
Chapter 6
Information-Based Physics
and the Influence Network

Kevin H. Knuth

Abstract I know about the universe because it influences me. Light excites the
photoreceptors in my eyes, surfaces apply pressure to my touch receptors and my
eardrums are buffeted by relentless waves of air molecules. My entire sensorium is
excited by all that surrounds me. These experiences are all I have ever known, and
for this reason, they comprise my reality. This essay considers a simple model of
observers that are influenced by the world around them. Consistent quantification of
information about such influences results in a great deal of familiar physics. The end
result is a new perspective on relativistic quantum mechanics, which includes both a
way of conceiving of spacetime as well as particle “properties” that may be amenable
to a unification of quantum mechanics and gravity. Rather than thinking about the
universe as a computer, perhaps it is more accurate to think about it as a network of
influences where the laws of physics derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.

An Electron Is an Electron Because of What It Does

As participants of the Information Age, we are all somewhat familiar with the elec-
tron. Currents of electrons flow through thewires of our devices bringing thempower,
transferring information and radiating signals through space. They tie us together
enabling us to communicate with one another via the internet, as well as with distant
robotic explorers on other worlds. Many of us feel like we have sensed electrons
directly through the snap of an electric shock on a dry winter day or the flash and
crash of a lightning bolt in a stormy summer sky. Electrons are bright, crackly sorts
of things that jump and move unexpectedly from object to object. Yet they behave
very predictably when confined to the wires of our electronic devices. But what are
they really?
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Imagine that electrons could be pink and fuzzy. However, if each of these
properties did not affect how an electron influences us or our measurement devices,
then we would have no way of knowing about their pinkness or fuzziness. That is,
if the fact that an electron was pink did not affect how it influenced others, then we
would never be able to determine that electrons were pink. Knowledge about any
property that does not affect how an electron exerts influence is inaccessible to us.

We can turn this thought on its side. The only properties of an electron that we can
ever know about are the ones that affect how an electron exerts influence. Another
way to think about this is that an electron does not do what it does because it is an
electron; rather an electron is an electron because of what it does.

The conclusion is that the only properties of an electron that we can know about
must be sufficiently describable in terms of how an electron influences others. That
is, rather than imagining electrons to have properties such as position, speed, mass,
energy, and so on, we are led to wonder if it might be possible, and perhaps better, to
describe these attributes in terms of the way in which an electron influences. Since
we cannot know what an electron is, perhaps it is best to simply focus on what an
electron does.

The Process of Influence

Sincewe are aware of the existence of electrons, at themost fundamental level we can
be assured that electrons exert influence. But we may wonder what such influence is
like and whether there may be different types of influences. Most importantly, what
exactly would we need to know about the process of influence to understand the
electron?

Certainly it is conceivable that an electron could exert influence in a variety of
ways. With this in mind, imagine that we have two electrons: one which influences
in one way and another which influences in a different way. Since we identify and
distinguish an electron from other types of particles (for lack of a better word) based
on how it influences, we really have no way of telling if these are both electrons
each exhibiting a different behavior from its repertoire, or whether these are simply
two different types of particles altogether. Since we cannot possibly differentiate
between the situation of two differently-behaving electrons and the situation of two
different types of particles, such differentiation cannot affect any inferences we could
make about the situation. Therefore we lose nothing by defining what we mean by
an electron as being a particle that has only one particular way of influencing others.
Now there are certainly other possibilities, but for the moment let us start with this
simple idea and see what physics arises—adding complexity only when warranted.
Here we make the basic postulates on which our influence model is based.1

1 You may not like these assumptions—feel free to try others! For now, let’s see what physics these
give rise to.
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Fig. 6.1 a Illustrates an influence diagram of two interacting particle chains (thick black lines) that
connect an ordered sequence of events. Influence is indicated by an orange arrow relating events
representing acts of influence to responses to such influence. b Illustrates a Hasse diagram[1] of two
particle chains. The arrows have been dropped with the understanding that lower events influence
higher events along a connected path. The result is a partially-ordered set (poset) of events ordered
by influence

