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Abstract In this paper we present a numerical methodology to determine the load
bearing capacity of a random heterogeneous material. It is applied to a particu-
late reinforced metal matrix composite (PRMMC), WC-30 Wt.% Co, to predict
its strength against both monotonic and cyclic loads. In this approach, limit and
shakedown analysis based on Melan’s static theorem [30] is performed on represen-
tative volume element (RVE) models generated from real material microstructure
and the obtained results are converted to macroscopic load domains through homog-
enization. To evaluate microstructure’s impact on the overall material strength, the
relationship between strength and composite structure is investigated by means of
statistics. Meanwhile, several numerical issues, e.g. the impact of RVE’s size, mesh
density, as well as the discrepancy between 2D and 3D models, are studied.

Keywords PRMMC · Shakedown · Statistical RVE · Homogenization · Melan’s
theorem

1 Introduction

In civil and mechanical engineering, determining the capability of structures to
support different types of loadings plays a central role. The recent trend for increas-
ing application of composite material and the gradual replacement of conventional
metallic materials in structural components, set forth new challenges for this classic
problem. In the context of heterogeneous materials, it is known that the strength
depends on their microstructural features [17, 40]. Thus to fully exploit the potential
of such materials, it requires to understand decisive factors influencing composite’s
strength, especially the contribution of material’s microstructure.
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Particulate Reinforced Metal Matrix Composites (PRMMC) consist of the ductile
binder and brittle inclusion particles. This combination constitutes a large class of
existing composite structures. Compared to fiber reinforced composites PRMMCs
generally show higher isotropy and demand less effort for manufacturing [20]. How-
ever, the randomness in the distribution of reinforcement grains entails consider-
able spatial variation of material behavior. This leads to two consequences: first,
material’s response to external loading is quite localized; second, representative vol-
ume elements (RVE) do not exist in a strict sense—it means not a singular model
of finite size is capable to completely reflect the overall material behavior [39]. The
randomness of microstructure also introduces difficulties in the numerical represen-
tation of the material. Two prominent problems are the modeling technique of the
microstructural geometry and the size effect of RVE investigated in many studies
[5, 14, 21, 32, 36, 46].

For PRMMC with high binder content, the matrix failure is a major cause of overall
material failure [38] and the strength of the composite is highly depends on matrix
phase’s capability to resist plastic failure. Similar to single phase material, strength
of a globally elasto-plastic composite can be characterized by three strengths: yield
strength, ultimate strength and endurance limit. They correspond to elastic limit,
plastic limit and shakedown limit of the material, respectively.

The link between endurance limit and shakedown on micro scale has already
been noted by Drucker [13]. The idea has further been studied by Dang Van who
developed his well known criterion [12], which calculates the condition of elastic
shakedown on grain level and allows determining the endurance of material under
complex multi-axial loading situations. Nevertheless, since often serious stress and
strain localization will be observed within the heterogeneous material, this criterion
is not fully satisfying for composites. To take into account the contribution of the
composite structure, one has to consider numerical approaches [7, 16].

Applying direct methods (DM) in the Melan-Koiter path-independent spirit
[23, 30] to study the problem has some advantages. On the one hand, it allows
to consider the composite structure and on the other hand it avoids performing
cumbersome step-by-step calculation. This method has become increasingly pop-
ular in recent decades: as example, Weichert et el. [42], Schwabe [35], Maier [28],
Magoariec et al. [27], Zhang et al. [45], You et al. [44], Chen et al. [10, 11] solve the
problem by a static approach. In contrast, Carvelli [6], Chen and Ponter [9], Li [26],
and Barrera [3] deal the problem by the kinematic approach.

The implementation of DM according to Melan’s theorem involves solving a con-
strained extremal problem, and conventional mathematical programming methods
cause serious difficulties when model size grows. This is the main reason that exist-
ing studies, to the authors’ knowledge, are restricted to idealized microstructures. To
study more complex microstuctures, one has to rely on highly efficient optimization
algorithms. The interior point method introduced by Karmarkar [22] has demon-
strated high efficiency in solving linear programming (LP) problems and it attracted
interests from different disciplines [15, 41]. More recently, the algorithm has been
introduced to solve nonlinear programming (NP) problems. An additional advantage
of the interior point method is its capability in dealing with large scale problems.
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The number of iterations it requires to converge is much smaller than the polynomial
upper bound and is almost independent upon the problem size [43]. Therefore, many
researchers have incorporate this algorithm with DM. This includes problem-tailored
codes [25, 33, 37, 47], and reformulating problems in such a way that they can be
efficiently solved by general-purpose solvers [4, 18, 31].

