. This hypothesis arises from
the observation of a strong anisotropy in the displacement distribution where
the border of the nucleoid is expected to be (Figure 1B). However, the observed
long-term spatial distribution of complexes could also, theoretically, arise from
other sources, e.g. heterogeneities in the speed of the complexes along the ma-
jor axis of the cell. Here, we use stochastic modelling to distinguish, from the
observations, between the possible retention mechanisms taking place.

Methods. We model the cell as a compartmentalized 1-dimensional space which
is divided into N homogeneous sub-volumes, indexed from [1,N]. The motion of

P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 239–243, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. (A) Relationship between the
position along the major axis where
each complex was last observed and
the absolute position where it was
first observed at a pole. Here, an
end position of +1 indicates that the
complex remained at the same pole
as it was first observed in, while -
1 indicates that it traveled to the
other pole. (B) Difference between
the numbers of displacement vectors
that are directed towards the poles
and towards the mid-cell along the
major cell axis. The differences in
numbers were calculated from the dis-
placement vectors originating within
windows extending 0.05 normalized cell
lengths around that point. All 160 cells
were born during the measurement pe-
riod and contained one complex in their
lifetime. In both figures, the horizontal
and vertical dashed lines represent the
detected separation between the mid-
cell and poles.

the complexes along the major cell axis is modeled with unimolecular reactions
following the Reaction-Diffusion Master Equation [3]. We define −→α (x) as the
propensity of the forward reaction (modeling the motion of a complex from
position x to position x+1) and ←−α (x) as the propensity of the backward reaction
(from x to x − 1). These propensity functions account for the combined effects
of the rod shape of the cell and the nucleoid on the motions of the complexes.

Let P (t) be the N×1 vector describing the probability of observing a complex
in each sub-volume at time t, and A be the N × N transition rate matrix of
propensities. P (t) therefore evolves according to the following master equation,
in matrix-vector form:

dP (t)

dt
= AP (t). (1)

Since a complex can travel from any sub-volume in the cell to any other sub-
volume, given enough time, the system is ergodic and as t → ∞, P (t) will
converge to a unique solution, P∞ . Solving the linear system of equations 0 =
AP∞, with the constraint that the total probability must sum to 1, we obtain
the long-term spatial distribution of the complexes predicted by the model.
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The propensities of the both diffusion reactions without accounting effects
due to the rod shape and nucleoid are proportional to the diffusion constant of
the complexes, D, given by:

−→α (x) = ←−α (x) =
N2D

2
. (2)

To account for the rod shape, i.e. a cylinder capped with two half-spheres, the
length of the cell was parameterized by B ∈ [0, 1], the normalized distance from
midcell at which the cap begins.The forward propensities were attenuated by
φ(x), the ratio between the areas of the cross sections of the cell (denoted S(x))
at adjacent positions. As such, ←−α (x) remains the same and −→α (x) becomes:

−→α (x) =
N2D

2
φ(x). (3)

where,

φ(x) =
S(x+ 1)

S(x)
,

S(x) =

⎧
⎨

⎩

π if c(x) < B

π

[
1−

(
c(x)−B
1−B

)2
]

if c(x) ≥ B

Here, c(x) translates the index of a sub-volume into the normalized distance
from the midcell to the center of the sub-volume. In this case, B = 1 recovers
the cylindrical cell from above, and B = 0 produces a spherical cell.

The effects of a nucleoid are introduced in the above model by adding a
Gaussian function to −→α (x) while subtracting it from ←−α (x). This anisotropy
was parameterized with center μ ∈ [0, 1], standard deviation σ, and height h.
Specifically:

−→α (x) =
N2D

2

[
φ(x) + h ∗ exp

{−(c(x)− μ)2

2σ2

}]
, (4)

and

−→α (x) =
N2D

2

[
1− h ∗ exp

{−(c(x)− μ)2

2σ2

}]
. (5)

To fit the models to the measurements, we use the Earth-Mover’s metric [4][5]:

W (F,G) =

∫ ∞

−∞
|F (x) −G(x)|dx (6)

where F and G are the cumulative distribution functions of the model and the
measurements. This metric is a measure of the amount of work required to make
two distributions identical.
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Results. We constructed three 1-dimensional models to simulate the diffusion
of the complexes within the cell. For all the models, we set N to 100, and D, the
diffusion coefficient, to 1.43 ∗ 10−2μm2/min based on previous measurements
[1][2]. Two of the models contain spherical cell caps and their effects. We in-
troduced a localized anisotropy in one of these models to test whether it, as
observed in [2], can generate the observed long-term spatial distributions of the
complexes (see Methods). In the last model, we set the forward and backwards
propensities of diffusion events to be equal, and inversely proportional to the
observed spatial distribution. Due to this, in the long term, the complexes tend
to linger in the areas where they were observed with high probability.

Next, for each model, we varied all parameters and, for each set of values,
obtained the distribution of complex positions that would be observed at infinite
time. We then selected the set of parameters whose resulting distribution best
fit the measured distribution of complex positions reported in [2].

