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Abstract. In this paper, we propose three new metaheuristic imple-
mentations to address the problem of minimizing the makespan in a
hybrid flexible flowshop with sequence-dependent setup times. The first
metaheuristic is a genetic algorithm (GA) embedding two new crossover
operators, and the second is an ant colony optimization (ACO) algorithm
which incorporates a transition rule featuring lookahead information and
past information based on archive concepts such as the multiobjective
evolutionary computation. The third metaheuristic is a hybridization
(HGA) of the GA and the ACO algorithms. Numerical experiments were
performed to compare the performance of the proposed algorithms on
different benchmarks from the literature. The algorithms are compared
with the best algorithms from the literature. The results indicate that our
algorithms generate better solutions than those of the known reference
sets.
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1 Introduction

Among production scheduling systems, the flowshop is one of the most well-
studied environments. In this configuration, all jobs follow the same routing
scheme. The associated problem can be considered as a basic model for several
variants of real problems. Moreover, real production systems rarely employ a
single machine at each stage. Therefore, the regular flowshop problem is often
extended to a set of usually identical parallel machines at each stage. That is,
instead of having a series of machines, we have a series of stages. The goal here is
to increase the capacity and the outflow of the production system and to reduce
the impact of bottleneck stages on overall shop efficiency. It is also frequent in
practice to have optional treatments for products, like polishing or additional
decorations in ceramic manufacturing as examples [2,21]. In this latter case some
jobs will skip some stages. We obtain thereby the hybrid flexible flowshop.
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Furthermore, in many industries such as pharmaceutics, metallurgy, ceramics
and automotive manufacturing, we often have setup times on equipment between
two different jobs. Many authors assume that setup times are negligible, or a
part of the job processing time. But explicit setup times must be included in
scheduling decisions in order to model a more realistic variant of hybrid flowshop
scheduling problems. These setup times may or may not be sequence-dependent.
[6] reported that 70% of industrial activities include dependent setup times. More
recently, [3] pointed out in 250 industrial projects that 50% of these projects
contain setup dependent times and when these setup times are applied, 92% of
the order deadline could be met. Production of good schedules often relies on
good management of these setup times [1,29].

The present paper considers the hybrid flexible flowshop problem with
sequence-dependent setup times (SDST/HFFS) minimizing the makespan. In
accordance with the notation for hybrid flowshops introduced by [26] who
extended the well-known three fields notation α/β/γ of [8], this problem is noted
as ((PM)(i))

m

i=1/Fj , sijk/Cmax. [9] showed that the flowshop with multiple pro-
cessors (FSMP) problem with only two stages (m = 2), which can be considered
as a special case of the SDST/HFFS problem, is NP-hard, and therefore the
SDST/HFFS problem studied in this paper is also NP-hard.

The ((PM)(i))
m

i=1/Fj , sijk/Cmax problem may be defined as a set of N jobs,
N={1,..., n}, available for processing at time zero on a set of M stages, M={1,...,
m}. At every stage i, i ∈ M, we have a set of Mi, Mi={1,..., mi}, identical
parallel machines. Every machine at each stage can process all the jobs. Each
job has to be processed in exactly one of the Mi identical parallel machines at
stage i. However, some jobs will skip some stages. Fj denotes the set of stages
that the job j, j ∈ N has to visit. Furthermore, only stage skipping is allowed,
so it is not possible for a given job to visit stages {1, 2, 3} and another one
to visit stages {3, 2, 1}. pij denotes the processing time of job j at stage i.
Finally, sijk denotes the setup time between jobs j and k, k ∈ N at stage i. The
optimization criterion is the minimization of the maximum completion time or
makespan, which is calculated as Cmax = maxj∈N{Cj}.

