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Abstract. While there are perhaps millions of MIDI files available over
the Internet, it is difficult to find performances of a particular piece
because well labeled metadata and indexes are unavailable. We address
the particular problem of finding performances of compositions for piano,
which is different from often-studied problems of Query-by-Humming
and Music Fingerprinting. Our MidiFind system is designed to search a
million MIDI files with high precision and recall. By using a hybrid search
strategy, it runs more than 1000 times faster than naive competitors,
and by using a combination of bag-of-words and enhanced Levenshtein
distance methods for similarity, our system achieves a precision of 99.5 %
and recall of 89.8 %.

Keywords: Music search · Similarity search · Large scale string match-
ing · Data mining · Popularity mining · MIDI

1 Introduction

As music computing becomes more advanced, we have the opportunity to
incorporate more data from human performances and to apply machine learning
and music analysis to make computer music systems more musical and more
expressive. Most existing human performances databases, e.g., the CrestMuse
dataset [1] and the ones used in Widmer’s works [23,24], are collected manually
and take years to build. Moreover, they are either small in scale or not openly
available for research. Potentially, an excellent source of music performance infor-
mation is MIDI files on the Internet. There are at least one million MIDI files
online and there are reasons to expect the number to increase. The online MIDI
files are often free and they are also very easily distributed since their size is
about 1000 times smaller than audio files.

However, these files are disorganized and difficult to search by metadata due
to careless or casual labeling. Our goal is to automatically retrieve and organize
these files so that comparative studies of different performances of the same
pieces can be carried out on a large scale. Hence, we need a method to search
on the order of one million MIDI files quickly, in a way that robustly deals
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with performance variation, and without using metadata, which would be too
unreliable. Specifically, we aim to solve the following problem:

– Given: A query MIDI file
– Find: similar pieces, i.e., different performance versions (including pure

quantized versions) of the same composition, and also popular pieces, i.e.,
the compositions that have most performance versions.

The main challenges to solve these problems are the search quality and scal-
ability. I.e., the system should be both accurate and fast enough to deal with a
database with a million MIDI files.

The logical structure of our solution is shown in Fig. 1. The first step is to
guarantee good search quality by carefully designing different similarity mea-
surements for different representations. We present novel features for MIDI data
based on a bag-of-words idea and melodic segments, and introduce a new vari-
ation of Levenshtein distance that is especially suitable for music melody. The
second step is to dramatically speed up the search process. We present different
hybrid indexing strategies that combine different representations and similarity
measurements. The final step is to find the ideal thresholds for different similarity
measurements.

To evaluate the system, we use a small and labeled MIDI dataset with 325
files. We also use a large unlabeled dataset that is downloaded and combined
from several smaller datasets which are all free from the Internet. The large
database contains 12,484 MIDI files with around 2,000 similar pieces.

Our MidiFind system is now deployed and hosted on http://www.cmumidifind.
com:9000/. The main contributions of the system are:

– It is effective: it achieve 99.5% precision and 89.8% recall, compared to
pure Levinshtein distance measurement, which achieves 95.6 % precision and
56.3 % recall.

– It is scalable, with sub-linear complexity for queries, and outperforms naive
linear scanning competitors by more than 1000 times.

The following section describes related work. Section 3 describes feature
extraction and search quality. Section 4 discusses various strategies to achieve scal-
ability. Section 5 describes the construction of the MidiFind system. We present
experimental results in Sect. 6, and present some findings from our MidiFind sys-
tem in Sect. 7.

2 Related Work

Music Information Retrieval has emerged as an active research area in the past
decade. Much work has been done on music search. Both Music Fingerprint-
ing systems [7,10] and Query-by-Humming systems [5,8,11,15,16,21,22,25] are
related to our work.

