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Preface

These post-proceedings include a selection of the best papers presented at the Inter-
national Conference on Swarm Intelligence-Based Optimization, ICSIBO 2014, held
in Mulhouse (France). ICSIBO 2014 is a continuation of the conferences OEP 2003
(Paris), OEP 2007 (Paris), and ICSI 2011 (Cergy-Pontoise).

Each submitted paper was reviewed by three members of the international Program
Committee. Among the 48 submissions received, 26 were selected for oral presenta-
tion. The authors of these accepted submissions sent revised versions of their papers.
From a second reviewing process, 20 revised submissions were accepted in these post-
proceedings. Accordingly, the acceptance rate for the post-proceedings was 41.67%.

The aim of ICSIBO 2014 is to highlight the theoretical progress of swarm intel-
ligence metaheuristics and their applications. Swarm intelligence is a computational
intelligence technique involving the study of collective behavior in decentralized sys-
tems. Such systems are made up of a population of simple individuals interacting locally
with one another and with their environment. Although there is generally no centralized
control on the behavior of individuals, local interactions among individuals often cause
a global pattern to emerge. Examples of such systems can be found in nature, including
ant colonies, animal herding, bacteria foraging, bee swarms, and many more.

The authors were invited to present original work relevant to swarm intelligence,
including, but not limited to: theoretical advances of swarm intelligence metaheuristics;
combinatorial, discrete, binary, constrained, multi-objective, multi-modal, dynamic,
noisy, and large-scale optimization; artificial immune systems, particle swarms, ant
colony, bacterial foraging, artificial bees, fireflies algorithm; hybridization of algorithms;
parallel/distributed computing, machine learning, data mining, data clustering, decision
making and multi-agent systems based on swarm intelligence principles; adaptation
and applications of swarm intelligence principles to real-world problems in various do-
mains.

We would like to express our sincere gratitude to our invited speakers Maurice Clerc
and Nicolas Monmarché. The success of the conference resulted from the input of many
people to whom we would like to express our appreciation: the members of Program
Committee and the secondary reviewers for their careful reviews that ensured the qual-
ity of the selected papers and of the conference. We take this opportunity to thank
the different partners whose financial and material support contributed to the organiza-
tion of the conference: Université de Haute-Alsace, Faculté des Sciences et Techniques,
ROADEF, GDR-MACS. Last but not least, we thank all the authors who submitted their
research papers to the conference, and the authors of accepted papers who attended the
conference to present their work. Thank you all.

August 2014 Patrick Siarry
Lhassane Idoumghar

Julien Lepagnot
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Combining PSO and FCM for Dynamic Fuzzy
Clustering Problems

Yucheng Kao(B), Ming-Hsien Chen, and Kai-Ming Hsieh

Department of Information Management, Tatung University,
No. 40, Sec. 3, Zhongshan N. Rd., Taipei, Taiwan

ykao@ttu.edu.tw

Abstract. This paper proposes a dynamic data clustering algorithm,
called PSOFC, in which Particle Swarm Optimization (PSO) is combined
with the fuzzy c-means (FCM) clustering method to find the number of
clusters and cluster centers concurrently. Fuzzy c-means can be applied
to data clustering problems but the number of clusters must be given
in advance. This paper tries to overcome this shortcoming. In the evolu-
tionary process of PSOFC, a discrete PSO is used to search for the best
number of clusters. With a specified number of cluster, each particle
employs FCM to refine cluster centers for data clustering. Thus PSOFC
can automatically determine the best number of clusters during the data
clustering process. Six datasets were used to evaluate the proposed algo-
rithm. Experimental results demonstrated that PSOFC is an effective
algorithm for solving dynamic fuzzy clustering problems.

Keywords: Particle Swarm Optimization · Fuzzy c-means · Data
Clustering

1 Introduction

Data clustering aims to discover meaningful organization of data points in a
data set in terms of their similarities and dissimilarities. A good clustering algo-
rithm can classify a set of data points into several distinct clusters such that
the members of a cluster are highly similar while the data points belonging to
different clusters are dissimilar. Data clustering is an important data mining
technique and has been studied in several fields such as pattern recognition,
machine learning, market segmentation, bioinformatics, and so on.

Data clustering approaches can be roughly classified into two main categories:
hierarchical clustering and partitional (non-hierarchical) clustering [3]. Parti-
tional clustering methods require the number of clusters to be given beforehand
and use an iterative algorithm to find out the best cluster centers for classify-
ing data points into appropriate clusters. K-means and fuzzy c-means [2] are
well-known partitional clustering methods. K-means is for crisp clustering while
FCM is for fuzzy clustering. When using a partitional clustering approach, we
have to provide the number of clusters and initial cluster centers in advance.
Initial cluster centers can be randomly determined, but it is difficult for us to
c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 1–8, 2014.
DOI: 10.1007/978-3-319-12970-9 1



2 Y. Kao et al.

decide the best number of clusters in priori unless we understand the character-
istics of data sets very well. To overcome the drawback of partitional clustering,
several papers have proposed different approaches, such as genetic algorithm
(GA)-based approach [1] and PSO-based approach [8].

This paper proposes a PSO-based fuzzy clustering (PSOFC) approach to deal
with dynamic clustering problems. When running PSOFC, we only need to give
a maximum possible cluster number in priori. In the evolutionary process, each
particle selects its own best number of clusters and refines the corresponding
cluster centers using fuzzy c-means. We use a clustering validity index to evalu-
ate the clustering results of particles, which in turn are used to direct the search
directions of particles. The experimental results show that PSOFC can effec-
tively find the best clustering results, compared with current dynamic clustering
algorithms.

2 Background

In this section, we introduce the PSO algorithm, fuzzy c-means, and a cluster
validity measure (PBM Index).

2.1 Particle Swarm Optimization

PSO was originally proposed by Kennedy and Eberhart in 1995 [5]. The concept
of PSO follows a biological swarm behavior model which was inspired by the
behavior of birds searching for food sources. When birds are foraging for food,
they memorize past best positions and exchange the message of best positions
with each other so that all members can gradually fly toward the best target. In a
PSO algorithm, a candidate solution is called a particle. Each particle memorizes
two components: the personal best (pBest) and global best (gBest) positions. The
former is the best position that a particle has ever visited while the latter is the
best position that the whole swarm has ever experienced. A particle determines
its new velocity and position according to its current velocity, its pBest position
and the gBest position, as defined in Eqs. (1) and (2).

V t+1
id = wt+1 × V t

id + c1 × rand() × (P t
id − Xt

id) + c2 × rand() × (P t
gd − Xt

id) (1)

Xt+1
id = Xt

id + V t+1
id (2)

where Vi is the velocity of particle i, Xi is the position of particle i, Pi is pBest
of particle i, Pg is gBest of the particle swarm, c1 and c2 are positive constants,
rand() is a random number selected from [0.0, 1.0], d is the dimension index,
and t is the generation number.

The advantages of using PSO include fast convergence and fewer parameters
needed to be set. Some researchers have applied PSO to data clustering [6–8].
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2.2 Fuzzy c-Means Clustering Algorithm

Fuzzy c-means is a clustering method similar to K-means but the concept of
fuzzy theory is incorporated to improve clustering results. That is, fuzzy c-means
allows that each data point belongs to more than one cluster according to their
fuzzy memberships. Assume we are going to classify n data objects into c groups,
the objective function used in FCM is defined below:

Jm =
c∑

i=1

n∑

j=1

um
ij [dist(ci, xj)]

2 (3)

where ci is the center vector of cluster i, xj is data point j, uij is membership
degree of point xj related to cluster i, m is the fuzziness index and its value falls
in the range of [1,∞], dist(ci, xj) is Euclidean distance between data point j
and cluster center i.

The FCM algorithm contains following main steps:

Step 1: Initialize the parameters. Note that the values of uij are subject to the
following three conditions. Condition (a) means that the value of uij is a
real number ranged between 0 and 1. Condition (b) indicates that for a data
point, all of its uij values should be sum up to 1 . The last condition defines
that the sum of uij values for a cluster should be ranged between 0 and n.
(a) uij ∈ [0, 1] i = 1, 2, . . . , c and j = 1, 2, . . . n
(b)

∑c
i=1 uij = 1 j = 1, . . . , n

(c) 0 <
∑n

j=1 uij < n i = 1, . . . , c
Step2: Calculate the center vector of cluster i by Eq. (4).

ci =

∑n
j=1 um

ijxj∑n
j=1 um

ij

i = 1, . . . , c (4)

Step3: Update the fuzzy membership matrix U by Eq. (5).

uij =
1

c∑

k=1

(
dist(ci, xj)
dist(ck, xj)

)2/(m−1)
i = 1, . . . , c and j = 1, . . . , n (5)

Step4: Calculate Jm using Eq. (3) and check the stop criteria. If |J t+1
m −J t

m| < ε,
then stop the execution; otherwise go back to step 2.

2.3 Cluster Validity Measure

When solving a dynamic clustering problem, a validity index is used to deter-
mine the best clustering solution. A good validity measure considers the degrees
of compactness and separation in order to ensure that the optimal number of
clusters is found. This paper uses PBM Index as the cluster validity measure [9].
PBM formulas are defined as follows:

PBM(K) =
(

1
K

× E1

EK
× DK

)2

(6)
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E1 =
n∑

j=1

dist(c0, xj) (7)

EK =
K∑

k=1

Ek =
K∑

k=1

n∑

j=1

um
kjdist(ck, xj) (8)

DK = max(dist(cp, cq)) p, q = 1, . . . , K (9)

where K is the total number of clusters, E1 is the sum of the distances
between each data point and the geometric center of the data set (c0), xj is data
point j, c0 is the cluster center when the number of clusters is one, EK is the sum
of within-cluster distances of K clusters, and DK is the maximum separation
distance of each pair of cluster centers. Eq. (6) suggests that the higher the PBM
Index value, the better the clustering result.

3 PSOFC Clustering Algorithm

In PSOFC, we adopt a discrete PSO algorithm to search for a best number of
clusters and utilize the fuzzy c-means to find optimal cluster centers for data
clustering. The clustering result is evaluated by computing cluster validity index
PBM.

3.1 Solution Representation

PSOFC considers each particle as a candidate solution, which is composed of the
number of clusters and several cluster centers. The number of clusters is not given
in advance and must be determined at each iteration. Thus the lengths of particle
solutions are varied. The number of clusters should be within a reasonable range,
depending on the size of the data set. The minimum cluster number (MinK ) is
set to 2, and the maximum cluster number (MaxK ) is set to

√
n [10] [12]. The

solution representation of particle i with Ki = k is defined below:

Pi = [ Ki = k;
(xi11, xi12, . . . , xi1d), (xi21, xi22, . . . , xi2d), . . . , (xik1, xik2, . . . , xikd)]

where Xi11 is the first dimension of the first cluster center and d is the
dimension size of data points.

3.2 Initialization

First, each particle randomly determines its own cluster number Ki and initial
flying velocity Vi. Here, the value of Ki is selected from the interval of MinK and
MaxK, i.e. MinK ≤ Ki ≤ MaxK . The initial velocity is randomly selected
from the interval of −1 and 1. According to the specified cluster number, each
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particle randomly selected Ki data points from the data set as its initial cluster
vectors. After that, each particle executes the fuzzy c-means clustering algorithm
to refine cluster centers, and at last uses the Eq. (6) to calculate PBM value.
According to the PBM values, the best particle is determined and its cluster
number and cluster centers are the swarm best solution, i.e. gBest. Each particle
also memorizes its current solution as pBest.

3.3 Main Steps of the Evolution Process

There are four main steps in an iteration of PSOFC, which aims to find the best
number of clusters and the corresponding cluster centers.

Step 1: Evolving Ki values. As we know, determining the best number of
clusters for a clustering problem is a discrete optimization problem. There-
fore, a discrete PSO algorithm proposed by Jarboui et al. [4] is adopted to
determine the cluster number for each particle. The main concept is to con-
vert the number of clusters of particle i (Ki) to a virtual space using a state
variable (Yi) (see Eq. (10), to use a conventional PSO algorithm to compute
the new velocity and position of state variable Yi in the virtual space (see
Eqs. (11) and (12), and then to convert the state variable with a new value
back to the discrete space to get new Ki (see Eqs. (13) and (14)).

Y t
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if Kt
i = P t

g ,
−1 if Kt

i = P t
i ,

−1or 1 if Kt
i = P t

g = P t
i ,

0 otherwise.

(10)

V t+1
i = wt+1 × V t

i + c1 × rand() × (−1 − Y t
i ) + c2 × rand() × (1 − Y t

i ) (11)

λt+1
i = Y t

i + V t+1
i (12)

Y t+1
i =

⎧
⎨

⎩

1 if λt+1 > αt+1,
−1 if λt+1 < −αt+1,
0 otherwise.

(13)

Kt+1
i =

⎧
⎨

⎩

P t
g if Y t+1

i = 1,

P t
i if Y t+1

i = −1,
MinK ≤ RN ≤ MaxK otherwise.

(14)

where P t
g is the past best cluster number of the particle swarm, P t

i is the
past best cluster number of particle i, Y t

i is the state variable of particle i,
λt
i is the continuous version of Y t

i , α is a threshold value, RN is an integer
random number selected from the interval of (MinK,MaxK).



6 Y. Kao et al.

Step 2: Selecting new cluster centers. It could happen to FCM to fall into
a local optimum if initial cluster centers are not well chosen. To avoid this
drawback, PSOCF changes cluster centers in different ways, depending on
the value of state variable Y . If Y t+1

i = 1, particle i will replace its cluster
centers with those of the gBest particle. In addition, some cluster centers will
be randomly selected and substituted with data points randomly selected
from the input data set. If Y t+1

i = −1, particle i will replace its cluster
centers with those of its pBest solution. The same, several cluster centers
will be randomly selected and replaced with data points randomly selected
from the input data set. If Y t+1

i = 0, particle i will replace its all cluster
centers with Kt+1

i data points randomly selected from the input data set.
Step 3: Refining cluster centers with FCM. When new cluster centers of

particle i are determined, PSOFC starts to refine the cluster centers using
FCM (see Eqs. (3), (4) and (5)).

Step 4: Updating pBest and gBest. After performing FCM, PSOCF calcu-
lates PBM Index value for each particle solution. Then the algorithm updates
the personal best solution for each particle and the global best solution for
the whole population according to their PBM Index values. At the end of an
iteration, termination condition is checked. If the maximum iteration num-
ber is reached, then stop running the algorithm; otherwise, go back to step
1 to continue next iteration.

Table 1. Dataset Information

Number of Number of Actual number
Dataset Attributes points of clusters

Data 4 3 3 400 4
Data 4 2 2 80 4
Data 5 2 2 250 5
Date 6 2 2 300 6
Iris 4 150 3
Breast Cancer 9 683 2

4 Experiments

In order to validate the clustering performance of the PSOFC algorithm, four
artificial data sets and two real world data sets from UCI machine learning
repository [11] were selected as test problems. The detailed information of these
six data sets is listed in Table 1.

The POSFC algorithm was coded in Visual C#, and all experiments were
run on a personal computer with Pentium IV(3.0 GHz) running Windows XP.
Based on the results of preliminary experiments, the parameters of PSOFC were
set as follows: MinK = 2, MaxK =

√
n (n is the number of data points in a

test data set), the population size of particles S = 20, the stop criteria of fuzzy
c-means ε = 0.001, m = 1.5, α = 1.0 ∼ 0.35, c1 = c2 = 0.5, w = 0.72 ∼ 0.4,
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the maximum number of iterations MNI = 30. Here α = 1.0 ∼ 0.35 denotes
that the parameter will be linearly decreased from 1.0 to 0.35 during a run. To
compare PSOFC with current algorithms, two dynamic clustering algorithms
were selected form the literature. The first one is GCUK [1] and the second
one is DCPSO [8]. The parameters of GCUK were set as follows: the number
of chromosomes is 50, the number of iterations is 100, crossover rate is 0.8,
mutation rate is 0.001, MinK is 2, and MaxK is

√
n . On the other hand,

the parameters of DCPSO were set as follows: Nc = 20, Pini = 0.75, s = 100,
w = 0.72, c1 = c2 = 1.49, Vmax = 255, MNI of binary PSO = 50 and the
number of outer iterations is 2. For each of the six test data sets, 20 independent
runs were performed for each of these algorithms.

The experimental results are summarized in Table 2. The results show that
the performance of PSOFC is better than that of two existing algorithms in terms
of the average values of objective function. Regarding the number of clusters
found by these algorithms, it is obvious that PSOFC is able to provide the
best number of clusters compared with GCUK and DCPSO. For example, the
real-world data set Iris has two overlapped data clusters. PSOFC can correctly
identify three clusters in this test problem while GCUK and DCPSO cannot.

Table 2. Experimental results

Dataset Algorithm Objective Obtained Actual CPU Time
Function Cluster cluster

Value number number
Avg. Stdev Avg. Stdev

Data 4 2 GCUK 11.7365 3.1135 2,3 4 1.3761 0.1664
DCPSO 13.2984 1.2046 2 2.5102 0.1283
PSOFC 18.4572 0.0732 4 1.1477 0.0139

Data 5 2 GCUK 21.6571 3.5126 3,5 5 4.7211 0.4276
DCPSO 26.588 0.0571 5 5.0953 0.3122
PSOFC 26.8756 0.0658 5 3.7773 0.0328

Data 6 2 GCUK 372.341 4.3122 3,4,5 6 5.4122 0.3017
DCPSO 408.7406 2.0281 5 5.932 0.2043
PSOFC 557.411 0.0483 6 3.6828 0.0418

Data 4 3 GCUK 651.7921 3.7683 2,3,4 4 5.2189 0.4261
DCPSO 731.9498 0.3181 4 5.9922 0.2007
PSOFC 732.0347 0.0374 4 3.7336 0.1449

Iris GCUK 20.8765 1.3712 2 3 3.9118 0.2132
DCPSO 21.3497 1.2215 2 4.2117 0.1943
PSOFC 27.1652 0.0451 3 3.5664 0.0587

Breast GCUK 169.6934 0.8976 2 2 15.5612 0.5164
Cancer DCPSO 169.2878 0.9735 2 17.7039 0.4952

PSOFC 170.3247 0.0327 2 10.4805 0.5321
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5 Conclusion

This paper proposed a new fuzzy clustering algorithm combining PSO and FCM
to deal with dynamic clustering problems. By sharing the best results among
particles, the optimal number of clusters and cluster centers are easily found.
From the experimental results, it can be seen that PSOFC can find the best
cluster number even though the number of clusters is not given in advance. The
results also demonstrate that PSOFC has the ability to provide equal or better
solutions for the test problems. For the future work, it is worth to apply other
validity measure indices to the same clustering problems to see if the clustering
results are sensitive to different validity measure indices.
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Chicoutimi, Québec G7H 2B1, Canada
{asioud,c3gagne,mgravel}@uqac.ca

Abstract. In this paper, we propose three new metaheuristic imple-
mentations to address the problem of minimizing the makespan in a
hybrid flexible flowshop with sequence-dependent setup times. The first
metaheuristic is a genetic algorithm (GA) embedding two new crossover
operators, and the second is an ant colony optimization (ACO) algorithm
which incorporates a transition rule featuring lookahead information and
past information based on archive concepts such as the multiobjective
evolutionary computation. The third metaheuristic is a hybridization
(HGA) of the GA and the ACO algorithms. Numerical experiments were
performed to compare the performance of the proposed algorithms on
different benchmarks from the literature. The algorithms are compared
with the best algorithms from the literature. The results indicate that our
algorithms generate better solutions than those of the known reference
sets.

Keywords: ACO ·Genetic Algorithm ·Hybrid Metaheuristics ·Schedul-
ing · Hybrid flowshop · Makespan · Sequence-dependent setup times

1 Introduction

Among production scheduling systems, the flowshop is one of the most well-
studied environments. In this configuration, all jobs follow the same routing
scheme. The associated problem can be considered as a basic model for several
variants of real problems. Moreover, real production systems rarely employ a
single machine at each stage. Therefore, the regular flowshop problem is often
extended to a set of usually identical parallel machines at each stage. That is,
instead of having a series of machines, we have a series of stages. The goal here is
to increase the capacity and the outflow of the production system and to reduce
the impact of bottleneck stages on overall shop efficiency. It is also frequent in
practice to have optional treatments for products, like polishing or additional
decorations in ceramic manufacturing as examples [2,21]. In this latter case some
jobs will skip some stages. We obtain thereby the hybrid flexible flowshop.
c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 9–25, 2014.
DOI: 10.1007/978-3-319-12970-9 2
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Furthermore, in many industries such as pharmaceutics, metallurgy, ceramics
and automotive manufacturing, we often have setup times on equipment between
two different jobs. Many authors assume that setup times are negligible, or a
part of the job processing time. But explicit setup times must be included in
scheduling decisions in order to model a more realistic variant of hybrid flowshop
scheduling problems. These setup times may or may not be sequence-dependent.
[6] reported that 70% of industrial activities include dependent setup times. More
recently, [3] pointed out in 250 industrial projects that 50% of these projects
contain setup dependent times and when these setup times are applied, 92% of
the order deadline could be met. Production of good schedules often relies on
good management of these setup times [1,29].

The present paper considers the hybrid flexible flowshop problem with
sequence-dependent setup times (SDST/HFFS) minimizing the makespan. In
accordance with the notation for hybrid flowshops introduced by [26] who
extended the well-known three fields notation α/β/γ of [8], this problem is noted
as ((PM)(i))

m

i=1/Fj , sijk/Cmax. [9] showed that the flowshop with multiple pro-
cessors (FSMP) problem with only two stages (m = 2), which can be considered
as a special case of the SDST/HFFS problem, is NP-hard, and therefore the
SDST/HFFS problem studied in this paper is also NP-hard.

The ((PM)(i))
m

i=1/Fj , sijk/Cmax problem may be defined as a set of N jobs,
N={1,..., n}, available for processing at time zero on a set of M stages, M={1,...,
m}. At every stage i, i ∈ M, we have a set of Mi, Mi={1,..., mi}, identical
parallel machines. Every machine at each stage can process all the jobs. Each
job has to be processed in exactly one of the Mi identical parallel machines at
stage i. However, some jobs will skip some stages. Fj denotes the set of stages
that the job j, j ∈ N has to visit. Furthermore, only stage skipping is allowed,
so it is not possible for a given job to visit stages {1, 2, 3} and another one
to visit stages {3, 2, 1}. pij denotes the processing time of job j at stage i.
Finally, sijk denotes the setup time between jobs j and k, k ∈ N at stage i. The
optimization criterion is the minimization of the maximum completion time or
makespan, which is calculated as Cmax = maxj∈N{Cj}.

Considering the completion time criterion for a regular flowshop problem,
a simple permutation of the jobs in an array constitutes the most widely used
encoding for the sequences. Nevertheless, when we handle a hybrid flowshop
scheduling problem with this kind of representation, two main decisions have
to be taken : (i) determine the job sequence at the beginning of each stage,
and (ii) assign jobs to machines at each stage. For the HFFS problem, the job
sequence at the first stage is normally determined by the outcome of the schedul-
ing algorithms. For subsequent stages, the jobs are sorted in increasing value of
their completion times in the previous stage. Furthermore, in the case of HFFS
without setup times, assigning jobs at each stage to the first available machine
(FAM), which results in the earliest completion time for the jobs in that stage,
represents a possibility as the assigning decision. However, in the case of the
SDST/HFFS we use the earliest completion time (ECT) rule which incorporates
the incurred setup times between two jobs when calculating the job completion
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times. These completion times are calculated as Cij = max{Ci,j−1, Ci−1,j}+
Si,j−1,j + pij , where Ci,j−1 is the completion time of the previous job in the
sequence that was assigned to the same machine as job j at stage i. Similarly,
Ci−1,j is the completion time of job j at the previous stage that this job visited.
[17] enhance the ECT rule with the fast earliest completion time rule (FECT).
This technique arranges the jobs in the same relative order when they have the
same ready times at each stage. The authors show that this technique be very
effective in the presence of stage skipping. We will use the FECT rule in the rest
of the paper.

In this work, to solve the SDST/HFFS problem, we introduce new crossover
operators in a genetic algorithm (GA), a new transition rule in an ant colony
optimization algorithm (ACO) and a new hybrid metaheuristic involving the
GA and the ACO. These represent the main contribution of this paper. The
innovative GA and ACO are designed and developed to adapt to the treated
problem. Both are then combined to create a new hybrid metaheuristic GA/ACO
with features not seen in the traditional GA and ACO. All the proposed approach
are essentially based on adapting their different mechanisms to the specifics of
the problem studied.

The body of this paper is organized into five sections. Section 2 provides
a brief literature review of the SDST/HFFS problem. Section 3 describes the
proposed GA, while Section 4 and Section 5 describe the ACO algorithm and
the hybrid genetic algorithm (HGA), respectively. The computational testing
and discussion are presented in Section 6. Finally, we conclude with some remarks
and future research directions.

2 Literature Review of SDST/HFFS

There is not much published research on the SDST/HFFS problem. To our
knowledge, there are only papers proposing heuristics and/or metaheuristics for
this problem. [13] introduced dispatching rules based on greedy methods, inser-
tion heuristic and an adaption of Johnson’s rule. Later, they [14] formulated
an integer programming (IP) model and developed random keys genetic algo-
rithm (RKGA). The results showed that the IP model does not easily solve the
SDST/HFFS problem and that the RKGA outperforms the dispatching rules
of [13] and other heuristics. All the algorithms are tested on generated problem
data. [28] proposed an immune algorithm (IA) which outperform the RKGA
of [14]. The authors used a real representation for individuals and the order
crossover (OX) as the crossover operator. [16] proposed a simulated annealing
(SA) using pair-wise and inverse interchange as moving operators. They also
used the Shortest Processing Time Cyclic Heuristic of [14], showing that the
SA outperforms the RKGA of [14] and the IA of [28]. [17] proposed a dynamic
dispatching rule heuristic and an iterated local search (ILS). They also proposed
960 test instances and compared their approaches to the dispatching rules of [13],
the RKGA of [14], the IA of [28] and the GA of [21] which is used for a different
problem. The results showed that their ILS with different encoding scheme gives
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better results than all the other algorithms. [7] proposed an agent-based genetic
algorithm using the Similar Block 2-Point Order Crossover (S2BOX) of [21] and
introducing the agent-solution scheme to solve the SDST/HFFS problem.

There are studies about related problems with a more complex setting and/or
variations of the SDST/HFFS problem. [21] discussed also the SDST/HFFS
problem but they assumed that some machines are not eligible to perform some
jobs. They proposed a genetic algorithm using new and classic crossover opera-
tors from the literature. [22] proposed two iterated greedy heuristic (IGH) for the
SDST/HFFS problem with the objectives of minimizing the makespan and the
weighted tardiness. In this paper the authors consider release dates for machines,
machine eligibility, possibility of the setup times to be both anticipatory and non-
anticipatory, precedence constraints and time lags. [11] proposed three heuristics,
based on Shortest Processing Time (SPT), Longest Processing Time (LPT) and
the Johnson rule, and two metaheuristics based on a genetic algorithm and simu-
lated annealing, to solve the SDST/HFFS problem with machine availability con-
straints. [12] proposed an immune algorithm (IA) for solving the SDST/HFFS
problem with time lags on the machines comparing it with the IP model on small
instances. [18] studied a hybrid flowshop with setup times where no flexibility is
considered. They proposed a variation of simulated annealing using the Taguchi
method and minimizing the makespan and the maximum tardiness.

3 A Genetic Algorithm for the SDST/HFFS

Genetic algorithms are methods based upon biological mechanisms such as the
genetic inheritance laws of Mendel and the natural selection concept of Darwin,
where the best adapted species survive. The basic concepts of GAs have been
described by [10]. He explains how to add intelligence to a program by using
the crossover exchange of genetic material and transfer which is a source of
genetic diversity. Indeed, this kind of metaheuristic works with a set of individu-
als called the population. Every chromosome is evaluated and assigned a fitness
value. This evolving process exchanges genetic material and uses crossover and
mutation operators to transfer it, generating new individuals called offspring.
Selection and replacement processes are applied to reach better individuals over
the generations,converging to an optimum in the solution search space. The
effectiveness of a GA depends on the choice of its operators and parameters, but
also on the specific adaptation to the problem treated. In the following sections,
we explain the different choices of the GA’s parameters and we describe the
proposed crossover operators.

3.1 Population Encoding and Initialization

A genetic algorithm works on individuals with chromosomes, which are a repre-
sentation or codification of the solutions to the problem. In this case, we have
chosen an ordinal genetic representation. As shown in Figure 1, the individu-
als P1, P2, O1 and O2 are identified by sequences so that each element of the
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sequence is associated with a numeric identifier that represents a particular job.
The population size is set to 40. The initial population is randomly generated
except for one individual, which is generated using the NEH Hybrid (NEHH)
rule [21], an adaptation of the well known NEH heuristic [19].

3.2 Crossover Operator

The crossover operator generates offspring in general, by coalescing two parents
with the objective of generating a better sequence, in this case a better makespan
Cmax. Many crossover operators from the literature are used for the permuta-
tion flowshop, such as the Partially Mapped Crossover (PMX), OX, Order Based
Crossover (OBX) or Uniform Order Based Crossover (UOBX) [15]. But for reg-
ular flowshops and especially the hybrid flowshops these crossover operators
give the worst results because they break the building blocks [21]. Introducing
dependent setup times and job skipping will complicate the situation even more.
The crossover operators that we present aim to ensure a better conservation of
the relative order and the absolute order when we deal with dependent setup
times. In this work we present three new crossover operators adapted for the
SDST/HFFS problem.

3 7658241P1
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C2C1

8 2961375

7 6138243O1 5824
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3 7648243O2 2581
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9

91

Fig. 1. Illustration of RMPX and ARMPX

The RMPX Crossover. The first crossover operator is the Random Maximal
Preservative Crossover (RMPX) crossover introduced by [23], which shows good
behavior when dealing with the dependent setup times but for a single machine.
RMPX is defined as follows : (i) two parents P1 and P2 are considered and two
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distinct crossover points C1 and C2 are selected randomly, as shown in Figure 1;
(ii) an insertion point pi is then randomly chosen in the offspring O1, pi being a
random number in the interval [1, n - ( C2 - C1 )]; (iii) the part [C1, C2 ] of P1,
shaded in Figure 1, is inserted in the offspring O1 from pi, from the position 4
as shown in Figure 1; and (iv) the rest of the offspring O1 is completed from
P2 in the order of appearance from its first position. To generate the second
offspring, we just reverse the roles of the two parents P1 and P2 and repeat the
same process.

The ARMPX Crossover. The second crossover operator is the Antago-
nist Random Maximal Preservative Crossover (ARMPX), an adaptation of the
RMPX crossover where in steps (ii) and (iii) we insert the parents’ first and last
parts instead of the part [C1, C2 ] in the offspring (shaded in O2 in Figure 1).
After that, the rest of the offspring is completed from the other parent in the
order of appearance from its first position. As shown in Figure 1, from parents
P1 and P2 we obtain the offspring O2 when applying the ARMPX crossover.
The aim here is to preserve the two building blocks in the front and the back of
the parent, and to preserve the relative order in the insertion section.

The LJMPX Crossover. The third crossover operator is the List Jobs Maxi-
mal Preservative Crossover (LJMPX) which works like the RMPX crossover for
the first 3 steps. This crossover represent the first contribution in this paper.
After inserting the cross section, two lists are built from the second parent P2
which contains the unscheduled jobs. The LL list contains the jobs which will be
inserted to the left of this section while the RL list contains the jobs which will
be inserted to the right. An approximate value of the makespan Cmax is then
calculated with a sequence containing the subsequence [C1, C2 ] in the offspring
and where the rest of the jobs have a normalized value pij , using a normalized
setup time sijk which represents the average processing time and setup time for
the unscheduled jobs, respectively. Next, we insert the jobs from the correspond-
ing lists one by one, minimizing the Cmax until we obtain a complete sequence.
As shown in Figure 2, the offspring O3 is a potential offspring from parents P1
and P2 where the lists LL and RL are built from the parent P2 after inserting
the part [C1, C2 ] from position pi.

The MPOBX Crossover. The last crossover operator introduced in this paper
is the Maximum Preservative Order Block Crossover (MPOBX) which works as
follows. First, from the two parents, we insert the longest job blocks at the same
positions, using four crossover points. After that, as in the LJMPX crossover, we
calculate an approximate value Cmax using the pij and sijk for the unscheduled
job positions. Then we insert the remaining unscheduled jobs as in the LJMPX
crossover, from a single job list. As shown in Figure 3, we insert the block {3, 1,
4} from P1 and block {9, 7, 2} from P2. The unscheduled job list contains jobs
5, 6 and 8. These jobs will be inserted one by one using the Cmax value.
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Fig. 2. Illustration of LJMPX
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Fig. 3. Illustration of MPOBX

Finally, we set the probability pc of crossover to 0.8. So, at each genera-
tion, N * 0.8 offspring will be generated. This crossover represents the second
contribution in this paper.

3.3 Mutation Operator, Selection and Replacement Schemes

Mutation consists of exchanging the position of two distinct jobs randomly cho-
sen. The probability pm of a mutation occurring is set to 0.01. The chromosome
selection for the crossover is done using a stochastic binary tournament. The
replacement is elitist and uses the (λ + μ) scheme.

4 Ant Colony Optimization for the SDST/HFFS

The ant colony optimization (ACO) is a population based metaheuristic designed
to solve combinatorial optimization problems, introduced by [4] and inspired
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by studies of the behavior of ants. In the natural world, ants are able to find
the shortest path between their nest and food sources, by following a chemical
pheromone trail on the ground after they walk on it. That is, they choose the way
with more probable paths, which are marked by stronger pheromone concentra-
tions. Indeed, as more ants use the same path, more pheromones are deposited
and more ants tend to follow this path. This collective foraging behavior, depos-
ing and following pheromones in the natural world, became the inspiring source
of the ACO. [5] proposed notable improvements to the original ACO version.
The improvements include a modified transition rule called the pseudo-random-
proportional rule, global and local trail updating rules, use of restricted candi-
dates list and the use of local improvement rules. In this section we describe in
detail the ACO algorithm to solve the SDST/HFFS problem with the objectives
of minimizing the makespan. In the main loop, after the pheromone initializa-
tion, has five steps where a ants construct a sequence of N jobs : (i) an initial
job is set ; (ii) each ant builds a job sequence using the pseudo random propor-
tional transition rule in Equations (1) and (2) ; (iii) a local pheromone update
is performed ; (iv) a local improvement heuristic is applied ; and (v) a global
pheromone update is applied. This main loop is executed until a stopping cri-
terion is reached. The loop is executed for tmax cycles, as shown in Figure 4,
representing a generic pseudo code embedding the new transition rule shown
in Equations (1) and (2). The new transition rule has been adapted to the
SDST/HFFS problem. This represents the third contribution in this paper.

4.1 Algorithm Initialization

At each iteration, given that a job i is the previous job added to the sequence,
an ant chooses the next job to append by considering, among other factors, the
pheromone trail intensity τij(t) which is initialized to a small positive quantity
τ0 for all pair of jobs (i,j), i.e., τij(0) = τ0. Afterward, the pheromone trail will
contain information based on the solution quality and the number of time that
ants chose to visit job j after job i.

4.2 Setting Up the Initial Job

Each job has an initial setup time at each stage i on a machine mi and this setup
is taken into account when calculating the makespan. Therefore, to maintain
diversity and for each job sequence constructed by the a ants, the first job is
chosen pseudo-randomly. This choice is based on the earliest completion time on
the first stage.

4.3 Building a Sequence

From an existing partial job sequence, each ant builds a sequence using the
pseudo random proportional transition rule in Equations (1) and (2). In Equation
(1), q is a random number and q0 is a parameter; both are between 0 and 1.
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/* STEP 0 : Pheromone Initialization */
for all job pair (i,j) do

τi j(0) = τ0
end for

/* Main Loop */
for t = 1→ tmax do

/* STEP 1 : Set initial job */
for k = 1→ m do

Set the initial job for the ant k
end for

/* STEP 2 : Build a sequence */
for i = 2→ n do

for k = 1→ m do

Choose the next job to insert using the Equations 1 and 2
/* STEP 3 : Local pheromone update */
for all chosen job pair (i,j) do

τi j(t) = pt ∗ τi j(t) + (1 − pt) ∗ Δτi j(t) where Δτi j = τ0
end for

end for

end for

/* STEP 4 : Local improvement */
for k = 1→ m do

Apply local improvement method or-opt heuristic
end for

/* STEP 5 : Global pheromone update */
for all adjacent job pair (i,j) ∈ the best sequence Q∗ do

τi j(t) = pt ∗ τi j(t) + (1 − pt) ∗ Δτi j(t) where Δτi j = 1/L∗
end for

end for

Fig. 4. The ACO pseudo-code

The parameter q0 determines the relative importance of the existing information
exploitation and the new solution search space exploration. Indeed, Equation
(1) states that the next job will be chosen by a greedy rule when q ≤ q0 or
by the probabilistic rule of Equation (2) when q > q0. Equation (2) describes
the biased exploration rule pij also adapted to the ((PM)(i))

m

i=1/Fj , sijk/Cmax

problem when inserting job j after job i.
In these equations, the elements τij(t) and ηij represent the pheromone

trail and the visibility, respectively. Concerning the visibility, ηij represents the
inverse of the largest completion time among all the jobs in the list of the uns-
elected jobs. Obviously, the completion time includes the setup times between
the last scheduled job and the next one. The element SUCCij(At) represents
the past information, which is introduced by a matrix built from an archive that
stores the best solutions throughout the evolution process, as in some cases in
multi-objective evolutionary algorithms using the Pareto-optimal concept. This
concept was first introduced in transition rules by [23]; it plays the role of a long-
term memory. Here, we adapt them for our problem. From the archive we build
a matrix which computes the number of times that a job j follows a job i in the
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j =

⎧
⎪⎪⎨
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arg max

{[
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]α

×
[
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]β

×
[

ηij

]δ

×
[

1

Hij

]φ
}
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(1)
where J is chosen according to the probability pij
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[

τij(t)
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×
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]β

×
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ηij

]δ

×
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1

Hij
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[

τij(t)

]α

×
[
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]β

×
[

ηij

]δ

×
[

1

Hij

]φ
(2)

archive solutions. Finally, the element Hij represents the lookahead information
which use an heuristic that anticipates the choices in the transition rule. This
heuristic is based on an upper bound of the makespan, using the average values
of processing time pij and the normalized setup times sijk for the unscheduled
jobs.

4.4 Local Trail Updating

Once the ants generate a solution, for each pair of jobs (i,j) the pheromone level
on the path is updated using a local update rule as in Equation (3)

τij(t) = p × τij(t) + (1 − p) × Δτij(t) (3)

where Δτij = τ0 and 0 ≤ p ≤ 1 is a constant parameter.

4.5 Local Improvement

After computing the makespan of the generated sequence by the ant, we apply a
local improvement under probability pLI . For that, we use a simple local search
generating a neighborhood using a swap move.

4.6 Global Trail Updating

The pheromone trail is updated at the end of the cycle, but only for the job
pairs (i,j) in the best solution with makespan C∗ found in the cycle. The global
update rule is executed using Equation (4)

τij(t) = pt × τij(t) + (1 − pt) × Δτij(t) (4)

where Δτij = 1/C∗ and 0 ≤ pt ≤ 1 is a constant parameter.



Metaheuristics for Solving a Hybrid Flexible Flowshop Problem 19

4.7 Parameter Initialization

The trail pheromone is initialized to the value τ0=(N ∗ Lr)−1 where N is the job
number and Lr is the makespan value of a randomly generated sequence. The
other parameters have been assigned the following values : p = pt = 0.9, the ant
number a = 10 and q0 = 0.9. The parameters α, β, φ and δ associated with
the four matrices in the transition rule were set to identical values for all the
problems. These parameters were adjusted following empirical tests on different
instances. The four parameters α, β, φ and δ have been assigned the values
4, 2, 3 and 3, respectively. Finally, the archive size and the local improvement
probability pLI have been assigned the values 20 and 0.2, respectively.

5 Hybrid Metaheuristic GA/ACO for the SDST/HFFS

We introduce here a collaborative hybridization [20] at the LJMPX crossover
introduced in Section 3.2. Indeed, we use the ACO algorithm introduced in
Section 4 to fill either the right part or the left part or both. Inserting the jobs
on the right of the cross section is similar to the operating of a classical ant.
From the last inserted job i in the cross section, a job j is chosen according to
the pseudo-random-proportional transition rule expressed in Equations (1) and
(2) using the jobs in the right list.