#1. Particles can influence one another
#2. Influence is transitive (if A influences B and B influences C, then A influences

C)
#3. Each instance of influence defines two events: the act of influence and response

to influence
#4. For every pair of events experienced by a particle, one of these events influences

the other

The result is that we have a set of events (#3), which potentially can be ordered by the
process of influence (#2, #3, #4). Particles are described by an ordered sequence or
chain of events (#4), which are mutually connected (#1) forming an acyclic graph,
or a partially-ordered set (poset for short), which is analogous to what is called a
causal set [2] or network where the events are causally ordered. We do not assume
that these events take place in any kind of space or time.

Figure6.1a illustrates two interacting particle chains with an influence diagram
where the particle chains are indicated by the thick black lines that connect an ordered
sequence of events, and influence is indicated by an orange arrow connecting one
event representing an act of influence (black circle) on one chain to one other event
representing the response to such influence (white circle) on a second chain. Each
chain is conceptually analogous to a world line in relativity, though here a chain is a
finite discrete structure, which does not reside in a pre-existing spacetime. For this
reason, the directions of the chains, the fact that they are straight, and the distance
between them on the page are not meaningful—only their connections matter. This
diagram can be simplified into what is called a Hasse diagram (Fig. 6.1b) [1] by
dropping the arrows and using height to indicate the direction of influence so that
influence goes from the lower event to the higher event. We keep the thick lines
to highlight the particle chains, and label the events with integers, whose order is
isomorphic to the totally-ordered particle events.
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Quantification by an Embedded Observer

We imagine an observer to possess a precise instrument, which has access to and can
count the events along a given particle’s chain.2 We can think of this as the observer’s
clock. We may ask how such an embedded observer would describe this universe of
events. Since not all events influence or are influenced by the observer, only a subset
of events will be accessible.

To begin, we first consider a more general poset that allows greater connectivity
than defined in our postulates above. That is, we will allow each event to connect to
possibly many others. Later we will see that the more restricted connectivity gives
rise to some quantum peculiarities; whereas the more general connectivity is more
amenable to spacetime physics. The idea here is that we will develop a consistent
observer-based scheme to quantify the poset of events based only on the numbers
labeling the sequence of events along the embedded observer chain. We have shown
that this quantification scheme is unique up to scale [3].

First, consider an observer chain P. Since the events that define the chain P are
totally ordered and isomorphic to the set of integers under the usual ordering (<),
we lose no generality by simply labeling (numbering) events with integers 1, 2, 3,
etc. as was illustrated in Fig. 6.1b. Next we note that there exists a subset of events
in the poset that influence events on the quantifying chain P. We say that such events
forward project to the chain P. Similarly, there exists a subset of events that are
influenced by events on the chain P. We say that these events backward project onto
the chain P. This allows us to define a forward projection operator, P, that takes an
event x that influences some elements on the chain and maps it to the least event
on P that it influences, which we denote as Px. Similarly, we can define a backward
projection operator,P , that takes an event x that is influenced by some elements on
the chain and maps it to the greatest event on P that influences it, which we denote as
Px . We can then label events in the poset based on the labels of the events that project
to the chain P (Fig. 6.2). For example, an event x that both forward and backward
projects to the chain P is quantified by the pair

(
Px, Px

)
. The result is a chain-based

coordinate system that covers part of the network.
We can now build up some extra structure by thinking about relations between

events. Two events along a chain define an interval. For example, the interval denoted
[3, 5] along a chain is defined by the set of events {3, 4, 5}. Since combining intervals
(set union) that share a common endpoint is associative, one can show that any non-
trivial scalar measure of the interval must be additive [3]. This allows us to write the
length of an interval as

d ([x, y]) = y − x . (6.1)