For Music Fingerprinting systems, users record a short period of audio to
query the system and the results are expected to be an exact match, i.e., the

http://www.cmumidifind.com:9000/
http://www.cmumidifind.com:9000/
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Fig. 1. The logical structure of Sects. 3, 4, 5 of the paper.

query audio must be a copy of a fragment of the reference audio. These systems
are generally very robust to audio noise but a query of the same song with
a slightly different performance will almost always lead to a failure. On the
contrary, our MidiFind system deals with similar match, i.e., given a query, we
aim to find different performance versions. Audio noise is out of our consideration
since our query inputs are pure MIDI files.

Query-by-Humming systems share a similar architecture with MidiFind sys-
tem. Most of them store MIDI files as references and they also implement
approximate matching since human performances are not exact. The differences
lie in the query part and the goal of the system. The queries of Query-by-
Humming systems are usually very short audio snippets, while the queries for
our MidiFind system are much longer MIDI files. Therefore, we can take advan-
tage of the discrete nature of MIDI data and the full information contained in
the full-length MIDI query, but at the same time have to deal with larger varia-
tions and a potentially longer matching process for longer sequences. The goals
of Query-by-Humming systems are usually Nearest-Neighbor search, while our
MidiFind system deals with range query, which aims to find out all different
performance versions of the same composition.

Early Query-by-Humming systems [8,16,22] used melodic contour (defined as
a sequence of up, down, and same pitch intervals) and string matching to match
similar melodies. Later on, melodic contour was proved unable to distinguish
melodies in large datasets [21] and researchers started to resort to dynamic
time warping on melody notes [5,11,15,25]. One method studied is a brute-force
fashion of dynamic time warping [15] which is certainly slow due to the O(mn)
complexity (m is the length of query and n is the total length of references)
but serves as a baseline for future research. Different methods have been tested
to speed up the searching process. Two of them [5,25] are closely related to
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our work in that they both use a 2-step pipeline approach to first shrink the
target of candidates and then use dynamic time warping to test the surviving
candidates. However, the first method relies only on dynamic time warping and
has a limitation on the length of music. It cannot handle long queries and also
requires segmentation labels on the reference music. The method of [5] has an
innovative idea to combine N-grams with dynamic time warping but the search
performance was poor due to random errors in the queries. Compared to them,
the query of our MidiFind system is longer with few errors, at least at the
beginning and ending. This enables us to use bag-of-words and novel clipped
melody features to dramatically shrink the target of candidates and speed up
the string comparison process, respectively.

3 Search Quality

We begin by parsing MIDI files into music note strings. After that, we design two
different representations for each piece of music: the bag-of-words and clipped
melody representation. For the bag-of-words representation, we adopt Euclidean
distance; while for the clipped melody representation, we use enhanced Leven-
shtein distance.

3.1 Euclidean Distance for Bag-of-Words Representation

Inspired by the bag-of-words idea, we create a bag-of-words feature for music.
Every piece of music is treated as a sequence of words, where each note is consid-
ered as a word by ignoring its length and octave. We consider each word as one
of the 12 pitch classes within an octave (in other words, we use the MIDI key
number modulo 12. We can also use modulo 24 and so forth) and consider the
word count as the total number of times that each pitch occurs within the piece
of music. (We actually first tried to incorporate the timing information in the
feature vector but the performance was much worse.) Finally, the word count
is normalized by the total number of pitch occurrences, resulting in a probabil-
ity mass table. In the case of 12 pitch classes, this is equivalent to pitch class
histograms often used in key finding [12].

The similarity of two pieces of music is measured by the Euclidean distance,
as shown in Definition 1, between the corresponding bag-of-words feature vectors.
This method works well, or at least is capable of filtering out most of the different
pieces, since different pieces of music usually have different distributions over the
pitch classes.

Definition 1. The Euclidean distance (ED) between S and T , where |S| = |T |,
is defined as:

ED(S, T ) =
√

Σn
i=1(Si − Ti)2
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3.2 Enhanced Levenshtein Distance and Melody Representation

Besides the bag-of-words representation, we extract the melody from each piece
of music as in most Query-by-Humming systems [8,16,22]. As suggested by
G.Widmer [24], we can simply use the highest pitch at any given time as an esti-
mate of the melody for each piece of music. The detailed extraction algorithm is
described in Algorithm 1. We then use Levenshtein distance measurement with
different enhancements on the extracted melodies.