Since the cross section is already set, inserting the remaining jobs on the left
of this section can be done either from the first offspring position from left to right
as a classical ant or inversely from the first cross section position. During the
application of the crossover, we use equiprobably one of the two methods of left
insertion. Finally, in the case of inserting jobs from right to left, we make some
adaptations in Equations (1) and (2). The hybridization represents the fourth
contribution in this paper when using new features in both GA and ACO.

6 Computational Results and Discussion

The benchmark problem set is available from http://soa.iti.es and consists of
960 problem tests. The instances are combinations of N and M, where N =
{20, 50, 80, 150} and M = {2, 4, 8}. The processing times are generated from
a uniform [1, 99] distribution. The setup times are generated according to four
distributions [1, 25], [1, 50], [1, 99] and [1, 125]. This corresponds to a ratio
between setup and processing times of 25%, 50%, 100% and 125%, respectively.
There is a group with two parallel machines per stage and groups where the
number of parallel machines at each stage is sampled from a uniform distribution
in the range [1, 4]. The probability of skipping a stage for each job is set at 0.10
and 0.40. All the experiments were run on an Intel Core 2.8 GHz processors
and 4 GB of main memory. To evaluate the performance of the other proposed
algorithm, we will conduct statistical analysis and comparisons with the results
of [17], where, the authors compare an iterated local search (ILS) to several
metaheuristics and heuristics as the RKGA of [14], the IA of [28], the genetic
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algorithm (GAR) of [21] and the dispatching rules of [13] to cite these methods
among others. Many of these compared methods are adapted to the treated
problem and recoded for suited comparison purposes. The authors show that the
ILS and the GAR represent the best method. So we will compare our algorithm
results to these methods. We know that using fixed number of evaluations of the
objective function to compare different algorithms allows fair comparisons, but
we do not have these information for the reference algorithms. So, we use the
same stopping criterion as used in [17], i.e., time computation.

It is important to note that our experiment environment is different from
that of [17]. Therefore, we use the following website references [24] and [25] to
determine the performance ratio between the two computers. In order to obtain
a reliable comparison, all the experiments were done with the stopping criterion
set to n2 × m × 1.5 × 0.78 ms elapsed CPU time ([17] used n2 × m × 1.5 ms
elapsed CPU time as the stopping criterion for all the compared algorithms). To
evaluate the different algorithms we use the performance measure in Equation
(5) :

% Increase Over the Best Solution

=
Heusol − Bestsol

Bestsol
× 100 (5)

where Heusol is the best makespan obtained by a given algorithm after 10 exe-
cutions and Bestsol is the best known makespan.

First, we produce experiments in order to compare crossover operators embed-
ded in the GA independently : OX, PMX, UOBX [15], S2BOX, used in the GAR
[21], RMPX [23], ARMPX, LJMPX and MPOBX. Each crossover operator is
embedded independently in the GA presented in Section 3 with 500 generations as
the stopping criterion. The result summaries are presented in Table 1. Indeed, the
results represent the group instances average, and the best averages are in boldface
type.

As shown in this table, theList JobsMaximalPreservativeCrossover (LJMPX)
and theMaximumPreservative Order Block Crossover (MPOBX) present the best
results among the eight tested, and their results are very similar except for the large
instances where LJMPX allows for achieving a slightly better average. This sup-
ports the idea that these two crossover operators are more adapted to the studied
problem. Indeed, using the approximate value of the makespan when fulfilling the
unscheduled jobs in the sequence gives the two crossover operators more accuracy
when dealing with more stages. Also, using the list jobs allows us to better optimize
the setup times when choosing jobs to insert.

Furthermore,maintaining theblocks of jobs in the crossover operators improves
the performance of the algorithms, i.e., the LJMPX maintains the cross section
while the MPOBX maintains blocks from the two parents. Hence, both crossover
operators take greater account of the relative and absolute position of jobs when
maintaining blocks. Finally, as shown in Table 1, MPOBX allows us to achieve a
slightly better average than LJMPX, particularly for larger instances. This can be
explained by the fact that MPOBX conserve more absolute positions when main-
taining blocks from parents. Moreover, LJMPX compensates this behavior by
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Table 1. Comparison of different crossovers (% Increase over the best solution)

Instances OX PMX UOBX S2BOX RMPX ARMPX LJMPX MPOBX
20*2 7.82 7.27 7.43 6.93 5.13 4.39 3.78 3.39
20*4 5.25 8.25 8.15 3.89 5.65 5.24 2.80 2.27
20*8 6.87 6.40 8.44 3.09 5.71 6.31 2.85 2.49
50*2 8.36 6.23 9.24 9.01 5.82 4.82 3.81 3.26
50*4 7.33 7.39 9.53 5.85 6.69 4.24 2.74 1.85
50*8 9.35 12.24 8.97 3.79 6.67 4.28 3.73 3.75
80*2 5.29 9.31 7.84 8.28 5.64 4.19 2.90 2.06
80*4 8.23 8.39 9.49 7.39 6.63 5.70 2.74 2.84
80*8 10.27 10.43 10.19 6.53 6.56 5.95 3.78 3.48
120*2 8.05 7.27 9.19 10.58 7.65 7.45 3.87 4.02
120*4 9.30 10.39 8.97 9.04 6.62 8.23 5.95 6.02
120*8 10.31 13.13 10.82 10.59 8.78 9.82 6.81 7.21

Average 8.04 8.89 9.02 7.08 6.46 5.89 3.81 3.55

providing more exploration when inserting the cross section but conserving the rel-
ative order and consequently conserving the setup times between jobs especially
when the setup times have a significant impact when calculating the makespan.
This mechanism allows LJMPX to achieve a slightly better average for the large
instances where more exploration is needed to obtain better results.

We proceed now with the comparisons of the proposed algorithms (GA, ACO
and HGA) against the ILS of [17] and the GAR of [21]. These two algorithms
have shown high performance in the original papers in which they were pro-
posed [17,21]. The authors compare these algorithms with four high performing
algorithms : two genetic algorithms, immune algorithm and ant colony opti-
mization. To sum up, the ILS and GAR algorithms showed the best results in
their respective studies. The GA version retained here is the one embedding the
two crossover operators LJMPX and MPOBX. The choice of the crossover to
apply is made randomly, i.e., by a fair coin toss. This policy was chosen as result
of computational experiments. The results are presented in Table 2; they also
represent the group instances averages. The best averages are also in boldface
type.

The first observation is that the new GA and ACO algorithms always provide
a better average than the ILS and the GAR algorithms. Also, if we compare
the GA and ACO algorithms, the first provides a better average on all the
group instances except for the 20× 2, 50× 2, 80× 2 and the 120× 2 group
instances where the ACO does slightly better. These group instances are those
with 2 stages. It seems that the transition rule embedded in the ACO algorithm
performs better in these configurations. In general, the GA has a better average
than the ACO, with 0.60 and 0.76, respectively. We can also remark that there is
a non negligible improvement in comparison with the ILS and the GAR averages.

Now, if we focus on the HGA algorithm results, we can see that this algorithm
provides the better average for all the group instances except for the 20× 2 group
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Table 2. Comparison of the ILS [17], the GAR [21], the ACO, the GA and the HGA
(% Increase over the best solution)

Instances GA ACO HGA ILS GAR
20*2 0.75 0.49 0.51 1.70 3.82
20*4 0.51 0.69 0.49 1.90 3.90
20*8 0.43 0.75 0.40 1.70 4.02
50*2 0.69 0.61 0.55 2.72 4.65
50*4 0.52 0.90 0.36 2.98 4.73
50*8 0.66 1.12 0.45 3.48 5.01
80*2 0.59 0.58 0.45 3.29 5.29
80*4 0.48 0.74 0.44 2.01 4.87
80*8 0.71 1.04 0.51 4.87 6.03
120*2 0.58 0.57 0.54 3.23 5.32
120*4 0.59 0.79 0.51 4.36 5.05
120*8 0.67 0.89 0.53 5.74 7.02
Average 0.60 0.76 0.48 3.16 4.98
Median 0.53 0.71 0.36 2.45 4.81
Std 0.53 0.55 0.48 2.46 2.39

where the ACO obtains a better average. Also, in the same vein, the HGA
significantly improves all the average results in comparison to the ILS and the
GAR algorithms. Furthermore, combining both the GA and ACO mechanisms
in the HGA marginally enhances the results in comparison of the GA and the
ACO algorithms. If we observe the standard deviation values, we remark that
those of the proposed methods (ACO, GA and HGA) are very low. This can be
explained by the effect of both mechanism used in the ACO and the GA, which
use an upper bound and consequently smooth over the results.

Moreover, to significantly compare the proposed algorithms, we conducted
a pairwise comparison to detect significant performance differences between all
the algorithms with the non-parametric Wilcoxon signed-rank test [27] for each
instance using the results of our 10 runs with an error probability of 1% over the
numerical results. We remind the reader here, that the Wilcoxon test does not
require assumptions regarding the distribution results. Indeed, for the purpose
of a pairwise heuristics comparison, the Wilcoxon test assumes that the first
heuristic median M1 equals the second heuristic median M2 hypothesis is null
and that M1 �= M2 is the alternative hypothesis.

The Wilcoxon test results are shown in Table 3 where bold values indicate
where the null hypothesis is rejected. The critical values for all tests are identical
and between -2.575 and 2.757. Thus, the Wilcoxon test indicates with a confi-
dence level of 99% that the HGA algorithm statistically outperforms all other
methods. Moreover, GA statistically outperforms ACO, ILS and GAR. Further
more, ACO surpasses ILS and GAR. Finally, regarding the quality solutions, we
obtain the following ranking : HGA-GA-ACO-ILS-GAR.
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Table 3. Wilcoxon test t-value for the ILS [17], the GAR [21], the ACO, the GA and
the HGA

HGA GA ACO ILS GAR
HGA 4.29 10.4 25.78 26.71
GA 6.1 25.4 26.7
ACO 24.39 26.66
ILS 16.27
GAR

7 Conclusion

In this work, we have introduced three new algorithms : a genetic algorithm (GA)
embedding two new crossovers, an ant colony optimization algorithm (ACO) that
integrates lookahead information and archive concepts in the transition rule and
a hybrid genetic algorithm (HGA) integrating the ACO in the GA crossover to
minimize the makespan in a hybrid flexible flowshop with sequence-dependent
setup times. The proposed approaches are essentially based on adapting differ-
ent algorithm mechanisms to the specificities of the studied problem, i.e the
crossovers in the GA and the transition rule in the ACO. Indeed, after inserting
the cross section from the first parent, the two crossover operators use heuristics
and lists from the second parent to insert the remaining jobs. These heuristics are
replaced by the ACO algorithm in the HGA algorithm. For its part, the pseudo
random proportional transition rule embedded into the ACO integrates past,
present and future information to build a sequence. The numerical experiments
allowed us to demonstrate the efficiency of our approaches to this problem.

Our results encourage us to use such approaches, with hybridization, for other
scheduling problems in particular and other optimization problems in general.
It is in this direction that our work will be directed.
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IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)

21. Ruiz, R., Maroto, C.: A genetic algorithm for hybrid flowshops with sequence
dependent setup times and machine eligibility. European Journal of Operational
Research 169(3), 781–800 (2006)
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Abstract. The inversion of surface wave is an estimation of the earth’s proper-
ties from the measured surface wave data. The surface wave inversion cannot 
be solved directly, requiring an optimization technique to find the most proba-
ble solution in a pool of infinite candidates. With the development of data opti-
mization methods, fast and easier approaches can be conducted for inversion of 
geophysical data. This study proposes Particle Swarm Optimization (PSO)  
algorithm for inversion of Multichannel Analysis of Surface Wave (MASW) 
method as an active geophysical technique. So, first we developed PSO code in 
Matlab for inversion of MASW data and then the efficiency of proposed algo-
rithm investigated by inversion of a synthetic model and a real data set. Exper-
iments on both synthetic model and real data set demonstrate that the proposed 
algorithm performs well. Moreover finding shows that PSO algorithm is power-
ful, fast and easy for inversion of active surface waves data.  

Keywords: MASW · PSO · Inversion 

1 Introduction 

One of the fields of studies that had been a huge effect on engineering science pro-
gress is optimization techniques. In general, optimization algorithms can be divided 
into two categories: deterministic algorithms, and stochastic algorithms. Deterministic 
algorithms follow a rigorous procedure and its path and values of both design varia-
bles and the functions are repeatable. Most conventional or classic algorithms are 
deterministic (e.g. Simplex method). On the other hand, the stochastic algorithms 
always have some randomness. For stochastic algorithms, we have in general two 
types: heuristic and metaheuristic, though their difference is small. Further develop-
ment over the heuristic algorithms is the so-called metaheuristic algorithms. They 
generally perform better than simple heuristics. In addition, all metaheuristic algo-
rithms use certain tradeoff of randomization and local search [1]. PSO algorithm is 
one of the global optimization methods that belong to group of metaheuristic search-
ing algorithms. Inverse theory is an organized set of mathematical techniques for 
reducing data to obtain useful information about the physical world on the basis of 
inference drawn from observation [2]. Inversion of geophysical data consists of oper-
ating directly on those data so as to generate a view of the structure which causes 
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them [3]. To solve an inverse problem design of three step is vital : i)parameterization 
of the system(i.e., discovery of a minimal set of model parameters whose values com-
pletely characterize the system), ii) forward modeling (i.e., discovery of the physical 
laws allowing us, for given values of the model parameters, to make prediction on the 
results of measurements on some observable parameters), iii)inverse modeling (i.e. 
use of the actual results of some measurements of the observable parameters to infer 
the actual values of the model parameters) [4]. Most geophysical inversion methods 
are based on linearized techniques to estimate the parameters of model in an iterative 
manner; i.e., using local optimization algorithm to modify a starting model that user 
defined it. At each iteration, a better estimate of the model is calculated by linearizing 
the problem and the best solution, minimizing a misfit function, is obtained after a 
few iterations [5]. Since most geophysical inverse problems are nonlinear, hence have 
non-linear misfit functions (e.g. RMS travel-time error), the solution is quite often 
trapped to local minima during the application of local optimization methods. As a 
result, their success depends on the initial model to the “true” global-minimum solu-
tion. But global optimization algorithms include the ability to produce solutions inde-
pendent on the initial model, to explore the model space in more detail and, thus, a 
better chance to find the “true” global minimum solution [6, 7]. So, by finding of 
global minimum of misfit function the best solution of problem could be reach. 
Therefore using an optimization algorithm in inversion of geophysical data that satis-
fy above condition for finding best solution is an important issue. In geophysical sur-
veys, there have recently been emerged several significant PSO applications. The 
PSO on a multilayered 1D vertical electric sounding (VES), induced polarization (IP), 
magnetotelluric (MT) methods both synthetic and field data have successfully been 
carried out by Shaw and Srivastava (2007)[8]. Naudet et al. (2008) [9] have studied 
water table estimation using the PSO on self-potential (SP) data. Inversion of a VES 
data for environmental applications by the GPSO algorithm has successfully been 
performed by Fernández Martínez and García Gonzalo (2008)[10]. Yuan et al. 
(2009)[11] have demonstrated PSO worked on seismic wavelet estimation and gravity 
anomalies as well. Also they concluded that the PSO inversion method have the at-
tributes of higher convergence speed and accuracy than conventional GA and SA 
methods. Fernández Martínez et al. (2010) [12] present the application of a whole 
family of PSO algorithms to the analysis and solution of a VES inverse problem asso-
ciated with a seawater intrusion in a coastal aquifer in southern Spain. Pekşen et al. 
(2011) [13] by application of PSO algorithm have inverted self-potential (SP) data. In 
recent years Rayleigh waves have attracted the interest of a constantly increasing 
number of researchers from different disciplines for a wide range of applications [14]. 
Once Rayleigh wave dispersion curve is properly identified, its inversion is the key 
point to obtain a reliable near-surface S-wave velocity profile. PSO is a novel and 
powerful technique in geophysical data interpretation. In this study, we demonstrate a 
PSO application on MASW data inversion. To evaluate efficiency and stability of 
PSO to invert MASW data, we first developed PSO code in Matlab and then investi-
gated on a synthetic model. Finally, the PSO inversion algorithm in MASW data was 
applied in a case study at the part of Tabriz city in north-West of Iran for hazard  
assessment. Also in order to solve the forward modeling and estimate the theoretical 
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dispersion curve the code based on the matrix algorithm developed by Herrmann 
(1987) [15]was used. Results from synthetic model and real data demonstrate that 
particle swarm optimization can be used for processing of MASW data. 

2 Multichannel Analysis of Surface Waves (MASW) Method 

Shallow shear-wave velocity (Vs) has long been recognized as a key factor in variable 
ground-motion amplification and site response in sedimentary basins [16]. 

In general, borehole logging is considered the standard for obtaining Vs data, but 
drilling and logging to the depths generally required for earthquake ground-motion 
investigations is very expensive, and it is becoming increasingly problematic in heavi-
ly urbanized settings [17]. This has led to the development of numerous surface ac-
quisition methods to measure shallow Vs. Multichannel Analysis of Surface Waves 
(MASW) [18] is one of the most recently developed surface acquisition technique for 
determining shallow shear-wave velocity. The MASW method was originally devel-
oped as a land survey method to investigate the near-surface materials for their elastic 
properties: for example, Vs, by recording and analyzing Rayleigh-type surface waves 
using a vertical (impulsive) seismic source and receivers. The acquired data are first 
analyzed for dispersion characteristics and, from these the shear-wave velocity is 
estimated using an inversion technique. In land applications, the MASW method has 
been successfully applied to map 2D bedrock surface, zones of low strength, Pois-
son’s ratio, voids, as well as to generate VS profiles for various other geotechnical 
problems [19]. Unlike other seismic methods (e.g., reflection or refraction), acquisi-
tion parameters for MASW surveys have quite a wide range of tolerance. This is  
because the multichannel processing schemes employed in the wavefield transfor-
mation method have the capability to automatically account for such otherwise  
adverse effects as near-field, far-field, and spatial aliasing effects [18]. Stephenson  
et al. (2005)[17] conducted a blind comparison of MASW and ReMi results with four 
boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, Califor-
nia, to determine how closely these surface methods match the downhole measure-
ments. They suggested MASW and ReMi surface acquisition methods can both be 
appropriate choices for estimating shear wave velocity and can be complementary to 
each other in urban settings for hazards assessment. Also Park and Miller (2005) [19] 
successfully applied MASW method for seismic characterization of wind  
Turbine sites in Kansas.  

3 PSO Algorithm 

Particle swarm optimization (PSO) is a stochastic evolutionary computation technique 
for optimization in many different engineering fields, which is inspired by the social 
behavior of individuals (called particles) in groups in nature, such as a flock (swarm) 
of birds searching for food [20,21]. Particle swarm optimization may have some simi-
larities with genetic algorithms and ant algorithms, but it is much simpler because it 
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does not use mutation/crossover operators or pheromone. This algorithm searches the 
space of an objective function by adjusting the trajectories of individual agents, called 
particles, as these trajectories form piecewise paths in a quasi-stochastic manner [1]. 
The particles are moving towards promising regions of the search space by exploiting 
information springing from their own experience during the search, as well as the 
experience of other particles. For this purpose, a separate memory is used where each 
particle stores the best position (x ) it has ever visited in the search space. The best 
position of each particle experience comprised to other ones and then the best posi-
tion, which belongs to minimum of misfit function, selected as the global best g ). 
This procedure (i.e. finding x  , g ) repeated for certain iteration. Finally the best 
global g  is determined as the optimum solution. The movement of particles is sche-
matically represented in Figure 1.  

 
 
 
 
       
 
 

Fig. 1. Schematic representation of the motion of a particle in PSO 

 
Particle swarm consisted of a swarm of particles each moving or flying through the 

search space according to velocity update (Eq.1) [20]. In equation 1  and  are two 
random vectors, and each entry taking the values between 0 and 1. The Hadamard 
product of two matrices u  v is defined as the entry wise product. The parameters α 
and β are the learning parameters or acceleration constants, which can typically be 
taken as, say, α β 2 [1]. Also  is constriction factor[20]. The new position can 
then be updated by equation 2. Where  is the velocity of particle  in the th dimen-

sion,  is the new position of the particle  that update in its  th dimension using 
equation 2. 

 

                             1 2             (1) 

                                                                                                     (2) 

4 PSO for Inversion of MASW Method 

As the surface wave method has been drawing attention in recent days as one of the 
efficient tools to obtain shear-wave velocity of near-surface materials, diverse appli-
cation are made in various types of geotechnical projects. MASW as an active method 
using an artificial seismic source, like a sledgehammer, can often achieve the goal of 
Vs estimation down to a few tens of meters. But the inversion stage in processing of 
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MASW data is the most important issue to obtain a reliable near-surface Vs profile, 
because of its intrinsic nonlinearity and multi dimensionality. The recent geophysical 
literature includes many works on development and application of inversion tech-
niques but there are a few literatures that investigated the inversion of surface waves 
based methods by use of metaheuristic approaches. In this study we proposed new 
code using PSO algorithm to invert Rayleigh wave data for study of near surface. This 
code is easy and fast also allows the user to inclusion of a priori information on the 
different parameters. The root-mean-square (RMS) misfit between the observed and 
calculated value are defined as the object function (OBF) according to the following 
equation: 

 

                  
∑

                                        (3) 

 

Where n  is the number of samples,  v   is the observed velocity and  v   is the 
calculated velocity. 

Also figure 2 shows the pseudocode of PSO that used for inversion of MASW  
data. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Pseudocode of PSO for inversion of MASW data 

1. Swarm Initialization 
2. For i=1   to  number of particles do 
3.       for j=1 to number of dimensions do 
4.          Initial positions   and velocity  of particles 
5.          Copy   in  
6.       End for 
7. End for 
8. Search the best global leader and record its position in g   
9. For i=1 to number of particles do 
10.       For j=1 to number of dimensions do 
11.            Update   according to equation 1 
12.            Update  according to equation 2  
13.           Mutation 
14.       End for 
15.       Evaluate fitness    according to equation 3 
16.       If fitness ( ) < fitness ( ) 
17.           Then Update  
18.        End If 
19.  end for  
20. Search the best global leader and record its position in g  
21. While (loop_number< total _loop) 
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5 Synthetic Dataset  

The proposed method for inversion of MASW data was tested on a synthetic model. 
Typically, the model assumed for the interpretation of surface wave tests is a stack of 
homogeneous linear elastic layers over a half space. So, a synthetic model, three ho-
mogeneous layers overlying a half-space was investigated. Also the Vs and H selected 
for search space of algorithm, because the shear-wave velocity and layer thickness are 
two important parameters that influence the Rayleigh wave propagation. The particle 
and maximum of iteration number are 60 and 50 respectively. The Table 1 shows the 
model parameters and the search space of algorithm.  

Table 1. Parameters of the synthetic model and search space 

layer Vp(m/s) Vs(m/s) Poisson H(m) 
        search space 

Vs(m/s) H(m) 
1 450 300 0.45 3 150-450 1-5 

2 900 500 0.40 5 250- 750 2-7 
3 1600 700 0.25 7 350-1050 3-9 

4 2200 950 0.25 Half space       475-1425 - 

 
Table 2 shows the results of synthetic model inversion and the PSO parameters. Also 
the synthetic model (bold line) and mean estimate values (red points) are depicted in 
figure 3.   

Table 2. Mean model obtained from the  inversion of synthetic model 

PSO parameters 
Standard   
deviation 

Related 
Error (%) 

Estimated parameters 

1.3=α 
2.8=β 

0.729=    

38.12 8.0 276 Vs1(m/s) 

56.62 9.4 453 Vs2(m/s) 

96.11 4.7 667 Vs3(m/s) 

65.91 2.4 973 Vs4(m/s) 

0.43 10.0 2.7 H1(m) 

0.92 4.0 5.2 H2(m) 

1.22 1.4 7.1 H3(m) 
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Fig. 3. Synthetic Model (bold line) and mean estimated values (red points) 

6 Field Dataset  

To further explore the applicability of the PSO algorithm described above, MASW 
data acquired in the Tabriz city at the NW-Iran have been reanalyzed in the present 
study using a PSO approach. In this study MASW method was performed with using 
an OYO 12-channel seismograph and 4.5Hz geophones with a receiver spacing of 
4m. Also sledge-hammer (12kg) source with offset of 4m was used to generate the 
seismic signals. After obtained dispersion curve of study area Similar to the inverse 
strategy of the synthetic model, we considered Vs and thicknesses (H) of layer as 
variables. For evaluation of PSO inversion the obtained Vs profile was compared with 
the obtained Vs profile of downhole Seismic Surveys that there are near to study area. 
Table 3 shows the average velocity of borehole and average velocity that obtained by 
PSO inversion of MASW. The estimated Velocity by PSO algorithm shows a good 
correlation with downhole data.  
 

Table 3. Vs from MASW and borehole (Percent Difference from Borehole in Parentheses) 

Data 
Vs(m/s)       
(top 5m) 

 
Vs(m/s)  

(top 12m) 

 
Vs(m/s) 

(top 18m) 

 
Vs(m/s) 

(top 30m) 

borehole 351 459 543 725 

MASW 318 (-9) 510 (11) 590 (9) 761 (5) 
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7 Conclusions 

Shallow shear-wave velocity (Vs) has long been recognized as a key factor in variable 
ground-motion amplification and site response in sedimentary basins. It is an im-
portant parameter in building codes, and the earthquake engineering community wide-
ly uses Vs in design applications. Multichannel analysis of surface waves (MASW) is 
an active geophysical method that has been developed recently for determining shal-
low Vs. MASW Data processing consists of three steps: 1) preliminary detection of 
surface waves, 2)  extracting the signal dispersion curve, and 3) back-calculating Vs 
variation with depth. That this back-calculation is called inversion. But in processing 
of MASW, dispersion curve inversion is in fact a highly nonlinear and multimodal 
problem that severely challenges any inversion procedure. With the development of 
computer science, optimization algorithms fast and easier approaches can be conduct-
ed for inversion of geophysical data with high nonlinearity nature. In this study we 
introduced PSO algorithm as an efficient tool to invert MASW data. The coding for 
inversion of MASW data was done in Matlab. First the proposed inversion algorithm 
was tested on a synthetic data set. At the end, the proposed methodology to invert 
MASW data is applied in a case study at the part of Tabriz city in North-West of Iran 
for hazard assessment. The results of field dataset were in a good correlation with 
downhole seismic logging. The great advantages of PSO inversion algorithm are that 
it is fast and easy to implement and there are few parameters to adjust. Flexibility of 
implemented inversion algorithm is its trait. The results proved the ability and relia-
bility of a metaheuristic approach in inversion of active surface waves for achieving 
to a correct Vs model with an acceptable misfit and convergence speed.  
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Abstract. An adaptive variant of Comprehensive Learning Particle Swarm Op-
timizer (CLPSO) is proposed in this paper. The proposed method, called Fuzzy-
Controlled CLPSO (FC-CLPSO), uses a fuzzy controller to tune the probability 
learning, inertia weight and acceleration coefficient of each particle in the 
swarm. The FC-CLPSO is compared with CLPSO and SPSO2011 on 11 
benchmark functions. The results show that FC-CLPSO generally outperformed 
CLPSO and SPSO2011 on most of the tested functions. 

Keywords: Particle Swarm Optimization · Fuzzy Controller · Adaptation · 
Comprehensive Learning 

1 Introduction 

The Particle Swarm Optimizer (PSO) (Eberhart and Kennedy 1995) is a nature-
inspired metaheuristic which mimics the behavior of bird flocking and fish schooling. 
PSO is easy to understand and implement. In addition, it requires no gradient infor-
mation. PSO has been used to solve many real-world problems (Olsson 2011). 

In PSO, each particle represents a candidate solution, which is a point in a  
–dimensional space. A particle has a position, a velocity and a cost function. The 

velocity and position of the -th dimension of the -th particle are defined as, 
 

, 1  , , , , , ,  (1) 

, 1  , ,                                            (2) 

where  is the inertia weight,  and  are the acceleration coefficients, ,  and ,  
are two uniformly distributed random numbers in the interval [0,1] with 1,2, … , ,  1,2, … ,  and  is the swarm size.  is the position of the -th 
particle,   is the personal best position of the -th particle and  is the best position 
discovered by the swarm. 
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The basic PSO tends to converge prematurely in multi-modal functions due to poor 
diversity (Riget and Vesterstrøm 2002). A relatively recent variant of PSO was pro-
posed by Liang et al. (2006). The proposed variant, called Comprehensive Learning 
PSO (CLPSO), generally has a good balance between high and low diversity. Thus, it 
can cope well with multi-modal functions. However, CLPSO is not the best choice for 
solving unimodal problems due to its slow convergence (Liang et al. 2006).  

In this paper, a new adaptive variant of CLPSO is proposed. The proposed method, 
called Fuzzy-Controlled CLPSO (FC-CLPSO), uses a fuzzy controller to adapt the 
control parameters of CLPSO. FC-CLPSO is compared with CLPSO and the recent 
SPSO2011 (available at http://particleswarm.info) on 11 benchmark functions. 

Section 2 provides an overview of CLPSO. FC-CLPSO is introduced in Section 3. 
The experimental results are presented and discussed in Section 4. Section 5 conclud-
ed the paper.  

2 Comprehensive Learning Particle Swarm Optimizer 
(CLPSO) 

The Comprehensive Learning Particle Swarm Optimizer (CLPSO) (Liang et al. 2006) 
addresses the premature convergence problem of the basic PSO by allowing each 
particle to learn from the personal best position of other particles. Each dimension of 
a particle can potentially learn from the best experience of a different particle  
(referred to as an exemplar). Hence, the velocity updating equation is modified as 
follows, 
 

, 1  , , ,                        (3) 

where 1 , 2 , … ,  and  with 1,2, … ,  and  1,2, … , ;  defines which particle’s personal best position particle  should follow. ,  can be the corresponding component of any particle’s personal best position 
including the particle’s own personal best experience. To generate , , a random 
number is generated. If this number is greater than a learning probability, , this 
component (i.e. dimension) will learn from its own best experience, otherwise, it will 
learn from another particle’s personal best position.  If all examplars of a particle are 
its own personal best position, one component will be randomly chosen to learn from 
another particle’s personal best position. If a particle failed to improve itself for  
(known as the refreshing gap) consecutive iterations, new exemplars will be chosen 
for that particle. Liang et al. (2006) empirically determined that 7 is a good value for 

. The learning probabilities are computed using, 0.05 0.45  
                                           (4) 

According to Liang et al. (2006), different learning probabilities affect the explora-
tion/exploitation abilities of the particles. 
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3 Fuzzy Controlled CLPSO (FC-CLPSO) 

In the proposed method, each particle has its own learning probability, inertia weight 
and acceleration coefficient. A fuzzy controller is used to adapt these three control 
parameters (i.e. ,  and ). The controller takes the normalized rank of each parti-
cle as its input and generates three control parameters as outputs. The rank is deter-
mined by first sorting the swarm’s particles according to their cost function. The best 
particle (one with the smallest error) is given a rank of 1 (i.e. 1), while the worst 
particle (with the biggest error) is given a rank of  (i.e. ). The rank is then 
normalized to a value between 0 and 1 using,  1 11  

The normalized ranks are then assigned as membership grades in 3 fuzzy subsets as 
follows: LOW, MEDIUM and HIGH. The membership functions for ,  and  are 
also defined in a similar way. There are many alternative membership functions that 
can be used. In this study, a Gaussian curve membership function is chosen for the 
input and outputs of the fuzzy controller. Figure 1 shows these membership functions.  
 

 
a)  b)  

 
c)  d)   

Fig. 1. Membership functions for inputs and outputs 

The fuzzy rules of the fuzzy controller are defined as follows: 
 

IF  is LOW THEN  is HIGH AND  is HIGH AND  is HIGH 
IF  is MEDIUM THEN  is MEDIUM AND  is MEDIUM AND  is 
MEDIUM 
IF  is HIGH THEN  is LOW AND  is LOW AND  is LOW 
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The rationale behind the above rules is that if a particle has a low rank this means it 
has a low performance, thus, it needs to learn from other particles. This can be done 
by increasing its  and . Moreover, such a particle needs to focus more on explor-
ing the search space, hence, its  should be increased. On the other hand, best parti-
cles should focus more on exploitation (i.e. local search), thus,  should be  
decreased. Moreover, such particles do not need to learn often from other particles, 
hence,  and  should be decreased.  

The fuzzy controller is called whenever new exemplars are need for a particle (i.e. 
initially and when a particle failed to improve for  iterations). 

4 Experimental Results 

FC-CLPSO is compared with CLPSO and SPSO 2011. SPSO2011 is generally con-
sidered as an outstanding algorithm (Xiang et al. 2014). To test the performance of 
the different methods, 11 functions have been chosen:  

1. Six functions from the CEC’2008 Special Session and Competition on large-scale 
global optimization (Tang et al. 2007): 
(a) Unimodal functions: F1 – Shifted Sphere and F2 – Shifted Schwefel’s Problem 

2.21. 
(b) Multimodal functions: F3 – Shifted Rosenbrock, F4 – Shifted Rastrigin, F5 – 

Shifted Griewank and F6 – Shifted Ackley. 
2. Five functions from the ISDA’2009 test suite (Herrera and Lozano 2009): F7 - 

Schwefel’s Problem 2.22, F8 – Schwefel’s Problem 1.2, F9 – Extended f10  
(Whitley et al. 1995), F10 – Bohachevsky and F11 – Schaffer. All functions are 
unimodal functions. 

 
For all the benchmark functions: 

• Number of dimensions is 30. 
• Swarm size is 50. 
• Number of function evaluations (nfe) is 5000 . 
• The admissible error is 1.00e-4. 
• The number of independent runs is 30. 

To measure the effectiveness of a method we use two metrics: 

(1) The median of the best-of-run error, which is defined as the absolute 
difference between the best-of-the-run  value and the actual  
optimum   of a given function. 
err. = |  |  

(2) Success rate (SR): The number of successful runs, where a run is  
successful if err.  admissible error. 

 

All programs are implemented using MATLAB® version 8.1.0.604 (R2013a), and 
machine epsilon is 2.2204e-16. For the pseudo-random number generator (RNG) we 



 A Fuzzy-Controlled Comprehensive Learning Particle Swarm Optimizer 39 

have used the rand built-in function provided by MATLAB. This function implements 
the Mersenne-Twister RNG (Matsumoto and Nishimura 1998). We warmed the RNG 
by calling it 10,000 at the start of the program as suggested by Jones (2010). The non-
parametric Friedman’s test with  = 0.05 and the Dunn-Sidak correction as a post-hoc 
test have been used to compare the difference in performance of the different algo-
rithms. In this study, the Null Hypothesis, H0, states that there is no difference be-
tween the medians of errors of the different algorithms. 

Table 1 shows the median and SR of CLPSO, SPSO2011 and FC-CLPSO on the 
test functions. The statistically significant best solutions have been shown in bold. 
The results show that FC-CLPSO outperformed CLPSO on 8 functions while per-
forming equally well on the rest. There is no single function where CLPSO performed 
better than FC-CLPSO. On the other hand, FC-CLPSO outperformed SPSO2011 on 7 
functions while SPSO2011 performed better on two functions (i.e. F2 and F8). These 
two functions are unimodal functions. 

The total number of functions solved by FC-CLPSO is 5, while CLPSO and 
SPSO2011 solved 2 and 4 functions, respectively. 

Figure 2 shows the progress of the mean best errors found by CLPSO, SPSO2011 
and FC-CLPSO over 30 runs for selected functions. The figure shows that FC-CLPSO 
reached better solutions faster than the other methods while SPSO2011 prematurely 
converged on the four functions. 

In general, the results clearly shows that using the fuzzy controller to tune CLPSO’s 
parameters improve the performance of CLPSO on most of the benchmark functions. 

Table 1. Comparing CLPSO, SPSO2011 and FC-CLPSO on the test functions 

f 
CLPSO SPSO2011 FC-CLPSO  p-value 
Median SR Median  SR Median SR 

F1 
9.64e-05 93.3 9.60e-05 100 9.43e-05 100 0.3932 

F2 
1.16e+02 0 1.97e-01 0 7.79e+01 0 9.3576e-14 

F3 
1.89e+02 0 4.81e+02 0 1.15e+02 0 4.1186e-06 

F4 
8.50e+00 0 9.89e+01 0 2.99e+00 0 2.4603e-13 

F5 
7.48e-04 0 9.98e-05 53.3 9.75e-05 90 3.3633e-05 

F6 
1.17e-02 0 9.97e-05 66.7 9.84e-05 100 6.6018e-08 

F7 
1.75e-04 0 1.17e+00 0 9.80e-05 100 9.3576e-14 

F8 
1.86e+03 0 8.58e+01 0 1.99e+02 0 1.3924e-12 

F9 
4.13e+00 0 6.02e+01 0 1.44e-01 0 9.3576e-14 

F10 
8.38e-05 100 9.40e-05 80 8.74e-05 100 0.0718 

F11 
3.98e+00 0 6.47e+01 0 1.02e-01 0 9.3576e-14 
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(a) F4 
(b) F6 

  

(c) F9 
(d) F11 

Fig. 2. Mean best error curves of CLPSO, SPSO2011 and FC-CLPSO for selected functions 

5 Conclusions 

A fuzzy-controlled CLPSO was proposed and compared with CLPSO and SPSO2011. 
The results showed that using a fuzzy controller to tune the probability learning, iner-
tia weight and acceleration coefficient of each particle significantly improved the 
performance of CLPSO. Future work will investigate the proposed approach on more 
benchmark functions and some real-world problems. Moreover, comparison with 
other state-of-the-art methods will be conducted.  
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Abstract. With the fast development of information technology and
increasingly prominent environmental problems, building comfort and
energy management become the major tasks for an intelligent residen-
tial building system. According to statistical studies, people spend 80%
of their lives in buildings. Hence it is not surprising that they constantly
seek to improve comfort in their living spaces. This paper presents a
fuzzy logic controller optimized by an artificial immune system algo-
rithm aimed at maintaining the thermal comfort while reducing energy
consumption. The experimental results show the advantages of our sys-
tem compared with the widely used baseline: On/Off control approach.

Keywords: Energy · Fuzzy system · Artificial immune system · Opti-
mization

1 Introduction

According to statistical studies, people spend 80% of their lives in buildings.
This explains why occupants constantly seek to improve comfort in their living
spaces. In addition, environmental issues have drawn more and more attention.
How to manage energy in a proper way to improve energy efficiency and reduce
pollution is a subject of uttermost importance. Meanwhile, the popularization
of the concept of home office makes the productivity in residential buildings
economically significant.

Among all indoor comfort factors, thermal comfort attracts our special atten-
tion. According to [1], thermal comfort is the condition of mind which expresses
satisfaction with the thermal environment. This definition leaves open what is
meant by condition of mind or satisfaction, which implies that the judgement of
comfort is a cognitive process involving many inputs including physical, physio-
logical, psychological and other processes. Despite not being the only affecting
factor, indoor temperature has physically major influence on occupants’ feeling
comfort. In real world, the operative temperature intervals vary with building
location and type. ISO-7730 suggests temperature ranges in different types of
buildings and different environmental conditions. For example, for residential

c© Springer International Publishing Switzerland 2014
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buildings of category B in summer, the suggested temperature range is from
23.0◦C to 26.0◦C, while it is between 20.0◦C and 24.0◦C in winter [1].

So far, most Heating, Ventilation and Air Conditioning (HVAC) systems for
residential buildings usually employ a single-zone, On/Off control method which
is rather simplistic [2]. Corresponding to the increasing demands for environ-
ment, energy, comfort and productivity, intelligent control methods are applied
for improving thermal conditions in residential buildings [3,4]. Fuzzy control
[5] is another type of intelligent control method. Comparing with classical ones,
especially like Proportional Integral Derivative control (PID) that is widely used
in industrial process control [6,7] due to its simplicity of structure, low-price,
relative effectiveness and the familiarity of engineers, but cannot provide good
enough performance in highly complex process controlling, fuzzy control can the-
oretically cope with complex processes [8] and is able to combine the advantages
of PID control with human operator experience.