Considering the completion time criterion for a regular flowshop problem,
a simple permutation of the jobs in an array constitutes the most widely used
encoding for the sequences. Nevertheless, when we handle a hybrid flowshop
scheduling problem with this kind of representation, two main decisions have
to be taken : (i) determine the job sequence at the beginning of each stage,
and (ii) assign jobs to machines at each stage. For the HFFS problem, the job
sequence at the first stage is normally determined by the outcome of the schedul-
ing algorithms. For subsequent stages, the jobs are sorted in increasing value of
their completion times in the previous stage. Furthermore, in the case of HFFS
without setup times, assigning jobs at each stage to the first available machine
(FAM), which results in the earliest completion time for the jobs in that stage,
represents a possibility as the assigning decision. However, in the case of the
SDST/HFFS we use the earliest completion time (ECT) rule which incorporates
the incurred setup times between two jobs when calculating the job completion
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times. These completion times are calculated as Cij = max{Ci,j−1, Ci−1,j}+
Si,j−1,j + pij , where Ci,j−1 is the completion time of the previous job in the
sequence that was assigned to the same machine as job j at stage i. Similarly,
Ci−1,j is the completion time of job j at the previous stage that this job visited.
[17] enhance the ECT rule with the fast earliest completion time rule (FECT).
This technique arranges the jobs in the same relative order when they have the
same ready times at each stage. The authors show that this technique be very
effective in the presence of stage skipping. We will use the FECT rule in the rest
of the paper.

In this work, to solve the SDST/HFFS problem, we introduce new crossover
operators in a genetic algorithm (GA), a new transition rule in an ant colony
optimization algorithm (ACO) and a new hybrid metaheuristic involving the
GA and the ACO. These represent the main contribution of this paper. The
innovative GA and ACO are designed and developed to adapt to the treated
problem. Both are then combined to create a new hybrid metaheuristic GA/ACO
with features not seen in the traditional GA and ACO. All the proposed approach
are essentially based on adapting their different mechanisms to the specifics of
the problem studied.

The body of this paper is organized into five sections. Section 2 provides
a brief literature review of the SDST/HFFS problem. Section 3 describes the
proposed GA, while Section 4 and Section 5 describe the ACO algorithm and
the hybrid genetic algorithm (HGA), respectively. The computational testing
and discussion are presented in Section 6. Finally, we conclude with some remarks
and future research directions.

2 Literature Review of SDST/HFFS

There is not much published research on the SDST/HFFS problem. To our
knowledge, there are only papers proposing heuristics and/or metaheuristics for
this problem. [13] introduced dispatching rules based on greedy methods, inser-
tion heuristic and an adaption of Johnson’s rule. Later, they [14] formulated
an integer programming (IP) model and developed random keys genetic algo-
rithm (RKGA). The results showed that the IP model does not easily solve the
SDST/HFFS problem and that the RKGA outperforms the dispatching rules
of [13] and other heuristics. All the algorithms are tested on generated problem
data. [28] proposed an immune algorithm (IA) which outperform the RKGA
of [14]. The authors used a real representation for individuals and the order
crossover (OX) as the crossover operator. [16] proposed a simulated annealing
(SA) using pair-wise and inverse interchange as moving operators. They also
used the Shortest Processing Time Cyclic Heuristic of [14], showing that the
SA outperforms the RKGA of [14] and the IA of [28]. [17] proposed a dynamic
dispatching rule heuristic and an iterated local search (ILS). They also proposed
960 test instances and compared their approaches to the dispatching rules of [13],
the RKGA of [14], the IA of [28] and the GA of [21] which is used for a different
problem. The results showed that their ILS with different encoding scheme gives
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better results than all the other algorithms. [7] proposed an agent-based genetic
algorithm using the Similar Block 2-Point Order Crossover (S2BOX) of [21] and
introducing the agent-solution scheme to solve the SDST/HFFS problem.

There are studies about related problems with a more complex setting and/or
variations of the SDST/HFFS problem. [21] discussed also the SDST/HFFS
problem but they assumed that some machines are not eligible to perform some
jobs. They proposed a genetic algorithm using new and classic crossover opera-
tors from the literature. [22] proposed two iterated greedy heuristic (IGH) for the
SDST/HFFS problem with the objectives of minimizing the makespan and the
weighted tardiness. In this paper the authors consider release dates for machines,
machine eligibility, possibility of the setup times to be both anticipatory and non-
anticipatory, precedence constraints and time lags. [11] proposed three heuristics,
based on Shortest Processing Time (SPT), Longest Processing Time (LPT) and
the Johnson rule, and two metaheuristics based on a genetic algorithm and simu-
lated annealing, to solve the SDST/HFFS problem with machine availability con-
straints. [12] proposed an immune algorithm (IA) for solving the SDST/HFFS
problem with time lags on the machines comparing it with the IP model on small
instances. [18] studied a hybrid flowshop with setup times where no flexibility is
considered. They proposed a variation of simulated annealing using the Taguchi
method and minimizing the makespan and the maximum tardiness.