Algorithm 1. Melody Extraction Algorithm
Data: Note Strings
Result: Melody Strings
sortedNotes = sort(all notes, prioritize higher pitches);
melodyNotes = empty list;
while sortedNotes is not empty do

note = the note with highest pitch in sortedNotes;
remove note from sortedNotes;
if the period of note is not entirely covered by notes in melodyNotes then

split note into one or more notes of the same pitch named splitNotes,
where each note corresponds to time period that has not been covered;
insert every note in splitNotes into melodyNotes;

end

end
return melodyNotes;

Standard Levenshtein Distance. Levenshtein distance (a kind of Dynamic
Time Warping) has been shown empirically to be the best distance measure for
string editing [6], and this is the reason that it is also named string editing dis-
tance as shown in Definition 2. To calculate Levenshtein distance of two melody
strings S and T of length m and n, we construct an m-by-n Levenshtein matrix
where the (ith, jth) element of the matrix is the Levinshtein distance between
the prefix of S of length i and the prefix of T of length j. However, it suffers
high computational complexity, O(mn), which we will discuss in Sect. 4. For our
melody string distance, we set insertion, deletion, and substitution costs to be
1. (We actually tried to incorporate the note durations in the melody represen-
tation and weight the costs by the durations, but the performance turned out
to be much worse.)

Definition 2. The Levenshtein (string editing) Distance [2] between two
sequences is the minimal number of substitutions, insertions, and deletions needed
to transform from one to the other. Formally, the Levenshtein distance between the
prefixes of length i and j of sequences S and T , respectively, is:
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levS,T (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(i, j), if min(i, j) = 0

min

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

levS,T (i − 1, j) + 1
levS,T (i, j − 1) + 1
levS,T (i − 1, j − 1)
+(Si �= Tj)

otherwise

Enhancement 1: Lev-400. As previously discussed, standard Levenshtein
distance is a good metric for measuring difference between strings. However,
it does have one drawback in that the distance is strongly correlated to the
string length. Unfortunately, melody string lengths vary significantly within our
database. Figure 2 shows the histogram of melody string lengths.

Observation 1. The distribution over the length of melody strings follows a
power law.
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Fig. 2. Melody string length histogram on larget dataset. Mean: 1303. Standard Devi-
ation: 1240. This follows a power-law pattern.

Such a large variance on the length will cause problems in matching. For
instance, two melody strings S1 and T1 both have length 500, and the other
two melody strings S2 and T2 both have length 1000. If we get a Levenshtein
distance of 100 from both pairs, the first pair is trivially more different from
each other compared to the second pair. This inspires us to find a way to turn
melody strings into equal length and we find a nice property that chopping and
concatenating the first 200 and last 200 notes of long melody strings actually
increases Levenshtein distance accuracy in a large-scale dataset, as in Observa-
tion 2. For melody strings shorter than 400 notes, we do not modify them but
scale up the distances. The reason that this manipulation works is that (1) a
unified length leads to a unified threshold for Levenshtein distance, (2) similar
melodies tend to share more common notes at the beginning and the ending of
the music piece, while performers tend to introduce larger variation in the body
part. We call this enhanced Levenshtein distance Lev-400.
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Observation 2. Chopping and concatenating the first 200 and last 200 notes
of long melody strings increases Levenshtein distance accuracy in a large-scale
dataset.

