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Abstract One of the most important tasks in design for construction engineers is the
determination of the load bearing capacity of the considered engineering structure.
This can be particularly challenging when the applied thermo-mechanical loads vary
with time and are high enough to exceed the material’s elastic regime. In these cases,
the lower bound shakedown analysis provides a convenient tool. Since accounting
for the realistic material behavior is inevitable to achieve reliable results, it is highly
relevant to consider limited kinematical hardening. Although there exist different for-
mulations in the literature, in which limited kinematical hardening is incorporated,
these usually do not take into account the underlying hardening law in an explicit
manner. The most important question in that context is whether such formulations
can cover both linear and nonlinear hardening laws. In consequence, the aim of this
paper is to investigate the effect of nonlinearity of the hardening law by showing
that in certain scenarios the introduction of an explicit hardening law as a subsidiary
constraint is unavoidable.

1 Introduction

One of the most important tasks in design for construction engineers is the deter-
mination of the load bearing capacity of the considered engineering structure. This
can be particularly challenging when the applied thermo-mechanical loads vary with
time and are high enough to exceed the material’s elastic regime. Then, the compu-
tation of the so-called shakedown loading factor is necessary, which is the maximum
loading factor such that the system can be considered as ‘safe’, such that neither
alternating plasticity nor spontaneous or incremental collapse occur.
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In most cases, conventional step-by-step computations are performed whenever
the exact stress-strain distributions are needed. In contrast, if only the material’s or
structure’s limit state is of interest, the load bearing capacity can be conveniently
determined by means of limit or shakedown analysis. In general, there exist two
different approaches to shakedown analysis, which complement each other: The
lower bound approach by Melan [19, 20], which is formulated in statical quantities,
and the upper bound approach of Koiter [15], which makes use of the kinematical
ones. From these, the lower bound approach is adopted in this work, because the
formulation in terms of stresses is particularly suited for the extension to kinematical
hardening.

The majority of elasto-plastic materials exhibit kinematical hardening during the
evolution of plastic deformations. Therefore, this phenomenon needs to be incorpo-
rated into the procedure in order to obtain realistic results. In its original formulation
the statical shakedown theorem only holds for elastic-perfectly plastic continua as
well as for unlimited kinematical hardening ones. Since the unlimited kinematical
hardening case does not cover incremental collapse at all, taking into account lim-
ited (or bounded) kinematical hardening is inevitable. Hence, this issue has been
addressed by several authors in the field of shakedown analysis [6, 8, 10, 18, 21–27,
30, 36–40].

From those, the first explicit formulation for limited kinematical hardening mate-
rials has been given by Weichert and Groß-Weege [40] (WGW), who introduced a
two-surface model. Their formulation is based on the concept of generalized stan-
dard materials [11], and thus implies an associated hardening rule, together with
the assumption of limited linear kinematical hardening. Almost at the same time,
Stein et al. [37–39] have proposed another approach based on an overlay model. The
formulation presented therein has been said to be valid for limited general nonlinear
kinematical hardening with associated flow. Noteworthy, Heitzer [12] has investi-
gated the relation between the two different formulations. He has stated that both
theorems, even though formulated differently, lead to the same optimal value for the
shakedown factor, and that the only difference might appear in the corresponding
residual stress fields.

More recently Pham has presented an extension of the theorem proposed by
Weichert and Groß-Weege for the generally nonlinear case [23]. He has claimed,
that this theorem holds for any generally nonlinear hardening law as long as the
hysteresis is positive for any closed cycle of plastic deformations.

In all of these works, it turns out that the shakedown load is independent of the
underlying hardening law and the according stress-strain curve. The shakedown load
seems to depend only on the magnitudes of the initial yield stress σY and the ultimate
stress σH .