In this work, we first investigate the thermal dynamics of a building. Then a
fuzzy control scheme with a meta-heuristic optimization algorithm called CLON-
ALG, is proposed for the heating system of a residential building. This control
system can make intelligent decisions of what magnitude of power the physical
heating system should adopt at each time step based on the present indoor and
outdoor temperatures. Due to empirical picking of fuzzy parameters initially,
the target of CLONALG is to optimize these parameters to improve the perfor-
mance of the fuzzy control system. The remainder of this paper is organized as
follows. Section 2 describes the mathematical building thermal model. Section 3
presents the fuzzy controller used to control the heating system. Section 4 pro-
vides details about CLONALG algorithm. Section 5 explains the system design
and formalizes the fuzzy system optimization process. Experimental results and
analysis are given in Section 6. Finally, we conclude in Section 7.

2 Building Thermal Model

The room temperature is affected not only by auxiliary heating/cooling systems
and electric appliances, but also by the solar radiation and the outside temper-
ature. According to Achterbosch et al.[9], the heat balance of a building can be
expressed as

φh(t) + φs(t) = φt(t) + φc(t) (1)

where φh is the heat supplied by all internal heat sources; φs is the heat gained
by solar radiation; φt is the heat loss through external contact; φc is the heat
retained by the building.

The thermal system of the building can be expressed by Equations (2) - (6):

dTw

dt
=

Aw

Cw

[
Uwi(Tai − Tw) + Uwo(Tao − Tw)

]
(2)

dTf

dt
=

Af

Cf

[
pQs

Af
+ Uf (Tai − Tf )

]
(3)
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dTc

dt
=

Ac

Cc

[
Uc(Tai − Tc)

]
(4)

dTip

dt
=

Aip

Cip

[
(1 − p)Qs

Aip
+ Uip(Tai − Tip)

]
(5)

dTai

dt
=

1
Cai

[
Qp + Qe + (AgUg + Uv)(Tao − Tai)

+AwUwi(Tw − Tai) + AfUf (Tf − Tai)

+AcUc(Tc − Tai) + AipUip(Tip − Tai)
]

(6)

In above equations: Qe is the heat gained by using electrical equipments, Qs

is the solar radiation through glazing, Qp is the heat supplied by the heating
system, Tao is the outside air temperature, Tai is the inside air temperature,
U is the thermal transmittance, C is the thermal capacitance, A is the area of
the component, p is the fraction of solar radiation entering floor, and w, ip, f, c
means external wall, internal partition, floor and ceiling respectively.

The area of each component is known after choosing the physical building
model, and the properties of different building materials can be obtained from
ASHRAE Handbook [10].

3 Fuzzy Logic Controller

Fuzzy Logic Controllers (FLC) have gained more and more prominence in recent
years because of its ability to control devices which imitate the decision making
of human being. Moreover, a FLC is efficient to cope with continuous states
with the help of membership function (MF) and IF-THEN rules. In general, a
FLC contains four parts: fuzzifier, rules, inference engine and defuzzifier. Firstly,
a crisp set of input data is gathered and converted to a fuzzy set using fuzzy
linguistic variables, fuzzy linguistic terms and membership functions. This step
is known as fuzzification. Afterwards, an inference is made based on a set of
rules. Lastly, the resulting fuzzy output is mapped to a crisp output using the
MFs in the defuzzification step.

Specifically, in aforementioned building model the inputs include 4 elements:
Qp, Qe, Qs and Tao and in order to simplify the problem, let’s assume that Qe

and Qs are both constant. Tao can be simulated by using former weather data.
Hence, the variable we need to control by our FLC is Qp, which is the input of the
building model but the output of the FLC. We define eTai as the error between
the indoor temperature Tai and the setpoint Tset, and eTao as the error between
the outdoor temperature Tao and Tset. Setpoint is the comfortable temperature
that occupants prefer. To set the input variable(s) of the FLC there are two
options: one is to consider eTai solely, like common air-condition, which is naive
but still possible; the other one is to take eTai and eTao into account together,
which gathers more information and therefore performs better. In our study,
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we prefer the latter. Therefore, we have two input variables, eTai and eTao
separately and one output variable, Qp.

In practice, there are different forms of MFs such as triangular, trapezoidal,
piecewise linear, Gaussian, singleton, etc. They are curves which define how
each crisp input point is mapped to a degree of membership between 0 and
1. Actually, these functions can be arbitrary curves whose shapes suit us from
the point of view of simplicity, convenience, speed or efficiency under the only
condition of their value between 0 and 1. In our study we capitalize on the
Gaussian symmetrical function (GMF), Z-shape function (ZMF) and S-shape
function (SMF) [11] because of their smoothness and concise notation that each
of them can be defined by two parameters. Each fuzzy linguistic variable is
expressed by three MFs, namely negative, zero and positive.

In fact, choosing MF types is not a tough job which is often out of empirical
analysis. However, it is difficult to choose optimal fuzzy parameters for these
MFs to design an optimal FLC. Usually people do this empirically too. In this
study, we will use an AIS algorithm to find a near optimal set of parameters
for the FLC. The proposed method involves arbitrarily picking an initial set of
parameters and then finding a set of near optimal parameters by shifting the
peak locations and tuning the deviations of fuzzy sets of antecedent MFs and
consequent MF. We will discuss how to implement it in detail in Section 5.

4 Artificial Immune System Architecture

It has been proved that the human adaptive immune system possesses three
capabilities: recognition, adaptation and memory [12]. When the human body
is invaded by a specific pathogen or antigen, it will be recognized and bound
by specific immunoglobulins or antibodies, which are secreted by B cells, to be
tagged for attack by other part of the immune system or neutralised to death.

Figure 1 shows the antigen recognition and clonal selection process. An anti-
body, Ab, can recognize and bind an antigen, Ag, when Ab matches the structure
of Ag. The regions of the antibodies that match the antigens are called paratopes,
while the counterpart regions of the antigens are called epitopes. In this figure,
Ab1 can match Ag1 but not Ag2, while Ab2 can neither match Ag1 nor Ag2,
so Ab1 has higher affinity than Ab2 for encountering antigens. Higher affin-
ity means higher probability of being selected and higher strength of clone and
mutation. By continuous cloning and mutating existing ones, new generation of
antibodies will be produced and among them new types of antibodies which may
better match existing or new antigens are generated, for example Ab1’ which
can match both Ag1 and Ag2. This presents the adaptation capability of the
immune system. Even if all antigens are destroyed, some relevant B cells will
differentiate into memory cells. Therefore, if the same antigens reappear, the
immune response will act sooner.

Inspired by the properties of human immune system, a variety of algorithms,
such as Negative Selection, Clonal Selection, Immune Networks, and Dendritic
Cell, have been designed to tackle different problems. The CLONALG algorithm
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Fig. 1. Antigen Recognition, Clone and Mutation of Antibody

[12], which belongs to Clonal Selection, we use to search the near optimal fuzzy
parameters for the FLC is described below:

(1) Generate a set (P) of candidate solutions, composed of the subset of memory
cells (M) added to the remaining (Pr) population (P = Pr + M);

(2) Determine (Select) the n best individuals of the population (Pn), based on
an affinity measure;

(3) Reproduce (Clone) these n best individuals of the population, giving rise to a
temporary population of clones (C). The clone size is an increasing function
of the affinity with the antigen;

(4) Submit the population of clones to a hypermutation scheme, where the
hypermutation is proportional to the affinity of the antibody with the anti-
gen. A maturated antibody population is generated (C*);

(5) Re-select the improved individuals from C* to compose the memory set M.
Some members of P can be replaced by other improved members of C*;

(6) Replace d antibodies by novel ones (diversity introduction). The lower affin-
ity cells have higher probabilities of being replaced.

5 System Design and Optimization

Based on the aforementioned model and technique, in this section we discuss the
system design and the optimization of the fuzzy system. At every certain time
interval, the thermal sensors of the building can record indoor and outdoor tem-
peratures and sent them as inputs to the fuzzy controller. According to the MFs
and rules of the fuzzy controller, after the fuzzifier-inference-defuzzifier process
the physical heating appliance in the building will be notified a magnitude of
heating power. Because the MFs defined empirically can not perform very well,
therefore optimizing the fuzzy controller is a must step and this is the target
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of the artificial immune system, which in this application is a meta-heuristic
algorithm named CLONALG. For the reason that the variation of outdoor tem-
perature is continuous and rather slow, we can capitalize on a specific sinusoidal
curve to simulate one day’s outdoor temperature variation, and use CLONALG
to tune fuzzy controller to make good decisions for general real-time weather
situations.

Now we move on to this optimization problem formalization. Assume that
there are m input variables [x1, x2, ..., xm] and one output variable y. The total
number of fuzzy sets N is calculated as follows: N =

∑m
i=1 ni + no, where

m is the number of input variables, ni and no are the number of fuzzy sets
for ith linguistic input variable and the linguistic output variable. A set P
with size of 2N contains the peak location and deviation of every fuzzy set,
that is: P = [μin,σin,μout,σout], where μin = [μ1

1, μ
1
2, ..., μ

1
n1

, ..., μi
ni

], σin =
[σ1

1 , σ
1
2 , ..., σ

1
n1

, ..., σi
ni

], μout = [μo
1, ..., μ

o
no

], and σout = [σo
1, ..., σ

o
no

], for all i =
1, 2, ...,m. The objective of the method is to minimize the difference between
the inference output y and the desired output y∗, in our case are controlled
Qp and desired Qp separately, with respect to P : C = minP (y − y∗)2, where:
y = f(x1, x2, ..., xm, P ), and y∗ = f(x1, x2, ..., xm). We can see that the objective
function C depends not only on P but also the inputs. In order to eliminate
the dependence of the inputs, we use the Root Mean Square Error (RMSE),

such that: RMSE(y) =
√

E((yt − y∗
t )2) =

√∑T
t=1(yt−y∗

t )
2

T , where T is the num-
ber of points of the whole trajectory. Therefore the objective function becomes:

C = minP

[
α

√∑T
t=1(yt−y∗

t )
2

T

]
. All else being known, at a time t indoor temper-

ature only depends on the output power of the heating system (we can see this
in Equation (6)). Therefore at every time t, indoor temperature is a function of
the output power of the heating system, recorded as: T t

ai = gt(Qt
p). Moreover,

because gt(·) is linearly monotonically increasing, the final objective function

can be expressed as follows: C = minP

[
α

√∑T
t=1(g

t(yt)−gt(y∗
t ))

2

T

]
. Hence, after

the minimization process, the FLC with fuzzy parameters in P is optimized.

6 Experiments

We first empirically pick μ and σ for all MFs of input and output variables.
Then these parameters are optimized by CLONALG. Due to CLONALG can
not guarantee to obtain optimal values, we run CLONALG for 30 times and
take their mean values as near-optimal parameters for the fuzzy controller: μin =
[0,−0.4, 0, 0,−0.54, 0], σin = [−0.61, 0.1, 0.508,−6.952, 5.333, 6.426], μout =
[22, 18, 22], and σout = [10.89, 1.889, 26.24]. In Figure 2(a), actual recorded
weather data obtained from EERE [13] is used as the outdoor air tempera-
ture, which is depicted by a dashed blue line. From the simulation result, it
can be found that during this period, the indoor temperature, which is delin-
eated by a green line, is able to be kept at 22◦C. Even during the first three
days’ extremely cold weather, the indoor temperature is retained at the setpoint.
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(b) Amplification of Tai
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0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Time (Min)

E
n
e
rg

y
 (

k
W

-h
r)

Accumulated Energy Consumption Comparison

Optimized Fuzzy

Off/On

(d) Energy Comparison

Fig. 2. Experimental Results

Figure 2(b) shows the amplification of the room temperature, and one can see
that the variation of this temperature is almost within ±0.01◦C. Moreover, the
simulation result with On/Off control is described in Figure 2(c). For this con-
trol method, the heating system turns on when the room temperature is below
20◦C, while it turns off when above 24◦C. In order to keep a comfort tempera-
ture, the heating system has to turn on and off frequently, which will jeopardize
the physical system and reduce its service life. Finally, the accumulated energy
consumption comparison between the optimized FLC and the On/Off control is
shown in Figure 2(d). We can see that compared with the On/Off control which
uses 3830 kW · hr in total, the optimized FLC uses 2742 kW · hr in total, so
that it consumes 1088 kW · hr less energy.

7 Conclusion

This paper has presented a fuzzy logic controller optimized by an artificial
immune system algorithm to keep thermal comfort while consuming less energy
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in residential buildings. The experimental results show that by employing this
controller, the indoor temperature can be more stable and thus more comfortable
than the classical On/Off control and consumes less energy. However, the work
conducted here is still a preliminary step towards a completely autonomous
HVAC system. In future work, the comparison with other optimization algo-
rithms like PSO will be made. Furthermore, other systems such as a lighting
system and a ventilation system, will be taken into account together. Certainly
this is also a good application for multi-agent paradigm. Based on the multi-
agent framework, agent-to-agent communication, cooperation and coordination
can be employed to provide a more comfortable residential environment and
consume less energy.
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Abstract. In this work, we deal with a class of problems of trajec-
tory planning taking into account the smoothness of the trajectory. We
assume that we have a set of positions in which the robot must pass.
These positions are not assigned in the time axis. In this work, we pro-
pose a formulation of this problem, where the total length of the trajec-
tory and the total time to move from the initial to the final position are
minimized simultaneously. In order to ensure effective results and avoid
abrupt movement, we should ensure the smoothness of the trajectory not
only at the position level but also at the velocity and the acceleration lev-
els. Thus, the position function must be at least two times differentiable.
In our case, we use a polynomial function. We formulate this problem
as a constraint optimization problem. To resolve it, we adapt the usual
particle swarm algorithm to our problem and we show its efficiency by
simulation.

Keywords: Trajectory planning · Smooth trajectory · Particle swarm
optimization

1 Introduction

In the recent years, optimization techniques are largely applied to deal with the
problem of trajectory planning. Indeed, in many applications in industries, this
problem became more and more difficult because of the robot’s environment
which is very constrained and other factors to take into account like the energy
consumption, the smoothness of trajectory, etc. That is why the use of the opti-
mization became necessary to find an optimal solution and to satisfy all these
factors. Thus, many techniques were developed [1–3].

In the problem of trajectory planning, many contexts can be defined. Indeed,
according to the kind of the robot, some researchers were interested by trajec-
tory planning for mobile robot [4,5], others for manipulators (redundant or not
redundant)[6–8]. Adding to this, many points can be treated like obstacle avoid-
ance, smoothness of the result trajectory, kinematic and dynamic constraints,
etc. The result of the developed techniques in this field were the whole trajectory
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for the robot or only a set of configurations in which the robot must pass. In the
last case, the smoothness is not treated.

One of the problems treated in trajectory planning is the smoothness of tra-
jectory. This aspect of the result is important because it allows to the robot to
move without abrupt movements. Thus, the mechanical structure of the robot
and the actuators will be preserved. Some researchers were interested especially
by this aspect. Thus, they did not deal with the whole of the trajectory planning
problem but only with the smoothness of the result trajectory. So, the problem
of trajectory planning became a problem of interpolation. Many techniques were
developed like the use of cubic spline [9], B-splines [10,11], trigonometric func-
tions [12,13], etc. The use of trigonometric functions is interesting in the sense
that guarantees a smooth curves even at the acceleration level. Indeed, to ensure
a good movement of the robot, we must ensure a smooth curve at the position,
the velocity and the acceleration levels. If the control points (nodes to interpo-
late) are near, the interpolation becomes more difficult. In this case, the use of
techniques based on polynomial functions like the cubic spline is more interest-
ing. Indeed, with these functions, it is easier to modify the available data. The
common points of all these techniques is that to apply them, we need the avail-
able data to be in two dimensions (in general position versus time). However,
some results of trajectory planning were only in one dimension. In this case, we
can not apply directly the classical method to find the whole trajectory. In this
work, we were interested by this kind of methods. We proposed a formulation of
this problem and a technique to resolve it.

The rest of the paper is structured as follows : the section 2 gives more
details about the problem treated and its formulation. The section 3 shows the
technique used to resolve the problem. The section 4 shows the simulation results.
We conclude this paper in section 5.

2 Problem Statement

As mentioned before, there are a lot of techniques to deal with the problem
of trajectory planning. Some of them give the whole trajectory. Thus, we have
the variation of the position versus time. Other techniques give only a set of
configurations in which the robot must pass. Thus, we do not have the variation
of the position versus time. Adding to this, the data are represented only in one
dimension. Indeed, some works give only a set of positions like in [14–16]. In
this case, we can not apply the classical methods of interpolation. So, the result
is not complete in the sense that we do not have the total time to move from
the initial to the final position and the smoothness of the result curves is not
ensured. In this work, we were interested by this kind of methods and we propose
a technique to complete these results. In order to have a smooth movement for
the robot, we must ensure a smooth trajectory at the acceleration level. As the
available data are represented in one dimension, we can not use directly the
classical method. So, we can assign to each position a value on the time axis
and after that, apply the classical methods or compute simultaneously the time
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values and the whole curves. We chose the second way because the criteria that
we defined were related. We chose to use polynomial functions because it is easier
to modify the available data.

2.1 Fourth Order Polynomial Function

In order to ensure a smooth curve at the acceleration level, we should use at least
a fourth order polynomial function. This point is guaranteed by all trigonometric
functions. We use polynomial functions because it is easier to modify the data.
Indeed, if the control points are near, it is more difficult to interpolate. With the
polynomial functions, we multiply the original data by a factor and at the end,
we divide the result by the same factor. Thus, we use a fourth order polynomial
function to interconnect each pair of successive knots. The figure 1 shows the
use of these functions : Pi(t) and Pi+1(t) are fourth order polynomial functions.

Fig. 1. The use of the fourth order polynomial function

Pi(t) = ai
0 + ai

1 · t + ai
2 · t2 + ai

3 · t3 + ai
4 · t4

Pi+1(t) = ai+1
0 + ai+1

1 · t + ai+1
2 · t2 + ai+1

3 · t3 + ai+1
4 · t4

According to the representation in the above figure, we have at the beginning
only the values of Xi, Xi+1 and Xi+2. Our goal is to associate to these values,
the best values on the time axis and to determine the coefficients of the functions
Pi and Pi+1 in order to have smooth movements while moving from one point
to another.
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2.2 Criteria

In the proposed formulation, we use three criteria. The first one is used to min-
imize the total time to move from the initial to the final position, its expression
is :

F1 =
N−1∑

i=1

h2
i (1)

Where
hi = Ti+1 − Ti

With N is the total number of control points . hi is the time between two suc-
cessive control points (figure 1).

To minimize the joints travelling distance, we use the next criterion:

F2 =
N−1∑

i=1

q̇2i (2)

With q̇i is the angular velocity (joint velocity). In fact, for a function y = g(x)
the curve length is defined by Eq.3 and, consequently, the simplified expression
in Eq.4 is adopted to minimize the curve length distance:

∫ [
1 +

(
dg

dx

)2
]

dx (3)

∫ (
dg

dx

)2

=
∫

ġ2dx (4)

The last criterion is used to minimize the ripple in the time evolution of the
robot trajectory, its expression is:

F3 =
N−1∑

i=1

q̈2i (5)

With q̈i is the angular acceleration (joint acceleration).

2.3 Constraints

The constraints used in our formulation are the continuity at the position, the
velocity and the acceleration. According to the figure 1, the constraints are:

Pi(Ti+1) = Pi+1(Ti+1)

q̇i(Ti+1) = q̇i+1(Ti+1)

q̈i(Ti+1) = q̈i+1(Ti+1)
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P , q̇, q̈ represent the curves of the position, the velocity and the acceleration
respectively. To ensure that the curve of position passes as close to the knots,
we define an inequality constraint for each knot. For instance, for the knot with
the value Xi, we have:

|Pi(Ti) − Xi| ≤ R

With a very small value of R. In adding these constraints, we have the initial
and the final conditions.

2.4 Formulation

Using the criteria 1, 2, 5 and the constraints described before, the formulation
of the problem is:

min F = α · F1 + β · F2 + γ · F3 (6)

subject to
{

Continuity conditions
Initial and final conditions

With α, β, γ are weighting parameters. α + β + γ = 1.

3 Problem Resolution

The proposed formulation is very constrained and its complexity increases with
the number of knots (control points). Indeed, if we have many knots, the number
of constraints increases and it will be difficult to satisfy all of them. That is why
we chose to use a population based metaheuristic.

3.1 Particle Swarm Optimization

Particle swarm optimization is a stochastic population based metaheuristic
inspired by social behavior patterns of organisms that live and interact within
groups. In particular, it incorporates swarming behaviors observed in flocks of
birds, schools of fishes, or swarms of bees, and even human social behavior, from
which the swarm intelligence paradigm has emerged [17]. The based model of
particle swarm consists of a swarm of particles, which are initialised with a pop-
ulation of random candidate solutions. They move iteratively in the search space
to find a new solution. Each particle has a position represented by a position
vector xi (i is the index of the particle), and a velocity represented by a velocity
vector vi. Each particle remembers its own best position so far in a vector pi.
The best position vector among the swarm so far is then stored in a vector pg.
During the iteration time t, the update of the velocity from the previous velocity
to the new velocity is determined in Eq.7 . The new position is then determined
by the sum of the previous position and the new velocity according to Eq.8 :

vi(t + 1) = w.vi(t) + c1.r1.(pi(t) − xi(t)) + c2.r2.(pg(t) − xi(t)) (7)
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xi(t + 1) = xi(t) + vi(t + 1) (8)

Where c1 is a positive constant, called coefficient of the self-recognition compo-
nent, c2 is a positive constant, called coefficient of the social component. r1 and
r2 are random numbers in the interval [0,1]. The variable w is called the inertia
factor, of which value is in the interval [0,1].

3.2 Particles Size

The size of particles depends on the numbers of knots that we take at the begin-
ning. For instance and according to the case represented in the figure 1, the
particle is represented in the figure 2:

Fig. 2. Representation of the particle

4 Simulation

To test the proposed method, we took three values of angular position. We fixed
the parameters of the algorithm according to the convergence analysis done in
[18], this choice is represented in table 1:

Table 1. Fitting of algorithm parameters

Parameters Values
Population size 100
Iteration number 300000
coefficient w 0.729
c1 = c2 1.494

We use the maximum of iterations number as condition to stop the algorithm.
The whole population is initialized randomly. At each iteration, the algorithm
provides a solution in which the values of time and the coefficients are found
simultaneously. We take R = 0.08, the initial and the final conditions are equal
to zero for both velocity and acceleration.
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Fig. 4. Angular velocity

The result is illustrated in the figures 3, 4 and 5. In this case, we take the
weighting parameters α = 0.35, β = 0.35, γ = 0.3 for the objective function.

At the position level, we can say globally that we obtain a smooth trajectory
and the result curve passes near the defined knots which are represented by a
small black circle.

At the velocity level, we obtain a smooth curve. We also remark that we
respect the initial and final conditions.

At the acceleration level, we remark that we respect the initial and final
conditions, we obtain a smooth curve globally.

The results in the above figures present one case with an arbitrary choice of the
weighting parameters. Thus, we can obtain other curves with other parameters. In
real applications, we have a limitation in velocity and acceleration that we do not
exceed. So, we can manipulate the weighting parameters in order to respect these
limitations. For instance, we show the result of mean of velocity for two arbitrary
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Fig. 6. Mean of velocity

choices of the weighting parameters. As we use stochastic parameters, we run the
algorithm fifty times. the results are represented in figure 6 :

According to the results presented in figure 6, we have 36 % of the test
results in which we have high mean of velocity for the weighting parameters
α = 0.35, β = 0.35, γ = 0.3 compared to those obtained with the weighting
parameters α = 0.15, β = 0.55, γ = 0.3. This result can be explained by the
fact that in the second case, we increase the value of β. Thus, we give more
importance to minimize the velocity.

With this kind of test, we can have an idea about the choice of the weighting
parameters in order to respect the limitation in velocity or in acceleration.
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5 Conclusion

In this work, we deal with a class of problems of trajectory planning. We propose
a formulation to this problem in order to ensure the smoothness of the result
trajectory. This formulation is based on the use of fourth polynomial function
which are twice differentiable. The complexity of the proposed formulation is that
we search simultaneously to assign a value on the time axis to each predefined
position and smooth curve. Thus, for each new value on the time axis, all the
result curves change, which causes great difficulties to find the best combination
of them. We use particle swarm optimization algorithm to solve the problem.
Simulations results show the effectiveness of this metaheuristic. However, we
need a high number of iterations to obtain a good result.
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Abstract. The Graphics-Processing-Unit (GPU) became one of the
main platforms to design massively parallel metaheuristics. This advance
is due to the highly parallel architecture of GPU and especially thanks
to the publication of languages like CUDA. In this paper, we deal with
a multi-level parallel hybrid Ant System (AS) to solve the Travelling
Salesman Problem (TSP). This multi-level is represented by two par-
allel platforms. The first one is the GPU, this platform is used for the
parallelization of tasks, data, solution and neighborhood-structure. The
second platform is the MPI which is dedicated to the parallelization of
programs. Our contribution is to use these two platforms to design a
hybrid AS with a Local Search and a new heuristic.

Keywords: Parallel hybrid metaheuristics · TSP · GPU · MPI

1 Introduction

Hybrid metaheuristics [1][2][3] are one of the most efficient classes of algorithms.
The idea is to combine metaheuristics [4] and other techniques for optimiza-
tion. With the combination of different techniques, these methods can require a
longer computation time than others. This is one of the reasons that lead the
community to propose parallel hybrid metaheuristics [5]. Another reason is the
evolution of highly parallel architectures like the GPU. This evolution is due to
the explosion of the industry of video games and his greedy demand for graphic
power. Indeed, with the advent of CUDA, the use of GPU for non-graphic appli-
cations has become easier and hybrid metaheuristics have taken advantage of this
evolution.

There are many levels of parallelization. For the Ant Colony Optimization
(ACO) [6] applied to the TSP in the context of a single colony, the parallel exe-
cution of ants in the tour construction phase was initiated by Bullnheimer et al.
[7]. Also in this same context, in 2013, Cecilia et al. [8] used the data paralleliza-
tion in the update of pheromone to get the best performance from the GPU. In
the context of multiple colonies, Stutzle [9] introduced the execution of multiple
colonies in parallel with cooperation between colonies to improve the quality
of solutions using the parallelization of programs. In CUDA programming, the
execution on GPU is conducted by the kernel. It is a code called from the CPU

c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 60–67, 2014.
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(the host) and duplicated on GPU (the device) to run in a parallel way. The
kernel is executed in a grid, which is a set of blocks where every block is a set of
threads.

In this work, we propose a hybrid ACO through one of the first variant of this
method named the Ant System (AS) [10]. Our first contribution is to propose a
new design for AS multi-colonies using GPU and MPI and the second contribu-
tion is to hybridize this method with a parallel local search (PLS) providing the
intensification of the search and a new heuristic to improve results.

The rest of the paper is organized as follows. In section 2, we introduce
the background needed for ACO and TSP to help the understanding of this
proposition. We describe in section 3 the design of our multi-level parallel hybrid
AS before we discuss the results of our experimentation in section 4. Finally, in
section 5, we conclude the paper and we propose some perspective.

2 Background

The TSP is an NP-hard problem and one of the most studied combinatorial
problems. It consists in finding the least-cost Hamiltonian circuit between a
set of cities starting and ending with the same city. In general, TSP can be
represented by a complete undirected graph G = (V, E). The set V= {1, . . . , n}
is the vertex set, E={(i, j) : i, j ∈ V, i < j} is an edge set. cij is defined on E as
the Euclidean distance between two vertices i and j.

Intuitively in the natural behaviors, the ants search the food randomly in
the first tour construction. They move from one point to another until they find
food. Once it is done, ants get back to the starting point. This corresponds to
the initialization. In the search process, ants depose pheromone along the path
they take. The quantity of pheromone is implemented by equation (1):

τij = τij +
N∑

k=1

Δτk
ij ∀(i, j) ∈ E (1)

where Δτk
ij is the sum of pheromone which ant k deposits when it uses the edge

between i and j. It depends on the length of the tour Ck constructed by the ant
k; Δτk

ij is defined in equation (2):

Δτk
ij =

1
Ck

(2)

Another characteristic of the pheromone in the natural behavior is the evapo-
ration: the pheromone evaporates over time. This characteristic is implemented
with a parameter 0 < ρ ≤ 1 in equation (3):

τij = (1 − ρ)τij , ∀(i, j) ∈ E (3)

The second step is the tour construction. In the natural behaviors, the ants
follow the pheromone to find the best tour. To implement this concept, a prob-
ability is defined in equation (4) where nij = 1

cij
, α and β are parameters and

Nk
i is feasible neighborhood. A complete survey on ACO can be found in [6].
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Δpk
ij =

[τij ]α[nij ]β∑
l∈Nk

i
[τil]α[nil]β

(4)

3 Design of the Parallel Hybrid ACO

The most straightforward way to design parallel AS or ACO in general is the par-
allelization of ants. This kind of parallelization is called the task parallelization
and this is our first parallel level. The idea is very simple and used in most of the
parallel ACO algorithms. Every ant is represented by a thread and every thread
performs the tour construction in parallel with other ants. Inside the kernel, the
ant chooses the next city to visit among the cities not selected yet and according
to the probability computed by equation (4). The CURAND library allows the
generation of a different random tour for every ant. The classical roulette wheel
is used to select the next city to visit.

For the pheromone update part(see equation 1), using task parallelization can
lead to concurrent access problems, i.e. if several ants update the pheromone of
the same arc at the same time. The only solution in this case is to use atomic
instructions but it decreases dramatically the performance. Hence, we are rather
using data parallelism proposed by [8].

The level of data parallelization is used for the kernel of Update pheromone
(see algorithm 1), the Evaporation pheromone (see algorithm 2) and the Update
probability (see algorithm 3).

Algorithm 1. The Update pheromone kernel:
1: Input : Pants: the population of ants; fants: the fitness of ants; pheromone:

the matrix of pheromone; cities: the size of the instance; ants: the size of the
population;

2: Get the index of the thread idx; /*each idx represent one couple of cities*/
3: for i:=1 to ants do
4: distance = fants[i];
5: for j:=1 to cities do
6: if the arc between i and j == idx then
7: pheromone[idx]=pheromone[idx]+( 1

distance
);

8: end if
9: end for
10: end for

Algorithm 2. The Evaporate pheromone kernel:
1: Input : pheromone: the matrix of pheromone;
2: Get the index of the thread idx; /*each idx represent one couple of cities*/
3: pheromone[idx]=(1-ρ) × pheromone[idx];
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Algorithm 3. The Update probability kernel:
1: Input : pheromone: the matrix of pheromone; probabilities: the matrix of prob-

abilities; cij: the matrix of distances; cities: the size of the instance;
2: Get the index of the thread idx; /*each idx represent one couple of cities*/
3: /*control if the cities of the couple are the same*/
4: if cij[idx] �= 0 then
5: arc = (pheromone[idx])α × ( 1

cij[idx]
)β

6: all = 0
7: position = � idx

cities
� /*Get the position of the couple in the matrix*/

8: /*when j=position, cij[(position × cities)+j]=0*/
9: for j ∈ {0, 1, . . . , position − 1, position + 1, . . . , cities} do
10: all += (pheromone[(position × cities) + j])α × ( 1

cij[(position×cities)+j]
)β

11: end for
12: probability[idx] = arc

all

13: end if

Our idea to hybridize ACO is to use a Parallel Local Search and a new
heuristics that we name smart ants. These algorithms are added to AS, but
it can be used for all the variants of ACO. The PLS is applied to a group of
ants after the Tour construction. It is a classical local search but the differences
are the evaluation and generation of neighborhood executed in parallel with the
GPU. It consists in representing every item of the solution by a thread, which
leads to a parallel execution of neighbors generation. The thread generates and
evaluates the neighbor of its item and searches the best possible switch. At the
end of the parallel execution, the algorithm searches the best results of all the
threads. This is the third level of parallelization.

The aim of the smart ant heuristic is to improve results. It executes as much
iterations as the size of the instance without considering the start city which
is static and unchangeable. The figure 1 shows a small example of the heuristic
using 4 cities which mean 3 iterations and every vector represents an ant. In every
iteration i we search the best ant inside the colony. For example in iteration 2 of
the figure 1, the best ant is the third ant which have the index 2 because it starts
from 0. All the ants follow the movement of ant2 at the position 2 indicated by
the arrow in the figure 1. The city in this position for ant2 is city number 3. By
consequence, ant0 and ant1 move their cities to get the city 3 in position 2. This
is why we name it smart ants, because they have the intelligence to adjust their
tour. All the ants perform this heuristic in parallel so we use the level of parallel
tasks. As we can see with this heuristic, after a certain number of iterations,
all the ants have the same tour. By consequence, this heuristic leads the search
to stagnancy. To escape from this stagnancy, one improvement is added. The
switch is not performed when the two cities to switch are adjacent (example in
figure 1 the iteration 1 for ant0).

The last step of our approach is to use MPI to execute our method on many
GPU. This step introduces a new level of parallelization: the level of parallel
programs. Actually, different colonies will be executed in parallel through many
processes. For example, if we execute 3 processes, we will duplicate our algorithm
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Fig. 1. Smart ants

3 times. By consequence, 3 colonies will be executed in parallel. MPI gives to
our design another advantage: we can exchange information between processes
in order to improve the results. To exchange information, the algorithm regularly
chooses the best solution found in one process and updates the pheromone of the
matrix located in the next process using a ring topology. The data parallelization
is not suitable this time. Since inside the solution every city is visited only once,
a new level of parallelization between cities is applied which is the solution level
parallelization. For all the couple of cities used in the tour, the pheromones
of these couples are updated in parallel. The atomic operation is not needed
because each couple appears only once in a tour.

4 Experimental Results

4.1 Platform and Tests

In our experimentation, we use a cluster of 12 graphic cards NVIDIA Geforce
GTX680. The benchmark used is a set of well known instances from the TSPLIB
[11] with a size between 51 and 150 cities. All the results are expressed as a
percentage deviation from the optimum. All the optimal solutions can be found
in the online benchmark library TSPLIB.

4.2 The Smart Ants Heuristic

Table 1 shows the performance of the proposed algorithm with and without
the smart ants (SA) heuristic for one colony. 25 tests are performed for every
instance with 100 iterations. SA heuristic improves the average results of the 25
tests in the 5 instances.
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Table 1. Evaluation of the smart ants heuristic

Instances AVG with SA AVG without SA

Eil51 3.13% 3.81%
Berlin52 2.50% 3.14%
Eil76 5.64% 6.35%
Pr76 4.85% 6.14%
KroA100 4.67% 5.26%

4.3 The Parallel Multiple Colonies Using MPI

We use the cluster with 12 GPU. 10 tests for each instance are performed for
10 instances from TSPLIB. Table 2 reports the best results (MIN), the worst
results (MAX), the average results (AVG) and the average time required for the
10 tests. The parameters used are α = 1 ; β = 2 ; ρ = 0, 5. 300 iterations are
executed for each colony and every one of them contains 256 ants. 12 processes
are executed one per machine in the cluster. The number of colonies executed
in parallel is 12. Every 10 iterations the processes exchange their best solutions
using a ring topology. 60% of the average results are between 0 and 3%. From
the 10 instances, 9 average results are inferior to 5%.

Table 2. The multi-level parallel hybrid AS

Instances MIN (%) MAX (%) AVG (%) Time (s)

Eil51 0.99 3.02 1.98 10.57
Berlin52 0.03 2.33 1.07 14
St70 1.53 3.2 2.61 25.96
Eil76 2.83 5.04 4.21 28.02
Pr76 1.99 3.55 2.76 31.44
Rat99 3.53 7.8 6.19 35.7
KroA100 2.41 3.61 3.17 55.92
Bier127 1.25 2.58 1.87 87.72
Ch130 1.86 3.11 2.51 72.2
Ch150 2.84 3.75 3.42 76.8

The next experiment has the aim to see the behavior of the cluster when the
objective function is evaluated equally between one GPU and 8 GPU. In this
experiment, the same number of ants is used in the two cases. Table 3 presents
the average results of 10 tests for 4 instances. AVG 1 is the average for the first
case, AVG 2 is the average for the second case and ACC is the acceleration of
the cluster compared to one GPU. With these conditions, the parallel design
with the cluster improves the results and gives accelerations between 1.22 and
1.84 times compared to one GPU.

The final experiment is to compare our approach to other methods from
the literature. In table 4, works from the literature are used for the evaluation.
4 approaches are selected. [12] is an ACO algorithm for TSP and [13][14][15]
are other approaches to solve TSP for 5 instances. [*] is our approach and the
results are the percentage deviation from the optimum. The Friedman test [16],
performed on these 5 problems with α = 5%, shows that we can reject the null
hypothesis, i.e. there is at least one algorithm whose performance is different
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Table 3. MPI accelerations

Instances AVG 1(%) AVG 2 (%) ACC

Berlin52 2.72 1.04 ×1.73
Pr76 5.4 3.08 ×1.40
Bier127 2.53 2.18 ×1.22
Ch150 4.43 3.91 ×1.84

from at least one of the other algorithms. To know which algorithms are differ-
ent, we perform paired comparisons. The critical value is C=3.67. The paired
comparisons (see Table 5) show that the results obtained by [*] are different
from those obtained by the four other approaches. From the above analysis,
we can see that our hybrid algorithm is better and outperforms the other four
metaheuristics.

Table 4. Literature comparison

Instances [*] [12] [13] [14] [15]

Eil51 1.98 7.98 2.89 2.69 3.43
Berlin52 1.07 7.38 7.01 5.18 5.81
Eil76 4.21 12.08 4.35 3.41 5.46
Bier127 1.87 15.32 3 2.2 3.41
Ch130 2.51 24.15 2.82 2.82 2.82

Table 5. Paired comparisons

Instances [12] [13] [14] [15]

[*] 19 10 4 12
[12] - 9 15 7
[13] - - 6 2
[14] - - - 8

5 Conclusion and Perspectives

This work has two main objectives. The first one is to design a parallel ACO
which can run in a cluster of GPU. The second objective is to improve the quality
of solutions and to be as close as possible to the global optimum.

For the first objective, we use Five levels of parallelization. The first one is
the parallelization of tasks performed by the GPU, which helps us to parallelize
ants for the tour construction and the smart ant heuristic. The second level is
the parallelization of data performed by GPU, which help us to update and
evaporate the pheromones and to update the probabilities. The third level is the
parallelization of the neighborhood structure performed also by GPU. This level
is essentially used to parallelize the neighborhood inside the PLS. The fourth
level is the solution level parallelization, performed by the GPU and used to
update the pheromone when the best solution is exchanged between colonies.
Finally, the last level is the parallelization of programs performed by MPI. It
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allows us to parallelize different colonies and to diversify the search as much as
possible. For the second objective we hybridize the AS: we use two techniques.
The first one is to add the PLS for the intensification of the search. The second
technique is to test a new heuristics named smart ant to improve results.

In our future works, we plan to apply the proposed algorithm to other com-
binatorial problems like the quadratic assignment problem. Another perspective
is to reuse the same design for other swarm intelligence methods like the particle
swarm optimization.
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Abstract. Bio-inspired optimization algorithms have natural parallelism
but practical implementations in parallel and distributed computational
systems are nontrivial. Gains from different parallelism philosophies and
implementation strategies may vary widely. In this paper, we contribute
with a new taxonomy for various parallel and distributed implementation
models of metaheuristic optimization. This taxonomy is based on three
factors that every parallel and distributed metaheuristic implementation
needs to consider: control, data, and memory. According to our taxonomy,
we categorize different parallel and distributed bio-inspired models as well
as local search metaheuristic models. We also introduce a new designed
GPU parallel model for the Kohonen’s self-organizing map, as a represen-
tative example which belongs to a significant category in our taxonomy.