The results from all three models, each using the best-fit parameter values,
are shown in Figure 2. The model without the anisotropy fails to reproduce
the displacement distribution (Figure 2A), and the consequent heterogeneity
in the spatial distribution of complexes that favors their presence at the poles
(Figure 2B). Meanwhile, the second model captures both of these properties
of the dynamics of the complexes with significant accuracy. Interestingly, even
though the third model reproduces the long-term spatial distribution exactly as
observed (the lines are indistinguishable in Figure 2B), it produces a negligible
anisotropy in the predicted displacement distribution (Figure 2A).
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Fig. 2. (A)Measured fraction of displacement vectors originating within a window ex-
tending 0.05 normalized cell lengths around that point which are directed towards the
pole (black line), model prediction with homogenous speed (without nucleoid (dashed
line) and with nucleoid (gray line)), and with differing speed without nucleoid (dotted
line). Note that the dashed line is superimposed by the gray line in the left side of
the graph. (B) Measured spatial distribution of fluorescence intensities of complexes
(black line) model prediction with homogenous speed (without nucleoid (dashed line)
and with nucleoid (gray line)), and with differing speed without nucleoid (dotted line).
Note that the dotted line is superimposed on the black line of the graph.

Using these models, with parameters tuned to match the measurements re-
ported in [2], we show that both an anisotropy in the displacement vectors and a
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reduced speed at the poles produce good fits with the measurements. However,
the model with varying speed along the major cell axis, at the time scale of the
measurements, was unable to reproduce the observed anisotropic displacement
distribution at the border between the mid-cell and poles. We conclude that polar
retention most likely relies on these anisotropies in the displacement distribu-
tion rather than differences in speeds, consistent with the hypothesis that the
observed long-term behavior is the result of macromolecular crowding, likely due
to the nucleoid. Overall, the spatiotemporal kinetics of the complexes suggests
that nucleoid occlusion is a source of dynamic heterogeneities of macromolecules
in E. coli that ultimately generate phenotypic differences between sister cells.
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Abstract. Stochastic reaction-centric views are suitable for exploring
hybrid minimal mechanism-statistical models of fatty acid and lipid
metabolism, the basis of de novo lipogenesis. In this work, we demon-
strate a reduced model for the core fatty acid synthesis and elongation
process with a regulatory mechanism. This allows us to explore fatty acid
profiles from lipid metabolomics data. This is part of a current study to
assess the programming languages for capturing inherent probabilistic
behaviour of the hierarchical chemical transformations of complex lipid
species.

1 Introduction

Understanding lipid metabolism and its regulation is essential in metabolic disor-
ders and diabetes-related diseases. Many of the metabolites and transformation
reactions involved are still poorly characterised. Because of the low numbers of
carbons flowing through the lipid pathways, the effect of the inherent probabilis-
tic nature of chemical events is amplified. These two factors make lipid pathways
difficult to analyse with current modelling approaches used for metabolic pro-
cesses, such as constraint-based analyses (including FBA) [1], which is focused
on deterministic average-case behaviour (of population growth). Here, we use
an alternative stochastic and reaction-centric view to capture these pathways.
In particular, we focused on Fatty Acid (FA) synthesis and elongation which is
central in lipid metabolism. FAs are the core building blocks, modified for more
complex lipids within the cell and tissues. FA synthesis and elongation pathways
in particular display some characteristics that make models benefit from this al-
ternative view: local iterative processes, probabilistic decisions at different levels
and between pathway control mechanisms that affect decision making. We hope
the eventual models will be useful for examining metabolomics data from model
organisms, clinical trials or large-scale epidemiological cohort studies.
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2 Methods

An important aspect of this work was to assess possible languages for captur-
ing this stochastic behaviour in a reaction-centric projection. Recently, there
has been a general trend towards constructing executable models, from the dis-
tributed systems world [2]. Here, we use Petri Nets [3] mainly and pi-calculus
(SPiM [4] variant in particular) which is an example of a Process Algebra [5].
Petri Nets provide a vivid and intuitive graphical notation with a natural cor-
respondence to chemical reactions and they have been used before for other
metabolic pathways [6]. The main unit of definition for Petri Nets is the tran-
sition. The main unit of definition for Process Algebra is the species but the
operational semantics are in terms of interactions, which again make them suit-
able for our reaction-centric view. Since these languages have been designed to
handle distributed systems and therefore concurrency, non-determinism repre-
senting decisions is inherent in the structure of Petri Nets and in the syntax of
pi-calculus. FA biosynthesis and elongation was taken from a reference anno-
tation (KEGG hsa00062) with source and sink metabolites. Sinks were defined
as the Cn:0, even-chain FAs. Elongation was combined with multiple steps in
synthesis ignoring transport processes, under the assumption of non-reversable
(net-forward) effects and constant reaction rates.

3 Results

We modelled the iterative FA elongation process as the combined effect of syn-
thesis and elongation pathways, reduced down to a series of binary decisions or
Bernoulli trials. An FA under elongation at each point makes a binary decision
of whether to stay at its current length or continue to form longer FAs. This
decision can be captured in the Petri Net language as a race condition between
two enabled transitions. According to the operational semantics of the system
the probabilities of the decision outcomes are controlled by the rates of the re-
actions corresponding to the transitions. The entire process can be seen as a
series of binary decisions. An FA starts its “journey” in the net and moves along
making the decisions along the way before getting trapped in one of sinks of the
net that represents an FA reaching its final length (Figure 1).