In the present study, WC-70 Wt.% Co is used as a typical PRMMCs to study both
monotonic and cyclic limit loads. The technique developed in a previous study [8]
is applied in order to overcome the aforementioned main obstacles. Using a series
of scanning electron microscope (SEM) images obtained from the material finite
element (FE) models are built. Then first, static limit and shakedown problems are
constructed on each RVE and solved by an interior-point method based solver. In the
second step, the load domains obtained in the previous step are converted to macro-
scopic strength through the homogenization technique. To estimate the dependence
of the strength on structure, the obtained results are evaluated statistically. In order to
identify factors that influence the quality of numerical results, several characteristics
of FE models, e.g. the impact of RVE’s size, mesh density, as well as the difference
between 2D and 3D model, are investigated and discussed in detail.

2 Limit and Shakedown Analysis of Random
PRMMC Material

2.1 Micromechanical Homogenization
of Elasto-Plastic Materials

Homogenization theory links physical fields in two well-separated scales, i.e. the
microscale y in which structural details of RVE are distinguishable and the macro
scale x in which a RVE is recognized as a macroscopic point. For a heterogeneous
composite, once exposed to external loading, its microscopic stress field � in y and
the macroscopic counterpart in x satisfy the relationship:

� = 1

�

∫

Ω

σ (y)dv. (1)

Here � indicates the RVE domain. Analogously, macroscopic strain E can be
defined as

E = 1

�

∫

Ω

ε(y)dv. (2)

When all constituents of the composite are elastic, � and E are correlated by the
effective elastic tensor C:

� = C : E. (3)
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For a globally isotropic composite, C depends only on the effective Young’s modulus
E and effective Poisson’s ratio υ.

A characteristic of PRMMCs is that stress and strain are strongly non-uniform
due to heterogenity, thus the onset of local plasticity can take place even when �

is fairly low. To assess the plastic strain in the macro scale, Suquet [38] proposed a
measure: the effective plastic strain Ep which is a work conjugate to � defined as:

Ep = E − C
−1 : �. (4)

This way, the global yield strength of a composite �Y can be set as the stress leading
to 0.1 % global strain:

�Y = arg(Ep
eq(�eq) = 0.1 %). (5)

Here, Ep
eq and �eq represent equivalent macroscopic plastic strain and stress, respec-

tively. In the present study, all phases are assumded to obey the von Mises yield
criterion. Thus Ep

eq and �eq can be formulated as:

Ep
eq =

√
2

3
(Ep)′ : (Ep)′, (6a)

�eq =
√

3

2
�′ : �′. (6b)

The apostrophe in (6a, 6b) indicates the deviatoric part of a tensor. It is important to
note that an individual RVE is not isotropic, despite macroscopic isotropy of WC-Co
in the elastic as well as the plastic range. For this reason, we take the average of
strength in two orthogonal directions �Y

11 and �Y
22 as the measure of composite’s

global strength.

2.2 Static Theorem and Its Numerical Reformulation

The static shakedown criterion for a elastic-perfectly plastic material can be for-
mulated as follows: shakedown occurs if there exist a safety factor α > 1 and a
time-independent residual stresses field ρ, whose superposition with the purely elas-
tic stresses σE does not exceed the yield condition F at any time t > 0:

F
(
ασ E(y, t) + ρ̄, σY

)
≤ 0, (7a)

∇ · ρ̄ = 0 in �, (7b)

σE(y, t) · n = t on ∂�t, (7c)

ρ̄ · n = 0 on ∂�t . (7d)
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Here �t denotes the part of the boundary where tractions t are prescribed. In case of
von Mises yield criterion, the function F becomes:

F(σ , σ Y ) =
√

3

2
σ ′ : σ ′ − σ Y . (8)

By employing (7a–7d) to each RVE, its respective admissible load domains will be
identified. Since plastic limit can be regarded as a special case of shakedown where
σE evolves monotonically through t, this condition holds as well for the limit analysis.

