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Abstract A new iterative algorithm to evaluate the elastic shakedown multiplier is
proposed. On the basis of a three field mixed finite element, a series of mathematical
programming problems or steps, obtained from the application of the proximal point
algorithm to the static shakedown theorem, are obtained. Each step is solved by an
Equality Constrained Sequential Quadratic Programming (EC-SQP) technique that
retain all the equations and variables of the problem at the same level so allowing
a consistent linearization that improves the computational efficiency. The numerical
tests performed for 2D problems show the good performance and the great robustness
of the proposed algorithm.

1 Introduction

Directs methods are largely used for the shakedown analysis of elastic-plastic struc-
ture under variable [5, 12, 16, 19, 20, 22, 24, 25] or cyclic loading [23] because
they an efficient alternative to time consuming incremental time-stepping calculations
(see also [6]). They are essentially based on Interior Point Methods but alternative
techniques as the linear matching method [8, 17] are efficiently employed too.

In [7, 11] an iterative algorithm has been proposed that makes possible to per-
forms the finite element shakedown analysis using a formulation similar to that
adopted for the evaluation of the equilibrium path of elastoplastic structure. In [9]
has been shown has this algorithm can be obtained from a mathematical program-
ming problem, consisting in the application of the proximal point algorithm to the
static shakedown theorem so defining a convergent sequence of safe states or steps
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that are solved by means of dual decomposition methods. Each proximal point step
coincides, in the elastoplastic case, with that defined using standard incremental iter-
ative algorithms [4, 13] based on Riks arc-length method while the optimization
subproblems, deriving from the dual decomposition technique, exactly correspond
to the standard return mapping by closest point projection scheme (CPP). We denote
from now on this method as SD-CPP (Strain Driven—Closest Point Projection) or
pseudo elastoplastic analysis.

The major advantage of the dual decomposition approach is that the inequality
constraints arising from the constitutive laws are eliminated from the step equa-
tions at the local level (Gauss point or finite element) using the CPP scheme, while
the stresses and the plastic multipliers are implicitly defined in terms of the dis-
placements. The finite step equations are so transformed into a nonlinear system
of equations, without inequalities, easily solved by means of standard arc–length
strategies. The global description of the algorithm is always performed in terms of
displacement variables alone.

It is worth of noting that the more usual descriptions based on displacement
variables alone can not be the best choice, while potentially more efficient and robust
analysis algorithms can be obtained by directly solving the proximal point step
equations maintaining all the variables of the problems at the same level. With this aim
in the present work an approach similar to that presented in [4] for the evaluation of the
equilibrium path of elastoplastic structures is proposed for shakedown analysis. The
proximal point step equations are solved by using an Equality Constraints Sequential
Quadratic Programming (EC-SQP) formulation instead of using dual decomposition
with a great advantage in terms of both robustness and efficiency.

Each QP iteration of the algorithm is organized in two phases: (i) a suitable esti-
mate of the active constraints at the current iteration is performed for a fixed value of
the load multiplier and the displacements, solving a problem similar to that defined by
the return mapping process; (ii) the new estimates of the step unknowns are obtained
solving an equality constrained quadratic programming problem that retains only the
active constraints. The second phase requires only the solution of a linear system of
equations, and is far cheaper to solve than the complete QP problem arising from
standard SQP strategies. The algorithm only require few modifications of existing
codes that evaluate the equilibrium path of elastoplastic structures by means of path
following incremental iterative algorithms (SD-CPP). From the computational point
of view each iteration has almost the same computational cost as a standard SD-CPP
step in the case of a single constraint, and a smaller cost in the multiple constraints
case. Furthermore the QP problem is obtained on the basis of a consistent lineariza-
tion of all the equations, so allowing the iterations to naturally evolve towards the
solution. To improve the computational efficiency, the solution of each linear system
required by the analysis is performed by means of a Gauss elimination of the locally
defined quantities (stresses and plastic multipliers).

In order to validate the proposed method, the work presents a numerical experi-
mentation by analyzing some 2D test problems under plane stress condition in both
cases of fixed and variable loads. The numerical analyses are performed using the
mixed finite elements proposed in [1–3]. These elements, which are based on a
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three field interpolation of displacements, stresses and plastic multipliers, have been
adopted for their accuracy and performance properties both for elastic and elasto-
plastic analysis as required by shakedown problems. This makes possible to avoid
the use of two kinds of elements as done in [9, 11] one with a good elastic behaviour
to correctly evaluate the plastic shakedown multiplier and one with a good plas-
tic behaviour and free of volumetric locking phenomena to performs the nonlinear
analysis. The obtained results highlight the improvement in terms of robustness and
computational cost with respect to previous proposal [9, 11] based on dual decom-
position but also with respect to the use of interior point methods, i.e. the most
efficient methods for solving nonlinear convex programming problems, in all the
cases considered.

2 A Mathematical Programming Formulation
for the Shakedown Analysis

In the following the static shakedown theorem is rewritten in terms of the involved
finite element quantities and of the total stress, making possible a unified treatment
of shakedown and limit analysis. The chosen FEM format is based on the general
three field interpolation presented in [3] but any other finite element, such as, for
example, a standard compatible one based on Gauss integration points, can be cast
in the framework proposed by giving the appropriate meaning to parameters and
operators.