3 A Genetic Algorithm for the SDST/HFFS

Genetic algorithms are methods based upon biological mechanisms such as the
genetic inheritance laws of Mendel and the natural selection concept of Darwin,
where the best adapted species survive. The basic concepts of GAs have been
described by [10]. He explains how to add intelligence to a program by using
the crossover exchange of genetic material and transfer which is a source of
genetic diversity. Indeed, this kind of metaheuristic works with a set of individu-
als called the population. Every chromosome is evaluated and assigned a fitness
value. This evolving process exchanges genetic material and uses crossover and
mutation operators to transfer it, generating new individuals called offspring.
Selection and replacement processes are applied to reach better individuals over
the generations,converging to an optimum in the solution search space. The
effectiveness of a GA depends on the choice of its operators and parameters, but
also on the specific adaptation to the problem treated. In the following sections,
we explain the different choices of the GA’s parameters and we describe the
proposed crossover operators.

3.1 Population Encoding and Initialization

A genetic algorithm works on individuals with chromosomes, which are a repre-
sentation or codification of the solutions to the problem. In this case, we have
chosen an ordinal genetic representation. As shown in Figure 1, the individu-
als P1, P2, O1 and O2 are identified by sequences so that each element of the
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sequence is associated with a numeric identifier that represents a particular job.
The population size is set to 40. The initial population is randomly generated
except for one individual, which is generated using the NEH Hybrid (NEHH)
rule [21], an adaptation of the well known NEH heuristic [19].

3.2 Crossover Operator

The crossover operator generates offspring in general, by coalescing two parents
with the objective of generating a better sequence, in this case a better makespan
Cmax. Many crossover operators from the literature are used for the permuta-
tion flowshop, such as the Partially Mapped Crossover (PMX), OX, Order Based
Crossover (OBX) or Uniform Order Based Crossover (UOBX) [15]. But for reg-
ular flowshops and especially the hybrid flowshops these crossover operators
give the worst results because they break the building blocks [21]. Introducing
dependent setup times and job skipping will complicate the situation even more.
The crossover operators that we present aim to ensure a better conservation of
the relative order and the absolute order when we deal with dependent setup
times. In this work we present three new crossover operators adapted for the
SDST/HFFS problem.

3 7658241P1

P2

C2C1

8 2961375

7 6138243O1 5824

pi

3 7648243O2 2581
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9
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9

91

Fig. 1. Illustration of RMPX and ARMPX

The RMPX Crossover. The first crossover operator is the Random Maximal
Preservative Crossover (RMPX) crossover introduced by [23], which shows good
behavior when dealing with the dependent setup times but for a single machine.
RMPX is defined as follows : (i) two parents P1 and P2 are considered and two
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distinct crossover points C1 and C2 are selected randomly, as shown in Figure 1;
(ii) an insertion point pi is then randomly chosen in the offspring O1, pi being a
random number in the interval [1, n - ( C2 - C1 )]; (iii) the part [C1, C2 ] of P1,
shaded in Figure 1, is inserted in the offspring O1 from pi, from the position 4
as shown in Figure 1; and (iv) the rest of the offspring O1 is completed from
P2 in the order of appearance from its first position. To generate the second
offspring, we just reverse the roles of the two parents P1 and P2 and repeat the
same process.

The ARMPX Crossover. The second crossover operator is the Antago-
nist Random Maximal Preservative Crossover (ARMPX), an adaptation of the
RMPX crossover where in steps (ii) and (iii) we insert the parents’ first and last
parts instead of the part [C1, C2 ] in the offspring (shaded in O2 in Figure 1).
After that, the rest of the offspring is completed from the other parent in the
order of appearance from its first position. As shown in Figure 1, from parents
P1 and P2 we obtain the offspring O2 when applying the ARMPX crossover.
The aim here is to preserve the two building blocks in the front and the back of
the parent, and to preserve the relative order in the insertion section.

