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Abstract. Bio-inspired optimization algorithms have natural parallelism
but practical implementations in parallel and distributed computational
systems are nontrivial. Gains from different parallelism philosophies and
implementation strategies may vary widely. In this paper, we contribute
with a new taxonomy for various parallel and distributed implementation
models of metaheuristic optimization. This taxonomy is based on three
factors that every parallel and distributed metaheuristic implementation
needs to consider: control, data, and memory. According to our taxonomy,
we categorize different parallel and distributed bio-inspired models as well
as local search metaheuristic models. We also introduce a new designed
GPU parallel model for the Kohonen’s self-organizing map, as a represen-
tative example which belongs to a significant category in our taxonomy.
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1 Introduction

In the combinatorial optimization community, there exist a number of differ-
ent bio-inspired optimization metaheuristics, such as genetic algorithms (GA),
ant colony optimization (ACO), and artificial neural networks (ANN). Inspired
by natural systems and designed to mimic certain phenomena or behaviors of
biology, these algorithms aim at finding, as optimally as possible, approximate
solutions to real-life difficult problems which are usually not able to be solved
by exact approaches in reasonable computing time. Biologic systems are usually
made up of populations of simple individuals, ants, birds or neurons, interacting
locally with one another and with their environment. This trait should imply
some potential for parallel and distributed implementations of the derived bio-
inspired optimization algorithms. However, the implantation, from nature to
practical parallel and distributed computational systems, is not as smooth as it
looks like, owing to various restrictions of the latter, coming from 1) resource
sharing and competition, 2) communication and synchronization among com-
puting nodes, 3) system robustness requirement. As a result, gains from dif-
ferent parallelism philosophies and implementation strategies may vary widely,
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and it is very tricky to come out with a consummate model. Trying to cast some
interesting insights on this issue, this paper firstly contributes with a new taxon-
omy for various parallel and distributed implementation models of metaheuristic
optimization, and then categorizes different bio-inspired models as well as local
search metaheuristic models according to our taxonomy, including the introduc-
tion of a new designed GPU parallel model for the Kohonen’s self-organizing
map (SOM) [1], as a representative of “control distributed, data decomposition,
shared memory” category.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed taxonomy with three factors. According to this new taxonomy, Section 3
categorizes some parallel and distributed implementation models of metaheuris-
tic optimization algorithms, including GA, ACO, SOMANN, and local search. A
new designed GPU parallel model for SOMANN is also introduced in Section 3.
The partly distributed model and the fully distributed model are discussed in
Section 4 before some conclusions of this work are drawn in Section 5.

2 Taxonomy for Parallel and Distributed Strategies

Generally, parallel computing speeds up computation by dividing the work load
among a certain amount of processors. In the parallel computing community,
two main sources of parallelism which are well accepted are data parallelism and
control parallelism [2,3]. Data parallelism refers to the execution of the same
operation or instruction on multiple large data subsets at the same time [2]. This
is in contrast to control parallelism (or task parallelism, or function parallelism,
or operation parallelism), which refers to the concurrent execution of different
tasks allocated to different processors, possibly working on the “same” data and
exchanging information [3]. Parallel computation based on these two parallelisms
is particularly efficient when algorithms manipulate data structures that are
strongly regular, such as matrices in matrix multiplications. Algorithms operat-
ing on irregular data structures or on data with strong dependencies among the
different operations remain difficult to parallelize efficiently and to characterize
comprehensively, using only data or control parallelism. Metaheuristics gener-
ally belong to this category, and parallelizing them offers opportunities to find
new ways to use parallel and distributed computational systems and to design
parallel algorithms [4]. In our opinion, the traditional dual classification for gen-
eral parallel computing looks inadequate when dealing with the various parallel
and distributed optimization metaheuristics. One important point that should
be emphasized concerns the allocation of processors and memory according to
the instance size of the problem. We think this point, specific to optimization,
should be alighted in the taxonomies of parallel and distributed metaheuristic
implementations, since it determines the maximum size of the input that could
be solved in systems on hand and how the performance should grow according
to the amount of physical cores and memory.

