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Foreword

Themethods of plastic analysis result in designs based on strength and have proven to
be very useful in solving many engineering problems. Limit states design is in
widespread use in the design of civil structures, where it has been instrumental in
improving the efficient use of materials. One of the early proponents of plastic
analysis, Lord Baker, came to consider elastic solutions to be an improper design tool
for structural frames after stresses measured in frames of real buildings bore little
relation to those calculated using elastic analysis. The analysis of shakedown is more
limited to specialized applications, typically involving components that operate at
high temperature with periodic cooling cycles, such as pressurized pipes and vessels
in elevated temperature service. Components of high temperature boilers or reactors,
and coke drums are examples where operational limits may be imposed by the
excessive deformation (ratcheting) that occurs when shakedown is not achieved.

One of the first tentative applications of elements of plastic design dates back
almost four centuries to Galileo’s calculation of the collapse load of a cantilever
beam. Throughout the next centuries, there were further isolated applications of
various fundamental ideas of plastic analysis. A true analysis of plastic failure
comprising the concept of plastic slip and a yield condition is found in Coulomb’s
study of earth-retaining walls for military fortifications at the end of the eighteenth
century. The nineteenth and the first half of the twentieth centuries saw the
development of the criteria of plastic failure and the associated flow rules, along
with applications to design such as the theory of slip lines.

The theory of plasticity and associated static and kinematic theorems were
developed in the twentieth century starting in the 1930s when Gvozdev proved the
static and kinematic theorems of limit analysis. At about the same time, Melan
derived the static shakedown theorem, which includes the static theorem of limit
analysis as a special case. Curiously, this fact was not realized until quite a while
later. The fundamental theorems of plasticity, such as the consistency condition of
plastic flow and the principle of maximum dissipation, became available in the
1940–1950s through the work of Horne, Greenberg, Hodge and Prager. The theory
is developed the furthest for elastic perfectly plastic material behaviour.
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One of the earliest and most seminal comprehensive contributions is due to
Koiter. He provided a clear formulation of the lower bound (static) and upper bound
(kinematic) shakedown theorems, which gave a necessary and sufficient condition
for the energy dissipation under cyclic loading to remain bounded over time. That
situation is referred to as (elastic) shakedown and is equivalent to stating that the
structure approaches purely elastic cycling. A later extension of the concept of
shakedown includes the regime of alternating plasticity where the deformation is
bounded over time, but the plastic dissipation is not. The formal extension of the
shakedown theorems to this case is still the subject of active research. Of great
practical value is the path-independent property of the plastic limit state and of the
shakedown limit state, i.e. these limit states are independent of the order and history
of load application, although the plastic deformation on the way to a limit state is
generally path dependent. Direct methods use these concepts to arrive at a fully
plastic state. Their use for simple problems is well established, but their general-
ization to arbitrary loading and general plastic constitutive behaviour still represent
an area of very fertile research.

The papers collected in this volume are concerned with the plastic limit and
shakedown solutions obtained through direct methods. Three paths may be fol-
lowed when solving limit states or shakedown problems to obtain the desired load
level at limit collapse or at the shakedown boundary. Firstly, a solution may be
achieved by solving the full set of continuum mechanics equations along with the
constitutive equations of nonlinear elastic-plastic material behaviour. Direct
methods, on the other hand may obtain statically admissible stress fields or kine-
matically admissible deformation fields and then improve the solution by iteration.
Another type of direct methods formulates and solves a (typically nonlinear)
optimization problem based on the upper or lower bound theorem.

In the recent past, plastic solutions for practical design applications have been
obtained mostly by finite element software, which solves the full set of continuum
mechanics equations. Such solutions are computationally relatively expensive when
the objective is to obtain a plastic collapse or shakedown limit state. Direct
methods, on the other hand, solve only the part of the problem that is required to
approach the desired limit state. Particularly for shakedown problems, which
require cyclic analysis when the full load history is applied, direct solutions can be
much more efficient than the solutions of the full continuum mechanics problem.
Tantalizingly, it has been difficult to derive direct methods that can consistently
solve all types of problems more efficiently. The promise of direct methods has thus
not yet been fully realized. There are efficient methods for special problems and
there are general optimization algorithms that could solve any well-posed problem,
but which have often been computationally inefficient. For this reason, direct
methods continue to be an area of active research.

The present collection showcases important results from the latest research on
direct methods of limit and shakedown analysis that were presented at the Fourth
International Workshop on Direct Methods (DM2013), held at the Mediterranea
University of Reggio Calabria, Italy, in October 2013. The papers in this volume

vi Foreword



will be valuable to any readers working in the field of direct methods who want to
get an appreciation of recent advances, as well as any others interested in getting an
overview of active research topics in this field.

Mississauga, Canada Wolf Reinhardt
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Preface

Over the last decades powerful numerical methods have been developed to carry
out one of the oldest and most important tasks of design engineers, which is to
determine the load carrying capacity of structures and structural elements. Partic-
ularly attractive among these methods are the so-called “Direct Methods”,
embracing Limit—and Shakedown Analysis because they allow rapid and direct
access to the requested information in mathematically constructive manners without
cumbersome step-by-step computation.

This collection of papers is devoted to this subject. It is the outcome of a
workshop hosted by the University of Reggio Calabria in October 2013, in line with
previous workshops at RWTH-Aachen University, University of Technology and
Sciences of Lille, and National Technical University of Athens and give an
excellent insight into the state of the art in this broad and growing field of research.

The individual contributions stem namely from the areas of new numerical
developments rendering the methods more attractive for industrial design, exten-
sions of the general methodology to new horizons of application, probabilistic
approaches and specific technological applications. The papers are arranged in the
order as presented in the workshop.

It might be worth noting that the success of the workshops and the growing
interest in Direct Methods in the scientific community were motivations to create
the association IADiMe (http://www.iadime.unirc.it/) as a platform for exchange of
ideas, advocating scientific achievements and not least, promotion of young sci-
entists working in this field. It is open for all interested researchers and engineers.

The editors warmly thank all the scientists who have contributed by their out-
standing papers to the quality of this edition.

—We hope you enjoy reading it!

Reggio Calabria, August 2014 Paolo Fuschi
Reggio Calabria Aurora Angela Pisano
Aachen Dieter Weichert
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A Stress-Based Variational Model for Ductile
Porous Materials and Its Extension
Accounting for Lode Angle Effects

Long Cheng, Vincent Monchiet, Géry de Saxcé and Djimédo Kondo

Abstract The aim of this work is to derive by homogenization techniques a
macroscopic plastic model for porous materials with vonMises matrix. In contrast to
the Gurson’s well known kinematical approach [19] applied to a hollow sphere, the
proposed study proceeds by means of a statical limit analysis procedure, for which
a suitable trial stress field is proposed. In the first part, the formulation of the stress
variational model is developed, by considering the Hill’s variational principle, and
introducing a Lagrange’s multiplier to solve the resulting saddle-point minimization
problem. This methodology being opposite to the Gurson’s kinematical approach,
complements the limit analysis methods for porous materials. The second part is
devoted to an application of the proposed approach to the porous materials with von
Mises matrix. To this end, an axisymmetric model is first studied by adopting a suit-
able trial stress field, which is composed by a heterogeneous part corresponding to the
exact solution of hydrostatic loading and a homogeneous part for capturing the shear
effects.We derive closed form formulawhich depends not only on the first and second
invariant of the macroscopic stress tensor but also on the sign of the third invariant
of the stress deviator. Moreover, an extension of the above axisymmetric model to
the general case of non-axisymmetric loadings by introducing a more general trial
stress field is studied. The established new yield locus explicitly depends on the effect
of the third invariant (equivalently the Lode angle). The obtained results are fully
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2 L. Cheng et al.

discussed and compared to existing models, available numerical data and to Finite
Elements results obtained from cell calculation carried out during the present study.

1 Introduction

More than 30years ago, Gurson [19] proposed a kinematically-based limit analysis
approach of a hollow sphere and hollow cylinder having a von Mises rigid plastic
matrix. This approach delivered an upper bound of the macroscopic criterion which
depends on the pressure and on the von Mises equivalent stress. Several extensions
of Gurson’s model have been further proposed in the literature, the probably most
important developments being those accounting for void shape effects [15, 16, 25].
Plastic anisotropy was treated by Benzerga and Besson [2], Monchiet et al. [26].
Other extensions take into account the plastic compressibility of the matrix through
associated Drucker-Prager model for applications to polymer and cohesive geoma-
terials [1, 18, 21, 22, 24].

In Gurson’s footsteps, all the above limit analysis-based models of ductile porous
media are obtained by using kinematical approach which requires the choice of a
suitable trial velocity field. On the other hand, few works have been made to develop
a theoretical dual stress based model. One may mention the pioneering study of [17],
even it has been phenomenologically inspired. A statical limit analysis attempt has
been first done for ductile porous media by Sun and Wang [31] who developed a
semi-analytical approach which aimed to deliver a lower bound criterion. Despite
the interest of the above approaches by Sun and Wang [31], the resulting criteria are
in fact obtained by some fitting procedure based on numerical computations.

From a more general point of view, it must be noted that, although the direct and
accurate knowledge of the stress field is of great interest in plasticity due to the fact
that the yield criterion is often expressed in terms of stress components, the main
reason which probably explains the preference in past studies of the kinematical
approach which leads to upper bounds is technical: the dissipation function is non
smooth but only for null plastic strains. As it is generally the case for limit analysis
of microporous ductile materials, the reference cell (the hollow sphere in the present
study) is completely plastified at limit state and the dissipation functional is smooth,
differentiable with respect to the trial velocity field parameters. And as it is well
known in duality theory, the more a functional is smooth, the more its dual one is
non smooth. It is exactly what occurs in plasticity where the stress functional is much
more difficult to manage due to its non smoothness concentrated in the satisfaction
of the yield criterion.

The principal aim of this study is to face this difficulty and to open a new
way—alternative and complementary to Gurson like models—to build macroscopic
yield criteria for ductile porous materials thanks to a stress model leading to a
macroscopic criterion. The developed approach also enters in the framework of limit
analysis, which is a general method to determine the plastic collapse of structures
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under proportional loading [30]. The variational formulation of the lower bound the-
orem is based on Hill’s functional [20] of which we present a specialized version
adapted to the homogenization techniques by applying it to the hollow sphere model.
The lower bound is conserved only if the trial stress field is statically and plastically
admissible. This condition is very difficult to strictly satisfy in a hollow sphere. In
order to obtain a full analytical model, the key idea is to satisfy only the equilib-
rium equations, relaxing the plastic criterion with Lagrange’s multipliers. Moreover,
the stress condition at the void boundary is also difficult to satisfy by simple trial
stress fields capturing the shear effects that break the central symmetry; it will be
also relaxed. A priori, the final picture could seem too rough but, although the trial
stress field is rather simple with a strict number of field parameters able to fit the
hydrostatic and deviatoric macro-stress components, the present approach provides
a rather accurate model, as it will be shown. Indeed, the lower bound will be lost
but, but by comparison to accurate numerical data, the interest and the validity of the
new results will be demonstrated.

2 Formulation of the Statical Limit Analysis
for Porous Materials

In many theories of Mechanics, one of underlying mathematical structure consists
in a constitutive law, that is a graph M ⊂ X × Y from a linear space X into its dual
one Y . The dual pairing between these spaces will be denoted

X × Y : (x, y) �→ 〈x, y〉 (1)

where 〈x, y〉 is the inner product of the dual variable fields x and y, which can be, for
instance, the strain rate field d and stress field σ.

Although general, the mathematical structure of graph is poverty-stricken for
applications to the science of materials and the continuummechanics. A fruitful idea
is representing a constitutive law by a numerical function. The advantage is double:

• the constitutive laws can be classified in a convenient manner for theoretical and
numerical purposes,

• but—maybe above all—powerful variational methods can be developed for the
solving of boundary value problems by building functional from these functions.

In this work, we focus our attention on the constitutive laws of associated plasticity,
which can be derived from the framework of classic limit analysis.1

1 It should be noted here that an extended limit analysis approach aiming at solving the problem of
non associated plasticity has already been proposed in literature [10] (see also [4, 7–9, 11]).
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2.1 Associated Plasticity and Superpotentials

The theory of associated plasticity is concerned by a class of materials (typically
metals and alloys) for which:

• the elastic domain is a smooth, convex and closed.
• the plastic strain rate is an exterior normal to the yield surface.

In mechanics, this class of materials can be represented with a generalized model
based on the existence of two convex superpotentials conjugating one to the other
π(d) and φ(σ) satisfying Fenchels inequality [13]:

∀(d′,σ′), π(d′) + φ(σ′) ≥ 〈
d′,σ′〉 (2)

A couple (d,σ) is called extremal when variables are related by the constitutive law.
So equality is achieved in (2):

π(d) + φ(σ) = 〈d,σ〉 (3)

Thematerials generated by superpotentials are called generalized standards mate-
rials. For instance, the associated plasticity is obtained by taking φ as the indicator
function of the elastic domain K (equal to zero when the stress field is statically
admissible and +∞ otherwise) and by considering the normal flow rule

d ∈ ∂ φ (σ) (4)

Its Fenchel’s conjugate
π(d) = sup

σ∈K
(d : σ) (5)

is called the support function of K . It is positively homogeneous of order 1. The
converse law reads

σ ∈ ∂ π (d)

and the elastic domain K is nothing else ∂ π (0). Taking into account (3), the normal
yielding rule (4) is satisfied if and only if

σ ∈ K and π(d) = d : σ (6)

It is worthy to recall that the kinematical limit analysis theory is derived from Eq. (6)
simultaneously by considering the homogenization technique. While for the statical
limit analysis in this study, the start point must be the relation (4), which is nothing
else Hill’s inequality

∀σ′ ∈ K, (σ′ − σ) : d ≤ 0 (7)

Let us take a step back and recall a basic concept of convex analysis, the subdif-
ferential of the superpotential φ at a point σ which is the (possibly empty) set:

∂φ(σ) = {
d | ∀σ′, φ(σ′) − φ(σ) ≥ (σ′ − σ) : d

}
. (8)
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Formore details on convex analysis, the reader is referred for instance to [12, 27, 29].
Since σ ∈ K entails φ(σ) = 0, the inequality in (8) degenerates into (7) when σ′ ∈ K
and is true otherwise, the left hand member being infinite while the left hand one is
finite. Hence, the indicator function of the elastic domain can be perfectly expressed
as introducing the semicontinuous and convex indicator function:

φ(σ) =
{
0 if σ ∈ K
+∞ otherwise

}
, (9)

which will be considered for the statical limit analysis formulation in the following
sections.

2.2 Stress-Based Variational Approach: Application
of the Statical Limit Analysis to Porous Materials

In the perspective of limit analysis application to ductile porous materials, let us
consider a reference unit volume or macro-element Ω composed of a void ω and
matrixΩM = Ω − ω. The macro-elementΩ is bounded by surface ∂Ω and the void
ω by ∂ω. The matrix is made of a rigid plastic material with a yield criterion:

F(σ) ≤ 0, (10)

where F is a lower semicontinuous and convex function of the cauchy stress tensor
σ. As classically, the normality law is assumed:

d = ε̇p ∂F

∂σ
, (11)

where d is the strain rate tensor, while ε̇p is the equivalent plastic strain rate.
It is worth to note again that, equivalently, the strain rate and stress tensor satisfy

Hill’s inequality (7), with the set of plastically admissible stress fields:

Sp = {σ s.t. σ ∈ K or F(σ) ≤ 0} (12)

and the stress fields must be statically admissible being elements of the following set:

Sa = {σ s.t. div σ = 0 in Ω, σ · n = 0 on ∂ω, σ = 0 in ω}.

where n is the unit outward normal vector.
The set of kinematical admissible velocity fields classically reads:

Ka = {v s.t. v(x) = D · x on ∂Ω}.

And, the strain rate field, symmetric part of the velocity gradient, is d(v) = gradsv.
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From the classical Hill lemma, the macroscopic stress Σ and macroscopic strain
rate D are obtained as volume averages of their microscopic counterparts σ and d:

Σ = 1

| Ω |
∫

Ω

σ dV , D = 1

| Ω |
∫

Ω

d dV . (13)

Let us state Hill’s variational principal [20]:

Among the statically admissible stress fields, the true one makes the functional

∫

ΩM

φ(σ) dV −
∫

Sv

(σ · n) · vdS, (14)

an absolute minimum.