In contrast, independently of each other, Staat and Heitzer [36] as well as Bouby
et al. [4, 5] have presented results with significant differences in the shakedown limit
load between the limited linear hardening and the limited nonlinear hardening. Thus,
the aim of the present paper is to investigate the effect of different hardening rules
on shakedown loads.
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2 Lower Bound Shakedown Analysis Accounting
for Limited Kinematical Hardening

In the following, an elastic-perfectly plastic body with volume V and surface A is con-
sidered, which is subjected to: temperature loads T(x, t) in V , body forces f V (x, t)
in V , surface loads f A(x, t) on Af ⊆ A, and prescribed displacements u(x, t) on
Au ⊆ A, such that A = Af ∩ Au and Af ∪ Au = ∅. Only time- and temperature-
independent material behavior is taken into account, while material damage and
geometrical nonlinearity are neglected. The existence of a convex yield func-
tion f [σ (x, t)] is assumed. Then, the elastic limit is described by a yield surface
in stress space S as closure of the convex domain CY ⊆ S of admissible states of
stress with the strict interior C i

Y :

C i
Y =

{
σ ∈ S

∣∣∣ f [σ (x, t)] < σ 2
Y (x), ∀x ∈ V , ∀t

}
(1)

2.1 Melan’s Statical Shakedown Theorem
for Elastic-Perfectly Plastic Materials

As already mentioned above, this work is based on the statical shakedown theorem
by Melan [19, 20], which provides a lower bound to the shakedown loading factor. To
apply Melan’s theorem, the total stress σ (x, t) in a point x ∈ V within the volume V of
the considered body at time t is decomposed into an elastic reference stress σE(x, t)
and a residual stress ρ(x, t) induced by the evolution of plastic strains.

σ (x, t) = σE(x, t) + ρ(x, t) (2)

The fictitious stress state σE(x, t) is the one which would occur in a purely elastic
reference body under the same conditions and loadings as the original one. Both the
elastic reference stresses and the residual stresses satisfy the equilibrium constraints
as well as the statical boundary conditions.

equilibrium: ∇ · σE = −f V ∇ · ρ = 0 in V (3)

statical bc: n · σE = f A n · ρ = 0 on Af (4)

Then, Melan’s shakedown theorem for elastic-perfectly plastic materials can be
formulated as follows:

If there exist a loading factor α > 1 and a time-independent residual stress
field ρ̄(x), such that the yield condition is satisfied for any loading path within the
considered loading domain � at any time t and in any point x of the structure, then
the system will shake down.

f
[
α σE(x, t) + ρ̄(x)

]
≤ σ 2

Y (x), ∀x ∈ V , ∀t (5)
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It is worth to mention that the numerical procedure allows for computing values
α < 1 as long as it is positive, α > 0. Nevertheless, shakedown only can be guaran-
teed if α > 1 holds, because only then the plastic dissipative energy is guaranteed to
be bounded.

2.2 Two Surface Model for Limited Linear Kinematical
Hardening by Weichert and Groß-Weege (WGW)

The first explicit formulation of the statical shakedown theorem accounting for lim-
ited kinematical hardening has been proposed by Weichert and Groß-Weege [40] in
1988. The formulation presented therein is based on the Generalized Standard Mate-
rial Model (GSMM) introduced by Halphen and Nguyen [11]. Thus, it is implied that
the normality rule holds, restricting the formulation to associated hardening laws.
Moreover, the proof of the theorem makes use of the assumption of limited linear
kinematical hardening.

The kinematical hardening is considered as a translational motion of the yield
surface—described by f = σ 2

Y —in stress space without change of orientation, form
or size. This motion is limited by the bounding surface, f = σ 2

H , which corresponds
to the ultimate stress σH . Further, the motion is defined by the six-dimensional vector
of back-stresses π representing the translation of the yield surface’s center, see Fig. 1.
Thereby, the total stresses σ (x, t) are decomposed into the back stresses π and the
so-called reduced stresses υ. The latter are responsible for the occurrence of plastic
strains.

σ (x, t) = π(x, t) + υ(x, t) (6)

actual yield surface

initial yield surface
bounding surface

σi j

π

σ

υ

f (σ ) = σ 2
H

f (υ) = σ 2
Y

f (υ) = σ 2
Y

Fig. 1 Limited kinematical hardening considered as translation of the yield surface in stress space
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Since the bounding surface is fixed in stress space, the back-stresses have to be
time-independent, which will be indicated in the following by an overbar, π = π̄(x).
Further, the decomposition of the total stresses into an elastic reference part and a
residual one still holds. Consequently, the reduced stresses υ(x, t) can be expressed
as follows:

υ(x, t) = σ (x, t) − π̄(x) = σE(x, t) + ρ̄(x) − π̄(x) (7)

Finally, a shakedown theorem accounting for limited kinematical hardening can
be written as:

