
An Efficient ACO-SA Hybrid Metaheuristic
for the Synchronization of Single Frequency

Networks in Broadcasting

Akram Bedoui1,2(B), Philippe Debreux2, and Thierry Schott2

1 LORIA Laboratory, University of Lorraine, F-54506 Vandoeuvre-lés-Nancy, France
akram.bedoui@loria.fr

2 TDF Company, F-57078 Metz, France
{akram.bedoui,philippe.debreux,thierry.schott}@tdf.fr

Abstract. The treasure of any radio communication network provider
is the set of available frequencies and the challenge is to use the fre-
quencies in the best possible way. Single Frequency Networks (SFNs)
are broadcast networks where several transmitters send the same sig-
nal over the same frequency. They allow more efficient utilization of the
radio spectrum in comparaison to traditional Multi Frequency Networks
(MFNs) that use one different frequency per transmitter. SFN Synchro-
nization Problem (SFNSP) is known to be a NP-hard problem. The aim
of this paper is to present an original hybrid metaheuristic (ACO-SA)
based on Ant Colony Optimization (ACO) and Simulated Annealing
(SA) to solve SFNSP. Experimental results obtained with our hybrid
ACO-SA on real-world benchmarks provided by the french telecommu-
nication company named TDF1, show drastic runtime improvement over
existing approaches, and also quality improvement in comparison with
existing SFN’s synchronizations in the field of TV broadcasting in France.

Keywords: Ant Colony Optimisation · Simulated Annealing · Hybrid
Metaheuristic · Single Frequency Network · Digital TV broadcasting

1 Introduction

Both the sectors of telecommunications and of broadcasting have to accommo-
date strong growth, with the sustained deployment of 3G and 4G networks, and
the densification of TV networks. DVB-T, the current technical norm for Dig-
ital TV in Europe, offers the possibility to use the Single Frequency Network
(SFN) technique, which consists in associating sets of synchronized transmitters.
SFN’s transmitters broadcast the same signal over one and only one frequency.
The aim of SFN is to save utilization of the radio spectrum and allow a higher
number of TV programs in comparaison to Multi Frequency Networks (MFNs)
1 TDF is a french company, which provides radio and television services for telecom

operators, and other multimedia services: digitization of content, encoding, storage,
etc.http://www.tdf.fr.

c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 175–184, 2014.
DOI: 10.1007/978-3-319-12970-9 19

http://www.tdf.fr

176 A. Bedoui et al.

that use one different frequency per transmitter. The Quality of Service (QoS)
of a SFN depends on the extra-SFN jamming and the intra-SFN jamming. The
extra-SFN jamming depends on gaps in frequencies between transmitters which
constitute the SFN and other transmitters not belonging to the considered SFN
(i.e. transmitters on the same frequency not sufficiently far away and trans-
mitters on adjacent channels in or in the vicinity of the SFN’s coverage area).
As for the intra-SFN jamming, it depends on the synchronization between the
transmitters of the same SFN. In fact, the DVB-T technologies permit, in an
interval of time called Guard Interval (GI), to benefit from signals of the var-
ious co-channel transmitters constituting a SFN. Beyond GI, these signals are
considered as interferers between them [2,12].

In this paper, we formulate the Single Frequency Network Synchronization
Problem (SFNSP) as a combinatorial optimisation problem and we present
an original hybrid metaheuristic based on Ant Colony Optimization algorithm
(ACO) [4,9,11] and Simulated Annealing (SA) [1,3,5–7,10] to minimize the
intra-SFN jamming of a SFN. We compare QoS of solutions calculated by our
hybrid ACO-SA with operating SFN synchronizations in the field of TV broad-
casting used nowadays in France.

This paper is organized as follows: in Section 2,wedescribe SFNSP. InSection 3,
we present our hybridACO-SAmetaheuristic. Experimental performance compar-
isons on real-world benchmarks provided by TDF Company are given in Section 4.
Section 5 contains concluding remarks and further research aspects.