We also modelled the Acetyl-CoA flow decision between the Krebs cycle and
FA synthesis, controlled by the immediate energy requirements of the cell. Again
this decision is captured very naturally as a race condition between two enabled
transitions, the transition taking an Acetyl-CoA molecule to the first step of
FA synthesis and the transition taking it towards the TCA cycle. The other
pathways involved in this process were not modelled explicitly. Instead all the
involved reactions were grouped into a single Petri Net transition respecting the
stoichiometric constraints of the pathway. In this case, the transition rates are
functions of ATP to display this control mechanism. The strength of the change
in the likelihoods of the two outcomes can be captured by an exponent parameter
on the two corresponding rates (Figure 2).
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Fig. 1. On the left, the decision taken at a specific point by a metabolite during the
elongation process. On the right, the entire process can then be seen as a series of
binary decisions that the FA takes whether to stay at the current length or continue
for further elongation.

FA flowTCA flow

ATPkATPb
k

Acetyl-CoA

Fig. 2. Depending on the energy requirements of the cell, for which ATP levels act as a
proxy, Acetyl-CoA can either go towards the TCA cycle to produce energy or towards
FA synthesis. This decision is captured by a race condition. The likelihoods of the two
outcomes are functions of ATP naturally. As ATP from the TCA feeds to the FA flow,
this is described as a feed-forward motif (FFM).

The models were tuned with real experimental data, donated from a GC-FID
mouse adipose metabolomics study. Relative metabolite abundances was used
to parameterise the output states and therefore sample the relevant posteriors.
Since the entire FA synthesis and elongation process can be seen as a series of
Bernoulli trials, the only parameters of the model are the success probabilities
for the decisions. A Maximum Likelihood estimation of these can be done from
the data by recognising that the number of successes is the number of the cor-
responding species (for example C4 for the first decision) and the number of
trials the number of the corresponding species and the sum of the numbers of
all longer species.
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Non-parametric Dirichlet process mixture model clustering was used to par-
tition the mouse adipose metabolite data, giving four clusters representing four
distinct metabolic states and drug-dose treatment conditions. Ratios of even-
chain FAs in each cluster were the posteriors per metabolic state for the models.
Clustering of metabolic data adds an interesting dimension to the study as we can
observe changes in the model parameters across different conditions and identify
mechanistic detail or topological structures that show dynamical changes under
perturbation.

4 Discussion and Conclusion

Reaction-centric network projections have advantages in model building. Path-
ways can be reduced to single composite transitions leaving interface metabo-
lites (e.g. in the TCA cycle). To remain biochemically valid, stochastic statistical
models are also hybrid, retaining mechanistic detail that can be parameterised to
discriminate between metabolic states. Posteriors for model extensions are sim-
ply the ratios of additional metabolites taken from each metabolic state. In the
next extensions to the current models, the additions could be parameterised from
odd-chain, unsaturated or even combinations of these in the complex lipid species
such as DAGs and phospholipids, sphingolipids and TAGs. Metabolic processes
such as degradation of FAs and the anabolism and catabolism of more complex
lipids can be added as extension modules to our core models. It is important that
phenomenological-statistical models for metabolic processes retain some essen-
tial mechanistic detail that allow them to discriminate between metabolic states
in health and disease. The impact to the lipid metabolomics community is that
these models allow a re-examination of lipid metabolite profiles in large scale
epidemiological data. Lipid metabolites profiled using extraction and separation
of complex lipid species can be compared to model predictions of endogenous
metabolic intermediates such as FAs in different metabolic states.
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Abstract. Synaptic vesicle recycling at the presynaptic terminal of neu-
rons is essential for the maintenance of neurotransmission at central
synapses. Among the tools used to visualise the mechanics of this process
is time-series fluorescence microscopy. Fluorescent dyes such as FM1-43,
or engineered fluorescent versions of synaptic vesicle proteins such as
pHluorins, have been employed to reveal different steps of this key process
[3,7]. Predictive in silico modelling of potential experimental outcomes
would be highly informative for these time consuming and expensive
studies.

We present FM-Sim [9], user-friendly software for defining and sim-
ulating fluorescence microscopy experimental assays, with the following
features: intuitive user definition of experimental protocols; automatic
conversion of protocol definitions into time series rate value changes;
domain-specific simulation model of a synaptic terminal; experimental
data used for model parameter value inference; automatic Bayesian in-
ference of parameter values [1,5] and reduction of inferred parameter set
size for Bayesian inference.

1 The Synaptic Vesicle Cycle

Within chemical synapses of central nervous system (CNS) neurons, neurotrans-
mitter is released from the presynaptic terminal to propagate the neural signal
to the postsynaptic terminal of the following neuron. This neurotransmitter is
stored in vesicles within the presynaptic terminal. These vesicles are exocytosed
in response to an incoming action potential (Figure 1). To prevent vesicle de-
pletion, compensatory endocytosis of plasma membrane allows regeneration of
these vesicles. Two forms are studied within CNS nerve terminals:

– Clathrin Mediated Endocytosis (CME) [6]. Individual vesicles are re-
constructed directly from the plasma membrane. Following reacidification of
the vesicle contents and refilling with neurotransmitter, these vesicles rejoin
the vesicle pools.
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– Activity Dependent Bulk Endocytosis (ADBE) [4]. This is a second
endocytosis mechanism triggered by periods of high stimulation. Here, large
areas of plasma membrane are endocytosed as endosomes, which are later
broken down into individual vesicles for reuse.