If there exist a loading factor α > 1, a time-independent self-equilibrated (resid-
ual) stress field ρ̄ and a time-independent field of back-stresses π̄ ,such that the yield
condition and the bounding condition are satisfied for any loading path within the
considered loading domain � at any time t and in any point x of the structure, then
the system will shake down.

f
[
α σE(x, t) + ρ̄(x) − π̄(x)

]
≤ σ 2

Y (x) (8)

f
[
α σE(x, t) + ρ̄(x)

]
≤ σ 2

H(x) (9)

It should be noted, that the consideration of specific hardening rules—such as the
linear one—implies restrictions on the field of back-stresses π̄ . This issue and its
consequences will be discussed in Sect. 3.

2.3 Extension of WGW-Model for Limited General
Nonlinear Kinematical Hardening by Pham

While the proof of the theorem given above is based on the assumption of limited
linear kinematical hardening, the same formulation has been derived for generally-
nonlinear hardening laws later by Pham [22, 23]. The only restriction Pham has
postulated on the considered hardening is the positive hysteresis postulate, which
states that for any closed cycle of plastic deformations (t ∈ [0, θ ]) the following
condition has to hold:

∮
π : dεp

π =
θ∫

0

π : εp
π dt ≥ 0

(
εp

π (0) = εp
π (θ)

)
(10)

where π denotes the back-stresses, and ε
p
π denotes the corresponding plastic defor-

mation. In the case of a simple loading-unloading closed plastic cycle, this restriction
implicates that the hysteresis loop is followed in clockwise direction, but not anti-
clockwise.
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2.4 Overlay-Model for Limited Nonlinear Kinematical
Hardening by Stein et al.

An alternative approach to formulate a shakedown theorem taking into account
limited kinematical hardening has been presented by Stein et al. [37–39]. This formu-
lation is based on the overlay model. As in the WGW-model, the normality condition
is assumed to hold. Except of this restriction the authors have stated that the formu-
lation is valid for limited general nonlinear kinematical hardening.

Interestingly, the formulation of Stein et al. is rather similar to the one by Weichert
and Groß-Weege. However, there is one very important difference in the way the
bounding condition is expressed. Instead of the condition (9), Stein et al. derive the
following one:

f [π̄(x)] ≤ [σH(x) − σY (x)]2 (11)

The most severe difference between (9) and (11) is the fact that the back-stresses π̄

appear only implicitly in the first one, whereas they show up in an explicit manner in
the second one. It is worth to mention, that the relation between these two different
formulations has been investigated in more detail by Heitzer [12]. As a result of these
investigations, Heitzer has stated that both theorems lead to the same optimal value
for the shakedown factor, even though the corresponding residual stress fields might
differ. As will be shown within the example in Sect. 4, this turns out not to be true in
certain scenarios.

2.5 Description of the Loading Domain

In the following, the loading historiesH (x, t) under consideration are assumed to be
describable as superposition of a finite number NL of different loading sets P�(x, t).
The latter can be expressed in terms of load multipliers μ�(t) for any loading case �

and the unity load P0(x).

H (x, t) =
NL∑
�=1

P�(x, t) =
NL∑
�=1

μ�(t) P0(x) (12)

As shown by König [16], it is sufficient to consider only the convex hull of the
loading history, which is polyhedral with NC = 2NL corners. These corners are
defined in the loading space by introducing bounding values μ+

� and μ−
� for each

multiplier μ�. Doing so, the set U is defined, which contains all possible combina-
tions of loading sets within these bounds through merging all loading multipliers to
the vector μ = μ� e�.

U =
{
μ ∈ RNL

∣∣∣ μ−
� ≤ μ� ≤ μ+

� , ∀� ∈ [1, NL]
}

(13)
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Then, the loading domain � is described as set of all possible loading histories
contained within U .

� =
{
H (x, t)

∣∣∣ H (x, t) =
NL∑
�=1

μ�(t) P0(x) , ∀μ ∈ U

}
(14)

Consequently, the elastic reference stresses are split in analogy to (12).

σE(x, t) =
NL∑
�=1

μ�(t) σE
� (x) (15)

2.6 Discretization

Using the finite element method (fem), the stresses are approximately represented by
their values in the Gaussian points, which will be referred to by the index r ∈ [1, NG].
Here NG is the total number of Gaussian points in the system. Consequently, the fic-
titious elastic stresses σE

r,� can be computed for any loading case � by purely elastic
analysis.