2 Single Frequency Network Synchronization Problem

SFN’s transmitters are spread over the geographical area where broadcasters
wish to provide the users with their services. Each transmitter covers a part of
this geographical area called its coverage area. The area around a transmitter
where transmission conditions are favourable enough to have a good reception
of the signal is known as the service area of the transmitter. The service area is
the portion of the coverage area that is not jammed by other transmitters.

The optimization of a SFN synchronization requires the adjustment of an
initial transmitting delay on every transmitter so that all the signals transmitted
by the SFN members fall within the Guard Interval (GI) on the maximum of
the locations in the SFN’s coverage area. If the delay spread is higher than the
GI, according to the synchronization strategy of the receivers, the contributions
outside the GI are considered as potential interferers and weighted with a co-
channel protection ratio [2,12].

The formal definition of the considered SFNSP is given by: let S be a SFN.
Let T = {ti}1≤i≤n be a set of n transmitters distributed across the geographical
area of S. Let Di = {di,1, di,2, ...di,m} be the set of m valid delays, that can be
assigned to the transmitter ti.

If the coverage area of a transmitter ti and the interference area of a transmit-
ter tj intersect, there is an intra-SFN jamming constraint Cti←tj

between the pair
of transmitters (ti, tj). The constraint corresponds to the amount of jamming
between the transmitters for different gaps in delay di,x − dj,y (1 ≤ x, y ≤ m).

An Efficient ACO-SA Hybrid Metaheuristic 177

Fig. 1. Example of SFN network

A solution (i.e. synchronization) to the problem is obtained by assigning to each
transmitter ti one of the delays from Di. It’s henceforth denoted by s ∈ D1×D2×
... × Dn where s(ti) ∈ Di is the delay assigned to the transmitter ti. The optimal
solution is the one which minimizes the objective function φ (see Formula 1).

Min φ(s) =
n∑

ti∈S

p∑

tj∈S∧tj �=ti

ρi,j × Cti←tj
(s(ti) − s(tj)) (1)

where p is the number of jammers of the transmitter ti and ρi,j is a weight of
the constraint Cti←tj

Figure 1 shows an example of a SFN network constituted
by four co-channel transmitters (t1,t2,t2, and t4). Between these transmitters,
there are ten intra-SFN jamming constraints. For example, there is a constraint
Ct1←t2 between t1 and t2 because the intersection of the interference area of t2
with the coverage area of t1.

A SFN network can be modelled by an oriented graph in which vertices rep-
resent transmitters and oriented edges represent intra-SFN jamming constraints.
There is a strong link between graph coloring and delays synchronisation with
binary interference constraints. The graph coloring problem is known to be NP-
Hard [8], thus, consequently the SFNSP.

3 Principles of Our Hybrid ACO-SA Metaheuristic and
Pseudo-Code

The idea of our hybrid ACO-SA (see Algorithm 1) consists in using a modified
version of ACO algorithm inspired by [11] adapted to solve SFNSP combined

178 A. Bedoui et al.

Algorithm 1. Pseudocode ACO-SA
1 Initialize S0 ; /* according to the operational delays */

2 n ← |S0|; m ← number of possible delays;
3 bestcost ← ∞; newcost ← 0 ; /* initialization of the best and the new

costs */

4 shortStagnation ← 0; longStagnation ← 0 ; /* initialization of

stagnation counters */

5 restartSAThreshold ← nb. of stagnation iterations allowed before we run SA;
6 stopThreshold ← nb. of stagnation iterations allowed before we stop ACO-SA;
7 R ← 2;
8 Initialize trace[n][m] ; /* matrix which represents the memory */

9 Initialize sumTrace[n] ; /* the vector which contains the sum of the

values of each column of the memory */

10 parametersSA[] ← InitialisationParametresSA(S0) ; /* adaptive

computation of SA’s parameters */

11 while (longStagnation < stopThreshold) do
12 for i ← 1 to n do
13 sumTrace[i] ← 0 ;

