
Chapter 3

Single-Channel Noise Reduction in the
Time Domain

One of the most important schemes in the fundamental topic of speech en-
hancement is single-channel noise reduction in the time domain since most
communication devices have only one microphone and the time-domain pro-
cessing seems intuitive and natural. This approach has been very well studied
in the literature (see [1] for example). In this chapter, we revisit this method
from the perspective proposed in Chapter 2.

3.1 Signal Model

The noise reduction problem considered in this chapter is one of recovering
the desired signal (or clean speech) x(t), t being the discrete-time index, of
zero mean from the noisy observation (microphone signal) [1], [2]:

y(t) = x(t) + v(t), (3.1)

where the zero-mean random process v(t) is the unwanted additive noise,
which is assumed to be uncorrelated with x(t). In this context, all signals are
real.

The signal model given in (3.1) can be put into a vector form by considering
the L most recent successive time samples, i.e.,

y(t) = x(t) + v(t), (3.2)

where
y(t) =

[
y(t) y(t− 1) · · · y(t− L+ 1)

]T
(3.3)

is a vector of length L, superscript T denotes transpose of a vector or a
matrix, and x(t) and v(t) are defined in a similar way to y(t) from (3.3).
Since x(t) and v(t) are uncorrelated by assumption, the correlation matrix
(of size L× L) of the noisy signal can be written as
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Φy = E
[
y(t)yT (t)

]
(3.4)

= Φx +Φv,

where

Φx = E
[
x(t)xT (t)

]
, (3.5)

Φv = E
[
v(t)vT (t)

]
, (3.6)

are the correlation matrices of x(t) and v(t), respectively. The objective of
noise reduction in the time domain and with a single microphone is then to
find a “good” estimate of the sample x(t) given the vector y(t), in the sense
that the additive noise is significantly reduced while the desired signal is not
much distorted. This is what will be studied in this chapter.

Since x(t) is the signal of interest, it is important to write the vector y(t)
as an explicit function of x(t). For that, we need first to decompose x(t) into
two orthogonal components: one proportional to the desired signal, x(t), and
the other one corresponding to the interference. Indeed, it is easy to see that
this decomposition is

x(t) = x(t)ρxx + xi(t), (3.7)

where

ρxx =
[
1 ρx(1) · · · ρx(L− 1)

]T
(3.8)

=
E [x(t)x(t)]

E [x2(t)]

is the normalized [with respect to x(t)] correlation vector (of length L) be-
tween x(t) and x(t),

ρx(l) =
E [x(t− l)x(t)]

E [x2(t)]
, l = 0, 1, . . . , L− 1 (3.9)

is the correlation coefficient between x(t− l) and x(t),

xi(t) = x(t)− x(t)ρxx (3.10)

is the interference signal vector, and

E [xi(t)x(t)] = 0L×1, (3.11)

where 0L×1 is a vector of length L containing only zeroes.
Substituting (3.7) into (3.2), the signal model for noise reduction in the

time domain can be expressed as

y(t) = x(t)ρxx + xi(t) + v(t). (3.12)
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This formulation will be extensively used in the following sections.

3.2 Linear Filtering

In this chapter, we try to estimate the desired signal sample, x(t), by applying
a finite-impulse-response (FIR) filter to the observation signal vector, y(t),
i.e.,

x̂(t) =

L−1∑
l=0

hly(t− l) (3.13)

= hTy(t),

where x̂(t) is the estimate of x(t) and

h =
[
h0 h1 · · · hL−1

]T
(3.14)

is a real-valued filter of length L. This procedure is called single-channel noise
reduction in the time domain with a linear filter.

