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Abstract To estimate the life of a structure, or a component, which are subjected to a
cyclic loading history, the structural engineer must be able to provide safety margins.
This is only possible by performing a shakedown analysis that belongs to the class of
direct methods. Most of the existing numerical procedures addressing a shakedown
analysis are based on the two theorems of plasticity and are formulated within the
framework of mathematical programming. A different approach is presented herein.
It is an iterative procedure and starts by converting the problem of loading margins
to an equivalent loading of a prescribed time history. Inside an iteration, the recently
published RSDM direct method is used, which assumes the decomposition of the
residual stresses into Fourier series and evaluates its coefficients by iterations. It is
proved that a descending sequence of loading factors is generated which converges,
from above, to the shakedown load factor when only the constant term of the series
remains. An elastic-perfectly plastic with a von Mises yield surface is currently
assumed. The method may be implemented in any existing FE code and its efficiency
is demonstrated by a couple of applications.

Keywords Direct methods · Shakedown analysis · RSDM

1 Introduction

High levels of cyclic loading are often applied on civil and mechanical engineering
structures. The main source of such loadings on civil engineering structures, like
bridges, pavements, buildings, offshore structures are heavy traffic, earthquakes or
waves. Mechanical engineering structures, like nuclear reactors and aircraft gas tur-
bine propulsion engines, also operate under high levels of cyclic mechanical and
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temperature loads. Under all these kinds of loadings, these structures are forced to
develop plastic strains.

The question to assess the life cycle of a structure, or a structural component, so that
it can safely carry the applied loads, is answered, mostly, on the basis of cumbersome
time stepping calculations. To this end, one has to know the exact time history. A
better alternative, that requires much less computing time, is offered by the direct
methods that may predict whether, under the given loading, the structure will become
unserviceable due to collapse or excessive inelastic deformations. In addition, if the
complete time history of loading in not known, but only its variation intervals, direct
methods are the only way to establish safety margins. Typical examples of direct
methods are the limit and shakedown analyses.

One may prove that for structures whose material is stable [1] an asymptotic state
exists [2]. Direct methods are numerical approaches that attempt to estimate this state
right from the start of the calculations. The search for the elastic shakedown state is
based, for small displacements and elastic-perfectly plastic structures, on either the
lower bound [3] or the upper bound theorems [4].

Various extensions of the above theorems to the large displacement regime have
appeared (e.g. [5]) or to elastic-perfectly plastic cracked bodies (e.g. [6]). The prob-
lems of different elasto-plastic behavior like linear (e.g. [7]) or non-linear kinematic
hardening (e.g. [8]) have also been considered. Non associated plasticity behaviors
have also been addressed (e.g. [9]). Shakedown theorems have also been written on
the basis of gradient plasticity concepts [10].

As also mentioned above, the vast majority of the direct methods for the solution
of the shakedown problem make use of either the lower or the upper bound theorems
of plasticity. They are formulated within the framework of mathematical program-
ming (MP) and aim to minimize or maximize an objective function. Depending on
whether either the objective function or the constraints or both are linear or non-
linear one has to solve a linear (e.g. [11]) or a nonlinear (e.g. [12]) programming
problem.

Various techniques have been used to solve the MP program, among which one
could mention the reduced basis technique (e.g. [13]). Since the advent of the interior
point algorithms, which proved valuable to solve large scale optimization problems,
many researchers have formulated, used and applied them to the shakedown analysis
(e.g. [14–16]). Both the fields of solid and soil mechanics are referred to. More recent
applications have recently appeared in [17].