14 for i ← 1 to n do
15 for i ← 1 to m do
16 sumTrace[i] ← sumTrace[i] + trace[i][j];

17 imin ← index of the component of sumTrace which contains the minimal
value;

18 St ← GenerateNewSolution(imin,St−1) ; /* computation of a neighbor

solution */

19 if (shortStagnation = restartSAThreshold) then
20 S′

t ← SimulatedAnnealing(St, parametersSA[]) ; /* see Algorithm 2

*/

21 newcost ← φ(S′
t) ; /* see Formula 1 */

22 shortStagnation ← 0;

23 else
24 newcost ← φ(St) ; /* see Formula 1 */

25 if (newcost < bestcost) then
26 bestcost ← newcost ; /* updating of the best cost */

27 Sbest ← St ; /* updating of the best solution */

28 increment ← 1;
29 for i ← 1 to n do
30 for j ← 1 to m do
31 trace[i][j] ← 1;

32 shortStagnation ← 0; longStagnation ← 0;

33 else
34 UpdateTrace(St, Sbest, increment, R) ; /* see Algorithm 3 */

35 shortStagnation ← shortStagnation + 1;
36 longStagnation ← longStagnation + 1;

37 return Sbest;

An Efficient ACO-SA Hybrid Metaheuristic 179

Algorithm 2. SimulatedAnnealing(St,parameters[])
Data: a solution St and SA parameters (temperature and α stocked in

parameters[])
Result: Sbest (i.e. improved St)

1 stagnation ← 0 ;
2 stopThreshold ← number of stagnation iterations allowed before we stop the

procedure SA ;
3 n ←| St |;
4 S0 ← St;

5 maxFail ← n∗(n−1)
2

;
6 nbFail ← 0;
7 tFound ← parameters[0];
8 temperature ← parameters[0];
9 α ← parameters[1];

10 while (stagnation < stopThreshold) do
11 temperature ← temperature

1+α∗temperature
;

12 oldCost ← Φ(St−1);
13 St ← GnrerNouvelleSolution(St−1);
14 newCost ← Φ(St−1);
15 Δ ← oldCost − newCost;

16 if ((Δ > 0) ∨ (rand(0, 1) < e
−Δ

temperature) ∨ (maxFail == nbFail)) then
17 S ← St;
18 nbFail ← 0;

19 else
20 nbFail ← nbFail + 1;

21 stagnation ← stagnation + 1;
22 if (maxFail == nbFail) then
23 α ← 0;
24 temperature ← tfound;

25 if (newCost <= bestCost) then
26 Sbest ← St;
27 bestCost ← newCost;
28 tfound ← temperature;
29 stagnation ← 0;

30 return Sbest;

180 A. Bedoui et al.

Algorithm 3. UpdateTrace(St,Sbest, increment,R)
Data: current solution St, best solution until now Sbest, increment, and R
Result: updated matrix trace

1 transmitter ← 1;
2 curentDelay ← St(transmitter);
3 bestDelay ← Sbest(transmitter);
4 while ((transmitter ≤ n)

∧
(curentDelay == bestDelay)) do

5 transmitter ← transmitter + 1;
6 curentDelay ← St(transmitter);
7 bestDelay ← Sbest(transmitter);

8 if (transmitter = n) then
9 increment ← increment + 1;

10 for i ← 1 to n do
11 for j ← 1 to m do
12 trace[i][j] ← increment;

13 else
14 for (i ← 1 to n) do
15 curentDelay ← St(transmitter);
16 bestDelay ← Sbest(transmitter);
17 trace[i][curentDelay] ← trace[i][curentDelay] + increment;
18 trace[i][bestDelay] ← trace[i][bestDelay] + R;

with a modified version of adaptive SA algorithm inspired by [3] also adapted
to solve SFNSP. The goal of this hybridization is to improve the quality of ants
using adaptive SA algorithm (see Algorithm 2) when the search stagnates in a
local minimum. Our hybrid ACO-SA metaheuristic relies on the the following
main components:

– Representation of a solution: a solution represents a possible synchro-
nization of considered SFN’s transmitters. We represent a solution by a vec-
tor. The indices of this vector represent the transmitters and the values of
the components represent the delays affected to the transmitters.