The LJMPX Crossover. The third crossover operator is the List Jobs Maxi-
mal Preservative Crossover (LJMPX) which works like the RMPX crossover for
the first 3 steps. This crossover represent the first contribution in this paper.
After inserting the cross section, two lists are built from the second parent P2
which contains the unscheduled jobs. The LL list contains the jobs which will be
inserted to the left of this section while the RL list contains the jobs which will
be inserted to the right. An approximate value of the makespan Cmax is then
calculated with a sequence containing the subsequence [C1, C2 ] in the offspring
and where the rest of the jobs have a normalized value pij , using a normalized
setup time sijk which represents the average processing time and setup time for
the unscheduled jobs, respectively. Next, we insert the jobs from the correspond-
ing lists one by one, minimizing the Cmax until we obtain a complete sequence.
As shown in Figure 2, the offspring O3 is a potential offspring from parents P1
and P2 where the lists LL and RL are built from the parent P2 after inserting
the part [C1, C2 ] from position pi.

The MPOBX Crossover. The last crossover operator introduced in this paper
is the Maximum Preservative Order Block Crossover (MPOBX) which works as
follows. First, from the two parents, we insert the longest job blocks at the same
positions, using four crossover points. After that, as in the LJMPX crossover, we
calculate an approximate value Cmax using the pij and sijk for the unscheduled
job positions. Then we insert the remaining unscheduled jobs as in the LJMPX
crossover, from a single job list. As shown in Figure 3, we insert the block {3, 1,
4} from P1 and block {9, 7, 2} from P2. The unscheduled job list contains jobs
5, 6 and 8. These jobs will be inserted one by one using the Cmax value.
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Fig. 2. Illustration of LJMPX
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Fig. 3. Illustration of MPOBX

Finally, we set the probability pc of crossover to 0.8. So, at each genera-
tion, N * 0.8 offspring will be generated. This crossover represents the second
contribution in this paper.

3.3 Mutation Operator, Selection and Replacement Schemes

Mutation consists of exchanging the position of two distinct jobs randomly cho-
sen. The probability pm of a mutation occurring is set to 0.01. The chromosome
selection for the crossover is done using a stochastic binary tournament. The
replacement is elitist and uses the (λ + μ) scheme.

4 Ant Colony Optimization for the SDST/HFFS

The ant colony optimization (ACO) is a population based metaheuristic designed
to solve combinatorial optimization problems, introduced by [4] and inspired
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by studies of the behavior of ants. In the natural world, ants are able to find
the shortest path between their nest and food sources, by following a chemical
pheromone trail on the ground after they walk on it. That is, they choose the way
with more probable paths, which are marked by stronger pheromone concentra-
tions. Indeed, as more ants use the same path, more pheromones are deposited
and more ants tend to follow this path. This collective foraging behavior, depos-
ing and following pheromones in the natural world, became the inspiring source
of the ACO. [5] proposed notable improvements to the original ACO version.
The improvements include a modified transition rule called the pseudo-random-
proportional rule, global and local trail updating rules, use of restricted candi-
dates list and the use of local improvement rules. In this section we describe in
detail the ACO algorithm to solve the SDST/HFFS problem with the objectives
of minimizing the makespan. In the main loop, after the pheromone initializa-
tion, has five steps where a ants construct a sequence of N jobs : (i) an initial
job is set ; (ii) each ant builds a job sequence using the pseudo random propor-
tional transition rule in Equations (1) and (2) ; (iii) a local pheromone update
is performed ; (iv) a local improvement heuristic is applied ; and (v) a global
pheromone update is applied. This main loop is executed until a stopping cri-
terion is reached. The loop is executed for tmax cycles, as shown in Figure 4,
representing a generic pseudo code embedding the new transition rule shown
in Equations (1) and (2). The new transition rule has been adapted to the
SDST/HFFS problem. This represents the third contribution in this paper.

4.1 Algorithm Initialization

At each iteration, given that a job i is the previous job added to the sequence,
an ant chooses the next job to append by considering, among other factors, the
pheromone trail intensity τij(t) which is initialized to a small positive quantity
τ0 for all pair of jobs (i,j), i.e., τij(0) = τ0. Afterward, the pheromone trail will
contain information based on the solution quality and the number of time that
ants chose to visit job j after job i.

