
 

Abstract— Motion estimation in a series of consecutive im-
ages is used in a variety of areas, e.g. video compression and 
investigation of tissue characteristics and organ function in 
medical images. Several methods exist both for estimating 
motions on a pixel level, e.g. block-matching in which two 
blocks in consecutive images are compared by an evaluation 
metric, and on a sub-pixel level. In this paper, we have evalu-
ated the tracking performance of all combinations between 
three evaluation metrics and eight sub-pixel estimation meth-
ods. The tracking performance of a sub-pixel method varies 
depending on the evaluation metric used. This indicates that a 
reported tracking performance for a sub-pixel estimation 
method can be significantly different when combined with 
another evaluation metric. Also there is a large variation in the 
time needed for the motion estimations depending primarily 
on the sub-pixel method used but also on the evaluation metric. 

Keywords— Sub-pixel estimation, block-matching, motion 
estimation, ultrasound 

I. INTRODUCTION  

Motion estimation in a series of consecutive images is 
used in a variety of areas, e.g. video compression and inves-
tigating tissue characteristics and organ function in medical 
images. For example in ultrasound where tissue motion 
measurements results in functional information on the tis-
sue-of-interest, and have attracted attention for various 
applications such as evaluation of cardiac [1], vascular [2], 
and skeletal muscle [3] function. It has been shown that 
tissue motion measurements can not only provide new in-
formation about the tissue-of-interest [2], but can also pro-
vide prognostic information for patients having suspected 
cardiovascular disease, both with cardiac [4] and vascular 
applications [5]. 

Several methods for estimating motion in a series of digi-
tal images exist, e.g. optical flow and phase correlation. In 
this work, we have used a basic block-matching method 
implemented with a small search region. In order to esti-
mate the motion in an area, a block representing the area is 
chosen and compared to every block in the search region 
with the block most similar with the original block assumed 
to depict the same object. To determine the similarity be-
tween two blocks, an evaluation metric, e.g. sum of absolute 
difference (SAD), sum of squared difference (SSD), or two 

dimensional normalized cross correlation (NCC), can be 
used. 

However, most of the time, the length of the motion of an 
object between two successive images is not an exact num-
ber of pixels. Therefore, an estimation of the motion on a 
level of pixels is not enough as the relative error between 
estimated movement and true movement will, at least for 
short distances, be larger than acceptable. Several methods 
exist to determine the motion on a sub-pixel level. The 
methods can roughly be divided into three sub-groups: 1) 
analytically solved using the evaluation metric values as 
input, 2) interpolation of evaluation metric values, and 3) 
image interpolation. Both the first and second group uses 
the evaluation metric values in order to determine the sub-
pixel position; values that differ depending on the evalua-
tion metric used. 

In motion estimations, two performance criterions are vi-
tal: estimation time and tracking error. Naturally the error 
should be kept as small as possible in order to give a correct 
estimation; but for real-time applications also the estimation 
time is critical. Often, the size of the estimation error is 
negatively correlated to the estimation time. 

We have found no previous study that evaluates the im-
pact on the performance of a sub-pixel method when used 
together with different evaluation metrics. The aim of this 
work was to evaluate the performance of eight sub-pixel 
position methods when combined with three different eval-
uation metrics in silico. 

II. MATERIAL AND METHODS 

A. Image sequences 

The investigations in this paper have been made on simu-
lated ultrasound images. In ultrasound images, horizontal 
direction is commonly denoted lateral while vertical direc-
tion is denoted axial; a convention that has been adopted in 
this paper. 

The cineloops (50 images each, pixel density: 8.1x4.1 
pixel/mm) were simulated using Field II [6]. The lateral 
velocities included 0.3, 0.6, 0.9, 1.4, 2.2, and 2.8 pix-
els/image whereas the axial velocity was 0 pixels/image. 
Motion estimation was performed on 100 blocks (15x7 
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pixels each) in each image using a full-search scheme 
(11x11 pixels) centered on the pixel position of the 
searched-for block. The searched-for blocks were evenly 
distributed above and below the focus depth. 