In (14), v is the imposed velocity on the part Sv of the boundary of ΩM . Adapted
to the context of the present homogenization problem, e.g. the problem of a hollow
sphere subjected to uniform strain rate boundary conditions v(x) = D · x on its
boundary ∂Ω , this principle requires to introduce the the following average functional
for the hollow sphere:

Φ = min
σ∈Sa

(
1

| Ω |
∫

ΩM

φ(σ) dV − D : Σ

)
, (15)

where Σ depends on the stress field σ through:

Σ = 1

| Ω |
∫

∂Ω

(σ n) ⊗ x dS,

or equivalently (13), provided that the stress field σ is statically admissible.
Indeed, let v andσ be the velocity and stress fields at limit state. Taking into account

Hill’s lemma and d(v) ∈ ∂φ(σ), it holds for any statically admissible fields σ′:

1

| Ω |
∫

ΩM

(φ(σ′) − φ(σ) − (σ′ − σ) : d((v)) dV ≥ 0,

whichproves that the limit stress fieldσ realizes theminimumof the functional among
all the statically admissible stress fields σ′. Defining the set of licit stress fields:

Sl = {σ ∈ Sa s.t. σ ∈ Sp a.e. in ΩM}, (16)

let us notice that if σ is licit, the value of the functional in (15) is finite, infinite
otherwise. The minimum being finite, it is realized only for licit fields. Because φ
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vanishes almost everywhere for the licit fields, the above variational principle (15)
is equivalent to the following one:

min
σ∈Sl

(−D : Σ) , (17)

The limit analysis approach consists in finding non trivial solutions qualified as fail-
ure mechanisms. It is expected that they exist only under an equality condition on Σ

that can be interpreted as the equation of the macroscopic yield surface.
In the same spirit, as in the work of [18], a first approximation consists in relax-

ing the yield criterion (10). Introducing Lagrange’s multiplier field x �→ Λ̇(x), this
constrained minimization problem is transformed into an equivalent saddle-point
problem:

max
Λ̇≥0

min
σ∈Sa

(
L (σ, Λ̇) = 1

| Ω |
∫

ΩM

Λ̇F(σ) dV − D : Σ

)
,

We perform a new approximation by imposing Lagrange’s multiplier field to be
uniform in ΩM :

max
Λ̇≥0

min
σ∈Sa

(
L (σ, Λ̇) = Λ̇

1

| Ω |
∫

ΩM

F(σ) dV − D : Σ

)
. (18)

that is equivalent to minimize the functional Φ under the following condition:

1

| Ω |
∫

ΩM

F(σ) dV = 0. (19)

Satisfying the condition (10) only in an average sense (Eq.19) but not locally
anywhere in ΩM is a strong approximation but required here in order to make the
calculation possible. Theminimumprinciple allows then to obtain the “best” solution
within the framework imposed by the adopted approximations. Hence, a stress vari-
ational macroscopic model (which will be called SVM in the following) can be
obtained from Eq. (19). Additionally, it should be emphasized that this model could
be seen as a quasi-lower bound due to the adoption of the relaxed licit stress fields
which appears as an uncontrollable approximation in the Hill’s variational principle
(15). Note that Gurson’s kinematically-based model is a true upper bound, all the
approximation that it had required being controllable.

The final and crucial step, detailed in the next section, is the choice of a trial stress
field depending on some parameters. After expressing it with respect to the invariants
of the macro-stress, the macroscopic loading function is:

F (Σ) = 1

| Ω |
∫

ΩM

F(σ(Σ)) dV = 0. (20)
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Thus, the saddle-point problem (18) reads:

max
Λ̇≥0

min
Σ

(
L (Σ, Λ̇) = Λ̇F (Σ) − D : Σ

)
,

Performing the variation with respect to Λ̇ provides the macroscopic yield condition:

F (Σ) ≤ 0,

and with respect to Σ gives the macroscopic plastic flow rule:

D = Λ̇
∂F

∂Σ
(Σ). (21)

where Λ̇ turns out then to be the plastic multiplier and must satisfy Kuhn-Tucker
conditions:

• Λ̇ = 0 if F < 0, or if F = 0 and Ḟ < 0
• Λ̇ > 0 if F = 0 and Ḟ > 0

3 Stress-Based Variational Approach of Ductile Porous
Materials in Axisymmetric Loading Case [6]

Let us consider a hollow sphere (Fig. 1), made up of a spherical void embedded in
a homothetic matrix of a rigid-plastic isotropic and homogeneous material with von
Mises model:

F(σ) = σe(σ) − σ0 ≤ 0,

a

b

r

ΩM ω

v = D · x 

Fig. 1 Hollow sphere model
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where σe =
√

3
2 s : s is the von Mises equivalent stress defined from the deviatoric

part s of the stress tensor σ. As usually, the quantity σ0 > 0 represents the yield stress
of the matrix material. The inner and outer radii of the hollow sphere are respectively
denoted by a and b, giving the void volume fraction f = (a/b)3 < 1.

3.1 Proposed Axisymmetric Trial Stress Field

In this subsection we first consider the hollow sphere model subjected to an axisym-
metric loading. Let us propose a trial stress field as the sum of the following fields:

• A heterogeneous part corresponding to the exact field under isotropic loadings,
which in spherical coordinates with orthonormal frame {er, eφ, eθ } reads:

σ(1) = −A0

(
ln

(a

r

)
1 − 1

2
(eθ ⊗ eθ + eφ ⊗ eφ)

)
, (22)

where A0 is a constant parameter.
• A homogeneous deviatoric part which is taken in the following form, in the
cylindrical coordinates with orthonormal frame {eρ, eφ, ez}:

σ(2) = A1(eρ ⊗ eρ + eφ ⊗ eφ − 2ez ⊗ ez), (23)

where 1 is the second order unit tensor, while A1 is also constant parameter.
Consequently, in the matrix ΩM , the resultant two parameters-based trial stress

field in the matrix can be written as:

σ = σ(1) + σ(2), (24)

Note here that a vanishing stress field is considered in the voidω. Moreover, it should
be point out that the choice of the above stress field, defined by (24), together with
(22) and (23), implies that

Σvoid
m = 1

| Ω |
∫

ω

σm dV = 1

3 | Ω |
∫

∂ω

x · (σ n) dS = 0. (25)

where σm = tr(σ)/3 is the microscopic mean stress. Consequently, Eq. (25) appears
as a relaxed formof the void boundary condition, forwhich it is difficult to be satisfied
by such a simple stress field, and then the statically variational principle (17) must
then be considered with the following relaxed set of licit stress fields:

Sr = {σ s.t. div σ = 0, σ ∈ Sp inΩM , σ = 0 inω andΣvoid
m = 0}. (26)

at the place of Sl defined by (16).
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In order to determine the stress-based variational model, it is convenient to trans-
form both two parts of the trial stress field (24) in the same coordinates. For instance,
in cylindrical coordinates, (24) can be derived as:

σ =
[(

− ln
(a

r

)
+ 1

2
cos2 θ

)
A0 + A1

] (
eρ ⊗ eρ

)

+
[(

− ln
(a

r

)
+ 1

2

)
A0 + A1

] (
eφ ⊗ eφ

)

+
[(

− ln
(a

r

)
+ 1

2
sin2 θ

)
A0 − 2A1

]
(ez ⊗ ez)

− A0

2
sin θ cos θ

(
eρ ⊗ ez + ez ⊗ eρ

)

3.2 Macroscopic Yield Criterion Under Axisymmetric Loading

It is then readily to calculate the microscopic equivalent stress:

σe =
√(

A0

2

)2

+ 3

2
A0A1

(
3 cos2 θ − 1

) + (3A1)
2 (27)

and it follows that the macroscopic stress tensor takes the form:

Σ = −A0 ln f

3
1 + (1 − f ) A1(eρ ⊗ eρ + eφ ⊗ eφ − 2ez ⊗ ez), (28)

It can be calculated from Eq. (28):

Σm = −A0 ln f

3
, Σe = 3(1 − f ) | A1 |, J3 = −2 (1 − f )3A3

1. (29)

where Σm, Σe and J3 are the macroscopic mean stress, the macroscopic equivalent
stress and the macroscopic stress deviator, respectively. For simplification, let us
introduce the following stress quantities:

Σ̃e = Σe

1 − f
, Σ̃m = − 3Σm

2 ln f
, J̃3 = J3

(1 − f )3
, (30)

The microscopic equivalent stress (27) can be recast into:

σe =
√

Σ̃2
e + Σ̃2

m − sign(J3)Σ̃eΣ̃m(3 cos2 θ − 1),

in which sign(J3) is the sign of the macroscopic third invariant of stress tensor
obtained from:

sign(J3) = 27

2

J̃3

Σ̃3
e

= −sign(A1).
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The macroscopic yield condition (20) can be then calculated as:

1

2

π∫

0

√
Σ̃2

e + Σ̃2
m − sign(J3)Σ̃eΣ̃m(3 cos2 θ − 1) sin θ dθ = σ0 (31)

Consequently, the macroscopic yield criterion takes the final form:

F (Σ, f ) =
√

Σ̃2
e + Σ̃2

m J (ζ ) − σ0 ≤ 0, (32)

where:

ζ = −sign(J3)
2Σ̃eΣ̃m

Σ̃2
e + Σ̃2

m

= −sign(J3)
2T̃

1 + T̃2
(33)

with

T̃ = Σ̃m

Σ̃e
= −3(1 − f )

2lnf
T , (34)

T being the stress triaxiality classically defined as T = Σm

Σe
.

It should be noted that ζ depends not only on the sign of the third invariant of the
stress deviator but also on that of the stress triaxiality, and on the porosity.

The function J (ζ ) in Eq. (32) is then defined as:

J (ζ ) = 1

2

π∫

0

√

1 + 1

2
(3 cos2 θ − 1)ζ sin θ dθ. (35)

and has the following closed-form expression:

• for −1 ≤ ζ ≤ 0:

J (ζ ) = 1

2

(
√
1 + ζ + 2 − ζ√

6 | ζ | arcsin
√
3 | ζ |
2 − ζ

)

, (36)

• for 0 ≤ ζ ≤ 1:

J (ζ ) = 1

2

(
√
1 + ζ + 2 − ζ√

6ζ
ln

√
3ζ + √

2(1 + ζ )

2 − ζ
+

√
6

12

(2 − ζ ) ln(2 − ζ )√
ζ

)

.

(37)

Eq. (32) together with (36) and (37) constitute a stress-based variational yield func-
tion (noted as SVM) for ductile porous material of which the matrix obeys the von
Mises criterion. It is clearly shown that this macroscopic criterion depends not only
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on Σm and Σe, but also on the sign of the third invariant sign(J3). This kind of
dependence has been clearly noted in [3] in the context of the Gurson-like kinemat-
ical approach.

3.3 Flow Rule and Porosity Evolution Under Axisymmetric
Loading

According to the SVM criterion (32), it is interesting to derive the macroscopic flow
rule giving the plastic deformation from normality rule:

De = Λ̇
∂F

∂Σe
= Λ̇

⎡

⎣ J (ζ )Σe

(1 − f )2
√

Σ̃2
e + Σ̃2

m

− κsign(J3)
dJ (ζ )

dζ

Σm

√
Σ̃2

e + Σ̃2
m

4 (ln f )2 Σ2
e + 9 (1 − f )2 Σ2

m

⎤

⎦

Dm = 1

3
Λ̇

∂F

∂Σm
= Λ̇

⎡

⎣ 3J (ζ )Σm

4(ln f )2
√

Σ̃2
e + Σ̃2

m

+ κ

3
sign(J3)

dJ (ζ )

dζ

Σe

√
Σ̃2

e + Σ̃2
m

4 (ln f )2 Σ2
e + 9 (1 − f )2 Σ2

m

⎤

⎦

where Λ̇ is the plastic multiplier and

κ = 12 (1 − f ) ln f
[
4 (ln f )2 − 9 (1 − f )2 T2

]

4 (ln f )2 + 9 (1 − f )2 T2
(38)

while the expression of dJ (ζ )/dζ can be developed for −1 ≤ ζ ≤ 0 as:

dJ (ζ )

dζ
= |ζ | − 1

4 |ζ | √1 + ζ
− |ζ | − 2

4 |ζ | √6 |ζ | arcsin
(√

3 |ζ |
2 − ζ

)

(39)

and for 0 ≤ ζ ≤ 1 as:

dJ (ζ )

dζ
= 1

4
√
1 + ζ

−
√
6

24ζ 3/2 (2 + ζ ) ln

√
3ζ + √

2 (1 + ζ )

2 − ζ

−
√
6

48
√

ζ

[
2 + ζ

ζ
ln (2 − ζ ) + 2

]
+ 1

12

3
√
1 + ζ (2 + ζ ) + √

6ζ (4 + ζ )

ζ
√
6ζ (1 + ζ ) + 2ζ (1 + ζ )
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In fact, the macroscopic flow rule can be recast into the following form:

De = Λ̇

1 − f

[
J (ζ )

√
1 + T̃2

− 2sign(J3)
dJ (ζ )

dζ

T̃(T̃2 − 1)

(T̃2 + 1)
3
2

]

(40)

Dm = − Λ̇

2 ln f

[
J (ζ )T̃
√
1 + T̃2

+ 2sign(J3)
dJ (ζ )

dζ

T̃2 − 1

(T̃2 + 1)
3
2

]

(41)

It can be obviously found that the macroscopic yield rule (40) and (41) obtained from
the stress-based variational approach under axisymmetric loading case depends only
on the sign of third invariant of the stress deviator and on the the stress triaxiality.

Finally, the void growth equation can be also derived as classically from the mass
balance equation, ḟ = 3 (1 − f ) Dm, which can be suitably rewritten in the form:

ḟ

De
= 3 (1 − f )

Dm

De
(42)

Consequently, the void growth is sensitive not only to stress triaxiality but also to the
sign of J3.

For completeness, we provide in Appendix (Sect. 6) the illustration and validation
of the stress variational model from the comparison with the numerical computations
and with the available numerical bounds in literature.

4 Extension to a Load Depended Stress Variational Model

In this section, we aim at deriving a new stress variational model for ductile porous
media with a non-axisymmetric trial stress field. A macroscopic criterion depending
not only on the macroscopic mean and equivalent stresses (Σm and Σe), but also on
the third invariant of the stress deviator J3 (or Lode angle θL) will be expressed, while
in the Sect. 3.1 only the sign of J3 was taken into account under the axisymmetric
loading case.

4.1 Proposed Non-axisymmetric Trial Stress Field

Owing to the central symmetry of the hollow sphere model, we propose a trial non-
axisymmetric trial stress field, which contains two part as follows,

• The sameheterogeneous part corresponding to the exact solution under pure hydro-
static loadings as expressed by Eq. (22) in Sect. 3.1.

• A homogeneous part which is non axisymmetric and taken for capturing the shear
effect:

σ(2) = B, trB = 0 (43)
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Hence, the final trial stress field in the matrix can be written as

σ = σ(1) + σ(2) (44)

which turns to be null in the void ω.
It follows that the non-axisymmetric macroscopic stress field read:

Σ = −1

3
A ln f · 1 + (1 − f )B (45)

Next, let us compute that in mechanics, there are three invariants for defining the
plastic limit state. From (45) and (43), they can be respectively calculated:

• Macroscopic mean stress,

Σm = −1

3
A ln f (46)

• Macroscopic equivalent stress,

Σe = (1 − f ) Beq (47)

where Beq is the equivalent quantity associated to the deviator B (or microscopic
stress deviator of σ(2)):

Beq =
√
3

2
B : B (48)

• Third invariant of the macroscopic stress deviator,

J3 = (1 − f )3 det(B) (49)

For convenience, let us introduce the stress based quantities:

Σ̃m = − 3Σm

2 ln f
= A

2
, Σ̃eq = Beq = Σe

1 − f
, J̃3 = J3

(1 − f )3
(50)

from which, the macroscopic Lode angle θL can be defined as:

cos(3θL) = 27J̃3

2Σ̃3
eq

= 27J3
2Σ3

e
, 0 ≤ θL ≤ 60◦ (51)

4.2 Macroscopic Yield Criterion Under
Non-axisymmetric Loading

From Eqs. (22), (43) and (44) the deviator s of the local stress field can be written as:

s = s(1) + s(2) = s(1) + B (52)
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where s(1) is the deviator calculated from (22). Hence, the equivalent stress can be
obtained from:

σe =
√
3

2

[
s(1) : s(1) + 2s(1) : s(2) + s(2) : s(2)

]
(53)

It can be calculated from (52) and (53) that

s(1) : s(1) = A2

6
, s(1) : s(2) = −A

2
B̃, s(2) : s(2) = 2

3
B2

eq (54)

for which expression of B̃ is determined in the following.
Indeed, in order to compute the stress quantity B̃ in spherical coordinates, let us

first express the principal stress tensor ofB in cartesian coordinates with orthonormal
frame {ex, ey, ez}:

B = B1(ex ⊗ ex − ez ⊗ ez) + B2(ey ⊗ ey − ez ⊗ ez), (55)

for which the components can be expressed (without loss of generality) in the form:

B1 = −Σe

3
cos(θL) + Σe√

3
sin(θL), B2 = −Σe

3
cos(θL) − Σe√

3
sin(θL) (56)

Consequently, one can then reexpress B in spherical coordinates; it follows immedi-
ately that

B̃ = 1

1 − f

[
Σe

3
cos(θL)(3 cos2(θ) − 1) + Σe√

3
sin(θL) sin2(θ) cos(2φ)