The Linear Matching Method (LMM) [18] is one of very few alternative proce-
dures to the MP methods. The approach is a generalization of the elastic compensation
method [19] and is based on matching a linear problem to a plasticity problem. A
sequence of linear solutions, with spatially varying moduli, is generated that provide
upper bounds that monotonically converge to the least upper bound. The method
has been widely applied to several steel structural components and recently to the
limit analysis of concrete beams [20]. The method was further extended beyond
shakedown, for loadings that can be decomposed into constant and time varying
components, so as to provide an upper bound estimation of the ratchet boundary
[21, e.g.], for a recent version.
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A direct method to predict any long-term steady cycle of an elastic-perfectly plastic
structure under a given cyclic loading was suggested recently [22]. The physics of
the steady cycle, which assumes the cyclic nature of the residual stresses, is the
main ingredient of the method. It has been called the Residual Stress Decomposition
Method (RSDM) and is based on decomposing the residual stresses in Fourier series
inside a cycle of loading.

The numerical procedure, presented herein, is a direct method for shakedown
analysis [23]; it makes use of the RSDM, and is thus called RSDM-S. Since only the
variation intervals are now known, the problem is converted to a prescribed loading
problem by drawing a curve between these intervals. Starting from a load factor
calculated so as to be above shakedown an iterative procedure is generated which
is proved to converge to the shakedown load factor from above. Two examples of
application are given. The whole approach is shown to be stable and computationally
efficient, with uniform convergence.

2 Cyclic Elastoplastic States

A structure having volume V and surface S is subjected to cyclic surface tractions
on one part and on the other part of S to zero displacements.

If the set of loads P(t) that act on S is a cyclic loading we may write:

P(t) = P(t + nT) (1)

with t being a time point inside the cycle; T is the period of the cycle, n = 1, 2, . . . ,

denotes the number of full cycles. Bold letters are used, herein, to denote vectors and
matrices.

Let us suppose that the structure is made of an elastic-perfectly plastic material.
Let us further suppose that our structure has been discretized to finite elements and
the stresses and strains refer to the Gauss points (GP).

The structure will develop, at a time point τ = t/T inside the cycle, a stress field
σ(τ), which may be decomposed into an elastic part σel(τ), that equilibrates the exter-
nal loading P(τ), assuming a completely elastic behavior, and a self-equilibrating
residual stress part ρ(τ) that is due to inelasticity. Therefore:

σ(τ) = σel(τ) + ρ(τ) (2)

The strain rates can also be decomposed analogously:

ε̇(τ) = ėel(τ) + ε̇r(τ) (3)

The residual strain rate itself may be decomposed into an elastic and a plastic part
[22]. Thus the final compatibility equation is expressed as:

ε̇(τ) = ėel(τ) + ε̇el
r (τ) + ε̇pl(τ) (4)
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The elastic strain rates are related to the stress rates through the elasticity matrix
D, whereas the plastic strain rate vector ε̇pl(τ) through the gradient to the flow rule:

σ̇el(τ) = D · ė

ρ̇(τ) = D · ε̇el
r (5)

ε̇pl = λ · ∂f

∂σ

where f is the yield surface and σ is a stress state on the yield surface, i.e. f (σ) = 0.
A state of stress that lies either inside or on the yield surface, i.e.f (σ∗) ≤ 0, is an
allowable stress state, whereas a state of stress σ∗that lies inside the yield surface,
i.e.f (σ∗) < 0, is a safe stress state.

As already mentioned in the introduction, for an elastoplastic material which is
stable in the Drucker’s sense [1], an asymptotic cyclic state always exists in which
the stresses and strain rates stabilize and become periodic with the same period of
the cyclic loading [2].

Depending on the amplitude of the load we may have unsafe conditions for the
structure at hand, such as ratcheting or alternating plasticity, where we have asymp-
totically non vanishing plastic strain rates, or a safe long-term structural behavior,
where, further plastic straining ceases to exist. This condition is the elastic shake-
down.

The conditions for elastic shakedown to occur are given by Melan [3] which
consists of two statements [24]:

(a) The structure will shake down under a cyclic loading, if there exists a time-
independent distribution of residual stresses ρ̄ such that, under any combination
of loads inside prescribed limits, its superposition with the elastic stresses σel,
i.e. σel + ρ̄, results to a safe stress state at any point of the structure,

(b) Shakedown never takes place unless a time-independent distribution of residual
stresses can be found such that under all the possible load combinations the sum
of the residual and elastic stresses constitutes an allowable stress state.