We propose a new taxonomy as shown in Fig. 1. It is based on the three fac-
tors that every parallel and distributed implementation model of metaheuristic
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Fig. 1. Taxonomy based on control, data, memory

optimization needs to consider: control, data, and memory. Note that though
the two terms of our taxonomy are literally similar to the traditional parallelism
classification, they stand for very different considerations.

— Control. This term is about algorithmic organization and its corresponding
execution pattern on parallel processors. Some parallel and distributed imple-
mentation models are based on centralized control on different levels. The most
common case is the so called “master-slave” model, as shown in Fig. 2(a), in
which a master process manages the population and hands out individuals to
evaluate to a number of slave processes. After the evaluation, the master pro-
cess iteratively collects the results and applies some global operations, such as
selection, to produce the next generations. Ergo in this case, the master process
plays a central role while the slave processes act as co-processors to acceler-
ate computation. In out taxonomy, we call this kind of implementation model
“control centralized”. The opposite implementation model should be under a
completely distributed control pattern, without depending on any central con-
trol that would break the entire computing network if it was suppressed from the
computation implementation, as the cellular model shown in Fig. 2(b). Thus the
robustness can be guaranteed because the computation can continue even when
some computing units fall down. We call this kind of implementation model
“control distributed”.

— Data. This term denotes the input problem data, of size N , and the repre-
sentation of the solution. The size of the solution could generally be O(N) since it
is in relation to the input. However, the size might depend on optimising oper-
ations and the implementation choices of designers. Some algorithms perform
metaheuristic exploration and exploitation within a set of solutions (popula-
tion), handling each solution in parallel, and then select the best-so-far solution
iteratively. Implementation models of this kind are built upon “data duplication”
and the required memory is with O(NM) where M is the population size. Alter-
natively, other algorithms generate every part of the whole solution separately in
parallel. The final solution can be then obtained by combining together partial
results from all the processors. Hence implementation models of this kind are
founded on “data decomposition” and their memory employment could remain
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(a)

(b)

Fig. 2. Comparison between (a) “master-slave” model and (b) cellular model. The
parallel “master-slave” model is under “control centralized, data duplication” pattern
while the cellular model is under “control distributed, data decomposition” pattern.
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in O(N). This linear relationship to the problem size makes these models able
to handle larger scale problems with limited physical memory, than the models
under “data duplication” pattern.

— Memory. This term concerns concrete implementations on different par-
allel and distributed computing platforms. Two commonly used categories are
“shared memory” and “distributed memory”, and we adopt them in our tax-
onomy. Normally, if the considered algorithm is implemented in shared mem-
ory systems, then it usually suffers from memory access contention, especially if
global memory access is through a single path such as a bus. Cache memory alle-
viates the problem but it does not solve it. On the other hand, if the considered
algorithm is implemented in distributed memory machines, then it has better
scaling behavior, which means that the performance is relatively unaffected if
more processors (and memory) are added and larger problem instances are tack-
led. The information exchange among different processors is via message passing
mechanism. As a result, the communication bottleneck of distributed memory
computing systems usually becomes the main obstacle to high performance of
the “distributed memory” implementation models.

With our taxonomy in hand, any parallel and distributed implementation
model of metaheuristic optimization can be classified and analyzed based on the
three factors. By doing so, the employment of processors and memory according
to the problem size can be predicted and the possible performance bottlenecks
could also be forecasted. For example, most of the parallel and distributed GA
implementations under “master-slave” model are based on “control centralized,
data duplication”, as shown in Fig. 2(a). Then the amount of processors needed
is with O(M) where M is the population size and the required memory is with
O(NM) where N is the problem size. If an implementation is in shared memory
computing systems, for example on the GPU CUDA platform, then a lot of
attention should be paid on the global memory access efficiency and contention.
Note that when the input size N grows, the solution occupies a larger part of
the central memory limiting the use of processors. Consequently with a fixed
memory size, the number of used processors should decrease as the input size
increases. On the other hand, implementations under coarse-grained models,
where the radio of computation to communication is high, are more adapted
to distributed memory computing systems, such as clusters. This is the case of
cellular GA implementation model [5] that is based on “distributed memory,
data duplication”.