Using (3.12), we can express (3.13) as

x̂(t) = hT [x(t)ρxx + xi(t) + v(t)] (3.15)

= xfd(t) + xri(t) + vrn(t),

where

xfd(t) = x(t)hTρxx (3.16)

is the filtered desired signal,

xri(t) = hTxi(t) (3.17)

is the residual interference, and

vrn(t) = hTv(t) (3.18)

is the residual noise.
Since the estimate of the desired signal at time t is the sum of three terms

that are mutually uncorrelated, the variance of x̂(t) is

φx̂ = hTΦyh (3.19)

= φxfd
+ φxri + φvrn ,

where
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φxfd
= φx

(
hTρxx

)2
(3.20)

= hTΦxd
h,

φxri = hTΦxih (3.21)

= hTΦxh− hTΦxd
h,

φvrn = hTΦvh, (3.22)

φx = E
[
x2(t)

]
is the variance of the desired signal, Φxd

= φxρxxρ
T
xx is

the correlation matrix (whose rank is equal to 1) of xd(t) = x(t)ρxx, and
Φxi = E

[
xi(t)x

T
i (t)

]
is the correlation matrix of xi(t). The variance of x̂(t)

is useful in the definitions of the performance measures.

3.3 Performance Measures

In this section, we extend the performance measures given in Chapter 2 for
the conceptual framework to the single-channel noise reduction problem in
the time domain.

The input SNR, derived from (3.1), is defined as

iSNR =
φx

φv
, (3.23)

where φv = E
[
v2(t)

]
is the variance of the additive noise.

The output SNR1 helps quantify the level of noise remaining at the filter
output signal. The output SNR is obtained from (3.19):

oSNR (h) =
φxfd

φxri + φvrn

(3.24)

=
φx

(
hTρxx

)2
hTΦinh

,

where

Φin = Φxi +Φv (3.25)

is the interference-plus-noise correlation matrix. Basically, (3.24) is the vari-
ance of the first signal (filtered desired) from the right-hand side of (3.19)
over the variance of the two other signals (filtered interference-plus-noise).
The objective of the noise reduction filter is to make the output SNR greater
than the input SNR. Consequently, the quality of the noisy signal may be
enhanced.

1 In this work, we consider the uncorrelated interference as part of the noise in the defini-
tions of the performance measures.
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For the particular filter:

h = iid =
[
1 0 · · · 0 ]T (3.26)

of length L, which corresponds to the first column of the identity matrix IL
of size L× L, we have

oSNR (iid) = iSNR. (3.27)

With the identity filter, iid, the SNR cannot be improved.
For any two vectors h and ρxx and a positive definite matrix Φin, we have(

hTρxx

)2 ≤ (
hTΦinh

) (
ρT
xxΦ

−1
in ρxx

)
, (3.28)

with equality if and only if h = ςΦ−1
in ρxx, where ς( �= 0) is an arbitrary real

number. Using the inequality (3.28) in (3.24), we deduce an upper bound for
the output SNR:

oSNR (h) ≤ φxρ
T
xxΦ

−1
in ρxx, ∀h (3.29)

and, clearly,

oSNR (iid) ≤ φxρ
T
xxΦ

−1
in ρxx, (3.30)

which implies that

φvρ
T
xxΦ

−1
in ρxx ≥ 1. (3.31)

The maximum output SNR is then

oSNRmax = φxρ
T
xxΦ

−1
in ρxx (3.32)

and

oSNRmax ≥ iSNR. (3.33)

We also observe that this maximum output SNR is achieved with the maxi-
mum SNR filter:

hmax = ςΦ−1
in ρxx. (3.34)

We define the maximum gain in SNR as

Gmax =
oSNRmax

iSNR
(3.35)

= φvρ
T
xxΦ

−1
in ρxx ≥ 1.

We define the partial speech intelligibility index as
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υi (h) =
φx − φxfd

φx
(3.36)

= 1− (
hTρxx

)2
.

The larger is υi (h), the less intelligible is the estimated desired signal, x̂(t).
The speech quality index is defined as the ratio of the residual noise over

the variance of the additive noise, i.e.,

υq (h) =
φvrn

φv
(3.37)

=
hTΦvh

φv
.

For a fixed value of the input SNR, the quality of the signal improves as
υq (h) decreases.