Keywords: Parallel and distributed computing ·Metaheuristic ·Genetic
algorithm · Ant colony optimization · Self-organizing map

1 Introduction

In the combinatorial optimization community, there exist a number of differ-
ent bio-inspired optimization metaheuristics, such as genetic algorithms (GA),
ant colony optimization (ACO), and artificial neural networks (ANN). Inspired
by natural systems and designed to mimic certain phenomena or behaviors of
biology, these algorithms aim at finding, as optimally as possible, approximate
solutions to real-life difficult problems which are usually not able to be solved
by exact approaches in reasonable computing time. Biologic systems are usually
made up of populations of simple individuals, ants, birds or neurons, interacting
locally with one another and with their environment. This trait should imply
some potential for parallel and distributed implementations of the derived bio-
inspired optimization algorithms. However, the implantation, from nature to
practical parallel and distributed computational systems, is not as smooth as it
looks like, owing to various restrictions of the latter, coming from 1) resource
sharing and competition, 2) communication and synchronization among com-
puting nodes, 3) system robustness requirement. As a result, gains from dif-
ferent parallelism philosophies and implementation strategies may vary widely,
c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 68–79, 2014.
DOI: 10.1007/978-3-319-12970-9 8
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and it is very tricky to come out with a consummate model. Trying to cast some
interesting insights on this issue, this paper firstly contributes with a new taxon-
omy for various parallel and distributed implementation models of metaheuristic
optimization, and then categorizes different bio-inspired models as well as local
search metaheuristic models according to our taxonomy, including the introduc-
tion of a new designed GPU parallel model for the Kohonen’s self-organizing
map (SOM) [1], as a representative of “control distributed, data decomposition,
shared memory” category.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed taxonomy with three factors. According to this new taxonomy, Section 3
categorizes some parallel and distributed implementation models of metaheuris-
tic optimization algorithms, including GA, ACO, SOMANN, and local search. A
new designed GPU parallel model for SOMANN is also introduced in Section 3.
The partly distributed model and the fully distributed model are discussed in
Section 4 before some conclusions of this work are drawn in Section 5.

2 Taxonomy for Parallel and Distributed Strategies

Generally, parallel computing speeds up computation by dividing the work load
among a certain amount of processors. In the parallel computing community,
two main sources of parallelism which are well accepted are data parallelism and
control parallelism [2,3]. Data parallelism refers to the execution of the same
operation or instruction on multiple large data subsets at the same time [2]. This
is in contrast to control parallelism (or task parallelism, or function parallelism,
or operation parallelism), which refers to the concurrent execution of different
tasks allocated to different processors, possibly working on the “same” data and
exchanging information [3]. Parallel computation based on these two parallelisms
is particularly efficient when algorithms manipulate data structures that are
strongly regular, such as matrices in matrix multiplications. Algorithms operat-
ing on irregular data structures or on data with strong dependencies among the
different operations remain difficult to parallelize efficiently and to characterize
comprehensively, using only data or control parallelism. Metaheuristics gener-
ally belong to this category, and parallelizing them offers opportunities to find
new ways to use parallel and distributed computational systems and to design
parallel algorithms [4]. In our opinion, the traditional dual classification for gen-
eral parallel computing looks inadequate when dealing with the various parallel
and distributed optimization metaheuristics. One important point that should
be emphasized concerns the allocation of processors and memory according to
the instance size of the problem. We think this point, specific to optimization,
should be alighted in the taxonomies of parallel and distributed metaheuristic
implementations, since it determines the maximum size of the input that could
be solved in systems on hand and how the performance should grow according
to the amount of physical cores and memory.

We propose a new taxonomy as shown in Fig. 1. It is based on the three fac-
tors that every parallel and distributed implementation model of metaheuristic
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Fig. 1. Taxonomy based on control, data, memory

optimization needs to consider: control, data, and memory. Note that though
the two terms of our taxonomy are literally similar to the traditional parallelism
classification, they stand for very different considerations.

— Control. This term is about algorithmic organization and its corresponding
execution pattern on parallel processors. Some parallel and distributed imple-
mentation models are based on centralized control on different levels. The most
common case is the so called “master-slave” model, as shown in Fig. 2(a), in
which a master process manages the population and hands out individuals to
evaluate to a number of slave processes. After the evaluation, the master pro-
cess iteratively collects the results and applies some global operations, such as
selection, to produce the next generations. Ergo in this case, the master process
plays a central role while the slave processes act as co-processors to acceler-
ate computation. In out taxonomy, we call this kind of implementation model
“control centralized”. The opposite implementation model should be under a
completely distributed control pattern, without depending on any central con-
trol that would break the entire computing network if it was suppressed from the
computation implementation, as the cellular model shown in Fig. 2(b). Thus the
robustness can be guaranteed because the computation can continue even when
some computing units fall down. We call this kind of implementation model
“control distributed”.

— Data. This term denotes the input problem data, of size N , and the repre-
sentation of the solution. The size of the solution could generally be O(N) since it
is in relation to the input. However, the size might depend on optimising oper-
ations and the implementation choices of designers. Some algorithms perform
metaheuristic exploration and exploitation within a set of solutions (popula-
tion), handling each solution in parallel, and then select the best-so-far solution
iteratively. Implementation models of this kind are built upon “data duplication”
and the required memory is with O(NM) where M is the population size. Alter-
natively, other algorithms generate every part of the whole solution separately in
parallel. The final solution can be then obtained by combining together partial
results from all the processors. Hence implementation models of this kind are
founded on “data decomposition” and their memory employment could remain
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(a)

(b)

Fig. 2. Comparison between (a) “master-slave” model and (b) cellular model. The
parallel “master-slave” model is under “control centralized, data duplication” pattern
while the cellular model is under “control distributed, data decomposition” pattern.
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in O(N). This linear relationship to the problem size makes these models able
to handle larger scale problems with limited physical memory, than the models
under “data duplication” pattern.

— Memory. This term concerns concrete implementations on different par-
allel and distributed computing platforms. Two commonly used categories are
“shared memory” and “distributed memory”, and we adopt them in our tax-
onomy. Normally, if the considered algorithm is implemented in shared mem-
ory systems, then it usually suffers from memory access contention, especially if
global memory access is through a single path such as a bus. Cache memory alle-
viates the problem but it does not solve it. On the other hand, if the considered
algorithm is implemented in distributed memory machines, then it has better
scaling behavior, which means that the performance is relatively unaffected if
more processors (and memory) are added and larger problem instances are tack-
led. The information exchange among different processors is via message passing
mechanism. As a result, the communication bottleneck of distributed memory
computing systems usually becomes the main obstacle to high performance of
the “distributed memory” implementation models.

With our taxonomy in hand, any parallel and distributed implementation
model of metaheuristic optimization can be classified and analyzed based on the
three factors. By doing so, the employment of processors and memory according
to the problem size can be predicted and the possible performance bottlenecks
could also be forecasted. For example, most of the parallel and distributed GA
implementations under “master-slave” model are based on “control centralized,
data duplication”, as shown in Fig. 2(a). Then the amount of processors needed
is with O(M) where M is the population size and the required memory is with
O(NM) where N is the problem size. If an implementation is in shared memory
computing systems, for example on the GPU CUDA platform, then a lot of
attention should be paid on the global memory access efficiency and contention.
Note that when the input size N grows, the solution occupies a larger part of
the central memory limiting the use of processors. Consequently with a fixed
memory size, the number of used processors should decrease as the input size
increases. On the other hand, implementations under coarse-grained models,
where the radio of computation to communication is high, are more adapted
to distributed memory computing systems, such as clusters. This is the case of
cellular GA implementation model [5] that is based on “distributed memory,
data duplication”.

3 Categorizing Different Implementation Models

In this section, we consider and categorize some bio-inspired metaheuristics,
including GA, ACO, and SOMANN. Implementation models of other paral-
lel metaheuristics, such as local search, are also classified and analyzed in our
taxonomy.
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3.1 Parallel Genetic Algorithms

GAs are search algorithms inspired by genetics and natural evolutionary princi-
ples. The most important operations in GAs are reproduction, mutation, fitness
evaluation and selection (competition). There are several possible levels at which
GAs can be parallelized: the fitness evaluation level, the individual level or the
population level [5]. Parallelization at the fitness evaluation level is usually imple-
mented under “master-slave” model, in which each individual fitness is evaluated
simultaneously on a different processor. This architecture belongs to the “control
centralized, data duplication” category according to our taxonomy, and it can
be implemented on both shared memory multiprocessors as well as distributed
memory machines.

Individual or population-based parallel approaches for GAs introduce addi-
tional terms that should be considered, such as deme, migration and topology
[6]. These approaches are inspired by the observation that natural population
tends to possess a spatial structure. The two important spatial structure based
categories are the island and the cellular models. The island model [7] features
geographically separated subpopulations of relatively large size. Subpopulations
may exchange information from time to time by allowing some individuals to
migrate from one subpopulation to another according to various patterns. In
the cellular model [8], individuals are placed on a large toroidal one or two-
dimensional grid, one individual per grid location. Fitness evaluation is done
simultaneously for all individuals, and selection, reproduction and mating take
place locally within a small neighborhood. From an implementation point of
view, these two kinds of models are often adapted to distributed memory sys-
tems [9,10] and accordingly they are classified into the “control distributed, data
duplication, distributed memory” category according to our taxonomy.

3.2 Parallel Ant Colony Optimization

As early as when Dorigo [11] initially proposed ACO, he suggested the appli-
cation of parallel computing techniques to enhance both the ACO search and
its computational efficiency. A comprehensive survey on parallel ACO can be
found in [12]. Among various parallel ACO implementations, the “master-slave”
model has been quite popular in the research community, mainly due to the
fact that this model is conceptually simple and easy to implement. According
to Pedemonte et al. [12], the “master-slave” model is further divided into three
distinguished subcategories regarding the granularity. The standard implementa-
tion of coarse-grain master-slave ACO assigns one ant to a slave that is executed
on an available processor. The master globally manages the global information
(i.e. the pheromone matrix, the best-so-far solution, etc.), and each slave builds
and evaluates a single solution. The communication between the master and
slaves usually follows a synchronous model. This kind of implementation model
is under “control centralized, data duplication” pattern. In the medium-grain
master-slave model, a domain decomposition of the problem is applied. The
slaves solve each subproblem independently, whereas the master manages the
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overall problem information and constructs a complete solution from the partial
solutions reported by the slaves. Furthermore, in the fine-grain master-slave,
the slaves perform minimum granularity tasks, such as processing single com-
ponents used to construct solutions, or parallel evaluation of solution elements.
These two kinds of implementation models are under “control centralized, data
decomposition” pattern and they can be implemented both in shared memory
systems and in network of workstations or clusters, with each node having inde-
pendent memory. Frequent communications between the master and slaves are
usually required in these models, and this issue is more severe when they are
implemented in distributed memory systems than shared memory systems.

There exist other parallel and distributed ACO implementation models that
are under “control distributed” pattern. In the cellular model [12,13], a single
colony is structured in small neighborhoods, each one with its own pheromone
matrix. Each ant is placed in a cell in a toroidal grid, and the trail pheromone
update in each matrix considers only the solutions constructed by the ants in
its neighborhood. In the multicolony model [12,14], several colonies explore the
search space using their own pheromone matrices. The cooperation is achieved by
periodically exchanging information among the colonies. In the parallel indepen-
dent runs model [12,15,16], several sequential ACOs, using identical or different
parameters, are concurrently executed on a set of processors. The executions
are completely independent, without communication among the ACOs, there-
fore the model does not consider cooperation between colonies. The latter two
models have distributed controlling at colony level. These three models above
are all under “data duplication” pattern and they can be implemented in both
shared memory [16] and distributed memory [13] systems.

3.3 Parallel Self-Organizing Map Artificial Neural Networks

Partly motivated by how visual, auditory or other sensory information is handled
in separate parts of the cerebral cortex in the human brain, the Kohonen’s SOM
[1] is a prominent unsupervised ANN model providing a topology-preserving
mapping from a high-dimensional input space onto a two-dimensional map space.
Some methods for computing SOM on GPU have been proposed [17,18]. These
methods accelerate SOM process by parallelizing the inner steps at each basic
iteration, firstly, to find out the winner neuron in parallel, secondly, to move
the winner neuron and its neighbors in parallel. Consequently these kinds of
implementation models fall into the “control centralized” category.

In our opinion, one interesting model for parallel SOM should be attributed
to the “control distributed, data decomposition, shared memory” category, in
that, firstly, distributed control guarantees the model’s robustness, secondly,
data decomposition eases the burden of massive memory usage when dealing
with large-scale problems, and thirdly, shared memory reduces the communi-
cation costs among different processing units and allows easy implementation
on Graphics Processing Unit (GPU) like systems. Given this ambition, we have
designed a novel parallel SOM model and implemented it on GPU Compute
Unified Device Architecture (CUDA) platform, trying to deal with large scale
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Fig. 3. Parallel cellular model: the input data density distribution, the cellular matrix
and the neural network. To a given cell of the cellular matrix corresponds a constant
part of the input data as well as a part of the neural network made up of SOM’s
topological grids/neurons.

travelling salesman problems (TSP) [19]. As illustrated in Fig. 3, three main
data structures are used to implement the parallel model. Between the neural
network and the input data, we add a uniform two-dimensional cellular matrix
with linear relationship to the input size, as a level of decomposition of the plane
and the input data. Its role is to memorize the neurons in a distributed fashion
and authorize many parallel closest point searches in the plane by a spiral search
algorithm [20,21], and then many parallel training procedures. Each uniformly
sized cell in the cellular matrix is a basic training unit and will be handled by
one parallel processor/GPU thread. Thus, the model proceeds from a cellular
decomposition of the input data, in Euclidean space, such that each processor
represents a constant and small part of data. Therefore, according to the increase
of parallel processors in the future, this approach should be more and more com-
petitive, while at the same time being able to deal with very large size inputs.
This quintessential property holds because of the linear memory and processors
needed according to the input size. More design details and experimental results
of the parallel SOM model can be found in [19].

3.4 Parallel Local Search

Local search is a metaheuristic algorithm which could be viewed as “walks
through neighborhoods”. The walks are performed by iterative procedures that
allow moving from one solution to another, through the solution domains of
the problems at hand. Parallelism naturally arises when dealing with a neigh-
borhood, since each of the solutions belonging to it is an independent unit.
This kind of parallelization is called iteration-level parallel model, a low level
“master-slave” model in which evaluation of the neighborhood is made in par-
allel [22,23]. At the beginning of each iteration, the master duplicates the cur-
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rent solution among parallel nodes. Each of them manages a number of candi-
dates, and the results are returned to the master. This implementation model is
obviously under “control centralized, data duplication” pattern. In [23], Luong
et al. have re-designed the above model on GPU platform. Considering a neigh-
bor as a slight variation of the candidate solution which generates the neighbor-
hood, they only copy the representation of this candidate solution from CPU
to GPU. Then N2 threads are employed to carry out the parallel 2-opt moves
and evaluations, where N is the TSP instance size. Each parallel evaluation only
deals with the slight variation based on the candidate solution, with the help
of a neighborhood mapping which locates each thread’s corresponding variation
position in the solution representation. Then the fitness results generated by par-
allel threads need to be gathered and selected for a best one, which will become
the new starting solution, called “pivot”, at the next local search iteration. The
solution representation and the fitness structure are stored in the global memory
of GPU. From the above, it can be concluded that this strategy is under “control
centralized, data decomposition, shared memory” pattern.

Other two major parallel models for local search can be distinguished as
solution-level and algorithmic-level. In the solution-level parallel model, the focus
is on the parallel evaluation of a single solution and the function can be viewed
as an aggregation of partial functions. Implementations based on this model are
under “control centralized, data decomposition” pattern. In the algorithmic-level
parallel model, several local search metaheuristics are simultaneously launched
for computing robust solutions. The well-known multistart local search, in which
different local search algorithms are launched using diverse initial solutions, is
an instantiation of this model [22]. Implementations based on this model are
under “control centralized, data duplication” pattern. In our opinion, central-
ized selection procedures among parallel processors are inevitable, as long as
each processor deals with a whole solution. Differently, an interesting model
should be fully distributed, where each processor carries out its own local search
based on part of the input data, generating one part of the whole solution.
Operations on different processors are completely independent with each other
and no centralized selection procedure is needed. Eventually, a final solution can
be obtained by combining all the partial results from different processors. Ergo
this implementation model of local search is under “control distributed, data
decomposition” pattern, as shown in Fig. 2(b), and it is supposed to be able
to solve very large challenging problems, such as the World TSP Challenge, in
distributed computing systems such as clusters.

4 Partly Distributed Model vs. Fully Distributed Model

In literature, many implementation models are labeled as “distributed model”.
Actually, some of them belong to the “control centralized, distributed mem-
ory” category according to our taxonomy while others belong to the “control
distributed, shared memory” category. In our opinion, these two kinds of imple-
mentation models are only partly distributed, or distributed in a weak sense.
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For example, even if the “master-slave” model is implemented in distributed
memory systems with computing nodes communicating by message transfers,
the master process necessarily deals with specific data structures different from
the slave data structures. We think only the implementation model based on
“control distributed, distributed memory” is fully distributed, or distributed in a
strong sense. No component has special role in this kind of implementation and
it could be carried out on networks of stations, or processors, communicating by
message transfers, and with all processors executing the same code.

From our point of view, a very significant conceptual implementation model
should be under “control distributed, data decomposition, distributed memory”
pattern, because it is fully distributed and makes possible to solve very large
problems in distributed computing networks. In literature, we found one example
which belongs to this category and it was proposed by Nguyen et al. in [24]. They
applied an effective implementation of hybrid GA incorporating Lin-Kernighan
heuristic, to the 1,904,711-city World TSP Challenge. They divided the world
instance into a number of smaller subinstances and then applied PHGA to these
subinstances. Finally, they reconnected all the best segments of each subinstance
to form a new best tour for the world instance. This example, however, has
a high level of granularity since each processor deals with a significant part
of the input data using a hybrid GA incorporating Lin-Kernighan heuristic.
Based on the same requirement of data decomposition, we have also designed a
cellular SOM model to the TSPs, as introduced in this paper. However, in our
current work, we implement this model on GPU CUDA platform with global
memory, which makes the implementation partly distributed and belong to the
“control distributed, data decomposition, shared memory” category. This model
however has very low level of granularity with few input data assigned to each
processor. Executing low-level granularity models based on data decomposition
in distributed memory systems means an important challenge.

5 Conclusion

Parallel and distributed metaheuristics offer the possibility to address large scale
problems which are often intractable to traditional sequential algorithms. A good
way of formulating, analyzing and classifying different parallel and distributed
implementations will be very helpful in designing efficient, scalable, and robust
algorithms in return. One important point that should be emphasized concerns
the allocation of processors and memory according to the problem size. We think
this point, specific to optimization, should be alighted in the taxonomies of par-
allel and distributed metaheuristic implementation models, since it determines
the maximum size of the problem that could be solved in systems on hand and
how the performance should grow according to the amount of physical cores
and memory. With this in mind, we have proposed a new taxonomy and cat-
egorized different bio-inspired metaheuristic implementation models according
to this taxonomy. Also we have contributed with a new designed GPU parallel
model for SOMANN. Furthermore, we have discussed partly distributed models
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and fully distributed models, in weak and strong senses. We hope the efforts
made in this paper will help others, particularly designers and engineers who
want to use bio-inspired optimization algorithms for large scale complex prob-
lems, choose the right parallelization model for their applications.
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15. Stützle, T.: Parallelization Strategies for Ant Colony Optimization. In: Eiben, A.E.,
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Abstract. With this paper, we are focusing on improving web accessi-
bility, more precisely on compensating the contrast loss for textual web
content for dichromat users. A study over the entire sRGB color space
showed that the loss experienced by a dichromat user may be significant.
With the current approach, we assess the interest of using API for our
problem. Several tests for different parameters settings were performed
on both real and synthetic data in order to assess the algorithm efficiency.
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Recoloring · Optimization · Swarm intelligence

1 Introduction

Accessibility concern is to ensure the same level of availability of resources for
both standard and disabled people. Web accessibility, in particular, focuses on
ensuring unlimited web access for users with disabilities. Towards improving
web accessibility, several steps were made by developing standards and policies.
Guidelines that may serve as references for developing accessible web sites are:
Web Content Accessibility Guidelines (WCAG) 1.01 and 2.0, proposed by Web
Accessibility Initiative (WAI), a World Web Consortium (W3C) working group.
Web site compliance with such policies may increase the degree of accessibility
of a web site. However, very few web designers check for accessibility issues their
web sites. This results in web content that can be difficult to access by users
having some form of disability. To address this, a series of transformation tools
that attempt to correct these shortcomings were proposed [3,4,9].

A form of deficiency is Dichromacy. It is a color deficiency which makes
difficult for a person to perceive the difference between certain colors. This is due
to the lack of one of the three types of cone cells in eye’s retina which constitute
the photoreceptors in charge of color perception. Corresponding to the range
of misperceived shades of colors, two main categories of dichromacy exist: (1)
red-green deficiencies (protanope (missing L cones) and deuteranope (lack of M
cone cells)) and (2) blue-yellow deficiency (tritanope (S cones are missing)). To
1 http://www.w3.org/TR/WCAG10/
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address this issue a series of algorithms and tools were proposed. To simulate
color deficiencies several algorithms [1,2,6,11] and tools2 were developed. Many
attempts to diminish the shortcomings induced by this type of deficiency exist
[5,10,12].

In the following, we are focusing on compensating color contrast for web
textual information for dichromats users.

2 The Problem

WCAG 1.0 structures accessibility standards into four main groups: understand-
able, perceivable, robust and operable. For all of them it introduces a three steps
way to measure web page accessibility from Level A to AAA. Level A corresponds
to the minimum of accessibility required for a web site. One requirement con-
cerning the representation of textual information on the page and more precisely,
concerning the color contrast, (Guideline 2) states the following “Ensure that
foreground and background color combinations provide sufficient contrast when
viewed by someone having color deficits or when viewed on a black and white
screen”.

WCAG provides ways to measure the contrast ratio for textual information
on the web. Let a, b[[∈ 0, 255]]3 be two colors represented in the sRGB color space
(known as the Internet standard color space). The luminance of x ∈ [[0, 255]]3 is
defined as:

L(x) = 0.2126 ∗ h(xr) + 0.7152 ∗ h(xg) + 0.0722 ∗ h(xb) (1)

with

h(z) =

⎧
⎨

⎩

z/255
12.92 if z/255 ≤ 0.03928(
z/255+0.055

1.055

)2.4

otherwise
. (2)

The contrast between a and b is given by:

Γa,b =
max(L(a), L(b)) + 0.05
min(L(a), L(b)) + 0.05

∈ [1 : 21] . (3)

We denote by D(a) ∈ [[0 : 255]]3 the function used to obtain the corresponding
color as perceived by a dichromat user and by ΓD

a,b = ΓD(a),D(b)) the simulated
contrast for the colors a and b. The simulation algorithm used is the one proposed
by [6].

A small study on contrast ratio revealed that the contrast loss experienced
by a dichromat user may be significant. At its worst, it can reach a decrease
of around 3.8 for protanope or deuteranope and 3.7 for tritanope, while the
minimum level specified by the standards (WCAG 1.0) is 4.5:1.

In this work, we attempt to compensate the textual contrast loss that might
be experience by a dichromat user.
2 http://www.vischeck.com/

http://www.vischeck.com/
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Let C be the set of colors that may be found on an arbitrary web page and
E ⊂ C ×C the set of entities characterized by foreground and background colors.
Let be Δi = |ai − aF

i |CIELab, ∀ai ∈ C the Euclidean distance between the
original and the transformed color

The contrast compensation problem can be modeled as a mono-objective
function given by:

F (aF
1 , aF

2 , . . . , aF
N ) = (1 − α)

∑

(ai,aj)∈E

1
2

[
max(Γ I

ai,aj
− ΓF,D

ai,aj
, 0)

]2
+ α

∑

ci∈C

1
2
Δ2

i

(4)
that aims:

1. to compensate the contrast loss by minimizing max(Γ I
ai,aj

−ΓF,D
ai,aj

, 0), ∀(ai, aj) ∈
E

2. to reduce the change in the final transformed colors by minimizing (Δi)

We also use a constant α to weight between the amount of compensation needed
and the change in colors. The compesation contrast problem may be reduced at
minimizing (4).

In previous work, we have considered a mass-spring approach and the CMA-
ES algorithm [7] to solve the problem. The results on both real and artificial data
were encouraging. In the following, we are investigating the interest of using the
API algorithm for solving our problem.

3 The Proposed Approach

For the experiments, we are using the proxy part of the SWAP (Smart Web
Accessibility Platform)3. The platform has as main goal to improve web accessi-
bility for disable users. In this work, we are only using the proxy part of SWAP
which allows on-the-fly transformation of web pages when the user access Inter-
net. SWAP handles colors extraction from the CSS of the page and the inclusion
of the changes in the web page sent to the client browser.

The goal with this paper is to assess the efficiency of the API algorithm for
our problem. The API algorithm [8] is based on the foraging strategy of the
Pachycondyla apicalis ants. It allows to minimize a function f in a search space
S. In the following, we recall its main principles. Let be {1, 2 . . . , n} an ant colony
and {hi}1,n a set of hunting sites, associated to the ant colony (each ant has an
hunting site). Two operators are fundamental to the algorithm behaviour:

1. Oi is used to initialize the colony nest (N ) (in our approach it will be given
by the set of initial colors)

2. Oe(x,A) is used to generate a new color set (yi)i from the color set (xi)i, i ∈
[[0 : 255]]3, i = 1, |C|. The amount of change in colors’ coordinates will be
controlled by amplitude Ai ∈ (0, 1]. The new colors yi will be computed as
yi = xi + z where z ∈ [[−I : I]] is uniformly generated and I = �Ai · 255�.

3 http://projectsforge.org/projects/swap

http://projectsforge.org/projects/swap
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Two sets of amplitudes are needed: one for the hunting sites ({Ah
i }) and

one that gives the extend to which a hunting site will be explored({Al
i}). In

the following we consider them to be given by: Ah
i = 1 + (0.01 − 1) i−n

1−n and
Al

i = Ah
i /10 as defined initially by N. Monmarche. To control the number of

failures for a hunting site a counter and a maximum limit are defined.
The algorithm behaves as follows: A hunting site (hi) is assigned to each ant

from the colony if they don’t have one using Oe(N ,Ah
i ). If they have one a search

for a new solution is done with (Oe(hi,Al
i)). If the solution found is better than

the current solution represented by the hunting site, the hunting site is moved
to the new solution and the counter of failures is brought to zero. If the explored
solutions are worst than the current one (the hunting site) the failure counter
is increased. If the maximum number of failures (φM ) is attained for a hunting
site, the ant abandons it. Regularly at a τmax frequency, the nest is moved in
the best solution ever found and all the hunting sites are abandoned by all ants.
The whole process is repeated for T times.

The algorithms main steps are presented in Algorithm 1.

Algorithm 1. API algorithm
1: N ← C
2: T, φM , τmax

3: for i = 1 to T do
4: for i = 1 to n do
5: if hi = ∅ then
6: hi ← Oe(N , Ah

i )
7: NoFailuresi ← 0
8: else
9: c ← Oe(hi, Al

i)
10: if F (c) < F (hi) then
11: hi ← c
12: NoFailuresi ← 0
13: else
14: NoFailuresi ← NoFailuresi + 1
15: if NoFailuresi ≥ φM then
16: hi ← ∅
17: end if
18: end if
19: end if
20: end for
21: if t mod τmax = 0 then
22: move nest in the best solution ever recorded
23: for i = 1 to n do
24: hi ← ∅
25: end for
26: end if
27: end for
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In the following experiments were conducted in order to evaluate the interest
of using it for solving our problem, on both real and synthetic data.

4 Results and Discussion

A set of experiments were conducted in order to assess the behaviour of the
API algorithm on the given problem (color optimization for dichromat users).
Tests were performed on two types and data: real and synthetic. Real data was
obtained by from CSS analysis on over 170 pages using SWAP. Concerning the
synthetic data, the colors were generated according to the given confusion range
used in [2] (the pairs of colors that fall in that specific range are perceived similar
by a dichromat user, so the contrast ratio perceived will be much smaller than
the one perceived by a standard user). 170 synthetic data files were computed.

P represents the dataset considered, in our case, is either RD (real data) or
SD (synthetic data).

For API, we have considered many parameters settings (PS), varying the
maximal limit for the number of failures for a given hunting site φM ∈ {5, 10, 15},
the number of explored solutions by iteration, number of ants n ∈ {5, 10, 15}
and the frequency with which the nest is moved τmax ∈ {10, 20, 30}. The same
settings were maintained for both real and synthetic data.

For each web page, 10000 evalutions were perfomed using the API algorithm,
for a number of 50 tries, for all types of parameter settings and all forms of dichro-
macy. We denote by F̄p,s(t) the average fitness value over 50 tries at evaluation
t, for the page p corresponding to the parameter setting s. In order to assess the
parameter settings behaviour, we have normalized F̄p,s(t) ∀t as follows:

gp,s(t) =
1

|P|
∑

p∈P

F̄p,s(t) − mp

Mp − mp
(5)

with
mp = min

s∧t=1..10000
F̄p,s(t) (6)

and
Mp = max

s∧t=1..10000
F̄p,s(t) (7)

where g is the normalized average fitness values for the page p and parameter
setting s, mp and Mp represent the minimum, and the maximum value for F̄p,s

for the entire set of parameter settings considered for the page p.
Experiments showed that the algorithm behaviour does vary with the change

in the chosen parameters. The performance is better for the PS-1(5,5,10) com-
pared to the others on real data. The last two perform similary on real data,
slightly better for PS-2(10,10,20). On synthetic data the behaviour is very similar
for all types of PS and all types of deficiencies.

The first parameter setting, PS-1 (5,5,10) gives the best results for both real
and synthetic data as depicted by Figure 1 and 2. This may be due to the fact
that by limiting the number of failures at hunting site level it has the oportunity
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Fig. 1. Normalized average fitness for deuteranope on real data for PS-1, PS-2 and
PS-3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

N
or

m
al

iz
ed

  a
ve

ra
ge

 fi
tn

es
s

Number  of evaluations

PS-1

Fig. 2. Normalized average fitness for tritanope on synthetic data for PS-1
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Fig. 3. Normalized average performance for protanope on real data for PS-1

to explore a larger area of the search space and that allows to find rapidly, better
solutions.

It worth meantioning, that API behaviour depends highly on the dataset.
It can produce good as well as poor results, depending on the data as seen in
Figure 3.

We can notice that API performs better on synthetic data than on real data.
The algorithm behaviour doesn’t vary too much with the type of dichromacy.

We are interested also to determine if the algorithm can be used for on the
fly page recoloring. This may be translated by the possibility of obtaining a good
improvement over a small number of evaluation and that the time to perform
that number of evaluations is not significant.

Table 1 shows the normalized average performance for 500, 1000, 1500 and
2000 evaluations.

As we can notice in Table 1, more than half of the total improvement can be
achieved for less than 500 evaluations for real data and almost all the improve-
ment for synthetic data.

The time to recolor a page varies with: (1) DOM retrieval, (2) CSS analysis
, (3) color optimization and sending the modified page with the new colors to
the browser).
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Table 1. Normalized average fitness at 500, 1000, 1500 and 2000 evaluations for PS1
for protanope, deuteranope and tritanope on real (RD) and synthetic (SD) data

Type of deficiency
real data synthetic data

500 1000 1500 2000 2500 500 1000 1500 2000 2500

Deuteranope 0.39 0.29 0.24 0.20 0.17 0.08 0.03 0.02 0.01 0.01
Protanope 0.41 0.29 0.23 0.19 0.17 0.08 0.03 0.02 0.01 0.01
Tritanope 0.42 0.32 0.26 0.22 0.20 0.07 0.03 0.01 0.01 0.01

5 Conclusion

With this paper, we have assessed the interest of using API algorithm for the
problem of contrast compensation for dichromat user. We have obtained good
results on both real and synthetic dataset for all three types of dichromacy
considered. Several tests still need to be performed in order to determine if the
algorithm is more suitable than our previous approaches to be used for on-the-fly
recoloring of web pages.

References

1. Brettel, H., Vienot, F., Mollon, J.: Computerized simulation of color appearance
or dichromats. Journal of Optical Society of America 14(10), 2647–2655 (1997)

2. Brettel, H., Vienot, F., Mollon, J.: Digital video colourmaps for checking the leg-
ibility of displays by dichromats. Color Research and Application 24(4), 243–251
(1999)

3. D. Lunn, S.H., Bechhofer, S.: Combining SADIe and AxsJAX to Improve the
Accessibility of Web Content. In: Proceedings of W4A2009 Communication, Spain,
Madrid, April 20-21, pp. 75–78 (2009)

4. Gupta, S., Kaiser, G.: Extracting Content from Accessible Web Pages. In: Proceed-
ings of the 2005 International Cross-Disciplinary Workshop on Web Accessibility
(W4A 2005), New York, USA, pp. 26–3 (2005)

5. Iaccarino, G., Malandrino, D., et al.: Efficient Edge-Services for Colorblind
Users. In: WWW 2006 The 15th International Conference on World Wide Web,
Edinburgh, Scotland, UK, May 22–26, pp. 919–920 (2006)

6. Kuhn, G.R., Oliveira, M.M., Fernandes, L.A.F.: Efficient Naturalness-Preserving
Image-Recoloring Method for Dichromats. IEEE Visualization and Computer
Graphics 6(14), 1747–1754 (2008)

7. Mereuta, A., Aupetit, S., Monmarche, N., Slimane, M.: Web page textual color
contrast compensation for CVD users using optimization methods. Journal of
Mathematical Modelling and Algorithms in Operations Research (October 2013)
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Abstract. Currently, web accessibility is not a major concern of web-
masters while creating web sites. For disabled people, it rapidly becomes
an obstacle to inclusion in the society. Identifying and circumventing
existing barriers constitute an important research topic. In this work,
we are concerned with the problem of color accessibility of textual con-
tents in web pages. In many cases, the textual colors of a web page do
not respect the minimum constraints defined by recommendations like
WCAG 2.0. For example, WCAG 2.0 requires that a minimum difference
of brightness, tonality and contrast is ensured. Using the Smart Web
Accessibility Platform, we try to transform the colors using a client-side
HTTP proxy the best possible while retaining a reasonable access time
for the web content. To solve the textual color problem for accessibility,
we adapt two swarm intelligence based optimization methods (ABC and
API) and we hybridize them with a line search.

Keywords: Accessibility · Assistive technology · Recoloring · Web ·
Swarm intelligence based optimization · ABC · API

1 Introduction

Web accessibility is a big concern for disabled people when accessing Internet.
While Internet contributes to the insertion in the society, it can leads to exclu-
sion when it is not accessible. To reduce exclusion, active or passive accessibility
can be used. Active accessibility consists in a pro-active approach relying on
norms, recommendations1, laws [1], tools2 and methodologies [2] to enforce a
proper structuring and tagging of documents during their creation by webmas-
ters. While it is the ideal way for achieving accessibility, in practice, a fully
accessible web is not possible mainly due to limited implication of webmasters
or external constraints (money, time. . . ). Moreover, many web sites are unmain-
tained or ageing. Passive accessibility consists in using assistive technologies
1

http://www.w3.org/TR/WCAG10/, http://www.w3.org/TR/WCAG20/
2

http://achecker.ca/checker, http://www.binaryblue.com.au/access wizard. . .
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and transformation tools to allow a better access to web contents. This form
of accessibility is our concern in the project Smart Web Accessibility Platform
(SWAP)3 that we develop. It is a set of open source modular components and
tools designed to facilitate content transformation (the proxy tool), to store
and to share global knowledge and to create metadata (annotations. . . ) on web
pages. A more detailed description of the project can be found in [3]. In this
work, we are concerned only by the proxy tool. It is located on the user com-
puter and is used by the browser to access Internet. On request of the browser,
the proxy fetches the content on Internet, applies transformations on the page
and sends the modified page to the browser. It allows to transform any content
passing by the proxy (even secured ones) and to preserve existing user assistive
technologies (speech synthesis, zoom. . . ) so increasing the adoption of our tool.
The transformations do not aim to make the content accessible for the average
disabled user but for specific user needs: we transform only what the user wants
and needs. The transformations are done on the fly while the page passes by the
proxy. For ergonomic reasons, the user can not wait too long. Moreover, a perfect
improvement of the content is not possible due to the lack of information on the
contents. Consequently, the transformation of the content using the proxy tool
is a time limited and imperfect process. However, a partial improvement of the
content is nevertheless a big improvement for the user.

In this work, we are focused on textual color improvement which can be
formalized as an optimization problem. In previous works [4–7], we considered
simple heuristics and metaheuristics to solve the problem and a fitness function
prioritizing four measures and using an integral and a fractional parts formula-
tion. This fitness function while allowing a huge improvement of the colors suffers
a big practical defect. It introduces discontinuities leading to color schemes which
are equally ranked but which can be very different. From a user perspective, the
important changes on the color schemes, each time the user access the same
web page, is an issue. From now, the fitness function is modified into a weighted
function of the four measures on the color schemes. It produces more stable color
schemes over time at the price of eventually reducing constraints satisfaction.
In the following, we define the textual color problem, its specificities and how it
can be solved with three swarm intelligence based optimization methods.

2 The Textual Color Problem for Accessibility

2.1 Textual Colors Accessibility

The accessibility definitions considered are defined by WCAG 1.0 and 2.0 (Web
Content Accessibility Guidelines)1. In the following, colors are considered in the
sRGB space. To be accessible, the foreground (f) and background (b) colors of
any text must satisfy three constraints: a minimal brightness (ΔB(f, b) ≥ ηB), a
minimal tonality difference (ΔT(f, b) ≥ ηT) and a minimal contrast (ΔC(f, b) ≥
ηC). ηB, ηT and ηC are the accessibility thresholds fixed at 125, 500 and 7 in

3
https://projectsforge.org/projects/swap

https://projectsforge.org/projects/swap
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the following. For any colors x = (x1, x2, x3) and y = (y1, y2, y3) defined on
[[0 : 255]]3, we have:

ΔB(x, y) = |0.299(x1 − y1) + 0.587(x2 − y2) + 0.114(x3 − y3)| (1)
ΔT(x, y) = |x1 − y1| + |x2 − y2| + |x3 − y3| (2)

ΔC(x, y) =
max(L(x), L(y)) + 0.05
min(L(x), L(y)) + 0.05

(3)

L(x) = 0.2126h(x1) + 0.7152h(x2) + 0.0722h(x3) (4)

h(v) =

⎧
⎨

⎩

v/255
12.92 if v/255 ≤ 0.03928(
v/255+0.055

1.055

)2.4 (5)

2.2 Distance Between Colors

We define ΔE(x, y) the classical perceptual distance in CIE L*a*b* divided by
100

√
3. This distance is an euclidean distance in the CIE L*a*b* color space

which measures the difference between two colors like what a human perceives
it. To compute ΔE(x, y), the colors in the sRGB space must be transformed into
colors in the CIE L*a*b* color space. For concision, details are not given here.

2.3 Objective Function

Colors of textual contents are extracted from web pages parsing CSS (Cas-
cading Style Sheets) and HTML contents. Identical colors in foreground are
merged and the same is done for the background colors. We do it in order
to preserve the coloring intention of the webmaster (visual identification. . . ).
Let C = {c1, . . . , c|C|} be the set of colors used to represent the textual infor-
mation of a web page. Let E be the set of couples (foreground, background)
presented in our page and wx,y ∈ R

+ the associated weights. In our modeling,
these weights are the number of characters in the web page that use the couple
of colors (x, y). Let cIx ∈ [[0 : 255]]3 be the initial color coordinates for x ∈ C and
cFx ∈ [[0 : 255]]3 the coordinates of the same color after the transformation. We
define Sw =

∑
(x,y)∈E wx,y the sum of the weights of the all couple of colors.