Enhancement 2: Lev-400SC. Lev-400 gives us melody strings with l ≤ 400,
where l is length of any string. A by-product of the Levenshtein distance com-
putation is the sequence of notes that is shared by both strings, which can also
be considered the alignment of the strings. By checking how strings align, we
find another property of similar MIDI files: The optimal melody alignment path
stays close to the diagonal in the Levenshtein matrix for similar MIDI files, as
described in Observation 3. The reason for this observation is that we expect the
entire pieces to match without any major insertions or deletions on the notes,
so that the best alignment for similar strings should fall along the diagonal in
the Levenshtein matrix. This property suggests using the Sakoe-Chiba Band,
which constrains the string alignment path by limiting how far it may divert
from the diagonal [18]. An illustration of the Sakoe-Chiba Band is shown in
Fig. 3. We propose using a Sakoe-Chiba Band and finding a reasonable band
width to balance the trade off between speed and accuracy. The speed factor
will be discussed in Sect. 4. We call this enhanced distance metric Lev-400SC.

Observation 3. The melody string alignment path corresponding to the small-
est Levenshtein distance stays close to the diagonal for similar MIDI files in
large-scale datasets.

Fig. 3. The illustration of Sakoe-Chiba Band (between thin diagonal black lines) that
acts as a global constraint on the Levenshtein alignment path of a Levenshtein matrix.

4 Search Scalability

The similarity measurements mentioned in Sect. 3 lay the groundwork for accu-
rate matching between MIDI files. However, since there are at least one million
MIDI files on the Internet, to search through all those files and find similar
ones for any query can be very time consuming. That is why we design a set
of hybrid methods (MF-Q, MF-SC, MF) that combine advantages from both
similarity measurements and provide a way to search through the database that
is both fast and accurate.
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4.1 MF-Q: Combine Euclidean and Lev-400 Distance

We have discussed in Sect. 3 that using Euclidean distance on the bag-of-words
representation can differentiate MIDI files that are dramatically different. How-
ever, we also need to consider the fact that some MIDI files might share the
same notes but have entirely different orderings. Bag-of-words will not differen-
tiate such MIDI files since mapping them to a low dimension (multiples of 12
depending on number of octaves involved), we lose a big chunk of information.
The parsing step for the Euclidean distance will convert note sequences to low
dimensional vectors. The complexity is linear to the size of MIDI files, and it
only needs to be performed once. However, after finishing the parsing step, the
calculation of Euclidean distance between two files is very fast: proportional to
d, where d is the dimension of the word space.

Levenshtein distance is generally considered to be highly accurate but time
consuming. All calculations are performed on melody strings extracted from
the note strings, as introduced in Sect. 3.2. For two melody strings S and T
with length m and n, the runtime is proportional to m · n. By clipping and
concatenating melody strings to 400 notes, we effectively set an upper bound
on the runtime of Lev-400: min{m, 400} · min{n, 400} < 400 · 400. As shown in
Fig. 2, the average length of melody strings is 1303; therefore, the clipped melody
representation will lead to a speed-up of about 10.

Building on the two representations and similarity measurements, we design
a hybrid method that runs bag-of-word first and then further filters the result by
using Levenshtein distance. This is named MF-Q (short for MidiFind-Quadratic).
The idea is that we want to shrink down the number of possible similar MIDI
candidates by thresholding Euclidean distance. Although the candidate set from
this step contains high probability of false-positives, they will be identified and
removed by the Levenshtein distance step. The MIDI files returned in the final
result has high probability to be either the query itself or some variation of that
same music piece. Assume we retain only a percentage of p out of total melody
strings through bag-of-words thresholding, then the total runtime needed to find
similar pieces (excluding one-time parsing time) will be proportional to (d+(400 ·
400)p)N , where d is the bag-of-words dimension and N is the total number of
MIDI files. We finally achieve a p as small as 0.025 which leads to a further speed-
up of about 40. Therefore, the MF-Q speeds up the system about 400 times. We
will discuss how to choose the p in Sect. 5 and give detailed experimental results
in Sect. 6.