3 Categorizing Different Implementation Models

In this section, we consider and categorize some bio-inspired metaheuristics,
including GA, ACO, and SOMANN. Implementation models of other paral-
lel metaheuristics, such as local search, are also classified and analyzed in our
taxonomy.
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3.1 Parallel Genetic Algorithms

GAs are search algorithms inspired by genetics and natural evolutionary princi-
ples. The most important operations in GAs are reproduction, mutation, fitness
evaluation and selection (competition). There are several possible levels at which
GAs can be parallelized: the fitness evaluation level, the individual level or the
population level [5]. Parallelization at the fitness evaluation level is usually imple-
mented under “master-slave” model, in which each individual fitness is evaluated
simultaneously on a different processor. This architecture belongs to the “control
centralized, data duplication” category according to our taxonomy, and it can
be implemented on both shared memory multiprocessors as well as distributed
memory machines.

Individual or population-based parallel approaches for GAs introduce addi-
tional terms that should be considered, such as deme, migration and topology
[6]. These approaches are inspired by the observation that natural population
tends to possess a spatial structure. The two important spatial structure based
categories are the island and the cellular models. The island model [7] features
geographically separated subpopulations of relatively large size. Subpopulations
may exchange information from time to time by allowing some individuals to
migrate from one subpopulation to another according to various patterns. In
the cellular model [8], individuals are placed on a large toroidal one or two-
dimensional grid, one individual per grid location. Fitness evaluation is done
simultaneously for all individuals, and selection, reproduction and mating take
place locally within a small neighborhood. From an implementation point of
view, these two kinds of models are often adapted to distributed memory sys-
tems [9,10] and accordingly they are classified into the “control distributed, data
duplication, distributed memory” category according to our taxonomy.

3.2 Parallel Ant Colony Optimization

As early as when Dorigo [11] initially proposed ACO, he suggested the appli-
cation of parallel computing techniques to enhance both the ACO search and
its computational efficiency. A comprehensive survey on parallel ACO can be
found in [12]. Among various parallel ACO implementations, the “master-slave”
model has been quite popular in the research community, mainly due to the
fact that this model is conceptually simple and easy to implement. According
to Pedemonte et al. [12], the “master-slave” model is further divided into three
distinguished subcategories regarding the granularity. The standard implementa-
tion of coarse-grain master-slave ACO assigns one ant to a slave that is executed
on an available processor. The master globally manages the global information
(i.e. the pheromone matrix, the best-so-far solution, etc.), and each slave builds
and evaluates a single solution. The communication between the master and
slaves usually follows a synchronous model. This kind of implementation model
is under “control centralized, data duplication” pattern. In the medium-grain
master-slave model, a domain decomposition of the problem is applied. The
slaves solve each subproblem independently, whereas the master manages the
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overall problem information and constructs a complete solution from the partial
solutions reported by the slaves. Furthermore, in the fine-grain master-slave,
the slaves perform minimum granularity tasks, such as processing single com-
ponents used to construct solutions, or parallel evaluation of solution elements.
These two kinds of implementation models are under “control centralized, data
decomposition” pattern and they can be implemented both in shared memory
systems and in network of workstations or clusters, with each node having inde-
pendent memory. Frequent communications between the master and slaves are
usually required in these models, and this issue is more severe when they are
implemented in distributed memory systems than shared memory systems.

There exist other parallel and distributed ACO implementation models that
are under “control distributed” pattern. In the cellular model [12,13], a single
colony is structured in small neighborhoods, each one with its own pheromone
matrix. Each ant is placed in a cell in a toroidal grid, and the trail pheromone
update in each matrix considers only the solutions constructed by the ants in
its neighborhood. In the multicolony model [12,14], several colonies explore the
search space using their own pheromone matrices. The cooperation is achieved by
periodically exchanging information among the colonies. In the parallel indepen-
dent runs model [12,15,16], several sequential ACOs, using identical or different
parameters, are concurrently executed on a set of processors. The executions
are completely independent, without communication among the ACOs, there-
fore the model does not consider cooperation between colonies. The latter two
models have distributed controlling at colony level. These three models above
are all under “data duplication” pattern and they can be implemented in both
shared memory [16] and distributed memory [13] systems.