– Initial solution: there exist three possibilities for generating the initial
solution S0: it can be a randomly generated synchronization, or a synchro-
nization associating a delay equal to zero to all transmitter stations, or the
operational synchronization used nowadays. In our ACO-SA metaheristic we
use the later possibility (see line 1 of Algorithm 1);

– Pheromone memory: the pheromone memory is represented by a matrix
(trace) of dimension n × m, where n is the number of transmitters of the
SFN to be synchronized, and m is the number of possible delays for each
transmitter. Initially, all elements of the matrix are equal to 1 (see line 8 of
Algorithm 1);

An Efficient ACO-SA Hybrid Metaheuristic 181

– ACO stop criterion: the stop criterion of ACO-SA is dynamic. If the costs
of a sequence of ongoing solutions continues to grow during stopThreshold
iterations, then ACO-SA stops (see line 11 of Algorithm 1);

– SA initialization: the initial step of the algorithm includes also the adap-
tive calculus of the parameters (initial temperature, attenuation coefficient)
of SA. This calculus depends on the instance under consideration;

– SA stop criterion: the stop criterion of SA is also dynamic: if the costs of
an ongoing sequence of solutions is larger than the cost of the best solution
explored until now, then SA stops.

– As long as the stop criterion of ACO-SA has not been reached, the following
set of operations is executed at each iteration:

• Update of the vector sumTrace: all components of sumTrace are
reinitialized to 0, then the sum of the components of the ith column of
the trace matrix is stored in ith component of the vector sumTrace (see
lines 12-16 of Algorithm 1);

• Computation of neigbor solution based on pheromone memory:
to this matrix (trace), we associate a vector (sumTrace) of length n such
as ∀1 ≤ i ≤ n, sumTrace[i] = trace[i][1] + trace[i][2] + . . . + trace[i][m].
Based on this vector, we calculate the neigbor solution. We look for the
index imin of the element of sumTrace which contains the minimal value.
Then we assign the best possible delay (i.e. delay which minimizes the
number of jammed meshes in the coverage area of the ithmin transmitter)
to the ithmin transmitter (see lines 17 and 18 of Algorithm 1);

• Run of SA with the neighbor solution as input: if a stagnation
of size restartSAThreshold is detected, then adaptive SA algorithm runs
with the calculated neighbor solution and the stagnation counter short-
Stagnation resets (see lines 19-22 of Algorithm 1).

• Update of current and best solutions: if the cost of the neighbor
solution is smaller than that of the current solution, the neighbor solution
becomes the current one. The until now best cost becomes the cost of the
neighbor solution. The memory matrix (trace) is reinitialized. The two
counters longStagnation (this counter is in charge of stopping the hybrid
procedure ACO-SA) and shortStagnation (this counter is in charge of
restarting the procedure SA) are initialized to 0 (see lines 25-32 of Algo-
rithm 1). If the cost of the neighbor solution is larger than the cost of
the current solution, the memory matrix (trace) is updated according
to the current solution, the neighbor solution and the two parameters
increment and R (see Algorithm 3). The two counters shortStagnation
and longStagnation are incremented (see lines 33-36 of Algorithm 1).

4 Experimental Results

We use real-world benchmarks provided by TDF and compare the experimen-
tal results obtained thanks to our ACO-SA metaheuristic with these currently
obtained by TDF’s software. In Figure 2, Figure 3 and Figure 4 red areas rep-
resent jammed areas, and purple areas represent service areas.