Interdependencies between colors can lead to unsatisfiable problems. To han-
dle this issue, we relax the constraints using the Φ function as an evaluation of the
constraint violation such that, for all v ∈ [0 : M ]: Φ(v, T ) = max(0, (T − v)/T ).
If v ≥ T then Φ(v, T ) = 0. Otherwise, Φ(v, T ) increases linearly until 1 when v
decreases to 0 (the worst violation). We define :

SB(cF ) = Sw
−1

∑
(x,y)∈E wx,yΦ

(
ΔB(cFx , cFy ), ηB

)
(6)

ST(cF ) = Sw
−1

∑
(x,y)∈E wx,yΦ

(
ΔT(cFx , cFy ), ηT

)
(7)

SC(cF ) = Sw
−1

∑
(x,y)∈E wx,yΦ

(
ΔC(cFx , cFy ) − 1, ηC − 1

)
(8)

SE(cF ) = Sw
−1

∑
(x,y)∈E wx,y

(
ΔE(cIx, cFx ) + ΔE(cIy, c

F
y )

)
/2 (9)
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SB, ST and SC measure the constraints violation while SE measures the color
difference perceived by an human between the initial colors and the new colors.
Let εB, εT and εC be three weights defined by the user to weight the constraints
according to his needs. In ours experiments, we considered εB = εT = εC = 1.
Two color schemes can satisfy the constraints to the same level (for example,
SB(cF ) = ST(cF ) = SC(cF ) = 0). To differentiate the schemes, we use SE

to prefer the scheme which changes the less the perceived colors (for example,
we prefer changing pink into red instead of green). Let α ∈]0 : 1] be an user
definable weight to balance between the satisfaction of the constraints and the
minimization of the colors change. In experiments, we considered α = 0.8. The
objective function is defined by:

F (cF ) = α ∗ εBSB(cF ) + εTST(cF ) + εCSC(cF )
εB + εT + εC

+ (1 − α) ∗ ΔE(cF ) (10)

The textual color problem for web accessibility consists in minimizing F (cF ). The
computation must be accomplished on-the-fly while the content passes by the
proxy. The available computation time depends on the user computer speed, on
the running processes and on the other transformations applied to the content.
We do not known a priori how much computation time is available so we consider
that the minimization of F may be interrupted at any moment. The best found
solution is used to recolor the page. Even if the recoloration is not optimal, it
is nevertheless an improvement for the disabled user. The recoloring is done by
inserting styles in the HTML document that overwrite the existing styles.

3 Swarm Intelligence Based Optimization for Solving the
Problem

For the minimization of F , we considered two swarm based optimization meth-
ods: Artificial Bee Colony and the API metaheuristic. In the following, we denote
by U(X) and R(X ∼ P ) a random value in X which is uniformly distributed in
the first case or distributed according to the probability distribution P in the
second case. In the following, a recoloring is represented as an integer vector
of dimension 3|C|. The search space is S = [[0 : 255]]3|C|. The best solution is
memorized when F is computed and stored in s∗. We suppose that values are
truncated to S when it is appropriate.

3.1 Artificial Bee Colony

Bees inspired many optimization algorithms [8]. Artificial Bee Colony (ABC) [9]
is one of the most popular. ABC principles are defined by the foraging behavior
of onlooker bees, employed bees and scout bees. We denote by S = {s1, . . . , sS}
the food sources and by ei the fail counter associated to si. eMax is the maximum
number of failure allowed for a food source before abandoning it. We denote by
ν(x, y) the creation of a solution from the two food sources x and y. Let k be
a random number in [[1 : 3|C|]] then we have, for all i �= k, ν(x, y)i = xi and
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/* Choose initial food sources */

for i = 1 to |S| do
si ← U(S); ei ← 0

while not done do
/* Employed bees go out */

for i = 1 to |S| do
vi ← ν (si, U(S − {si}))

for i = 1 to |S| do
if F (si) > F (vi) then si ← vi; ei = 0 else ei ← ei + 1

/* Onlooker bees exploit food sources */

for i = 1 to |S| do
pi = (1/(1 + F (si))/

∑
s∈S

(1/(1 + F (s)))
for i = 1 to Nonlooker do

xi ← R([[1 : |S|]] ∼ P); wi ← ν(sxi , U(S − {sxi}))
for i = 1 to Nonlooker do

if F (sxi) > F (wi) then exi = 0; sxi ← wi else exi ← exi + 1
/* Employed bees abandon useless sources and become scout bees */

x = 1; C =
{
i ∈ 1.. |S| ∣∣ei >= eMax

}

while x ≤ Nscout et C �= ∅ do
i = arg maxj∈C ej ; si ← U(S) ; ei ← 0; Update C; x ← x + 1;

Algorithm 1. The ABC algorithm for the textual color problem

ν(x, y)k = xk + U([[−(xk − yk); (xk − yk)]]). Algorithm 1 proceeds in three steps.
First, the employed bees go out of the colony toward their food sources and
explore a new solution in its neighborhood. If the new solution is better then the
food sources is replaced and the fail counter is reset. Otherwise, the fail counter
is increased. Second, the onlooker bees spread over the food sources according to
theirs qualities (1/(1+F (si))) and explore a new solution in the neighborhood of
the chosen food source. The food source and the fail counter are updated as for
the employed bees. Finally, the food sources whose fail counter exceeds eMax are
abandoned and replaced by a new random food source. The process is repeated
as needed. More detailed presentations of ABC can be found in the literature.

3.2 The API Metaheuristic

The API metaheuristic [10] is inspired by the foraging strategy of primitive
Pachycondyla apicalis ants [11,12] which do not use pheromones. In this paper,
we introduce only a shorten description of the algorithm. More details can be
found in [10,13]. We consider a colony of n ants. Each ant i has an associated
hunting site denoted by si ∈ S. If a hunting site is not defined, we have si = ∅.
The behaviour of the algorithm is completely defined by two operators: Oinit

and Oexplo. Oinit defines the initial position of the nest (N ) of the colony and, in
this work, it is set to cI . Oexplo defines the foraging strategy of ants. Oexplo(x,A)
generates a solution y in the neighborhood of a solution x such that ||x−y||max ≤

A ∗ 255�. A is the neighborhood amplitude and takes its values in [0 : 1]. The
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/* Choose initial nest position */

N = cI

for i = 1 to n do si ← ∅

while not done do
for i = 1 to n do

if si = ∅ then
/* Create a hunting site */

si ← Oexplo(N , Asite
i ) ; ei ← 0

else
/* Explore the neighborhood of a hunting site */

p ← Oexplo(si, Alocal
i )

if F (p) < F (si) then
si ← p ; ei ← 0

else
ei ← ei + 1
if ei ≥ eMax then si ← ∅

/* Update nest if needed */

every Tmove iterations do
N ← s∗

for i = 1 to n do si ← ∅

Algorithm 2. The API metaheuristic for the textual color problem

operator is used to create hunting sites and to explore the neighborhood of
hunting sites. The algorithm relies on two sets of amplitudes: {Asite

i } used for
the hunting sites and {Alocal

i } used for the exploration of hunting sites. In this
work, we considered the classical definitions which are Asite

i = 1+(0.01− 1) i−n
1−n

and Alocal
i = Asite

i /10. We denote by ei the counter for the number of failure
of a hunting site si and eMax the maximal number of failure allowed before a
hunting is abandoned. Algorithm 2 proceeds in two steps. First, the ants go
out of the nest. If the ant does not have a hunting site (si = ∅) then a new
hunting site is chosen with Oexplo(N ,Asite

i ). If the ant already has a hunting
site then it explores a new solution in the neighborhood of the hunting site
using Oexplo(si,Alocal

i ). When the new solution is better than the hunting site,
the hunting site is replaced by the new solution and the fail counter is reset.
Otherwise, the counter is increased and depending of its value, the hunting site
is abandoned. When all ants have explored a new solution, the nest is tested.
Every Tmove iterations, the nest N is moved to the best known solution and the
hunting sites of the ants are cleared. The whole process is repeated as needed.

3.3 Hybridization with a One Step Gradient Descent and a Descent
Acceleration

For each solution x ∈ S, we define D(x) the set of solutions that have one and
only one component varying of one unit (+1, −1) compared to x. The one step
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gradient descent is defined by:

g(x) = arg min
y∈D(x)

F (y) .

An acceleration of the one step gradient descent can be achieved using a line
search in the direction of the gradient (g(x)−x). We define (yt)t∈N+ the sequence
of solutions such that yt = g(x) + t ∗ (g(x) − x). The gradient descent acceler-
ation consists in computing yT such that ∀t = 1..T − 1, F (yt) ≥ F (yt+1) and
F (yT ) < F (yT+1). Hybridizing with the one step gradient descent consists in
applying g, optionally with the acceleration, on any solution returned by ν(x, y)
or Oexplo(x,A).

4 Experimental Study and Comparison

To compare the two methods, we consider different parameter settings and a
set of 196 real web pages chosen randomly on Internet verifying F (cI) > 0.
The algorithms are run 50 times and the averaged “best fitness ever found”
curves are computed for each pages. To alleviate scaling issues, the curves are
normalized for every page such that F (cI) is mapped to 1 and the best found
solution by any algorithm/parameter setting is mapped to 0. The averaged curve
for an algorithm/parameter setting is obtained using the normalized curves on
each page. The normalization formulas are given in [5]. For ABC, we considered
|S| = Nonlooker = Nscout ∈ {5, 10, 15, 20} and eMax ∈ {5, 10}. The initials colors
cI are included or not in the initial food sources and the usefulness of the one
step gradient descent and its acceleration is evaluated. From experiments, we
noted that the inclusion of cI in the initial food sources is very important. The
convergence is accelerated and F converges toward its lowest values when the
number of food sources decrease (5 is the best). The other parameters have low
influence on first evaluations. When considering the behavior after 5000 evalua-
tions, it appears that the one step gradient descent with the acceleration tends
to provide best performance when eMax ∗ Nonlooker = 50. The best parameters
are eMax = 10 and Nonlooker = 5. For API, we considered setting the initial
nest position to cI or not, using the line search or not, setting n ∈ {5, 10, 15, 20},
Tmove = 20 and eMax ∈ {5, 10}. Experiments showed that the nest must be set to
the initial color scheme (cI) for better results. Moreover, none of the remaining
parameter showed a significant influence on the behavior of the algorithm for
the considered instances of the color problem. The best fitness values at 10000
evaluations are obtained for n = 10, eMax = 5 and when the one step gradient
descent is not used. The comparison of the best ABC and API settings showed
that on most web pages, API converges faster than ABC (see Fig. 1). However,
API fails to improve the initial solution for 5 web pages and ABC fails for 1 web
pages. Supposing a fair time sharing between the two algorithms, it is possible
to run API and ABC in parallel in order to take the best of the two. To be
fair, the same quantity of evaluated solutions (half, 5000 evaluations) are used.
The averaged curves on all pages are given by Fig. 1. This parallel approach is
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the most efficient. It demonstrates an often faster convergence suitable for the
interruption of the algorithm at any time and all web pages are improved (since
the algorithm never failed).
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Fig. 1. Averaged curves on all pages for ABC, API and parallel ABC-API

5 Conclusion

In this paper, we studied two swarms algorithms (ABC and API) on the tex-
tual color problem for web accessibility. A parameter study was lead and best
parameters are established against a set of web pages. We demonstrated that
the two swarms algorithms can be combined in order to get the best features of
both algorithms and to ensure an improvement of the color scheme in all cases.
We also showed that this combined algorithm has the required features allowing
to interrupt computation whenever it is needed to ensure a reduced waiting time
for the user (ergonomic feature).
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10. Monmarché, N.: Algorithmes de fourmis artificielles : applications à la classification
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Abstract. In order to improve the behavior of Particle Swarm Opti-
mization (PSO), the classical method is often extended by additional
operations. Here, we are interested in how much “PSO” remains in this
case, and how often the extension takes over the computation. We study
the variant of PSO that applies random velocities (then called forced
moves) as soon as the so-called potential of the swarm falls below a cer-
tain bound. We show experimentally that the number of iterations the
swarm actually deviates from the classical PSO behavior is small as long
as the particles are sufficiently far away from any local optimum. As soon
as the swarm comes close to a local optimum, the number of forced moves
increases significantly and approaches a value that depends on the swarm
size and the problem dimension, but not on the actual fitness function,
an observation that can be used as a stopping criterion. Additionally,
we provide an explanation for the observed phenomenon in terms of the
swarm’s potential.

1 Introduction

In the past few years Particle Swarm Optimization (PSO) has received increased
attention because it can be easily implemented and adapted to the users’ applica-
tions. Unfortunately, the results are not always as good as wanted. Hence, many
authors present changes in the original, “plain,” or classical PSO scheme (for
exact definitions, see Section 2) in order to improve the quality of the returned
solution. In the following, some of these PSO variants are mentioned.

In [7], van den Bergh/Engelbrecht introduce a PSO variant where the parti-
cles are allowed to count the number of times they improve the global attractor
and to use this information.

In [5], a discrete variant of PSO for the Traveling Salesperson Problem is pre-
sented, where the PSO mechanism is enhanced by additional k-OPT-based inter-
mediate phases. However, as experiments turn out, the quality of the solutions
this algorithm returns does not significantly change when the PSO is completely
turned off.

The phenomenon of premature stagnation, i. e., the convergence of the swarm
to a non-optimal solution, has been addressed by Lehre/Witt [2]. To overcome

c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 98–105, 2014.
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such stagnation, they propose Noisy PSO that adds a “noise” term to the veloc-
ity at every move. The authors prove that for the Noisy PSO started on a certain
1-dimensional function the first hitting time of the ε-neighborhood of the global
optimum is finite.

As proved in [3], premature stagnation of classical PSO does not occur when
the search space is 1-dimensional. I. e., in the 1-dimensional case, PSO provably
finds a local optimum. Furthermore, [3] shows a similar result for a slightly mod-
ified PSO in the more general D-dimensional case. This modified PSO assigns a
small random velocity only if the so-called potential of the swarm falls below a
certain (small) bound. Such moves are called forced. This modified PSO provably
finds a local optimum.

The goal of this paper is to determine, how much the modified algorithm
relies on the forced moves, i. e., how often the modification actually is applied.
We present experiments, implying that the forced moves will only have a small
impact on the overall behavior of the swarm, as long as it is far away from
any local optimum. Furthermore, our experiments show that the number of
forced moves does not only increase significantly when the distance to the next
local optimum falls below a certain bound, but that additionally the number
of forced moves performed near a local optimum is independent of the fitness
function. Therefore, the concentration of forced moves can act as a stopping
criterion. Additionally, we give experiments that show the dependencies of this
concentration, i. e., how it is influenced by the swarm size and the problem
dimension.

2 Definitions

Definition 1 (Classical PSO Algorithm). A swarm S of N particles moves
through the D-dimensional search space R

D. Each particle n ∈ S consists of
a position Xn ∈ R

D, a velocity V n ∈ R
D and a local attractor Ln ∈ R

D,
storing the best position particle n has visited so far. Additionally, the swarm
shares information via the global attractor G ∈ R

D, describing the best point
any particle has visited so far, i. e., as soon as a particle has performed its move1,
it possibly updates the global attractor immediately.

The actual movement of the swarm is governed by the following movement
equations where χ, c1, c2 ∈ R

+ are some positive constants to be fixed later and
r and s are drawn u. a. r. from [0, 1]D.

V n := χ·V n + c1 ·r � (Ln − Xn) + c2 ·s � (G − Xn)
Xn := Xn + V n

Here, � denotes entrywise multiplication (Hadamard product). The application
of the equation on particle n is called the move of n. When all particles have
executed their moves, the swarm has executed one iteration.
1 The particles’ moves are executed sequentially, so there is some arbitrary order of

the particles.
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Now we define a swarm’s potential measuring how close it is to convergence,
i. e., we describe a measure for its movement. A swarm with high potential should
be more likely to reach search points far away from the current global attractor,
while the potential of a converging swarm approaches 0. These considerations
lead to the following definition [4]:

Definition 2 (Potential). For d ∈ {1, . . . , D}, the potential of swarm S in
dimension d is Φd with Φd :=

∑N
n=1(|V n

d | + |Gd − Xn
d |). The total potential of S

is Φ = (Φ1, . . . , ΦD).

The current total potential of a swarm has a portion in every dimension.
Between two different dimensions, the potential may differ much, and “moving”
potential from one dimension to another is not possible. On the other hand,
along the same dimension the particles influence each other and can transfer
potential from one to the other. This is the reason why there is no potential of
individual particles.

To address the phenomenon of stagnation, we modify the movement equa-
tions from Definition 1 as follows [3]:

Definition 3 (Modified PSO). The modified movement of the swarm is gov-
erned by the following movement equations where χ, c1, c2, δ ∈ R

+ are some
positive constants to be fixed later and r and s are drawn u. a. r. from [0, 1]D.

V n :=

{
(2·r − 1) · δ, if ∀d ∈ {1, . . . , D} : |V n

d | + |Gd − Xn
d | < δ

χ·V n + c1 ·r � (Ln − Xn) + c2 ·s � (G − Xn), otherwise,
(1)

Xn := Xn + V n.

If the first case of (1) applies for a particle, we call its move forced. An iteration
of the swarm is called forced if at least one particle performs a forced move.

Algorithm 1 below provides an overview over the modified PSO. The introduc-
tion of forced moves guarantees that the swarm does not converge to a non-
optimal point, but finds a local optimum [3].

3 Number of Forced Iterations

In the following experiments, we tested the modified PSO algorithm with the
fixed parameters χ = 0.729, c1 = c2 = 1.49 as suggested in [1]. Additionally, we
set the swarm size N = 3, the problem dimension D = 30 and the parameter
δ = 10−6. The total number of iterations was set to 4.000.000 and for every
period of 2.000 iterations, we counted the forced iterations. As fitness func-
tions, we used selected benchmarks from [6], namely Sphere (F1), Schwefel
1.2 (F2), (unrotated) H. C. Elliptic (F3), Rosenbrock (F6), Rastrigin (F9)
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Algorithm 1. Modified PSO
output: G ∈ R

D

1 for n = 1 → N do
2 Initialize Xn randomly; Initialize V n randomly;
3 Initialize Ln := Xn;

4 Initialize G := argmin
{Ln|n∈{1,...,N}}

f ;

5 repeat
6 for n = 1 → N do
7 if ∀d ∈ {1, . . . , D} : |V n

d | + |Gd − Xn
d | < δ then

8 V n := (2 · r − 1) · δ;
9 else

10 V n := χ · V n + c1 · r � (Ln − Xn) + c2 ·s � (G − Xn);

11 if f(Xn) ≤ f(Ln) then Ln := Xn;
12 if f(Xn) ≤ f(G) then G := Xn;

13 until termination criterion met ;

and Schwefel 2.13 (F12). The results can be seen in Figure 1. Initially, the
positions were uniformly and independently distributed over [−100, 100]D and
the velocities were uniformly and independently distributed over [0, 1]D. To mea-
sure the quality of the solution found at each time, the gradient is calculated at
the end of each interval. In each run and for every examined fitness function, we
can observe the following behavior. In the beginning of the optimization process,
the number of forced iterations is low. When the swarm reaches (the neighbor-
hood of) a local optimum, this number will rise and then begin to stagnate
around a certain value. While the time when that happens may depend on the
fitness function, one can clearly see that this value does not. Note that the point
in time when the particles come close to a local optimum and the number of
forced iterations increases is random. In case of Schwefel 2.13, the point has
a comparatively high variance, so the smaller increase of the respective curve in
Figure 1 results from averaging over the 100 runs rather than generally smaller
increases of the single runs on this function. As seen in Figure 1, the number
of forced iterations is low in the beginning of the algorithm. This is due to the
nature of the modification made. Whenever the swarm begins to converge to a
point that is no local optimum the modification applies and enables the swarm
to search for a new, promising direction. For that purpose only a few forced iter-
ations are necessary. When the swarm reaches a local optimum, the modification
is also applied and the swarm will again try to find a new direction. However,
since every direction yields worsenings, the swarm will never switch back to stan-
dard swarm behavior for longer than a few iterations. From Figure 1, one can
see that the number of forced moves at that point will stay around a certain and



102 B. Bassimir et al.

 0  12500  25000  37500  50000
 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 300

iteration

gr
ad

ie
nt

fo
rc

ed
 it

er
at

io
ns

(a) Sphere

 0  40000  80000  120000  160000

iteration

 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 300

fo
rc

ed
 it

er
at

io
ns

gr
ad

ie
nt

(b) Schwefel 1.2

 0  7500  15000  22500  30000
 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 300

iteration

fo
rc

ed
 it

er
at

io
ns

gr
ad

ie
nt

(c) H. C. Elliptic

 0  1e+06  2e+06  3e+06  4e+06

iteration

 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 300

fo
rc

ed
 it

er
at

io
ns

gr
ad

ie
nt

(d) Rosenbrock

 0  12500  25000  37500  50000
 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 300

iteration

fo
rc

ed
 it

er
at

io
ns

gr
ad

ie
nt

(e) Rastrigin

 0

 50

 100

 150

 200

 250

 300

 0  1e+06  2e+06  3e+06  4e+06

iteration

fo
rc

ed
 it

er
at

io
ns

gr
ad

ie
nt

 0

 50

 100

 150

 200

 250

 300

(f) Schwefel 2.13

Fig. 1. Forced iteration count and gradient for various fitness functions. Each point
represents the average over 100 different runs. The forced iteration count is the sum
over 2.000 iterations and the gradient is calculated at the global attractor every 2.000
iterations.
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comparatively high value. An explanation is that the particles will now be gath-
ered in a neighborhood with radius of about δ around the global attractor. At
that point, the global attractor is very close to the local optimum, so the swarm’s
potential is small. As known from, e. g., [1], the unmodified PSO converges and
therefore looses potential. It is now in a situation where its moves will be forced.
These forced moves can lead to an increase in potential. Consequently, as soon
as the modified PSO has enough potential to apply the classical movement equa-
tions, after some iterations it is again in a situation where its moves are forced.
Therefore the stochastic process of the particle swarm becomes a stationary pro-
cess. The number of forced iterations under this stationary distribution will in the
following be called the stagnation value. The stagnation value is independent of
the fitness function, because the changes of the attractors are the only influence
the function has on the movement of the particles. So the smaller the attractors’
movement gets, the less relevant is the actual function for the behavior of the
swarm. Note that the time when the particles come close to a local optimum
decreases when the swarm size is increased. In particular, with a larger swarm
size, this time is less than 2000. Consequently, we chose a very low number of
particles to highlight the difference between the optimization phase, when the
behavior of the swarm is mostly governed by the standard movement equations,
and the stagnation phase, when a large share of the iterations is forced.

4 Dependencies of the Stagnation Value

In Section 3 we have seen that the value at which the number of forced iterations
stagnates is independent of the fitness function. In this section we will give a
further insight into this phenomenon. We provide experimental results pointing
out that there are two dependencies for this value, namely the search space
dimension and the swarm size. Figure 2 shows how the stagnation value changes
when these parameters are varied. Each point is the arithmetic mean over the
last 50 values of the forced iteration number, i. e., the values are obtained from
the last 100.000 iterations. Each run in Figure 2a consists of 500.000 iterations
and each run in Figure 2b of 200.000 iterations. Sphere is chosen as the fitness
function.

In Figure 2a, one can see that the value at which the number of forced iter-
ations stagnates decreases exponentially as the number of dimensions increases.
To explain this behavior, we have to look at the probability of the occurance of
a forced move. In Equation (1), one can see that a forced move will occure when
the sum of the absolute value of the velocity and the distance of the particle to
the global attractor fall below a certain bound in every dimension. As soon as the
swarm is sufficiently close to a local optimum, such that updates of attractors
are rare and the differences between the old values and the updated values are
small, the dimensions are almost independent of each other. The probability of
the necessary condition for a forced move, as specified in (1) of Definition 3, to
be fulfilled in a given dimension does not depend on the actual dimension. This
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Fig. 2. Influence of dimension number and swarm size on the stagnation value

leads to the following equation describing the probability of a forced move for a
given particle n:

Pr(forced moven) ≈ Pr(|V n
1 | + |G1 − Xn

1 | < δ)D.

Additionally, the stagnation value depends on the swarm size. As specified
before, we call an iteration forced if at least one particle performs a forced move,
i. e., if the following equation holds:

Pr(forced iteration) = Pr
( N⋃

n=1

forced moven
)

Figure 2b shows the obtained stagnation value for a fixed search space dimension
of D = 30 and swarm sizes from 2 to 100. As one can see, the increase of the
stagnation value is almost linear for small swarm sizes. An explanation for this
phenomenon is the following: At the time of the stagnation, the global attractor
will be almost constant. As a direct consequence of this, the particles are moving
almost independent from all other particles. With a low number of particles used,
the resulting value is nearly the sum of the probabilities that a particle performs
a forced move, summed up over all particles. As this number rises, it can be
observed that this value converges towards 2000. At this point, the probability
of more than one forced move during the same iteration rises and has to be
taken into account. This convergence to 2000 comes from the stagnation value
being calculated as the sum over 2000 iterations. Given this two dependencies
and the results shown in Section 3, we conclude that the stagnation value of the
number of forced iterations is a function Fmax(N,D) that is independent of the
fitness function. To compute a result of this function given the two parameters,
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one can first run the PSO algorithm for a simple function like Sphere. The
obtained stagnation value can then be applied as a stopping criterion in the
PSO algorithm that computes the desired fitness function with the same values
for N and D.

5 Conclusion

This paper focused on a modified PSO variant, in which whenever the swarm
reaches a state close to convergence the velocity update in each dimension is
done uniformly over a small intervall. We gave experiments suggesting that the
influence of this modification is relatively small as long as the swarm is far away
from any local optimum. Additionally, the experiments have clearly shown that
the number of forced iterations reaches a stationary distribution when a local
optimum is reached. Under that stationary distribution, the number of forced
iterations is orders of magnitude higher than the number of forced iterations
performed during the optimization process. Experiments have shown that the
actual value of the forced iterations under the stationary distribution depends
on the number of particles and the number of search space dimensions, but
is independent of the fitness function. Therefore, this concentration of forced
iterations can act as a stopping criterion for the PSO. For future work, the
influence of other characteristics of the algorithm like the neighborhood topology
will be studied.
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Abstract. Communication tools for online learning environments are
ways that let learners to exchange messages between them and with
their teachers. It is also a way to interpret their social behavior patterns
and their learning styles. In this paper, we are interested in the semantic
analysis of the contents messages published by learners by use of domain
ontology. The purpose of this analysis is to identify the domain concepts
that are most published and shared by learners and to keep them into
the leaners model as concepts not well mastered. We hypothesize that
all concepts edited and exchanged over email, chat and especially in dis-
cussion forums can be considered as knowledge poorly or badly acquired
by learners and deserve thus more attention and consideration both by
the tutor for the pedagogical monitoring of learners on these concepts
and from designer of course, to restructure and more enrich the educa-
tional content which articulates these concepts identified beforehand in
this analysis.

Keywords: e-Learning · Communications tools · Domain ontology ·
Semantic indexing · Learner model · Adaptability

1 Introduction

Our work is placed in the field of the Interactive Educational System; we set us
therefore in a context of an online learning. Hence, learners work remotely on
platforms which allow them to attend course, make tests and exercises or discuss
by means of communication tools that are always integrated on these platforms.

The progressive integration of these communication tools offers opportunities
for learners geographically dispersed to exchange without any time constraint
and allows considering a new forms of social interaction between learners and
between learners and teachers [1]. With this simplified sharing of information, a
new forms of interaction have emerged, and new skills have been developed both
in social, cognitive, or meta-cognitive [2].

These communication tools are generally places of meetings and discussing
for learners who are often in difficulties on some concepts of the taught domain,
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which may be weakly assimilated. If we take the example of a learner who pub-
lishes a question on a forum, this fact can interpret an obstacle of this learner on
the concepts contained in the content of this question. As well as the messages
exchanged between learners by email or chat.

We aim in this article to analyze the content of messages discussed by the
learners to identify the most exchanged concepts and be able to help learners
with their needs. We introduce among other things, to do this, ontology of teach-
ing domain to correlate information between the different contents of messages
published by the learner and those of the studied course. The goal that we want
to achieve through this study is essentially enriching and updating the learner
profile, by marking the domain concepts that pose a problem for him and that
are detected due to its posted messages. Recognize the problematic concepts, of
the learners participating in the learning process, can help the designer of the
course to review the course content on these concepts and adapt it to the learn-
ers’ level, and the tutor to assist and support learners who are already published
these concepts. Hence, here we are talking about the adaptability of learning.

The paper will be structured as follows, in the first section we present some
research that are carried on the analysis of communication tools and their users,
then we are interested in some semantic web tools, such as ontologies and the
possibility, thanks to these tools to exploit the contents of messages to detect con-
cepts badly acquired by the learner, further we detail and explain our approach.
Finally we present some results which we have achieved through an implemen-
tation of our approach on a considered domain.

2 Related Work

In several studies, the analysis of the content and the structure of the written
exchanges may offer an interesting educational trail for helping learners to suc-
ceed, we have thus identified two kinds of these analysis. Some works [3] analyze
the external factors of messages, these analyzes attempt to account for what is
played on forums from readily observable indicators such as the number of posts
by each user or group, the number of responses, the length of discussions, the
number of learners participating in discussion, the average duration of a session
on the forum . . . etc.

While others were focused to analyze the internal ones. Indeed various
researches [4,5] have conducted a study to evaluate the use of data and text
mining to analyze the learners’ discussions, they propose systems for classifying
textual contribution, such as: topics that come up in the debates, announce-
ments, questions, students? initiatives or answers, conflicts . . . etc. Another type
of frameworks [6,7] have been proposed for characterizing and analyzing discus-
sions for the classification and structuring, based on the Semantic Analysis which
includes the tools of Web Semantic, like ontology, to organize the vocabulary and
refine the analysis.

These studied works aim to show the cognitive, social and semantic advantage
of published messages. Our approach is inscribed in the same perspective. On the
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other hand, we propose a method which gives a semantic meaning to learners?
messages with an ultimate goal of detecting concepts of the studied domain
that are poorly or badly learned by the learner and keep them into his profile
for adaptability. To do this, the concepts of the studied domain are modeled
through ontology of the taught course, as we describe it below.

3 Domain Ontology

The Semantic Web [8] is an understandable and navigable space by both human
and software agents. It introduces an additional meaning to the navigational
data of the classical web, based on a formal ontology and controlled vocabu-
laries through semantic links. In standpoint of e-learning, it can help learners
to locate, access, querying, processing and evaluating learning resources across
distributed heterogeneous network, or assist teachers in creating, using, locat-
ing, or the sharing and exchanging learning objects. Ontology [9] includes a set
of terms, knowledge, including vocabulary, semantic relations, and a number of
logic-inference rules for some particular domain. The ontology applied to Web
creates thus the Semantic Web [10]. Ontologies [11] facilitate the sharing and
reuse of knowledge, i.e. a common understanding of diverse content by persons
and machines.

The use of ontology in our case consists in the conceptual indexing of the
edited messages to facilitate their identification and semantic search by the
learner since they become learning knowledge?s basis available for consulting
[12]. On top of that indexing, the most edited domain concepts will thus detected.
This ontology also represents the structure of the learner?s model, since it is part
of the domain model, i.e. the domain ontology in our case.

In our case of study, we consider that ontology is composed of a set of concepts
and relations between these concepts. A unique identifier is assigned for each
concept, these concepts are labeled with one or several terms. Expressly an
ontology O is defined as follows: O={C, R, Vo}

– C : set of domain ontology concepts
– R: set of relations between the ontology concepts,
– Vo: is the ontology vocabulary which is composed with terms (mono or

composed words) corresponding to the domain ontology concept.

4 The Proposed Approach

To detect knowledge of domain supposed poorly assimilated by learners, we
propose an approach that consists in constructing a text document relative to
the messages published by the learners in their email, chat and discussion forums.

These documents are taken from the database of the platform and then
indexed according to the concepts of the taught course through the domain
ontology (semantic indexing). The most edited concepts by a learner or group
of learners are then highlighted. Our goal is threefold. On the one hand we try



The Use of Ontology in Semantic Analysis of the Published Learners 109

to index the messages to facilitate their research and consultation, on the other
hand to detect the most edited concepts of domain by learners, and finally we
want to identify learners who have used these concepts via the communication
tools to make inquiries about some domain concepts.

The approach that we propose is divided into three basic processes: (1) Build-
ing of the messages corpus, (2) Semantic Indexing and (3) the management and
processing of results, this is what will be detailed in the following of this paper.

4.1 Building of the Edited Messages Corpus

To perform indexing, we need textual content messages. It just consists to access
to the database of the platform to get messages exchanged by all learners from
the corresponding tables. The result will be in the form of text documents, thus
closing the content of message, paths to the attachments if exists, information
about the sender and receivers of the message and the time of dispatching. These
documents will be saved in a repository to constitute a local corpus of documents.

Below, a diagram summarizes the structure of the message in learning plat-
form, that we will indexed with the concept of the studied domain via an ontology
of domain, which is the purpose of this work.

Fig. 1. The ontology model of message

4.2 The Semantic Indexing

We propose to use domain ontology to build the semantic index of documents.
The process of document indexing is handled through three main steps: (1)
Identifying ontology concepts, (2) Assigning concepts to document terms and
(3) Weighting concepts. In the following, we present these steps.
Concept Identification. The purpose of this step is to identify ontology con-
cepts that correspond to document words. Concept identification [13] is based
on the overlap of the local context of the analyzed word with every correspond-
ing domain ontology entry. Concepts are referred in the text documents with
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Fig. 2. The algorithm of terms Mapping into Concepts

simple or compound words (term). The concept identification algorithm is given
in figure 2.

In the ontology, a set of terms is used for labeling concepts and relationships
between concepts. That set forms the vocabulary of the ontology.To respond
nevertheless in case if the processed term is ambiguous, a disambiguation step
is so necessary.
Term Disambiguation. Each term ti (simple or compound words) in docu-
ment may be associated with a number of related possible ontology concepts.

Thus we distinguish the situation of semantic or polysemy ambiguity. That
set forms the vocabulary of the the situation of semantic or polysemous ambi-
guity.For example, the term ”table” has a three meaning in PHP ontology: (1)
table of data structure, (2) table in database and table in the html structure. It
can refer to three different concepts. In this case we proceed as follows, for an
ambiguous term ti in the document, we seek a label of a concept Ck linked in
the ontology with a concept Ci which is indicated by the ambiguous term ti . If
Ck exists, Ci is taken as the concept designated by the term ti .
Concept Weighting. The extracted concepts are weighted according to a
method more general than tf *idf named Cfc * idf (concept-frequency-inversed
document frequency). In this method each extracted term represents necessarily
a concept of the ontology since we used ontology to identify them. For a concept
C its frequency in a document depends on the frequency of the term itself [14].
It is calculated as follows:

idfc = log
n

fc
+ 1 (1)

Cfc =
∑

tm∈t(c)

tftm (2)
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Where: t(c) is the set of terms corresponding to different concept C and tftm
is the frequency of term t(c) in document i. The weight of each concept in a
document d is so calculated as follows:

CfIdf = Cfc× idfc (3)

5 Semantic Representation of Learner Knowledge

Each indexed document is represented by a vector of weighted key concepts. For
this purpose, all documents that constitute the corpus C will be represented by
an occurrence matrix of document and concept. We will distinguish two kinds of
corpus, a first corpus Clearner consists of each message published by a learner,
and a second CGrp represents the sum of all messages edited by all learners who
participated in the learning process.

Thanks to the first corpus, we can specify the knowledge which poses a
problem to the learner. Since the occurrence matrix, we naturally recognize the
most published concepts by the learner through adding instances of the same
matrix row; the result is a vector Vlearner containing the concepts occurrences
in the corpus Clearner. Vlearner = (Wc1, Wc2 ................... Wcn) Concepts with a
high weight by estimating a threshold α, that we will fixed by experimentation, will
be reviewed as problematic domain concepts for a learner. There-fore, the tutor may
intervene to help the learner on these concepts.

In fact, we distinguish several ways to represent the learner?s knowledge; the largest
used method is the Overlay model [15]. This model represents the learner?s knowledge
as a subset of the domain model, which reflects the expert-level knowledge of the
subject. The domain model is presented in our case of study as domain ontology.

Hence, we propose an overlay knowledge model with two layers (2 levels). The
first layer concerns assessment and contains the mark obtained by the learner in the
test on the concept. As for the second layer, it stores the weight of the edited concept
on the communication tools using the equation(3).Consequently, the learning model in
the proposed system has been shown in an ontological form since using the domain
ontology to represent the domain model.

For the general corpus CGrp we proceed with the same process as a learner, so the
result will be a general vector of concepts occurrence in the corpus CGrp. Similarly, the
concepts greater than a threshold β, which we also determine the value by evaluation,
will be considered as wrong developed concepts in the course. To this end, the designer
of course can review the content of resources that explain these identified concepts,
and further enrich its course on these concepts.

6 Experimentation

6.1 The Test Collection

For our experiments, we have proceeded to test on group of computer science students
in the second years, with the number of 27. We have proposed to them PHP course,
shown in eFAD (www.ufc.efad.dz) platform and modeled with the ontology of SKOS
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format1 (Simple Knowledge Organization System). The experiments were established
in three sessions of one hour. The PHP course is mainly composed of 8 top concepts
and 49 sub-concepts. To consolidate our experiment, we have conceived a questionary
paper which we have distributed to students, asking them to place concepts which pose
problem to them. At the end of the test, a written assessment was performed for all
learners.

6.2 Evaluation of Results

The result of the experimentation consists of 27 corpus of each learner plus the general
corpus. Therefore, we constituted a number of 105 textual documents of the messages
extracted from the platform database. The following diagram shows the score charac-
terizing the main domain concepts for each learner : The challenge of this test was to

Fig. 3. The editing weights of the main domain concepts

find the concepts insufficiently mastered by each learner. That is to say; the thresh-
old α, that we set to evaluate the most concepts which posed a problem for student
j, is estimated by the median of the weights of concepts edited by this learner. This
threshold is different from learner to learner; accordingly we have counted 27 values of
this threshold (figure 3.a). Indeed, we found that the concepts C4 and C6 have posed
a problem for some students who are recognized by the following process.

As that is signaled, a written assessment was performed for each learner on each
concept of the domain as well as a questionnaire which we have asked them to indicate
the concepts not mastered. Therefore, the diagram in the figure 3.b shows a comparison
of different results obtained from the assessment, the weight of edited concepts and
questionnaire responses.As for the threshold β, which we considered to estimate the
concepts which are badly defined in course, it is determined by comparing the result
with that obtained through the written assessment and questionary responses, the
value is fixed at 0.24. As a result, we detect that 5 learners have problems with some
concepts of the domain (learners 2, 10, 14, 18, 22).

7 Conclusion

The adaptability educational systems provide good support for learners on their indi-
vidual characteristics. It can also provide information on the needs and deficiencies of

1 http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/implementation.
html
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these learners, either for the tutor or designer of the course, even for evaluation, moni-
toring and customizing the process and strategy of learning. In fact, the learner model
must be developed for each student, containing information about the history of social
interactions, objectives and knowledge badly acquired. In this article, we have high-
lighted the need to analyze the messages edited by learners during the learning sessions
and we have proposed an approach for semantic analysis that we have presented and
explained which permits to detect domain concepts that were difficult for learners, by
comparing the content of their messages with a domain ontology of the studied course.
An experiment was carried out on a group of students taking a PHP course, and has
enabled us to validate the proposed approach and to set some parameters.

This result needs to be further refined by additional tests, which we are currently
conducting. Moreover, it should however be raised that we have considered here only
the internal discussions, so one of our prospects would be to take into account the
external discussions by use of log file to identify them.
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Abstract. In this paper, we study the hybridization of particle swarm
optimization (PSO) with stochastic local search. This hybrid metaheuris-
tic is applied to a difficult scheduling problem, recently appeared in the
literature, the flexible job shop problem with transport. The objective is
to determine experimentally the best balance between the exploration
ability of PSO and the exploitation ability of the local search. The
obtained results show that local search is effectively an important com-
ponent which permits to significantly improve the basic PSO algorithm.

1 Introduction

The hybridization between a population-based metaheuristic (genetic algorithm,
particle swarm optimization, ant colony system, . . . ) and a local search technique
(local search, simulated annealing, tabu search, . . . ) permits to develop powerfur
hybrid metaheuristics, because a such approach combines the exploration ability
of the former with the exploitation ability of the latter. More specifically, this
paper is devoted to the hybridization of particle swarm optimization (PSO) with
stochastic local search (SLS).

In SLS, the stopping criterion is often defined as the maximal number of con-
secutive attempts without improvement of the current solution. This parameter
offers a very simple and intuitive way for tuning the exploitation ability of SLS.
Higher this number is, and better the exploitation of the search space is. Our objec-
tive is to study the effect of this parameter on the performance of the hybrid PSO.

We propose to study this hybrid metaheuristic on a difficult scheduling prob-
lem recently appeared in the literature: the flexible job shop problem with trans-
port. This problem arises in Flexible Manufacturing Systems environment.

The paper is organized as follows. Section 2 describes the scheduling problem
under consideration. Section 3 presents a general framework of the hybridization
PSO - SLS. In section 4, we detail how PSO - SLS is implemented. Section 5
gives the obtained results. We conclude by indicating some directions for further
research.