2.1 The FEM Discrete Equation for the Static
Shakedown Theorem

We consider an elastoplastic body Ω subjected to bulk load b and tractions t, that
can varying with the time inside a given load domain.

Using the three fields interpolation proposed in [2, 3] we assume that displacement
u[x], stress σ [x] and plastic multiplier γ [x] of a point x ∈ Ω are interpolated as

u[x] := N[x]de σ [x] := S[x]βe γ [x] := G[x]κe, (1)

where N[x], S[x] and G[x] are the matrices containing the interpolation functions
and de, βe and κe are the vectors collecting the finite element parameters.

As usual for mixed finite elements we assume inter-element continuity only for the
displacement field u, while σ and γ will be defined locally inside the element, i.e. βe
and κe are local variables which are discontinuous across the elements. Furthermore
the interpolation functions in G are assumed to be nonnegative allowing the condition
γ ≥ 0 to be easily expressed by making κe ≥ 0. From now on, vector inequality



180 G. Garcea et al.

will be considered in a componentwise fashion while we omit the dependence of the
quantities from x when clear from the context.

2.1.1 Equilibrium Equation

The interpolations introduced above allow to write the discrete form of the equilib-
rium equations as

Ae

{
QT

e βe − λpe

}
= 0 (2)

Ae being the standard assembling operator which takes into account the inter–element
continuity conditions on the displacement field and

Qe :=
∫

Ωe

ST DN, pe :=
∫

Ωe

NT b +
∫

∂�e

NT t (3)

are the element equilibrium operator and load vector while D is the continuum
compatibility differential operator, Ωe the element domain and ∂�e its boundary.
For the sake of the following discussion Eq. (2) can be rewritten as

QT β − λp = 0 (4)

where β and p denote the global vectors collecting all the stress parameters βe and
the applied loads pe, while QT the related global equilibrium matrix. From now on
a subscript e denotes the finite element description of a quantity.

2.1.2 The Elastic Envelope of the Stresses

We assume that the external actions p[t], variable with the time t , are expressed as
a combination of basic loads pi belonging to the admissible closed and convex load
domain

P :=
{

p[t] ≡
p∑

i=1

ai [t]pi : amin
i ≤ ai [t] ≤ amax

i

}
(5)

Denoting by β̂ i the elastic stress solution corresponding to pi , the elastic envelope Ŝ

Ŝ :=
{

β̂[t] ≡
p∑

i=1

ai [t]β̂i : amin
i ≤ ai [t] ≤ amax

i

}
(6)

defines the set of the elastic stresses β̂[t] produced by each load path contained in P.



An Efficient Algorithm for Shakedown Analysis … 181

By construction Ŝ and P are convex polytopes and each β̂[t] ∈ Ŝ can be expressed
as a convex combination of the Nv elastic envelope vertexes β̂

α
that can be usefully

referred to the reference stress β̂
0

so obtaining

β̂[t] = β̂
0 +

Nv∑
α=1

sαβ̂
α

sα ≥ 0
Nv∑

α=1

sα = 1 (7)

If the external loads increase by a real number λ, called load domain multiplier, the

elastic envelope becomes λŜ :=
{
λβ̂ : β̂ ∈ Ŝ

}
.

2.1.3 Plastic Admissibility for Shakedown Analysis

Following [2, 3] and due to the local nature of the stress interpolation, the plastic
admissibility condition is rewritten on the element, in a weak form, as

∫

Ωe

δγ φ[σ ] ≡ ΔκT
e Φe[βe] = 0 ∀δγ ≥ 0, (8)

where Φe[βe] := ∫
Ωe

GT φ[βe] and φ is the yield function. Equation (8) allows to
control plastic admissibility in the Ne element so that β will be plastically admissible
if

Φ[β] ≤ 0 ⇐⇒ Φe[βe] ≤ 0, ∀e = 1 . . . Ne . (9)

Finally it is useful to express the plastically admissible condition for all the stresses
contained in the amplified elastic envelope λŜ translated by β̄. Due to the convexity
of Φ and Ŝ this can be easily expressed in terms of the plastic admissibility of all the

α vertexes of the amplified elastic domain βα = λ(β̂
α + β̂

0
) + β̄ as

Φ[λβ̂ + β̄] ≤ 0, ∀β̂ ∈ Ŝ ⇐⇒ Φ[βα] ≤ 0, ∀α (10)

where, from now on, a Greek superscript denotes vertex quantities.