4.2 Setting Up the Initial Job

Each job has an initial setup time at each stage i on a machine mi and this setup
is taken into account when calculating the makespan. Therefore, to maintain
diversity and for each job sequence constructed by the a ants, the first job is
chosen pseudo-randomly. This choice is based on the earliest completion time on
the first stage.

4.3 Building a Sequence

From an existing partial job sequence, each ant builds a sequence using the
pseudo random proportional transition rule in Equations (1) and (2). In Equation
(1), q is a random number and q0 is a parameter; both are between 0 and 1.
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/* STEP 0 : Pheromone Initialization */
for all job pair (i,j) do

τi j(0) = τ0
end for

/* Main Loop */
for t = 1→ tmax do

/* STEP 1 : Set initial job */
for k = 1→ m do

Set the initial job for the ant k
end for

/* STEP 2 : Build a sequence */
for i = 2→ n do

for k = 1→ m do

Choose the next job to insert using the Equations 1 and 2
/* STEP 3 : Local pheromone update */
for all chosen job pair (i,j) do

τi j(t) = pt ∗ τi j(t) + (1 − pt) ∗ Δτi j(t) where Δτi j = τ0
end for

end for

end for

/* STEP 4 : Local improvement */
for k = 1→ m do

Apply local improvement method or-opt heuristic
end for

/* STEP 5 : Global pheromone update */
for all adjacent job pair (i,j) ∈ the best sequence Q∗ do

τi j(t) = pt ∗ τi j(t) + (1 − pt) ∗ Δτi j(t) where Δτi j = 1/L∗
end for

end for

Fig. 4. The ACO pseudo-code

The parameter q0 determines the relative importance of the existing information
exploitation and the new solution search space exploration. Indeed, Equation
(1) states that the next job will be chosen by a greedy rule when q ≤ q0 or
by the probabilistic rule of Equation (2) when q > q0. Equation (2) describes
the biased exploration rule pij also adapted to the ((PM)(i))

m

i=1/Fj , sijk/Cmax

problem when inserting job j after job i.
In these equations, the elements τij(t) and ηij represent the pheromone

trail and the visibility, respectively. Concerning the visibility, ηij represents the
inverse of the largest completion time among all the jobs in the list of the uns-
elected jobs. Obviously, the completion time includes the setup times between
the last scheduled job and the next one. The element SUCCij(At) represents
the past information, which is introduced by a matrix built from an archive that
stores the best solutions throughout the evolution process, as in some cases in
multi-objective evolutionary algorithms using the Pareto-optimal concept. This
concept was first introduced in transition rules by [23]; it plays the role of a long-
term memory. Here, we adapt them for our problem. From the archive we build
a matrix which computes the number of times that a job j follows a job i in the
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j =

⎧
⎪⎪⎨

⎪⎪⎩

arg max

{[

τij(t)

]α

×
[

SUCCij(At)

]β

×
[

ηij

]δ

×
[

1

Hij

]φ
}

if q ≤ q0

J if q > q0

(1)
where J is chosen according to the probability pij

pij(t) =

[

τij(t)

]α

×
[

SUCCij(At)

]β

×
[

ηij

]δ

×
[

1

Hij

]φ

∑
[

τij(t)

]α

×
[

SUCCij(At)

]β

×
[

ηij

]δ

×
[

1

Hij

]φ
(2)

archive solutions. Finally, the element Hij represents the lookahead information
which use an heuristic that anticipates the choices in the transition rule. This
heuristic is based on an upper bound of the makespan, using the average values
of processing time pij and the normalized setup times sijk for the unscheduled
jobs.

4.4 Local Trail Updating

Once the ants generate a solution, for each pair of jobs (i,j) the pheromone level
on the path is updated using a local update rule as in Equation (3)

τij(t) = p × τij(t) + (1 − p) × Δτij(t) (3)

where Δτij = τ0 and 0 ≤ p ≤ 1 is a constant parameter.

4.5 Local Improvement

After computing the makespan of the generated sequence by the ant, we apply a
local improvement under probability pLI . For that, we use a simple local search
generating a neighborhood using a swap move.