3.3 Parallel Self-Organizing Map Artificial Neural Networks

Partly motivated by how visual, auditory or other sensory information is handled
in separate parts of the cerebral cortex in the human brain, the Kohonen’s SOM
[1] is a prominent unsupervised ANN model providing a topology-preserving
mapping from a high-dimensional input space onto a two-dimensional map space.
Some methods for computing SOM on GPU have been proposed [17,18]. These
methods accelerate SOM process by parallelizing the inner steps at each basic
iteration, firstly, to find out the winner neuron in parallel, secondly, to move
the winner neuron and its neighbors in parallel. Consequently these kinds of
implementation models fall into the “control centralized” category.

In our opinion, one interesting model for parallel SOM should be attributed
to the “control distributed, data decomposition, shared memory” category, in
that, firstly, distributed control guarantees the model’s robustness, secondly,
data decomposition eases the burden of massive memory usage when dealing
with large-scale problems, and thirdly, shared memory reduces the communi-
cation costs among different processing units and allows easy implementation
on Graphics Processing Unit (GPU) like systems. Given this ambition, we have
designed a novel parallel SOM model and implemented it on GPU Compute
Unified Device Architecture (CUDA) platform, trying to deal with large scale
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Fig. 3. Parallel cellular model: the input data density distribution, the cellular matrix
and the neural network. To a given cell of the cellular matrix corresponds a constant
part of the input data as well as a part of the neural network made up of SOM’s
topological grids/neurons.

travelling salesman problems (TSP) [19]. As illustrated in Fig. 3, three main
data structures are used to implement the parallel model. Between the neural
network and the input data, we add a uniform two-dimensional cellular matrix
with linear relationship to the input size, as a level of decomposition of the plane
and the input data. Its role is to memorize the neurons in a distributed fashion
and authorize many parallel closest point searches in the plane by a spiral search
algorithm [20,21], and then many parallel training procedures. Each uniformly
sized cell in the cellular matrix is a basic training unit and will be handled by
one parallel processor/GPU thread. Thus, the model proceeds from a cellular
decomposition of the input data, in Euclidean space, such that each processor
represents a constant and small part of data. Therefore, according to the increase
of parallel processors in the future, this approach should be more and more com-
petitive, while at the same time being able to deal with very large size inputs.
This quintessential property holds because of the linear memory and processors
needed according to the input size. More design details and experimental results
of the parallel SOM model can be found in [19].

3.4 Parallel Local Search

Local search is a metaheuristic algorithm which could be viewed as “walks
through neighborhoods”. The walks are performed by iterative procedures that
allow moving from one solution to another, through the solution domains of
the problems at hand. Parallelism naturally arises when dealing with a neigh-
borhood, since each of the solutions belonging to it is an independent unit.
This kind of parallelization is called iteration-level parallel model, a low level
“master-slave” model in which evaluation of the neighborhood is made in par-
allel [22,23]. At the beginning of each iteration, the master duplicates the cur-
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rent solution among parallel nodes. Each of them manages a number of candi-
dates, and the results are returned to the master. This implementation model is
obviously under “control centralized, data duplication” pattern. In [23], Luong
et al. have re-designed the above model on GPU platform. Considering a neigh-
bor as a slight variation of the candidate solution which generates the neighbor-
hood, they only copy the representation of this candidate solution from CPU
to GPU. Then N2 threads are employed to carry out the parallel 2-opt moves
and evaluations, where N is the TSP instance size. Each parallel evaluation only
deals with the slight variation based on the candidate solution, with the help
of a neighborhood mapping which locates each thread’s corresponding variation
position in the solution representation. Then the fitness results generated by par-
allel threads need to be gathered and selected for a best one, which will become
the new starting solution, called “pivot”, at the next local search iteration. The
solution representation and the fitness structure are stored in the global memory
of GPU. From the above, it can be concluded that this strategy is under “control
centralized, data decomposition, shared memory” pattern.