2.1.4 The Static Theorem in Discrete Format
and the Mathematical Programming Point of View

The Bleich–Melan static theorem states that a load domain multiplier λs will be safe if
there exists a time-independent self-equilibrated stress field β̄ so that each stress in the
amplified and translated domain λs Ŝ+{β̄} is plastically admissible. The shakedown
multiplier λa can be evaluated as the maximum of these safe multipliers. The static
theorem can be reformulated in terms of total stress, instead of self–equilibrated
ones, making possible a unified notation for shakedown and limit analysis, i.e.
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maximize λs

subject to QT β = λsp0

Φ[β + λs β̂
α] ≤ 0, α = 1 . . . Nv

(11)

with p0 ≡ QT β̂
0

and β ≡ β̄ + λs β̂
0
. When β̂

0 = 0 we have the classic form in
terms of the self–equilibrated stress. Furthermore, without any loss in generality, we

can set β̂
0

as a generic vertex of Ŝ so β becomes the total stress of this vertex. When
the external load domain collapses in a single point (amin

i = amax
i ) Eq. (11) directly

transform into the standard form of the static theorem of limit analysis.
From now on we denote with Φα[β, λ] ≡ Φ[β + λβ̂

α] the shakedown yield
function.

3 Shakedown Analysis Using Dual
Decomposition Methods

The mathematical programming problem in Eq. (11) can be solved using efficient
interior point algorithms [5, 14, 19, 20] specialized to the shakedown case. We will
now resume an alternative approach, already presented in [7, 9, 11] where further
details can be found, that will be the basis for the new proposal. The approach uses
the proximal point method to generate a convergent sequences of steps and a dual
decomposition strategy to solve each step.

3.1 The Proximal Point Method
and the Pseudo-elastoplastic Step

The proximal point method is applied to (11) by defining a sequences of subproblems
or steps by adding a quadratic positive term to the objective function, i.e.

maximize Δξ(n)λ(n) − 1

2
ΔβT HΔβ

subject to QT β(n) − λ(n)p0 = 0

Φ[β(n), λ(n)] ≤ 0

(12)

where the superscript (·)(n) will denote quantities evaluated in the nth step, the
symbol Δ(·) = (·)(n) − (·)(n−1) is the increment of a quantity from the previous
step and Δξ(n) > 0 is an assigned real positive number. To simplify the notation we
collected all Φα[β, λ] in the global vector Φ[β, λ] = {Φ1, . . . ,ΦNv}. Finally H is
the compliance matrix and is defined by the following equivalence
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∑
e

βT
e Heβe = βT Hβ with He :=

∫

Ωe

ST C−1S (13)

where C is the elastic matrix. Note how, due to the local nature of the stress inter-
polation, H has a block diagonal structure that couples only the finite element stress
parameters. The finite element will be, from now on, the local level of the analysis.

3.1.1 First Order Conditions

Introducing the dual multipliers Δd and Δκ associated to the equalities and inequal-
ities constraints of (12) respectively, the finite step equations are defined by the first
order conditions of the following Lagrangian L (n)

L (n) = Δξ(n)λ(n) − 1

2
ΔβT HΔβ + ΔdT (QT β(n) − λ(n)p0) − ΔκT Φ[β(n), λ(n)].

(14)
In order to simplify the notation the superscript (n) will be omitted from now on.

In particular from the stationary condition of (14) with respect to β and Δκ we
obtain the finite step form of the constitutive law, i.e. the plastic admissibility and
plastic consistence conditions for shakedown

{
rσ ≡ −HeΔβe + QeΔde − Ae[βe, λ]Δκe = 0

rμ ≡ Φe[βe, λ] ≤ 0, Δκe ≥ 0, Δκe
T Φe[βe, λ] = 0,

(15a)

where Ae[βe, λ] :=
(

∂Φe[βe,λ]
∂βe

)T
. In the fixed load cases Eq. (15a) coincide with

the backward-Euler integration of the elasto-plastic constitutive equations.
Due to the discontinuity of βe and κe across the elements Eq. (15a) are expressed

with respect to element quantities alone when Δde and λ are assigned. For this reason
they will be denoted, from now on, as local equations while βe and κe will be denoted
as local variables. Following [4] a task that uses only local variables and equations
will be said to be at the local level.

In the same fashion the stationary condition with respect to Δd and λ furnishes
the equilibrium equations and the normalization condition, coupling all the variables
of the problem and defining the global level of the analysis,

{
ru ≡ QT β − λp0 = 0

rλ ≡ Δξ − ΔdT p0 − ΔκT Φ,λ = 0
(15b)

where Φ,λ :=
(

∂Φ[β,λ]
∂λ

)
. Equation (15b) will be denoted, from now on, as global

equations while d and λ will be denoted as global variables.
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In the case of limit analysis Eq. (15a, 15b) exactly corresponds to a step of the arc-
length algorithm used to solve the incremental elastoplastic problem [7, 11]. Due to its
meaning in the case of fixed loads we call this kind of analysis pseudo elastoplastic.
Δd and Δκ assume the meaning of displacements and plastic multipliers of the
problem.

As for elastic perfectly plastic structures the limit load can be evaluated by recov-
ering the complete equilibrium path by means of path-following algorithms, in the
same fashion the skakedown multiplier can be obtained by evaluating a sequence of
states, z(n) := {λ(n),β(k), d(n), κ (n)}, obtained by solving a series of problems (12),
i.e. defining a pseudo-elastoplastic equilibrium curve [7]. In [9] it has been shown
that starting from the known elastic limit z(0), the sequence z(n) generated in this
way is safe in the sense of the static theorem and monotonously increasing in λ(n).
In the case λ(n) = λ(n−1) with Δd 	= 0, it is simple to shown that Δβ = 0 and we
have from (11) the convergence to the desired shakedown multiplier.