FM-Sim uses a hybrid stochastic model with delays of the vesicle cycle for
simulation and inference. The model supports the behaviour of different fluores-
cent probes. The kinetic rates and associated time delays of state transitions are
the parameters of the model.

2 Fluorescence Microscopy Imaging

Time-series fluorescent microscopy is one of the tools used to study the mecha-
nisms of the synaptic vesicle cycle. Fluorescent probes added to nerve terminals
allow us to obtain time-series images of nerve terminal behaviour under stimula-
tion. The two commonly used forms of fluorescent probes are FM dyes (such as
FM1-43 and FM2-10), and engineered pH-sensitive fluorescent synaptic vesicle
proteins (pHluorins).

The change in fluorescence of a nerve terminal as a whole over time and under
changing stimuli gives insight into internal behaviour. By using either FM dyes
or pHluorins in combination with chemical inhibitors, or on various knockdown
animal models, different aspects of the synaptic vesicle cycle can be isolated and
studied. It is this variety of potential experiments which makes FM-Sim useful at
the design phase. New experiments can be simulated based upon rate parameters
obtained from prior similar experiments.

Fig. 1. The synaptic vesicle cycle, showing vesicle exocytosis and endocytosis
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3 FM-Sim: Protocol Definition and Simulation

FM-Sim allows the definition of experimental protocols (Figure 2). These are
timed sequences of events, including reagent addition, and electrical or chemical
stimulation of neurons. Each protocol event can have rate parameter values set
manually, inferred from observations, or inherited from protocol events already
active.

Once defined, the set of protocol events are converted into a sequence of
rate change events for simulation (Figure 3). At each rate change event, the
set of rate values in effect are calculated, accounting for value inheritance. A
single value is used for each inferred protocol event parameter when generating
Bayesian inference proposals, ensuring consistency if that parameter value is
used in multiple rate change events. This simplification of protocol definition
entry and automatic rate event generation with inherited rate values is a feature
not found in many of the general purpose simulators currently available, such as
VCell [8].

Fig. 2. Example parameter inference of a defined protocol, the parameter values in red
are inferred from observed experimental data. The graph shows a sample simulation
using these parameter values compared against the supplied experimental data.

Fig. 3. Example rate change event generation. Protocol events P1,. . .,P6 are defined
with start times and durations. These protocol events are then used to generate a
sequence of events where rate values may change.



FM-Sim: Protocol Definition, Simulation and Rate Inference 251

Protocols are simulated stochastically using the Delayed Stochastic Simula-
tion Algorithm (DSSA) [2] with hybrid extensions, and the results of multiple
simulation runs aggregated to provide mean and variance of the simulated model
results. These results show both the expected fluorescence level, and the numbers
of vesicles and endosomes at each stage of the synaptic vesicle cycle.

Rate parameters for a experimental protocol that have not been fixed by the
user can be inferred from attempts to match a set of observed experimental
data. A Bayesian approach to parameter inference is used, based on a Particle
Marginal Metropolis-Hastings scheme using Sequential Monte Carlo estimates
of marginal likelihoods [5,1].

Acknowledgements. Thanks to the members of the Cousin group for helpful
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the DTC in Neuroinformatics and Computational Neuroscience, the EPSRC,
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FM-Sim is available athttp://homepages.inf.ed.ac.uk/s9269200/software/.
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Abstract. Mitochondria are mobile cellular organelles that form net-
works by fusion and fission. These events lead to an exchange of compo-
nents responsible for maintaining membrane potential, i.e. mitochondrial
health. Membrane potential can be disturbed by an imbalance of fission-
triggering proteins. We expand an existing computational model of fusing
and splitting mitochondria by representations of fission protein 1 (Fis1)
and dynamin related protein 1 (Drp1) and perform parameter scans on
simulations of it. Our relatively basic model already shows an effect of
lower Fis1 and Drp1 recruitment rates, i.e. lower availability, on network
structure and overall health. Various aspects of the real system can be in-
corporated into model, e.g. further regulatory proteins, a varying spatial
distribution of Fis1 and Drp1, or consequences of changed mitochondrial
network structure and health on their behaviour, e.g. under oxidative
stress.

Keywords: spatial simulation, rule-based modeling, mitochondrial net-
work, mitochondrial health, mitochondrial fission.

Background

Mitochondria are mobile organelles that exist in living cells as a tubular net-
work. They continuously join the mitochondrial network by fusion and divide by
fission events. Mitochondrial fission is mainly regulated by two nuclear-encoded
proteins, fission protein 1 (Fis1) and dynamin related protein 1 (Drp1). Mito-
chondrial dynamics have been shown to be an essential quality control mech-
anism in order to maintain mitochondrial health. A proxy for mitochondrial
health and integrity is the mitochondrial membrane potential [6]. Recent wet-
lab studies have shown that the mitochondrial membrane potential is disturbed
by an imbalance of the mitochondrial fission proteins. It is therefore the objec-
tive of this study to develop an in silico prediction model for the influence of
Fis1 and Drp1 on mitochondrial spatial structure and health.
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Our Approach

We here take an existing model of mitochondrial health maintenance [4], where
mitochondria move in a random direction for random intervals of time (i.e. along
not explicitly included microtubules) in an otherwise (for purposes of the model)
empty 2D cell. Abstract health units mimic the functional state of mitochondria
by representing the membrane potential. Mitochondrial fusion allows mitochon-
dria to exchange components (here: health units) in order to maintain health.