4.6 Global Trail Updating

The pheromone trail is updated at the end of the cycle, but only for the job
pairs (i,j) in the best solution with makespan C∗ found in the cycle. The global
update rule is executed using Equation (4)

τij(t) = pt × τij(t) + (1 − pt) × Δτij(t) (4)

where Δτij = 1/C∗ and 0 ≤ pt ≤ 1 is a constant parameter.



Metaheuristics for Solving a Hybrid Flexible Flowshop Problem 19

4.7 Parameter Initialization

The trail pheromone is initialized to the value τ0=(N ∗ Lr)−1 where N is the job
number and Lr is the makespan value of a randomly generated sequence. The
other parameters have been assigned the following values : p = pt = 0.9, the ant
number a = 10 and q0 = 0.9. The parameters α, β, φ and δ associated with
the four matrices in the transition rule were set to identical values for all the
problems. These parameters were adjusted following empirical tests on different
instances. The four parameters α, β, φ and δ have been assigned the values
4, 2, 3 and 3, respectively. Finally, the archive size and the local improvement
probability pLI have been assigned the values 20 and 0.2, respectively.

5 Hybrid Metaheuristic GA/ACO for the SDST/HFFS

We introduce here a collaborative hybridization [20] at the LJMPX crossover
introduced in Section 3.2. Indeed, we use the ACO algorithm introduced in
Section 4 to fill either the right part or the left part or both. Inserting the jobs
on the right of the cross section is similar to the operating of a classical ant.
From the last inserted job i in the cross section, a job j is chosen according to
the pseudo-random-proportional transition rule expressed in Equations (1) and
(2) using the jobs in the right list.

Since the cross section is already set, inserting the remaining jobs on the left
of this section can be done either from the first offspring position from left to right
as a classical ant or inversely from the first cross section position. During the
application of the crossover, we use equiprobably one of the two methods of left
insertion. Finally, in the case of inserting jobs from right to left, we make some
adaptations in Equations (1) and (2). The hybridization represents the fourth
contribution in this paper when using new features in both GA and ACO.

6 Computational Results and Discussion

The benchmark problem set is available from http://soa.iti.es and consists of
960 problem tests. The instances are combinations of N and M, where N =
{20, 50, 80, 150} and M = {2, 4, 8}. The processing times are generated from
a uniform [1, 99] distribution. The setup times are generated according to four
distributions [1, 25], [1, 50], [1, 99] and [1, 125]. This corresponds to a ratio
between setup and processing times of 25%, 50%, 100% and 125%, respectively.
There is a group with two parallel machines per stage and groups where the
number of parallel machines at each stage is sampled from a uniform distribution
in the range [1, 4]. The probability of skipping a stage for each job is set at 0.10
and 0.40. All the experiments were run on an Intel Core 2.8 GHz processors
and 4 GB of main memory. To evaluate the performance of the other proposed
algorithm, we will conduct statistical analysis and comparisons with the results
of [17], where, the authors compare an iterated local search (ILS) to several
metaheuristics and heuristics as the RKGA of [14], the IA of [28], the genetic
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algorithm (GAR) of [21] and the dispatching rules of [13] to cite these methods
among others. Many of these compared methods are adapted to the treated
problem and recoded for suited comparison purposes. The authors show that the
ILS and the GAR represent the best method. So we will compare our algorithm
results to these methods. We know that using fixed number of evaluations of the
objective function to compare different algorithms allows fair comparisons, but
we do not have these information for the reference algorithms. So, we use the
same stopping criterion as used in [17], i.e., time computation.

It is important to note that our experiment environment is different from
that of [17]. Therefore, we use the following website references [24] and [25] to
determine the performance ratio between the two computers. In order to obtain
a reliable comparison, all the experiments were done with the stopping criterion
set to n2 × m × 1.5 × 0.78 ms elapsed CPU time ([17] used n2 × m × 1.5 ms
elapsed CPU time as the stopping criterion for all the compared algorithms). To
evaluate the different algorithms we use the performance measure in Equation
(5) :

% Increase Over the Best Solution

=
Heusol − Bestsol

Bestsol
× 100 (5)

where Heusol is the best makespan obtained by a given algorithm after 10 exe-
cutions and Bestsol is the best known makespan.