Finally note as the equation format reported in Eqs. (12) and (15a, 15b) is quite
general and similar expressions could be obtained using other finite elements. In
particular for a standard compatible finite element the local level coincides with
the Gauss point, βe becomes the Gauss point stress and κe the Gauss point plastic
multiplier, plastic admissibility and consistency are imposed at each Gauss point and
the operators consequently transform.

3.2 The Dual Decomposition Solution
of the Pseudo Elastoplastic Step

The similarity of Eq. (15a, 15b) with standard strain driven path-following elasto-
plastic analysis suggests that also the same method of solution can be used. This is
the approach followed in [7, 11] and it is based on an exact solution of the local
conditions in (15a) for an assigned value of Δde and Δλ, so expressing βe and κe

as implicit functions of the displacements and of the load multiplier. This step is
performed at the local level by using a return mapping by closest point projection
process as in the case of the standard incremental elastoplastic analysis. This can be
shown by noting that Eq. (15a) are the first order conditions of the following problem

⎧⎨
⎩

max
βe

βT
e QeΔde − 1

2
ΔβT

e HeΔβe,

subject to: Φe[βe, λ] ≤ 0.

(16)

where the number of constraints depends on the parameters used to interpolate γ ,
that is on the dimension of κe, and on the number of vertexes of the element elastic
envelope Ŝe. As Δde is constant with respect to the maximization, it is possible to
rewrite problem in (16) as
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⎧⎨
⎩

min
βe

1

2

(
βe − β∗

e

)T He
(
βe − β∗

e

)
,

subject to: Φe[βe, λ] ≤ 0.

(17)

that is the convex projection of the trial stress (or the elastic predictor) β∗
e , defined by

β∗
e = β(n−1)

e + H−1
e QeΔde, (18)

onto the elastic shakedown domain bounded by the convex function Φe[βe, λ]. From
the closest point projection (CPP) in Eq. (17) we have the stresses and the plastic
multipliers as a function of Δd and λ

β = β[z(n−1), Δd, λ], Δκ = Δκ[z(n−1), Δd, λ]

and of the known initial step quantities collected in z(n−1).
Omitting the dependence from z(n−1) the global Eq. (15b) can be rewritten, in

terms of Δd and λ, as

{
ru ≡ QT β[Δd, λ] − λp0 = 0

rλ ≡ Δξ − ΔdT p0 − Φ,T
λ Δκ[Δd, λ] = 0

(19)

If the nonlinear system (19) is solved by means of a Newton iteration as in [7, 9],
we obtain:

{
Δd j+1 = Δd j + ḋ,

Δλ j+1 = Δλ j + λ̇,
with

{
K j ḋ − λ̇y j = −r j

u,

−y j T
ḋ + λ̇ h j

λλ = −r j
λ ,

(20)

where K j ≡ ∂ru/∂d is the algorithmic tangent matrix while r j
λ and r j

u are the
residuals defined in Eq. (19) evaluated in (d j , λ j ) after performing the return mapping
process (17) to evaluate β[Δd j , λ j ] and Δκ[Δd j , λ j ], while

y j ≡ ∂ru

∂λ

∣∣∣∣
(λ j ,d j )

= ∂rλ

∂d

∣∣∣∣
(λ j ,d j )

h j
λλ ≡ ∂rλ

∂λ

∣∣∣∣
(λ j ,d j )

.

We have convergence to a new equilibrium point when the norm of r j
u become

sufficiently small, in this case we set z(n) = z j . We recall that the use of a modified
Newton method that uses the initial elastic stiffness matrix assures global, even if
simply linear, convergence [7].



186 G. Garcea et al.

3.3 The Optimization Point of View and the Motivation
for a New Strategy

The dual decomposition solution strategy of the proximal point step exactly coincides
in the fixed load case with the standard Strain Driven algorithms used in incremental
elasto-plasticity with the stresses evaluated by means of a return mapping by Closest
Point Projection scheme (SD-CPP). The reinterpretation previously described (see
also [4, 9]), allows to extend the use of classical elastoplastic algorithms to the
shakedown case.

The optimization point of view also makes simple to compare the previous
described strategy with other direct methods in the evaluation of the shakedown
multiplier. The dual decomposition, in fact, allows to split the optimization problem
in the small CPP subproblems (17) defined at the local level that allows to obtain the
dual function and in the solution of the global equations (19), that correspond to the
first order condition of the so evaluated dual function, by a Newton method. In this
way it is possible to simplify the solution of the optimization problem and a small
cost for each iteration is required. On the other hand, due to the decomposition, the
convergence when compared with interior point strategies, can be slow especially
when the elastic stiffness matrix is used.

In following section we propose a new formulation to solve the proximal point
step (12) that unlike the SD − CPP, attempts to use a consistent linearization of all
the equations and variables at the same time.

4 A New Solution Scheme for the Pseudo Elastoplastic Step

This section presents the new solution algorithm based on the application of the SQP
method to solve the mathematical programming problem in Eq. (12). By exploiting
the decomposition point of view we devised a strategy which only solve, at the
global level, a system of nonlinear equations similar to those presented in Eq. (20)
and which is characterized by minimal algorithmic differences but greater robustness
with respect to dual decomposition formulations.