Our model is implemented in ML-Space [1,2], which combines an attributed
rule-based language for describing cell biological processes supporting binding
and dynamic nestring of entities with a simulator for these in continuous or
discretised (i.e. grid-based) space or a hybrid thereof. For the continuous part
used here, spatial entities’ positions are updated sequentially in fixed time steps,
with collisions potentially triggering second-order reactions, while zeroth- and
first-order reactions are executed as usual in stochastic simulation.

A simple way of describing a mitochondrial fusion with probability 1 on colli-
sion of moving mitochondria, including exchange of two health units (omitting,
for simplicity, checks against exceeding the minimum, 0, and maximum, 10, for
this attribute’s value), and fission in our language of ML-Space would be

Mito()<bs:free> + Mito()<bs:free> -> Mito(velocity:0,health-=2)

<bs:bind>.Mito(velocity:0,health+=2)<bs:bind> @ 1

Mito()<bs:Mito()> -> Mito()<bs:release> @ rFission

where the part in angle brackets indicates that the mitochondria bind to each
other and the bond being released upon fission. Fused mitochondria become im-
mobile here. Further rules include damage (a first-order reaction lowering health
of a mitochondrion), autophagy (consumption of unhealthy mitochondrions) and
replication (creation of a new, healthy mitochondrion, keeping the total number
roughly constant.) We can reproduce basic findings of the original [4] despite
some unresolved issues, e.g. whether fused mitochondria also get damaged.

We modified this model by representing the number of bound Fis1 and Drp1
molecules of mitochondria as attributes as follows.

Mito(f:=nFis<maxFis)<bs:Mito(nFis<8-f)> -> Mito(nFis+=1) @ rFisRecruit

Mito(f:=nFis,d:=nDrp)<bs:Mito(nFis>=4-f,nDrp<2-d)> -> Mito(nDrp+=1) @ ...

Only fused mitochondria facilitate Fis1 and Drp1 recruitment here and the num-
ber of Fis1 (Drp1) per mitochondria pair cannot exceed the fission threshold 8
(2). Additionally, we only allow Drp1 recruitment when a certain number of Fis1
is already bound (above: 4). The fission rule is more complex then:

Mito(f:=nFis,d:=nDrp)<bs:Mito(nFis>=8-f,nDrp>=2-d)>

-> Mito(nFis:0,nDrp:0)<bs:release> @ Infinity

The nFis and nDrp attributes of the first mitochondrion are set to 0 in the
process, indicating release of the previously bound Fis1 and Drp1. (Additional
rules to “release” remaining Fis1 and Drp1 from the former partner omitted.)
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Fig. 1. Left: Microscopic image of the mitochondrial network in a glucose-responsive
MIN6 beta cell. Scale bar 20 �m. Right: Simulation screenshot (cyan/green: healthy
mitochondria, red: damaged; tiny circles/squares: recruited Fis1/Drp1 molecules of
fused mitochondria).

With the above rules, Fis1 and Drp1 are essentially treated as ubiquitous
and the recruitment rate constant choices are the only limitations to fusion. We
also simulated a slightly more realistic model where Fis1 and Drp1 numbers are
limited (but constant) and recruitment thus happens slower if there are already
many fused mitochondria that have some Fis1 and/or Drp1 bound, but not
enough for a fission event.

Results and Outlook

Related wet-lab experiments have shown that cells with reduced Fis1 or Drp1
expressions exhibited a significantly lower membrane potential and a heterogenic
mitochondrial network [5].

In initial simulations of the simple model (Fig. 2 left), Fis1 and Drp1 recruit-
ment were (predictably) negatively correlated with the ratio of fused against free
mitochondria (the closest analogy to network structure in the simulation results)
and positively correlated with mitochondrial health. This was when fused mito-
chondria did not loose health on their own like free mitochondria (round markers
in Fig. reffig:results), so fewer fission events meant more mitochondria being safe
from damage, which is not realistic. The positive correlation disappeared when
damage to fused mitochondria was allowed (triangular markers), and became
clearly negative when damaged parts of fused mitochondria could also undergo
autophagy (which allowed a new, healthier one to be generated; squares).

In the simple model, average health varied only slightly overall. In the model
with explicit Fis1 and Drp1 amounts, changes in the Fis1 amount had roughly
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Fig. 2. Scatter plots of key results for the ubiquitous and limited Fis1/Drp1 scenario

the same effect as changes to the recruitment rate. By varying the amount and
recruitment parameters, a much wider range of average mitochondrial health val-
ues was covered, and a more pronounced correlation of fused mitochondria ratio
(and thus fission frequency) and average health could be observed (Fig. 2 right).

Recent studies indicate that adaptor proteins, namely Mff, MID49 and MID51
are important for Drp1 regulated mitochondrial fission. Thus, future research in
this direction will include not only expanding the model by explicit fission pro-
tein entities whose spatial distribution may not be homogeneous (to be simulated
also with our hybrid approach of continuous and discrete space), but also incor-
porating new wet-lab findings regarding mitochondrial fission. Once this model
has been validated, ROS-related mechanisms for oxidative stress response [3]
and adaptive processes to mitochondrial damage shall be simulated.
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Abstract. Despite the increase in recent years in the portfolio of added-
value chemicals that can be microbially produced, the design process still
remains a complex system, costly and rather slow. To overcome such
limitations, the development of Computer-Aided-Design (CAD) tools
is necessary to design production pathways that systematically screen
metabolic databases to select best genes to import into chassis organ-
isms. Here, we showcase the XTMS CAD tool for pathway design, which
exploits the ability for pathway ranking in our RetroPath retrosynthetic
algorithm within an extended metabolic space that considers putative
routes through enzyme promiscuity. The validity of the ranking function
for the production of malonyl-CoA, an important precursor for added-
value compounds, is shown.