When σ E is entailed by a set of NL independent loads Pi, due to linearity following
relationship holds:

σE

(
NL∑
i=1

Pi(y)

)
=

NL∑
i=1

σE (Pi(y)). (9)

Here, an individual load Pi can be separated into two parts including a varying
magnitude scalar μi and a time invariant base vector P̂i:

Pi(y, t) = μi(t)P̂i(y). (10)

Since each particular load μi varies within the interval [μ−
i , μ+

i ], a loading profile
can be considered as a trajectory in space L spanned by {P̂i}. As shown by König
[24], it is sufficient to only consider the convex hull of the loading history, which is
defined by the NC = 2NL corners of the polyhedral loading domain. This way, (7a)
can be simplified to a time independent form:

F
(
ασ E(P̂i) + ρ̄, σY

)
≤ 0, i ∈ [1 . . . NC] (11)

By FE discretization and replacing (7a) by (11), the shakedown condition (7a–7d)
becomes:

(PORI) max .
ρ̄

α, (12a)

s.t. : [C] {ρ̄} = {0} , (12b)

F(ασE
i (P̂k) + ρ̄i, σ

Y
i ) ≤ 0, i ∈ [1, NGS], k ∈ [1, NC]. (12c)

Here, NGS is the number of total Gaussain points in a model, and matrix C the
self-equilibrium matrix defined as:

[C] =
NGS∑
m=1

wm |Jm|[Bm]T . (13)

Matrix B consists of spatial derivatives of shape functions and maps displacements
into strains; w is the weight factor of integration points; J is the determinant of the
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Jacobian matrix. For FE models having NK nodes and NDoF degrees of freedom for
each node, one obtains C ∈ R

NDoF·NK×6NGS where NDoF equals 3 for 3D case, and
2 for 2D case.

In the current study, ultimate strength �U and endurance limit �∞ are considered
for the non-reverse axial loading which correspond to 1 load vertex and 2 load vertices
in L , respectively. To exclude anisotropy, strengths will be evaluated on various
directions and their average value will be taken. The simplest way to achieve this is
following the approach illustrated in Fig. 1: arbitrary orthogonal stresses �E

11 and �E
22

are prescribed alternately on a purely elastic reference RVE, and entailed microscopic
stress fields σE

11(y) and σ E
22(y) are calculated, respectively. By introducing an angle

θ , a combined loading P̂1 can be formed as a joint effect of �E
11 and �E

22. Therefore,
to calculate �U , the shakedown condition is required to be satisfied at vertex P̂1.
Analogously, to calculate �∞, the same condition should hold simultaneously at
vertices P̂1 and P̂2.

Some efficiency issues associated with the implementation of shakedown theorem
(12a–12c) has been noticed concerning inequality constraints (12c). For pragmatic
reasons, this condition should be reformulated to improve the efficiency of optimiza-
tion algorithm. Akoa et al. [2] have suggested to convert convex quadratic constraints
into Euclidean ball constraints. Several key steps of this approach are briefly intro-
duced here.

For the original shakedown problem PORI in (12a–12c), primal variables are
components of residual stress at every Gaussian point. More specifically:

1. ρ̄ = {ρ̄11, ρ̄22, ρ̄33, ρ̄12, ρ̄13, ρ̄23}T for 3D case,
2. ρ̄ = {ρ̄11, ρ̄22, ρ̄12}T for 2D plane stress case,
3. ρ̄ = {ρ̄11, ρ̄22, ρ̄33, ρ̄12}T for 2D plane strain case.

The reformulation introduced in [2] changes the primal variables to a linear trans-
formation of total stress σ where σ = ασE + ρ̄. The relationship between the new

Fig. 1 Superposition of
elastic stress
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primary variable {u, v} and σ in the 3D case follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

u5

v

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

σ Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1/2 −1/2 0 0 0

0
√

3/2 −√
3/2 0 0 0

0 0 0
√

3 0 0

0 0 0 0
√

3 0

0 0 0 0 0
√

3

1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (14)

and in 2D plane strain case:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

u3

v

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 1

σ Y

⎡
⎢⎢⎢⎢⎣

1 −1/2 −1/2 0

0
√

3/2 −√
3/2 0

0 0 0
√

3

1 0 1 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (15)

and in 2D plane stress case:

⎧⎪⎨
⎪⎩

u1

u2

u3

⎫⎪⎬
⎪⎭ = 1

σ Y

⎡
⎢⎢⎣

1 −1/2 0

0
√

3/2 0

0 0
√

3

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

σ11

σ22

σ12

⎫⎪⎬
⎪⎭ . (16)