Other two major parallel models for local search can be distinguished as
solution-level and algorithmic-level. In the solution-level parallel model, the focus
is on the parallel evaluation of a single solution and the function can be viewed
as an aggregation of partial functions. Implementations based on this model are
under “control centralized, data decomposition” pattern. In the algorithmic-level
parallel model, several local search metaheuristics are simultaneously launched
for computing robust solutions. The well-known multistart local search, in which
different local search algorithms are launched using diverse initial solutions, is
an instantiation of this model [22]. Implementations based on this model are
under “control centralized, data duplication” pattern. In our opinion, central-
ized selection procedures among parallel processors are inevitable, as long as
each processor deals with a whole solution. Differently, an interesting model
should be fully distributed, where each processor carries out its own local search
based on part of the input data, generating one part of the whole solution.
Operations on different processors are completely independent with each other
and no centralized selection procedure is needed. Eventually, a final solution can
be obtained by combining all the partial results from different processors. Ergo
this implementation model of local search is under “control distributed, data
decomposition” pattern, as shown in Fig. 2(b), and it is supposed to be able
to solve very large challenging problems, such as the World TSP Challenge, in
distributed computing systems such as clusters.

4 Partly Distributed Model vs. Fully Distributed Model

In literature, many implementation models are labeled as “distributed model”.
Actually, some of them belong to the “control centralized, distributed mem-
ory” category according to our taxonomy while others belong to the “control
distributed, shared memory” category. In our opinion, these two kinds of imple-
mentation models are only partly distributed, or distributed in a weak sense.



Parallel and Distributed Implementation Models 77

For example, even if the “master-slave” model is implemented in distributed
memory systems with computing nodes communicating by message transfers,
the master process necessarily deals with specific data structures different from
the slave data structures. We think only the implementation model based on
“control distributed, distributed memory” is fully distributed, or distributed in a
strong sense. No component has special role in this kind of implementation and
it could be carried out on networks of stations, or processors, communicating by
message transfers, and with all processors executing the same code.

From our point of view, a very significant conceptual implementation model
should be under “control distributed, data decomposition, distributed memory”
pattern, because it is fully distributed and makes possible to solve very large
problems in distributed computing networks. In literature, we found one example
which belongs to this category and it was proposed by Nguyen et al. in [24]. They
applied an effective implementation of hybrid GA incorporating Lin-Kernighan
heuristic, to the 1,904,711-city World TSP Challenge. They divided the world
instance into a number of smaller subinstances and then applied PHGA to these
subinstances. Finally, they reconnected all the best segments of each subinstance
to form a new best tour for the world instance. This example, however, has
a high level of granularity since each processor deals with a significant part
of the input data using a hybrid GA incorporating Lin-Kernighan heuristic.
Based on the same requirement of data decomposition, we have also designed a
cellular SOM model to the TSPs, as introduced in this paper. However, in our
current work, we implement this model on GPU CUDA platform with global
memory, which makes the implementation partly distributed and belong to the
“control distributed, data decomposition, shared memory” category. This model
however has very low level of granularity with few input data assigned to each
processor. Executing low-level granularity models based on data decomposition
in distributed memory systems means an important challenge.

5 Conclusion

Parallel and distributed metaheuristics offer the possibility to address large scale
problems which are often intractable to traditional sequential algorithms. A good
way of formulating, analyzing and classifying different parallel and distributed
implementations will be very helpful in designing efficient, scalable, and robust
algorithms in return. One important point that should be emphasized concerns
the allocation of processors and memory according to the problem size. We think
this point, specific to optimization, should be alighted in the taxonomies of par-
allel and distributed metaheuristic implementation models, since it determines
the maximum size of the problem that could be solved in systems on hand and
how the performance should grow according to the amount of physical cores
and memory. With this in mind, we have proposed a new taxonomy and cat-
egorized different bio-inspired metaheuristic implementation models according
to this taxonomy. Also we have contributed with a new designed GPU parallel
model for SOMANN. Furthermore, we have discussed partly distributed models
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and fully distributed models, in weak and strong senses. We hope the efforts
made in this paper will help others, particularly designers and engineers who
want to use bio-inspired optimization algorithms for large scale complex prob-
lems, choose the right parallelization model for their applications.
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