2 We are not going to worry whether an event on the observer chain constitutes a measurement or
detection.
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Fig. 6.2 A poset of events quantified by a chain P. Each event is quantified by at most two numbers.
The first is found by forward projecting the event onto the quantifying chain P by identifying the least
element on the chain P that is influenced by the event and the second is found by back projecting
the event onto the chain P by identifying the greatest element on the chain that influences the
event. Events on the chain project onto themselves so that event 3 is labeled by a symmetric pair
(3,3) (not shown). Not all events can be quantified, nor are quantifications necessarily unique. The
quantification of three intervals (dotted or solid colored lines) is also illustrated

Quantification with Pairs of Chains

Since a chain can at most assign a pair of coordinates to each event, the quantified set
is essentially two-dimensional, while the poset itself is non-dimensional as it does
not exist in a spacetime. To come up with a consistent quantification scheme, we will
imagine two observers represented by finite chains P and Q that are coordinated in
such a way that they agree on the quantification of each other’s intervals. That is,
an interval of length �p on chain P forward projects to an interval of length �q on
chain Q as well as backward projects to an interval of length�q on chain Q such that
�p = �q = �q (Fig. 6.3a). An interval of length �p on chain P can be written in
terms of the forward projections onto the two chains (since �p = �q) as

d
([pi , p j ]

) = �p + �q

2
(6.2)

where �p = p j − pi and �q = Qp j − Qpi = �p. We can also consider a measure
that quantifies the relationship between the two coordinated chains P and Q, which
we will call the distance. Associativity with respect to considering relationships
among multiple chains requires that this measure be additive [3]. In addition it must
depend on the projection lengths �p and �q of an interval [pi , q j ] where pi and q j

are arbitrary events on P and Q, respectively. Choosing the scale to agree with (6.2)
gives

D (P, Q) = D([pi , q j ]) = �p − �q

2
(6.3)
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Fig. 6.3 a Illustrates the concept of coordination where intervals on one chain project onto intervals
of the same length on the other chain and vice versa. b Illustrates the distance measure between
chains. It does not depend on the interval selected. Intervals [a, b] and [a′, b′] are shown with
distances D(P, Q)given by (�p − �q)/2 = (2 − (−2))/2 = 2 and (�p′ − �q ′)/2 = (3 −
(−1))/2 = 2. Note also that the interval [a, b] is quantified by the antisymmetric pair (2, −2) and
the scalar (2)(−2)=−4, which is the reason for theminus sign in themetric (Eq.6.5). c Illustrates the
symmetric-antisymmetric decomposition. An interval quantified by the pair (4, 2) is decomposed
with an imaginary event (open circle) into an interval quantified by the pair (3, 3) of length 3 along
the chains and an interval quantified by the pair (1, −1) with a distance of 1 between the chains so
that �p�q = (4)(2) = (3)(3) + (1)(−1) = 8

where �p = Pq j − pi and �q = q j − Qpi for any event pi on P and any event q j

on Q. This is illustrated in Fig. 6.3b.
We can generalize the concept of interval by considering a generalized interval

[a, b] defined by any two events a and b in the partially-ordered set. In the case where
both a and b forward project onto chains P and Q, and are situated between P and Q
(which is defined algebraically, see Appendix), we can quantify the interval in three
ways [3] (other cases are similar):

(pa, qa, pb, qb) quadruple
(pb − pa, qb − qa) ≡ (�p,�q) pair
(pb − pa)(qb − qa) ≡ �p�q scalar

where the scalar measure corresponds to a length squared (see Appendix). Any
interval can be decomposed so that its pair is a component-wise sum of a symmetric
pair of lengths along the chains (Fig. 6.2) and an antisymmetric pair of a distance
between chains (Fig. 6.3b) in what we call the symmetric-antisymmetric decomposi-
tion (Fig. 6.3c) [3]

(�p,�q) =
(

�p + �q

2
,
�p + �q

2

)
+

(
�p − �q

2
,
�q − �p

2

)
. (6.4)