2 The Flexible Job Shop Problem with Transport

The problem under consideration consists in the simultaneous solution of the
scheduling of AGVs and the scheduling of machines in an FMS environment.
c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 115–122, 2014.
DOI: 10.1007/978-3-319-12970-9 13
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The scheduling problem under study is a combination of two problems well
referenced in the literature: the flexible job-shop problem [1] and the job-shop
with transport [2].

2.1 The Job Shop Scheduling Problem

The Job Shop (JSP) Scheduling Problem (J ||Cmax) is one of the oldest schedul-
ing problem. The J2||Cmax problem has been proved to be NP-hard [3]. This
problem can be described by a set J = {J1, . . . , Jn} of n jobs which must be
processed on a set M = {M1, . . . , Mm} of m machines subject to the constraint
that each machine can handle at most one job at a time. Each job must follow a
specified sequence of machines. Assuming that αj is the number of operations of
job Jj , let us note by Oj = {oj,i, i ∈ [[1, αj ]]} the set of operations of Jj , and by
O =

⋃
Jj∈J

Oj the set of all the operations. Each operation oj,i must be processed

on a given machine Mj,i ∈ M during a specified processing time pj,i.

2.2 The Flexible Job Shop Problem

The Flexible Job Shop (FJSP) scheduling problem (FJ ||Cmax) is a general-
ization of the JSP, in which each operation oj,i can be performed by a subset
Tj,i ⊂ M of machines. For each machine Ml ∈ Tj,i, a processing time pj,i,l is
given (the notation pj,i can be kept in the case of identical machines).

According to [1], this problem consists of a routing subproblem and a schedul-
ing subproblem. The former is assigning each operation oj,i to a machine Ml ∈
Tj,i. The latter is sequencing the assigned operations on each machine.Two kinds
of approximated approaches have been proposed in the literature: hierarchical
approaches and integrated approaches. In hierarchical approaches, the two sub-
problems are treated separately. On the contrary, the integrated approaches con-
sider them simultaneously. Many metaheuristics have been developed for tackling
the FJSP. We can suggest the following references for a first introduction to this
problem: [1], [4], [5] who have proposed a Tabu search and [6], [7] who have
proposed a genetic algorithm.

2.3 The Job Shop Problem with Transport

The Job Shop problem with Transport (JSP-T) is another extension of the JSP.
This problem occurs in a Flexible Manufacturing System (FMS) environment.
A FMS consists of a set of machines performing production tasks and a set
V = {V1, . . . , Vk} of k automated guided vehicles (AGVs) performing the trans-
portation tasks between the machines. Hence, we consider that the travel times
of jobs between two consecutive machines cannot be neglected at all.

This problem is noted (JR|tk,l, t′k,l|Cmax) according to the α|β|γ notation,
extended by [8] for transportation problems. R indicates that we have a limited
number of identical vehicles. tk,l indicates that we have job-independent, but
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machine-dependent loaded travel times. t′k,l indicates that we have machine-
dependent empty travel times.

Like the FJSP, the JSP-T is more complex than the JSP. It is the combina-
tion of two NP-hard subproblems: the Vehicle Scheduling Problem (VSP) and
the Job Shop Problem. [2] used a hierarchical approach with a heuristic that
generates some machine schedules and a sliding time window technique that
build a feasible vehicle assignment. [9] proposed an integrated approach with a
genetic algorithm , [10] have developed a hierarchical approach with a genetic
algorithm for the scheduling of vehicles and a greedy algorithm for the schedul-
ing of the machines; [11] described an integrated hybrid metaheuristic (iterative
local search / simulated annealing) and [12] also proposed an integrated meta-
heuristic based on memetic algorithms.

2.4 The Flexible Job Shop Problem with Transport

The Flexible Job Shop Problem with transport (FJSP-T) is the combination
of the two extensions we have presented just above. This problem can be noted
(FJR|tk,l, t′k,l|Cmax). Solution approaches for this problems must integrate three
subproblems. the routing subproblem: each operation oj,i must be assigned
to a machine Ml ⊂ Tj,i. The scheduling subproblem: for each machine Ml,
the sequence of operations that are assigned to it must be scheduled. The trans-
port subproblem: the jobs must be carried between two consecutive machines
defined by their routing.

Few works have been devoted to this problem. [13] extend their previous
work on the JSP-T and propose a first integrated approach with an iterated
local search. [14], [15] describe an extension in which the processing times are
bounded on the machines. They propose a hierarchical approach based on a
genetic algorithm with tabu search hybrid metaheuristic . The genetic algorithm
tries to improve the routing and transport subproblems while the tabu search
is dedicated to the scheduling subproblem. [16] use the FJSP-T as scheduling
problem for improving the rearrangement of the machines in the system.

3 Description of the Hybrid PSO

The hybridization of a population-based method with a local search is a clas-
sical approach. We present in this section a general framework of this hybrid
metaheuristic.

3.1 The PSO Framework

Particle Swarm Optimization (PSO) is a nature inspired metaheuristic developed
by [17] for continuous optimization problems. The framework of PSO can be
described as follows:
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– At iteration k, each particle i has a position that represents a solution xi,k

of the optimization problem. The objective function gives the cost of this
solution and defines the fitness of the particle.

– Each particle i remembers the best solution pbesti it has encountered in its
past (local memory).

– Each particle knows the best solution gbesti encountered either by the whole
swarm, or by a subset of it (global memory).

– Each particle flies in the solution space with a given velocity vi,k.

Starting from a swarm of random particles (position and velocity), each of
them will move in the solution space using the two following equations where c1
and c2 are cognitive coefficients and ω is a constriction factor:

vi,k+1 = ω × vi,k + c1 ∗ rand()(pbesti − xi,k) + c2 ∗ rand()(gbesti − xi,k) (1)

xi,k+1 = xi,k + vi,k+1 (2)

3.2 Discrete PSO

Many works have been related in the literature about the adaptation of PSO for
solving combinatorial optimization problems. Indeed, we can distinguish three
classes of approaches, based on:

– a stochastic velocity model.[18] propose a of binary PSO algorithm. The
velocity is a vector of probability v(k) = [p1, . . . , pn] which determines how
the position evolves in the search space.

– a discrete definition for vector operations. [19] proposes a general
framework, illustrated by the Traveling Salesman Problem, in which vector
operations are redefined in order to work on a discrete space.

– a discrete definition for the search space. The particles fly in a con-
tinuous space, exactly like a classical PSO. Each (continuous) position is
transformed into a discrete solution by the application of a given rule (for
instance, the SPV (Smallest Position Value) rule ([20])

The hybrid PSO described in this paper belongs to the second class. In section
4, we will show how the framework proposed by [19] is implemented to work on
the FJSP-T.

3.3 Local Search

The general framework of local search is to improve a solution x by searching
into a subset of solutions denoted N(x) and called the neighborhood of x.

In the determinist case, a local search consists in enumerating the neigh-
borhood N(x) and in choosing either the first improving neighbor encountered
(incomplete enumeration), or the best improving neighbor (complete enumera-
tion). The stopping criterion is typically when the current solution x has reached
a local minimum.
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On the contrary, the stochastic local search consists in computing a sam-
pling enumeration of the neighborhood. At each iteration, a neighbor y ∈ N(x)
is drawing at random. The stopping criterion if generally defined by a mixi-
mum number of successive failures (MaxFailures). The formula (3), where |N |
designs the number of elements of the set N , gives the number of trials that are
necessary to obtain a local minimum with a given probability p.

3.4 The Hybrid PSO

Several authors attempt to specify some hybridization features ([21], [22], [23]).
They are all agree to recognize that the hybridization of a population-based
method (evolution algorithms, particle swarm, ant colony, . . . ) with a local search
procedure (local search, tabu search, simulated annealing, . . . ) is of the best
interest. Population-based metaheuristics are powerful in terms of exploration.
The main idea of this kind of hybridization is to combine them with a local
search procedure which is powerful in terms of exploitation. Each time a particle
moves, its position is improved by the local search.

4 Implementation Details

In this section, we describe how the general algorithms presented in the previous
section are implemented for the FJSP-T.

4.1 Solution Encoding and Solution Evaluation

We propose a solution encoding based on vehicles rather than machines. Obvi-
ously, each operation oj,i ∈ O requires a transportation task of the job Jj from
its previous machine ( if i > 1 then Morigin ∈ Tj,i−1 else Morigin = LU) to the
assigned machine (Mdest ∈ Tj,i ). Let us note this transportation task õj,i.

For each vehicle, we give the sequence of transportation tasks it must per-
form. Additionally, Some rules are defined for solving other subproblems. For the
routing subproblem, we apply the first available machine rule. For the scheduling
subproblem, we apply the FIFO rule in the input buffer of the machines.

4.2 The Local Search Procedure

This neighborhood integrates two basic moves, the exchange move and the
insertion move, and a neighborhood reduction. The exchange move consists in
exchanging two beforehand selected tasks. The insertion move consists in remov-
ing a randomly chosen task, and then to insert it elsewhere. We can notice that
exchange moves preserve the number of tasks assigned to each vehicle. On the
contrary, insertion moves modify the number os tasks of the vehicles. Their com-
plementarity is a reason why we have considered these two moves simultaneously
inside our neighborhood structure.
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Fig. 1. The obtained results

The basic idea behing the neighborhood reduction is that it is probably bad
to exchange two tasks which are completed at a very different time. The proposed
reduction is the following: we only accept to exchange (or to insert) a task õj,i

with a task õj′,i′ if õj′,i′ is in a time windows which depends on õj,i. More
precisely, this time window is defined by the formula (3).

CT (õj,i−1) ≤ CT (õj′,i′) ≤ CT (õj,i+1) (3)

4.3 Discrete PSO

We describe here how the vector operations have been defined in order to adapt
the movement equations (1) and (2) to discrete space.

We propose to define the velocity as a sequence of insertion moves. The
operation ”position plus velocity” simply consists to apply the moves from the
position in the given order. The arrival position is then obtained. Moreover,
it is always possible to compute a sequence of moves (and so a velocity) for
transforming a given position into another one. Lastly, the operation ”coefficient
times velocity” (α ∗ v) is obtained by applying a part of the sequence α < 1 or
by repeating the sequence α > 1.

5 Experimental Results

We consider a benchmark of ten instances used in [13], [14], [15]. It derives from
the work of [2] for the JSP-T problem. 10 runs have been done for each of the
10 instances. The obtained results are given in figure 1. The curves give the
percentage deviation as a function of the probability to obtain a local minimum.
The percentage deviation is the average relative gap (H(x)−H(x∗))

H(x∗) between the
cost of the obtained solution H(x) and the cost of the best known solution
H(x∗).

The curve with square marks represents the results obtained by the hybridiza-
tion of DPSO with a determinist local search. As it is independant of the prob-
ability p, the values are constant. We can notice several points:
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– if p = 0, we have MaxFailures = 0. The resuting method is the DPSO
without local search. The average performance is around 3.5

– if p �= 0, the average performance is between 0.7
– The comparison between the two curves shows that there is not a significant

difference between the stochastic and the determinist local search.

6 Conclusions and Further Work

In this paper, we study the hybridization between Particle Swarm Optimization
(PSO) and Stochastic Local Search (SLS). This metaheuristic is applied on the
Flexible Job Shop Problem with Transport (FJSP-T). We describe how the PSO
is adapted to the studied problem and we study more specifically the balance
between the exploration ability of PSO and the exploitation ability of SLS. The
obtained results show that the hybridization is important and permits to improve
significantly the basic PSO. However, the rate of hybridization doesn’t seem to
be a discriminent factor.

This work can be continued in different ways. The library of instances could
be completed, for instance by extending the library of the flexible job shop
problem. This will permit to consider large-size instances. Other metaheuristic
approaches (memetic algorithm, iterated local search) could also be developed.
This will permit to compare these metaheuristics and to provide first reference
results for the FJSP-T.
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Abstract. An object tracking sensor network (OTSN) is made ofm static
wireless sensors scattered throughout a geographical area for tracking n
mobile targets. Assuming that sensors have non-rechargeable batteries,
one of the most critical aspects of OTSN is energy consumption. In this
paper, we propose linear programming models which handle two missions
: monitoring and reporting data to a base station, and two distinct prob-
lems : minimize energy consumption and maximize network lifetime. We
suppose that trajectories of targets are known and targets should be mon-
itored by sensors. To reach our goals, we schedule the active and sleep
states of the sensors and route the data to a base station while keeping
track of the targets. To solve our problems, we process a temporal dis-
cretization according to the intersection points between the trajectories
and the sensing ranges of the sensors. The obtained sets of sensors for
each time window help us to create linear programming models. These
basic problems offer perspectives in performance evaluation of energy-
conservation protocols and distributed algorithms in wireless sensor net-
works.

Keywords: Multiple target tracking · Wireless sensor networks · Life-
time maximization · Energy consumption minimization

1 Introduction

During the last decade, Wireless Sensor Networks (WSN) have become more
and more affordable and the number of application areas has increased. Sen-
sor networks find their applications in battlefield or trafic surveillance, wildlife
studies or healthcare [5,7]. This paper focuses on target tracking using WSNs.
Our problem is to cover moving targets using randomly deployed sensors. As the
sensors used are often low-cost, a critical aspect of their deployment is battery
limitation.

Two scenarios might occur: 1. battery capacity of sensors is large enough
to ensure monitoring of all the targets during the whole time horizon ; 2. the
targets cannot be monitored until the end of the time horizon. In the first case,
our goal is to minimize the energy consumption, whereas in the second case, it
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is to maximize the network lifetime, i.e. the time during which all targets are
monitored.

In this section, we describe existing works and details of our problem. In
section 2, we reformulate the problem so as to solve it with the methods proposed
in sections 3 (allocation) and 4 (scheduling). Finally, the proposed contribution
is discussed before concluding the paper.

1.1 Related Work

Many protocols with energy-conservation in mind have been proposed [5,7].
Until 2012, a few methods relying on optimization techniques were reported
[5]. Rossi et al. [8] proposed a column generation-based algorithm boosted by
a genetic algorithm to solve the maximum network lifetime under bandwidth
constraints (MNLB). However, this method is only suitable for missions involv-
ing static targets. To minimize the communication costs due to data reporting,
Lin and Lee [2] proposed an algorithm applied to bi-directional moving objects.
The authors formulate the problem as a 0-1 integer programming problem and
apply a Lagrangean relaxation-based heuristic to solve it. Naderan et al. [6]
solved the problem of multiple target coverage by determining the sensing range
of each sensor using primal and dual-based algorithms. In [4], a continuous linear
programming model which handles both monitoring and reporting is proposed.
The model maximizes network lifetime but assumes that targets are static.

1.2 Problem Description

In a region, m sensors are randomly deployed to track n mobile targets as points
and to report sensing data to a base station. A sensor i ∈ {1, . . . , m} is static
and has its own sensing range RS

i , communication range RC
i and its own initial

battery capacity Ei. Each sensor can be in active state, during which it can
cover targets and consumes eSi units of energy per target and per unit of time,
or in sleep state, in which the energy consumption is zero. Transmitting data to
other sensors costs eTi and receiving data eRi per unit of data. For each target
j ∈ {1, . . . , n}, we know the position Tj(t) at each instant t. We require that
each target is covered by at least one sensor at any time.

Our method is composed of three steps : discretization, allocation and schedul-
ing. In the first step, we reformulate the problem in terms of sets by splitting
the time horizon into time windows and grouping candidate sensors for watching
targets in a sequence of sets. Then from this reformulation we deduce two linear
programming models to allocate monitoring time and reporting data amount to
sensors. Finally we schedule the sensing tasks and the routing plan by solving a
sequence of matching problems.

2 Discretization

To solve our problem, it is convenient to divide the total time into time windows
for which we can deduce a static subset of candidate sensors covering the moving
targets.
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Fig. 1. A planar graph example with m = 5 sensors, resulting in 16 faces

In this paper, it is assumed that sensing area of every sensor i ∈ {1, . . . , n}
is a disk of radius RS

i . The monitored area can be seen as a planar graph [1,9]
(Figure 1). Vertices are the points of intersections of boundaries of all sensor’s
disks. Edges connect vertices along the boundaries. The surfaces bounded by
edges are called faces. In fact, all points inside a face are covered by the same
set of sensors.

A circle can intersect at most two times any other circle. Suppose that every
circle intersects exactly two times each other, then the number of vertices |V | is
at most m(m − 1) and the number of edges |E| at most 2m(m − 1). Thus using
the Euler formula |V | − |E| + |F | = 2 with |F | the number of faces, |F | is at
most m(m − 1) + 2 (including the outer, infinitely large face) [1].
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Fig. 2. Temporal discretization in 5 time windows (6 ticks)

We perform a temporal discretization by computing the intersections between
each target’s trajectory Tj(t) and the boundaries of the faces (Figure 2). A
convenient way to model the trajectories is to use piecewise linear curves, as it
can be used to model any trajectory. Computing the intersections in this case is
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also equivalent to solve quadratic equations. This computation results to a set of
ticks, i.e. the values of t for which a target goes from one face to another. Once
all targets have been processed, we use all the ticks to split the time, producing
p intervals called time windows. To each time window k ∈ {1, . . . , p} and each
target j ∈ {1, . . . , n} is associated a set Sk(j) of candidate sensors. Sk(j) defines
the set of sensors that are able to cover the target j during time window k.
To cover the target j during the time window k, at least one sensor has to be
activated from Sk(j). Each time window k (defined by [tk, tk+1]) has a duration
Δk = tk+1 − tk.

3 Allocation

In this section, we propose two models to solve the allocation problem. Precisely,
the purpose of these models is to decide how long each sensor monitors which
target, and the amount of data sent or received by each sensor. After processing
the discretization, we can provide the following data:

I Set of sensors {1, . . . , m}.
J Set of targets {1, . . . , n}.
K Set of time windows {1, . . . , p}.
Sk(j) Set of sensors covering target j during time window k.
T k(i) Set of targets covered by sensor i during time window k.
NT (i) Set of sensors that are able to receive data from sensor i (inc. BS).
NR(i) Set of sensors that are able to send data to sensor i.
eSi Amount of energy spent by sensor i for sensing task per one unit of time.
eTi Amount of energy spent by sensor i for transmitting one unit of data.
eRi Amount of energy spent by sensor i for receiving one unit of data.
Ei Battery capacity of sensor i.
β Amount of data produced per unit of time for sensing.
Δk Duration of time window k.
It can be observed that if there exists a couple (k, j) such that Sk(j) = ∅,

then target j will never be covered during time window k.
We present the two essential sets of decision variables for our models.

– dkij ≥ 0 is the amount of time during which sensor i monitors target j during
time window k.

– fk
ii′ ≥ 0 is the amount of data transmitted by sensor i to sensor i′ during

time window k.

3.1 Energy Consumption Minimization

The following model assumes that sensors have enough energy to monitor all the
targets during the whole time horizon, otherwise it becomes infeasible.

min E =
∑

i∈I

∑

k∈K

(
∑

j∈Tk(i)

eSi dkij +
∑

i′∈NT (i)

eTi fk
ii′ +

∑

i′∈NR(i)

eRi fk
i′i

)

(1)
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s.t.
∑

k∈K

(
∑

j∈Tk(i)

eSi dkij +
∑

i′∈NT (i)

eTi fk
ii′ +

∑

i′∈NR(i)

eRi fk
i′i

)
≤ Ei ,∀i ∈ I (2)

β
∑

j∈Tk(i)

dkij +
∑

i′∈NR(i)

fk
i′i =

∑

i′∈NT (i)

fk
ii′ ,∀k ∈ K, i ∈ I (3)

∑

i∈Sk(j)

dkij = Δk , ∀k ∈ K, j ∈ J (4)

dkij ≥ 0 , ∀k ∈ K , i ∈ I , j ∈ T k(i) (5)

fk
ii′ ≥ 0 , ∀k ∈ K , i ∈ I , i′ ∈ NT (i) (6)

We want to minimize the total energy spent by all the sensors (1). Sensors
can consume energy for three distinct tasks: sensing, transmitting and receiving
data. Constraint (2) ensures that energy spent by each sensor does not exceed
its battery capacity. Sensing task produces input data that needs to be trans-
mitted to the base station. Constraint (3) enforces the connectivity and the data
transmission to the base station. This constraint is a data flow conservation con-
straint, i.e. it implies that the amount of sensed and received data is equal to the
amount of transmitted data. Constraint (4) ensures that each target is covered
by at least one sensor for every time window.

3.2 Network Lifetime Maximization

When the network has not enough energy to track all the targets during the
time horizon, we would like to maximize the network lifetime. We introduce two
additional variables yk and δk.

– yk ∈ {0, 1} is equal to 1 if all targets are monitored during the whole time
window k.

– δk ≥ 0 is a helper fractional variable in order to take into account the
tracking duration in the last (incomplete) time window for expressing the
network lifetime.

max L =
∑

k∈K

Δk
(
yk + δk

)
(7)

s.t. (2) − (3)
∑

i∈Sk(j)

dkij = Δk
(
yk + δk

)
, ∀k ∈ K, j ∈ J (8)

δk ≤ yk−1 − yk , ∀k ∈ K (y0 = 1) (9)

yk−1 ≥ yk , ∀k ∈ K \ {1} (10)

yk ∈ {0, 1} , ∀k ∈ K (11)

δk ≥ 0 , ∀k ∈ K (12)

dkij ≥ 0 , ∀k ∈ K , i ∈ I , j ∈ T k(i) (13)

fk
ii′ ≥ 0 , ∀k ∈ K , i ∈ I , i′ ∈ NT (i) (14)
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The problem objective is to maximize the time during which all the targets
are covered by at least one sensor (7). We consider that the network lifetime
is defined by the moment where some target is no longer covered by a sensor.
Constraint (8) links the dkij variables to the yk and δk variables to ensure that all
targets are covered during all the network lifetime L. Only one of the δk variables
is allowed to be strictly positive (9), in particular in the last time window of the
tracking lifetime. Constraint (10) enforces tracking continuity by setting the first
consecutive yk variables to 1 and all the following ones to zero.

One of the advantages of our models is their linearity which makes them
suitable for solving in LP/MIP solvers to get an optimal solution. An important
remark is that our models don’t take into account the case when a sensor watch-
ing several targets consumes the same amount of energy as watching one target.
The two models complement one another, i.e. the second model can be used as
a fallback of the first in case the latter is infeasible. In the case that sensors have
enough energy to watch all the targets at any time, the second model becomes
irrelevant because it would give the time horizon as an optimal objective value,
without considering the energy consumption.

4 Scheduling

4.1 Sensing Tasks

The previous step helps us to know which amount of time each sensor should
watch targets, but does not say when the sensing tasks should start and stop.

The values of dkij obtained in the optimal solution of the LPs, can be casted
into a series of matrices called workload matrices. The basic idea to determine
a schedule is to decompose each of these matrices as a sequence of q schedule
matrices [3]:

Dk =

⎡

⎢⎢⎢⎣

dk1,1 dk1,2 · · · dk1,n
dk2,1 dk2,2 · · · dk2,n
...

...
. . .

...
dkm,1 dkm,2 · · · dkm,n

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

0c10 . . . 0
c100 . . . 0
000 . . . c1

. . .
00c1 . . . 0

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

000 . . . 0
000 . . . c2
0c20 . . . 0

. . .
c20c2 . . . 0

⎤

⎥⎥⎥⎥⎦
+ · · · +

⎡

⎢⎢⎢⎢⎣

cq00 . . . 0
00cq . . . cq
000 . . . 0

. . .
0cq0 . . . 0

⎤

⎥⎥⎥⎥⎦

= P1 + P2 + · · · + Pq

Each entry in schedule matrix Pi is either ci or 0. Each column has exactly
one ci element (i.e. a target is watched by exactly one sensor).

To do the decomposition, we express the matrix Dk as a bipartite graph
connecting sensors i (in one side) to targets j (in the other side). For each non-
zero dkij , there is an edge connecting i to j of weight dkij .

The problem of finding a schedule matrix is equivalent to finding a n-matching
in the bipartite graph. As long as the right hand side value is strictly positive,
constraints (4) and (8) guarantee that such a matching exists, i.e. that each target
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is connected to at least one sensor in the bipartite graph. We find a matching by
selecting one adjacent edge per target j, denoted by sel(j).

Let c be the minimum weight over all selected edges, then we subtract c to
the weight of these selected edges. Let L be the right hand side value of the
equations (4) or (8). After this subtraction, the following equations:

∑

i∈Sk(j)

dkij = L,∀j ∈ J (15)

become:

∑

i∈Sk(j)\{sel(j)}
dkij +

(
dksel(j),j − c

)
= L − c =⇒

∑

i∈Sk(j)

dkij
′

= L′,∀j ∈ J (16)

Thus the underlying equations keep their original structure with the same
right hand side value for all j ∈ J . The edge with the minimal weight c is then
removed from the bipartite graph. Matchings can be found until the right hand
side L is zero. The sequence of matrices can be scheduled using any ordering
during the time window.

4.2 Data Routing

As a result of our LPs, we obtain a sequence of flow matrices F k = (fk
ii′)m×(m+1)

that express a sequence of trees where the root is the base station. Each active
sensor needs to forward its sensed data to the base station. The method proposed
in [3] is to forward the data through non-zero edges (i, i′) (i.e. such that fk

ii′ > 0)
to the the base station. A sensor i sends its outgoing data to its first available
neighbor i′ until the edge is saturated (amout of data fk

ii′ reached), then switches
to another neighbor i′′ until the value fk

ii′′ is met, etc. There is no specific ordering
to follow to build an optimal routing plan.

5 Conclusion

We provide reformulations as a linear model to solve multiple mobile target
tracking problems in WSNs. The basic problems considered are energy consump-
tion minimization and network lifetime maximization. Our formulations can be
used to evaluate the results of scheduling-based protocols using the optimal solu-
tion. Further research may focus on the following perspectives : decentralize the
algorithm (swarm intelligence), deal with uncertainty (stochastic optimization)
or improve the centralized algorithm. This work is sponsored by the Direction
Générale de l’Armement (General Directorate for Armament of France).
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Abstract. Swarming has become a management tool for letting individ-
uals cooperate in order to generate emergent solutions to difficult issues
in organizations. Beyond the buzzword, we claim that swarming actually
matches specific project management practices having a great potential
for improving project success. Swarming project management is defined,
and the way it complements traditional and agile project management
schemes is analysed. Metrics for evaluation of management practices are
defined: required practices - practices that lead to failure if not imple-
mented - success practices - practices that good teams put in place - and
silver bullets - practices having a measurably significant impact on suc-
cess. The analysis is performed through a controlled experiment involving
52 computer science students at the bachelor level, in the context of a
4 month development project involving 8 parallel teams working on the
same software project.

Keywords: Swarm intelligence · Agile · SCRUM framework · Stig-
mergy · Emergent cognition

1 Introduction

IT project management is known for its huge rate of challenged or failed projects:
the Standish Group chaos report from 2013 [cha13] evaluates to 24% the rate of
endangered projects for small projects (< 1 million $), and up to 90% for big
projects (>= 1 million $). A structured, emergent method for enabling teams
to systematically discover, explore and evaluate project tasks, which makes a
heavy use of message-based communication and visualisation (ie. stygmergy),
has been proposed to address this challenge: agility [TN86]. It provides a first
solution for leading IT projects to the success [cha12], and has also proved to be
an efficient catalyst of the community of software developpers, like the success
of the Agile Tour1, which is now a global event, shows. However, the system-
atic adoption of agility and of its various flavours, like SCRUM[SB07,Ver13] or
1 http://agiletour.org/

c© Springer International Publishing Switzerland 2014
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Crystal Clear[Coc04] is far from being a reality. We believe that understanding
the fundamental mechanisms behind agility, in particular dynamics of swarming
in project teams, will enable to define an actionnable model of IT project man-
agement, to better evaluate success markers of IT projects, and to brush up the
metaphor of swarm projects.

This paper is organised as follows: section 2 presents the state of the art.
Section 3 gives the experimental setup and details the way project management
practices are quantified through specific metrics. Section 4 gives and analyses
the output of the experiment. Section 5 concludes the study.

2 State of the Art

It has been shown that human communities can behave like swarm, using stig-
mergy to communicate through simple signs deposited in the environement
[Par06] and to discover optimal paths, as in online learning environments
[VBJ+05]. To the best of our knowledge, swarm-base analysis has only be applied
in the context of project to scheduling problems so far [JDSR08]. Analysis of
project dynamics as a swarming phenomenon has not been addressed in the
literature.

2.1 Swarm Principles

The swarming mechanism has first been formalised in [KE+95]. It is based on
following principles [Mil94]:

1. proximity principle: ability to perform a behavioral response to the result
of elementary utility functions

2. quality principle: response to quality factors; the group should be able
to respond not only to time and space parameters, but also to quantitative
parameters; in animal swarm, this is for instance food quality or safety of
location

3. diverse response principle: the group should seek to distribute its resources
against sudden changes in the environment

4. stability principle: the group should not switch its behavior from one mode
to another upon every fluctuation of the environment

5. adaptability principle: when the reward for changing a behavioral mode
is likely to be worth the investment in energy, the group should be able to
switch.

Swarming processes are in particular characterized by the communication
schemes between their agents [CRP03]. They alternate exploration phases, where
the agents perform their own analysis, and communication phases, where infor-
mation is exchanged between the agents. Several works explicit the ability of
swarms to set up cognition models based on simple interactions [RFR05,Par06]
[PSV08,Tur11,TT11]. However, parting cognition emerging from swarm inter-
action and cognition of humans would require a detailed analysis of each of
these cognition types, which is beyond the scope of this paper. In our work, we
therefore focus on the mechanical aspects of swarms.
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2.2 The SCRUM Framework as a Swarm Phenomenon

Swarming is used in the context of agile project management as a buzzword for
the act of coming together to solve a problem or get something done quickly2.
However, it can be used as a conceptual framework to analyse whole agile pro-
cesses, here with the example of the SCRUM framework.

SCRUM [SB07,Ver13] parts the project in sprints, which last from one to 4
weeks. The SCRUM process is maintained by the Scrum Master, who is respon-
sible for it. The Product Owner has the ability to redefine the priority and scope
of the project.

Figure 2.2 shows the chronology of a SCRUM project.

1. proximity principle: based on quantitative information displayed in the
environment, the agile team is able to autonomously take decisions relative
to planning and technical choices. This information is built in particular
by the backlog, ie. the prioritized list of tasks (stories) to be done, and the
velocity, ie. the progress rate of the project.

2. quality principle: quality of project practices is evaluated in a regular
basis, at the end of each sprint, to identify suboptimal team behaviour and
take corrective measures.

3. principle of diverse response: each member takes responsability for some
of the tasks to be done, at the very moment they are to be handled. This is
enabled by the principle of non-specialisation of team members.

4. principle of stability: inside a sprint, the team is not allowed to change the
focus of the work. Moreover, it should be protected from external disturbance
by the Scrum Master.

5. principle of adaptability: At the start of each sprint, the whole project
objective and scope can be redefined according to business or technical needs.
The way the team is organised and interacts is also subject to modification.

3 The Experiment

3.1 Experiment Setup

So as to characterize actual impact of swarming processes on IT project success,
a controlled experiment it conducted. It involves 52 computer science students
2 http://brainslink.com/2013/01/agile-teams-swarm-to-greatness/

http://brainslink.com/2013/01/agile-teams-swarm-to-greatness/
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at the bachelor level (CDED diploma, IUT Robert Schuman, Ilkirch, France), in
the context of a 4 month development project. 8 parallel teams are competing
by developing the same software project. The SCRUM framework is used for
project management and implemented in a manner which can be considered
as canonical: one training session, 4 sprints, each sprint begins with a sprint
planning session and ends with a demonstration and a retrospective session.
Teams elect a scrum master. The client of the project is available for providing
feedback to the teams.

3.2 Metrics

The impact of project management practices on the success of projects is eval-
uated according to 3 criteria: silver bullet eligibility - for practices having a
measurably significant impact on success - success practice eligibility - for
practices that good teams put in place - and requirement level - property of
practices that lead to failure if not implemented. The prevalence of the man-
agement practices is tracked.

’Silver Bullet’ Eligibility SB. ’Silver bullet’ eligibility SB is the success rate
probability of projects which implement a given management practice (or crite-
rion, noted C):

∀C >
3
4

∗ Cmax : SB = PS|C =
1

N ∗ Smax

N∑

i=1

S (1)

with S a quantified evaluation of success. We use a 0..5 scale to grade project
success.

’Success Practice’ Eligibility SP. ’Success practice’ eligibility SP character-
izes the practices used by successful teams. It is the probability of use of a given
management practice for successful projects:

∀S >
3
4

∗ Smax : SP = PC|S =
1

N ∗ Cmax

N∑

i=1

C (2)

with C a quantified evaluation of compliance to the criterion. We use a 0..5
scale to grade criterion compliance.

A practice with high SP is only significant if it has a low prevalence, ie. if
the practice is not a widespread one.

’Requirement Level’ R. ’Requirement level’ R is the project failure rate if a
given management practice is not implemented:

∀C <
1
4

∗ Cmax : R = PF |�C =
1

N ∗ Smax

N∑

i=1

F =
1

N ∗ Smax

N∑

i=1

(Smax − S) (3)

with F = Smax − S a quantified evaluation of failure.
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Prevalence P. P is the prevalence rate of a given management practice among
all teams:

P =
NC

N
(4)

with NC the number of teams matching the criterion and N the total number
of teams.

We consider in this study that the quality of implementation of a given
management practice (or criterion C) is defined by:

C >
3
4

∗ Cmax (5)

with C a quantified evaluation of the rigor of the implementation of this
criterion, 0 < C1, and Cmax = 1 the measure for a perfect implementation
of the criterion. One can note that for university project marks can simply be
used as a criterion, whereas finer quantification must be chosen for production
projects.

4 Success Markers of Observed Project Teams

This section details the results of the study. Quantified evaluations are given for
the two first sprints of the project. Project success is simply set by the mark for
this student development project. When no data is available in the context of our
study, we indicate ’Case not present’. In a professional project, the achievement
of expected budget, delivery time, scope and quality of the development should
be considered instead [AG10].

4.1 The Chaos Criteria

The IT project success criteria elicited by the Chaos reports [cha12,cha13] are
quantified as follows: executive management support quantifies the satisfaction
of the client with regard to technical deliveries (NOT the overall satisfaction);
optimisation quantifies the rigor in process optimisation, here agile retrospec-
tive; tools and infrastructure, the systematics of using tools for communication,
tickets and bug tracking; execution, the quality of project deliverables (here the
project mark); agile process, the rigor in implementing the SCRUM framework;
emotional maturity, the ability to deal with conflicts in the team. In this study,
management practices: user involvement, clear business objectives, PM exper-
tise, skilled resources, are not considered, since objective quantified data are not
available.

The importance of chaos report criteria are confirmed by our study, which
is an argument for considering its results are representative in spite of the rel-
atively small size of the experiment. Execution management support is a
success practice: the metric is clearly biased since clients tend to spend more
time for successful projects. Nonetheless, the fact that a client spends this time
indicates here that he is confident the expected result for the team is worth it.
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Fig. 1. Chaos report success markers

Optimisation is a practice which is clearly set up in a more rigorous manner
by successful teams, and which is this another success practice, or symptom for
likely success. The importance of good tools and infrastructure, as well as of a
high-quality execution, is confirmed by the study. The fact that agile process
is rated as a silver bullet for teams working using SCRUM simply states that a
correct implementation of agility is a positive marker. This underlies again the
consistency of the results of the study without enabling further statement about
the method itself. Interestingly enough, student teams are very resilient to lack
of emotional maturity, which should not be the case in professional teams.

4.2 SCRUM Principles

The IT project success criteria derived from SCRUM principles are quantified
as follows: inspection rates the ability to perform rigorous restrospectives, trans-
parency rates the systematic use of stigmergetic mechanisms materialized by the
rigour of backlog use, and adaptation quantifies the subjective, perceived readi-
ness of teams to implement changes. Inspection uses same data as chaos report
optimisation, ie. the rigor in agile retrospective. Identification as a success prac-
tice is thus preserved. Transparency is another success practice, but its use is
less discriminating and therefore a bit less meaningful. Figures for adaptation
are weaker and should thus be considered with care.

Fig. 2. Scrum success markers
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Fig. 3. Swarm success markers

4.3 Swarm Success Markers

The IT project success criteria derived from swarm properties are: stability,
ie. quantified as the ability to actually implement features selected for a given
sprint in the time frame of this sprint; quality, as the ability to react to qual-
itative data, exploits the same data than SCRUM inspection ; proximity, as
the ability to react to quantitative data, exploit the same data as transparency
and includes the ability to track project velocity. Adaptability is identical to
what was defined for SCRUM principles. The ability to set up diverse response
is not considered here, because extracting factual data would require a high
level of individual tracking which is contrary to SCRUM philosophy and would
become an actual impediment in the experiment project. Swarm properties actu-
ally extend SCRUM principles without altering existing evaluation. It underlines
that the ability to enforce project stability inside the sprint is a high-fidelity
marker for success practice: it is not sufficient for ensuring success, but it is a
practice to be promoted to help teams become better ones.

5 Conclusions and Perspectives

The results of this study are aligned with the results of the chaos report study,
which claim for the representativity of the presented conclusions. They under-
line the importance of SCRUM principles as success practices. Moreover, they
confirm that swarming properties are relevant success practices for IT project
management. Note that they do not claim to be silver bullets, but that they
behave like a symptom of performant management. Moreover, swarming teaches
us that stability is a strong success marker for emergent, dynamic processes like
SCRUM.

This study, conducted on more than 50 students working in parallel on the
same development project for 4 months, offers an optimal experimental setup, in
the sense one could hardly imagine having better conditions for team evaluation
and comparison. However, it is clear that 8 teams is not a suitable quantity for
performing statistics and drawing large scale conclusions. We therefore plan to
extend this experiment using real SCRUM projects from industry partners. A
dedicated evaluation process will be needed for gathering relevant data as well
as for quantifing the evaluation of project practice quality.
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Based on the results of this study, we advocate that swarming project man-
agement practice are powerful tools both for fostering emergent team behavior,
and for supporting rigorous assessment of IT projects status.
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Abstract. This paper proposes to reduce the computational time of an
algorithm based on the combination of the Evolutionary Game Theory
(EGT) and the Particle Swarm Optimisation (PSO), named C-EGPSO,
by using Neural Networks (NN) in order to lighten the computation of
the identified heavy part of the C-EGPSO. This computationally bur-
densome task is the resolution of the EGT part that consists in solving
iteratively a differential equation in order to optimally adapt the direc-
tion search and the size step of the PSO at each iteration. Therefore, it
is proposed to use NN to learn the solution of this differential equation
according to the initial conditions in order to gain a precious time.

Keywords: Particle Swarm Optimisation · Swarm Intelligence · Evolu-
tionary Game Theory · Neural Networks

1 Introduction

Over the last few decades, numerous scientists have been inspired by the mod-
elling of social interactions of animals to solve NP-hard optimisation prob-
lems. Although the communication among the different agents is limited to an
exchange of basic information, it results in a very effective team work. Par-
ticle Swarm Optimisation (PSO) is one of most well-known and established
approaches using this concept. The aim of the original PSO method proposed
by Kennedy and Eberhart was to reproduce this social interaction among agents
in order to solve non-linear continuous optimisation problems [1], [2]. PSO not
only provides efficient and satisfactory solutions like other meta-heuristic meth-
ods [3], [4], [5], but also achieves more accurate results than traditional methods,
as Genetic Algorithms (GA) [6], [7], [8], for the problems involving unconstrained
continuous functions and also more complex and highly constrained problems [9].
c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 139–156, 2014.
DOI: 10.1007/978-3-319-12970-9 16
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The PSO principle is based on sharing simple information such as current
fitness, best obtained fitness and the best global fitness among neighbouring
particles in order to determine moving rules of a swarm of candidate solutions,
named particles. The movements of the particles are based on a random linear
combination of their own current velocity, and the relative position vectors of
their own best position and the best known position of the neighbouring particles
with respect to their current position. Random choice of the three weighting
parameters of the linear combination keeps diversification of the particles’ search.

Based on the principle that these directions could be identified as strategies of
exploration, the PSO was combined with Evolutionary Game Theory (EGT) in
order to improve the convergence speed as well as the efficiency of the proposed
method to solve complex optimisation problems. This method was named C-
EGPSO and outperformed the Standard PSO 2011 [10] in terms of capacity to
solve complex and various kinds of problems as well as the number of iterations
required to converge to the optimal solution [11].