]
(57)

where θ and φ are the polar angle and azimuthal one in spherical coordinates system.
As a result, the microscopic equivalent stress (53) can be written as

σe =
√

A2

4
− 3A

2
B̃ + B2

eq (58)

Taking into account (46), (47) and (54), (58) can be recast in the form:

σe =
√

Σ̃2
m − 3Σ̃mB̃ + Σ̃2

e =
√

9Σ2
m

4 ln2 f
+ 9ΣmΣL

2(1 − f ) ln f
+ Σ2

e

(1 − f )2
(59)

where ΣL is the macroscopic counterpart of B̃; it reads:

ΣL = (1 − f )B̃ = Σe

3
cos(θL)(3 cos2(θ) − 1) + Σe√

3
sin(θL) sin2(θ) cos(2φ) (60)
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Hence, the local von Mises yield criterion can be expressed as

F(σ(Σ)) = σe − σ0 =
√

Σ̃2
m + Σ̃2

e − 3Σ̃mΣL

1 − f
− σ0 ≤ 0 (61)

Let us recall that for obtaining the macroscopic criterion from (20), one need to
integrate (61) over thematrix. However, due to the presence of the azimuth angle φ in
the expression ofΣL (60), there is no closed form solution. In order to overcome this
difficulty, a simple idea consists in performing a Taylor series expansion (around 0)
till the third order, this leads to the following approximation:

σe =
√

Σ̃2
m + Σ̃2

e ·
√

1 − 3Σ̃mΣL

(1 − f )(Σ̃2
m + Σ̃2

e )

σe �
√

Σ̃2
m + Σ̃2

e ·
[

1 − 3Σ̃mΣL

2(1 − f )(Σ̃2
m + Σ̃2

e )

− 9Σ̃2
mΣ2

L

8(1 − f )2(Σ̃2
m + Σ̃2

e )2
− 27Σ̃3

mΣ3
L

16(1 − f )3(Σ̃2
m + Σ̃2

e )3

]

Next, the final integration includes the computation of the following integrals:

1

4π

∫

S(r)

ΣLdS = 0

1

4π

∫

S(r)

Σ2
LdS = 4Σ2

e

45

1

4π

∫

S(r)

Σ3
LdS = 16Σ3

e

945
cos(θL)(4 cos2(θL) − 3)

Finally, from (20), the macroscopic criterion is obtained as:

F � D

(
1 − C2Σ2

e

90D4 + C3Σ3
e

945D6 cos(θL)(4 cos2(θL) − 3)

)
− σ0 ≤ 0 (62)

where we have denoted C and D the following functions of Σ

D(Σ) =
√

Σ̃2
m + Σ̃2

e

=
√

9Σ2
m

4 ln2 f
+ Σ2

e

(1 − f )2
, C(Σ) = − 3Σ̃m

1 − f
= 9Σm

2(1 − f ) ln f
(63)
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It should be underlined that the established criterion (62) depends not only on the
the macroscopic mean stress and equivalent stress, but also explicitly on the Lode
angle (or the third invariant of the stress deviator).

4.3 Macroscopic Flow Rule Under
Non-axisymmetric Loading

We aim now at deriving the plastic strain rate from the normality rule. Unlike the
conventional modeling, the three invariants of the macroscopic criterion (62) are
taken into account. Not only the mean strain rate Dm and the equivalent one De have
to be computed, but also the contribution DIII related to the third invariant of deviator
J3 will be provided. It is worthy to interpret that DIII can indicated the influence of
the Lode angle upon the π -plane of principal stress space to the macroscopic plastic
flow rule. Let us first define the macroscopic stress,

ΣIII = 3
√

J3 (64)

Hence, the dissipation power Π can be written as

Π = D : Σ = 3ΣmDm + ΣeDe + ΣIII DIII (65)

Moreover, considering the macroscopic criterion (62), the macroscopic strain rate
can be obtained from the associated flow rule

De = Λ̇
∂F3D

∂Σe
, Dm = 1

3
Λ̇

∂F3D

∂Σm
, DIII = Λ̇

∂F3D

∂ΣIII
. (66)

It follows that De, Dm and DIII can be expressed in explicit forms:

De = Λ̇

[
∂D

∂Σe
− C2

90

2DΣe − 3 ∂D
∂Σe

Σ2
e

D4

− C3J3
70

(
5

D6

∂D

∂Σe
(
729J23
Σ6

e
− 3) − 6

D5

729J23
Σ7

e

)]

(67)

Dm = 1

3
Λ̇

[
∂D

∂Σm
− Σ2

e

90
· 2CD ∂C

∂Σm
− 3C2 ∂D

∂Σm

D4

+ J3
70

(
729J23
Σ6

e
− 3

) (
3C2D2 ∂C

∂Σm
− 5D4 ∂D

∂Σm

D7

)]

(68)

DIII = Λ̇

[
C3

70D5

(
729J23
Σ6

e
− 1

)

J
− 2

3
3

]

(69)
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where

∂C

∂Σm
= 9

2(1 − f ) ln f
,

∂D

∂Σm
= 9Σm

2D ln2 f
,

∂D

∂Σe
= 2Σe

D(1 − f )2

Finally, the plastic void growth rate can be obtained from the mass balance equa-
tion. It expression can be obtained from (42) by taking into account the plastic flow
rule (67) and (68) and eliminating the plastic multiplier Λ̇. It obviously shows that
the void growth rate depends on the third invariant of the stress deviator J3 (or the
Lode angle θL).

4.4 Illustration of the Macroscopic Yield Criterion and Void
Growth Under Non-axisymmetric Loading

We provide in the subsection the illustration of the established criterion (62) and its
comparison with Gurson model and the stress-based variational model (SVM) under
axisymmetric loading provided in Sect. 3.1. It is worthy to note again that the later
one has been derived from a closed-form formulation. A value of porosity f = 0.01
are adopted for the later illustration and comparisons.

First, five yield loci obtained from (62) are illustrated on Fig. 2 with different
values of Lode angle: θL = 0◦, 15◦, 30◦, 45◦ and 60◦, while the first and the last ones
are corresponding to (but not equivalent to) the macroscopic model (32) obtained
from the axisymmetric trial stress field (see Fig. 3). It can be observed that the yield
surfaces obtained from other values of the Lode angle are absolutely between the
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f=0.01

Fig. 2 Illustrations of the yield surfaces obtained from the new established criterion SVM3D (62)
with five values of Lode angle: θL = 0◦, 15◦, 30◦, 45◦ and 60◦. Porosity: f = 0.01
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Fig. 3 Comparison between the yield surfaces obtained from the established criterion SVM3D
(62) with the closed form criterion of stress-based variational model (SVM(+) and SVM(−)) (32)
and the Gurson criterion [19]. Porosity: f = 0.01
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Fig. 4 Evolution of porosity as function of the stress triaxiality for initial porosity f = 0.01 with
three values of Lode angle: θL = 0◦, 30◦ and 60◦

above two ones. Consequently, it can be concluded that the yield surface displays a
slight asymmetry due to the value of Lode angle (or due to the value of third invariant).

Figure4 illustrates the evolution of porosity given as function of stress triaxiality
T = Σm

Σe
for the case f = 0.01. It can be observed that, the ones with axisymmtric

loadings (θL = 0 and 60◦) give two extremal values of the void evolution for a fixed
value of triaxiality, while for another case with non axisymmetric state (θL = 30◦)
is exactly between the two extremal ones. Slight differences due to the Lode angle
(or the third invariant of stress deviator) can be observed.
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5 Conclusion

In this study, we have proposed a stress-based variational approach of ductile porous
materials in the framework of Limit Analysis. This has been done by applying
homogenization theory combinedwith the statical limit analysis approach. The stress
variational model under axisymmetric loading and the one under non-axisymmetric
loading, fully described in the work, takes advantage of Hill’s variational principle
for which relaxed licit stress fields have been adopted. The established results clearly
provide expressions of the statically-based macroscopic criteria. Due to the relaxed
internal boundary condition resulting from the chosen trial stress fields, the criterion
could be seen only as a quasi-lower bound. An interesting feature of the established
criterion is its dependence not only on the two stress invariants Σm and Σe, but
also on the third invariant of the stress deviator (or on the Lode angle); this leads to
specific asymmetries of the macroscopic criterion.

The results derived from the obtained criterion are fully assessed bymeans of com-
parison with existing analytical criteria, with available numerical bounds and finally
with our Finite Elements results. This has allowed to demonstrate the interest of the
new theoretical results. For completeness, we also provide voids growth equations
which clearly show the effects of the third invariant in addition to that of the stress
triaxiality. This topic of the effect of stress states on ductile fracture is a growing and
is deserving attention in several recent studies: see for instance [14, 23, 28].

6 Appendix: Illustration and Validation for the Macroscopic
Model Under Axisymmetric Loading

Due to assumptions on the stress fields which have been introduced for the analytical
derivation, the new criterion SVM (32) could be seen just as a quasi-lower bound.
However, it still preserves the exact solution of the hollow sphere subjected to a
hydrostatic loading, Σm/σ0 = −2/3ln(f ), and leads to the same expression of the
limit pure shear load as that given by the Gurson criterion,Σe/σ0 = 1− f . Moreover,
asmentioned before, due to the presence of the third invariant J3 in the SVMcriterion,
the yield surface exhibits an asymmetry about the axis Σm = 0. For instance, the
yield surfaces with two values of porosity f = 0.01 and f = 0.064 are deliberately
plotted on Fig. 5 for negative and positive Σm. It is noted that the SVM criterion
presents some relative small differences with the Gurson one, the surfaces predicted
by SVM being strictly “below” the Gurson’s ones, simultaneously coincident with
them for hydrostatic loading (exact result) and pure deviatoric one. Finally, the slight
asymmetry of the SVM yield surfaces can also be observed on Fig. 5, with the nota-
tions of SVM(+) and SVM(−) for the yield surfaces corresponding to J3 > 0 and
J3 < 0, respectively (Fig. 6).

Noticeable difference with Gurson criterion is observed for small porosities. This
can be explained by that in the context of the SVM, the observed differencemay found
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its origin in the inaccuracy resulting from the relaxation of the yield condition in the
matrix, this condition being enforced only in the mean. For small porosities, large
plastic strain heterogeneities may occur in the vicinity of the cavities and the above
procedure consisting to relax the yield condition should be inaccurate. It is clear that
the proposed model can be improved by considering a more refined admissible stress
field able to avoid such procedure.

Next, the yield surfaces obtained by means of the stress variational approach
will be compared with Finite Element Method (FEM) solutions obtained during the
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present study. The computations are carried out by means of ABAQUS/Standard
software and a user subroutine MPC (Multi-Points Constraints). The main reason
for which we need to enforce MPC conditions in the code is that we have to impose
the velocity field v from v = D · x (on the external boundary of the hollow sphere)
such that the constraint of constant macroscopic stress triaxiality (T = Σm/Σe) be
fulfilled. In practice, as in [18], this is done by applying a constant macroscopic
stress ratio Σρ/Σz corresponding to the desired Σm/Σe. Note that the implementa-
tion of this procedure is the one that is already described in [5] for the study of voids
interaction and coalescence.

The comparisons between the surfaces obtained from the SVM, the Gurson’s
model and the FEM solutions are illustrated on Fig. 7 only for the first quadrant (the
slight asymmetry of the SVM surface is disregarded) and for the relative smaller
porosity f = 0.01. We can observe that in this cases, the FEM solutions are almost
between the upper bound (Gurson’s model) and the proposed yield criterion (SVM).
This fact shows that the SVM could be seemed as a quasi lower bound for the porous
materials which have relatively small values of porosity, especially for porous metal
materials.

Moreover, Fig. 8 displays the comparisons between the predictions of the SVM
criterion and the numerical bounds for f = 0.01. It should be noted that, even the
FEMsolution is between the numerical bounds, the yield surface of SVM is generally
below the numerical LB, except for the loadings with high values of stress triaxiality
T = Σm/Σe for which it interestingly lies between the two bounds and coincides
with the exact value of the hydrostatic loading.
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Fig. 7 Comparison between the yield surfaces obtained from the SVM (32), the Gurson criterion
[19] and the FEM solution. Porosity: 0.01
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Fig. 9 Evolution of porosity as function of the stress triaxiality for initial porosity f = 0.01.
Comparison between SVM predictions and that of Gurson model

Finally, Fig. 9 illustrates the evolution of porosity f = 0.01 given as function of
stress triaxiality for three values of initial porosity. It is noted that despite the few
influence of the sign of third invariant on the macroscopic criterion, a noticeable
effect is noted for the porosity variation. The results are also compared with that
predicted by the Gurson model. Clear differences are observed, particularly for high
stress triaxialities for which the Gurson model is known to overestimate the variation
of the porosity.
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Limit Analysis and Macroscopic Strength
of Porous Materials with Coulomb Matrix

Franck Pastor, Djimedo Kondo and Joseph Pastor

Abstract The paper is devoted to the numerical Limit Analysis of a hollow
spheroidal model with a Coulomb solid matrix. In a first part the hollow spher-
oid model is presented, together with its axisymmetric FEM discretization and its
mechanical position. Then, after an adaptation of a previous static code, an original
mixed (but fully kinematic) approach dedicated to the axisymmetric problem was
elaborated with a specific quadratic velocity field associated to the triangular finite
element. Despite the less good conditioning inherent to the axisymmetric modeliza-
tion, the final conic mixed code appears very efficient, allowing to take into account
numerical meshes highly refined. After a first validation in the case of spherical cav-
ities and isotropic loadings, for which the exact solution is known, numerical bounds
of the macroscopic strength are provided for both cases of spherical and spheroidal
voids. Effects of the friction angle as well as that of the void aspect ratio are fully
illustrated.

1 Introduction

Focused to the axisymmetric problem, the present paper aims at responding to
two purposes. First it generalizes the linear programming formulations of the limit
analysis (LA) in the axisymmetric case for Coulomb materials of [22, 31]: this is
partlymotivated by recent papers about this subject that only give, in fact, estimates of
the resulting bounds, as recently pointed out in [26]. The second purpose deals with
the determination of the macroscopic plasticity criterion of the porous Coulomb
material with spheroidal voids, never investigated up to now, on the basis of the
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Gurson-like hollow spheroid problem. To overcome the conditioning difficulties of
the classic upper bound (or kinematic) approach for solving this problem, a new
axisymetric mixed formulation is presented which preserves the rigorous kinematic
character of the resulting solutions. This study was also motivated by the recent
results about porous materials with Drucker-Prager matrices in [18]; in this paper
the corresponding kinematic mixed approach has allowed—with very much lower
computation times—significative improvements of the upper bounds obtained by
previous fully 3D numerical methods.

The famous Gurson plasticity criterion [9] is based on the consideration of a
hollow von Mises sphere or cylinder in the framework of the Limit Analysis (LA)
kinematic approach. Recent studies were devoted to porousmaterials with aDrucker-
Prager matrix and spherical voids ([8, 11, 28], etc.). Even in this relatively simple
case of spherical voids, there is no theoretical attempt to micromechanically derive
a macroscopic criterion for the Coulomb porous material. This is undoubtedly due
to difficulties inherent to the Coulomb criterion which involves all the three stress
invariants.

Several extensions of the Gurson model taking into account void shape effects
have been also proposed in order to solve various practical cases (see for exam-
ple [5–7, 15, 16]). Up to our knowledge, similar theoretical studies with pressure-
sensitive matrices and non-spherical voids do not exist in the literature: clearly, in
this case of spheroidal voids also, there is a strong need of an appropriate research
effort to obtain efficient estimates.

On the other hand, using finite element discretizations, both static and kinematic
methods of LA have been elaborated for Gurson’s problems with cylindrical cavities
([4, 23, 27]). In [30] theGurson criterion (thenwith a vonMisesmatrix) is shown tobe
relevant for materials with spherical voids by using the same tools and an new three-
dimensional numerical model. Using also the hollow sphere model, a recent paper
[19] was devoted to spherically porous materials with pressure-sensitive matrices
obeying the Drucker-Prager, Mises-Schleicher and Green criteria. On the other hand,
in the case of a von Mises matrix, these numerical studies have been extended to
take into account the void shape effects by considering a central spheroid void in a
matrix with a confocal boundary [21]. They concluded on the relevance of the criteria
proposed by the above mentioned studies of Gologanu and Leblond, at least for the
investigated porosity cases. Very recently, as mentioned before, these approaches
have been extended to the hollow spheroid problem with a Drucker-Prager matrix in
[18]. They provided very original bounds which are expected to be used as reference
results for validation of future theoretical investigations.

Therefore, the second purpose of the present paper is concerned with providing
lower/upper bound results to be used as reference values for forthcoming attempts
to determine approximate criteria for porous Coulomb materials in the framework
of limit analysis (LA) applied to the model of the hollow sphere or spheroid. Indeed,
these numerical approaches provide rigorous bounds (a posteriori controllable) to
the macroscopic criterion. Moreover, due to the selected projection approach, the
direction of the kinematically admissible (macroscopic) strain rates can be easily
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obtained as the normal to the kinematic approach in the projection plane, since the
homogenized material complies with the associated flow law.