B. Evaluation metrics 

The performance for motion estimation was evaluated for 
three evaluation metrics: 

SAD   𝛼 = 𝑋!,! − 𝑌!!!,!!!
!!!
!!!

!!!
!!!         (1) 

SSD   𝛽 = 𝑋!,! − 𝑌!!!,!!!
!!!!
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NCC        𝛾 =
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        (3) 

Here α, β, and γ denotes the calculated evaluation metric 
value; m and n denotes the displacement between the two 
blocks; l and k denotes the size of the blocks; 𝑋!,! and 𝑌!,! 
denotes the pixel values at position (i, j) in the tracked block 
and the compared block, respectively, while 𝑋 and 𝑌 de-
notes the average pixel values of the respective blocks. 

C. Sub-pixel estimation methods 

A total of eight sub-pixel position methods were evaluat-
ed. Three of the methods were analytically solved: 1. 1D 
parabolic interpolation (1D PI), 2. grid slope interpolation 
(GS) [7], and 3. 2D parabolic interpolation (2D PI). Three 
of the methods interpolated the calculated evaluation metric 
values to a factor 128:1:  4. 1D PI, 5. 2D PI, and 6. 2D cubic 
interpolation (2D Cubic). Two methods interpolated the 
image data a factor 128:1:  7. 2D PI and 8. 2D Cubic. 
1. 1D PI fits a one dimensional second-degree polynomial 

(4), to three evaluation metric values with the center 
value corresponding to the block with the best similari-
ty to the searched-for block. 

𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐   (4) 

The polynomial was fitted separately laterally and axi-
ally in order to get a sub-pixel estimation in both direc-
tions. Fitting + (4) gave, when analytically solved, the 
sub-pixel estimation: 

 ∆𝑥 = !!!!!
! !!!!!!!!!

   (5) 

Here 𝛼! , 𝛼!  (center), and 𝛼!  were evaluation metric 
values and ∆𝑥 was the sub-pixel part of the movement 
with a value less than ±0.5 pixels.  

2. GS estimates the sub-pixel position separately laterally 
and axially by use of two evaluation metric values from 
the current image: the center value corresponding to the 

block with the best similarity to the searched-for block 
and the value closest to zero of the two values next to 
the center value (left or right for lateral or up or down 
for axial estimation). GS also uses an evaluation metric 
value calculated between the searched-for block and a 
block in the same image as the searched-for block at the 
position of the evaluation metric value used in the cur-
rent image: 

∆𝑥 = 0.5 1 − !!!!!
!!,!!!!,!

  (7) 

Here 𝛼! (center) and 𝛼! were evaluation metric values 
in the current image and 𝛼!,! and 𝛼!,! were evaluation 
metric values in the previous image. It should be noted 
that one of 𝛼!,! and 𝛼!,! were zero [7]. 

3. In 2D PI the second-degree polynomial was two dimen-
sional. 

𝑧 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥! + 𝑒𝑥𝑦 + 𝑓𝑦! (6) 

The polynomial was fitted to nine evaluation metric 
values with the value in the center corresponding to the 
block with the best similarity to the searched-for block. 
The polynomial was then solved analytically by finding 
the extreme point close to the center position. 

4. The polynomial (4) was used for interpolating evalua-
tion metric values in 127 evenly distributed points be-
tween each pixel position before finding the position 
with the best evaluation metric value. This was done 
separately axially and laterally. 

5. The polynomial (6) was used for interpolating evalua-
tion metric values in 127 evenly distributed points be-
tween each pixel position both axially and laterally be-
fore finding the position with the best evaluation metric 
value. 

6. 2D Cubic used cubic spline interpolation [8] in order to 
interpolate nine evaluation metric values to 128:1 both 
axially and laterally. The optimal position was given di-
rectly by the best evaluation metric value. 

7. The polynomial (6) were fitted to nine pixel values and 
were used to interpolate a square, ±0.5 pixels both lat-
erally and axially, around the center pixel to 128x128 
samples for a total of 15x7 original pixels before per-
forming a full-search with the chosen evaluation metric. 