From this observation, it was devised to adapt the proposed C-EGPSO to
real-time oriented applications. Since the EGT part consists in determining an
Evolutionary Stable Strategy (ESS) iteratively by solving a system of Ordinary
Differential Equations, the process was identified as a computationally heavy
part of the method. Thus, this paper proposes the use of Neural Networks to
learn the output of the EGT process and predict the optimal strategy that
optimises the exploration of the solution space.

The validation of the proposed approach will be done in two stages. First
the validity of the NN will be verified by analysing the accuracy of the obtained
results in the learning of the resolution of the Replicator equation, then the gain
of computational time using NN will be quantified. Second, the proposed app-
roach will be applied to a set of benchmarked continuous optimisation problems
issued from [12] in order to confirm that the proposed algorithm obtains as good
results as the original algorithm (C-EGPSO) in terms of precision of the final
solution, as well as decreases the computation time for solving these problems.
The second stage of the numerical validation will be done with a selection of
benchmark functions issued from the CEC’2005 congress [12]. The benchmark
definition is available in [13]. The efficiency of the proposed method was already
tested in one of our previous studies1.

The proposed paper is organised as follows: first, the essential notions to
understand the global approach is provided to the reader, then the proposed
method is described, before giving details on the experimental procedure used
in order to validate the approach. Finally, the obtained results are presented
and discussed. This ends with a conclusion and the perspectives of the presented
approach.
1 C. Leboucher, H-S. Shin, S. Le Ménec, P. Siarry, R. Chelouah, A. Tsourdos and

A. Kotenkoff, An Enhanced Particle Swarm Optimisation Method Integrated with
Evolutionary Game Theory, Submission in progress
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2 Background

The herein Section proposes to describe all the necessary background to under-
stand the foundations of the proposed method. First, the enhanced Particle
Swarm optimiser that combines the SPSO 2011 proposed by Clerc [10] and Evo-
lutionary Game Theory will be introduced. Then, a brief overview on Neural
Networks will be given.

2.1 The Proposed C-EGPSO

The herein subsection describes the optimisation algorithm that will be used as
basis. This algorithm is named C-EGPSO and comes from one of the previous
authors’ study in [11]. The aforementioned approach is based on the combination
of Particle Swarm Optimisation (PSO) with Evolutionary Game Theory (EGT).
Thus, the particles are following the classical PSO motion equations as defined by
Clerc in [10] and named SPSO 2011, except that instead of using the coefficients
defined by Clerc in [10], the search direction is updated at each iteration using
EGT. This method was proved to be efficient in many different applications:
logistic [14], task assignment [15], weapon target assignment problem [11].

Description of the SPSO. Let Xi(t) = [xi1(t), xi2(t), . . . , xiD(t)], xid(t) ∈ R

be a particle in a population of N particles in a solution space S of dimension
D. The velocity of this particle is denoted as Vi(t) = [vi1(t), vi2(t), . . . , viD(t)],
vid(t) ∈ R. Each particle is communicating with its neighbourhood accord-
ing to a communication network named topology. This network (or topology)
plays an important role in the convergence speed and the exploration. For more
details about the role of topology, the studies done by R. Mendes in [16] and
M. Clerc in [17] well describe the influence of the topology over the ability of
the algorithm to explore a solution space. From this topology, the best position
Xg(t) = [xg1(t), xg2(t), . . . , xgD(t)], among the informants is defined. Each par-
ticle has a memory in which it saves the best explored solution by itself. The
vector Xp(t) = [xp1(t), xp2(t), . . . , xpD(t)], denotes this position.

The state of one particle at the time t+1 is obtained from the three previously
described components: the current velocity Vi(t), its own memory Xp(t) and the
best position Xg(t) among the informants of the particles. Let G denote the iso-
barycentre of the particles Xi(t), φ1Xp(t) and φ2Xg(t), where φ1 and φ2 denote
two positive real coefficients. Thus, the coordinates of the barycentre G can be
obtained by computing:

G =
Xi(t) + (Xi(t) + φ1(Xp(t) − Xi(t)) + φ2(Xp(t) − Xi(t)))

3
(1)

Then, a point X ′
i is randomly drawn in the Hypersphere:

H(G, ‖G − Xi‖)
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centred on G with a radius equal to ‖G − Xi‖. It results in the velocity update
equation:

Vi(t + 1) = wVi(t) + X ′
i(t) − Xi(t) (2)

where w denotes a real coefficient representing the inertia of the particle.
X ′

i(t) represents the randomly drawn point in the Hypersphere H(G, ‖G − Xi‖)
at the instant t.

The position update equation is given by:

Xi(t + 1) = ωVi(t) + X ′
i(t) (3)

Note that in the case where a particle is the best of the neighbourhood, its
motion equation is slightly modified. Since the particle positions Xp(t) and Xg(t)
are the same, indifferently one of them can be ignored. Then G becomes:

G =
Xi(t) + (Xi(t) + φ2(Xg(t) − Xi(t)))

2
(4)

Figure 1 shows the moving rules for the particle Xi(t).

(a) Any particle (b) Best particle

Fig. 1. Moving rule of the particles. Subfigure 1(a) shows an example of possible sam-
pling for a particle of the swarm that is not the best of its neighbourhood. On the
other hand, Subfigure 1(b) shows a possible sampling of a particle that is the best of
its neighbourhood. Note that in this second case, the position Xp(t) is ignored and the
computation of G(t) only depends on Xi(t) and Xg(t).

Determination of the Coefficients. In order to determine in one optimal
way the parameters ω, φ1 and φ2 of SPSO 2011, the authors proposed to use
the Evolutionary Game Theory. The herein section describes the integration of
the EGT within SPSO.

The EGT has been designed to explain some animal behaviours when they
are competing for some food resources for example. The example of the Hawk
and Dove game is among the most famous in EGT and enables to understand
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the basement of the principle of an individual adapting his strategy according
to the rewards that he previously got. Note that for more details the reader can
refer to [11] where all the required background and details about the proposed
method were given.

Based on this principle, the analogy is made:

EGT Analogy in our method
Population −→ Swarm
Individual −→ Particle
Strategies −→ Follow Xp, Xg, V

Payoff matrix −→ Mean of the performance obtained by
following a specific strategy

Then, each particle is a player having three available strategies (follow his
memory, the best neighbour, or moving using only the inertia).

In order to optimise the coefficients ω, φ1 and φ2, the proposed approach is
based on the use of EGT to determine the optimal ratio of each strategy to use to
optimise the fitness of the particle. Each particle is using its own previous expe-
rience to fill the payoff matrix, then the ESS provides the optimal ratios that a
particle must follow to optimise its exploration and improve the convergence [18].

Computation of the Evolutionary Stable Strategy. An Evolutionary Stable Strat-
egy (ESS) is a strategy such that, if all members of a population adopt it, then
no mutant strategy could invade the population under the influence of natural
selection [19] [20]. Based on this principle, the natural selection is described using
a dynamic that is usually an equation that takes into account the current state
of the population and where each individual can change its strategy according
to the outcome it got from previous challenge.

For the proposed method, the chosen dynamics is called replicator dynamics.
The Replicator Equation (RE) is an Ordinary Differential Equation expressing
the difference between the fitness of a strategy and the average fitness in the
population. Thus, lower payoffs (agents are minimizers) bring faster reproduction
in accordance with Darwinian natural selection process.

If the payoff matrix is denoted by A, the following replicator equation can
be defined:

ṗi = −pi(ei · ApT − p · ApT ) (5)

RE for i = 1, ...,m describes the evolution of strategy frequencies pi. Moreover,
for every initial strategy distribution p(0), there is an unique solution p(t) for
all t ≥ 0 that satisfies the replicator equation.

Based on the uniqueness of the solution to a given equation, it is proposed
to train a NN to solve the replicator equation for a given input matrix and a
predefined initial state of the population.

The subsequent section will briefly introduce the NN.
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2.2 Neural Networks

The Neural Network (NN) model is inspired from the concept of how the human
brain works. NN are composed of neurons and synapses that link the neurons
between them. All the synapses are weighted in order to establish a relation
between the input neurons and output neurons. These neurons are represented
by state variables that are functions of the weighted sum of input neurons.
Thus, for one input, all the neurons perform a simple transformation in parallel.
This activation might take many different shapes and the most usual are linear,
threshold function and sigmoid function [21]. The first use of this modelling
appeared in [22] and was initially named threshold logic. In its recent use, three
main categories emerge: the use of NN for task modelling [23], [24], [25]; the NN
for solving optimisation problems [26], [27], [25]; and advent as promising for
real-time applications for solving large scale optimisation problems [28], [29].

NN have been suggested to solve combinatorial optimisation problems where
the key point is to map the optimisation problem to the NN for which the stable
state represents the optimal solution [21]. Usually two approaches are identified
[21]. The first is to minimise an energy function [28]. The second one is to design
competition between neurons that become active under certain conditions [30].
The main advantage of NN is that they can be easily parallelised due to their
natural architecture. Thus, many investigations were led to solve large scale
optimisation problems [28] [29]. The first study that showed the efficiency of NN
was led by Hopfield and Tank in [31] where the NN was used to solve the Traveller
Salesman Problem for a number of cities of 10 and 30. It is reported in this study
that a local optimum was always reached. Later numerous combinations of the
NN with simulated annealing were proposed [32]. The study led by Abe et al. in
[33] proposed to include inequality constraints within the NN. A more detailed
analysis is given in [24] about the NN competition based.

3 Description of the Proposed Method

This section will describe how NN and C-EGPSO are combined in order to
provide an algorithm that can maintain the performances of the original C-
EGPSO, while using the ability of NN to learn to solve the replicator dynamics
Differential Equation. Thus, an important gain of time computation could be
obtained and thus allow to extend the current algorithm to real-time oriented
applications.

This section is organised as follows: first the general principle of the proposed
algorithm is introduced, then the training and validation of the NN are presented.

3.1 The Proposed Method

The introduced algorithm was devised with the idea that the promising obtained
results of C-EGPSO [11] could be adapted for real-time applications. Since the
method is based on the computation of optimal search direction using EGT, this
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computationally heavy process that consists in iteratively solving the replicator
equation was identified as a lever to decrease the computational time. Thus,
from the ability of Neural Networks to learn to solve problems, it was natural
to combine the current C-EGPSO with NN, so the replicator equation can be
solved within couple of milliseconds, leading to an important gain of time when
solving a global optimisation problem. This approach will be named Combined-
Evolutionary Game based Particle Swarm Optimisation using Neural Networks
(C-EGPSO-NN).

The designed algorithm is described Figure 2. The only change compared
to the original version of C-EGPSO stands in the computation of the ESS as
highlighted by the bold box.

Fig. 2. Flowchart of the proposed C-EGPSO-NN

3.2 Training and Validation of the Neural Network

In this subsection, the training then the validation of the NN to learn the solution
of the replicator equation will be described. Note that this training as well as
the validation was performed using the MATLAB Toolbox Neural Network [34].
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Training of the NN. Since the replicator equation is a deterministic process
and is based on the principle that the payoff matrix depends on the three diagonal
values only, it is proposed to use as input data the diagonal of the payoff matrix.
The outputs will be the obtained ESS using the classical iterative resolution of
the replicator equation as described by Equation (5). Thus, to each vector of 3
input data corresponds a vector of 3 numerical outputs that denotes the ESS
(See Section 2.1 for details).

In order to train the NN, 15000 normalised payoff matrices were randomly
drawn and for each payoff matrix the replicator equation was run in order to
obtain the ESS. Then, based on that sample of 15000 instances, 70% were used
for the training, 15 % for the validation and 15% for the testing.

Regarding the number of hidden neurons, the proposed approach empirically
stated that 30 neurons provided satisfying results.

Validation of the NN. Based on the obtained NN from the training stage,
it is proposed in the herein section to estimate the precision of this NN. This
validation will be done in two stages: first the regression will be done in order
to estimate the relation between the input and the output. Then, the proba-
bility density function obtained from the difference between a set of problems
solved using the iterative method and the output provided by the NN will be
investigated.

Regression. The first stage of this validation consists in performing the regression
analysis. This regression enables to obtain the relation between the solution
provided by the NN and the expected output using the classical iterative method.
For a perfect training, this regression coefficient is equal to one, that means that
the NN and the iterative method provide exactly the same results. Therefore,
the aim is to obtain the regression coefficient R as close as possible to 1. Figure 3
shows the regression chart for the NN obtained from the previous stage. In this
figure, it can be noticed that the regression coefficient R is close to 1, and the
set of obtained points shows that the obtained outputs from NN are really close
to the expected ones using the iterative method. Note that around the values 0
and 1 there is an aggregation of points. This can be explained by the fact that
the ESS obtained from the replicator equation is composed by positive values,
subject to

∑S
i=1 pi = 1, where pi denotes the ratio of the strategy i. However, the

obtained output using NN does not always satisfy this constraint and outputs
either negative or greater than 1 are possible.

Repartition error. Based on the obtained results from the difference between the
NN training and the expected values using the iterative method, the quantifica-
tion of the error repartition will be investigated. This analysis will be done by
approaching the obtained empirical results by a Gaussian distribution.

{
μ = 1.559210−9

σ = 0.022103
(6)
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Fig. 4. Error repartition. This figure shows the empirical obtained distribution of the
error and the associated Gaussian distribution using the mean and standard deviation
of the difference between targeted and output values of the NN.

Based on this approached Gaussian distribution, there is an approximative
probability of 0.95 to sample a point with an error lower than 4.42%. Therefore,
based on this observation the precision of the trained NN can be considered as
satisfying.

4 Experimental Procedure

In the previous section a NN was trained to solve the replicator equation. The
herein section proposes to describe the experimental protocol that will be used
to validate the introduced method.

The validation of the proposed approach will be done in two stages. First, the
proposed approach will be applied to a set of benchmarked continuous optimisa-
tion problems issued from [12] in order to confirm that the proposed algorithm
obtains as good result as the original algorithm (C-EGPSO) in terms of precision
of the final solution. Then, the effective gain of time obtained using NN will be
analysed using the previous experiences.

4.1 Description of the Benchmark Functions

To proceed this validation it is proposed in this paper to compare the NN based
EGPSO to the original C-EGPSO. The aim of this investigation is to verify
that the enhanced method can obtain as good results as the initial one. Thus,
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by running both methods on a set of benchmark problems it will be proved
that the targeted improvement in terms of computational time won’t affect the
performances of the original algorithm. The chosen benchmark functions are
issued from the Congress on Evolutionary Competition 2005 [12]. All the details
on this benchmark are available in [13]. In order to test the designed method,
the chosen benchmarked problems are:

• F1, Sphere Function:

F1(x) =
D∑

k=1

z2i + fb

with z = x−x∗, x = [x1, x2, ..., xD]. D denotes the dimension of the problem
and x∗ the optimal solution. Finally, fb denotes a bias. This classic test
function is a convex problem usually used to test the convergence speed of
local exploration.

• F2, Shifted Schwefel’s Function:

F2(x) =
D∑

k=1

⎛

⎝
i∑

j=1

zj

⎞

⎠
2

+ fb

with z = x−x∗, x = [x1, x2, ..., xD]. D denotes the dimension of the problem
and x∗ the optimal solution. Finally, fb denotes a bias. This problem 2 is a
non separable version of the first problem, so it prevents the method to use
the symmetries of the solution space.

• F5, Schwefel’s Function:

F5(x) = max (Aix − Bi) + fb; i = 1 . . . D

with z = x−x∗, x = [x1, x2, ..., xD]. D denotes the dimension of the problem
and x∗ the optimal solution. A is a D × D matrix composed of random
numbers in [500, 500], and det(A) �= 0. Finally, Ai denotes the ith row of
A. The second matrix Bi is obtained as follows: Bi = Ai ∗ o, where o is a
random vector of dimension D composed of random values in [−100, 100].
Finally, fb denotes a bias. The problem 5 is a problem that tests the ability
of a method to find an optimal solution that is located on the bounds of the
solution space.

• F12 Schwefel’s Function:

F12(x) =
D∑

i=1

(Ai − Bi(x)) + fb

with, {
Ai =

∑D
j=1 aij sin(αj) + bij cos(αj)

Bi =
∑D

j=1 aij sin(xj) + bij cos(xj)

with z = x−x∗, x = [x1, x2, ..., xD]. D denotes the dimension of the problem
and x∗ the optimal solution. The matrices A and B are of dimension D×D,
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and the inner coefficients of these matrices aij and bij are randomly drawn in
[−100, 100]. The bias is denoted by fb. Finally, α = [α1, . . . , αD], where the
αj are random numbers in [−π, π]. This function is a multi-modal and non-
separable problem. It enables to test the capacity of the proposed method
to escape from local minima.

4.2 Experimental Protocol

Based on the aforementioned benchmarked problems, SPSO 2011, C-EGPSO,
C-EGPSO and M-C-EGPSO will be tested 25 times for each problem for a
dimension D = 10. At reach run the initial conditions are randomly drawn and
the swarm parameters that are the size, the topology and the motion equation
were equally set for all the algorithms. The only difference between these methods
is the way the coefficients ω, φ1 and φ2 are computed.

5 Simulation Results and Discussion

The herein section presents the obtained results following the experiment proto-
col described in Section 4. First, the ability of the proposed method to maintain
the same performances as the original C-EGPSO will be described, then the
effective gain of time using the proposed Mixed-C-EGPSO will be investigated.

5.1 Ability to Maintain C-EGPSO Performances

The purpose of this section is to check if the proposed C-EGPSO-NN can main-
tain the performances of the original method while significantly decreasing the
computation time. Based on the described protocol Section 4, the initial SPSO
2011, C-EGPSO and C-EGPSO-NN are compared in terms of performances as
shown in Figure 5. On these graphics, SPSO 2011 is represented by the blue
line with circle markers, C-EGPSO with the dot markers and C-EGPSO-NN is
represented using the cross markers.

From the analysis of the graphs Figure 5, it appears that both C-EGPSO and
C-EGPSO-NN obtained similar performances while they outperform SPSO 2011.
If for ”simple” problems it can be identified that C-EGPSO and C-EGPSO-NN
obtained almost exactly the same results, it can be noticed that for problems F5

and F12 there is a slight difference between two algorithms. Indeed, C-EGPSO
performs slightly better than C-EGPSO-NN, but this difference can be easily
explained by the obtained difference between the solution provided by the iter-
ative method and the one computed by the NN.

The upper left graph of Figure 5 shows the obtained results for the problem
F1. This problem is usually considered as the easiest one and is designed in order
to evaluate the local convergence speed of algorithms. On the graph it can be
seen that C-EGPSO and C-EGPSO-NN obtained nearly the same results and
from almost the first iteration it seems that the particles following EGPSO are
capable of quickly optimise their search directions.
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On the upper right graph, the obtained results for the problem F2 are close
to the ones obtained for the problem F1. Indeed, the two problems are similar,
since both are unimodals. It can be concluded that both methods the C-EGPSO
and the C-EGPSO-NN obtained same results, while outperforming the SPSO
2011.

Regarding problems F5, it can be noticed that there exists a slight difference
between the convergence speed of the C-EGPSO and the C-EGPSO-NN. The
investigated problem can also stands as a sensitivity analysis and shows that the
slight deviation between the obtained ESS using the iterative method and the
obtained ESS using NN leads to different convergence speed. However, it can
be also noticed that this difference does not compromise the algorithm precision
performance, since the SPSO 2011 keeps being outperformed by the introduced
methods.

Finally, the last problem F12 shows a similar phenomena as the previous
problem F5. The C-EGPSO and the C-EGPSO-NN are outperforming the SPSO
2011 in terms of convergence speed, but they also are slightly different. This
experiment highlights an interesting point: there is a first phase where the C-
EGPSO and the C-EGPSO-NN obtain similar convergence speed, but after 3000
iterations, the precision of the iterative method get the upper hand on the NN
approach and allows for a better choice of the PSO parameters. Therefore, it can
be interpreted that when approaching the optimal solution, the required preci-
sion to optimise the search direction becomes very sensitive. The same behaviour
was also represented for the problem F5 and happened around 2000 iterations.

Note that an extensive benchmarking was done in a previous authors’ study2

in order to prove the ability of C-EGPSO to solve highly complex problems.
The aforementioned method was also compared to other kinds of algorithms,
like Covariance Matrix Adaptation Evolution Strategy algorithm (G-CMA-ES)
developed in [35] and K-PCX based on parent-centric recombination [36], and
obtained in most of the investigated problems better results in terms of precision
and success rate. Therefore, the choice of these benchmark problems was not
done in order to prove the efficiency of the designed C-EGPSO, but the possible
gain of time by replacing the iterative resolution of the replicator equation by a
NN approach.

The subsequent section will focus on this objective to gain computational
time by comparing both methods.

5.2 Gain of Time to Solve the Replicator Equation

The initial idea to design a NN capable of solving the replicator equation was
to significantly decrease the computation time of C-EGPSO. In this section it
is proposed to quantify this gain of time using numerical simulations. Based on
the introduced simulation protocol, a timer is triggered before the resolution of
2 C. Leboucher, H-S. Shin, S. Le Ménec, P. Siarry, R. Chelouah, A. Tsourdos and

A. Kotenkoff, An Enhanced Particle Swarm Optimisation Method Integrated with
Evolutionary Game Theory, Submission in progress
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Fig. 5. Performance comparison. Here, SPSO 2011, C-EGPSO and C-EGPSO-NN
are compared in terms of performances on the four previously described benchmarked
problems.

the problem, then stopped when the exit conditions are satisfied. This process is
repeated at each run in order to provide a global overview of the performances
over the time.

The obtained results are compared in Figure 6 and show as expected that
there is an important gain of time using the NN approach rather than the classi-
cal iterative method to solve the replicator equation. For the problem F1, based
on the obtained median result the gain can be estimated to ∼ 40%. Regarding
the problem F2 this gain can be estimated to ∼ 25%. For the problem F5 the
gain is ∼ 35%. Finally, for the problem F12, the obtained gain is ∼ 33%.

5.3 Discussion

From the obtained numerical results in Section 5, it appears that the proposed
method using the NN to solve the replicator equation obtained slightly worse
results than the classical C-EGPSO in terms of precision of the optimal solu-
tion. However, the gain of time allowed by replacing the iterative resolution of the
replicator equation by the trained NN shows that it is worth to extend initial C-
EGPSO to real-time applications. Indeed, the qualities of the obtained solution
using C-EGPSO-NN and C-EGPSO are nearly the same, while the computa-
tional time is dramatically decreased. Hence, these results lead to the trade-off
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Fig. 6. Computational time comparison. These graphs compare the required compu-
tational time to solve the four benchmarked problems. The dotted line represents the
C-EGPSO, while C-EGPSO-NN is denoted by the crossed markers. In ordinates, the
computational time is given in seconds. The abscissa represents the number of ran
simulations.

that the slight loss of precision using C-EGPSO-NN is worth by comparison to
the obtained gain of time.

6 Conclusion and Perspectives

In this paper it was proposed to improve the computational time performance of
an algorithm based on the combination of the SPSO 2011 proposed by Clerc in
[10] and the Evolutionary Game Theory in order to optimise the search direction
of the particles. This method was named C-EGPSO (Combined-Evolutionary
Game based Particle Swarm Optimisation). The particles’ search direction was
obtained from the iterative resolution of the replicator equation. This part of
the algorithm was identified as computationally intensive and it was natural
to use this fragment as a lever to decrease the computation time. Therefore, it
was proposed to replace the iterative resolution of the replicator equation, by a
trained neural network to solve this equation. Thus, the resolution of this part
was reduced to a couple of milliseconds. After training a NN and validating its
learning phase, the NN was integrated within the C-EGPSO and tested on a
set of benchmarked problems. The results proved that despite obtaining slightly
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worse results than C-EGPSO, the gain in terms of computational time can be
trade-off for this slight loss of precision.

Note also that this study stands as a sensitivity analysis for the initially
proposed C-EGPSO and proves that a small deviation from the computed coef-
ficient using the iterative method leads to slightly worse performances. However,
this precision difference does not globally affect the general performance of the
algorithm while improving its computational time performance.

In a future study it would be interesting to pursue the investigation of how
neural networks can dramatically decrease the computational time of optimisa-
tion algorithms. From another authors’ study 3, the EGT was used as a lever to
identify the importance of criteria in multi-objective problems. Thus, by inte-
grating neural networks within this approach, the computational time can be
also reduced.
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Abstract. Patrolling an environment involves a team of agents whose
goal usually consists in continuously visiting the most relevant areas as
fast as possible. In this paper, we follow up on the work by Santana
et al. who formulated this problem in terms of a reinforcement learning
problem, where agents individually learn an MDP using Q-Learning to
patrol their environment. We propose another definition of the state
space and of the reward function associated with the MDP of an agent.
Experimental evaluation shows that our approach substantially improves
the previous RL method in several instances (graph topology and number
of agents). Moreover, it is observed that such an RL approach is robust as
it can efficiently cope with most of the situations caused by the removal
of agents during a patrolling simulation.

Keywords: Multi-agent patrolling ·Reinforcement Learning ·Extended-
GBLA · Robustness

1 Introduction

The multi-agent patrolling problem has been rigourously addressed only recently
[1–7]. In these works, many patrolling strategies have been devised and experi-
mentally validated using common evaluation criteria [1]. They are based on dif-
ferent approaches, ranging from heuristic laws enabling agents to better choose
the next node to visit [1], negotiation mechanisms [2], reinforcement learning
techniques [3], techniques based on graph theory [4] to techniques based on
ACO [5–7]. Most of these solutions yield good empirical results on different
graphs constituted from less than fifty nodes and one hundred edges. Neverthe-
less, none of these solutions have been evaluated in terms of robustness. In some
applications though, one might also want to know how the performances of one
of these solutions are influenced by an online change in the size of the population
of the individuals (or agents) involved in a patrol.

In this paper, we first propose an improvement of the learning agents’ archi-
tecture presented in [3], by characterizing more precisely the MDP employed
by an agent. Moreover, we experimentally show that a reinforcement learning
based approach can be efficiently applied to the multi-agent patrolling problem
for dealing with both an increase in the graph complexity and removals of agents.
c© Springer International Publishing Switzerland 2014
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We chose the reinforcement learning framework for studying the robustness of
the patrolling problem for two main reasons. On the one hand, a machine learn-
ing approach can theoretically cope with any graph topology and any agents’
set, so that a larger range of situations can be considered. On the other hand,
we assume that all the agents are located at the same node at the initial time.
Under this condition, the patrolling task starts with a preliminary phase where
agents spread out in the graph. This step cannot be handled by the most effi-
cient techniques based on Single Cycle [2,4], which limits agents to be located
at different nodes.

The remainder of this paper is organized as follows. Section 2 describes the
commonly used framework of a patrolling problem and gives an overview of
the related works. Section 3 reviews the fundamental concepts of a reinforce-
ment learner. Section 4 proposes a formulation of the patrolling problem as a
reinforcement learning problem. Experimental results are shown in section 5.
Finally, concluding remarks and future research works are given in section 6.

2 Problem Definition

The patrolling problem is usually specified formally as follows [1,3,4]. The envi-
ronment to patrol is reduced to a graph G = (V,E), V representing the strategi-
cally relevant areas and E the safe ways of movement or communication between
them. A cost cij , associated with each edge (i, j), measures the time required
to go from node i to node j. Let be r agents bound to visit at regular intervals
the areas defined in the graph G. Each agent is located at one of the nodes of
V at the initial time. Solving the patrolling problem consists of elaborating a
multi-agent graph coverage strategy π. Such a strategy must optimize a given
quality criterion. π = {π1 · · · πr} is made up of the r individual strategies πi of
each agent i. An individual strategy πi is defined such that πi : N → V , πi(j)
denoting the j-th node visited by the agent i.

Intuitively, a relevant patrolling strategy is one that minimizes, for each node,
the time span between two visits to the same node. Several criteria have been
devised in [1] in order to evaluate the quality of a multi-agent patrolling strat-
egy after T time steps (or cycles) of simulation. All of them are based on the
notion of instantaneous node idleness (INI). The INI It(i) of a node i at time
t is the number of time steps this node remained unvisited. By convention, at
the initial instant, I0(i) = 0, ∀i = 1, 2, · · · , |V|. At a given instant t, GIt is the
instantaneous average graph idleness (IGI). Similarly the instantaneous worst
graph idleness WIt is the highest INI encountered since t time steps of simu-
lation. A multi-agent patrolling strategy π can be evaluated after T cycles of
simulation using either the average idleness criterion AIπ or the worst idleness
WIπ. The average idleness denotes the mean of the IGI over the T simulation
cycles, whereas the worst idleness is the highest INI observed during the T -time
steps of the simulation. As emphasized by [4], the optimal strategy π is the one
that minimizes the worst idleness, as WIπ ≥ AIπ for any strategy π.



Robust Multi-agent Patrolling Strategies Using Reinforcement Learning 159

3 Reinforcement Learning Framework

Reinforcement learning typically deals with problems where one or several agents
interact with their environment to learn to perform a task. At each time step,
an agent is able to (1) perceive the state of its environment, (2) carry out an
action which modifies the environment state and (3) obtain an immediate reward
depending on the action it just performed. After several thousands of trials, such
an agent learns a policy π, which tells him what to do in every situation [8]. A
reinforcement learning problem involving one agent is usually defined in terms
of a Markov Decision Process (MDP). Several extensions of an MDP, such as
MMDP [9] or DEC-MDP [10] have been proposed to deal with the problem of
coordination in multi-agent systems, but these solutions are intractable when
the number of agents is high. Indeed, they use joint actions whose number expo-
nentially increases with the number of individual actions and agents involved: if
there are n agents, each of which can perform a actions, then the size of the joint
action space is an. To alleviate this problem, many approaches [3,11–13] con-
sider RL agents as independent learners. Independent learners ignore the actions
and rewards of the other agents, and learn their policy using their own MDP.
Although these approaches are no longer assumed to find a globally optimal
solution, they still yield satisfactory results in practice. For this reason, as the
patrolling problem may involve a lot of agents, we will focus in this paper on
the case where agents employ an MDP learned with Q-Learning to perform its
task.

4 Learning to Patrol Using Reinforcements

One of the most difficult tasks when designing a patrolling agent’s MDP is
the definition of its state space. As each agent uses incomplete information to
find a globally optimal solution to the patrolling problem, the more features
are incorporated in a state, the more precise the solution can be. On the other
hand, it is well known that the size of the state space grows exponentially with
the number of features. Defining the state space of an MDP is thus a trade-off
between its computational complexity and the global solution approximation
it can yield. In [3], the learning agents’ architecture which obtained the best
results was Gray-Box Learner Agent (GBLA), when using the idleness of the
next reached node as the immediate reward. This architecture incorporates into
an agent’s MDP some information characterizing its environment vicinity and
allows each of them to communicate its intention about its next action. As this
architecture constituted the first attempt to formulate the patrolling problem
in a reinforcement learning framework, it is unfortunately not perfect. In the
next sections, we will discuss the drawbacks of this architecture and see how its
definition can be refined.

4.1 Identifying the Dark Side of MDP

Considering that d stands for the graph degree and |V| is the number of nodes of
the graph, the state space S in GBLA was made up of the following components :



160 F. Lauri and A. Koukam

(1) the node where the agent is (|V| possible values) (2) the edge from which
it came (d possible values) (3) the neighbor node which has the highest (worst)
idleness (d possible values) (4) the neighbor node which has the lowest idleness
(d possible values) and (5) the list of the adjacent nodes which are intended to be
visited by other agents (2d possible values). The cardinality of the action set was
equal to the graph degree d, each action enabling an agent to reach an adjacent
node. As emphasized previously, the size of the state space grows exponentially
with the number of features: with this MDP definition, the total number of states
|S| = |V| × d3 × 2d and the total number of actions |A| = d. Learning several
MDPs (one for each patrolling agent) with Q-Learning can therefore become
rapidly intractable when a lot of agents try to patrol in a graph of high degree
and a great number of nodes. For instance, with a graph with a degree of 7
and constituted by 50 nodes (the graph called map A in the previous works),
each MDP needs theoretically to store more than 15 million scalars (used by the
Q-table).

4.2 Numbering the Valid States Using the Graph Topology

Yet, among the |V| × d3 × 2d states, a lot of them will never be visited by
an agent. For instance, let us consider the five-node graph G = (V,E), where
V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {1, 4}, {4, 5}}. Here, the MDP of an
agent patrolling this graph will be potentially made up of |S| = 5×33×23 = 1080
states. But some states will never been encountered by the agent, such as the
ones in which it is in node 3 and came from a node reached when performing
action 2 in node 3. In fact, the number of states that will be effectively visited by
an agent (the valid states) can be computed precisely from the graph topology.
Assuming that di is the degree of node i, the number of valid states induced by
this MDP definition is equal to |S| =

∑|V|
i=1 d3i × 2di . Using this formula, the

size of the state space associated to this graph is reduced to |S| = 252, which is
about one quarter of the size of the initial state space for this graph topology.
Using this simple principle, since the number of states is now reduced to a sum
over the total number of graph nodes, graphs with a greater amount of nodes
can be dealt with. This reasoning can be pushed further by considering that
only di actions at node i can be performed. The number of valid indices (s, a)
can thus similarly be reduced when a particular scalar must be accessed through
the Q-table. For instance, when dealing with map A, no more than 1.6 million
scalars would need to be stored, which is here nearly one tenth of the size of
the initial state space. In order to take into account only the valid states and
thus avoid allocating too much memory, a variant of Q-Learning will be used
to learn each MDP. This version of Q-Learning maintains an ordered list of the
states that have been visited at least once. When Q(s, a) must be accessed from
a state s and an action a (through the Q-table), a search of the corresponding
valid state s′ is initiated in the already visited states list. If state s does not exist
in it, it is added at the end. Else, its order number s′ in the list is used as the
first part of the index for the Q-table.
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4.3 Adding More Local Information in a State Representation

We just saw that the topology of the graph to be patrolled can considerably
reduce the size of the state space, so that a better characterization of the envi-
ronment vicinity and of the information required to coordinate the agents’ action
can possibly be incorporated into a state vector. Indeed, it seems to us that the
MDP defined in GBLA was incomplete. It is incomplete because the third and
fourth features of a state (the neighboring node which has the highest idleness
and the neighboring node which has the lowest idleness) do not precisely inform
the agent about its environment vicinity if more than two edges are connected
to a node. In order to allow an agent to decide which is the best action to
execute in a given state using the most relevant information, we redefined the
MDP associated to an agent in terms of its state space and reward function.
Firstly, we suggest to represent the following features on the state: (1) the node
where the agent is (|V| possible values), (2) the edge from which an agent came
from (di possible values), (3) an ordered list of the adjacent nodes from node i,
sorted according to their idleness (di! possible values), (4) the list of the adja-
cent nodes from node i which are intended to be visited by other agents (2di

possible values). The number of valid states induced by this state space is equal
to |S| =

∑|V|
i=1 di × di! × 2di . Secondly, the immediate reward given to an agent

is equal to zero if the reached node was bound to be visited by other agents, else
it is equal to the idleness of the reached node. This new model will be called
Extended-GBLA in the remainder of this article.

5 Experimental Results

The multi-agent patrolling strategies were trained on the six graph topologies
commonly used by the community (Fig. 1), with populations of 2 to 15 agents.
To obtain strategies as robust as possible, the learning phase consisted of several
trials. At each trial, graph statistics (the node idlenesses and the average graph
idleness) were set to zero, all the agents were placed at the same starting node
and they learned to patrol during several iterations. The starting node changed
from one trial to the other. Patrolling strategies were trained by using GBLA or
Extended-GBLA. Thus, a total of 120 patrolling strategies (10 × 6 for each RL
method) were trained. Preliminary experiments were conducted to determine the
learning parameters, such as the number of trials, the number of iterations per
trial, the learning rate α, the discount factor γ and the exploration probability
ε. The agents’ MDPs were trained using 1000 trials, 10000 iterations per trial,
α = 0.9, γ = 0.9 and ε = 0.1. Two classes of experiments were carried out
to assess the robustness of our multi-agent patrolling strategies. The first ones
were conducted in order to know whether the patrolling strategies trained with
GBLA or with Extended-GBLA are still efficient when the node where all agents
start to patrol is changed. The second experiments measure the capacity of the
patrolling agents to adapt themselves from situations where some agents broke
down.
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Circle Corridor Map B

Grid Island Map A

Fig. 1. Patrolling Graphs Benchmark

5.1 Comparison of GBLA and Extended-GBLA

Figure 2 presents the average graph idleness obtained after a multi-agent
patrolling simulation using strategies trained with GBLA and Extended-GBLA.
Each trained patrolling strategy was evaluated 20 times by changing the start-
ing node of agents and by using 50000 cycles of simulation. Thus, subsequent
results represent the average graph idleness over the 20 runs. Confidence inter-
vals indicated on figures were computed using a risk of 5%. One can already see

Circle Corridor Map B

Grid Island Map A

Fig. 2. Comparison results between GBLA and Extended-GBLA
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that for the Map A, the Map B, the Grid Map and the Island Map, agents have
learned to coordinate their actions, since the average graph idleness decreases
when the number of agents increases. Despite their lowest degree, patrolling on
the Corridor-shaped graph and on the Circle-shaped graph seems to be more
complicated. Both RL methods give equivalent performance for the Map B, the
Grid Map and the Island Map. For the other graphs, Extended-GBLA is signif-
icantly better than GBLA. By observing the agents’ behavior on our simulator,
we classified patrolling agents into two different classes. The first class is com-
posed of agents that are responsible of only one region of the graph: they patrol
only nodes of that region during the whole simulation. The second class is made
up of agents that cross from one region to another one, especially to visit the
node which links several regions, thus avoiding to decrease performances. These
behaviors were only observed on the four more complex graphs (Map A, Map
B, Island and Grid) with both GBLA and Extended-GBLA, and on the two
lowest complex graphs (Corridor and Circle) only with Extended-GBLA. With
GBLA, all the agents follow the same policy on the latter graphs: they all cross
the graphs in the same direction and at the same time. This explains why the
average graph idleness does not decrease when the agents’ population grows. It
is not the case using Extended-GBLA. We explain this phenomenon by consid-
ering that with Extended-GBLA, agents are informed about the utility to go to
a given node through the reward function: if one agent intends to visit a node,
the other agents will not want to visit it as it will give a zero reward. Hence,
the definition of the reward function of Extended-GBLA allows agents to better
coordinate their action. From this point of view, we can say that the information
added by Extended-GBLA to the state space of MDPs used by agents (that is
the ordered list of the adjacent nodes sorted according to their idleness) seems to
have less influence than reward functions do on the performance of the patrolling
strategies.

5.2 Robustness of Extended-GBLA

Figure 3 shows the influence of the removal of agents on the average graph
idleness obtained after a 100000-cycle patrolling simulation using multi-agent
strategies trained with Extended-GBLA. These experiments were carried out on
the Corridor map and on the Map B with 5 and 10 agents. In every experiment,
the first agent was removed after the 10000th cycle and each subsequent agent
was removed every 10000 cycles. Results show that for both graphs, strategies
are no more efficient when only one agent remains to patrol. Indeed, as an agent
has only a local representation of its environment when it uses an MDP, it
often forgets to visit some nodes for a while, thus decreasing performance. This
forgetting behavior can also be observed when more than one agent remains to
patrol (for instance on Map B where 6 out of the 10 agents are removed). In this
case, it is due to the specialization of some agents that learned to patrol only in
a given area of the graph. In the other cases, when a sufficient number of agents
are patrolling, one can observe that agents are able to rapidly adapt to the new
situations.
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Map B, 5 agents Map B, 10 agents

Corridor, 5 agents Corridor, 10 agents

Fig. 3. Robustness results of Extended-GBLA

6 Concluding Remarks and Future Works

We have proposed in this article a novel definition of MDPs used by agents to
learn individually how to patrol in a graph. The RL algorithm Q-Learning was
used to give agents the capability to select the best actions to carry out in a
given situation in a dynamic environment (that is where agents continuously
move). We have experimentally shown that our RL method Extended-GBLA
significantly outperforms in several graph topologies the approach proposed by
Santana et al. [3]. We believe this improvement is mainly due to the redefinition
of the reward function, which allows agents to better coordinate their actions.
Moreover, results evaluating the robustness of Extended-GBLA reveal that the
patrolling strategies trained with this method are still efficient when some agents
are removed during a patrolling simulation. However, the trained strategies were
unable to cope adequately with situations where only a few agents remain to
patrol. To tackle this problem, an adaptation phase seems to be required to
allow the remaining patrolling agents to face new situations caused by a removal
of a lot of agents. Future research directions include the empirical studies of other
RL discounted algorithms for solving the problem, the use of an undiscounted
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RL method, such as R-Learning [14], to solve this problem by minimizing the
Average Idleness, and the comparison with other state-of-the-art techniques.
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Abstract. The thermal residual stresses (TRS) induced in ceramic
matrix composites (CMCs) with multi-layered interphases when cool-
ing down from the processing temperature, have a significant influence
on the mechanical behavior and lifetime of CMCs. The objective of this
work is to minimize the TRS of the unidirectional CMCs with multi-
layered interphases by controlling the interphases thicknesses. A new
Particle Swarm Optimization (PSO) algorithm is interfaced with a finite
element code to find an optimal design and thereby significantly reduce
the TRS within CMCs. This new PSO allows a faster convergence rate
and gets a new effective stopping criteria based on real physical limits.

