
Multi-level Parallelization for Hybrid ACO

Omar Abdelkafi, Julien Lepagnot(B), and Lhassane Idoumghar

LMIA, Université de Haute-Alsace (UHA), E.A. 3993, 4 rue des frères lumière,
68093 Mulhouse, France

{omar.abdelkafi,julien.lepagnot,lhassane.idoumghar}@uha.fr

Abstract. The Graphics-Processing-Unit (GPU) became one of the
main platforms to design massively parallel metaheuristics. This advance
is due to the highly parallel architecture of GPU and especially thanks
to the publication of languages like CUDA. In this paper, we deal with
a multi-level parallel hybrid Ant System (AS) to solve the Travelling
Salesman Problem (TSP). This multi-level is represented by two par-
allel platforms. The first one is the GPU, this platform is used for the
parallelization of tasks, data, solution and neighborhood-structure. The
second platform is the MPI which is dedicated to the parallelization of
programs. Our contribution is to use these two platforms to design a
hybrid AS with a Local Search and a new heuristic.

Keywords: Parallel hybrid metaheuristics · TSP · GPU · MPI

1 Introduction

Hybrid metaheuristics [1][2][3] are one of the most efficient classes of algorithms.
The idea is to combine metaheuristics [4] and other techniques for optimiza-
tion. With the combination of different techniques, these methods can require a
longer computation time than others. This is one of the reasons that lead the
community to propose parallel hybrid metaheuristics [5]. Another reason is the
evolution of highly parallel architectures like the GPU. This evolution is due to
the explosion of the industry of video games and his greedy demand for graphic
power. Indeed, with the advent of CUDA, the use of GPU for non-graphic appli-
cations has become easier and hybrid metaheuristics have taken advantage of this
evolution.

There are many levels of parallelization. For the Ant Colony Optimization
(ACO) [6] applied to the TSP in the context of a single colony, the parallel exe-
cution of ants in the tour construction phase was initiated by Bullnheimer et al.
[7]. Also in this same context, in 2013, Cecilia et al. [8] used the data paralleliza-
tion in the update of pheromone to get the best performance from the GPU. In
the context of multiple colonies, Stutzle [9] introduced the execution of multiple
colonies in parallel with cooperation between colonies to improve the quality
of solutions using the parallelization of programs. In CUDA programming, the
execution on GPU is conducted by the kernel. It is a code called from the CPU

c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 60–67, 2014.
DOI: 10.1007/978-3-319-12970-9 7

Multi-level Parallelization for Hybrid ACO 61

(the host) and duplicated on GPU (the device) to run in a parallel way. The
kernel is executed in a grid, which is a set of blocks where every block is a set of
threads.

In this work, we propose a hybrid ACO through one of the first variant of this
method named the Ant System (AS) [10]. Our first contribution is to propose a
new design for AS multi-colonies using GPU and MPI and the second contribu-
tion is to hybridize this method with a parallel local search (PLS) providing the
intensification of the search and a new heuristic to improve results.

The rest of the paper is organized as follows. In section 2, we introduce
the background needed for ACO and TSP to help the understanding of this
proposition. We describe in section 3 the design of our multi-level parallel hybrid
AS before we discuss the results of our experimentation in section 4. Finally, in
section 5, we conclude the paper and we propose some perspective.

2 Background

The TSP is an NP-hard problem and one of the most studied combinatorial
problems. It consists in finding the least-cost Hamiltonian circuit between a
set of cities starting and ending with the same city. In general, TSP can be
represented by a complete undirected graph G = (V, E). The set V= {1, . . . , n}
is the vertex set, E={(i, j) : i, j ∈ V, i < j} is an edge set. cij is defined on E as
the Euclidean distance between two vertices i and j.

Intuitively in the natural behaviors, the ants search the food randomly in
the first tour construction. They move from one point to another until they find
food. Once it is done, ants get back to the starting point. This corresponds to
the initialization. In the search process, ants depose pheromone along the path
they take. The quantity of pheromone is implemented by equation (1):

τij = τij +
N∑

k=1

Δτk
ij ∀(i, j) ∈ E (1)

where Δτk
ij is the sum of pheromone which ant k deposits when it uses the edge

between i and j. It depends on the length of the tour Ck constructed by the ant
k; Δτk

ij is defined in equation (2):

Δτk
ij =

1
Ck

(2)

Another characteristic of the pheromone in the natural behavior is the evapo-
ration: the pheromone evaporates over time. This characteristic is implemented
with a parameter 0 < ρ ≤ 1 in equation (3):

τij = (1 − ρ)τij , ∀(i, j) ∈ E (3)

The second step is the tour construction. In the natural behaviors, the ants
follow the pheromone to find the best tour. To implement this concept, a prob-
ability is defined in equation (4) where nij = 1

cij
, α and β are parameters and

Nk
i is feasible neighborhood. A complete survey on ACO can be found in [6].