Keywords: synthetic biology, metabolic engineering, promiscuity,
computer-aided-design.

1 Introduction

With recent advances in synthetic biology and metabolic engineering, synthetic
production of high-value compounds in industrial hosts such as Escherichia coli
or Saccharomyces cerevisiae is becoming more and more promising. Computer-
Aided-Design pathway tools have been proposed to ease the metabolic engineer-
ing process [1–3]. Nevertheless, finding the best pathways achieving high-yield
production is still challenging. In particular, the efficiency of such CAD tools has
been often hindered so far due to the lack of high quality and exhaustiveness of
reactome annotations. Missing annotations cause ineluctably missing potentially
interesting pathways. Moreover, it is well-known that enzymatic reactions often
display the ability of accepting several similar substrates (even un-natural ones),
although this promiscuous capacity has been underexploited so far.

To overcome such limitations, we hereby present and demonstrate in operation
the eXTended Metabolic Space server (XTMS, figure 1) [4], a novel CAD path-
way tool that integrates our expertise on retrosynthesis of high-value compounds
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(Retropath algorithm [5]) with an in silico metabolic space representation ex-
tended from endogenous compounds of the host organism. XTMS is designed to
be user-friendly and pragmatic as it provides the user with critical information
in order to assess generated pathways’ quality, notably in the form of a ranking
function. The validity of this ranking function has been recently highlighted by
our group by the construction of several pathways producing malonyl-CoA [6].

Retrosynthesis
with RetroPath's algorithm

Extended
metabolic space,

with reactome and
metabolome data

from MetaCyc 

Ranked production pathways

 - enzymes promiscuity,
 - compounds toxicity,
 - maximum yield,
 - reactions' free Gibbs energy

Computational predictions
and data used for the ranking: X

TM
S

target compound

Fig. 1. XTMS’ overview. An input compound is submitted to the server as a target,
then XTMS retrieve candidates pathways from a pre-generated extended metabolic
space, thanks to the molecular signature encoding representation (black cog). Compu-
tational predictions are used to rank the pathways witch are finally displayed to the
user with relevant information about pathways confidence and putative efficiency.

2 Material and Methods

2.1 Molecular and Reaction Signature

The method that XTMS employs is based on the molecular signature. The molec-
ular signature is a graph-based representation of a chemical compound by the
topological neighbourhood of each atom (atomic signature). It is closely related
to Morgan and ECFP fingerprints but has the originality to enable reverse en-
gineering, meaning one can retrieve a compound’s structure from its molecular
signature [8].

A reaction signature is defined as the net difference between atomic signatures
from products and substrates, which represents the changes occurring within the
reactants in the reaction.
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2.2 Generation of an Extended Metabolic Space

We used reactome and metabolome data from MetaCyc and EcoCyc to build
our initial set of compounds and reactions covering the most part of current
metabolic knowledge.

Those elements were encoded by their corresponding molecular and reaction
signature.

This representation allowed us to infer promiscuous enzymatic activity, there-
fore expanding the number of reactions and compounds. For a given encoded
reaction rule, we iterated though all encoded compounds in order to test the
reaction rules with different substrates. Our assumption was that when a com-
pound is compatible with a reaction rule (meaning that they both share atomic
signatures), the predicted product of the reaction rule might be a novel encoded
compound. The compounds’ structure can then be retrieved thanks to the re-
versibility of the encoding system.

This process was repeated for all the reactions until no more new compound
could be generated. Some of the generated compounds had not yet been reported
as compounds whose synthesis was potentially accessible with natural enzymes.
By these means, the initial metabolic space was thus extended.

2.3 Retropath

Retropath is a CAD software for embedded metabolic circuits. Retropath’s ret-
rosynthesis algorithm is at the core of XTMS, using the extended metabolic space
generated through the molecular signature as a base to enumerating pathways.

RetroPath uses a two steps algorithm. First, a forward step generates all the
reachable compounds from a list of chassis’s endogenous compounds and reac-
tions; this is the metabolic space expansion we described earlier. The ordered
list of reactions producing each reachable compound is saved. Second, a back-
ward step generates the production pathways for each reachable heterologous
compound. The list of reactions generated at the forward step is scanned to re-
trieve all needed reactions in order to start the pathway only from endogenous
compounds.

In that way, several pathways are usually retrieved to produce a target (het-
erologous) compound.

2.4 Pathway Ranking

Pathway ranking is carried out using a ranking function which compiles infor-
mation inferred from several modules and data sources.

In XTMS, we estimate enzyme efficiency by predicting their promiscuity
thanks to the tensor product technique; pathway’s toxicity is computed by the
EcoliTox server; maximum allowed yield is estimated through a flux balance
analysis; and finally the free Gibbs energy are mined from MetaCyc. Those de-
scriptors give insights about pathway’s performance.