First, we briefly present the hollow spheroid problem and its formulation in terms
of LA. Then, we recall the basis of the LA static and mixed methods, and the corre-
sponding expressions for the Coulomb material necessary for obtaining the bounds,
or to assess them by post-analysis of the optimal fields. The next step presents the
ad hoc extended static approach, and details the new formulation of the mixed (but
rigorously kinematic) method, in the axisymmetric case for the Coulomb problem.
Let us note that it is the first time that the LAmixed approach is applied to an axisym-
metric finite element problem with this frictional material. After a validation on the
hollow sphere problem under isotropic loading whose the exact solution is known,
we finally provide the results of the axisymmetric tests for two values of the friction
angle of the Coulomb criterion and three aspect ratios of the cavity. A comparison
with Drucker-Prager results of [18] is also given, in order to point out the differences
of the two porous material criteria, all porous Coulomb test exhibiting corners, not
the Drucker-Prager ones.

2 The Hollow Spheroid Model

The hollow spheroid model is made up of a spheroidal cavity embedded in a confocal
spheroidal cell. The solid matrix is a Coulomb material, homogeneous and isotropic.
Figure1 presents the geometric model, where the given aspect ratio a1/b1 and the
porosity f allow to determine the parameters (a2 and b2) of the confocal spheroidal
boundary. Let us consider first the three-dimensional point of view, and note Σ

and D the macroscopic stress and strain rate tensors. These quantities are related to
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Fig. 1 The hollow spheroidmodel and its FEMaxisymmetric discretization (a1/b1 = 0.5, f = 0.1)
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the microscopic fields by the averages over the model of volume V :

Σij = 1

V

∫

V

σij dV , Dij = 1

2V

∫

∂V

(uinj + ujni) dS, (1)

where u denotes the velocity vector and n the normal vector to the boundary ∂V of
the model.

Under the uniform strain rate boundary conditions, i.e. ui = Dijxj (where x rep-
resents the position vector), on the external boundary, the virtual dissipated power
Ptot = VΣijDij can be written as follows:

Ptot = V Q · q, (2)

where the loading vector Q and the generalized velocity q here are defined as:

Q1 = Σm = 1

3

(
Σx + Σy + Σz

)
, Q2 = Σx + Σy

2
− Σz,

Q3 =
√
3

2

(
Σx − Σy

)
, Q4 = Σyz, Q5 = Σzx, Q6 = Σxy;

q1 = Dx + Dy + Dz, q2 = 2

3

(
Dx + Dy

2
− Dz

)
, q3 = 1√

3

(
Dx − Dy

)
,

q4 = 2Dyz, q5 = 2Dzx, q6 = 2Dxy.

From the matrix isotropy and the spheroidal geometry of the model, the result-
ing material is transversally isotropic around the axis z. Hereafter is investigated
the macroscopic criterion g(Σ) in the (Oxyz) anisotropy frame of Fig. 1. We
search the projection of g(Σ) in the (Q1, Q2) plane by optimizing Q2 for fixed
Q1 = Σm, other stress components defined in (2) being free. Consequently,
∂g

∂Σij
= 0 = 2Dij for i �= j, and ∂g

∂Q3
= 0 = q3 since the macroscopic material

complies with the normality rule. Loadings can then be restricted to principal strain
rates D as well as Σ ((Oxyz) is a transverse isotropy frame), with Dx = Dy and
Σx = Σy. Finally, the problem involves only two non-zero loading parameters,
Q1 and Q2.

Then, from the symmetries of the whole model, the quarter of the meridian
plane of the hollow spheroid is meshed into triangular elements as shown in Fig. 1,
right. Note that the macroscopic equivalent stress Σeq is, in the present case, linked
to Q2 by:

Σeq =
√
3

2
Σ ′ : Σ ′ = |Q2| = |Σx − Σz| = |Σρ − Σz|, (3)
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where Σ ′ is the deviatoric part of Σ . In this case we can substitute in the above
relations Σρ to Σx and to Σy (Σz unchanged), and Dρ to Dx and Dy. The loading
conditions ui = Dijxj here become uρ = Dρρ, uz = Dzz.

To obtain the static approach, we have first extended the axisymmetric finite ele-
ment code and the process defined in [24]. For the kinematic approach, we have
elaborated an original axisymmetric version of the mixed kinematic approach based
on specific quadratic velocities in the triangular elements. These ad hoc formulations
avoids the possible singularities of the axisymmetric equations in order to preserve
the rigorous bounding character of the solutions. Hereafter, we present the static
process and we detail the new axisymmetric mixed method, and their application
to the investigated problem. The final resulting graphs are presented for the usual
values of the friction angle φ = 10◦ and 20◦, and for the aspect factor a1/b1 = 1,
0.5 and 0.2.

3 LA Methods and Coulomb Criterion

The main goal of limit analysis is the determination of the locus of the limit loads
which corresponds to the macroscopic plasticity criterion in the present micro-macro
problem. Classically, the limit loads can be determined by using the static (or lower
bound) and the kinematic (or upper bound) methods.

3.1 The Static Method

The first one is the static method which is in terms of stresses and leads to a lower
bound to the limit loads. A stress field is said admissible if it is statically admis-
sible (SA), and plastically admissible (PA), i.e. verifying the (convex) plasticity
criterion f (σ ); a loading vector Q(σ ) is admissible if the corresponding σ is admis-
sible. Let us denote K the set of the admisible loading vectors. The final problem
reads:

Qlim = (Qd
1 , . . . , λ0Qd

i , . . . , Qd
n); (4.i)

λ0 = max
{
λ , Q(σ ) = (Qd

1 , . . . , λQd
i , . . . , Qd

n)
}

(4.ii)

where the stress tensors σ are admissible, and Qd is a fixed admissible loading
vector. In fact, Relation (4.i and 4.ii) holds when all admissible fields σ can be
taken into account, which is not the case in general. Then, by varying the direc-
tion of Qd , a set of admissible Q, located near or on ∂K , is obtained: the small-
est convex envelope of the corresponding points in K is an inner approach of the
boundary ∂K , i.e. a lower bound to the exact macroscopic criterion investigated
here.
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3.2 The Mixed Kinematic Method

On the other hand, a so-called mixed kinematic formulation was pioneered by
Anderheggen and Knopfel [1] for finite element continuous velocity and a linearized
von Mises criterion, resulting in linear programming (LP) problems. An extension
to the discontinuous velocity case, based on the assumption that the LP duality
properties remain valid in non-linear programming, was proposed in [10]. A general
extension to discontinuous velocity fields and convex optimization was successfully
experienced in [17, 20] for homogeneous von Mises and Gurson materials in plane
strain. This mixed formulation is here modified as:

max
Q, σ, T ′ F = Vqd · Q (5.i)

s.t.
∫

V

d : σ dV +
∫

Sd

[u] · T ′ dS = Vq(u) · Q ∀ KA u, (5.ii)

f (σ ) ≤ 0, fnt(T
′) ≤ 0, (5.iii)

where d is the strain rate tensor, σ the stress tensor, Sd the union of the velocity
discontinuity surfaces, T ′ the stress vector on these surfaces and fnt(T ′) the projec-
tion of f (σ ′) on the Mohr plane associated to the discontinuity surface of normal n.
In (5.i–5.iii) the velocity field umust be kinematically admissible (KA), i.e. piecewise
continuous with bounded discontinuities [u] and verifying the boundary conditions
and the loading condition q(u) = qd . It can be seen in the above mentioned papers
that the optimal velocity field will also be PA (plastically admissible), i.e. there exist
everywhere a stress tensor σ or a stress vector T ′ associated to the strain rate tensor or
to the velocity jump by the normality law corresponding to f (σ ) = 0 or fnt(T ′) = 0,
respectively.

The previous formulation gives the exact solution if all velocity and stress fields
could be taken into account. In general this is not the case when we consider a
discretization of the mechanical system in finite elements. However, the following
axisymmetric formulation is formulated for preserving the fully kinematic character
of the final result by using convexity properties concerning the set of the PA strain
rates (and of the PA velocity jumps) and the unit dissipated powers.

3.3 The Coulomb Material

The original Coulomb criterion reads:

f (σ ) = ∣∣σi − σj
∣∣ − 2 c cosφ + (σi + σj) sin φ ≤ 0 (6)

where σi and σj refer to the principal stresseswithout any a priori order (i, j = 1, 2, 3,
i �= j), c is the cohesion of the material and φ the internal friction angle. In [22], this
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criterion is written in the axisymmetric case in the form of three conic inequalities
that are linearized to obtain a linear programming problem. From [24] the Coulomb
criterion finally results in one conic inequation and three linear inequations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
(σρ − σz)2 + 4τ 2ρz ≤ U,

U ≤ −α sin φ + 2c cosφ,

U ≤ −
(

α − 2σθ
1−sin φ
1+sin φ

)
+ 4c cosφ

1+sin φ
,

U ≤
(

α − 2σθ
1+sin φ
1−sin φ

)
+ 4c cosφ

1−sin φ
,

(7)

with α = σρ + σz.
In theMohr plane related to avelocity discontinuity facet of normaln, theCoulomb

criterion classically reads:

fnt(T) = |σnt | + σn tan φ − c ≤ 0, (8)

Let us recall the PA (plastic admissibility) condition for the strain rates and the
volumic dissipated power [25]:

(|d1| + |d2| + |d3|) sin φ ≤ tr(d) ; πvol(d) = c

tan φ
trd (9)

where d1, d2 and d3 are the principal strain rates. From (9), the domain of the PA
strain rates is a convex cone whose apex corresponds to the null tensor.

The corresponding relations about the velocity discontinuities read:

[un] ≥ | [ut] | tan φ ; πdisc([u]) = c
[un]

tan φ
= c| [ut] | (10)

The expressions (9) and (10) here are only used in the post-analysis of the optimal
solution of the mixed method.As mentioned before, two numerical implementation
methods were carried out for this study. We first begin with the static method, more
precisely the static iterative process which will deliver a lower bound for the solution
of the Limit Analysis problem.

4 Numerical Implementation of the Axisymmetric
Static Method

4.1 The Stress Field

Since the affine formulation is too “poor” to give satisfactory results, the fem dis-
continuous stress field is expressed with quadratic functions, as follows:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σρ = A + B ρ + C z + H ρz + I ρ2 + J z2,

σθ = A + Bθρ + C z + Hθρz + Iθρ2 + J z2,

σz = Az + Bzρ + Czz + Hzρz + Izρ
2 + Jzz2,

τρz = Bτ ρ + Hτ ρz + Iτ ρ2.

(11)

It is worth noting that the formulation has been adjusted so as to eliminate ρ from
the fraction denominators containing ρ, in the equilibrium equations.

4.2 The SA Conditions

From (11), the sa conditions give rise to linear relations satisfying the definition of the
macroscopic stresses, the equilibrium equations inside the triangles, the stress vector
continuity across the element sides, the boundary and symmetry stress conditions in
the horizontal plane of the (hemispherical) mesh.

4.3 The PA Conditions

The conic inequation of (7) was first used as such, and enhanced with the conic
code mosek. Unfortunately, this conic formulation did not appear robust enough
with significative meshing sizes. In a second attempt the cone was “PieceWise Lin-
earized” (as in [24]), using the classic “pwl” method generating a polyhedric cone
and a system of m linear inequations; the resulting problem was solved with the
(interior point) linear programming code XA [3]. Due to the necessity of a m value
sufficient to obtain precise results, the conditioning problems persisted for the spher-
oidal case.

Finally, only the so-called “BTN” linearization (based on a projection of cones) of
Ben Tal and Nemirovski [2] (see [23]) induced a sufficiently robust formulation for
the oblate cavity tests. This method gives an equilibrated number of additional rows
(3m + 1) and auxiliary columns (2m) so that using m = 6 is equivalent to the PWL
approach with a polyhedron of 2m = 64 sides, i.e. a value inducing an unreachable
size of the final problem when using the PWL approach.

Moreover, because of the non-affine character of the stress field, the criterion
cannot be verified everywhere by imposing it at the three apexes of the triangle only.
Hence, the criterion is imposed at fifteen points (or more) regularly located in the
element. Fortunately, the quadratic variation and the discontinuities of the stress field
made that only moderately sizes of the mesh were necessary in the tests, due also to
efficiency of the iterative process below.
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4.4 The Post-analysis Process

After the optimization, a rigorous post-analysis is carried out:

• verification of the stress vector continuity across every boundary between adjacent
elements; in fact, the stress vector jump is always smaller than 10−5;

• subdivision of each element into a large number of “subtriangles” (more than
200); accurate computation of Q1 and Q2 values, by integral calculation on each
subtriangle, followed by a summation on the whole domain;

• verification of the Coulomb criterion inside each subtriangle of each element; this
verification is performed with the three original inequations (6), since the stress
field is known at this stage.
To set an example, let us verify the following inequation in a subtriangle:

|σ1 − σ2| − 2 c cosφ + (σ1 + σ2) sin φ ≤ 0;

One has to calculate the k ratio: k = |σ1−σ2|+(σ1+σ2) sin φ
2 c cosφ

and verify the inequality:
k ≤ 1;
if k > 1, the current “faulty” element’s number is stored and, if k is greater than
the value previously stored during the current post-analysis step, k replaces this
previous smaller value;

• if at least one element is non-pa, the optimization is reiterated, after modification
of the pa conditions in each “faulty” element: the original cohesion, c, or its
previously modified value, cc is replaced with a new smaller fictitious cc value:
cc = cc/k, in order to make the pa conditions in this element more severe during
the next optimization step;

• the whole process is reiterated, as many times as necessary, as long as the solution
is not found admissible everywhere in the domain, with respect to the original
Coulomb criterion.

5 Numerical Implementation of the Axisymmetric
Mixed Method

The axisymmetricmesh in the frame (ρ, z) is given on the right of Fig. 1with 4 sectors
(ns = 4) and4 layers (nρ = 4). For each aspect ratioa1/b1 of the cavity and for a given
porosity, thematrix boundaries of themesh are adapted to obtain their confocal forms.
Since these boundaries are not homothetic, the porosity of the resulting mesh is not
exactly the sameas the input one. Therefore, in afirst step for each case of porosity and
aspect ratio, the distribution of the angle α is optimized to obtain the desired porosity
by progressively concentrating this distribution towards the more curved zone.
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5.1 The Virtual Velocity Field

In each triangle, the fem discontinuous displacement velocity field is expressed as
follows: ⎧

⎪⎨

⎪⎩

uρ = ρ (A + B ρ + C z)

uθ = 0

uZ = D + E ρ + F z + H ρz + I ρ2 + J z2
(12)

dρ = ∂uρ

∂ρ
; dθ = uρ

ρ
; dz = ∂uz

∂z
; dρz = 1

2
(
∂uρ

∂z
+ ∂uz

∂ρ
) ⇒ {d} = [B]{X} (13)

Thus, each triangle generates nine constants (Xi = A, B, . . . , J) which are the
final virtual variables of the discretized model. The resulting strain rate field inside
the triangle can be easily cast into the form {d(ρ, z)} = [B(ρ, z)]{X}where the com-
ponents of X are the (virtual) variables of the triangle. From this choice, the resulting
strain rate tensor d cannot become singular and it varies linearly in the element: this
linearity will be used later to (strictly) upper bound the (convex) dissipated power
on the triangle.

Along a inter-element side the velocity jump [u] is quadratic. To upper bound
as above the corresponding dissipated power, the jump is linearized by enforcing
the jump at the side middle to be equal to half the sum of its values at the ends of
the discontinuity. Note that another interesting methodology for maintaining the PA
character of a quadratic [u] along the discontinuity is given in [14], but it is not easily
applicable when using the present mixed method.

Note also that, in the recent LA numerical literature for axisymmetric problems,
the drawback of the singularity at the origin is avoided by enforcing the PA condi-
tions only at the centroid of the element, giving by this way only an estimate of the
real solution.

5.2 Formulation of the Mixed Kinematic Method

5.2.1 Contribution of the Element Velocity Fields

The first part of the integral in (5.ii) becomes here, for a triangle of volume V :

PV =
∫

V

d : σ dV = 2π
∫

V

{d}t{σ } ρ dρ dz (14)

As detailed in [17, 19], from the Karush-Kuhn-Tucker optimality conditions, the
product {d}t{σ } becomes the convex unit dissipated power πV (d) in the optimal
solution. Then, we substitute to this product its linear interpolation L ( {d}t{σ } )

between its values at each vertex of the triangular element. Since the product ρL
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is quadratic, the integral
∫

ρL dρ dz is classically calculated from its values at the
medium of the sides of the triangle. Since each term of the product is linear, the final
result depends only on the product values at the element vertices. Consequently,
a stress tensor {σ } = (σρ, σz, σθ , σρz)

T is assigned at each vertex of the triangle,
without any variation assumption over the triangle.