This transformation matrix denoted by U is applied to each σ , and v retained from all
Gaussian points are put collectively into a global vector v = {v1, v2, . . . , vm}T where
m = NGS and v ∈ R

NGS. Applying the new primal variable, shakedown problem
PORI in (12a–12c) can be reformulated into an equivalent form:

(PReform) max . α, (17a)

s.t. :
NGS∑
r=1

[Ar]
{

u1
r

}
+ [B]

{
v1

}
− α

{
w1

}
= 0, (17b)

Where:
{

w1
}

= [C]{σE(P̂1)} (17c){
u2

r

}
−

{
u1

r

}
= α [U]

{
σ 2,E

r − σ 1,E
r

}
(17d)∥∥∥u1,2

r

∥∥∥ ≤ 1. (17e)

In (17a–17e), number within superscript indicates load vertex. For all 2D and 3D
models, [Ar] is defined as:

[Ar] = √
2σ Y [Dr][L−T ] (18)
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The other variables of (18) in 3D case are defined by:

L3D =

⎡
⎢⎢⎢⎢⎣

√
2 0 0 0 0√

2/2
√

3/
√

2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (19a)

D3D
r = [

(CrT)1 (CrT)2 (CrT)4 (CrT)5 (CrT)6
]

(19b)

B3D = [
(C1T)3 (C2T)3 · · · (CNGST)3

]
(19c)

T3D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 1/2 0 0 0
−1/2 1/2 1/2 0 0 0
−1/2 −1/2 1/2 0 0 0

0 0 0 1/
√

6 0 0
0 0 0 0 1/

√
6 0

0 0 0 0 0 1/
√

6

⎤
⎥⎥⎥⎥⎥⎥⎦

(19d)

while in 2D plane strain case:

LP. Strain =
⎡
⎣

√
2 0 0√

2/2
√

3/
√

2 0
0 0 1

⎤
⎦ (20a)

DP. Strain
r = [

(CrT)1 (CrT)2 (CrT)4
]

(20b)

BP. Strain = [
(C1T)3 (C2T)3 · · · (CNGST)3

]
(20c)

TP. Strain =

⎡
⎢⎢⎣

1/2 1/2 1/2 0
−1/2 1/2 1/2 0
−1/2 −1/2 1/2 0

0 0 0 1/
√

6

⎤
⎥⎥⎦ (20d)

and in 2D plane stress case:

LP. Stress =
⎡
⎣1 −1/2 0

0
√

3/2 0
0 0

√
3

⎤
⎦ (21a)

DP. Stress
r = Cr (21b)

Here (X)i represents the ith column of matrix X. We note that, according to (16), the
converted variable does not contain v for the plane stress case. Thus the term [B]{v1}
does not exist in this case as well.

When the numerical scheme (17a–17e) is used for limit analysis, due to the
absence of P̂2, equality constraints (17d) is removed.
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2.3 Solving the Quadratically Constrained Programming
(QCP) by Primal-Dual Interior Point Method

In order to obtain the shakedown factor α, the optimization problem (17a–17e) has
to be solved. This is a typical QCP problem because inequality constraints (17e)
are quadratic functions. By introducing the slack variable s to convert inequality to
equality constraints, this problem can be written in a general form:

(PStandard) min . −α = f (x), (22a)

s.t. : cE(x) = 0, (22b)

cI(x) − s = 0, (22c)

s ≥ 0. (22d)

The vector x consists of ur and v for all elements at all P̂i as well as the loading
factor α. By denoting the dimension of the converted variable in each Gaussian
point as DCV , then depending on if model is in 3D, plane strain or plane stress,
DCV equals 6, 4, or 3, respectively. Within the given QCP problem, primal variables
are x and s. In 3D or plane strain case x ∈ R

[NC·(DCV−1)+1]·NGS+1, while in plane
stress case x ∈ R

NC·DCV·NGS+1 due to the absence of v1. Meanwhile, for all three
cases, s is constantly a vector in R

NC·NGS. The objective function (23a) is linear with
negative loading factor as the function value. Equality constraints (23b) are obtained
from self-equilibrium condition (17b) and time-independence condition (17d). The
quadratic inequality constraints (23c) represent the von Mises yield criterion.