62 O. Abdelkafi et al.

Δpk
ij =

[τij]α[nij]β∑
l∈Nk

i
[τil]α[nil]β

(4)

3 Design of the Parallel Hybrid ACO

The most straightforward way to design parallel AS or ACO in general is the par-
allelization of ants. This kind of parallelization is called the task parallelization
and this is our first parallel level. The idea is very simple and used in most of the
parallel ACO algorithms. Every ant is represented by a thread and every thread
performs the tour construction in parallel with other ants. Inside the kernel, the
ant chooses the next city to visit among the cities not selected yet and according
to the probability computed by equation (4). The CURAND library allows the
generation of a different random tour for every ant. The classical roulette wheel
is used to select the next city to visit.

For the pheromone update part(see equation 1), using task parallelization can
lead to concurrent access problems, i.e. if several ants update the pheromone of
the same arc at the same time. The only solution in this case is to use atomic
instructions but it decreases dramatically the performance. Hence, we are rather
using data parallelism proposed by [8].

The level of data parallelization is used for the kernel of Update pheromone
(see algorithm 1), the Evaporation pheromone (see algorithm 2) and the Update
probability (see algorithm 3).

Algorithm 1. The Update pheromone kernel:
1: Input : Pants: the population of ants; fants: the fitness of ants; pheromone:

the matrix of pheromone; cities: the size of the instance; ants: the size of the
population;

2: Get the index of the thread idx; /*each idx represent one couple of cities*/
3: for i:=1 to ants do
4: distance = fants[i];
5: for j:=1 to cities do
6: if the arc between i and j == idx then
7: pheromone[idx]=pheromone[idx]+(1

distance
);

8: end if
9: end for
10: end for

Algorithm 2. The Evaporate pheromone kernel:
1: Input : pheromone: the matrix of pheromone;
2: Get the index of the thread idx; /*each idx represent one couple of cities*/
3: pheromone[idx]=(1-ρ) × pheromone[idx];

Multi-level Parallelization for Hybrid ACO 63

Algorithm 3. The Update probability kernel:
1: Input : pheromone: the matrix of pheromone; probabilities: the matrix of prob-

abilities; cij: the matrix of distances; cities: the size of the instance;
2: Get the index of the thread idx; /*each idx represent one couple of cities*/
3: /*control if the cities of the couple are the same*/
4: if cij[idx] �= 0 then
5: arc = (pheromone[idx])α × (1

cij[idx]
)β

6: all = 0
7: position = � idx

cities
� /*Get the position of the couple in the matrix*/

8: /*when j=position, cij[(position × cities)+j]=0*/
9: for j ∈ {0, 1, . . . , position − 1, position + 1, . . . , cities} do
10: all += (pheromone[(position × cities) + j])α × (1

cij[(position×cities)+j]
)β

11: end for
12: probability[idx] = arc

all

13: end if

Our idea to hybridize ACO is to use a Parallel Local Search and a new
heuristics that we name smart ants. These algorithms are added to AS, but
it can be used for all the variants of ACO. The PLS is applied to a group of
ants after the Tour construction. It is a classical local search but the differences
are the evaluation and generation of neighborhood executed in parallel with the
GPU. It consists in representing every item of the solution by a thread, which
leads to a parallel execution of neighbors generation. The thread generates and
evaluates the neighbor of its item and searches the best possible switch. At the
end of the parallel execution, the algorithm searches the best results of all the
threads. This is the third level of parallelization.

The aim of the smart ant heuristic is to improve results. It executes as much
iterations as the size of the instance without considering the start city which
is static and unchangeable. The figure 1 shows a small example of the heuristic
using 4 cities which mean 3 iterations and every vector represents an ant. In every
iteration i we search the best ant inside the colony. For example in iteration 2 of
the figure 1, the best ant is the third ant which have the index 2 because it starts
from 0. All the ants follow the movement of ant2 at the position 2 indicated by
the arrow in the figure 1. The city in this position for ant2 is city number 3. By
consequence, ant0 and ant1 move their cities to get the city 3 in position 2. This
is why we name it smart ants, because they have the intelligence to adjust their
tour. All the ants perform this heuristic in parallel so we use the level of parallel
tasks. As we can see with this heuristic, after a certain number of iterations,
all the ants have the same tour. By consequence, this heuristic leads the search
to stagnancy. To escape from this stagnancy, one improvement is added. The
switch is not performed when the two cities to switch are adjacent (example in
figure 1 the iteration 1 for ant0).