4.2 MF-SC: Sub-Quadratic Levenshtein Distance
with Sakoe-Chiba Band

MF-Q combines two distance metrics, but the Lev-400 step is still time-consuming.
As mentioned in the Lev-400SC distance metric, we can limit the string editing
path in the Levenshtein matrix. Consider our MIDI dataset and take melody string
S and T with length m and n as an example, we limit the bandwidth to be

b = max{0.1 · min{m,n, 400}, 20}
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which is at least 20 notes and increases with the actual length. After using
Sakoe-Chiba Band, the complexity of string comparison is sub-quadratic:
min{m,n, 400} · b. We call this method MF-SC (short for MidiFind-Sakoe-
Chiba). MF-SC can achieve an accuracy performance that is close to MF-Q
with a speed-up of about 10. We show the experimental results in Sect. 6.

4.3 MF: Search Using Metric Tree

MF-SC speeds up the Levenshtein distance step. We propose a further speed-
up for the Euclidean distances by adopting the Metric Tree (M-tree), and call
this method MF. An M-tree is constructed with a distance metric and relies on
the triangle inequality for efficient range and k-NN queries. It is very effective
when there is a clear threshold to differentiate close nodes and distant nodes [4].
However, it is not very effective when overlaps are big among similar and distant
nodes and there is no clear strategy to avoid them. The M-tree has a hierarchical
structure just like other common tree structures (R-tree, B-tree), and it tries to
balance its nodes according to the given metric. Each node has a maximum and
minimum capacity c. When exceeding the maximum capacity, the node will be
split into two nodes according to a given splitting policy. For MF, we tried using
two splitting policies: maximum lower bound on distance and minimum sum of
radii, as in Definitions 3 and 4, we also set the maximum and minimum capacity
of nodes to be 8 and 4.

Definition 3. Let N be the current node and S be the set of N and its children,
then the maximum lower bound on distance is achieved by promoting Si and Sj to
be new center nodes, in which Sj ≡ N , and Si s.t. d(Si, N) = maxj{d(Sj , N)}.
Definition 4. Let N be the current node and S be the set of N and its children,
then the minimum sum of radii is achieved by promoting Si and Sj to be new
center nodes, and assign all nodes in S to Si or Sj, which gives the smallest sum
of radii.

The trade-off is that Minimum Sum of Radii needs to calculate every possible
distance pair in S, but is a better split spatially and ensures minimum overlap.
It is faster while performing range queries but the performance decays as the
threshold increases. The actual data entries in M-trees are all stored in leaf
nodes while non-leaf nodes are duplicates of the leaf nodes. Optimally, M-trees
can achieve O(logc|D|), where c is the maximum capacity of nodes and D is
the dataset. However, the M-tree performance degrades rapidly when there are
overlaps between nodes. By testing different thresholds, we finally achieve a
speed-up of a factor of 2 to compute the Euclidean distances. More detailed
experimental results will be given in Sect. 6.

5 MidiFind: A Music Query System

In this section, we describe how to build the MidiFind system by taking both
searching quality in Sect. 3 and searching scalability in Sect. 4 into considera-
tion. We start by finding ideal thresholds for different similarity measurements,
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and then formally present the pipeline searching strategy which achieves both
effectiveness and efficiency in similarity search.

5.1 Find Similarity Measurement Thresholds

The goal of threshold setting is to maximize the benefits from both similarity
measurements. We first compute the precisions, recalls, and F-measures as func-
tions of different thresholds. Then, we choose the Lev-400SC distance threshold
(εLev) that leads to the largest F-measure, and choose the Euclidean distance
threshold (εED) that leads to a large recall and a reasonable time cost.

It is important to notice the different roles between εED and εLev. The role of
εED is to not only dramatically shrink the number of target candidates, but also
retain a high recall. In other words, the candidates returned by using εED should
balance the number of false negatives and retained candidates. The role of εLev

is to identify similar MIDI performances accurately. Therefore, we choose εLev

that leads to the highest F-measure. Our final MidiFind system uses εED = 0.1
and εLev = 306.

5.2 MidiFind System Pipeline

Here we formally present the pipeline strategy to find similar MIDI pieces based
on a user-submitted MIDI file query Q to the MidiFind system, as shown in
Algorithm 2.