4.1 The Linearized Equations for the Elastoplastic Step
and the Sequential Quadratic Programming (SQP)
Formulation

The starting point of the new algorithm is the linearization of the step equations (15a,
15b) with respect to all the involved variables, maintaining the full mixed format of
the problem. In what follows we will denote with z j = {κ j

e ,β
j
e , d j , λ j } the current,

known, estimate of the step solution z(n) and with z j+1 = z j + ż the new estimate
we are searching for. From the linearization of the local equations (15a) we obtain:
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{
−Het β̇e + Qeḋe − A j

e κ̇e − λ̇a j
λ = −r j

σ ,

Φe
j+1[β, λ] ≤ 0, Δκe

j+1 ≥ 0, (Δκe
j+1)T Φe

j+1 = 0.
∀e (21a)

where a j
λ = Ae,

j
λ Δκe

j a comma means derivatives with respect to the symbol that
follows and

Het ≡ He +
∑

k

Δκek
∂�ek

∂βe

∣∣∣∣
βe=β

j
e

, Φe
j+1 ≡ Φe

j + A j
e

T
β̇e + λ̇Φe

j ,λ

Δκ
j

ek and �ek are the kth components of Δκ
j
e and Φe

j respectively. The linearization
of the global finite step equation (4) gives:

{
QT β̇ − λ̇p0 = −r j

u

−ḋ
T

p0 − κ̇T Φ,
j
λ − a jT

λ β̇ − a j
λλλ̇ = −r j

λ

(21b)

where a j
λλ = (Δκ j )T Φ,λλ.

Equation (21a, 21b) could also be obtained has the first order condition of the
following j th QP subproblem obtained by applying the sequential quadratic pro-
gramming (SQP) approach to (15a, 15b).

max Δξλ̇ − β̇
T

HΔβ j − 1
2 λ̇2a j

λλ − λ̇β̇
T

a j
λ − 1

2 β̇
T

Het β̇

subj. r j
u + QT β̇ − λ̇p0 = 0

Φ j+1[β, λ] ≤ 0,

(22)

Equation (22) furnishes the new estimate z j+1 in the form

z j+1 = {λ j + λ̇,β j + β̇,Δd j+1,Δκ j+1}. (23)

4.2 The EC-SQP Formulation

A direct application of standard optimization algorithms to the solution of the QP
sub-problems defined in (22) can hardly be competitive with respect to the dual
decomposition approach because of the large number of degrees of freedom and
constraints. For this reason we use the equality constraint sequential quadratic pro-
gramming (EC-SQP) approach proposed in [4] for incremental elasto-plasticity to
which we remind for further details.

Each iteration of the EC-SQP approach consists of two phases: (i) estimation
of the active set of constraints; (ii) solution of an equality constrained quadratic
program that imposes the apparently active constraints and ignores the apparently
inactive ones.
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The idea is to identify the active inequality constraints, i.e. the components of
Φ

j+1
e for which equality holds, using information available at a point z̄ j+1 = z j + ˙̄z

near to z j+1 but which is less expensive to evaluate. Once the active set is known, the
solution of an equality constrained QP, requiring only the solution of a linear system
of equations, gives the new estimate z j+1. Moreover, by maintaining a pseudocom-
patible format in the solution of the linear system, a scheme similar to that presented
in Eq. (20) is obtained at global level.

4.2.1 The Detection of the Active Set of Constraints

The estimation of the active constraints is performed by advocating the decompo-
sition point of view, i.e. solving an optimization problem obtained by the original

ones (21a) for a fixed, properly assumed, value of the global variables: d̄
j+1 = d j

and λ̄ j+1 = λ j , i.e. for ḋ = 0 and λ̇ = 0 so obtaining from Eq. (21a)
{−Het

˙̄βe − A j
e ˙̄κe = −r j

σ ,

Φ̄
j+1
e ≤ 0, κ̄e

j+1 ≥ 0, (κ̄e
j+1)T Φ̄

j+1
e = 0.

∀e (24)

where the symbols with a bar denote the estimates of the new quantities. In particular
Eq. (24) is the first order conditions of the following QP problem:

⎧⎨
⎩

min
(β̇e)

: 1

2
( ˙̄βe)

T Het
˙̄βe + ( ˙̄βe)

T g j ,

subj.: A jT
e

˙̄βe + Φ
j
e ≤ 0,

∀e (25)

where g j = He(β
j
e − β∗

e) and β∗
e = β(n−1)

e + H−1
e QeΔd j

e . The decoupled QP
problems (25), have the same form as a standard CPP scheme, and it can be easily
solved at the local level by using the Goldfarb-Idnani active set method [11]. The
evaluation of the set of active constraints is then continuously updated with the
iterations and, if Δd j converges to Δd(n+1), the active set converges to that of the
nonlinear problem.