182 A. Bedoui et al.

Reference service area = 9268 km2 ACO-SA service area = 10458,5 km2

Reference runtime = 09 min 00 s ACO-SA runtime = 01 min 54 s

(a) (b)

Fig. 2. QoS of reference solution (a) and ACO-SA solution (b) for Benchmark 1

Reference service area = 24506 km2

Reference runtime = 31 min 00 s

ACO-SA service area = 25501 km2

ACO-SA runtime = 5 min 35 s

(a) (b)

Fig. 3. QoS of reference solution (a) and ACO-SA solution (b) for Benchmark 2

An Efficient ACO-SA Hybrid Metaheuristic 183

Reference service area = 37167,8 km2 ACO-SA service area = 39286,5 km2

Reference runtime = 05 h 28 min 00 s ACO-SA runtime = 00 h 04 min 21

(a) (b)

Fig. 4. QoS of reference solution (a) and ACO-SA solution (b) for Benchmark 3

– Figure 2.(b) shows that jammed areas have disappeared in comparison with
Figure 2.(a). ACO-SA runs 4.7 times faster than TDF’s actual software and
increases the service area by 13 %.

– Figure 3.(b) shows that jammed areas have been reduced in comparison with
Figure 3.(a). ACO-SA runs 5.5 times faster than TDF’s actual software and
increases the service area by 3.9 %.

– Figure 4.(b) shows that jammed areas have been reduced in comparison with
Figure 4.(a). ACO-SA runs 75.4 times faster than TDF’s actual software and
increases the service area by 5.4 %.

5 Concluding Remarks and Further Research Aspects

Our hybrid ACO-SA metaheuristic has good time performances and improves
(or maintains) the quality of the solutions (by at most 13%). There is still room
for improvement. We are planning to explore additional hybrid metaheuristics
(based on Particle Swarm Optimization, for example) and to design a non trivial,
distributed version of ACO-SA.

References

1. Aouad, M.I., Idoumghar, L., Schott, R., Zendra, O.: Sequential and distributed
hybrid ga-sa algorithms for energy optimization in embedded systems. In: Proceed-
ings of IADIS International Conference Applied Computing, pp. 167–174 (2010)

2. Brugger, R., Hemingway, D.: Ofdm receivers: impact on coverage of inter-symbol
interference and fft window positioning. EBU Technical Review, pp. 19–30 (1996)

3. Connolly, D.T.: An improved annealing scheme for the qap. European Journal of
Operational Research 46, 93–100 (1990)

4. Dorigo, M.: Ant Colont Optimization. Scholarpedia (2007)

184 A. Bedoui et al.

5. Granville, V., Krivánek, M., Rasson, J.P.: Simulated annealing: A proof of conver-
gence. IEEE Transaction on Pattern Analysis Machine Intelligence 16(6), 652–656
(1994)

6. Idoumghar, L., Chrin, N., Siarry, P., Roche, R., Miraoui, A.: Hybrid icapso
algorithm for continuous optimization. Applied Mathematics and Computation
219(24), 11149–11170 (2013)

7. Idoumghar, L., Debreux, P.: New modeling approach to the frequency assignment
problem in broadcasting. IEEE Transactions Broadcasting 48(4), 293–298 (2002)

8. Jensen, T.R., Toft, B.: Graph Coloring Problems. WILEY (1995)
9. Monmarché, N., Guinand, F., Siarry, P. (eds.) Artificial Ants. ISBN 978-1-84821-

194-0. Hardback (2010)
10. Gelatt, C.D., Kirkpatrick, S., Vecchi, M.P.: Optimisation by simulated annealing.

Science 220(4598), 671–680 (1983)
11. Taillard, E.D.: Fant: Fast ant system. Technical report, Instituto Dalle Molle Di

Studi Sull Intelligenza Artificiale (1998)
12. Weck, C.: Coverage aspects of digital terrestrial television broadcasting. EBU Tech-

nical Review, pp. 19–30 (1996)

	An Efficient ACO-SA Hybrid Metaheuristic for the Synchronization of Single Frequency Networks in Broadcasting
	1 Introduction
	2 Single Frequency Network Synchronization Problem
	3 Principles of Our Hybrid ACO-SA Metaheuristic and Pseudo-Code
	4 Experimental Results
	5 Concluding Remarks and Further Research Aspects
	References