These statements define the limit cycle for a structure subjected to a prescribed
loading program. Parameters of this cycle are the shakedown load factor and the
constant in time residual stress distribution which are unique and independent of the
preceding deformation history [24].

It is these two parameters that the procedure RSDM-S presented underneath esti-
mates. The method is based on the RSDM [22] which assumes the decomposition
of the residual stresses of any cyclic elastoplastic state in Fourier series:

ρ(τ) = 1

2
a0 +

∞∑

k=1

{cos(2kπτ) · ak + sin(2kπτ) · bk} (6)

with a0, ak, and bk being the coefficients of the series found iteratively by the RSDM.
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3 The Residual Stress Decomposition Method
for Shakedown Analysis (RSDM-S)

The procedure is formulated for a maximum number of two loads P1 and P2, although
it may be applied for more than two loads. The loads are assumed to vary between a
minimum value which for simplicity is assumed zero and a maximum value, which
are denoted by P∗

1 and P∗
2 respectively.

We may use any curve that passes through these two limits to express a cyclic
loading variation. The two loads may vary proportionally (Fig. 1a) or independently
(Fig. 2a).

(a) For proportional variation (Fig. 1)
The two loads in the time domain may be expressed by the following equation:

P(τ) =
{

P1(τ)

P2(τ)

}
=

{
P∗

1 · α(τ)

P∗
2 · α(τ)

}
(7)

with α(τ) being a time function common for both the loads. One possible smooth
variation of a fourth order polynomial may be seen in Fig. 1c.

(b) For independent load variation (Fig. 2)

α(τ)=3,3333τ4 - 6,6667τ3 + 0,1667τ2 + 3,1667τ
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Fig. 1 Proportional loading variation a in load space, b in time domain c time function used
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It has been proved in [25] that due to the convexity of the yield surface if a structure
shakes down over the path that encloses the domain �, it certainly shakes down over
any loading path contained inside this domain. This enclosing path may be described
by the following equation:

P(τ) =
{

P1(τ)

P2(τ)

}
=

{
P∗

1 · α1(τ)

P∗
2 · α2(τ)

}
(8)

Two time functions are used now (Fig. 2b) and a possible smooth variation is
described in Fig. 2c, where a second degree polynomial is used for two quadrants
of the cycle, whereas a constant non-zero and a zero value are employed inside the
other two quadrants.

The load domains shown in Figs. 1 and 2 may be isotropically varied by multiply-
ing them with a factor γ. Thus the numerical procedure is built, so that, starting from
a load factor high above, this load factor is constantly lowered by shrinking the load
domain in a continuous way up to the point that the shakedown load factor is reached.
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The procedure is formulated herein for a von Mises yield surface. Although the
procedure is general it will be formulated in the present work for two-dimensional
structures of thickness d under plane stress conditions.

3.1 Initial Load Factor

From the way the loading time history is being constructed we may observe that
when the loads vary proportionally (Fig. 1b, c), there always exists a cycle point τ∗
that both the two loads attain their maximum values. On the other hand, for loads
varying independently (Fig. 2b, c) the cycle point τ∗ may be defined as the time point
for which one of the two loads becomes maximum, with the other one being zero.

For either case, one may find the equivalent von Mises elastic stress σ̄el at all the
GPs of the structure at time τ∗. Denoting by min σ̄el the non-zero minimum of these
stresses one may use an initial load factor equal to:

γ(0) = σY

min σ̄el (9)

where σY is the yield stress of the material.
By choosing this load factor the starting conditions are definitely above the shake-

down loading since the whole structure will have become plastic.

3.2 Development of the Procedure

Having found an initial solution, we use the RSDM [22] for the factored cyclic
loading γ(0) ·P(τ), to produce an initial estimate for ρ(0), a(0)

0 , a(0)
k , b(0)

k . Then we
enter the iterative phase, which consists of two iteration loops, one inside the other.