Letting β̄e
j+1 = β

j
e + ˙̄βe it is easy to show how problem (25) is also equivalent,

apart from an inessential constant in the objective function, to the following CPP
minimization

⎧⎪⎨
⎪⎩

min
(β̄e

j+1
)

: 1

2
(β̄e

j+1 − β tr
e )T Het (β̄e

j+1 − β tr
e ),

subject to: Φ̄
j+1
e ≤ 0,

∀e. (26)

which allows a formulation of the problem in terms of a predictor/corrector strategy,
i.e. the solution of problem (26) coincides with the trial stress defined as

β tr
e = β

j
e + H−1

et (QeΔd j − HeΔβ
j
e ),
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if Φe[β tr
e ] ≡ Φ

j
e + (A j

e )
T (β tr

e − β
j
e ) ≤ 0.

4.2.2 The Solution of the QP Equality Constraint Scheme

The second step of the algorithm consists in the solution of Eq. (21a, 21b) retaining,
as equalities, only the active constraints evaluated in the previous step. When the
active set is not void the solution is given by the following system of equations:

⎡
⎢⎢⎢⎢⎣

· A jT
e · Φ

j
e ,λ

−A j
e −Het Qe −a j

λ

· QT
e · −p0e

−(Φ
j
e ,λ )T −(a j

λ)
T −pT

0e −aλλ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

κ̇e

β̇e

ḋe

λ̇

⎤
⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

r j
μ

r j
σ

r j
u

r j
λ

⎤
⎥⎥⎥⎥⎥⎦

, z j+1 = z j + ż, (27)

where the further condition κ j+1 ≥ 0 needs to be imposed.
System (27) is easily solved by static condensation of the local defined quantities

obtaining at the global level the same format as system (20) with different meaning
of the operators. In particular, recalling that the QP scheme in (25) solves the first
two equations of (27) zeroing the global variables we obtain

⎧⎨
⎩

β̇e = ˙̄βe + H−1
et (Qeḋe − λ̇a j

λ)

κ̇e = ˙̄κe + W
(

A jT
e H−1

et (Qeḋe − λ̇a j
λ) + λ̇Φ

j
e ,λ

) (28)

where W =
[
AT

j H−1
et A j

]−1
. At the global level then we have to assemble the

condensed element contribution as

Ae

(
QT

e Et Qe

)
ḋ − λ̇y j = −Ae

(
r j

cu

)
, −(y j )T ḋe + hλλλ̇ = −r j

cλ, (29)

where the quantities in Eq. (29) are so defined

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Et = H−1
et − H−1

et A j
e WA jT

e H−1
et

y j = p0 + Ae
(
ŷ
)

r j
cu = r j

u + QT
e (r̂σ )

hλλ = −(Φ
j
e ,λ )T (WΦ

j
e ,λ − YT aλ) + aT

λ ŷ − aλλ

r j
cλ = r j

λ + (Φ
j
e ,λ )T (YT r j

σ + Wr j
μ) − (a j

λ)
T r̂σ
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being

Y = H−1
et A j

e W, ŷ = Et a
j
λ + YΦ

j
e ,λ , r̂σ = Et r j

σ − Yr j
μ

Note as Et has the same expression as the algorithmic tangent matrix evaluated by
dual decomposition methods. Also note as Et and Y are evaluated at each step of the
QP problem, by the optimization algorithm used. In the case of an element with zero
active constraints the solution is simply obtained deleting the inequality constraints
and so obtaining an elastic step:

κ
j+1
e = 0, β̇e = H−1

e Qeḋe, Et = H−1
e .

4.2.3 Comparison with SD-CPP Formulations

A comparison between the new EC-SQP and the SD-CPP methods can be useful at
this stage. With this aim it is useful to recast the j th iteration of SD-CPP method in
a format similar to that of the EC-SQP method as follows

Step 1 Obtain the values of β j and Δκ
j
e by solving the closest point projection

scheme in Eq. (17), that is by exactly solving Eq. (15a) with r j
μ = 0 and

r j
σ = 0 for the fixed, actual value, of the global variables d j and λ j .

Step 2 With the active set of constraints evaluted in the Step 1 solve the system (27)
to obtain the increment in the global variables ḋ and λ̇, as better described
in the follows.

The Step 2 is obtained by solving system (27) with the condition r j
μ = 0 and

r j
σ = 0 being zeroed by the and the active set obtained from previous step. We

presents the comparison in the more simple case of fixed loads (elasto-plasticity) but
similar conclusions apply to variable loads case. We obtain

⎡
⎢⎢⎣

· A jT
e · ·

−A j
e −Het Qe ·

· QT
e · −p0e

· · −pT
0e −aλλ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

κ̇e

β̇e
ḋe

λ̇

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

0
0
r j

u

r j
λ

⎤
⎥⎥⎦ , z j+1 = z j + ż, (30)

From the first two equations we obtain with same algebra

κ̇e = WA jT
e H−1

et Qeḋe, β̇e = Et Qeḋe (31a)

where Et and W and aλλ have the same expression as for the EC-SQP algorithm
previously described. From the global equation we obtain
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{
QT

e Et Qeḋe − λ̇p0e = −r j
u

−pT
0eḋe − aλλλ̇ = −r j

λ

(31b)

Eq. (31a, 31b) are the standard equation obtained with strain-driven strategies [18].
With this interpretation of the strain driven formulation it be clear that it evaluates

the active set of constraints at the iteration j +1 by exactly solving the local equation
for the value of the global unknown at the j th iteration. In our proposal we detect
the active set by the linearized value of the local equations for a fixed value of the
global equation at j then we solve the complete system in j + 1.