σE
r (t) =

NL∑
�=1

μ�(t) σE
r,� (16)

To ensure shakedown for all possible loading paths inside of the loading domain,
only its corners need to be examined. Thus, the time-dependence of σE

r can be
expressed through the stress states in the corners j ∈ [1, NC] of the loading domain.
For this, the matrix UNL ∈ RNC×NL with entries Uj� is introduced, where j ∈ [1, NC]
and � ∈ [1, NL].

σE,j
r =

NL∑
�=1

Uj�σ
E
r,� (17)

Each row of this matrix UNL represents the coordinates of one corner of the loading
domain in the NL-dimensional loading space, which are defined by the factors μ−

�

and μ+
� as introduced in (13). The matrix can be defined in an automatic way for

arbitrary numbers of loading cases NL, as shown in [35].
Since the elastic reference stress field σE is in equilibrium with the external load-

ing, the residual stress field ρ̄ has to be self-equilibrated. This fact can be expressed
by means of the principle of virtual work [9],

∫

V

δε : ρ̄ dV = 0 (18)

where δε denotes any virtual strain field which satisfies the kinematical boundary
conditions.
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Using the femwith isoparametric elements, the displacements u are approximated
by shape functions and nodal displacements uK . Thus, the virtual strain field can
be expressed through the nodal displacements as well: δε(x) = δuK · B, where
B(x) is the differentiation matrix. Furthermore, the integration is carried out numeri-
cally. Thereby (18) is approximated by a system of linear equations for the residual
stresses ρ̄r in the Gaussian points.

∫

V

B(x) : ρ̄ dV =:
NG∑
r=1

Cr · ρ̄r = 0 (19)

The equilibrium matrices Cr depend only on the geometry of the system and the
applied element type as well as the kinematical boundary conditions.

2.7 Resulting Nonlinear Optimization Problem

Based on the Eqs. (17) and (19), the extended Melan’s theorem for limited kinematical
hardening can be expressed in terms of an optimization problem for the loading
factor α > 1:

(PH) αSD = max
ρ̄, π̄

α

NG∑
r=1

Cr · ρ̄r = 0 (20a)

∀j ∈ [1, NC], ∀r ∈ [1, NG] :

f
(
α σE,j

r + ρ̄r − π̄ r

)
≤ σ 2

Y ,r (20b)

fH
(
σ j

r, π̄ r, σH,r

)
≤ 0 (20c)

Depending on which formulation is used, the according bounding condition, (9)
or (11), needs to be inserted:

WGW & Pham : fH
(
σ j

r, π̄ r, σH,r

)
= f

(
α σE,j

r + ρ̄r

)
− σ 2

H,r (21a)

Stein : fH
(
σ j

r, π̄ r, σH,r

)
= f (π̄ r) − (

σH,r − σY ,r
)2 (21b)

The solution procedure for this nonlinear convex optimization problem is not in
the scope of the current paper. The interested reader is referred to [31–34].
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3 Effect of the Underlying Kinematical Hardening Law

In this section, the effect of the underlying limited kinematical hardening model on
the shakedown load is investigated. As already has been mentioned, it is frequently
stated in literature that shakedown limits only depend on the initial yield stress σY

and the ultimate stress σH , but not at all on the hardening behavior in between, see
e.g. [1, 13, 22–24, 37, 40]. Even so, in the following it will be shown that in principle
there can exist cases, in which the shakedown load is in fact influenced by the applied
hardening law.

To do so, the shakedown theorems presented in the Sects. 2.2–2.4 are rewritten
in a more formal way. For this, the set of all time-independent and self-equilibrated
stress fields is denoted by R. Further, the set of all time-independent and permissible
fields of back-stresses is denoted by B. Here, the definition of a permissible stress
field depends on the considered theorem:

WGW: A back-stress field is permissible if it can evolve under the given loading
domain following the corresponding linear hardening law with an associ-
ated flow rule.

Stein: A back-stress field is permissible if it can evolve under the given loading
domain following any hardening law with an associated flow rule.

Pham: A back-stress field is permissible if it satisfies the positive hysteresis
assumption.