The scalar measure applied to each pair in this decomposition is also additive

�p�q =
(

�p + �q

2

)2

−
(

�p − �q

2

)2

, (6.5)
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which is analogous to the Minkowski metric, �s2 = �t2 − �x2, with a ‘time’
coordinate �t = (�p + �q)/2, which is defined by the ordering relation along
chains, and ‘space’ coordinate �x = (�p −�q)/2 defined by the induced ordering
between chains [3]. Here “flat space” arises from a concept of influence in the case
where we assumed that we could have coordinated chains that agree on the lengths of
each other’s intervals.3 Since one ordering is natural (lengths), and the other induced
(distance), we say that this is a 1 + 1-dimensional subspace. Note also that the
proper time squared, �s2, is not actually a squared quantity in this picture since
�s2 = �p�q.

We don’t have to assume a condition as strong as coordination. We could instead
assume that we have one chain that projects consistently to another, such that every
interval of length �p = k on chain P forward projects to an interval of length
�p′ = m on P’ and backward projects to an interval of length �q ′ = n on Q’ (see
Appendix). That is, an interval quantified by observers PQ as (k, k)P Q is quantified
by observers P’Q’ as (m, n)P ′ Q′ . We have shown that preserving the scalar measure
leads to k = √

mn with the pair transformation [3]

(�p′,�q ′)P ′ Q′ =
(

�p

√
m

n
,�q

√
n

m

)

P ′ Q′
(6.6)

which is related to the Bondi k-calculus [4] formulation of specialinteger quantifi-
cations. Changing variables to �t and �x and defining β = �p′−�q ′

�p′+�q ′ = m−n
m+n and

γ = (
1 − β2

)−1/2
we obtain a Lorentz transformation analogue

�t ′ = γ�t − βγ�x and �x′ = −βγ�t + γ�x, (6.7)

where the parameter β is analogous to speed.
At this point we have the poset picturewhere there only a network of influences—

no physical spacetime and nothing moves. The projections, �p and �q, and ratio
β describe how events and intervals relate to the observer chains. From this, we
obtain an emergent spacetime picture where �t and �x assign times and positions
to events, and the quantity β describes how the positions of successive events along
a chain change.

We find also that β has a maximum invariant magnitude of one (analogous to the
speed of light), which occurs whenever the projection m or n is zero. If we consider
the intervals defined by an act of influence from one chain to another, we see that
these correspond to β =± 1, so that in the spacetime picture influence “propagates”
at a maximum speed. In the poset picture, this reflects the fact that information about
influence traverses the network via transitivity, rather than defining a single event

3 The signature of the metric, which determines where the minus sign goes, is in agreement with
the particle physics tradition and opposite to that used in general relativity where one writes �s2 =
−�t2 + �x2. Here the signature is not arbitrary since the minus sign comes from the fact that the
interval between chains is quantified by a pair that has opposite signs. Later, this gives rise to the
mass-energy-momentum relation with the correct signature.
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for everything. To paraphrase Susan Sontag [5], another way to think about this is:
“Time reflects the fact that everything does not happen at once, and space reflects
the fact that not everything happens to you”.

The Free Particle

Now let us go back to our particlemodel and considerwhat two coordinated observers
would infer about a particle that is influencing them. In some sense, this is hokey
because the observers are assumed to be coordinated, which means that they project
to each other following connectivity rules that differ from those that our particle must
follow where each event can connect at most two chains. This basically says that
at a microscopic scale, we can never really have coordinated observers. Influence
from any other particle will throw off our coordination. This is interesting, since
that means that any external influence will ruin our nice flat Minkowski metric. This
suggests that the influences that gave us our emergent flat spacetime also have the
ability to curve it—potentially providing a route to quantum gravity. We may be able
to achieve some kind of average coordination at larger scales by ignoring the tiny
microscopic hiccups. Let’s assume that this is the case and see what the observers
would experience.