We finally obtain for the triangle with vertices i = 1 to 3 and area A:

PV ≤ πA

6

∑

i=1,3

Ci {d}t
i {σ }i, (15)

where Ci = 2ρi + ρi+1 + ρi+2, with ρ4 = ρ1 and ρ5 = ρ2.
It is important to note that the strain rate d of the optimal solution will be PA at

the vertices of the triangle; from the convexity of the set of PA strain rates associated
to the present (convex) criterion, and from the linear variation of d in (13), it can
be deduced (as first noticed in [13]) that the strain rate will be PA all over the
element, a sine qua non condition for preserving the upper bound character of the
result.

5.2.2 Contribution of the Velocity Discontinuities

The second part of the integral in (5.ii) is the sum of the power contribution of each
discontinuity surface L1−2 (of ends noted 1 and 2):

Pd =
∫

L1−2

[u] · T ′ dS = 2π
∫

L1−2

{[u]}t{T ′} ρdρdz (16)

According to [25], the product [u] · T ′ becomes the dissipated power πd([u]) when
the stress vector T ′ and the velocity jump vector [u] are associated (by the normality
law) relatively to the fnt

(
T ′) criterion. Here also, we can use the convexity of πd([u])

since [u] is constrained to vary linearly along the discontinuity side: to the product
{[u]}t{T ′} we substitute its linear interpolation L

( {[u]}t{T ′} )
between its values

at each end of the discontinuity side of normal n. Then, we can upper bound Pd
by calculating the quadratic expression with Simpson formula, and by using the
linearity of each termof the productρL . By allocating an auxiliary stress vectorT ′ =
(σnn, σnt) (expressed in the orthonormal (n, t) frame of the side) at each of the two
apices of the discontinuity side L1−2, we finally obtain:

Pd ≤ 2π l

6

∑

i=1,2

Ci

({[u]i
}t{T ′

i }
)

, (17)

where l is the length of L1−2 , Ci = 2ρi + ρi+1 with ρ3 = ρ1. It can be noted that
the optimal jump [u] will be PA all along L1−2 from the convexity of the PA jump
set associated to the criterion fnt .
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5.2.3 Expression of the External Power

To the global vector of the virtual u-velocities are added the generalized velocities
q1, q2, q3 in order to form the final virtual vector {u}. Thus, from (2), the external
power can be written as:

Pext = V(q · Q) = V{q}T {Q} = {u}T V [β]{Q} (18)

where {q} = [β]T {u}.

5.2.4 The PA Stress Conditions

In the global (x, y, z) reference frame, the Coulomb yield condition is written as in
(7), where the cone can be easily cast into the Lorentz form required by the conic
optimizer mosek [12]: √

x21 + x22 ≤ U (19)

together with the three inequalities for each vertex of the triangular elements.
The criterion (8) for the stress vector T ′ gives rise to the following inequalities:

σ ′
nt + σ ′

n tan φ ≤ c, −σ ′
nt + σ ′

n tan φ ≤ c, (20)

which results in two linear constraints in terms of the real variables σ ′
nn and σ ′

nt for
each ends of the discontinuity sides.

5.2.5 The Final Mixed Problem and the KA Conditions

Finally, the numerical form of the variational mechanical problem (5.i–5.iii) is as
following:

Max V{qd}T {Q}
s. t. −[α]{σ } − [α′]{T ′} + V [β]{Q} = 0,

f (σ ) ≤ 0 ∀ σ ; fnt(T
′) ≤ 0 ∀ T ′, (21)

+KA velocity conditions.

Indeed, a systematic change of d and u in terms of the final {X} virtual variables is
performed through specific subroutines of the Fortran code which generates the final
problem in the MPS format required by mosek.

As shown in the detailed analysis of [17, 19], we can identify the dual variables of
the solution of this optimization problemwith the {X} components. This analysis also
details how the resulting velocity field is plastically admissible and how, by adding
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auxiliary columns, the kinematically admissible character of the optimal velocity
field can be ensured, as in the following.

• We previously defined two supplementary rows (constraints) whose associated
virtual variables are q1, q2 and two new columns for the corresponding macro-
scopic stresses Q1, Q2. At each apex and at the middle of the boundary triangle
sides, we impose the loading conditions uρ = Dρρ, uz = Dzzz. This is done
by adding one additional column (i.e., an additional variable) for each of these
conditions. Let us note the chosen kinematic parameters as {q} = [AD]{D} with
{D}T = (Dρ, Dz); then, for example, the terms of a condition uρ −ρDρ = 0 =⇒
uρ − ρ[AD]−1{q} = 0 are dispatched on the (X, q) components (corresponding to
uρ and q) of the additional column.

• A similar technique is used to impose the null symmetry value to the uz compo-
nents on the ρ axis, and tomake that the jump [u] of the middle of the discontinuity
side is equal to half the sum of its end values.

6 Application to Sphere and Spheroid Models

In the following tests, the porosity f is taken equal to 0.1, and the friction angles to
10◦ and 20◦, for the sake of homogeneity.

6.1 Comparison with Exact Results for Spherical Voids

Table1gives thevalues obtainedwith the static andmixed codes for isotropic loadings
(i.e. Q2 = 0) in tension and compression, together with the exact values given in
[29]. It can be seen that the exact solution was always located between the numerical
bounds that are very close; this also points out that the linearization of the matrix
boundaries has no real influence with the selected ns values. All the calculations were
made on an Apple Mac Book Pro with a 2.7GHz Core i7 and 16 gigabytes of RAM.

In the case of the static approach, the final numerical LP problem involved 1,024
triangles giving rise to 384,000 constraints and 249,000 free variables. For one point
of the searched macroscopic criterion, 5–6 iterations, of approximately one minute
each, were needed to obtain the convergence of the process described in Sect. 4.4.

Table 1 Comparison to Σm
exact values [29]—Coulomb
matrix—spherical
void—porosity
f = 0.1—cohesion
c = 1—(ns, nρ) : (16, 16)/
static, (48, 48)/kinematic

Friction angle φ 10◦ 20◦

Compression Present-static −5.0970 −10.705

Exact value −5.1397 −10.805

Present-kinematic −5.1531 −10.844

Tension Present-static 2.0543 1.4851

Exact value 2.0704 1.4911

Present-kinematic 2.0717 1.4916
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The final mixed mesh of 9,200 triangles gives a conic problem with a constraint
matrix involving 276,100 rows, 276,350 columns, and 27,650 Lorentz cones; the
problem is solved in about 20 s by the version 5 of Mosek, using the four cores of the
Intel Core i7 processor. This remarkable performance is mainly due to the quadratic
variation of the velocity field and to the relatively small size of the final problem even
for a very refined meshing of the problem. It can be also noted that the linearization
of the velocity discontinuities, in order to preserve the kinematic character of the
method, has not a significative influence on the performance in terms of upper bound
solutions.

6.2 Numerical Results for Axisymmetric Loadings
in the Spherical Void Case

In the reference [24], the hollow sphere problem with a Coulomb matrix was inves-
tigated, unfortunately only for non-negative Q2 only. The corresponding results
are recalled (JCAM dashed lines) in Figs. 2 and 3, for the friction angles φ =
10◦ and 20◦, respectively.

The JCAM static approach (in blue color) was obtained with a PWL version of
the static code: this explains the better results (continuous lines) by using the present
(conic projection) algorithm of Ben Tal and Nemirovski of Sect. 4.3. It can be seen

Fig. 2 Present results—Coulomb matrix—f = 0.1—spherical cavity—φ = 10◦; c = 1
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Fig. 3 Present results—Coulomb matrix—f = 0.1—spherical cavity—φ = 20◦; c = 1

also that the proposed mixed kinematic code has allowed similar improving of the
previous results (dashed red lines) obtained with a classic kinematic approach that
cannot run the refined meshes allowed by the mixed code.

The final kinematic and static criterions are very close, and always in the good
order, even when they are almost indistinguishable. The presence of the singular
points on the average stress axis are confirmed. The influence of the third stress invari-
ant is also shown (recall that the second invariant is hereΣeq = |Q2|), since, owing to
the isotropy of the macroscopic material, the plasticity criterion only depends on the
three stress invariants. Indeed, in the Figs. 2 and 3, theΣm axis would be a symmetry
axis of the plasticity criterion if this one does not depend on the third stress invariant.
It must be emphasized that in the present case, the influence of third stress invariant
comes from a combination of an effect that exists even if the matrix is not sensitive
to the this third invariant, and of that which comes from the Coulomb matrix. In par-
ticular, the apexes on figure are signatures of this sensitivity of the Coulomb matrix.
These points will be commented again in the following when comparing Coulomb
and Drucker-Prager matrices.

6.3 Porous Coulomb Material with Oblate Voids

We consider first the case of the 0.5 aspect ratio a1/b1 where both axisymmetric
codes are used. The case of the aspect ratio 0.2 is then investigated by using the
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same static and mixed code. Recalling that this problem has not been studied in the
literature up to now, it should be useful to remember that the present axisymmet-
ric bounds are also strict bounds when considering the full 3D problem, in the Qi

space.

6.3.1 Case a1/b1 = 0.5

In Figs. 4 and 5 are shown the results for an oblate cavity having an aspect ratio
a1/b1 = 0.5.

First, the kinematic and static bounds, here also are very close, always remaining
correctly ordered as in the case of spherical cavities. It can be seen that the graphs
presents a small rotation around the frame origin, the singular point being not on the
average stress axis. As expected in this case of transverse isotropy, taking into account
that the axis of the anisotropy frame (x, y, z) are also loading axis, the influence of
the third stress invariant is here more important.

Fig. 4 Present results—Coulomb matrix—f = 0.1; a1/b1 = 0.5—φ = 10◦; c = 1
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Fig. 5 Present results—Coulomb matrix—f = 0.1; a1/b1 = 0.5—φ = 20◦; c = 1

6.3.2 Case a1/b1 = 0.2

Figures6 and 7 illustrate the results for an oblate cavity having this time the aspect
ratio a1/b1 = 0.2. Here, the bounds are close, however in a lesser extent than above
for mainly compressive loadings, and the dissymmetry with respect to the average
stress axis is noticeably more important.

For comparison between the two cases with the two usual pressure-dependent
matrices, we report also the graphs obtained for a Drucker-Prager matrix in the
reference [18]; both graphs are reported to the cohesion c, after identification of the
two criteria in plane strain from [25], in such a manner that the boundary of the
domain of plastically admissible stresses for Drucker-Prager is innerly tangent to the
corresponding Coulomb boundary. As expected, the criterion of the porous Drucker-
Pragermaterial remains innerly tangent to the porous Coulomb criterion, without any
angular point in the Drucker-Prager case. Again, existence of such angular points
is a signature of the sensitivity of the Coulomb matrix to the third invariant of the
stress deviator. Since angular points might induce strong effects in strain localization
phenomena, it can be seen that replacing the Coulomb criterion with an ad hoc
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Fig. 6 Present results—Drucker-Prager matrix—f = 0.1; a1/b1 = 0.2—φ = 10◦; c = 1

Fig. 7 Present results—Coulomb matrix—f = 0.1; a1/b1 = 0.2—φ = 20◦; c = 1
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Drucker-Prager for elastoplastic 3D computations can be problematic, even for the
present porous materials.

7 Conclusion

The first purpose of the present paper was to generalize the formulations of the
limit analysis (LA) in the axisymmetric case of [24], in order to obtain robust conic
formulationswithout losing the rigorous bound character of the solutions. The second
purposewas to provide numerical, but rigorous bounds to themacroscopic criterion of
a “porous Coulomb material” with spherical and oblate voids, a problem not studied
in the literature up to now, at least to our knowledge. These bounds, not only allow to
characterize the macroscopic plastic properties of this class of materials, but are also
expected to serve as a reference results for forthcoming theoretical investigations.

To obtain accurate results for the non-spherical voids, the static approach was
modified to use the conic projection algorithm of [2], and an original mixed axisym-
metric approach has been elaborated which results in a second order conic program-
ming problem. Both resulting codes have allowed remarkable performances by using
specific quadratic fields together with FEM refinements of the problem unreachable
before. After a validation in the case of a spherical cavity and isotropic loadings, by
comparison to the known exact solution, we provide illustrations of the macroscopic
plasticity criterion. This has been done for usual values of the friction angle and of
the void aspect ratio. The obtained results allow to highlight, among others, the shape
and the size of the plasticity criterion depending on the aspect ratio of the cavity.
A comparison with the porous Drucker-Prager material is finally given in order to
illustrate the noticeable differences with the present porous Coulomb material, the
same geometric and loading conditions being considered. In view of all the above
results, it is clear that the paper provides interesting bounding data which call for a
great effort in the theoretical side in order to formulate new macroscopic criterion
corresponding to the porous material with a Coulomb matrix.
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A Direct Method Formulation for Topology
Plastic Design of Continua

Zied Kammoun and Hichem Smaoui

Abstract In the present paper a method is proposed for continuous and black and
white topology optimization of continuum structures subject to static and plastic
admissibility conditions relative to a prescribed load. A significant feature of the con-
tinuous topology optimization problem is its outstanding similarity with the direct
static formulation of the limit analysis problem that can be written as a conic program-
ming problem. The discrete, e.i. black and white, topology optimization problem is
derived by simply introducing a penalization of intermediate densities in the objec-
tive function and is solved as a sequence of conic programming problems of the same
form as the continuous design problem. The proposed method is formulated in plane
strain using Tresca materials and is illustrated on continuous and discrete example
design problems taken from the literature.

Keywords Discrete topology · Optimization · Limit analysis

1 Introduction

Topology optimization of continuum structures has witnessed an intense research
effort during the last decades [1–5] that led to remarkable developments. The numer-
ous successful applications of topology optimization in industry [6] and the emer-
gence of powerful dedicated topology optimization software [4] reflect the degree of
maturity this discipline has reached.

It is noteworthy, however, that the work on topology optimization of continuum
structures has been predominantly focused on linear elastic material behavior. Elastic
design is traditionally the most common and most demanded type of design and
continuum topology design is not an exception in this regard. On the other hand,
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historically the analysis and design developments in the framework of elasticity
are usually followed by sustained activity extending these developments to plastic
behavior. But this does not seem to be the case for topology optimization.

Following the extensive work on topology optimization of elastic structures the
research in topology design has been concerned more with the incorporation of
advanced materials, multiphysics and multidisciplinary applications such as MEMS
and compliant mechanisms than with the extension to nonlinear material behavior.

Among other reasons, this is partly because the mathematical approaches under-
lying the topology design methodologies, such as the homogenization approach [7]
and the Simple Isotropic Microstructure (or Material) with Penalization (SIMP) [8],
strongly rely on the linear elasticity assumption.

Moreover, elastoplastic analyses that seek to determine response quantities, e.g.
evolution methods, are known for their high computational demand. On the contrary,
direct methods of limit analysis require lower computational effort to determine limit
states in terms of either stress field or displacement/velocity field solutions. When
information on the load response history is not needed and, say, only the limit stress
field is of interest, direct methods present an adequate alternative for plastic collapse
analysis. They are appropriate analysis tools for such applications as geotechnical
works like foundations, soil reinforcement and retaining structures. In an automated
design framework, where computational efficiency in the analysis is a primary fac-
tor, direct methods of limit analysis become attractive for their considerable com-
putational saving potential. Member sizing optimization of structures with specified
topologies, e.g. trusses and frames, subject to plastic design constraints has been
treated in the literature using direct methods of limit analysis [9]. To the authors’
knowledge, topology design of continuum media, involving direct limit analysis,
is inexistent in the literature prior to the recent work presented in [10, 11]. Previ-
ous research includes some work that has dealt with continuum topology design of
nonlinear elastic structures where the tools developed for the linear behavior were
adapted and extended to the nonlinear case [2] and the few tentatives that were
directed to design based on elastoplastic (e.g. [12]) or plastic analyses (e.g. [13])
involved evolution analysis methods.

The present work is concerned with the integration of direct methods of limit
analysis precisely, into a methodology for topology design of continuum structures.
It builds on the method presented in [10] and reported in [11] that generates optimum
continuous, also called porous, topologies to develop a methodology that synthesizes
so called black and white topologies.

The continuous design problem is formulated according to the microscopic (or
material) approach [11] and expressed in terms of continuous material densities as
design variables. The outstanding feature of the formulation is that it takes on a mathe-
matical form that is largely similar to that of a direct limit analysis problem. The same
code that is used in solving the analysis problem can actually be employed in finding
the optimum design. Moreover, the computational demand of the topology design
problem is expectedly, and has been demonstrated ([10]) to be, in the order of magni-
tude of that of a single limit analysis. Among the properties shared by both problems
a significant one is convexity, which has desirable implications on convergence.
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The continuous formulation has long been regarded as merely a prelude to the
end goal of a discrete, black and white, design methodology which often incorpo-
rates continuous optimization routines as part of the discrete optimization strategy.
However, the recent breakthroughs in material technology have regenerated interest
in continuous topologies. State of the art technology enables the manufacturing of
materials with a large variety of microstructures to suit an unlimited range of prop-
erties and property distributions, which creates demand for designs with continuous
topologies.