8. 2D Cubic used cubic spline interpolation [8] in order to 
interpolate 15x7 pixel values to 128:1 both axially and 
laterally original pixels before performing a full-search 
with the chosen evaluation metric. 

D. Evaluation of tracking performance 

The tracking performance of each combination of evalua-
tion metric and sub-pixel estimation method was evaluated 

14 J. Albinsson, T. Jansson, and M. Cinthio

 
IFMBE Proceedings Vol. 48 

 
  



 

by measuring the estimation time and by calculating the 
difference between the set movement and the estimated 
movement. The axial and lateral estimation errors were 
treated separately. The errors of the motion estimation (pix-
el/image) for each combination of evaluation metric, sub-
pixel position method, and velocity are presented as box-
plots in Figure 1. Values outside ±0.25 pixel are part of the 
statistics but not shown in the figure. The average estima-
tion time in seconds needed for each image (100 blocks) is 
presented between the lateral and axial errors. 

III. RESULTS AND DISCUSSION 

Figure 1 shows average estimation time between the lat-
eral and axial estimation errors. For every combination of 
evaluation metric and sub-pixel estimation method, the 
estimation errors have been combined in a boxplot. The 
results show an expected trade-off between estimation time 
and size of estimation errors. The smallest estimation error 
is in general obtained when the image was interpolated 
whereas the analytically solved methods are up to 150 times 
faster. 

Reading the description of GS, we find nothing indicat-
ing that the method was tested or even intended to be used 
for determining sub-pixel positions axially. It could be hy-
pothesized that the method are sensitive for noise when the 
distances between samples are short. This should explain 
the difference in the variance of estimation errors axially 
and laterally as the axially distance is a factor 2 shorter.  

The large difference in tracking performance using 2D PI 
for image interpolation can be explained by discontinuities 
in the interpolated image, i.e. the interpolation will produce 
edges halfway between two original pixels where two poly-
nomials meet. The edges will also cause a fluctuation of 
energy in the image. A great strength of NCC can be seen in 
Figure 1 as its tracking performance is significantly better 
for this sub-pixel method than the other evaluation metrics. 

A tendency that can be observed in the results of several 
sub-pixel methods is the presence of bias in the tracking 
errors, i.e. the error is dependent on the size of the move-
ment in the images. 

However, several combinations give satisfying results 
both in terms of estimation error magnitude and estimation 
time. The figure also indicates, for the first time, possible 
combinations of methods for improved performance, e.g. 
using SAD and analytically solved 1D PI (axi-
al)/GS(lateral). 

Though the investigations in this paper have been made 
on ultrasound images, we are confident that similar results 
would be seen in clinical images obtained with other modal-
ities such as MRI or CT. 

IV. CONCLUSIONS  

It is well known that the choice of evaluation metric can 
have a significant impact on both estimation time and the 
magnitude of the estimation error when using block-
matching for motion estimation. Here, we show that a com-
bination of evaluation metric and sub-pixel estimation 
method have an effect on the size of the estimation error. 
Thus, even if two evaluation metrics have the same tracking 
performance on a pixel level, the total tracking performance 
can differ depending on what sub-pixel estimation method 
is applied. 
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Fig. 1 T
racking error per im

age of the m
otion estim

ation perform
ed on the in silico cineloops against the set m

ovem
ent per im

age of the cineloops. The boxes indicate the 
low

er and upper quartiles and the m
edian. The bar line indicate 99%

 of the values. O
utliers are indicated as points. Each box is based on 4,900 estim

ations explaining the seem
ingly 

large num
bers of outliers. N

o error larger than 0.25 pixels is show
n but they w

ere part of all the statistics. 

16 J. Albinsson, T. Jansson, and M. Cinthio

 
IFMBE Proceedings Vol. 48 

 
  


	Tracking Performance of Several Combinations of Common Evaluation Metricsand Sub-pixel Methods
	I. INTRODUCTION
	II. MATERIAL AND METHODS
	III. RESULTS AND DISCUSSION
	IV. CONCLUSIONS
	REFERENCES