We define a free particle as a particle chain that influences others (according
to our postulates), but is not itself influenced. We consider two observers that are
influenced by this free particle, and record events generated by such influence as: p1,
p3, p4, p6 and q2, q5, and q7 (Fig. 6.4a). While these detected events can be ordered
on their respective chains, there is not enough information for the two observers to
collectively reconstruct how the corresponding eventswere ordered along the particle

Fig. 6.4 a Illustrates the free particle� in the poset picture as it influences coordinated observers P
andQ. Each interval on� projects to an interval of zero length on either P or Q, resulting in β = ±1.
Furthermore, the observers have no way of determining the relative order of the P and Q events (for
example, whether � influenced P at p1 first or Q at q2 first). b Illustrates the correct reconstruction
(PQPPQPQ) of the particle’s influence pattern in the spacetime picture where time runs upward
and the horizontal position in the picture indicates the position of the particle. The particle � is
observed to zig-zag at the speed of light. c Illustrates another possible reconstruction (QPPQPQP).
Each of the 35 influence patterns corresponds to a discrete path in the emergent spacetime. Observer
inferences must consider all possible reconstructions (spacetime paths)
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chain. That is, despite the fact that the observers recorded all the information that is
possibly available to them, it is impossible for them to definitively determine what
the particle did. This missing information is an essential component of quantum
mechanics, and here we see it arise from our simple model of influence. Let us look
at this more closely and determine whether this can provide any meaningful insights
into the quantum world.

BITs, ITs, and Fermion Physics

When we consider the set of influences {p1, p3, p4, p6} and {q2, q5, q7}, there are
four interactions with the chain P and three interactions with the chain Q leading to
7!/(3!4!) = 35 possible orderings along the particle chain �, which we can list as
PPPPQQQ, PPPQPQQ, …, PQPPQPQ, … QQQPPPP. These sequences represent
all possible bit strings (P ≡ 0, Q ≡ 1) describing the particle’s influences to the
left and the right in this 1 + 1-dimensional space. These sequences are constructed
from the detection events (Bit from It) from which the observers must then make
inferences (It from Bit) about the particle’s behavior. In this sense, information is
fundamental to the resulting physics. In the poset picture, these sequences correspond
to all possible orderings of events along the particle chain. In the spacetime picture
these correspond to all possible discrete spacetime paths, which are analogous to
bishop moves on a chessboard.

Figure6.4 shows two such reconstructions. It is instructive to consider how the
intervals along the particle chain project directly onto one of the two observer chains
so that it always has a projection of either �p = 0 or �q = 0, which means that β =
±1. That is, the particle is observed to zig-zag back-and-forth at the invariant speed
(speed of light). This is an obscure quantum effect first proposed by Schrodinger in
1930, and only recently observed in the laboratory [10, 11], known asZitterbewegung
[6–8], which arises from the fact that the speed eigenvalues of the Dirac equation are
±c (the speed of light) [9].

We can consider inferences made by the observers about the particle’s behavior.
To compute probabilities [12], we must assign quantum amplitudes to each of the
possible sequences and sum over them [13–15]. We can accomplish this with prop-
agators that take the particle from some given initial state to a proposed final state.
Figure6.5 shows that given an assumed initial state in spacetime (x, t), there are
two possible ways to have “arrived” there: from the left (P) and from the right (Q).
These must both be considered. This also means that there are only two ways for a
particle to exist at a given position at a given time, which is related to the familiar
Pauli Exclusion Principle.While in three dimensions this involves the particle’s spin,
here in 1 + 1-dimensions this involves its helicity, which simply is the direction of
the previous influence event in the sequence. This suggests that spin is related to
Zitterbewegung.