From the two previous expressions, we deduce the global speech intelligi-
bility index:

υ′
i (h) = (1−�) υi (h) +�υq (h) . (3.38)

The variance of the estimated desired signal can be rewritten as a function
of the two indices υi (h) and υq (h), i.e.,

φx̂ = [1− υi (h)]φx + hTΦxih+ υq (h)φv. (3.39)

3.4 MSE-Based Criterion

For any MSE-type criterion, an error signal is needed. We define the error
signal between the estimated and desired signals as

e(t) = x̂(t)− x(t) (3.40)

= xfd(t) + xri(t) + vrn(t)− x(t),

which can be written as the sum of two other uncorrelated error signals:

e(t) = ei(t) + eq(t), (3.41)

where

E [ei(t)eq(t)] = 0, (3.42)

ei(t) = xfd(t)− x(t) (3.43)

=
(
hTρxx − 1

)
x(t)
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is the speech distortion due to the FIR filter, which affects the partial intel-
ligibility, and

eq(t) = xri(t) + vrn(t) (3.44)

= hTxi(t) + hTv(t)

represents the residual interference-plus-noise, which affects the quality as
well as the other part of intelligibility.

The classical MSE criterion is then

J (h) = E
[
e2(t)

]
(3.45)

= φx + hTΦyh− 2hTE [x(t)x(t)]

= φx + hTΦyh− 2φxh
Tρxx

= Ji (h) + Jq (h) ,

where

Ji (h) = E
[
e2i (t)

]
(3.46)

= φx

(
hTρxx − 1

)2
and

Jq (h) = E
[
e2q(t)

]
(3.47)

= hTΦinh.

The two particular filters h = iid and h = 0L×1 described in the previous
section are of interest to us. With the first one (identity filter), we achieve
the worst quality and the best partial intelligibility, while with the second
one (zero filter), we have the best quality and the worst intelligibility. For
these two particular filters, the MSEs are

J (iid) = Jq (iid) = φv, (3.48)

J (0L×1) = Ji (0L×1) = φx. (3.49)

As a result,

iSNR =
J (0L×1)

J (iid)
. (3.50)

We define the NMSE with respect to J (iid) as
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Jn,1 (h) =
J (h)

J (iid)
(3.51)

= iSNR× (
1− hTρxx

)2
+

hTΦinh

φv
.

We define the NMSE with respect to J (0L×1) as

Jn,2 (h) =
J (h)

J (0L×1)
(3.52)

=
(
1− hTρxx

)2
+

hTΦinh

φx

and, obviously,

Jn,1 (h) = iSNR× Jn,2 (h) . (3.53)

Expressions (3.51) and (3.52) show how the NMSEs and the different MSEs
are implicitly related to the performance measures.

We are only interested in filters for which

Ji (iid) ≤ Ji (h) < Ji (0L×1) , (3.54)

Jq (0L×1) < Jq (h) < Jq (iid) . (3.55)

From the two previous expressions, we deduce that

0 ≤ (
1− hTρxx

)2
< 1, (3.56)

0 <
hTΦinh

φv
< 1. (3.57)

For this reason, we propose to use the more general MSE-based criterion:

Jμ (h) = μ
Ji (h)

φx
+

Jq (h)

φv
(3.58)

= μ
(
1− hTρxx

)2
+

hTΦinh

φv
,

where μ is a positive real number allowing to compromise between υi (h) and
υq (h).

3.5 Optimal Filters

Taking the gradient of (3.58) with respect to h and equating the result to
zero, we get the optimal filter:
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ho,μ = μ

(
μρxxρ

T
xx +

Φin

φv

)−1

ρxx. (3.59)

Using the decomposition:

Φy = φxρxxρ
T
xx +Φin, (3.60)

we can rewrite the optimal filter as

ho,μ = μ

[
(μ− iSNR)ρxxρ

T
xx +

Φy

φv

]−1

ρxx (3.61)

and the vector ρxx can be expressed as a function of the statistics of y(t) and
v(t), i.e.,

ρxx =
E [y(t)y(t)]− E [v(t)v(t)]

φy − φv
(3.62)

=
φyρyy − φvρvv

φy − φv
,

so that ho,μ can be estimated from the statistics of y(t) and v(t) only.
Using the Woodbury’s identity in (3.59), it can easily be shown that the

optimal filter can be reformulated as

ho,μ =
μ

φx

iSNR

1 + μ
oSNRmax

iSNR

Φ−1
in ρxx (3.63)

=
μφv

1 + μGmax
Φ−1

in ρxx.