The number of enzymatic steps (and putative steps) and unfavourable reac-
tions are also taken into account in order to select the best pathways.
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3 Results and Discussion

XTMS is a user-friendly pathway CAD tool now available to the community
(http://xtms.issb.genopole.fr/). Its strengths are to work on an extended
metabolic space and to provide critical information to the user, as for example
the predicted toxicity of generated pathways.

In order to evaluate XTMS’s ranking score, we predicted and implemented
several malonyl-CoA pathways in E. coli [6]. The lack of availability of malonyl-
CoA precursor is often a bottleneck in the production of added-value com-
pounds, since producing pathways must compete with those for fatty acids
synthesis. Therefore, an embeded synthetic malonyl-CoA pathway with high
efficiency will serve to boost availability of this precursor. A circuit consisting
on a malonyl-CoA biosensor was then used to access pathways’ yield and test
their efficiency [7]. As we expected, we succeeded to predict the best pathways.
Moreover, the order of the more productive pathways parallelled the one in our
pathway ranking [6].

Even if the evaluation of the ranking function needs further validation, those
results are encouraging. We hope that XTMS will help metabolic engineers to
design efficient circuits able to produce high-value compounds and that their
comments will help us to improve XTMS.

Acknowledgments. PC is supported by UPFellows program with the support
of the Marie Curie COFUND program.

References

1. Cho, A., Yun, H., Park, J.H., Lee, S.Y., Park, S.: Prediction of novel synthetic
pathways for the production of desired chemicals. BMC Systems Biology (2010)

2. McClymont, K., Orkun, S.: Metabolic tinker: an online tool for guiding the design
of synthetic metabolic pathways. Nucl. Acids Res. (2013)

3. Campodonico, M.A., Andrews, B.A., Asenjo, J.A., Palsson, B.O., Feist, A.M.:
Generation of an atlas for commodity chemical production in Escherichia coli and
a novel pathway prediction algorithm, GEM-Path. Metabolic Engineering (2014)

4. Carbonell, P., Parutto, P., Herisson, J., Pandit, S.B., Faulon, J.L.: XTMS: pathway
design in an eXTended metabolic space. Nucleic Acids Res. (2014)

5. Carbonell, P., Planson, A.G., Fichera, D., Faulon, J.L.: A retrosynthetic biology
approach to metabolic pathway design for therapeutic production. BMC Syst. Biol.
(2011)

6. Feher, T., Planson, A.G., Carbonell, P., Fernandez-Castane, A., Grigoras, I., Dariy,
E., Perret, A., Faulon, J.L.: Validation of RetroPath, a computer aided design tool
for metabolic pathway engineering. Biotech. J. (2014)

7. Liu, D., Xiao, Y., Evans, B., Zhang, F.: Negative feedback regulation of fatty acid
production based on a Malonyl-CoA Sensor Actuator. ACS Synth. Biol. (2013)

8. Faulon, J.L., Visco, D., Pophale, R.: The Signature Molecular Descriptor. 1. Using
Extended Valence Sequences in QSAR and QSPR Studies. Journal of Chemical
Information and Computer Sciences (2003)

http://xtms.issb.genopole.fr/


P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 260–263, 2014. 
© Springer International Publishing Switzerland 2014 

THiMED: Time in Hierarchical Model Extraction  
and Design* 

Natasa Miskov-Zivanov1,2, Peter Wei1, and Chang Sheng Clement Loh1 

1 Electrical and Computer Engineering Department, Carnegie Mellon University 
2 Computer Science Department, Carnegie Mellon University,  

Pittsburgh, USA 
nmiskov@andrew.cmu.edu 

Abstract. We describe our approach to modeling timing of cell signaling  
systems in which existing information about the system spans from detailed 
mechanistic knowledge to much coarser observations about cause and effect. 
The results for several models emphasize the fact that the selection of timing 
implementation can have both qualitative and quantitative effects on the  
model’s transient behavior and its steady state. 

Keywords: timing, cell signaling, stochastic model, delay. 

1 Introduction 

Time of occurrence and duration of events often play an important role in decision 
making in cell signaling networks [1]. Although timing of events can be modeled 
using reaction rates, exact element regulations are not always well understood, and 
even more, rates of reactions are not known. Still, to better understand how the overall 
system works, it is important to capture in the model much of the available knowledge 
about the system. When experimental observations provide insights into indirect 
cause-effect relationships only, and do not explain many of the detailed interaction 
mechanisms [2], our modeling approach accounts for (i) thresholds in element activi-
ty, thus discretizing model variables [3], (ii) relative delays between events and in 
element responses to regulation changes, thus capturing critical event timing.  

2 Approach 

We model system elements using multi-valued variables, and by using this approach 
we are able to capture multiple layers of cell signaling: interactions between receptors 
and external stimuli, intracellular signaling, gene regulation, cell’s response to stimu-
li, and feedback to cell receptors [1][2]. Such an approach has been shown valuable in 
providing critical insights into system’s transient behavior, when models are coarse-
grained in parts or in whole due to available knowledge. To increase accuracy of the 
model, in our approach we allow for implementation of timing details that capture 
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 THiMED: Time in Hierarchical Model Extraction and Design 261 

relative delays between events. Once the delays are described formally (e.g., using 
delay truth tables [3]), our tool translates them into variable update rules. We identi-
fied three different methods to model delays that occur between a change in given 
element regulation (i.e., change in combination of regulator values and current ele-
ment value), and a corresponding change in the element’s value. We describe our 
approaches to delay modeling using the following two examples. 