Yet discrete topology remains a major goal from the perspectives of industrial
applications and academic interest and the present work is intended to be a step
forward towards optimization of black and white topologies based on direct limit
analysis. After a brief presentation of the continuous formulation of the topology
optimization problem a modified formulation, involving a penalization technique, is
proposed to generate discrete topologies. A simple search procedure is then proposed
for solving the discrete design problem as a sequence of continuous design problems.
The procedure is discussed and tested on a number of example design problems and
solutions are compared with topologies found in the literature.

2 The Static Method of Limit Analysis

The main design constraint considered in the present work is that a specified loading
supported by the designed structure be statically and plastically admissible. The
terminology adopted here is defined in [14, 15] where a stress field σ is said to
be statically admissible (SA) if field equilibrium equations, stress vector continuity,
and stress boundary conditions are satisfied. It is said to be plastically admissible
if f (σ ) � 0, where f (σ ) is the plasticity criterion of the material. A stress field σ

that is both SA and plastically admissible will be said to be “admissible”. A loading
system Q ∈ R

n in equilibrium with a statically admissible stress field σ , Q = Q(σ ),
is said to be admissible. The n components of Q are called loading parameters. The
relationship Q = Q(σ ), which usually describes either field equilibrium equations,
when body forces are present, or boundary conditions on the stress vector, is linear
in both cases. A solution of the limit analysis problem relative to the ith loading
parameter is found by solving the following optimization problem for an admissible
stress field σ such that:

Qlim = (Qd
1 , . . . , λ0Qd

i , . . . , Qd
n)

λ0 = max{λ , Q(σ ) = (Qd
1 , . . . , λQd

i , . . . , Qd
n)}. (1)

where Qd is a specified admissible loading. The resulting loading Q(σ ) is a limit
loading of the mechanical domain with respect to the loading component Qd

i . This
formulation defines the static, lower bound problem of limit analysis, or static limit
analysis (LA) problem, as it will be dealt with in the present work. The static LA
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method determines the stress field at the limit state only. It generates no information
on the stress field at intermediate stages of loading nor on kinematic quantities at
any loading step. The payoff of this missing information is a lower computational
demand which is a paramount advantage in case that information is not necessary.
Another merit of the static approach is the status of rigorous lower bound of the
limit load.

3 Finite Element Formulation of the Static Problem

The numerical plane strain formulation of the static, lower bound problem is
described in detail in [16]. The planar mechanical domain Ω is discretized into tri-
angular finite elements. Considering the global reference frame (x, y), the stress field
is chosen to be linear in x and y within the element. Across inter element interfaces
it can be discontinuous provided the stress vector acting on the interface remains
continuous. The Tresca criterion is written as:

f (σ ) =
√

(σx − σy)2 + (2τxy)2 − 2s � 0, (2)

or equivalently as:

S(σ ) =
√(

σx − σy

2

)2

+ τ 2
xy � s (3)

where s denotes the shear strength, or cohesion, of the material. The following
conditions are imposed on the stress field in order to ensure its static and plastic
admissibility:

• Within the element, the equilibrium equations σij,j + γi = 0 expressed in the
Cartesian reference frame, where γ = ρg is the specific weight vector, ρ the mass
density and g the acceleration of gravity.

• Continuity conditions of the stress vector across discontinuity lines: for each dis-
continuity segment of normal n, the continuity of the stress vector Ti = σijnj is
imposed at the ends defining this discontinuity segment.

• Boundary conditions on the stress vector: σijnj = Td
i at each end of the boundary

element sides where the linearly varying stress vector Td is imposed.
• Stress field plastic admissibility at each triangle vertex. This ensures plastic admis-

sibility over the total domain from the linear variation of the stress in a triangle
and the convexity of the criterion (2).

Introducing a change of variables such that the stress vector σ is defined by the com-

ponents
(σx+σy)

2 ,
(σx−σy)

2 and τxy denoted σ+, σ− and τ , respectively, the plasticity

criterion can be written directly in the conic form s �
√

σ 2− + τ 2. The numerical opti-
mization problem, expressing the static limit analysis problem, can thus be written
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as a conic programming problem in the form:

λ0 = max λ

Q(σ ) = (Qd
1 , . . . , λQd

i , . . . , Qd
n) (4)

S(σ ) ≤ s,

σ SA

and can, therefore, be solved using the conic programming code mosek [17] as in
[18–20].

4 Topology Optimization of Continua

Topology optimization of continuum structures aims at simultaneously optimizing
the shape of external and internal boundaries, the number of holes and the connec-
tivity within a specified domain Ω0 with given boundary conditions with respect to a
design objective function subject to a set of constraints. For elastic materials, in most
formulations the design objective consists of a global stiffness measure or a compli-
ance functional and the constraint is essentially a specified bound on the amount of
material. Among the various approaches that have been developed, two major classes
can be distinguished: the Microstructure and the Macrostructure approaches [2].

In the Microstructure approaches, also known as material approaches, the material
is assumed to be distributed in some microstructural form over the design domain
Ω0. The miscrostructure may correspond to some real or fictitious composite [7] or
to an isotropic porous material [SIMP]. It is customary to use a fixed, uniform finite
element mesh to model the structure within the entire design domain. The design
variables are assumed to be constant within each finite element. For the analysis, finite
elements are applied with properties that are related to the material characteristics of
the microstructures [2]. The discrete optimization consists in determining whether
each element in the design domain should be solid or void. The density of material
within each finite element is used as a design variable that should eventually converge
to one of the limiting values 0 and 1. The continuous optimization admits designs with
intermediate densities. Even if continuous topologies are not the goal, continuous
optimization is often used as a step in a discrete design strategy.

In the class of Macrostructure, also called geometric, approaches the structure
occupies a subset of the design domain and solid materials are considered as opposed
to porous ones. Optimization of the topology is performed in conjunction with shape
optimization. This implies that the finite element mesh should change with the mov-
ing boundaries of the solid domain during the design process.

Of the two abovementioned classes of approaches to topology design of continua,
the material approach appears to be more straightforwardly applicable. It will be
applied to the present plastic design problem based on direct limit analysis.

Topology optimization of elastic continuum structures raised difficulties that took
a sustained research effort to understand and resolve. These include mainly the
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multiplicity of local minima, the ill-posedness of the mathematical problem, the
lack of convergence with respect to the size of the finite element mesh [21] and the
difficulty associated with local stress constraints [22].

In dealing with topology design based on direct limit analysis, given the distinct
nature of its mathematical formulation, these difficulties will have to be addressed
from a different perspective.

5 Topology Optimization Problem Formulation

A rectangular domain Ω0 is considered with a unit thickness, made out of a Tresca
material having a shear strength s̄ and a density ρ̄ = 1, subjected to a loading system
Q = (Q1, . . . , Qi, . . . , Qn). The design goal is to find the structural configuration
included in the domain Ω0 which achieves a minimum amount of material while
maintaining a statically and plastically admissible stress field associated with the
specified loading Q. For the discrete topology design problem the solution is a struc-
ture with a black and white configuration. That is, the domain thickness is unity or
zero, respectively. The optimum design problem may be written as:

min
∫

Ω0

ρ dΩ

s. t. Q(σ ) = (Qd
1 , . . . , Qd

i , . . . , Qd
n),

S(σ ) ≤ s̄, (5)

σ SA

ρ ∈ {0, 1}
where ρ(x, y) is a Boolean function and, in the void regions, it is understood that the
stresses should vanish. Furthermore, it is important to note that, in case the self weight
is taken into account, the condition σ SA implicitly depends on the density given the
design dependence of the specific weight γ = ρg. A necessary condition for the
existence of a feasible solution to this design problem is that the specified applied
load be no larger than the limit load corresponding to the fully dense domain, i.e.
ρ = ρ̄ everywhere. The problem statement (5) may express the optimization problem
for both the exact (infinite dimensional) and the discretized structural problems. In
the latter, obtained here through finite element modeling, the piecewise constant
function ρ is interpreted as a Boolean N-vector where N is the number of finite
elements spanning the domain Ω0 and the piecewise linear field σ as a vector of
nodal stress components.

Using the finite element formulation the problem (5) is an N-dimensional com-
binatorial optimization problem. Direct exact methods are excluded because of the
exponential complexity of the problem. The numerous heuristics that have been pro-
posed, including evolutionary methods [23, 24], suffer many limitations and hardly
compete with the smooth methods such as homogenization methods and SIMP.
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At the present preliminary stage of the work it is tempting to use a penalization
technique for the black and white topology optimization problem given its recognized
performance and its simplicity of implementation. The method consists in approach-
ing the discrete problem solution through the solution of a sequence of continuous
design problems where the intermediate densities are penalized. For this reason, the
continuous design formulation is recalled as a preliminary to the discrete problem
presentation.

5.1 The Continuous Design Problem Formulation

In order to model the continuous range of intermediate solutions between void and
solid at a given point in the domain a relaxation scheme is applied. The “amount” of
material represented by the densityρ of a fictitious material is allowed to continuously
span the interval [0, 1].

For the present plastic design problem the relaxation scheme requires interpolation
of the failure criterion. Assuming the intermediate material also obeys a Tresca failure
criterion, it is reasonable to choose for the shear strength s as a function of density
the proportional law [10]

s(ρ) = ρ s̄. (6)

Because the Tresca criterion is one that allows arbitrary spherical stress, another
issue that arises from the relaxed formulation is the way to control the vanishing of
stresses in the void regions while maintaining the smooth character of the optimum
design problem. This requires a further condition on the stress field to bring the stress
tensor to zero when the density vanishes, which can be achieved by bounding the
trace of the stress tensor by a multiple of the density as follows:

−Kρ ≤ σ+ ≤ Kρ (7)

where K is a constant sufficiently large so that the constraint tends to be activated
near zero density only. This linear constraint pair maintains the conic nature of the
design problem. It should be noted, however, that it introduces an artificial truncation
in the failure criterion for low densities.

The interpolation of the intermediate material having been defined, the continuous
(porous) topology design problem takes the conic form:

min
∫

Ω0

ρ dΩ

s. t. Q(σ ) = (Qd
1 , . . . , Qd

i , . . . , Qd
n),

S(σ ) ≤ ρ s̄, (8)

σ SA

0 ≤ ρ ≤ 1

− Kρ ≤ σ+ ≤ Kρ
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where the SA condition is understood to be design dependent if gravity loads are
considered. Premultiplying the objective by the real shear strength s̄, redefining the
constant K as Ks̄ and substituting s for ρ s̄ the optimum design problem can be
rewritten in the alternative form: Eq. 9, where the shear strengths replace the densities
as design variables:

min
∫

Ω0

s dΩ

s. t. Q(σ ) = (Qd
1 , . . . , Qd

i , . . . , Qd
n),

S(σ ) ≤ s, (9)

σ SA

0 ≤ s ≤ s̄

− Ks ≤ σ+ ≤ Ks

The last two sets of constraints are either bounds on the variables or simple con-
straints. It can be seen that, aside from these constraints, the two problems differ
only in that the roles of the shear strengths and the load parameter, as variables or
fixed parameters or as objective variables, are interchanged. The problem (9) recalls
the so-called strength reduction formulation of the static problem where the shear
strength, treated as a variable, is minimized for a given loading parameter as in [18].
It reveals the close similarity between the mathematical forms of the continuous
design problem and the direct limit analysis problem (4).

That the design problem be convex is significant as it should discard convergence
difficulties that are commonly encountered in the, usually nonconvex, elastic and
elastoplastic topology design problems, e.g. the issue of local minima. Since the
number of constraints, except for the simple constraints, is the same in both prob-
lems, the computational effort has been found [10, 11], as expected, to be of the same
order of magnitude. Another merit of the proposed design problem formulation com-
bining variable densities with direct limit analysis is that no numerical difficulties
arise when densities approach zero. Consequently, there is no need for imposing a
finite lower bound on the density, a routine practice in continuum elastic design to
avoid singularities in the stiffness matrix. Finally, it is expected that when dealing
with 0-1 design the formulation based on direct limit analysis will not favor the
formation of checkerboard patterns. This is because the stress field being zero in the
void elements, continuity of the stress vector forces the normal and shear stresses to
approach zero in the, solid, material elements. This continuity is rigorously imposed
everywhere in the discretized structure. Such argument that does not apply to the
case of elastic design where checkerboard patterns typically appear in optimized
structures. One reason is that elastic analysis is usually formulated in displacements
so that inter-element continuity of the stress vector generally does not hold. Another
reason is that the checkerboard phenomenon is known to be associated with a numer-
ical aspect of elastic analysis that is unrelated to the direct limit analysis problem.
This phenomenon is attributed to finite element discretization errors that make the
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stiffness of checkerboard configurations artificially higher in the model than in the
real structure [21].

5.2 The Discrete Problem Formulation

An effective technique to drive the densities to the limits 0 and 1 is penalization of
intermediate densities. A common form of penalization is the power law used in [8]
to penalize the relationship between the density and the stiffness parameter. Here,
the penalization is performed by replacing the linear cost term ρ by the power law
ρ1/p where p > 1, which increases the unit cost of grey elements. This leads to the
following problem:

min
∫

Ω0

ρ1/p dΩ

s. t. Q(σ ) = (Q1, . . . , Qi, . . . , Qn),

S(σ ) ≤ ρ s̄, (10)

σ SA

0 ≤ ρ ≤ 1

− Kρ ≤ σ+ ≤ Kρ

For a given power parameter p the optimization problem is no longer convex and
may not be solved using MOSEK . However, it belongs to the special problem class
of concave minimization over a convex set which has been investigated, particu-
larly by Jacobsen [25, 26] and appropriate deterministic search strategies have been
proposed, including cutting plane methods. Focusing on the feasibility rather than
the performance of the discrete design strategy, a simple iterative method is used
for solving the nonconvex problem (10). It consists of solving a sequence of conic
problems where the objective is a linear approximation of the power law function. In
each cycle the problem to be solved is formed by exactly the same constraints as in

problem (10), and the cost function can be written as
∫

Ω0

cρoρ dΩ where cρ = ρ
1
p −1

and ρo denotes the solution of the preceding cycle. The resulting problem differs from
the problem (8) only in the cost coefficients. It is solved using the code MOSEK with
a LINUX operating system. In the numerical examples of the next section the value
p = 2 is chosen for the power parameter.

6 Numerical Examples

In this section, the proposed method for plastic topology optimization of continuum
media is tested through a selection of examples of topology design problems that are
treated in the literature in the framework of elastic material behavior. These tests are
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performed essentially to demonstrate the capability of the method to generate sound
black and white topology designs and to compare the optimum topologies produced
using the proposed plastic design method with published topologies that have been
generated using design methods for elastic media. The long and medium cantilever
beam problems will be presented first, followed by the benchmark Messerschmitt-
Bölkow-Blohm (MBB) beam problem.

The loading Q will be restricted to a single load component denoted F. The
finite element meshes are all uniform. The rectangular design domain is divided into
nx × ny elementary rectangles, each divided into four triangular elements separated
by the two diagonals. Before proceeding with the design, the limit load for the full
density domain is determined, if not known, since it represents an upper bound on
the specified limit loads for which the topology optimization problem is feasible.

All examples are treated with version 6 of the commercial code MOSEK using an
Intel Core i5 processor (2.4 GHz). The continuous design is optimized directly using
MOSEK . The discrete design problem formulated according to Eq. (10) is treated
using the iterative procedure described in the previous section where each problem
is also solved using MOSEK .

6.1 The Long Cantilever Beam

The problem described in Fig. 1 deals with the design of a long cantilever beam having
an aspect ratio of 4 and made of a Tresca material with shear strength s̄ = 1 kPa.
The beam is loaded at its free end by a transverse line load distributed along a line
element of length b. Its design domain dimensions are the length denoted by L and
the height by H. The height of the design domain is H = 1 m and the length L = 4 m.
Applied at the free end is a centered, practically concentrated load (b = 10 cm).

Feasibility of the design problem requires that the applied load be no larger than
the limit load corresponding to the fully dense domain. As reported in [10, 11], the
limit load calculated for the domain with full density was found to be F̄ = 0.1 kN
independently of the aspect ratio. This is explained by the localization of the failure
zone in a small region, around the applied load, compared to the dimensions of the
beam. The degree of discretization recommended to achieve a reasonable accuracy

Fig. 1 Long cantilever beam
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for the limit load of the long cantilever beam was determined to be in the vicinity of
3,200 finite elements. Furthermore, a series of continuous topology design problems
were run with different mesh sizes and K factors. It was found that a 28,800 element
mesh was appropriate. It was noted that for K < 3, the algorithm did not converge. For
large values (K > 40), difficulties of convergence were also observed. Considering
the criteria of optimality in terms of objective value, constraint accuracy, CPU time
and minimum density, the best results were obtained for the range of K values from 3
to 10. All the results reported in the remaining of the paper are produced with K = 10.