The last step of our approach is to use MPI to execute our method on many
GPU. This step introduces a new level of parallelization: the level of parallel
programs. Actually, different colonies will be executed in parallel through many
processes. For example, if we execute 3 processes, we will duplicate our algorithm

64 O. Abdelkafi et al.

Fig. 1. Smart ants

3 times. By consequence, 3 colonies will be executed in parallel. MPI gives to
our design another advantage: we can exchange information between processes
in order to improve the results. To exchange information, the algorithm regularly
chooses the best solution found in one process and updates the pheromone of the
matrix located in the next process using a ring topology. The data parallelization
is not suitable this time. Since inside the solution every city is visited only once,
a new level of parallelization between cities is applied which is the solution level
parallelization. For all the couple of cities used in the tour, the pheromones
of these couples are updated in parallel. The atomic operation is not needed
because each couple appears only once in a tour.

4 Experimental Results

4.1 Platform and Tests

In our experimentation, we use a cluster of 12 graphic cards NVIDIA Geforce
GTX680. The benchmark used is a set of well known instances from the TSPLIB
[11] with a size between 51 and 150 cities. All the results are expressed as a
percentage deviation from the optimum. All the optimal solutions can be found
in the online benchmark library TSPLIB.

4.2 The Smart Ants Heuristic

Table 1 shows the performance of the proposed algorithm with and without
the smart ants (SA) heuristic for one colony. 25 tests are performed for every
instance with 100 iterations. SA heuristic improves the average results of the 25
tests in the 5 instances.

Multi-level Parallelization for Hybrid ACO 65

Table 1. Evaluation of the smart ants heuristic

Instances AVG with SA AVG without SA

Eil51 3.13% 3.81%
Berlin52 2.50% 3.14%
Eil76 5.64% 6.35%
Pr76 4.85% 6.14%
KroA100 4.67% 5.26%

4.3 The Parallel Multiple Colonies Using MPI

We use the cluster with 12 GPU. 10 tests for each instance are performed for
10 instances from TSPLIB. Table 2 reports the best results (MIN), the worst
results (MAX), the average results (AVG) and the average time required for the
10 tests. The parameters used are α = 1 ; β = 2 ; ρ = 0, 5. 300 iterations are
executed for each colony and every one of them contains 256 ants. 12 processes
are executed one per machine in the cluster. The number of colonies executed
in parallel is 12. Every 10 iterations the processes exchange their best solutions
using a ring topology. 60% of the average results are between 0 and 3%. From
the 10 instances, 9 average results are inferior to 5%.

Table 2. The multi-level parallel hybrid AS

Instances MIN (%) MAX (%) AVG (%) Time (s)

Eil51 0.99 3.02 1.98 10.57
Berlin52 0.03 2.33 1.07 14
St70 1.53 3.2 2.61 25.96
Eil76 2.83 5.04 4.21 28.02
Pr76 1.99 3.55 2.76 31.44
Rat99 3.53 7.8 6.19 35.7
KroA100 2.41 3.61 3.17 55.92
Bier127 1.25 2.58 1.87 87.72
Ch130 1.86 3.11 2.51 72.2
Ch150 2.84 3.75 3.42 76.8

The next experiment has the aim to see the behavior of the cluster when the
objective function is evaluated equally between one GPU and 8 GPU. In this
experiment, the same number of ants is used in the two cases. Table 3 presents
the average results of 10 tests for 4 instances. AVG 1 is the average for the first
case, AVG 2 is the average for the second case and ACC is the acceleration of
the cluster compared to one GPU. With these conditions, the parallel design
with the cluster improves the results and gives accelerations between 1.22 and
1.84 times compared to one GPU.

The final experiment is to compare our approach to other methods from
the literature. In table 4, works from the literature are used for the evaluation.
4 approaches are selected. [12] is an ACO algorithm for TSP and [13][14][15]
are other approaches to solve TSP for 5 instances. [*] is our approach and the
results are the percentage deviation from the optimum. The Friedman test [16],
performed on these 5 problems with α = 5%, shows that we can reject the null
hypothesis, i.e. there is at least one algorithm whose performance is different

66 O. Abdelkafi et al.

Table 3. MPI accelerations

Instances AVG 1(%) AVG 2 (%) ACC

Berlin52 2.72 1.04 ×1.73
Pr76 5.4 3.08 ×1.40
Bier127 2.53 2.18 ×1.22
Ch150 4.43 3.91 ×1.84

from at least one of the other algorithms. To know which algorithms are differ-
ent, we perform paired comparisons. The critical value is C=3.67. The paired
comparisons (see Table 5) show that the results obtained by [*] are different
from those obtained by the four other approaches. From the above analysis,
we can see that our hybrid algorithm is better and outperforms the other four
metaheuristics.