To avoid the complication of direct dealing with (22d) a barrier problem is
constructed:

min
x,s

f (x) − μ

m∑
i=1

log si, (23a)

s.t. : cE(x) = 0, (23b)

cI(x) − s = 0. (23c)

Here μ is a positive barrier parameter.
The first-order Karush-Kuhn-Tucker (KKT) conditions of (23a–23c) write:

∇f (x) − A T
E (x)y − A T

I (x)z = 0, (24a)

−μS−1e + z = 0, (24b)

cE(x) = 0, (24c)

cI(x) − s = 0. (24d)

In (24a–24d), dual variables y and z are lagrangian multipliers to equality con-
straints and inequality constraints, respectively. AE consists of gradients of equal-
ity constraints where AE = [∇cE,1,∇cE,2, . . . ,∇cE,n]. Because the equality
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constraints are linear, their gradients become constant values. In 3D and plane
strain models AE has (NK · NDoF) + (NC − 1) · (DCV − 1) · NGS rows and
[NC · (DCV − 1) + 1] · NGS columns, while in plane stress models, AE has
(NK · NDoF) + (NC − 1) · DCV · NGS rows and NC · DCV · NGS columns. Similar
to AE , AI is defined as [∇cI,1,∇cI,2, . . . ,∇cI,m]. Because cI are quadratic, their
gradients ∇cI are linear functions. The number of rows in AI is same as AE , but the
number of its columns is NC · NGS, which is independent on the model type. Matrix
S in (24b) is defined by S = diag(s), and e is a unit vector. The term μS−1e in (24b)
is yielded from ∇s(μ

∑m
i=1 log si).

The nonlinear system (24a–24d) can be solved with Newton’s method by given
numerical scheme:
⎡
⎢⎢⎢⎣

∇2
xxL 0 −A T

E (x) −A T
I (x)

0 Z 0 S

A T
E (x) 0 0 0

A T
I (x) −I 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

px

ps

py

pz

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

∇xf (x) − A T
E (x)y − A T

I (x)z

Sz − μe

cE(x)

cI(x) − s

⎤
⎥⎥⎥⎦ .

(25)

In (25), L represents the lagrangian for the barrier problem (23a–23c):

L (x, s, y, z) = f (x) − yTAE(x) − zT (AI(x) − s). (26)

whereas Z, analogous to S, is defined as Z = diag(z); I is the unit matrix.
To implement the primal-dual interior point method, one starts with a predefined

barrier parameter μ and a feasible initial solution {x0, s0, y0, z0}T . By solving the
system (25) a Newton’s step can be calculated. This step will be corrected with
respect to the fraction to boundary rule, and the corrected step will be taken to
update both primal and dual variables. This procedure will be repeated, and once the
error function E defined as:

E = max{‖∇xf (x)−A T
E (x)y −A T

I (x)z‖, ‖Sz −μe‖, ‖cE(x)‖, ‖cI(x)− s‖} (27)

drops below a predefined threshold, μ will be updated and solution to the evolved
barrier problem will be calculated by the same iterative scheme. One can prove that
with μ ↓ 0, solution to the barrier problem is exactly the same as the one to original
problem.

3 Numerical Results

3.1 Finite Element Models for Statistical Analysis

20 RVE models with different microstructure have been prepared. We distinguish
two groups: Group 1 consists of 10, each 30µm-by-30µm, RVEs numbered consec-
utively from 1 to 10. The models in Group 2, however, have a size 40µm-by-40µm
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10 µm
(a) (b)

Fig. 2 a SEM image b RVE model converted from SEM image

with numbers from 11 to 20. All models are based on real WC-Co microstructures
obtained from a scanning electron microscope (SEM) observation using a backscat-
tering detector (Fig. 2). In these images the dark grey area is the Co phase, while the
bright areas are the WC grains with their characteristic prismatic shape. The average
grain size is dWC = 2.35µm . To convert these SEM images to the corresponding FE
models an automatic technique developed in [8] is employed. This technique is capa-
ble of generating a triangular element based adaptive finite element mesh. It adopts
a denser mesh in vicinity to phase interfaces and a coarser mesh elsewhere (Fig. 2).

Both plane stress and plane strain models are investigated. It should be noted that in
previous studies plane strain models are observed to give more accurate prediction on
the elasto-plastic behavior of given composite in small strain regime [8, 34]. To check
the error caused by finite element type, the current study considers also a special typed
3D model which consists of a thin layered wedge elements obtained by extracting
the 2D model in the 3rd direction for 1µm. Intuitively, we refer these 3D models to
2.5D models, and they are regarded as compromise between plane stress and plane
strain, which correspond to two extremes about the stiffness in the 3rd direction.