Comparing ho,μ with hmax [eq. (3.34)], we see that the two filters are equiva-
lent up to a scaling factor. As a result, ho,μ also maximizes the output SNR,
i.e.,

oSNR (ho,μ) = oSNRmax, ∀μ > 0. (3.64)

From (3.63), we deduce the partial speech intelligibility index:

υi (ho,μ) = 1−
(

μGmax

1 + μGmax

)2

(3.65)

and the speech quality index:

υq (ho,μ) =
μ2φvρ

T
xxΦ

−1
in ΦvΦ

−1
in ρxx

(1 + μGmax)
2 . (3.66)
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Fig. 3.1 A speech signal from the speaker FAKS0 of the TIMIT database.

Taking μ = iSNR in (3.63), we find the well-known Wiener filter [1]:

hW =
φx

1 + oSNRmax
Φ−1

in ρxx (3.67)

= Φ−1
y Φxiid

=
(
IL −Φ−1

y Φv

)
iid

and taking μ = ∞ in (3.63), we find the MVDR filter [1]:

hMVDR =
φx

oSNRmax
Φ−1

in ρxx (3.68)

=
Φ−1

y ρxx

ρT
xxΦ

−1
y ρxx

=
1 + oSNRmax

oSNRmax
hW.

A value of μ in (3.63) greater (resp. smaller) than the input SNR will result
in a filter that will favor partial intelligibility (resp. quality) over quality (resp.
partial intelligibility) as compared to the Wiener filter.

3.6 Simulations

In this section, we illustrate the performance of the optimal filters de-
rived above through simulations. The clean speech used is from the TIMIT
database [3], [4]. This database was originally designed to provide speech
data for acoustic-phonetic studies and for the development and evaluation of
automatic speech recognition (ASR) systems; but it has now been used in
various applications including noise reduction [5]. The database consists of
a total of 6300 sentences spoken by 630 speakers with 10 sentences by each
speaker. All speech signals were recorded with a 16-kHz sampling rate and
a 16-bit quantization. Each signal is accompanied by manually segmented
phonetic (based on 61 phonemes) transcripts as illustrated in Fig. 3.1. In the
simulations of this chapter, we take all the ten sentences from the speaker
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FAKS0 and downsample the signals from 16 kHz to 8 kHz. We then use these
downsampled signals as the clean speech. The corresponding noisy signals are
obtained by adding noise to the clean speech, where the noise signal is prop-
erly scaled to control the input SNR level. We consider two types of noise:
white Gaussian and a babble signal recorded in a New York Stock Exchange
(NYSE) room. In comparison with the Gaussian random noise, which is sta-
tionary and white, the NYSE noise is nonstationary and colored. This babble
noise consists of sounds from various sources such as electrical fans, telephone
rings, and background speech.

The implementation of the noise reduction filters derived in Section 3.5
requires the estimation of the correlation matrices Φy and Φv, and the cor-
relation vector ρxx. Here, we directly compute the Φy matrix from y(t) using
a short-time average, i.e., at every time instant t, an estimate of Φy is com-
puted as

Φ̂y(t) =
1

P

P−1∑
p=0

y(t− p)yT (t− p), (3.69)

where P is the total number of samples used in the short-time average. In our
simulations, we choose P = 320, i.e., using the most recent 40 ms samples. In
a similar way, we compute the Φv matrix and the ρxx vector at time instant
t. Substituting the estimated correlation matrices and vector into (3.67) and
(3.68), we obtain the Wiener and MVDR filters, respectively.