Algorithm 2. MidiFind System Algorithm
Data: The query melody string Q, and reference melody strings

R = {R1, R2, · · · , R|R|}
Result: The set of similar melody string M
Step1: Within R, do range query on Euclidean distance (M-tree) based on
bag-of-words representation and get a set of candidates SB�W , where the
distance between each element of SB�W and Q is less than εED;
Step2: Within SB�W , do range query on melody Lev-400SC distance (Sequential
Scan) and get M, where the distance between each element of M and Q is less
than εLev ;
return M;

6 Experiments

6.1 Quality Experiments

In these experiments, we examine how well our proposed similarity measure-
ments can find pairs of MIDI performances of the same music composition on real
datasets. In essence, we claim a discovery of a pair if their distance is smaller than
a given threshold. Since truly different performances of a same music composition
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should indeed be very similar at some threshold, our algorithms can discover
these pairs with high precision and recall.

The MIDI files in these experiments come from the Music Performance
Expression Database, which belongs to the CrestMuse Project [1]. There are
325 different MIDI files consisting of 79 unique compositions and 2,289 pairs of
MIDI files sharing the same composition. Our goal is to discover all these 2,289
pairs.

We compared four discovery methods based on the following three feature
sets and their corresponding similarity measurements:

– ED (Sect. 3.1): Each MIDI file is represented by a 12-dimensional vector where
every element is the proportion of melody notes that is played on this key at
any octave. The ED similarity of two MIDI files corresponds to the Euclidean
distance of their two 12-dim vectors.

– Standard-Lev (Sect. 3.2): Each MIDI file is represented by a string of melody
pitches without any truncation. The Standard-Lev similarity of two MIDI files
corresponds to the Standard Levenshtein distance.

– Lev-400SC (Sect. 3.2): Each MIDI file is represented by a string of melody
pitches. The string is then truncated to have the first 200 and the last 200
notes only. The Lev-400SC similarity of two MIDI files corresponds to the
Levenshtein distance with Sakoe-Chiba band of their two length 400 strings.
In the case that a melody string has length smaller than 400, the distance is
scaled up.

The four discovery methods we compare are:

– ED-thresholding: Claiming two MIDI files to be different performances of the
same music composition if their ED distance is below some threshold.

– Lev-400SC-thresholding: Claiming two MIDI files to be different performances
of the same music composition if their Lev-400SC distance is below some
threshold.

– Standard-Lev-thresholding: Claiming two MIDI files to be different perfor-
mances of the same music composition if their standard Levenshtein distance
is below some threshold.

– MF-thresholding: Claiming two MIDI files to be different performances of
the same music composition if both their ED distance and their Lev-400SC
distance are below some thresholds.

We first consider the precisions, recalls, and F-measures of all methods with
different threshold parameters. The true set of MIDI file pairs is hand labeled.
As can be seen in Fig. 4 (a)–(d), better precision appears when the thresholds ε
are set smaller, because this eliminates many false positives. On the other hand,
better recall appears when ε is set larger. We can clearly see that the accuracy
of Lev-400SC thresholding dramatically outperforms Standard-Lev thresholding.
The fact that both precision and recall become high at some ε̂, (the choices and
their qualities are in Table 1), and remain high in its neighborhood indicates
that there is a big overlap between the true similar set and the similar set we
found. This fact also give us some flexibility to tune the parameters.



270 G. Xia et al.

0.033 0.1 0.3
0

50%
100%

pair−wise distance
(a) ED

200 300 400
0

50%
100%

pair−wise distance
(b) Lev-400SC

Precision

Recall

F−measure

50 100 200
0

50%
100%

pair−wise distance
(c) Standard-Lev (d) MF

Fig. 4. (a)–(c): Precision, recall, and F-measure of the four methods against various
distance threshold parameters. (d): F-measure of the MF method against different
threshold parameters.

Finally, the best parameter set that optimizes the F-measure for the MF-
thresholding method is (0.18, 306) with F-measure 96.6% whereas our choice of
(0.1, 306) which balances quality and scalability achieves an F-measure of 94.4%
(Fig. 4(d)).