6.1.1 Continuous Design

The topology design problem was solved in [10, 11] for the long beam subject to
various intensities of the applied load F. As expected, the optimization CPU times
were near double those spent on analysis using the same FE model. It was noted that
for low loads (F < 0.006 kN) the density in the optimal design was less than unity
everywhere and the material distribution pattern was nearly independent of the load.
For higher loads the pattern of material distribution tends to be more load dependent.

The optimum objective value obtained using the Intel Core i5 processor for a
51,200 element beam model subject to the load F = 0.04 kN is 0.4630. The CPU
time was 100 s, that is less than the 121 s required by the limit analysis based on the
same finite element model. The optimum design is visualized at the top left of Fig. 2. It
can be seen that the material fills the fuselage shaped domain without internal holes.
The density tends to saturate at the upper and lower edges towards the supports.
This solution provides an optimal material distribution and a clear definition of the
external shape but little indication about the optimum layout structure.

6.1.2 Discrete Design

The same long cantilever beam, modeled with 51,200 elements, is considered now
seeking discrete topologies. The iteration history for the load case F = 0.04 kN is

Iteration 1 (Continuous Solution) Iteration 3

Iteration 5 Iteration 10

Fig. 2 Long cantilever beam designs at selected iterations
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Fig. 3 Iteration history for
long cantilever beam design

plotted in Fig. 3. The objective value increases asymptotically. The iterative process
is stopped at the 20th iteration and the accuracy of the solution is expressed by
the relative change in objective value between consecutive iterations. The objec-
tive values 0.4903 and 0.4924 are attained within 10 and 20 iterations with relative
changes ε10 = 0.06 % and ε20 = 0.03 %, respectively, while, by visual inspection,
the design is practically unchanged beyond the 5th iteration. The topologies gener-
ated at selected iterations are illustrated in Fig. 2. The one that results from the first
iteration naturally coincides with the solution of the continuous design. It can be seen
that the design converges steadily towards a well defined layout, without apparent
occurrence of checkerboard patterns. Nevertheless, the following two limitations are
observed. The first is that the process does not accurately achieve the ultimate 0-1
solution in and close to the solid structure. This calls for an improvement in the
formulation of the discrete design problem. The second is that some brace mem-
bers exhibit an alternation of dark and light gray segments. Further, investigation is
needed to analyze this phenomenon.

The CPU time taken by a direct problem solution using MOSEK does not vary sig-
nificantly from an iteration to another. Therefore, the time it takes to solve a discrete
problem fairly amounts to the product of the CPU time of one direct (continuous)
problem solution by the number of iterations.

The above topology resulting from a plastic design procedure is compared with
the optimal topology shown in Fig. 4 for an elastic cantilever beam generated using
a compliance method. It can be seen that the left half of the beam has the same
topology in both designs. The differences that may be noted are only variations in
shape and size. The difference in topology is remarkable in the right hand half of the
beam where the plastic design exhibits ramifications that are not seen in the elastic
topology.

Fig. 4 Long cantilever beam
optimum topology
(From [27])
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6.2 Medium Cantilever Beam

The medium cantilever beam has the dimensions L = 2 m and H = 1 m. The
load is centered and distributed along a distance b = 10 cm. Since the area of the
design domain is now half that of the long beam, the medium beam is modeled with
only 28,800 finite elements. The CPU time required for the limit analysis of the
full density beam is 18 s. As observed for the long cantilever example, the optimal
topology is load dependent [10, 11]. For a load F = 0.10 kN the optimal objective
0.3676 is calculated within 28 s of CPU time. The optimal continuous configuration
is visualized at the top left of Fig. 5. Except for differences in the shape of the solid
zone at top and bottom edges near the support, the material distribution is visually
similar to that reported in [3] and illustrated in Fig. 6a.

Solving for the black and white design, the objective value 0.3861 is obtained
after 20 iterations with a relative change in objective ε20 = 0.0034 %. Convergence
in this case is faster than observed in the long cantilever problem (Fig. 7). From visual
inspection the design has nearly converged at the 5th iteration. Examination of the
designs produced in the first few iterations raises the following observations. The dis-
tribution of material converges steadily to the final layout. The main braces are formed
from the second and third iteration. The thinner elements evolve each from a cloud to a
pair of fuzzy elements that then join into a single solid line. The thin solid lines form a
regular square grillage. In the final design, the horizontal edge elements are perfectly
black. The thick oblique elements are also black except that they are delimited by thin
gray layers. This is apparently a discretization related problem that should not affect
convergence. It is related to the difficulty to model smooth lines of arbitrary orienta-
tion using finite element sides at 0, 45 or 90◦. As for the thin members, the density is
uniform and gray. This could be because their thickness is so close to the finite ele-
ment size that the black and white solution cannot compete with the gray one (Fig. 5).

Iteration 1 (Continuous Solution) Iteration 2

Iteration 3 Iteration 5

Fig. 5 Medium cantilever beam designs at selected iterations
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(a)

(b) (c)

Fig. 6 Optimal topology for the medium cantilever beam. a Voigt upper-bound interpolation.
b Discrete topology by SIMP (p = 2). c Discrete topology by H-S interpolation (From [1])

Fig. 7 Iteration history for medium cantilever beam design

Comparison will be made with two elastic topologies drawn from the literature,
shown in Fig. 6. The topology given in Fig. 6b, obtained using a homogenization
approach, corresponds to the same main structure (thick members) as the direct
plastic design solution. The difference lies in the existence or not of the grillage in
the right hand frame. On the other hand, the elastic topology in Fig. 6c, obtained by
penalization of intermediate densities, is clearly different from the plastic solution
but shares with it the existence of a grillage structure in the right frame, although
reduced to a simple cross. Thus, in this example, the optimal plastic topology does
not appear to stand out from typical optimum elastic ones.
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6.3 The MBB Beam

The MBB beam problem treated in this section is illustrated in Fig. 8. The geometrical
dimensions of the problem are L = 6 m, H = 1 m, b = 0.05 m and a = 0.025 m. For
a shear strength s̄ = 1 kPa and using a mesh with 240×50×4 = 48,000 elements the
limit analysis conducted for the full density domain yields a limit load F̄ = 0.2 kN
in 52 s of CPU time. The continuous design problem solved for a specified applied
load F = 0.15 kN takes 122 s of CPU time. The resulting design is shown at the
top left of Fig. 9. It shows a significant resemblance with the reference continuous
configuration depicted in Fig. 10. The outer contour and the shape of the black zones
are largely similar. The differences that may be noted are only variations in size.
The material distribution in the interior also exhibits common patterns with some
differences in shape and size. Finally, the void in the plastic design solution is white
and clear whereas it is light gray in the reference (elastic) configuration.

Pursuing the iteration process in search for a discrete topology, the optimal layout
is practically reached within less than 10 cycles. At the 20th iteration the relative
error in the objective value is only ε20 = 0.0086 %. The configurations generated at

Fig. 8 The MBB beam

Iteration 1 Iteration 2

Iteration 3 Iteration 5

Fig. 9 MBB beam solutions at selected iterations

Continuous Design Optimum 0-1Topology

Fig. 10 Solutions for the MBB beam (From [28])
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selected iterations are displayed in Fig. 9. The final topology is nearly identical to that
corresponding to the 5th iteration. No checkerboard patterns appear in the design,
although no measures for preventing their formation were taken. The layout lines are
well defined. The void space is clear white. Comparison with the 0-1 reference solu-
tion in Fig. 10 reveals nearly the same topology. Differences are noted essentially in
the shape and size of the layout details, a remarkable observation given the difference
in the underlying problem natures. As noted in the previous examples, though, in the
limit analysis based design, the converged solution is not perfectly a 0-1 design.

7 Conclusion

A direct method for plastic topology design recently proposed by the authors for
the minimum weight design of continuum structures subject to a specified statically
and plastically admissible loading is reexamined and extended to the discrete, or
black and white, topology optimization. The continuous topology design integrates
the optimization problem with direct limit analysis in a single mathematical pro-
gramming problem exhibiting the same algebraic structure and the same order of
magnitude of computational demand as the direct static limit analysis problem. The
mathematical problem is a conic programming problem which presents attractive
convergence properties.

The discrete topology design problem is formulated by applying a penalization
scheme to the continuous one. The resulting, non convex, problem is treated by
solving a converging sequence of continuous design problems. The properties of the
latter translate into desirable features in the generated discrete topologies, such as
the unlikely occurrence of checkerboard effects.

The proposed method is illustrated on example problems taken from the litera-
ture. Comparison of the results of the proposed method with optimal black and white
topologies generated using elastic design methods shows some remarkable similar-
ities although the material behavior and the type of analysis are largely different.

A wide range of open questions arise from the present work. Among these, it is
interesting to identify example problems that highlight differences between elastic
and plastic topologies.
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The Influence of Limited Kinematical
Hardening on Shakedown of Materials
and Structures

Jaan-W. Simon

Abstract One of the most important tasks in design for construction engineers is the
determination of the load bearing capacity of the considered engineering structure.
This can be particularly challenging when the applied thermo-mechanical loads vary
with time and are high enough to exceed the material’s elastic regime. In these cases,
the lower bound shakedown analysis provides a convenient tool. Since accounting
for the realistic material behavior is inevitable to achieve reliable results, it is highly
relevant to consider limited kinematical hardening. Although there exist different for-
mulations in the literature, in which limited kinematical hardening is incorporated,
these usually do not take into account the underlying hardening law in an explicit
manner. The most important question in that context is whether such formulations
can cover both linear and nonlinear hardening laws. In consequence, the aim of this
paper is to investigate the effect of nonlinearity of the hardening law by showing
that in certain scenarios the introduction of an explicit hardening law as a subsidiary
constraint is unavoidable.

1 Introduction

One of the most important tasks in design for construction engineers is the deter-
mination of the load bearing capacity of the considered engineering structure. This
can be particularly challenging when the applied thermo-mechanical loads vary with
time and are high enough to exceed the material’s elastic regime. Then, the compu-
tation of the so-called shakedown loading factor is necessary, which is the maximum
loading factor such that the system can be considered as ‘safe’, such that neither
alternating plasticity nor spontaneous or incremental collapse occur.

J.-W. Simon (B)

Institute of Applied Mechanics, RWTH Aachen University,
Mies-van-der-Rohe-Straße 1, 52074 Aachen, Germany
e-mail: jaan.simon@rwth-aachen.de

© Springer International Publishing Switzerland 2015
P. Fuschi et al. (eds.), Direct Methods for Limit and Shakedown Analysis of Structures,
DOI 10.1007/978-3-319-12928-0_4

65



66 J.-W. Simon

In most cases, conventional step-by-step computations are performed whenever
the exact stress-strain distributions are needed. In contrast, if only the material’s or
structure’s limit state is of interest, the load bearing capacity can be conveniently
determined by means of limit or shakedown analysis. In general, there exist two
different approaches to shakedown analysis, which complement each other: The
lower bound approach by Melan [19, 20], which is formulated in statical quantities,
and the upper bound approach of Koiter [15], which makes use of the kinematical
ones. From these, the lower bound approach is adopted in this work, because the
formulation in terms of stresses is particularly suited for the extension to kinematical
hardening.

The majority of elasto-plastic materials exhibit kinematical hardening during the
evolution of plastic deformations. Therefore, this phenomenon needs to be incorpo-
rated into the procedure in order to obtain realistic results. In its original formulation
the statical shakedown theorem only holds for elastic-perfectly plastic continua as
well as for unlimited kinematical hardening ones. Since the unlimited kinematical
hardening case does not cover incremental collapse at all, taking into account lim-
ited (or bounded) kinematical hardening is inevitable. Hence, this issue has been
addressed by several authors in the field of shakedown analysis [6, 8, 10, 18, 21–27,
30, 36–40].

From those, the first explicit formulation for limited kinematical hardening mate-
rials has been given by Weichert and Groß-Weege [40] (WGW), who introduced a
two-surface model. Their formulation is based on the concept of generalized stan-
dard materials [11], and thus implies an associated hardening rule, together with
the assumption of limited linear kinematical hardening. Almost at the same time,
Stein et al. [37–39] have proposed another approach based on an overlay model. The
formulation presented therein has been said to be valid for limited general nonlinear
kinematical hardening with associated flow. Noteworthy, Heitzer [12] has investi-
gated the relation between the two different formulations. He has stated that both
theorems, even though formulated differently, lead to the same optimal value for the
shakedown factor, and that the only difference might appear in the corresponding
residual stress fields.

More recently Pham has presented an extension of the theorem proposed by
Weichert and Groß-Weege for the generally nonlinear case [23]. He has claimed,
that this theorem holds for any generally nonlinear hardening law as long as the
hysteresis is positive for any closed cycle of plastic deformations.

In all of these works, it turns out that the shakedown load is independent of the
underlying hardening law and the according stress-strain curve. The shakedown load
seems to depend only on the magnitudes of the initial yield stress σY and the ultimate
stress σH .

In contrast, independently of each other, Staat and Heitzer [36] as well as Bouby
et al. [4, 5] have presented results with significant differences in the shakedown limit
load between the limited linear hardening and the limited nonlinear hardening. Thus,
the aim of the present paper is to investigate the effect of different hardening rules
on shakedown loads.
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2 Lower Bound Shakedown Analysis Accounting
for Limited Kinematical Hardening

In the following, an elastic-perfectly plastic body with volume V and surface A is con-
sidered, which is subjected to: temperature loads T(x, t) in V , body forces f V (x, t)
in V , surface loads f A(x, t) on Af ⊆ A, and prescribed displacements u(x, t) on
Au ⊆ A, such that A = Af ∩ Au and Af ∪ Au = ∅. Only time- and temperature-
independent material behavior is taken into account, while material damage and
geometrical nonlinearity are neglected. The existence of a convex yield func-
tion f [σ (x, t)] is assumed. Then, the elastic limit is described by a yield surface
in stress space S as closure of the convex domain CY ⊆ S of admissible states of
stress with the strict interior C i

Y :

C i
Y =

{
σ ∈ S

∣∣∣ f [σ (x, t)] < σ 2
Y (x), ∀x ∈ V , ∀t

}
(1)

2.1 Melan’s Statical Shakedown Theorem
for Elastic-Perfectly Plastic Materials

As already mentioned above, this work is based on the statical shakedown theorem
by Melan [19, 20], which provides a lower bound to the shakedown loading factor. To
apply Melan’s theorem, the total stress σ (x, t) in a point x ∈ V within the volume V of
the considered body at time t is decomposed into an elastic reference stress σE(x, t)
and a residual stress ρ(x, t) induced by the evolution of plastic strains.

σ (x, t) = σE(x, t) + ρ(x, t) (2)

The fictitious stress state σE(x, t) is the one which would occur in a purely elastic
reference body under the same conditions and loadings as the original one. Both the
elastic reference stresses and the residual stresses satisfy the equilibrium constraints
as well as the statical boundary conditions.

equilibrium: ∇ · σE = −f V ∇ · ρ = 0 in V (3)

statical bc: n · σE = f A n · ρ = 0 on Af (4)

Then, Melan’s shakedown theorem for elastic-perfectly plastic materials can be
formulated as follows:

If there exist a loading factor α > 1 and a time-independent residual stress
field ρ̄(x), such that the yield condition is satisfied for any loading path within the
considered loading domain � at any time t and in any point x of the structure, then
the system will shake down.

f
[
α σE(x, t) + ρ̄(x)

]
≤ σ 2

Y (x), ∀x ∈ V , ∀t (5)
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It is worth to mention that the numerical procedure allows for computing values
α < 1 as long as it is positive, α > 0. Nevertheless, shakedown only can be guaran-
teed if α > 1 holds, because only then the plastic dissipative energy is guaranteed to
be bounded.

2.2 Two Surface Model for Limited Linear Kinematical
Hardening by Weichert and Groß-Weege (WGW)

The first explicit formulation of the statical shakedown theorem accounting for lim-
ited kinematical hardening has been proposed by Weichert and Groß-Weege [40] in
1988. The formulation presented therein is based on the Generalized Standard Mate-
rial Model (GSMM) introduced by Halphen and Nguyen [11]. Thus, it is implied that
the normality rule holds, restricting the formulation to associated hardening laws.
Moreover, the proof of the theorem makes use of the assumption of limited linear
kinematical hardening.

The kinematical hardening is considered as a translational motion of the yield
surface—described by f = σ 2

Y —in stress space without change of orientation, form
or size. This motion is limited by the bounding surface, f = σ 2

H , which corresponds
to the ultimate stress σH . Further, the motion is defined by the six-dimensional vector
of back-stresses π representing the translation of the yield surface’s center, see Fig. 1.
Thereby, the total stresses σ (x, t) are decomposed into the back stresses π and the
so-called reduced stresses υ. The latter are responsible for the occurrence of plastic
strains.