To make inferences using propagators, we need to keep track of four fundamental
subsequences: PP, QP, QP, and QQ, whose probabilities sum to unity. These are
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Fig. 6.5 Illustrates the two ways that a particle can arrive in an initial state (x,t) due to it having
previously influenced P or Q. Complex numbers ϕP and ϕQ are assigned to each of the two initial

sequence states and together comprise a Pauli spinor ϕ(x, t) =
(

ϕP
ϕQ

)
. We have shown that the

transfer matrices representing the propagator are given by P = 1√
2

(
1 i
0 0

)
and Q = 1√

2

(
0 0
i 1

)
,

which considers all four subsequences and accounts for Feynman’s factor of i during helicity
reversals [16]

encoded using a pair of complex amplitudes ϕP and ϕQ assigned to the initial states P
orQ,which together comprise aPauli spinor and are thenpropagated using twomatrix
operatorsP andQ, which take each of the two possible initial states to the two possible
final states. This is starting to look a lot like the Dirac equation, and indeed we have
shown [13] that this model is analogous to the Feynman checkerboard problem [16]
where the Fermion ismodeled as a particle that makes bishopmoves on a chessboard.
Feynman showed that by assigning an amplitude of iε for every direction reversal
(helicity change), it is possible to obtain the Dirac equation in 1 + 1 dimensions. We
have derived Feynman’s amplitude assignment with this model by observing that
the probability associated with the sum of amplitudes P ϕP +Q ϕP +P ϕQ +Q ϕQ
is unity [13].

Mass, Energy and Momentum

Since the events are discrete, the emergent spacetime is discrete with a minimal
dimension determined by the influence rate. Since an act of influence can result in
a minimum of either �p = 1 or �q = 1, this corresponds to �t = +1/2 and
�x = ±1/2, so that time always advances at least 1/2 a unit and the particle can
go left or right by at least a 1/2 step. This makes time an excellent parameter for
indexing observations. For an electron, these units could correspond to the Compton
wavelength (where �t ≈ 8 × 10−21 s and |�x | ≈ 2.4 × 10−12 m).

So far, we have been considering inferences about intervals. We can also consider
inferences about rates of influence, which is related to an internal electron clock rate
first hypothesized by de Broglie in his 1924 thesis [8]. Let us define the rate at which
the particle influences the chain P as rP = #/�p where # represents a given number
of influencing events that are detected over an interval of length �p. The rate rQ
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can be defined similarly. The product of the rates rPrQ , which is invariant since it is
proportional to (�p�q)−1, can be written as

rPrQ =
(

rP + rQ

2

)2

−
(

rP − rQ

2

)2

, (6.8)

which is analogous to the familiar mass, energy, momentum relation (in units where
c = 1)

m2 = E2 − p2 (6.9)

where mass is analogous to the geometric mean of the rates of influence to the right
and the left m = √

rPrQ , energy is analogous to the arithmetic mean of the rates
of influence E = (rP + rQ)/2, and momentum is analogous to the half-difference
p = (rQ − rP )/2, which is defined with a sign change so that it agrees with the
fact that as the particle influences more to the left, it is interpreted as moving to
the right and vice versa. These defined quantities transform properly under the pair
transformation (Lorentz transformation under a boost) and agree with the definition
of β, which is analogous to speed:

β = p

E
= rQ − rP

rP + rQ
=

#
�q − #

�p
#

�q + #
�p

=
�p

�p�q − �q
�p�q

�p
�p�q + �q

�p�q

= �p − �q

�p + �q
= �x

�t
(6.10)

The mass is related to the clock rate, which determines both the smallest time incre-
ment and distance that can be defined. It in this sense that mass is responsible for
emergent spacetime.

Conclusion

It appears to be possible to obtain a great deal of physics aswell as a number of particle
“properties” from a simple model of an entity that influences others. Surprisingly
we do not need to know how a particle influences others—just that it does—to
obtain these relevant physical variables with their expected relations. This model of
influence results in an emergent spacetime, which provides particles with positions
at times, but we see that this breaks down in important quantum mechanical ways at
the microscopic scale.