Then, the three theorems can be written in the following way:
If there exist a scalar α > 1 and fields ρ̄ and π̄ , such that the following conditions
hold, then the system will shake down.

π̄ ∈ B (22a)

ρ̄ ∈ R (22b)

∀j ∈ [1, NC], ∀r ∈ [1, NG] :
f
(
α σE,j

r + ρ̄r − π̄ r

)
≤ σ 2

Y ,r (22c)

fH
(
σ j

r, π̄ r, σH,r

)
≤ 0 (22d)

If one compares this set of conditions with the subsidiary constraints of the opti-
mization problem formulated in Sect. 2.7, one can observe that not all of the condi-
tions (22a)–(22d) are reflected. While the yield and the bounding conditions (22c)
and (22d) are represented by (20b) and (20c), respectively, the equation (20a) ensures
that ρ̄ is self-equilibrated (22b). In contrast, the condition (22a) is not incorporated
anymore.

In fact, as long as a general hardening case is considered, in which the evolution
of π̄ is not restricted by any specific kind of hardening law, the optimization problem
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(PH) is equivalent to (22a–22d) without loss of generality. In this case the back-
stresses can be considered as unrestricted variables of the optimization problem.
Therefore, the corresponding hardening law will be called unrestricted hardening in
the following.

Since α is maximized over π̄ , the solution of the optimization problem (PH)

involves the one particular field π̄∗, which leads to the maximum value of α. Hence,
the unrestricted hardening, which allows the back-stresses π̄∗ to evolve under the
given loading domain, is the most advantageous one leading to the highest shakedown
loading factors amongst all possible hardening rules. In other words, the computed
shakedown factor might be higher than the one, which can be obtained if a specific
hardening rule is applied.

Clearly, only the yield and bounding surface need to be defined by σY and σH ,
respectively, when the unrestricted hardening is considered using the optimization
problem (PH). This is in accordance with the above mentioned references. Even so,
the shakedown limit may depend on the hardening behavior in between the initial
yield state and the ultimate state. If a specific hardening law is to be considered, then
the feasible set of back-stresses can be restricted, such that π̄ ∈ B◦ and B◦ ⊂ B.
To ensure that the solution is admissible, this restriction for the back-stresses has
to be included into the optimization problem as a separate constraint. Otherwise, a
non-admissible solution might be obtained, π̄∗ /∈ B◦.

If, for example, the special case of limited linear kinematical hardening shall be
investigated, the set of feasible back-stresses B◦ has to be formulated such that the
resulting solution π̄◦ can evolve under the given loading domain following the corre-
sponding linear hardening law, π̇◦ = C ε̇p, where C is a material parameter. However,
introducing such additional constraints directly into the optimization problem can
be problematic, because kinematic variables (e.g. plastic strains εp) would have to
show up at least implicitly in the statical theorem, which is formulated in stresses.
Nevertheless, the generally-nonlinear hardening can be directly incorporated into the
procedure by defining the restrictions on the back-stresses.

4 Sample Under Constant Tension and Alternating Torsion

To illustrate the correlation between different hardening laws, an illustrative exam-
ple is presented in this section. In particular, a specimen is considered, which is
subjected to a constant tension σ̄ > 0 and alternating torsion τ with zero mean
shear stress, such that τmin = −τmax. The according loading domain consists of
only two points (σ̄ , τmax) and (σ̄ , τmin). Noticeably, such a system has been previ-
ously examined by e.g. Portier et al. [28], where ratcheting has been investigated
experimentally as well as numerically. Furthermore, numerical and analytical results
of shakedown analysis accounting for different types of kinematical hardening are
presented in [7, 14, 17, 36] for the plane stress state, while the plane strain state has
been investigated in [4, 5].
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In the following, the plane stress state is considered:

σ =
⎛
⎝

σ̄ τ 0
τ 0 0
0 0 0

⎞
⎠ and π =

⎛
⎝

X Y 0
Y 0 0
0 0 0

⎞
⎠ (23)

In this simple problem both the stress and the strain field are uniformly distributed.
Therefore, the residual stresses ρ̄ need not to be considered. In fact, the back-stresses
π play the role of residual stresses in this case.