Table 4. Literature comparison

Instances [*] [12] [13] [14] [15]

Eil51 1.98 7.98 2.89 2.69 3.43
Berlin52 1.07 7.38 7.01 5.18 5.81
Eil76 4.21 12.08 4.35 3.41 5.46
Bier127 1.87 15.32 3 2.2 3.41
Ch130 2.51 24.15 2.82 2.82 2.82

Table 5. Paired comparisons

Instances [12] [13] [14] [15]

[*] 19 10 4 12
[12] - 9 15 7
[13] - - 6 2
[14] - - - 8

5 Conclusion and Perspectives

This work has two main objectives. The first one is to design a parallel ACO
which can run in a cluster of GPU. The second objective is to improve the quality
of solutions and to be as close as possible to the global optimum.

For the first objective, we use Five levels of parallelization. The first one is
the parallelization of tasks performed by the GPU, which helps us to parallelize
ants for the tour construction and the smart ant heuristic. The second level is
the parallelization of data performed by GPU, which help us to update and
evaporate the pheromones and to update the probabilities. The third level is the
parallelization of the neighborhood structure performed also by GPU. This level
is essentially used to parallelize the neighborhood inside the PLS. The fourth
level is the solution level parallelization, performed by the GPU and used to
update the pheromone when the best solution is exchanged between colonies.
Finally, the last level is the parallelization of programs performed by MPI. It

Multi-level Parallelization for Hybrid ACO 67

allows us to parallelize different colonies and to diversify the search as much as
possible. For the second objective we hybridize the AS: we use two techniques.
The first one is to add the PLS for the intensification of the search. The second
technique is to test a new heuristics named smart ant to improve results.

In our future works, we plan to apply the proposed algorithm to other com-
binatorial problems like the quadratic assignment problem. Another perspective
is to reuse the same design for other swarm intelligence methods like the particle
swarm optimization.

References

1. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combina-
torial optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)

2. Lepagnot, J., Idoumghar, L., Fodorean, D.: Hybrid Imperialist Competitive Algo-
rithm with Simplex approach: Application to Electric Motor Design, In: 2013 IEEE
International Conference on Systems Man and Cybernetics (SMC) pp. 2454–2459,
Manchester UK (October 2013)

3. Aouad, M.I., Idoumghar, L., Schott, R., Zendra, O.: Sequential and Distributed
Hybrid GA-SA Algorithms for Energy Optimization in Embedded Systems, In: The
IADIS International Conference Applied Computing 2010, pp. 167–174 (2010)

4. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35, 268–308 (2003)

5. Cotta, C., Talbi, E.G. Alba, E.: Parallel Hybrid Metaheuristics, in Parallel Meta-
heuristics: A New Class of Algorithms. John Wiley and Sons (2005)

6. Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Company, USA (2004)
7. Bullnheimer, B., Kotsis, G., Strauss, C.: Parallelization strategies for the ant sys-

tem. Applied Optimization 24, 87–100 (1997)
8. Cecilia, J.M., Garcia, J.M., Nisbet, A., Amos, M., Ujaldon, M.: Enhancing data

parallelism for Ant Colony Optimization on GPUs. J. Parallel Distrib. Comput.
73, 42–51 (2013)

9. Stützle, Thomas: Parallelization Strategies for Ant Colony Optimization. In: Eiben,
Agoston E., Bäck, Thomas, Schoenauer, Marc, Schwefel, Hans-Paul (eds.) PPSN
1998. LNCS, vol. 1498, p. 722. Springer, Heidelberg (1998)

10. Dorigo, M.: Optimization: learning and natural algorithms, Ph.D. Thesis, Politec-
nico di Milano, Italy (1992)

11. Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on
Computing 3(4), 376–384 (1991)

12. Chirico, U.: A java framework for ant colony systems, Technical report, Siemens
Informatica S.p.A (2004)

13. Cochrane, E.M., Beasley, J.E.: The co-adaptive neural network approach to the
Euclidean traveling salesman problem. Neural Networks 16(10), 1499–1525 (2003)

14. Masutti, T.A.S., Castro, L.N.D.: A self-organizing neural network using ideas from
the immune system to solve the traveling salesman problem. Information Sciences
179(10), 1454–1468 (2009)

15. Somhom, S., Modares, A., Enkawa, T.: A self-organizing model for the traveling
salesman problem, Journal of the Operational Research Society, 919–928 (1997)

16. Idoumghar, L., Chérin, N., Siarry, P., Roche, R., Miraoui, A.: Hybrid ICA-PSO
algorithm for continuous optimization. Applied Mathematics and Computation
219, 11149–11170 (2013)

	Multi-level Parallelization for Hybrid ACO
	1 Introduction
	2 Background
	3 Design of the Parallel Hybrid ACO
	4 Experimental Results
	4.1 Platform and Tests
	4.2 The Smart Ants Heuristic
	4.3 The Parallel Multiple Colonies Using MPI

	5 Conclusion and Perspectives
	References