Example 1. Assuming that there are two elements, A and B, and that A positively 
regulates B, the time needed for B to respond to different changes in A may be differ-
ent, depending on current values of A and B. Figure 1(a) (left) shows one scenario in 
which A increases from very low level (around 0% its maximum value) to high level 
(100% its maximum value). While B can relatively quickly follow the initial change in 
A, it takes longer for B to come close to 100% of its highest value. The two lines 
representing A and B can be discretized, assuming thresholds for values 1 and 2 (e.g., 
reaching 10% of highest activity or concentration can be a threshold for value 1 and 
reaching 90% of highest activity or concentration can be a threshold for value 2). 
Figure 1(a)(left) outlines discretization example for A and B, and the table in Figure 
1(a)(middle) shows how current values of A and B can determine next value for B. 
Delays in changing B value are indicated by “d=2” and “d=6” which represent 2 time-
unit and 6 time-unit delays, respectively. Our tools translate these tables into executa-
ble rules. In addition, these relationships can be described in code and translated into 
an executable model from the code. The description in Figure 1(a)(right) is very  

   
 (a) 

 

 
(b) 

Fig. 1. Examples of delay representation. (a) Discretization and corresponding delay descrip-
tion. (b) Different delays defined for different regulator values.  
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suitable for implementing in Hardware Description Languages (HDLs) that can be 
translated in an automated way into executable circuit models. Similar work on emu-
lation of biological networks in Field Programmable Gate Arrays has been described 
in [4,5].  

Example 2. Given a small regulatory network with four components (Figure 1(a), 
left), element (El), its two positive regulators (Act1 and Act2), and negative regulator 
(Inh), we draw a table (Figure 1(a), right) listing all combinations of regulator values 
including previous value of element El, and show the resulting new value for El. Note 
that El and Inh have three different levels of activity, 0 (not active), 1 (low activity), 
and 2 (high activity), while both activators are modeled only with two levels, 0 (no 
activity) and 1 (active). Table entries of the form “d=1” or “d=2” indicate that the 
transition from one value to another occurs after 1 time-unit delay or after 2 time-unit 
delays, respectively. For example, when El has value 2, Inh has value 1 and both acti-
vators, Act1 and Act2, have value 0, El will change value from 2 to 1 with some, short 
delay. For the same values of El and Inh, when one of the activators has value 0 and 
the other one value 1, then El will change from 2 to 1 with a longer delay.  

The delay assumptions can be implemented in executable model generation and in 
simulation in several different ways, as shown in the following. 

2.1 Forward Propagation 

In the first delay implementation, all regulator value combinations that satisfy the 
same transition requirement in terms of previous and next element value and delay 
interval (i.e., all delay truth table entries with same output value, for example, 
“1(d=1)”) are lumped into a single function. Such implementation assumes that mea-
suring delay (lapsed time) is not reset even when the actual conditions change, as long 
as the outcome is same (e.g., when El=2, Inh=1, Act1=0, Act2=1, and then Act1 
changes value to 1 and Act2 changes value to 0, the effect on El remains the same, and 
thus counting of steps to satisfy 2 time-unit delay, “1(d=2)”, remains the same). This 
approach allows for minimizing element update functions, since multiple table entries 
can be lumped into a single function. Besides minimizing the function, this also re-
quires smaller number of variables to be propagated from one simulation round to the 
next (thus the name for the method). 

2.2 Backward Propagation 

In contrast to the first approach, if the conditions change before the required delay 
interval has lapsed, even when the new output is same for the new conditions, mea-
suring of delay interval is reset. This delay modeling approach requires different 
“memory” implementation compared to the first approach. In other words, this ap-
proach requires that, depending on how many delay steps are defined, the simulator 
checks variable values in the corresponding number of previous rounds. In this case, 
functions that are to be computed are simpler compared to the previous approach 
(forward propagation), but the number of variables increases. 
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2.3 Buffer Insertion 

The third approach implements delays as “buffers” that add steps to the pathway, thus 
delaying propagation of any value of a regulator (for any combination with other reg-
ulators) to some or all of its downstream elements. In other words, the table created 
for this case will not have delay entries (e.g., “1(d=2)”) but instead only discrete num-
bers without indication of delays. This approach can be used when modeling pathway 
sections without crosstalk or in the case where only indirect causal relationships are 
known while the overall timing of the pathway still needs to match the timing of other 
pathways in the network. This delay modeling approach was applied previously in [1] 
and it resulted in a good match with experimental results for situations where there 
are multiple competing pathways without significant crosstalk.  

2.4 Simulation  

We have also worked on simulation approaches to accurately account for these differ-
ent delay modeling methods. Depending on the simulator setup, delay values in cell 
signaling models can be assumed exactly as defined, or can represent upper bounds or 
mean delay values. 

3 Results 

We applied the described timing modeling approaches in development and analysis of 
two models, T cell differentiation model [1] and immune crosstalk in malaria infec-
tion in mosquitoes [2]. We have shown that, depending on the delay implementation 
method, different delay values can affect results both qualitatively and quantitatively, 
and can change both transient behavior and steady state of individual elements, as 
well as of the system as a whole.  
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