4.3 A Final Remark

In the large series of numerical tests performed, only partially reported in the next
section, the method has always shown an impressive robustness. In particular it was
possible to verify, in all numerical tests, how the convergence to the correct new
solution step z(n) is achieved even when the algorithm is initialized with a point z0

very distant from the final solution z(n), validating the choice of maintaining the
cheap estimation of the active set as proposed without any supplementary improving
strategy.

Finally, the adoption of a line search scheme can assure the global convergence
of the algorithm with a little computational extra-cost, see for example [15, 21] and
references therein.

5 Numerical Results

In order to evaluate the performance of the proposed algorithm, we propose some
numerical tests regarding 2D problems in plane stress conditions, under the action
of various kinds of loads and for von Mises materials.

To test the robustness of the new algorithm, for each test a series of equilibrium
or pseudo-equilibrium paths at increasing values of the first arc–length parameters
are evaluated. In particular, denoting by zE the elastic limit solution, that for the
shakedown is evaluated for the reference load p0, the analyses are performed for an
initial extrapolation evaluated as Δz(1) = α(1)zE , selected so that the component
of the displacements in a given point reaches a prescribed value. As the initial arc-
length parameter is evaluated as a function of the extrapolated displacements using
the second of Eq. (15b) we can force the analyses to perform large steps simply
by increasing α(1). The convergence to a new equilibrium point, in the sequel is
considered as achieved when the norm of the residuals is less than a given tolerance,
i.e. ‖ru‖+‖rσ ‖+‖rμ‖ ≤ toll, while the analysis is stopped when the displacement
component of a specified point reaches a prescribed value. For each new step the
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variables are initialized as z(n) = α(n)z(n−1) where α is selected as a function of the
difference between the number of iterations required to achieve convergence in the
previous step and the number of desired iterations, denoted with lpsd (see [10, 11]),
that is the strategy is adaptive. If the residual norm increases by more than 10 times
its first value the iterations are stopped and a failure in convergence is reported, that
is a false step. In this case the analysis restarts from the last evaluated equilibrium
point but using a half of the value of α(n) used in the previous iteration. After 15
consecutive false steps the analysis is stopped. A false step can also occur if we don’t
reach convergence after more than a prescribed number of iterations denoted as lpsm .

The following indicators are compared in order to highlight the efficiency and
the robustness of each nonlinear strategy: (I) the number of points in the evaluation
of the pseuso-equilibrium path, denoted as “stps”, the number of false steps due to
both failure or slow convergence are reported in brackets; (II) the total number of
the iterations required for each step to converge, denoted as “lps”.

Note as in the case of the SD-CPP algorithm a backtracking line search is adopted
in the solution of the global equations in order to also tackle with larger step sizes
while the analysis with the new EC-SQP algorithm is always performed without any
globalization technique. It is important to say that without the line search only in the
case of the smallest step size initialization the SD-CPP analysis is capable to perform
the analysis without failures for all the tests analyzed. With respect to the CPU time
this penalizes the SD-CPP iteration that, as shown in [4], is already more expensive
than the EC-SQP one.

The finite element used in the numerical tests was proposed in [3]. It is a four-node
element with a bi-linear interpolation of the displacement field and a 5-parameter
stress field interpolation which improves the in-plane bending behavior of the ele-
ment. In [3] several elements with different interpolations of the plastic multiplier
field were tested and among them we chose the more simple one, denoted as FC1, and
characterized by a constant interpolation of the plastic multiplier all over the element.

5.1 Description of the Test Problems

The first example regards a classical stress concentration test for a plate with a circular
hole subject to biaxial uniform loads on the free edges. The geometry, the material,
the applied loads and the mesh used in the analyses, are shown in Fig. 1. The test is
analyzed with respect to both the fixed load cases and the variable one. In particular
for the fixed load case the analysis is performed setting α1 = 1 and α2 = 1. For
the shakedown case the load domain is evaluated by assuming 0.6 ≤ α1 ≤ 1 and
0.6 ≤ α2 ≤ 1.

The second test problem is the symmetric continuous beam depicted in Fig. 2
where all the data relative to the material and the applied loads are reported. The
analyses are performed with respect to fixed and variable loads. In particular the limit
analysis is performed assuming α1 = 0.6 and α2 = 1.0 while for the shakedown
case the load domain is defined by by assuming 0.6 ≤ α1 ≤ 1 and 0.6 ≤ α2 ≤ 1.
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Fig. 1 Plate with a circular hole: problem data and meshes used in the analysis
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Fig. 2 Symmetric continuous beam: problem data and meshes used in the analysis

The collapse and shakedown multipliers are compared with those obtained by
several authors as reported for example in [11, 25].