We also obtain insights into how mass, energy and momentum are related to rates
(frequencies). We see that momentum cannot be defined simultaneously with posi-
tion, sincemomentum is defined in terms of an average rate defined by a set of discrete
influences, whereas position is defined (albeit with its own inherent uncertainty) by
a pair of influences (one to the left and one to the right). At the microscopic level
we do not have momentum, we have Zitterbewegung where the particle zig-zags at
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the maximum speed. The conceptual difficulties with quantum complementarity are
eliminated when we consider these quantities to be descriptions of what a particle
does rather than properties possessed by the particle.

The relation between reality (IT) and information about reality (BIT) comes into
play twice in this model. First, “Bit from It” results from the fact that the particle does
something (IT), which results in the observers recording detections (BIT). Second,
“It from Bit” results from the fact that the observers make inferences about a set of
relevant variables (“IT”) based on their information about detections (BIT). These
relevant variables and their relations constitute a model (which we call physics)
of a not completely knowable underlying reality. Rather than thinking about the
universe as a computer, perhaps it is more accurate to think about it as a network of
influences where the laws of physics derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.

Appendix

The key idea behind employing coordinated chains is that they provide a means of
delineating a specific 1 + 1-dimensional subspace in the non-dimensional poset.
Events are defined to lie within the subspace defined by the two coordinated chains
if the projection of the event onto one chain can be found by first projecting the event
onto the other chain and then back to the first. This leads to a set of algebraic relations
(for examplePx = P Qx and Qx = Q Px) where we consider the projections of
event x onto chains P and Q. This in turn leads to several different relationships
between an event x and the pair of chains (for example, x can be on the P-side of
PQ, the Q-side of PQ or between PQ). For example, we say that event x is between
two coordinated chains P and Q if Px = P Qx , Px = P Qx , Px = P Qx , and
Qx = Q Px [3].

The derivation of the scalar measure is based on a consistency requirement that
any two chains that agree on the lengths of each others intervals (coordination) must
agree on the lengths of every interval that both chains can quantify. We assume that
the scalar measure is a non-trivial symmetric function of the pairwise measure. That
is, s = σ(�p,�q) = σ(�q,�p), where σ(·, ·)is a function to be determined. We
can change our units of measure, so that we have αs = σ(α�p, α�q). This is a
special case of the homogeneity equation [17]

F(zx, zy) = zk F(x, y) (6.11)

where in our problem the parameter k = 1. The general symmetric solution is
given by F(x, y) = √

xy h(x/y), where h is an arbitrary function symmetric with
respect to interchange of x and y. We can show that the function h is unity, and
that lengths of intervals are given by

√
�p�q , which leads to the interval scalar

�s2 = �p�q [3]. We can next consider chains that are consistently related where
every interval of length �p = k on chain P forward projects to an interval of length



6 Information-Based Physics and the Influence Network 77

Fig. 6.6 Illustrates two
consistently related chains.
Chains Q and Q’ are omitted.
By coordination we have
�p = �q and �p′ = �q ′

�p′ = m on P ′ and forward projects to an interval of length �q ′ = n on Q’. We
now want to find a function L that takes the pair quantification of the interval I in
the PQ frame to the P’Q’ frame:L P Q→P ′ Q′(�p,�q)P Q = (�p′,�q ′)P ′ Q′ . (see
Fig. 6.6). We note that we can write the projections of the interval I onto chain P
in units of length k, so that the pairs can be written as (�p,�q) = (αk, βk)and
(�p′,�q ′) = (αm, βn). Preserving the scalar measure gives k2 = mn so that
L P Q→P ′ Q′(αk, βk)P Q = (αm, βn)P ′ Q′ . It can then be shown that the general trans-
form is given by L P Q→P ′ Q′(x, y)P Q = (x

√
m/n, y

√
n/m)P ′ Q′ [3],which gives rise

to the Lorentz transformation in (6.6) and (6.7).
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