In the following, the yield criterion is expressed by the von Mises yield condition,
which reads:

fY (σ − π , σY ) = (σ̄ − X)2 + 3 (τ − Y)2 − σ 2
Y = 0 (24)

Since both maxima (σ̄ , τmax) and (σ̄ ,−τmax) shall be located on the yield surface
which is described by (24), the following two equations have to hold:

(σ̄ − X)2 + 3 (τmax − Y)2 − σ 2
Y = 0 (25a)

(σ̄ − X)2 + 3 (−τmax − Y)2 − σ 2
Y = 0 (25b)

The difference between these Eq. (25a), (25b), gives:

(τmax − Y)2 − (−τmax − Y)2 = −4 τmax Y = 0 (26)

A non-trivial solution, τmax = 0, can therefore only be obtained if Y = 0. Thus,
to reach the shakedown state, the yield surface is moved in stress space only in the
direction of σ . The yield condition simplifies to:

fY (σ − π , σY ) = (σ̄ − X)2 + 3 τ 2 − σ 2
Y = 0 (27)

The positive solution of (27) is:

√
3 τ =

√
σ 2

Y − (σ̄ − X)2 (28)

From (28) it can be observed that the shakedown load τ can in fact depend on
the according back-stress X. However, this back-stress is restricted by the applied
hardening law. To illustrate the influence of different kinematical hardening rules,
the following types of plastic behavior are incorporated:

1. Perfectly plastic behavior:
No hardening occurs and thus no back-stress evolves, X = 0, leading to the
following maximum value of admissible shear stress:√

3 τ0 =
√

σ 2
Y − σ̄ 2 (black dashed line in Fig. 2)

Alternating plasticity only occurs in pure shear, σ̄ = 0, whereas the remaining
shakedown domain represents incremental collapse.
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Fig. 2 Shakedown domains for a specimen under constant tension and alternating torsion with
different hardening rules

2. Limit load for proportional loading path:
For the proportional loading path, the limit domain is similar to the one in the
perfectly plastic case (case 1). The only difference is that σY needs to be substi-
tuted by σH . Hence, the following maximum value of admissible shear stress is
obtained:√

3 τL =
√

σ 2
H − σ̄ 2 (black solid line with + in Fig. 2)

3. Unlimited kinematical hardening:
The shakedown state is defined solely by alternating plasticity. It can be obtained
by any hardening rule setting σH → ∞. The evolution of back-stresses is not
restricted at all, and consequently∀σ̄ : X = σ̄ , leading to the following maximum
value of admissible shear stress:√

3 τu = σY (black solid line with × in Fig. 2)
4. Limited unrestricted kinematical hardening:

The unrestricted kinematical hardening is obtained from the solution of the opti-
mization problem (PH), in which no explicit restriction is formulated for the
back-stresses, since no condition in terms of (22a) is accounted for. Since the
back-stress X is not restricted, ∀σ̄ : X = σ̄ holds. This leads to alternating

plasticity in case of σ̄ ≤ σ̄ ∗ =
√

σ 2
H − σ 2

Y , where the admissible shear stress is
τu (see case 3).
On the other hand, if σ̄ > σ̄ ∗, the bounding condition enforces incremental
collapse independently of the back-stresses. The according bounding condition
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is the one given by WGW and Pham:

fH (σ , σH) = σ̄ 2 + 3 τ 2 − σ 2
H = 0 (29)

This leads to the following maximum value of shear stresses:

√
3 τ =

√
σ 2

H − σ̄ 2 (30)

As a result, the maximum value of admissible shear stress reads:
√

3 τun =
{√

3 τu = σY if σ̄ ≤ σ̄ ∗
√

3 τL =
√

σ 2
H − σ̄ 2 if σ̄ > σ̄ ∗ (blue solid line with ◦ in Fig. 2)

It should be mentioned, that the yield surface is allowed to partly move outside of
the bounding surface, as long as the considered stress points on the yield surface
(σ̄ , τmax) and (σ̄ , τmin) stay inside.