For simplicity, the materials for both constituents are considered as elastic-perfect
plastic materials with parameters illustrated in Table 1. It is worthy to note that current
study is restricted to small deformation and assumes plastic failure as the only failure
mechanism.

The procedure of numerical limit and shakedown analysis can be summarized
as follows: first, RVE models are built in commercial finite element software
ABAQUS 6.12 [1]. By using a self-developed Python script, these models are pre-
scribed with global loading as explained in Sect. 2.2 and reference elastic stress

Table 1 Material properties
of both phases

E (GPa) μ [−] σ Y (MPa)

WC 700 0.24 2,000

Co 210 0.30 279



116 G. Chen et al.

fields are calculated. In the second step, the geometrical setup of models and their
associated stress results are output to MATLAB [29] to build the optimization prob-
lem (17a–17e). In the subsequent step, the constructed QCP problem is submitted to
an interior point method solver, Gurobi [19], to calculate loading factor α. By taking
a series of θ ∈ [0, π ] strengths in many different directions are calculated and they
together form an entire feasible load domain. By projecting this domain to π -plane
and fit the projection to a perfect semi-circle, a direction-independent strength value
is obtained which best characterizes the overall strength of a RVE. In the final step,
strength of each RVE retrieved from the best fit are collected and interpreted by a
statistical analysis. In such analysis three measures of a random variable x are eval-
uated. These measures include mean value x̄, standard deviation xSD, and coefficient
of variance defined as:

Cx = xSD

x̄
. (28)

3.2 Comparative Study Between Plane Stress,
Plane Strain and 2.5D Models

In [8] it has been shown that the discrepancy between plane stress and plane strain
models becomes more obvious when global plasticity accumulates. Also, once global
plasticity has reached a critical level, the mechanical behavior reflected by these two
model variances are fundamentally different. In the present study, we further studied
how these two element types influence the strength prediction.

It should be noticed, even for a FE model with fixed mesh pattern, the scale of its
associated optimization problem still greatly depends on the element type: a 2D RVE
model is arbitrarily picked to illustrate this difference. The model is taken from Group
2 and consists of 17,739 elements and 17,915 nodes. The scale of the optimization
problem related to this model is given in Table 2. The table shows that the problem
scale increases significantly when a 2D model is extended to 2.5D. A comparison
of plane stress and 2.5D model pointed out that the number of primal variables has
increased for around 6 times, while dual variables for around 2.5 times.

As has been stressed, plane stress and plane strain correspond to two extreme cases
about strength in the 3rd direction and the original intention to introduce 2.5D model
is to overcome such obstacle. However, beside such advantage 2.5D model also, unex-
pectedly, exhibits advantage in mesh insensitivity. For a 30µm-by-30µm RVE, two

Table 2 Scale of optimization problem for a FE mesh with different element types

Limit analysis Shakedown analysis

P. Stress P. Strain 2.5D

Num. Var 35,478 70,956 212,868 390,258

Num. EQ 17,914 17,914 53,742 142,437

Num. InEQ 17,739 17,739 35,478 70,956
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Coarse mesh Fine mesh

Fig. 3 RVE model with different mesh density
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Fig. 4 Limit and shakedown domains for RVE Nr. 2 meshed with different element types

element densities are adopted. As can be observed from Fig. 3, the model with coarse
mesh contains only 5,784 elements, whereas the number of elements in fine mesh
model is almost doubled which renders 9,940. Limit and shakedown domains for both
models are shown in Fig. 4. The domains obtained in limit analysis enlarge along
with the increase of out-of-plane strength. Meanwhile, it is also evident that plane
strain models have extremely high strength around θ = π/4. This can be explained
as follows: for plane strain, θ = π/4 corresponds to the loading condition of globally
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hydrostatic stress. Since hydrostatic stress does not contribute to the von-Mises yield
condition, material under this load can sustain exceptionally high global stress.

Unlike limit domains that are insensitive to discretization, shakedown domains
appear to have more dependence on the mesh density, which means the local behavior
has more influence on the overall performance of material. Comparing shakedown
domains of different model types, it is manifest that 2.5D model is least sensitive to
mesh density. For this reason, 2.5D models are used in the remaining part of our study.