The following iterative steps are then followed:

1. Inside an iteration κ of the outer loop, starting with κ = 1, the following expres-
sion, which is the sum of the norms of the vectors of the coefficients of the
trigonometric part of the Fourier series of the residual stresses, is found:

ϕ
(
γ(κ−1)

)
=

∞∑

k=1

∥∥∥a(κ−1)
k

∥∥∥ +
∞∑

k=1

∥∥∥b(κ−1)
k

∥∥∥ (10)

2. An update of the loading factor may be calculated:

γ(κ) · P∗
1 = γ(κ −1) · P∗

1 − ω · [ϕ
(
γ(κ−1)

)
· d] (11)

The expression (11) actually monitors the level of the applied loads with the
reminder that d is the thickness of the structure. The update of the loading factor
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is chosen to be performed in conjunction with the maximum of the two peaks of
the applied loads, although any other time point could be used.
It should also be noted that ω is a convergence parameter, which will be discussed
below.

3. The following inequality is checked:

∣∣γ(κ) − γ(κ −1)
∣∣

γ(κ)
≤ tol (12)

4. If Eq. (12) holds, the procedure stops and γ(κ) = γ(κ −1) = γsh, otherwise we set

ρ(1)
(κ −1)(τ) = ρ(κ−1)(τ) (13)

Using the updated load factor of the outer loop, an inner loop of iterations con-
trolled by μ starts with μ = 1. The steps of this inner loop are virtually the same
steps with the RSDM [22].

5. The following expression is computed for each cycle point τ and for each GP:

σ(μ)(τ) = γ(κ)σel(τ) + ρ(μ)
(κ−1)(τ) (14)

where:
σel(τ) = α1(τ)σ

el
P∗

1
+ α2(τ)σ

el
P∗

2
(15)

with α1(τ), α2(τ)being the time functions for independent loading (Fig. 2b, c),
whereas α1(τ) = α2(τ) = α(τ)is the time function for the proportional loading
case (Fig. 1b, c).

6. It is checked whether the total effective stress σ̄(μ)(τ) > σY; if this does not hold
we set ξ = 0, otherwise:

ξ = σ̄(μ)(τ) − σY

σ̄(μ)(τ)
⇒ σ

(μ)
pl (τ) = ξ · σ(μ) (τ) (16)

This operation is a radial return [26] type rule and may be graphically seen in
Fig. 3. For a more detailed discussion the reader is referred to [22].
Steps 5 and 6 are repeated for every GP.

7. Assemble for the whole structure the new rate vector of the nodal forces Ṙ′(τ):

Ṙ′(τ) = γ(κ)Ṙ(τ) +
∫

V

BT · σ
(μ)
pl (τ)dV (17)

with Ṙ(τ) being the equivalent nodal forces for the loading Ṗ(τ)which may
be evaluated by differentiating the Eqs. (7) or (8), depending on the case of
loading. B is the compatibility strain-displacement matrix for the given FE
mesh.
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Fig. 3 Estimation of the
plastic straining inside an
iteration
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8. We find an update for ṙ(μ)(τ) using the relation

Kṙ(μ)(τ) = Ṙ′(τ) (18)

with K = ∫
V BTDBdV the structure’s stiffness matrix.

9. A value for ρ̇(μ)
(τ) is evaluated at each G.P.

ρ̇(μ)
(τ) = DBṙ(μ)(τ) − γ(κ)σ̇el(τ) − σ

(μ)
pl (τ) (19)

where σ̇el(τ) = α̇1(τ)σ
el
P∗

1
+ α̇2(τ)σ

el
P∗

2
The steps 5–9 are repeated for all the cycle time points.

10. By performing numerical time integration over the whole cycle we may obtain
an update of the Fourier coefficients [22]:

a(μ+1)
k = − 1

k π

1∫

0

{[
ρ̇(μ)

(τ)
]
(sin 2kπτ)

}
dτ

b(μ+1)
k = 1

k π

1∫

0

{[
ρ̇(μ)

(τ)
]
(cos 2kπτ)