5. Limited linear kinematical hardening:
For the limited linear kinematical hardening, the hardening rule of Prager [29]
is applied: π̇ = C ε̇p, where C denotes the kinematical hardening modulus and
ε̇p denotes the plastic strain rate. As shown in [14, 38], the back-stresses are
restricted by:

f (π , σH) = X2 − (σH − σY )2 = 0 (31)

Hence, the back-stress X ≤ σ̄ ◦ cannot exceed the value σ̄ ◦ = σH − σY . In
consequence, alternating plasticity can only occur if σ̄ ≤ σ̄ ◦, because then X = σ̄

is possible.
On the contrary, for σ̄ > σ̄ ◦, the restriction of the back-stresses leads to X = σ̄ ◦,
which enforces incremental collapse. The resulting maximum value of admissible
shear stress for limited linear hardening is:
√

3 τP =
{√

3 τu = σY if σ̄ ≤ σ̄ ◦√
σ 2

Y − (σ̄ − σ̄ ◦)2 if σ̄ > σ̄ ◦ (dotted line in Fig. 2)

It is worth to mention, that this is in agreement with the solution presented in [3]
for a specific nonlinear Prager’s rule: π̇ = C ε̇p − (γ /C)2 X2

eq ε̇p. The back-stress
corresponding to the stabilized cycle has only to be replaced by σ̄ ◦ = C/γ .
Further, it should be mentioned that this is exactly the result which can be obtained
by using the theorem by Stein, because (31) obviously corresponds to (21b). This
could be expected, since the considered hardening law is based on an associated
flow rule.

6. Limited nonlinear kinematical hardening:
Finally, for the limited nonlinear kinematical hardening the hardening rule of
Armstrong and Frederick [2] is used:

π̇ = 2

3
C ε̇p − C

π

X∞
ṗ (32)

where ṗ =
√

2
3 ε̇p : ε̇p and X∞ = σ̄ ◦ = σH − σY .
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For this hardening law, the considered example has been intensively investigated
by several authors. The first solution has been proposed by Lemaitre and Chaboche
[17], followed by Saxcé and coworkers [7], where an analytical solution is derived
and verified by an alternative theoretical calculation on the basis of the bipotential
approach. In [4, 5] an analytical solution is presented for the plane strain state,
which can be transferred to the plane stress state considered here simply by
setting ν = 0. Moreover, a numerical implementation is given, which is in perfect
agreement with the analytical solution. Finally, Staat and Heitzer [36] obtained
lower bound results using a finite element computation with basis reduction. In
all these references, it turns out that the back-stresses are restricted even more
than in the linear hardening case:

X = σ̄
σH − σY

σH
(33)

Since σH > σY , this leads to ∀σ̄ : X < σ̄ . Noteworthy, this restriction enforces
incremental collapse in the whole loading domain, and alternating plasticity only
can occur in case of pure shear, σ̄ = 0. Consequently, a significant influence
of the restriction on the back-stresses can be observed, which contradicts some
statements presented in literature, see e.g. [1]. The according maximum value of
admissible shear stress reads:√

3 τAF = σY

σH

√
σ 2

H − σ̄ 2 (dash-dot line in Fig. 2)

The results for all of the above mentioned cases are shown in Fig. 2 for an arbitrarily
chosen value σH/σY = 3/2, where both axes of the plot are scaled to the according
shakedown value in the perfectly plastic case, σ0 and τ0, respectively.

Noteworthy, the limited linear hardening model [29] predicts a higher shakedown
load than the limited nonlinear one [2]. Furthermore, the nonlinear model only pre-
dicts failure due to incremental collapse, whereas in the linear case two different
regions exist, one of which represents the incremental collapse and the other one
represents alternating plasticity. However, both models give a lower value for the
shakedown load than the unrestricted one resulting from the optimization problem
(PH), as expected according to the discussion above.

5 Conclusions

Concluding, it could be shown that the lower bound shakedown analysis is well
suited to determine the limit states of materials or structures. In particular, formula-
tions have been investigated which addressed: perfectly plastic behavior, unlimited
kinematical hardening, limited linear kinematical hardening, and limited nonlinear
kinematical hardening. The most important result of these investigations is the fact
that an unrestricted hardening law is implicitly applied whenever the back-stresses
are not restricted by an according subsidiary constraint in the optimization problem.
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Even more, the result of such unrestricted problems gives the highest shakedown
factor, which can be obtained by any hardening law. Nonetheless, specific hardening
laws can be incorporated as indicated above by formulating additional constraints
in the optimization problem. This is still covered by the shakedown theorem and its
proof. In that sense, the general character of the theorem itself is not curtailed by the
discussion above.
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