Keywords: Ceramic matrix composites · Thermal residual stresses ·
Particle Swarm Optimization · Radius improvement · The BSG-Starcraft
improvement · Microstructure modelling · Finite element analysis

1 Introduction

The Particle Swarm Optimization (PSO) algorithm belongs to the category of
swarm intelligence techniques. In PSO, each solution of the optimization problem
is regarded as a particle in the search space, which adjusts its position in the
search space according to its own flying experience and the flying experience of
other particles [1]. The PSO algorithm has only a small number of parameters
which need to be adjusted and is easy to implement. However, this algorithm has
a major drawback: the number of iterations needed to find a potentially global
minimum. In practical situations such as the structural optimization context,
the optimization techniques may be linked to the finite element method. For
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12970-9 18
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this type of problems, the evaluation of the cost function for given values of the
design variables requires a finite element analysis. This work can be very CPU
time consuming especially when the finite element models are large and have a
considerable number of design parameters. In this paper, a new stopping criterion
is developed. These improvements, BSG-Starcraft Radius improvements, can
drastically reduce the CPU time by avoiding needless iterations.

To test our approach, an original application to composites ( CMCs , Ceramic
matrix composites) is proposed. Ceramic matrix composites (CMCs) with
multi-layered interphases exhibit attractive properties for thermal-structural
applications [2,3]. However, in CMCs with multi-layered interphases, thermal
residual stresses (TRS) are often generated upon cooling from processing to room
temperatures due to extensive mismatch of the coefficients of thermal expansion
between the constituents (fiber, interphase and matrix). The distribution of TRS,
resulting in the cracks and separations in the matrix and interphases, has a sig-
nificant influence on the mechanical behavior and lifetime of CMCs. The aim of
the presented example is the optimization by PSO of TRS distribution in the
multi-layered (PyC/SiC)n interphases and matrix from the point of view of the
deposition thickness of each interphase layer [4] in order to achieve an excellent
thermal-mechanical performance of CMCs.

2 Particle Swarm Optimization (PSO)

The two improvements of the Particle Swarm Optimization algorithm presented
here have been developed by the author S. Salmon in [5] and implemented in
Scilab [6]. The PSO algorithm is a global optimization algorithm described as
sociologically inspired. In PSO, each individual of the swarm is considered as a
particle in a multi-dimensional space that has a position and a velocity. These
particles fly through hyperspace and remember the best position that they have
seen.

2.1 Basis of Particle Swarm Algorithm

Members of a swarm fly in the search field (of N dimensions) and each mem-
ber is attracted by its personal best solution and by the best solution of its
neighbors [7,8]. Each particle has a memory storing all data relating to its flight
(location, speed and its personal best solution). It can also inform its neighbors,
i.e. communicate its speed and position. This ability is known as socialization.
For each iteration, the objective function is evaluated for every member of the
swarm. Then the leader of the whole swarm can be determined: it is the particle
with the best personal solution. The process leads at the end to the best global
solution.

At each iteration t , the location and speed of one particle xi are updated as
follows [1]: {

vt+1
i = ω vt

i + r1 c1 (pti − xt
i) + r2 c2 (pgi − xt

i)
xt+1
i = vt+1

i + xt
i

(1)
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where vi and xi represent the current velocity and the position of the ith particle
respectively (note that the subscripts t and t+1 refer to the recent and the next
iterations respectively). pi is the personal best previous position (pbest) of the ith
particle and pg is the best global position (gbest) among all the particles in the
swarm. The parameters r1 and r2 are two random numbers between 0 and 1. The
constant c1 and c2 represent trust parameters indicating how much confidence
the current particle has in itself and how much confidence it has in the swarm.
Theses acceleration constants c1 and c2 indicate the stochastic acceleration terms
which pull each particle toward the best position attained by the particle or the
best position attained by the swarm. Low values of c1 and c2 allow the particles
to wander far away from the optimum regions before being tugged back, while
the high values pull the particles toward the optimum or make the particles to
pass through the optimum abruptly. In reference [9], the constants c1 and c2 are
chosen equal to 2 corresponding to the optimal value for the problem studied.
The role of the inertia weight ω is considered important for the convergence
behavior of PSO algorithm. The inertia weight is employed to control the impact
of the previous history of velocities on the current velocity. Thus, the parameter
ω regulates the trade off between the global (wide ranging) and the local (nearby)
exploration abilities of the swarm. A proper value for the inertia weight provides
balance between the global and local exploration ability of the swarm, and thus
results in better solutions. Numerical tests imply that it is preferable to initially
set the inertia to a large value, to promote global exploration of the search space,
and gradually decrease it to obtain refined solutions [10].

2.2 The Radius Improvement: A New Stopping Criterion

In practical situation, especially in structural optimization, there can find tech-
nological limitations on design variables. The main idea is to avoid an important
number of useless iterations taking into account these limitations.

For a classical PSO, the stopping criterion is the maximum number of iter-
ations allowed. In the context of a real physical process, the accuracy of the
particle leading to the best result can not necessarily be reproduced or manu-
factured. Thus is it possible to imagine a stopping criterion on the precision in
measuring the radius of the swarm ? This radius swarm is calculated by evaluat-
ing the distance of all the swarm of particles relative to the particle leader using
a standard norm 2 . Then, if the maximum distance (Infty norm) stays less than
a user-defined criterion for a number of iterations, the algorithm is then stopped
(Figure 1).

2.3 The BSG-Starcraft Improvement

The question is: how to explore more quickly the search space ? The Battlestar
Galactica Starcraft (BSG-Starcraft) improvement is based on two ideas inspired
from the science fiction film Battlestar Galactica and a video game Starcraft.
These two ideas can be formulated as follows:
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Fig. 1. The Radius improvement

– at each iteration t, the leader particle has the possibility to send randomly
some new particles to fast explore the space, the raptors (Figure 2). The
speed of this raptors is chosen grater than the velocity of the classical
particles.

– if one raptor finds a best position than the global best then a jump vector is
defined and the swarm jumps conserving the swarm geometry. The carrier
location is now the raptor one.

All details of this approach are given by the pseudo-code listed in algorithm 1.

Fig. 2. The BSG-Starcraft improvement

This modification increases the number of evaluations of the objective func-
tion but a better solution is reached. To be very efficient, it means to reach more
quickly the best solution, it is very useful to combine both improvements.
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Algorithm 1. Particle swarm optimization : BSG-Starcraft improvement
Require: Initialization
1: Initialize population : randomly initialize positions of all particles distributed

throughout the design space.
2: Initialize weight of all particles
3: Initialize velocities of all particles
4: Evaluate the objective function for all particles
5: Find the personal best : p0

i = x0
i

6: Find the global best: determine min f(x0
i ), i = 1 · · · n, set p0

g = x0
min

7: while t ≤ tmax do
8: for i = 1, n do
9: Find the global best of the previous iteration : it is the carrier xcarrier

10: Create randomly with a probability p = 0.1, for a quite long range from the
carrier, N raptors to explore the space xraptor

k

11: Evaluate the objective function for the N raptors
12: if ∃k/f(xraptor

k ) ≤ f(xcarrier) then
13: Define the jump vector as Jump = xraptor

k − xcarrier and jump the swarm
by the translation of vector Jump

14: Evaluate the objective function for the jumped swarm
15: else
16: Evaluate the objective function of the initial swarm
17: end if
18: Update the personal best
19: Update the global best
20: Update velocity
21: Update position
22: end for
23: end while

2.4 Validation by Classical Tests

The performance of the proposed algorithm has been measured, with succes,
on classical tests such as De Jong and Ackley functions. A statistically study
has been realized in [6] in the conditions specified in table 1. Some results are
presented in table 2.

Table 1. PSO parameters

Parameters Values

Number of runs 100
Maximum number of iterations 400

Number of particles 20
c1 = c2 2
Radius 10−3

Counter for radius 10
Number of raptors 20
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Table 2. 100 runs results

Classical Radius BSG-Starcraft BSG-Starcraft
PSO Radius

Ackley function

Fitness
m = 5.56
σ = 2.62

m = 4.93
σ = 2.77

m = 4.99
σ = 3.1

m = 4.73
σ = 2.81

Stop Iterations
m = 400
σ = NA

m = 308.9
σ = 28.8

m = 400
σ = NA

m = 317.7
σ = 26.0

De Jong function

Fitness
m = 0.033
σ = 0.087

m = 0.025
σ = 0.062

m = 0.02
σ = 0.037

m = 0.027
σ = 0.046

Stop Iterations
m = 400
σ = NA

m = 284.86
σ = 19.33

m = 400
σ = NA

m = 297.13
σ = 18.31

3 Application to Ceramic Matrix Composites

3.1 Context

The fabrication process of unidirectional CMCs with multi-layered (PyC/SiC)
interphases is briefly introduced below: the architectures of CMCs consist of
arranged fibers. The components of the multi-layered (PyC/SiC)n interphases
and the SiC matrix are infiltrated within the porous fiber preforms. In the present
study, square fiber arrays are used to model the unidirectional CMCs. Four layers
of interphases are distributed around the fibers. In the longitudinal direction, the
fiber axes have been assumed to be parallel and of equal lengths (Figrue 3). The
optimization study is carried out on an unidirectional SiC fiber reinforced SiC
ceramic matrix composite with four alternate layers of (PyC/SiC/PyC/SiC)
interphases. Figure 3 shows the unit cell model of the composite. φf is fiber
diameter; d1 ∼ d4 are thicknesses of the interphase layers; d5 is the thickness of
the matrix layer. The finite element method is used for numerical computation
of TRS. The finite element model can be seen in figure 3. Material properties of
the constituents are given in Table 3.

Table 3. Properties of the constituents

Constituent E11 (GPa) E33 (GPa) G12 (GPa) G23 (GPa) ν12 ν23 α11 (10−6/◦C) α33 (10−6/◦C)

SiC fibre 200 200 80 80 0.12 0.12 3 3
PyC interphase 12 30 4.3 2 0.4 0.12 28 2
SiC interphase 350 350 145.8 145.8 0.2 0.2 4.6 4.6
SiC matrix 350 350 145.8 145.8 0.2 0.2 4.6 4.6
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Fig. 3. Geometrical model of the unit cell of SiC/SiC composite

3.2 Optimization Problem

The goal of this work is the optimization of TRS distribution in the multi-layered
interphases and matrix from the viewpoints of the deposition thickness of each
interphase layer. Mathematically, the optimization problem can be formulated
as: ⎧

⎨

⎩

min TRS = f(X)
X = (d1, d2, d3, d4)
0.3 ≤ di ≤ 0.6

(2)

where f(X) is the objective function, i.e. the maximum hoop TRS within the
interphases and matrix. The vector X is the vector defining the design variables:
the thicknesses of the interfaces.

The diameter of the SiC fibre is 10μm and the thickness of the SiC matrix is
2μm. The upper bound of each interphase layer thickness is 0.6μm. In practice,
the thicknesses of multi-layered interphases are usually limited to 0.1μm or more
for oxidation resistance considerations [11] and reduction of the complexity of
the CVI fabrication process. Therefore, in the present study the lower bound for
each interphase layer thickness is set to 0.3μm.

In this problem, the evaluation of the objective function for given values of
the design variables requires a finite element analysis. So, the PSO and BSG-
Starcraft Radius PSO schemes are linked to the finite element model introduced
before.

3.3 Results

For all these algorithms, a population of 20 individuals is used; the inertia weight
ω decreases linearly from 0.9 to 0.4. The value of constants c1 and c2 are set to
be the same and equal to 2. The maximum number of iterations is limited to
200. Radius value is set to 0.1μm.

The results obtained by our approach are compared with those obtained by a
classical PSO in order to evaluate the performance of the new algorithm.
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Figure 4 provides a convergence rate of the optimization procedure. It can be seen
that both two algorithms achieve the best solutions. The maximum hoop TRS has
been decreased to 0.22GPa by means of handling the interphases thicknesses. The
final optimized interphases thicknesses are (0.6μm, 0.6μm, 0.3μm, 0.6μm). How-
ever, the BSG-Starcraft Radius PSO algorithm displays a faster convergence rate
than the PSO algorithm in this example. It is closer to the best solution than the
PSO algorithm in the early stages and hence. Besides, due to the swarm radius lim-
itation the BSG-Starcraft Radius PSO algorithm stopped the computation after
97 iterations. Hence, the BSG-Starcraft Radius PSO algorithm requires less com-
putational effort to find best design solutions than the PSO algorithm.

To conclude the comparison between the PSO and BSG-Starcraft Radius
PSO schemes, the CPU time has been evaluated. An optimization run with the
classical PSO algorithm takes approximately 12.5 hours on 7 CPU cores while
the same run with the improvments takes 8.08 hours. A drastic decrease of the
CPU time can be seen when the BSG-Starcraft Radius PSO scheme is used. In
a structural optimization context where the optimization algorithm is coupled
to a finite element analysis, the observed reduction of the number of iterations
affects the number of finite element analysis and so the CPU time is strongly
reduced.
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Fig. 4. Convergence rate for the optimization of hoop TRS

4 Conclusion

PSO algorithm does not use the gradient information of the optimization prob-
lem. This means that it does not require for the optimization problem to be
differentiable as required by classical optimization methods such as gradient
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descent or quasi-Newton methods. In this structural optimization context, the
optimization algorithm is coupled with a finite element analysis to evaluate the
cost function. This work can be very CPU time consuming especially when
the finite element models are large and have a considerable number of design
parameters. That is the reason why the new version of PSO proposed in this
paper is very interesting by its faster convergence rate ans its stopping criteria
based on real physical limits. An original application to composite is proposed
to test and validate our approach.
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Abstract. The treasure of any radio communication network provider
is the set of available frequencies and the challenge is to use the fre-
quencies in the best possible way. Single Frequency Networks (SFNs)
are broadcast networks where several transmitters send the same sig-
nal over the same frequency. They allow more efficient utilization of the
radio spectrum in comparaison to traditional Multi Frequency Networks
(MFNs) that use one different frequency per transmitter. SFN Synchro-
nization Problem (SFNSP) is known to be a NP-hard problem. The aim
of this paper is to present an original hybrid metaheuristic (ACO-SA)
based on Ant Colony Optimization (ACO) and Simulated Annealing
(SA) to solve SFNSP. Experimental results obtained with our hybrid
ACO-SA on real-world benchmarks provided by the french telecommu-
nication company named TDF1, show drastic runtime improvement over
existing approaches, and also quality improvement in comparison with
existing SFN’s synchronizations in the field of TV broadcasting in France.

Keywords: Ant Colony Optimisation · Simulated Annealing · Hybrid
Metaheuristic · Single Frequency Network · Digital TV broadcasting

1 Introduction

Both the sectors of telecommunications and of broadcasting have to accommo-
date strong growth, with the sustained deployment of 3G and 4G networks, and
the densification of TV networks. DVB-T, the current technical norm for Dig-
ital TV in Europe, offers the possibility to use the Single Frequency Network
(SFN) technique, which consists in associating sets of synchronized transmitters.
SFN’s transmitters broadcast the same signal over one and only one frequency.
The aim of SFN is to save utilization of the radio spectrum and allow a higher
number of TV programs in comparaison to Multi Frequency Networks (MFNs)
1 TDF is a french company, which provides radio and television services for telecom

operators, and other multimedia services: digitization of content, encoding, storage,
etc.http://www.tdf.fr.
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that use one different frequency per transmitter. The Quality of Service (QoS)
of a SFN depends on the extra-SFN jamming and the intra-SFN jamming. The
extra-SFN jamming depends on gaps in frequencies between transmitters which
constitute the SFN and other transmitters not belonging to the considered SFN
(i.e. transmitters on the same frequency not sufficiently far away and trans-
mitters on adjacent channels in or in the vicinity of the SFN’s coverage area).
As for the intra-SFN jamming, it depends on the synchronization between the
transmitters of the same SFN. In fact, the DVB-T technologies permit, in an
interval of time called Guard Interval (GI), to benefit from signals of the var-
ious co-channel transmitters constituting a SFN. Beyond GI, these signals are
considered as interferers between them [2,12].

In this paper, we formulate the Single Frequency Network Synchronization
Problem (SFNSP) as a combinatorial optimisation problem and we present
an original hybrid metaheuristic based on Ant Colony Optimization algorithm
(ACO) [4,9,11] and Simulated Annealing (SA) [1,3,5–7,10] to minimize the
intra-SFN jamming of a SFN. We compare QoS of solutions calculated by our
hybrid ACO-SA with operating SFN synchronizations in the field of TV broad-
casting used nowadays in France.

This paper is organized as follows: in Section 2,wedescribe SFNSP. InSection 3,
we present our hybridACO-SAmetaheuristic. Experimental performance compar-
isons on real-world benchmarks provided by TDF Company are given in Section 4.
Section 5 contains concluding remarks and further research aspects.

2 Single Frequency Network Synchronization Problem

SFN’s transmitters are spread over the geographical area where broadcasters
wish to provide the users with their services. Each transmitter covers a part of
this geographical area called its coverage area. The area around a transmitter
where transmission conditions are favourable enough to have a good reception
of the signal is known as the service area of the transmitter. The service area is
the portion of the coverage area that is not jammed by other transmitters.

The optimization of a SFN synchronization requires the adjustment of an
initial transmitting delay on every transmitter so that all the signals transmitted
by the SFN members fall within the Guard Interval (GI) on the maximum of
the locations in the SFN’s coverage area. If the delay spread is higher than the
GI, according to the synchronization strategy of the receivers, the contributions
outside the GI are considered as potential interferers and weighted with a co-
channel protection ratio [2,12].

The formal definition of the considered SFNSP is given by: let S be a SFN.
Let T = {ti}1≤i≤n be a set of n transmitters distributed across the geographical
area of S. Let Di = {di,1, di,2, ...di,m} be the set of m valid delays, that can be
assigned to the transmitter ti.

If the coverage area of a transmitter ti and the interference area of a transmit-
ter tj intersect, there is an intra-SFN jamming constraint Cti←tj

between the pair
of transmitters (ti, tj). The constraint corresponds to the amount of jamming
between the transmitters for different gaps in delay di,x − dj,y (1 ≤ x, y ≤ m).
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Fig. 1. Example of SFN network

A solution (i.e. synchronization) to the problem is obtained by assigning to each
transmitter ti one of the delays from Di. It’s henceforth denoted by s ∈ D1×D2×
... × Dn where s(ti) ∈ Di is the delay assigned to the transmitter ti. The optimal
solution is the one which minimizes the objective function φ (see Formula 1).

Min φ(s) =
n∑

ti∈S

p∑

tj∈S∧tj �=ti

ρi,j × Cti←tj
(s(ti) − s(tj)) (1)

where p is the number of jammers of the transmitter ti and ρi,j is a weight of
the constraint Cti←tj

Figure 1 shows an example of a SFN network constituted
by four co-channel transmitters (t1,t2,t2, and t4). Between these transmitters,
there are ten intra-SFN jamming constraints. For example, there is a constraint
Ct1←t2 between t1 and t2 because the intersection of the interference area of t2
with the coverage area of t1.

A SFN network can be modelled by an oriented graph in which vertices rep-
resent transmitters and oriented edges represent intra-SFN jamming constraints.
There is a strong link between graph coloring and delays synchronisation with
binary interference constraints. The graph coloring problem is known to be NP-
Hard [8], thus, consequently the SFNSP.

3 Principles of Our Hybrid ACO-SA Metaheuristic and
Pseudo-Code

The idea of our hybrid ACO-SA (see Algorithm 1) consists in using a modified
version of ACO algorithm inspired by [11] adapted to solve SFNSP combined
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Algorithm 1. Pseudocode ACO-SA
1 Initialize S0 ; /* according to the operational delays */

2 n ← |S0|; m ← number of possible delays;
3 bestcost ← ∞; newcost ← 0 ; /* initialization of the best and the new

costs */

4 shortStagnation ← 0; longStagnation ← 0 ; /* initialization of

stagnation counters */

5 restartSAThreshold ← nb. of stagnation iterations allowed before we run SA;
6 stopThreshold ← nb. of stagnation iterations allowed before we stop ACO-SA;
7 R ← 2;
8 Initialize trace[n][m] ; /* matrix which represents the memory */

9 Initialize sumTrace[n] ; /* the vector which contains the sum of the

values of each column of the memory */

10 parametersSA[] ← InitialisationParametresSA(S0) ; /* adaptive

computation of SA’s parameters */

11 while (longStagnation < stopThreshold) do
12 for i ← 1 to n do
13 sumTrace[i] ← 0 ;

14 for i ← 1 to n do
15 for i ← 1 to m do
16 sumTrace[i] ← sumTrace[i] + trace[i][j];

17 imin ← index of the component of sumTrace which contains the minimal
value;

18 St ← GenerateNewSolution(imin,St−1) ; /* computation of a neighbor

solution */

19 if (shortStagnation = restartSAThreshold) then
20 S′

t ← SimulatedAnnealing(St, parametersSA[]) ; /* see Algorithm 2

*/

21 newcost ← φ(S′
t) ; /* see Formula 1 */

22 shortStagnation ← 0;

23 else
24 newcost ← φ(St) ; /* see Formula 1 */

25 if ( newcost < bestcost ) then
26 bestcost ← newcost ; /* updating of the best cost */

27 Sbest ← St ; /* updating of the best solution */

28 increment ← 1;
29 for i ← 1 to n do
30 for j ← 1 to m do
31 trace[i][j] ← 1;

32 shortStagnation ← 0; longStagnation ← 0;

33 else
34 UpdateTrace(St, Sbest, increment, R) ; /* see Algorithm 3 */

35 shortStagnation ← shortStagnation + 1;
36 longStagnation ← longStagnation + 1;

37 return Sbest;
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Algorithm 2. SimulatedAnnealing(St,parameters[])
Data: a solution St and SA parameters (temperature and α stocked in

parameters[])
Result: Sbest (i.e. improved St)

1 stagnation ← 0 ;
2 stopThreshold ← number of stagnation iterations allowed before we stop the

procedure SA ;
3 n ←| St |;
4 S0 ← St;

5 maxFail ← n∗(n−1)
2

;
6 nbFail ← 0;
7 tFound ← parameters[0];
8 temperature ← parameters[0];
9 α ← parameters[1];

10 while (stagnation < stopThreshold) do
11 temperature ← temperature

1+α∗temperature
;

12 oldCost ← Φ(St−1);
13 St ← GnrerNouvelleSolution(St−1);
14 newCost ← Φ(St−1);
15 Δ ← oldCost − newCost;

16 if ((Δ > 0) ∨ (rand(0, 1) < e
−Δ

temperature ) ∨ (maxFail == nbFail)) then
17 S ← St;
18 nbFail ← 0;

19 else
20 nbFail ← nbFail + 1;

21 stagnation ← stagnation + 1;
22 if (maxFail == nbFail) then
23 α ← 0;
24 temperature ← tfound;

25 if (newCost <= bestCost) then
26 Sbest ← St;
27 bestCost ← newCost;
28 tfound ← temperature;
29 stagnation ← 0;

30 return Sbest;
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Algorithm 3. UpdateTrace(St,Sbest, increment,R)
Data: current solution St, best solution until now Sbest, increment, and R
Result: updated matrix trace

1 transmitter ← 1;
2 curentDelay ← St(transmitter);
3 bestDelay ← Sbest(transmitter);
4 while ((transmitter ≤ n)

∧
(curentDelay == bestDelay)) do

5 transmitter ← transmitter + 1;
6 curentDelay ← St(transmitter);
7 bestDelay ← Sbest(transmitter);

8 if (transmitter = n) then
9 increment ← increment + 1;

10 for i ← 1 to n do
11 for j ← 1 to m do
12 trace[i][j] ← increment;

13 else
14 for (i ← 1 to n) do
15 curentDelay ← St(transmitter);
16 bestDelay ← Sbest(transmitter);
17 trace[i][curentDelay] ← trace[i][curentDelay] + increment;
18 trace[i][bestDelay] ← trace[i][bestDelay] + R;

with a modified version of adaptive SA algorithm inspired by [3] also adapted
to solve SFNSP. The goal of this hybridization is to improve the quality of ants
using adaptive SA algorithm (see Algorithm 2) when the search stagnates in a
local minimum. Our hybrid ACO-SA metaheuristic relies on the the following
main components:

– Representation of a solution: a solution represents a possible synchro-
nization of considered SFN’s transmitters. We represent a solution by a vec-
tor. The indices of this vector represent the transmitters and the values of
the components represent the delays affected to the transmitters.

– Initial solution: there exist three possibilities for generating the initial
solution S0: it can be a randomly generated synchronization, or a synchro-
nization associating a delay equal to zero to all transmitter stations, or the
operational synchronization used nowadays. In our ACO-SA metaheristic we
use the later possibility (see line 1 of Algorithm 1);

– Pheromone memory: the pheromone memory is represented by a matrix
(trace) of dimension n × m, where n is the number of transmitters of the
SFN to be synchronized, and m is the number of possible delays for each
transmitter. Initially, all elements of the matrix are equal to 1 (see line 8 of
Algorithm 1);
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– ACO stop criterion: the stop criterion of ACO-SA is dynamic. If the costs
of a sequence of ongoing solutions continues to grow during stopThreshold
iterations, then ACO-SA stops (see line 11 of Algorithm 1);

– SA initialization: the initial step of the algorithm includes also the adap-
tive calculus of the parameters (initial temperature, attenuation coefficient)
of SA. This calculus depends on the instance under consideration;

– SA stop criterion: the stop criterion of SA is also dynamic: if the costs of
an ongoing sequence of solutions is larger than the cost of the best solution
explored until now, then SA stops.

– As long as the stop criterion of ACO-SA has not been reached, the following
set of operations is executed at each iteration:

• Update of the vector sumTrace: all components of sumTrace are
reinitialized to 0, then the sum of the components of the ith column of
the trace matrix is stored in ith component of the vector sumTrace (see
lines 12-16 of Algorithm 1);

• Computation of neigbor solution based on pheromone memory:
to this matrix (trace), we associate a vector (sumTrace) of length n such
as ∀1 ≤ i ≤ n, sumTrace[i] = trace[i][1] + trace[i][2] + . . . + trace[i][m].
Based on this vector, we calculate the neigbor solution. We look for the
index imin of the element of sumTrace which contains the minimal value.
Then we assign the best possible delay (i.e. delay which minimizes the
number of jammed meshes in the coverage area of the ithmin transmitter)
to the ithmin transmitter (see lines 17 and 18 of Algorithm 1);

• Run of SA with the neighbor solution as input: if a stagnation
of size restartSAThreshold is detected, then adaptive SA algorithm runs
with the calculated neighbor solution and the stagnation counter short-
Stagnation resets (see lines 19-22 of Algorithm 1).

• Update of current and best solutions: if the cost of the neighbor
solution is smaller than that of the current solution, the neighbor solution
becomes the current one. The until now best cost becomes the cost of the
neighbor solution. The memory matrix (trace) is reinitialized. The two
counters longStagnation (this counter is in charge of stopping the hybrid
procedure ACO-SA) and shortStagnation (this counter is in charge of
restarting the procedure SA) are initialized to 0 (see lines 25-32 of Algo-
rithm 1). If the cost of the neighbor solution is larger than the cost of
the current solution, the memory matrix (trace) is updated according
to the current solution, the neighbor solution and the two parameters
increment and R (see Algorithm 3). The two counters shortStagnation
and longStagnation are incremented (see lines 33-36 of Algorithm 1).

4 Experimental Results

We use real-world benchmarks provided by TDF and compare the experimen-
tal results obtained thanks to our ACO-SA metaheuristic with these currently
obtained by TDF’s software. In Figure 2, Figure 3 and Figure 4 red areas rep-
resent jammed areas, and purple areas represent service areas.
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Reference service area = 9268 km2 ACO-SA service area = 10458,5 km2

Reference runtime = 09 min 00 s ACO-SA runtime = 01 min 54 s

(a) (b)

Fig. 2. QoS of reference solution (a) and ACO-SA solution (b) for Benchmark 1

Reference service area = 24506 km2

Reference runtime = 31 min 00 s

ACO-SA service area = 25501 km2

ACO-SA runtime = 5 min 35 s

(a) (b)

Fig. 3. QoS of reference solution (a) and ACO-SA solution (b) for Benchmark 2
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Reference service area = 37167,8 km2 ACO-SA service area = 39286,5 km2

Reference runtime = 05 h 28 min 00 s ACO-SA runtime = 00 h 04 min 21

(a) (b)

Fig. 4. QoS of reference solution (a) and ACO-SA solution (b) for Benchmark 3

– Figure 2.(b) shows that jammed areas have disappeared in comparison with
Figure 2.(a). ACO-SA runs 4.7 times faster than TDF’s actual software and
increases the service area by 13 %.

– Figure 3.(b) shows that jammed areas have been reduced in comparison with
Figure 3.(a). ACO-SA runs 5.5 times faster than TDF’s actual software and
increases the service area by 3.9 %.

– Figure 4.(b) shows that jammed areas have been reduced in comparison with
Figure 4.(a). ACO-SA runs 75.4 times faster than TDF’s actual software and
increases the service area by 5.4 %.

5 Concluding Remarks and Further Research Aspects

Our hybrid ACO-SA metaheuristic has good time performances and improves
(or maintains) the quality of the solutions (by at most 13%). There is still room
for improvement. We are planning to explore additional hybrid metaheuristics
(based on Particle Swarm Optimization, for example) and to design a non trivial,
distributed version of ACO-SA.
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Abstract. Natural disasters represent hazards resulting from extreme
geophysical events. Floods particularly are one of the most occurring
disasters. They affect annually different regions of the world with varying
intensities causing materiel damages and fatalities. Despite the efforts
done by rescue agents in this context, inefficiencies occur yet. Thus, the
need of disaster management information systems is becoming critical to
mitigate the effect of natural hazards. In this paper, we aim to provide
a dynamic decision making tool inspired by the foraging behavior of
honey bees which assists in managing relief operations and assigning
rescue agents to affected areas. We propose, equally, a trajectory data
warehouse model for flood tracking and affected areas location.

Keywords: Bees foraging ·Dynamic allocation ·Relief planning ·Floods
Trajectory data warehouse

1 Introduction

The period following natural disasters represents a critical period due to vari-
ous challenging factors such as the large number of casualties at stake, the time
required for evacuation and the lack of rescue officers and material resources.
Hence, the need of disaster management information systems is becoming crit-
ical to deliver the right information to public authorities concerned by decision
making. Despite the incredible efforts done in this respect, inefficiencies in relief
activities occur yet. In fact, the majority of current Disaster management sys-
tems usually are mere information systems used for graphical representation
of disaster relevant data. Nevertheless, there is no efficient means which allow
quick analysis of disaster information and provide rapidly an adequate plan-
ning for relief agents allocation. Moreover, when the management of a disaster
extends on large scale, decision making becomes more difficult and time becomes
a critical factor.

The goal of this paper is to:

• Design a trajectory data warehouse model to track the changing position of
floods water waves in order to locate affected areas.

• Organize dynamically the work of rescue teams through a dynamic decision
making tool inspired by the foraging behavior of honey bees.

c© Springer International Publishing Switzerland 2014
P. Siarry et al. (Eds.): ICSIBO 2014, LNCS 8472, pp. 185–191, 2014.
DOI: 10.1007/978-3-319-12970-9 20
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The remainder of this paper is organized as follows: In section 2, we present
some research works related to bees inspired algorithms and their applications.
In section 3, we propose a conceptual model for floods trajectory data warehouse.
In section 4, we describe the foraging behavior of bees in nature and we provide
an algorithm inspired by the latter behavior for dynamic relief management. In
section 5, we will summarize the work and propose new perspectives to be done
in the future.

2 Related Works

2.1 Main Algorithms Inspired by Bees Foraging Behavior and Its
Applications

Over years, the computational researches have been increasingly interested to
biological phenomena, as source of modeling paradigms. Particularly, the bees
inspired algorithms has emerged recently and has proved its efficiency in several
application domains. The main purpose was to mimic the efficiency of honey
bees organization within its colonies either for establishing analogies for system
functioning or for resolving renowned optimization problems. Several woks in the
literature have dealt with bees inspired algorithms using different nomenclatures.
We can cite briefly: bees system [5], [6], [9], Bee Colony Optimization [7], Bee
Hive [11], Artificial Bee Colony [4] and Virtual Bee Algorithm [12].

The main domains are: Genetic Algorithm Improvement, Traveling Salesman
Problem (TSP), Stochastic Vehicle Routing Problem, Dynamic Allocation of
Internet Service, Job Shop Scheduling, Telecommunication Network Routing,
Neural Network and Routing Protocol for Wireless Sensor Networks.

2.2 Models Inspired by Honeybees Foraging Behavior for Collective
Decision Making in Relief Operations

Inspired by the concept of collective decision making of honeybees, Chen and
Pea-Mora proposed, in [3], a decentralized and collective decision making app-
roach for large scale disasters. In fact, it enables immediate deployment of heavy
construction equipment, which supports critical lifesaving activities during urban
search-and-rescue period. As well, Aldunate and colleagues presented, in [1],
another distributed collaborative decision-making model which allows the sys-
tem communication without any commander. Indeed, a decision making problem
is modeled as the selection of one best option among available options to perform
a task.

3 Floods Trajectory Data Warehouse Model

The use of remote sensing technologies, sensors and localization systems opened
the way to the applications exploiting the location. Hence, the huge volume of
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generated trajectory data must be stored in a multidimensional model, called
trajectory data warehouse. The latter, allows analysis and gives the possibility
of extracting knowledge from historical data which ensures better decision mak-
ing. Trajectories are stored as set points (X, Y, T) where the couple (X, Y)
represents the space dimension and (T) represents the time dimension. In our
context, a flood travels along a river as a wave with velocity and depth contin-
uously changing and usually affects areas located close to it with variable levels
[8]. Therefore, we consider water waves as the moving object which changes
its position over space and time. Our model is presented by a star schema as
illustrated below in Fig.1, composed by the fact table: Trajectory and dimen-
sions tables:Time, Flooded area, Side, Geographic specificity, River and Flood
wave. Indeed, the fact contains measures (water-level and propagation-velocity )
representing analysis values while dimensions are defined as analysis axes.

Fig. 1. Floods trajectory data warehouse Star schema

4 Dynamic Relief Planning

The aim of this work is to find an optimal allocation of relief agents to flooded
areas in a dynamic way. We suppose that rescue agents are divided into homoge-
neous teams, where each team is composed of a predetermined number of agents
with different rescue skills. Every relief team is equipped with a mobile device.
Once a relief team finished an evacuation task, he changes its state to available
and then either he indicates the number of evacuees or he indicates that this area
does not request relief yet if all inhabitants are evacuated. Iteratively, consider-
ing areas not served yet and areas served but still requesting relief, the system
has to choose which area to serve based on a probability with which relief teams
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are assigned. In order to save the biggest number of evacuees, the relief demand
may correlate highly with the number of survivals trapped in the flooded areas.
During relief operations, a relief team may have the different states as illustrated
below in Fig.2.

Fig. 2. Different states of a relief team

4.1 Mathematic Formulation of the Problem

The main goal of our model is to maximize the number of evacuees by assigning
relief teams to flooded areas. Inspired by generalized assignment problem where
the objective function aims to assign a set of tasks to a set of agents, we formulate
the problem as an integer programming model with the objective to maximize
the number of evacuees. The objective function is as follow:

maximize
n∑

i=1

m∑

j=1

Eijxij (1)

subject to

xij ∈ {0, 1} (2)

n∑

i=1

aijxij ≤ bj ∀j : 1 · · ·m (3)

Where Eij :Number of evacuated inhabitants in flooded area i by relief team j;
xij : Variable decision =1 if flooded areas i is assigned to relief team j ,0 otherwise;
n : Number of flooded areas i:1..n ; m: Number of relief teams j:1..m;
bj: Capacity of relief team j ; ai : Relief resource needed by flooded area i.
Constraint (3) specifies the maximum capability associated with each given relief
team.
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4.2 Bees Foraging Behavior in Nature

The foraging behavior of honey bees in nature designates the search of food. Dur-
ing this process, the forager bees are divided into employed: they are engaged
in exploiting a food source, and unemployed: They are continually at look out
for a food source to exploit. There are two types of unemployed foragers: scouts:
searching the environment surrounding the nest for new food sources and onlook-
ers: waiting in the nest and establishing a food source through the information
shared by employed foragers. The communication is insured through the waggle
dance in order to recruit the nest mates and send more follower bees to more
promising patches [2].

4.3 Correspondence Between Honeybees Foraging Behavior and
Relief Agents Allocation

At the outset of our research, it was immediately obvious that the relief teams
allocation and foragers allocation problems were similar. We note that the set
of relief teams having to be assigned to flooded areas is analogous to bees for-
agers allocated to multiple flower patches. Both of them aim to choose the most
profitable sources in term of either flowers nectar or number of trapped people
in affected areas. Table 1 illustrates the previous correspondence.

Table 1. Analogies between honey bees foraging behavior and relief agents assignment

Bees foraging behavior Relief teams allocation

• Food sources • Flooded areas
• Fitness of food sources: Nectar amount • Severity degree of affected areas : Num-

ber of trapped inhabitants
• Forager bees • Relief teams
• Employed bees • Relief teams assigned to flooded areas
• Onlookers bees • Available relief teams
• Scout bees • Relief teams finishing a task and not

receiving a new one
• Objective: Maximize the total nec-

tar amount collected from different flower
patches

• Objective: Maximize the total number
of evacuees from different affected areas by
assigning relief team i to flooded area j

4.4 Dynamic Relief Allocation Algorithm

As detailed previously, the aim of the proposed model is to dynamically allo-
cate rescuers.Hence,the algorithm Relief-Alloc has to check, iteratively, the list
and choose the flooded areas to serve in order to maximize the total number
of evacuees.For each area, a probability with which relief teams are assigned is
computed by the procedure Compute-probability.Thus, as the number of trapped
persons increases, the number of assigned relief teams increases too.
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Algorithm Relief-Alloc

Input: Nbr flooded areas , Nbr relief teams, Nbr trapped people in area i

Output: Dynamic allocation of relief teams to flooded areas

Begin

While (List of affected area not empty)

For each flooded area i

Compute probability()

End for

For each relief team j

If state j = available then

Assign available relief teams to flooded areas having max pi

Set state of assigned relief teams to employed

Enf if

End for

If task accomplished then

Share information about number of evacuees

Set state of relief team to available

End if

Compute the number of remainder trapped people in each served area i

If number of remainder trapped people = 0 then

Remove areas from list of flooded areas

Else

Update list of flooded areas

End if

End while

End

Procedure Compute-probability

Input:L: list flooded areas, n: Nbr flooded area, nbrtr : Nbr trapped people

Output: Lprob: list flooded areas with relative p

Begin

For each affected area

nbrtri∑n
i=1 nbrtri

(4)

End for

End

5 Conclusion and Future Work

Floods have been considered as one of the most devastating disasters throughout
the last century either in terms of property damage or human causalities.

Thus, in order to improve relief operations and save the biggest number of
victims, our work focused on analyzing floods data and organizing the work of
relief teams.By drawing analogies from the foraging behavior of honey bees in
nature, we have provided an algorithm to dynamically allocate relief to flooded
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areas. We have equally modeled the trajectories of floods through a trajectory
data warehouse schema.As part of our future work, we aim to include fuzzy logic
to locate flood waves positions.As well,we propose to improve the allocation of
relief by considering the nearest flooded zones to choose when assigning rescuers
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