}
dτ (20)

a(μ+1)
0

2
= −

∞∑

k=1

a(μ+1)
k + a(μ)

0

2
+

∞∑

k=1

a(μ)
k +

1∫

0

[
ρ̇(μ)

(τ)
]

dτ
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11. From these updates one may get an update for ρ(μ+1)(τ)using the iterative form
of (6):

ρ(μ+1)(τ) = 1

2
a(μ+1)

0 +
∞∑

k=1

{
cos(2kπτ) · a(μ+1)

k + sin(2kπτ) · b(μ+1)
k

}
(21)

12. Next we check whether the values of the residual stresses at the current and at
the previous iteration differ within some tolerance at some cycle point [22], for
example at the end of the cycle, where τ = t/T = 1, i.e.:

∥∥ρ(μ+1)(1)
∥∥ − ∥∥ρ(μ)(1)

∥∥
∥∥ρ(μ+1)(1)

∥∥ ≤ tolr (22)

In case this does not hold we set ρ(μ+1)

(κ−1)(τ) = ρ(μ+1)(τ) and go back to step 5 and

start a new iteration of the inner RSDM loop; otherwise we set ρ(κ)(τ) = ρ(μ+1)(τ)

and go back to step 1 and start a new iteration of the outer loop with κ = κ +1.
For accurate results, the values 10−4–10−5of tolr and 10−4 for tol are sufficient.

The corresponding tolerance value for the function of ϕ (Eq. (10)) is 10−3.
Due to the positive nature of ϕ, the algorithm generates a descending sequence

of cyclic solutions which ends up with the parameters of the limiting cycle for elas-
tic shakedown. Thus γsh is the elastic shakedown factor, and the constant term,
which is the only remaining term in the Fourier series, is the constant in time dis-
tribution of the residual stresses, unique [24] for the adopted prescribed loading
program.

3.3 Numerical Strategy

The numerical strategy adopted is to start the procedure with the convergence para-
meter ω = 1. This normally leads to a monotonic convergence, from above, to the
shakedown load. There could be cases, though, especially when we start from a
high initial value that an overshooting of the shakedown factor occurs. In such a
case, for the loading factor evaluated at the current iteration γ(κ), we would have
ϕ(γ(κ)) < 10−3; this loading factor is then not accepted and the convergence factor
is halved till we get a loading factor ϕ(γ(κ)) > 10−3 [23].

4 Application Examples

The method is applied to two examples of plated structures, a holed square plate under
biaxial load and a grooved plate under tension and bending. Plane stress conditions
are assumed.
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4.1 Plate with a Central Hole

A square plate having a central hole is treated as a first example of application. The
plate is subjected to two uniformly distributed loads acting at the two edges of the
plate (Fig. 4). Due to the symmetry of the structure and the loading only a quarter of
the plate is analyzed.

As far as the geometric characteristics of the plate, the ratio of the diameter D to
the length L of the hole was considered equal to 0.2; the ratio of the thickness d of
the plate to its length is taken 0.05. The case of a length L = 20 cm was used.

The finite element mesh is also shown in Fig. 4. Ninety-eight, eight-noded, isopara-
metric elements with 3 × 3 Gauss integration points were used.

The material data considered are Young’s modulus E = 210 Gpa, Poisson’s ratio
ν = 0.3 and yield stress σY = 360 Mpa.

Both cases of proportional and independent variations of loads are presented. The
shakedown loads for different ratios of the maximum values of the applied loads are
given in Figs. 5 and 6.

For the proportional loading case the time function of Fig. 1c is used. One may see
a good agreement with corresponding results (Fig. 5), reported in the literature [27].

For the independent load variation (Fig. 2), the time functions, whose equations
for each part of the cycle, shown in Fig. 2c, are used. One may see good agreement
(Fig. 6) with reported in the literature results that are based either on the LMM [27] or
a mathematical programming algorithm [28]. The better agreement with [28] is due
to the fact that a similar finite element mesh is constructed with the one used here.