Table 1. Best thresholds and their qualities

Method Threshold Precision Recall F-measure

ED 0.087 88.6 % 88.3 % 88.4 %

Lev-400SC 302 98.5 % 94.3 % 96.4 %

Standard-Lev 66 95.6 % 56.3 % 70.8 %

MF (our choice) (0.1, 306) 99.5 % 89.8 % 94.4 %

MF (optimal) (0.18, 306) 98.6 % 94.7 % 96.6 %

6.2 Scalability Experiments

The scalability experiments are conducted by using the large dataset which con-
tains 12484 MIDI files that come from several small datasets. The experiments
all run on a 3.06 GHz, 2-core (Intel Core i3) machine with 4 GB Memory, so that
users of MidiFind system could achieve similar performance by using personal
computers.
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We begin the scalability experiments by testing how much speed we can gain
by using a hybrid searching strategy. Intuitively, more candidates will be filtered
out if a smaller threshold for Euclidean distance (εED in Algorithm 2) is adopted
for bag-of-words features, and vice versa. Figure 5 shows the relationship between
the Euclidean threshold and the fraction of remaining candidates. It is clearly
shown that we can filter out about 97.5% if we adopted a threshold εED = 0.1.
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Fig. 5. The relationship between εED and the fraction of remained candidates.

We then test how much speed we can gain by using different M-tree algorithms
mentioned in Sect. 4.3. Figure 6 shows the relationship between the Euclidean
threshold εED and the fraction of candidates whose Euclidean distances need to
be checked. It can be seen that the maximum lower bound approach works bet-
ter, and with εED = 0.1, we can skip 55% of the candidates when we compute the
Euclidean distance.
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Fig. 6. Search time comparison between M-tree split policies. The y-axis is the fraction
of Euclidean distance calculations compared to linear scan. Minimum sum of radii has
fewer calculations than maximum lower bound on distance, but it takes longer to build
the M-tree. The advantage on search time decreases as threshold increases.

Finally, we compare the speed of all mentioned searching strategies based on
how many MIDI files can be searched within one second. As shown in Fig. 7, the
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fastest method is MF which takes less than 0.1 s even if the dataset size is more
than 10, 000. The MF-SC is slightly slower than MF since MF only speeds up the
procedure of computing Euclidean distances, which is less costly than computing
Levenshtein distances. MF-Q is about 10 times slower than MF, while the linear
scanning on Lev-400 distances is about 400 times slower. Compared with the
naive linear scan competitor (standard-Lev), our MF method is more than 1000
times faster.
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Fig. 7. A comparison of the speed of all searching strategies.

7 Discovery: What Are the Most Popular Pieces

We used Gephi software [3] with OpenOrd algorithm [14] to visualize all similar
pairs of MIDI files discovered by our MF method. The results are shown in Fig. 8.
Here, MIDI files are nodes and the edges between nodes indicate similar pairs.

Figure 8(a) shows the overview of the layout. Most nodes are singletons, that
is they are not claimed to share the same music composition with any other
node, whereas some nodes form clusters. The sizes of the clusters largely follow
power law distribution (shown later in Fig. 9).

Figure 8(b) examines the detailed structure of the clusters. The nodes are
colored according to which datasets they come from. Clearly, a larger size of
cluster indicates a more popular piece. Besides that, several observations can be
made. First, the connected clusters are almost always densely connected (and
thus only clouds can be seen). This shows the consistancy that two nodes con-
nected by one node, i.e. sharing the same music composition with the bypassing
node, should also be connected. However, such consistency is not common with
arbitrary graphs.

Second, although it is very possible, given such a large dataset, that one
noisy node being close to only a few nodes in two bigger clusters join these two
clusters and make them indistinguishable, it does not appear often here. This is
thanks to the dual-filtering effects our MF method. Notice that any two MIDI
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(a) a global view (b) a closer look at the center part

Fig. 8. A visualization of similar pairs among 12,484 MIDI files.

files sharing the same music score have to be similar under both metrics. Thus,
our proposed MF harnesses multiple aspects of the nature of music.