First, we produce experiments in order to compare crossover operators embed-
ded in the GA independently : OX, PMX, UOBX [15], S2BOX, used in the GAR
[21], RMPX [23], ARMPX, LJMPX and MPOBX. Each crossover operator is
embedded independently in the GA presented in Section 3 with 500 generations as
the stopping criterion. The result summaries are presented in Table 1. Indeed, the
results represent the group instances average, and the best averages are in boldface
type.

As shown in this table, theList JobsMaximalPreservativeCrossover (LJMPX)
and theMaximumPreservative Order Block Crossover (MPOBX) present the best
results among the eight tested, and their results are very similar except for the large
instances where LJMPX allows for achieving a slightly better average. This sup-
ports the idea that these two crossover operators are more adapted to the studied
problem. Indeed, using the approximate value of the makespan when fulfilling the
unscheduled jobs in the sequence gives the two crossover operators more accuracy
when dealing with more stages. Also, using the list jobs allows us to better optimize
the setup times when choosing jobs to insert.

Furthermore,maintaining theblocks of jobs in the crossover operators improves
the performance of the algorithms, i.e., the LJMPX maintains the cross section
while the MPOBX maintains blocks from the two parents. Hence, both crossover
operators take greater account of the relative and absolute position of jobs when
maintaining blocks. Finally, as shown in Table 1, MPOBX allows us to achieve a
slightly better average than LJMPX, particularly for larger instances. This can be
explained by the fact that MPOBX conserve more absolute positions when main-
taining blocks from parents. Moreover, LJMPX compensates this behavior by
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Table 1. Comparison of different crossovers (% Increase over the best solution)

Instances OX PMX UOBX S2BOX RMPX ARMPX LJMPX MPOBX
20*2 7.82 7.27 7.43 6.93 5.13 4.39 3.78 3.39
20*4 5.25 8.25 8.15 3.89 5.65 5.24 2.80 2.27
20*8 6.87 6.40 8.44 3.09 5.71 6.31 2.85 2.49
50*2 8.36 6.23 9.24 9.01 5.82 4.82 3.81 3.26
50*4 7.33 7.39 9.53 5.85 6.69 4.24 2.74 1.85
50*8 9.35 12.24 8.97 3.79 6.67 4.28 3.73 3.75
80*2 5.29 9.31 7.84 8.28 5.64 4.19 2.90 2.06
80*4 8.23 8.39 9.49 7.39 6.63 5.70 2.74 2.84
80*8 10.27 10.43 10.19 6.53 6.56 5.95 3.78 3.48
120*2 8.05 7.27 9.19 10.58 7.65 7.45 3.87 4.02
120*4 9.30 10.39 8.97 9.04 6.62 8.23 5.95 6.02
120*8 10.31 13.13 10.82 10.59 8.78 9.82 6.81 7.21

Average 8.04 8.89 9.02 7.08 6.46 5.89 3.81 3.55

providing more exploration when inserting the cross section but conserving the rel-
ative order and consequently conserving the setup times between jobs especially
when the setup times have a significant impact when calculating the makespan.
This mechanism allows LJMPX to achieve a slightly better average for the large
instances where more exploration is needed to obtain better results.

We proceed now with the comparisons of the proposed algorithms (GA, ACO
and HGA) against the ILS of [17] and the GAR of [21]. These two algorithms
have shown high performance in the original papers in which they were pro-
posed [17,21]. The authors compare these algorithms with four high performing
algorithms : two genetic algorithms, immune algorithm and ant colony opti-
mization. To sum up, the ILS and GAR algorithms showed the best results in
their respective studies. The GA version retained here is the one embedding the
two crossover operators LJMPX and MPOBX. The choice of the crossover to
apply is made randomly, i.e., by a fair coin toss. This policy was chosen as result
of computational experiments. The results are presented in Table 2; they also
represent the group instances averages. The best averages are also in boldface
type.

The first observation is that the new GA and ACO algorithms always provide
a better average than the ILS and the GAR algorithms. Also, if we compare
the GA and ACO algorithms, the first provides a better average on all the
group instances except for the 20× 2, 50× 2, 80× 2 and the 120× 2 group
instances where the ACO does slightly better. These group instances are those
with 2 stages. It seems that the transition rule embedded in the ACO algorithm
performs better in these configurations. In general, the GA has a better average
than the ACO, with 0.60 and 0.76, respectively. We can also remark that there is
a non negligible improvement in comparison with the ILS and the GAR averages.