One may realize the smoothness of the convergence of the method in Fig. 7 where
the case of P∗

1 = P∗
2 is shown. Analogous curves are obtained for all the other ratios.

L

P
1 (t)

P2(t)
P2(t)

x

y

P1(t)

GP1

GP2

L

D

Fig. 4 Geometry, loading and FE discretization of the plate
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Fig. 6 Shakedown domain for the case of independent loading

Only the initial value of ω = 1 was needed for convergence. In Fig. 8 one may also
see a typical evolution of the plastic stress to zero at one of most stressed GPs, that
are located at the two corners of the hole of the plate (Fig. 4). The CPU time reported
to reach a solution for an Intel Core i7 at 2.93 GHz with 4,096 MB RAM was of the
order of 40 s.
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4.2 Grooved Rectangular Plate Under Varying
Tension and Bending

The second example of application deals with a grooved rectangular plate subjected
to an in plane constant tension PN(t) and a linearly varying bending moment P M(t)
along the boundaries (Fig. 9). A rectangular loading domain is considered (Fig. 2)
with the two loads varying independently, having maximum values P∗

N = 1 and
P∗

M = 1, respectively. This example has been presented in [29].
The following geometrical data are used: R = 25 cm, L = 2 R and H = 4 R.
The plate is assumed homogeneous, isotropic, elastic-perfectly plastic with the

following material data: Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3
and yield stress σY = 111.62 MPa.
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Fig. 9 Geometry, loading of the grooved rectangular plate and its finite element mesh

Due to the symmetry of the geometry and the applied loads, only a half of the
structure has been modeled. The finite element mesh discretization of the plate is also
shown in Fig. 9. Two hundred and ninety-four, eight-noded, iso-parametric elements
with 3 × 3 Gauss integration points were used.

The shakedown domain obtained by the RSDM-S and its comparison with the
results from [29] is shown in Fig. 10.

Specifically in the case we have both in-plane tension and bending with P∗
N = P∗

M
the proposed RSDM-S gives a shakedown factor equal to 0.227 which quite close to
the value 0.236 of [29], where a different mesh and algorithm was used.

For this example, the initial convergence parameter ω = 1, in the process of the
iterations, had to be halved twice, due to an overshooting of the calculated shakedown
load to negative values.

Although the starting point was quite high as compared to the final result, the
descent was rapid as shown in the Fig. 11. In the insert of the figure, one may see,
after the initial descent, the smooth convergence towards the shakedown value.

In this example the CPU time reported to reach the solution for a CPU with the
same characteristics as above was of the order of 270 s.
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5 Concluding Remarks

A novel direct method to calculate the shakedown load of structures exhibiting elasto-
plastic material behavior when subjected to cyclic loadings has been introduced.

The procedure is iterative in its nature and starts by converting a loading of pre-
scribed limits to a loading of a prescribed cyclic history. This history is then multiplied
by a factor. A sequence of decreasing factors, whose initial value is calculated to be
above the shakedown load, is generated by the method. For each factored cyclic load-
ing history the distribution of the residual stresses of the corresponding cyclic elasto-
plastic state is estimated. This is done by decomposing these stresses into Fourier
series and finding their coefficients also iteratively. The procedure stops when only
the constant term of the series remains. Thus the method converges to the shakedown
load factor from above.
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It is a relatively simple method, formulated within the FE method. The stiffness
matrix of the structure needs to be formed and decomposed only once. Three terms
of the Fourier series are enough for accurate results. These two factors guarantee the
method to be numerically efficient.

The main advantage of the method is that the solution procedure provides a bet-
ter understanding of the physics of the problem than any method based on MP
algorithms. At the same time, the absence of such an algorithm makes it directly
implementable into any existing FE software.

Although the method has been applied here to two-dimensional structures, three-
dimensional structures can be also considered. It may also be extended to loading
domains of more than two loads. Other yield surfaces, except for von Mises, may be
considered. Also, besides perfect plasticity, other plasticity laws, like strain harden-
ing, may be taken care of.
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