3.3 Statistical Analysis and Study on the Size Effect

To prepare finite element models for statistical analysis, a uniform mesh setting is
adopted to all involved models. For each individual microstructure, elements cover-
ing the non-critical regions were assigned with a global size of 0.8µm; and near the
phase boundaries a finer mesh is used with an edge size of 0.2µm. Under this config-
uration, the number of elements for 30µm-by-30µm RVEs varies roughly between
6,000–9,000, and 13,000–18,000 for 40µm-by-40µm RVEs. The size of the opti-
mization problem can be estimated by referring to Table 2.

As Table 3 indicates results are dispersively distributed. Because RVEs inside the
same group are fixed in size and constituents, this reflects the contribution of the
microstructure. Results shown in Table 3 can be interpreted as follows: The micro-
structure has a considerable impact on different global material properties which is
in general strong for the nonlinear than the linear ones. For example, the normalized
variance of Poisson’s ratio for Group 1, CGroup2

ῡ is less than 0.013. But the same

indicator of endurance limit, CGroup2
�U , becomes 0.193. A transverse comparison has

been made between the distribution of �U and �∞ (Fig. 5). According to Fig. 5,
the scatter of �U is more pronounced than �∞, for the reason outlined above. This
indicates the structure to have more influence on the former parameter.

Normally larger RVEs will retain smaller Cx compared to smaller RVEs, but
exceptions can occasionally be observed: e.g. CGroup1

�U is 0.176, but CGroup2
�U increases

Table 3 Statistics of selected
global material properties

Model group Parameters x̄ xSD Cx

Group 1 Ē (GPa) 394.41 33.98 0.086

(30µm-by-30µm) ῡ [-] 0.273 0.007 0.027

�Y (MPa) 440.45 72.74 0.165

�U (MPa) 504.22 88.87 0.176

�∞ (MPa) 373.93 30.64 0.082

Group 2 Ē (GPa) 388.78 21.18 0.055

(40µm-by-40µm) ῡ [-] 0.276 0.003 0.013

�Y (MPa) 416.83 40.65 0.097

�U (MPa) 527.65 102.37 0.193

�∞ (MPa) 369.59 27.08 0.073
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Fig. 5 Distribution of �U

and �∞ associated to
models in Group 1
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Fig. 6 Deoendence of �U ’s
distribution on size
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to 0.193 (Fig. 6). More interestingly, the size effect also depends on properties being
considered. For example, it happens simultaneously that CGroup2 < CGroup1 for �U ,
and in contract CGroup2 > CGroup1 for the other properties including Ē, ῡ, �Y . A pos-
sible reason can be the effect of localization: when a global feature depends severely
on some localized material behavior, the increase of RVE size can not fully expel
the occurrence of such local effect and thus will not enhance the quality of a model.

Localization is the cause of another noteworthy phenomenon: for both model
groups �∞ are smaller than �Y . In the first glance, this result may seems disturbing,
nevertheless it can be well understood from the difference between �Y and load
leading to the onset of local plasticity. To a certain extent, the development of local
plasticity does not contribute much to �Y because of its limited share of volume.
However, for �∞, since it doesn’t allow alternating plasticity to take place at any
material point, its value is sensitive to stress concentration. In summary, �∞ < �Y

reflects serious stress concentration, and it also implies that alternating plasticity is
the major cause of the plastic failure of current composite.
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4 Conclusions

In this paper, it is presented how lower-bound DM, homogenization technique and
statistical analysis can be used to study the strength of non-periodic PRMMC mate-
rials. The material investigated, WC-30 Wt.% Co, is a typical random PRMMC with
complex microstructure. Main findings:

• By adopting an efficient algorithm, DM can be used to study composites with
complex real microstructure.

• Although 2.5D models lead to optimization problems of greater size, this model
type is more advantageous: first, the out-of-plane strengths in 2.5D models are
more reasonable. Second, in shakedown analysis these models are more mesh
insensitive.

• �U is relatively mesh insensitive, increasing with the increase of the out-of-plane
stiffness.

• Size effect of RVEs is not absolute; its increase does not necessarily leads to
decrease of disparity among models. If a macroscopic material behavior to be
studied depends strongly on localized behavior, then enlarging RVE size will not
continuously make the model more objective.

• Highly localized alternating plasticity is the major cause of the failure and it leads
to �Y > �∞.

Finally, it should be emphasized that the material model and failure scenario assumed
in this paper is over-restrictive. Future work should take into account kinematic
hardening and material damage. Also, for reliable results, the statistical investigations
have to be performed on an much larger number of numerical tests.
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