Now, if we focus on the HGA algorithm results, we can see that this algorithm
provides the better average for all the group instances except for the 20× 2 group
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Table 2. Comparison of the ILS [17], the GAR [21], the ACO, the GA and the HGA
(% Increase over the best solution)

Instances GA ACO HGA ILS GAR
20*2 0.75 0.49 0.51 1.70 3.82
20*4 0.51 0.69 0.49 1.90 3.90
20*8 0.43 0.75 0.40 1.70 4.02
50*2 0.69 0.61 0.55 2.72 4.65
50*4 0.52 0.90 0.36 2.98 4.73
50*8 0.66 1.12 0.45 3.48 5.01
80*2 0.59 0.58 0.45 3.29 5.29
80*4 0.48 0.74 0.44 2.01 4.87
80*8 0.71 1.04 0.51 4.87 6.03
120*2 0.58 0.57 0.54 3.23 5.32
120*4 0.59 0.79 0.51 4.36 5.05
120*8 0.67 0.89 0.53 5.74 7.02
Average 0.60 0.76 0.48 3.16 4.98
Median 0.53 0.71 0.36 2.45 4.81
Std 0.53 0.55 0.48 2.46 2.39

where the ACO obtains a better average. Also, in the same vein, the HGA
significantly improves all the average results in comparison to the ILS and the
GAR algorithms. Furthermore, combining both the GA and ACO mechanisms
in the HGA marginally enhances the results in comparison of the GA and the
ACO algorithms. If we observe the standard deviation values, we remark that
those of the proposed methods (ACO, GA and HGA) are very low. This can be
explained by the effect of both mechanism used in the ACO and the GA, which
use an upper bound and consequently smooth over the results.

Moreover, to significantly compare the proposed algorithms, we conducted
a pairwise comparison to detect significant performance differences between all
the algorithms with the non-parametric Wilcoxon signed-rank test [27] for each
instance using the results of our 10 runs with an error probability of 1% over the
numerical results. We remind the reader here, that the Wilcoxon test does not
require assumptions regarding the distribution results. Indeed, for the purpose
of a pairwise heuristics comparison, the Wilcoxon test assumes that the first
heuristic median M1 equals the second heuristic median M2 hypothesis is null
and that M1 �= M2 is the alternative hypothesis.

The Wilcoxon test results are shown in Table 3 where bold values indicate
where the null hypothesis is rejected. The critical values for all tests are identical
and between -2.575 and 2.757. Thus, the Wilcoxon test indicates with a confi-
dence level of 99% that the HGA algorithm statistically outperforms all other
methods. Moreover, GA statistically outperforms ACO, ILS and GAR. Further
more, ACO surpasses ILS and GAR. Finally, regarding the quality solutions, we
obtain the following ranking : HGA-GA-ACO-ILS-GAR.
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Table 3. Wilcoxon test t-value for the ILS [17], the GAR [21], the ACO, the GA and
the HGA

HGA GA ACO ILS GAR
HGA 4.29 10.4 25.78 26.71
GA 6.1 25.4 26.7
ACO 24.39 26.66
ILS 16.27
GAR

7 Conclusion

In this work, we have introduced three new algorithms : a genetic algorithm (GA)
embedding two new crossovers, an ant colony optimization algorithm (ACO) that
integrates lookahead information and archive concepts in the transition rule and
a hybrid genetic algorithm (HGA) integrating the ACO in the GA crossover to
minimize the makespan in a hybrid flexible flowshop with sequence-dependent
setup times. The proposed approaches are essentially based on adapting differ-
ent algorithm mechanisms to the specificities of the studied problem, i.e the
crossovers in the GA and the transition rule in the ACO. Indeed, after inserting
the cross section from the first parent, the two crossover operators use heuristics
and lists from the second parent to insert the remaining jobs. These heuristics are
replaced by the ACO algorithm in the HGA algorithm. For its part, the pseudo
random proportional transition rule embedded into the ACO integrates past,
present and future information to build a sequence. The numerical experiments
allowed us to demonstrate the efficiency of our approaches to this problem.

Our results encourage us to use such approaches, with hybridization, for other
scheduling problems in particular and other optimization problems in general.
It is in this direction that our work will be directed.
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