We use the partial speech intelligibility index, υi, the speech quality in-
dex, υq, and the output SNR as the performance measures to evaluate the
implemented Wiener and MVDR filters. Figure 3.2 plots the performance
of the Wiener filter as a function of the filter length, L, in the white Gaus-
sian noise. As it can be seen, the partial speech intelligibility index decreases
monotonically with L. So, the larger the filter length, the more intelligible is
the enhanced speech with the Wiener filter. In comparison, the quality index
first decreases and then increases with L, which means that the quality of the
enhanced signal with the Wiener filter is not a monotonic function of L. The
quality first increases and then decreases as the filter length increases. The
output SNR is seen to increase with L for the studied range of filter length;
but it first increases quickly and then starts to saturate when L is large. In
real applications, the choice of the value of L has to take into consideration
both the noise reduction performance and complexity. If this value is too
small, the performance improvement may not be significant for the listener
to appreciate, while if it is too large, the complexity can be very high and,
meanwhile, the estimation of the correlation matrices and vector may become
less reliable, resulting degradation in noise reduction performance.

The performance of the Wiener filter as a function of the filter length, L,
in the NYSE noise is plotted in Fig. 3.3. Comparing Figs. 3.2 and 3.3, one can
see that there is some difference between the performance of the Wiener filter
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Fig. 3.2 Performance of the Wiener filter as a function of the filter length, L, in the white
Gaussian noise: (a) partial speech intelligibility index, (b) speech quality index, and (c)

output SNR. The input SNR is 10 dB.

in the NYSE noise and that in the white Gaussian noise; but the performance
trend as a function of the filter length in the two noise conditions is similar.

Now, let us fix the filter length, L, to 40 and investigate the performance
behavior of the Wiener and MVDR filters in different SNR conditions. Fig-
ure 3.4 plots the results in the white Gaussian noise. It is seen that the partial
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Fig. 3.3 Performance of the Wiener filter as a function of the filter length, L, in the NYSE
noise: (a) partial speech intelligibility index, (b) speech quality index, and (c) output SNR.
The input SNR is 10 dB.

speech intelligibility index, υi, of the MVDR filter is always 0 regardless of
the SNR level. In comparison, this index is not zero for the Wiener filter
and it decreases as the input SNR increases. The SNR improvement (i.e., the
difference between the input and output SNRs) decreases as the input SNR
increases. It can be seen that the speech quality index for both the Wiener
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Fig. 3.4 Performance of the Wiener and MVDR filters in the white Gaussian noise at
different input SNRs: (a) partial speech intelligibility index, (b) speech quality index, and
(c) output SNR. The filter length L = 40.

and MVDR filters increases with the input SNR. It should be pointed out
that the speech quality index, from its definition, measures the amount of
noise reduction. The value of this index depends on many factors including
the nature of the noise, the SNR condition, the noise reduction filter that is
used, etc. In a given noise and SNR condition, this index measures partially
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Fig. 3.5 Performance of the Wiener and MVDR filters in the NYSE noise at different input
SNRs: (a) partial speech intelligibility index, (b) speech quality index, and (c) output SNR.
The filter length L = 40.

the speech quality after noise reduction: the smaller is this index, the better
is the speech quality. In a particular noise environment and for a particular
noise reduction filter, we see that the value of this index increases with the
input SNR. In this case, this index measures the quality improvement. So, the
smaller is this index, the larger is the quality improvement. To summarize,
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if the input SNR is high, the speech quality index gets closer to 1, since the
improvement can be very small in this case. Consequently, the speech quality
index makes sense only when combined with the input SNR.

Figure 3.5 plots the performance of the Wiener and MVDR filters in the
NYSE noise. Comparing Figs. 3.5 and 3.4, one can see that the performance
trend of the two filters in the NYSE noise is similar to that in the white Gaus-
sian noise though the partial speech intelligibility index, the speech quality
index, and the output SNR of each filter differ slightly in values in the two
different noise cases with the same input SNR.

Note that one can also make a compromise in performance between the
Wiener and the MVDR filters by adjusting the parameter μ in the tradeoff
filter in (3.61). Simulations of this filter are left to the reader’s investigation.
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