Finally, the cluster sizes follow a power law distribution, that is larger-sized
clusters appear exponentially fewer than smaller-sized clusters. We plot the
cluster-size-vs-rank distribution in Fig. 9. In this figure, we sort all the clus-
ters in an descending order according to their sizes. The most popular music
compositions are also listed there.
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Fig. 9. Power law of number of copies of music pieces. Most popular music pieces are:
1© Mozart Sonata 331-1, 2© Bach Chorales, 3© Beethoven Sonata 008 Pathétique, 4©
Chopin Ballade No.2, and 5© Beethoven Moonlight Sonata.
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8 Conclusions

We present MidiFind, a MIDI query system for effective and fast searching of
MIDI file databases. The system has the properties we mentioned earlier:

– Effectiveness: it achieves high precision and recall by using novel similarity
measurements based on bag-of-words and melody segments, which outper-
forms standard Levenshtein distance.

– Scalability: our MidiFind system is dramatically faster than the naive standard
Levenshtein distance linear scanning, which is O(mnN), where m and n are
lengths of two compared strings and N is the size of the database. By using
melody segments representation, bag-of-words filtering, Sakoe-Chiba Band,
and M-tree, we achieve speed-ups of 10, 40, 10, and 1.05, respectively, which
finally leads to a speed-up of more than 1000 times. Since the methods scale
linearly, we are able to achieve one search within 10 s even if the size of the
database is 1 million.

9 Future Work

Potentially, we can improve the MidiFind system by substituting existing rule-
based methods by more machine-learning based approaches. Here, we discuss
the possibilities in terms of both effectiveness and scalability.

Effectiveness: We see a small gap of recall between the optimal threshold
choice and our choice in Table 1. The optimal parameters are not chosen since
it will lead to a very low precision for Euclidean distance, which will create a
very large overhead for the next string matching step. It is possible to learn a
representation from data which could achieve higher precision than the current
bag-of-words representation.

One possibility is to design more “words” based on musical knowledge, and
then use Principle Component Analysis (PCA) [20] to reduce the dimensionality.
The advantage of PCA is that it automatically “groups” the related informa-
tion, so that the final representation contains richer information and pays less
attention to uninformative details. Another possibility is to use Kernel PCA [19]
to directly learn a representation from the strings of various lengths. By using
a string kernel [13,17], we can also take the structure of the string into account
rather than just counting the number of the words.

We also see that though the melody string matching process is very accurate,
it may rely on the fact that highest pitches are representative enough for piano
pieces. For non-piano pieces, we may need more advanced melody extraction
algorithms.

Scalability: We see a speed-up factor of 2 to compute the Euclidean distance
by using M-tree indexing. It might be possible to increase the speed-up factor
by using locality-sensitive hashing (LSH) [9]. Someone may argue that this step
is not very critical since that the overhead of Euclidean distance computation
is just about 10% of the one of whole computation. However, it is possible that
the fraction of Euclidean distance computation will increase as the data size
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increases to 1 million, in which case the Euclidean distance computation step
will become more significant.

We could adopt a k-bit (e.g., 32-bit or 64-bit based on the CPU architecture)
LSH function which could basically perform a query in a constant time. There is
certainly a trade-off between accuracy and speed. As for precision, the LSH can
at least return a rough set of candidates very quickly. After performing LSH,
we can check the true Euclidean distance between the set of candidates and the
query by linear scanning. In other words, LSH will serve as another filter, so that
we end up using a pipeline approach to sequentially filter the candidates by using
LSH, Euclidean distance, and finally the actual string matching. As for recall,
our pipeline approach will unavoidably create some false negatives, though it
has been shown that the false negative probability can be driven very low by
tuning the parameters. However, considering our goal of searching 1 million files,
a small trade-off on recall, we would argue, will not be a big issue.
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