5.1.1 Limit Analysis

Table 1 reports the results obtained with the SD-CPP and EC-SQP algorithms for
all the assigned initial increments of the observed displacement parameter, ranging
from 2e − 6 to 1e − 2 and on the basis of two different meshes. The analyses are
stopped when the max value 1e − 2 is reached or exceeded. As can be observed
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Table 1 Plate with circular hole, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 15(−) 51 17(1) 52 2e − 6

7(−) 29 14(4) 49 1e − 4

4(1) 17 14(7) 49 1e − 3

5(5) 18 12(9) 45 1e − 2

EC-SQP 24(−) 69 26(−) 75 2e − 6

12(−) 42 13(−) 46 1e − 4

5(−) 23 5(−) 25 1e − 3

1(−) 14 1(−) 20 1e − 2

Limit analysis report, vA,max = 5e − 3, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λc = 0.9096 FC1(Mesh1); λc = 0.9011 FC1(Mesh2)

Table 2 A symmetric continuous beam, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 33(1) 96 33(−) 101 2e − 4

22(−) 74 22(−) 77 5e − 3

17(2) 61 16(1) 59 5e − 2

19(6) 66 18(6) 63 1

EC-SQP 33(−) 99 33(−) 100 2e − 4

23(−) 80 21(−) 77 5e − 3

14(−) 52 13(−) 53 5e − 2

1(−) 11 1(−) 13 1

Limit analysis report, vA,max = 1e − 1, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λc = 5.585 FC1(Mesh1); λc = 5.535 FC1(Mesh2)

the robustness of the algorithm proposed is good showing a smooth decrease in the
number of required steps and iterations according to the assigned step size. For the
greatest initial step size it performs the evaluation of the collapse state with a single
step and without any loss in accuracy. On the contrary the standard SD-CPP algorithm
is adversely affected by the increase in the step size registering occurrences of step
failure already from the second size of the first step increment.

Table 2 reports the results obtained for the second test problem. Also in this case
two different meshes have been used. The assigned initial increments of the observed
displacement parameter range from 2e − 4 to 1. The analysis is stopped when the
max value 1 is reached or exceeded. Also in this case for the greatest initial step size
the evaluation of the collapse state is obtained in a single step.
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5.1.2 Shakedown Analysis

Tables 3 and 4 report the results obtained for the shakedown analysis for the plate with
a hole and the continuous symmetric beam, respectively. The analysis are performed
with the same assigned initial increments of the observed displacement parameter of
the corresponding limit analysis case.

Also for the shakedown case the SD-CPP algorithm it is unable to deals with
large step sizes while the EC-SQP algorithm treats large step increment effectively.
In particular for both the test problems and for the two finite element grids the
analyses obtain the correct multipliers in a single step.

Table 3 Plate with circular hole, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 17(1) 61 21(2) 74 2e − 6

14(4) 58 16(4) 61 1e − 4

14(8) 51 14(7) 55 1e − 3

15(11) 57 17(12) 64 1e − 2

EC-SQP 25(−) 80 28(−) 90 2e − 6

13(−) 52 14(−) 58 1e − 4

6(−) 37 6(−) 38 1e − 3

1(−) 18 1(−) 21 1e − 2

Shakedown analysis report, vA,max = 5e − 3, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λc = 0.8946 FC1(Mesh1); λc = 0.8838 FC1(Mesh2)

Table 4 A symmetric continuous beam, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 27(−) 93 26(−) 89 2e − 4

21(2) 76 20(2) 75 5e − 3

28(5) 72 19(5) 74 5e − 2

19(8) 68 18(8) 68 5e − 1

EC-SQP 28(−) 102 26(−) 100 2e − 4

15(−) 60 14(−) 64 5e − 3

12(−) 62 12(−) 58 5e − 2

1(−) 27 1(−) 20 5e − 1

Shakedown analysis report, vA,max = 1e − 1, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λa = 3.294 FC1(Mesh1); λa = 3.264 FC1(Mesh2)
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6 Conclusions

In this paper the method presented in [4], for the incremental elastoplastic analysis
has been extended to shakedown. The method evaluate the shakedown multipliers
by a sequences of pseudo elastoplastic steps obtained by applying a proximal point
method to the Melan static theorem. Each step is solved by means of an EC-SQP that
retains, at each iteration, all the variables of the problems. In the solution process
the set of active constraints is obtained by solving a simple quadratic programming
problem which has the same structure and variables of a standard return mapping by
closest point projection scheme, i.e. it is decoupled and it can be solved at a local
level (finite element, Gauss point). The solution of the equality constraint problem
is performed by means of a static condensation of the locally defined variables,
stress and plastic multiplier parameters, for which the inter element continuity is not
required so obtaining, at the global level, a pseudo-compatible scheme of analysis
that has the same structure as classic path following arc-length methods.

The numerical results are performed adopting the finite element interpolation
proposed in [3]. This finite element uses a three field interpolation with a good
accuracy with respect to both the elastic and elastoplastic response. This makes the
proposed numerical framework particularly suitable for shakedown analysis. The
numerical results show the improvement in robustness and efficiency with respect to
previous proposals.

The presentation and the application are limited to the perfect plasticity case but
its extension to other more complex cases is possible [20].
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