σ (x, t) = π(x, t) + υ(x, t) (6)

actual yield surface

initial yield surface
bounding surface

σi j

π

σ

υ

f (σ ) = σ 2
H

f (υ) = σ 2
Y

f (υ) = σ 2
Y

Fig. 1 Limited kinematical hardening considered as translation of the yield surface in stress space
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Since the bounding surface is fixed in stress space, the back-stresses have to be
time-independent, which will be indicated in the following by an overbar, π = π̄(x).
Further, the decomposition of the total stresses into an elastic reference part and a
residual one still holds. Consequently, the reduced stresses υ(x, t) can be expressed
as follows:

υ(x, t) = σ (x, t) − π̄(x) = σE(x, t) + ρ̄(x) − π̄(x) (7)

Finally, a shakedown theorem accounting for limited kinematical hardening can
be written as:

If there exist a loading factor α > 1, a time-independent self-equilibrated (resid-
ual) stress field ρ̄ and a time-independent field of back-stresses π̄ ,such that the yield
condition and the bounding condition are satisfied for any loading path within the
considered loading domain � at any time t and in any point x of the structure, then
the system will shake down.

f
[
α σE(x, t) + ρ̄(x) − π̄(x)

]
≤ σ 2

Y (x) (8)

f
[
α σE(x, t) + ρ̄(x)

]
≤ σ 2

H(x) (9)

It should be noted, that the consideration of specific hardening rules—such as the
linear one—implies restrictions on the field of back-stresses π̄ . This issue and its
consequences will be discussed in Sect. 3.

2.3 Extension of WGW-Model for Limited General
Nonlinear Kinematical Hardening by Pham

While the proof of the theorem given above is based on the assumption of limited
linear kinematical hardening, the same formulation has been derived for generally-
nonlinear hardening laws later by Pham [22, 23]. The only restriction Pham has
postulated on the considered hardening is the positive hysteresis postulate, which
states that for any closed cycle of plastic deformations (t ∈ [0, θ ]) the following
condition has to hold:

∮
π : dεp

π =
θ∫

0

π : εp
π dt ≥ 0

(
εp

π (0) = εp
π (θ)

)
(10)

where π denotes the back-stresses, and ε
p
π denotes the corresponding plastic defor-

mation. In the case of a simple loading-unloading closed plastic cycle, this restriction
implicates that the hysteresis loop is followed in clockwise direction, but not anti-
clockwise.
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2.4 Overlay-Model for Limited Nonlinear Kinematical
Hardening by Stein et al.

An alternative approach to formulate a shakedown theorem taking into account
limited kinematical hardening has been presented by Stein et al. [37–39]. This formu-
lation is based on the overlay model. As in the WGW-model, the normality condition
is assumed to hold. Except of this restriction the authors have stated that the formu-
lation is valid for limited general nonlinear kinematical hardening.

Interestingly, the formulation of Stein et al. is rather similar to the one by Weichert
and Groß-Weege. However, there is one very important difference in the way the
bounding condition is expressed. Instead of the condition (9), Stein et al. derive the
following one:

f [π̄(x)] ≤ [σH(x) − σY (x)]2 (11)

The most severe difference between (9) and (11) is the fact that the back-stresses π̄

appear only implicitly in the first one, whereas they show up in an explicit manner in
the second one. It is worth to mention, that the relation between these two different
formulations has been investigated in more detail by Heitzer [12]. As a result of these
investigations, Heitzer has stated that both theorems lead to the same optimal value
for the shakedown factor, even though the corresponding residual stress fields might
differ. As will be shown within the example in Sect. 4, this turns out not to be true in
certain scenarios.

2.5 Description of the Loading Domain

In the following, the loading historiesH (x, t) under consideration are assumed to be
describable as superposition of a finite number NL of different loading sets P�(x, t).
The latter can be expressed in terms of load multipliers μ�(t) for any loading case �

and the unity load P0(x).

H (x, t) =
NL∑

�=1

P�(x, t) =
NL∑

�=1

μ�(t) P0(x) (12)

As shown by König [16], it is sufficient to consider only the convex hull of the
loading history, which is polyhedral with NC = 2NL corners. These corners are
defined in the loading space by introducing bounding values μ+

� and μ−
� for each

multiplier μ�. Doing so, the set U is defined, which contains all possible combina-
tions of loading sets within these bounds through merging all loading multipliers to
the vector μ = μ� e�.

U =
{
μ ∈ RNL

∣∣∣ μ−
� ≤ μ� ≤ μ+

� , ∀� ∈ [1, NL]
}

(13)



The Influence of Limited Kinematical Hardening on Shakedown . . . 71

Then, the loading domain � is described as set of all possible loading histories
contained within U .

� =
{

H (x, t)
∣∣∣ H (x, t) =

NL∑

�=1

μ�(t) P0(x) , ∀μ ∈ U

}

(14)

Consequently, the elastic reference stresses are split in analogy to (12).

σE(x, t) =
NL∑

�=1

μ�(t) σE
� (x) (15)

2.6 Discretization

Using the finite element method (fem), the stresses are approximately represented by
their values in the Gaussian points, which will be referred to by the index r ∈ [1, NG].
Here NG is the total number of Gaussian points in the system. Consequently, the fic-
titious elastic stresses σE

r,� can be computed for any loading case � by purely elastic
analysis.

σE
r (t) =

NL∑

�=1

μ�(t) σE
r,� (16)

To ensure shakedown for all possible loading paths inside of the loading domain,
only its corners need to be examined. Thus, the time-dependence of σE

r can be
expressed through the stress states in the corners j ∈ [1, NC] of the loading domain.
For this, the matrix UNL ∈ RNC×NL with entries Uj� is introduced, where j ∈ [1, NC]
and � ∈ [1, NL].

σE,j
r =

NL∑

�=1

Uj�σ
E
r,� (17)

Each row of this matrix UNL represents the coordinates of one corner of the loading
domain in the NL-dimensional loading space, which are defined by the factors μ−

�

and μ+
� as introduced in (13). The matrix can be defined in an automatic way for

arbitrary numbers of loading cases NL, as shown in [35].
Since the elastic reference stress field σE is in equilibrium with the external load-

ing, the residual stress field ρ̄ has to be self-equilibrated. This fact can be expressed
by means of the principle of virtual work [9],

∫

V

δε : ρ̄ dV = 0 (18)

where δε denotes any virtual strain field which satisfies the kinematical boundary
conditions.
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Using the femwith isoparametric elements, the displacements u are approximated
by shape functions and nodal displacements uK . Thus, the virtual strain field can
be expressed through the nodal displacements as well: δε(x) = δuK · B, where
B(x) is the differentiation matrix. Furthermore, the integration is carried out numeri-
cally. Thereby (18) is approximated by a system of linear equations for the residual
stresses ρ̄r in the Gaussian points.

∫

V

B(x) : ρ̄ dV =:
NG∑

r=1

Cr · ρ̄r = 0 (19)

The equilibrium matrices Cr depend only on the geometry of the system and the
applied element type as well as the kinematical boundary conditions.

2.7 Resulting Nonlinear Optimization Problem

Based on the Eqs. (17) and (19), the extended Melan’s theorem for limited kinematical
hardening can be expressed in terms of an optimization problem for the loading
factor α > 1:

(PH) αSD = max
ρ̄, π̄

α

NG∑

r=1

Cr · ρ̄r = 0 (20a)

∀j ∈ [1, NC], ∀r ∈ [1, NG] :

f
(
α σE,j

r + ρ̄r − π̄ r

)
≤ σ 2

Y ,r (20b)

fH
(
σ j

r, π̄ r, σH,r

)
≤ 0 (20c)

Depending on which formulation is used, the according bounding condition, (9)
or (11), needs to be inserted:

WGW & Pham : fH
(
σ j

r, π̄ r, σH,r

)
= f

(
α σE,j

r + ρ̄r

)
− σ 2

H,r (21a)

Stein : fH
(
σ j

r, π̄ r, σH,r

)
= f (π̄ r) − (

σH,r − σY ,r
)2 (21b)

The solution procedure for this nonlinear convex optimization problem is not in
the scope of the current paper. The interested reader is referred to [31–34].
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3 Effect of the Underlying Kinematical Hardening Law

In this section, the effect of the underlying limited kinematical hardening model on
the shakedown load is investigated. As already has been mentioned, it is frequently
stated in literature that shakedown limits only depend on the initial yield stress σY

and the ultimate stress σH , but not at all on the hardening behavior in between, see
e.g. [1, 13, 22–24, 37, 40]. Even so, in the following it will be shown that in principle
there can exist cases, in which the shakedown load is in fact influenced by the applied
hardening law.

To do so, the shakedown theorems presented in the Sects. 2.2–2.4 are rewritten
in a more formal way. For this, the set of all time-independent and self-equilibrated
stress fields is denoted by R. Further, the set of all time-independent and permissible
fields of back-stresses is denoted by B. Here, the definition of a permissible stress
field depends on the considered theorem:

WGW: A back-stress field is permissible if it can evolve under the given loading
domain following the corresponding linear hardening law with an associ-
ated flow rule.

Stein: A back-stress field is permissible if it can evolve under the given loading
domain following any hardening law with an associated flow rule.

Pham: A back-stress field is permissible if it satisfies the positive hysteresis
assumption.

Then, the three theorems can be written in the following way:
If there exist a scalar α > 1 and fields ρ̄ and π̄ , such that the following conditions
hold, then the system will shake down.

π̄ ∈ B (22a)

ρ̄ ∈ R (22b)

∀j ∈ [1, NC], ∀r ∈ [1, NG] :
f
(
α σE,j

r + ρ̄r − π̄ r

)
≤ σ 2

Y ,r (22c)

fH
(
σ j

r, π̄ r, σH,r

)
≤ 0 (22d)

If one compares this set of conditions with the subsidiary constraints of the opti-
mization problem formulated in Sect. 2.7, one can observe that not all of the condi-
tions (22a)–(22d) are reflected. While the yield and the bounding conditions (22c)
and (22d) are represented by (20b) and (20c), respectively, the equation (20a) ensures
that ρ̄ is self-equilibrated (22b). In contrast, the condition (22a) is not incorporated
anymore.

In fact, as long as a general hardening case is considered, in which the evolution
of π̄ is not restricted by any specific kind of hardening law, the optimization problem
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(PH) is equivalent to (22a–22d) without loss of generality. In this case the back-
stresses can be considered as unrestricted variables of the optimization problem.
Therefore, the corresponding hardening law will be called unrestricted hardening in
the following.

Since α is maximized over π̄ , the solution of the optimization problem (PH)

involves the one particular field π̄∗, which leads to the maximum value of α. Hence,
the unrestricted hardening, which allows the back-stresses π̄∗ to evolve under the
given loading domain, is the most advantageous one leading to the highest shakedown
loading factors amongst all possible hardening rules. In other words, the computed
shakedown factor might be higher than the one, which can be obtained if a specific
hardening rule is applied.

Clearly, only the yield and bounding surface need to be defined by σY and σH ,
respectively, when the unrestricted hardening is considered using the optimization
problem (PH). This is in accordance with the above mentioned references. Even so,
the shakedown limit may depend on the hardening behavior in between the initial
yield state and the ultimate state. If a specific hardening law is to be considered, then
the feasible set of back-stresses can be restricted, such that π̄ ∈ B◦ and B◦ ⊂ B.
To ensure that the solution is admissible, this restriction for the back-stresses has
to be included into the optimization problem as a separate constraint. Otherwise, a
non-admissible solution might be obtained, π̄∗ /∈ B◦.

If, for example, the special case of limited linear kinematical hardening shall be
investigated, the set of feasible back-stresses B◦ has to be formulated such that the
resulting solution π̄◦ can evolve under the given loading domain following the corre-
sponding linear hardening law, π̇◦ = C ε̇p, where C is a material parameter. However,
introducing such additional constraints directly into the optimization problem can
be problematic, because kinematic variables (e.g. plastic strains εp) would have to
show up at least implicitly in the statical theorem, which is formulated in stresses.
Nevertheless, the generally-nonlinear hardening can be directly incorporated into the
procedure by defining the restrictions on the back-stresses.

4 Sample Under Constant Tension and Alternating Torsion

To illustrate the correlation between different hardening laws, an illustrative exam-
ple is presented in this section. In particular, a specimen is considered, which is
subjected to a constant tension σ̄ > 0 and alternating torsion τ with zero mean
shear stress, such that τmin = −τmax. The according loading domain consists of
only two points (σ̄ , τmax) and (σ̄ , τmin). Noticeably, such a system has been previ-
ously examined by e.g. Portier et al. [28], where ratcheting has been investigated
experimentally as well as numerically. Furthermore, numerical and analytical results
of shakedown analysis accounting for different types of kinematical hardening are
presented in [7, 14, 17, 36] for the plane stress state, while the plane strain state has
been investigated in [4, 5].
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In the following, the plane stress state is considered:

σ =
⎛

⎝
σ̄ τ 0
τ 0 0
0 0 0

⎞

⎠ and π =
⎛

⎝
X Y 0
Y 0 0
0 0 0

⎞

⎠ (23)

In this simple problem both the stress and the strain field are uniformly distributed.
Therefore, the residual stresses ρ̄ need not to be considered. In fact, the back-stresses
π play the role of residual stresses in this case.

In the following, the yield criterion is expressed by the von Mises yield condition,
which reads:

fY (σ − π , σY ) = (σ̄ − X)2 + 3 (τ − Y)2 − σ 2
Y = 0 (24)

Since both maxima (σ̄ , τmax) and (σ̄ ,−τmax) shall be located on the yield surface
which is described by (24), the following two equations have to hold:

(σ̄ − X)2 + 3 (τmax − Y)2 − σ 2
Y = 0 (25a)

(σ̄ − X)2 + 3 (−τmax − Y)2 − σ 2
Y = 0 (25b)

The difference between these Eq. (25a), (25b), gives:

(τmax − Y)2 − (−τmax − Y)2 = −4 τmax Y = 0 (26)

A non-trivial solution, τmax = 0, can therefore only be obtained if Y = 0. Thus,
to reach the shakedown state, the yield surface is moved in stress space only in the
direction of σ . The yield condition simplifies to:

fY (σ − π , σY ) = (σ̄ − X)2 + 3 τ 2 − σ 2
Y = 0 (27)

The positive solution of (27) is:

√
3 τ =

√
σ 2

Y − (σ̄ − X)2 (28)

From (28) it can be observed that the shakedown load τ can in fact depend on
the according back-stress X. However, this back-stress is restricted by the applied
hardening law. To illustrate the influence of different kinematical hardening rules,
the following types of plastic behavior are incorporated:

1. Perfectly plastic behavior:
No hardening occurs and thus no back-stress evolves, X = 0, leading to the
following maximum value of admissible shear stress:√

3 τ0 =
√

σ 2
Y − σ̄ 2 (black dashed line in Fig. 2)

Alternating plasticity only occurs in pure shear, σ̄ = 0, whereas the remaining
shakedown domain represents incremental collapse.
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Fig. 2 Shakedown domains for a specimen under constant tension and alternating torsion with
different hardening rules

2. Limit load for proportional loading path:
For the proportional loading path, the limit domain is similar to the one in the
perfectly plastic case (case 1). The only difference is that σY needs to be substi-
tuted by σH . Hence, the following maximum value of admissible shear stress is
obtained:√

3 τL =
√

σ 2
H − σ̄ 2 (black solid line with + in Fig. 2)

3. Unlimited kinematical hardening:
The shakedown state is defined solely by alternating plasticity. It can be obtained
by any hardening rule setting σH → ∞. The evolution of back-stresses is not
restricted at all, and consequently∀σ̄ : X = σ̄ , leading to the following maximum
value of admissible shear stress:√

3 τu = σY (black solid line with × in Fig. 2)
4. Limited unrestricted kinematical hardening:

The unrestricted kinematical hardening is obtained from the solution of the opti-
mization problem (PH), in which no explicit restriction is formulated for the
back-stresses, since no condition in terms of (22a) is accounted for. Since the
back-stress X is not restricted, ∀σ̄ : X = σ̄ holds. This leads to alternating

plasticity in case of σ̄ ≤ σ̄ ∗ =
√

σ 2
H − σ 2

Y , where the admissible shear stress is
τu (see case 3).
On the other hand, if σ̄ > σ̄ ∗, the bounding condition enforces incremental
collapse independently of the back-stresses. The according bounding condition
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is the one given by WGW and Pham:

fH (σ , σH) = σ̄ 2 + 3 τ 2 − σ 2
H = 0 (29)

This leads to the following maximum value of shear stresses:

√
3 τ =

√
σ 2

H − σ̄ 2 (30)

As a result, the maximum value of admissible shear stress reads:
√

3 τun =
{√

3 τu = σY if σ̄ ≤ σ̄ ∗
√

3 τL =
√

σ 2
H − σ̄ 2 if σ̄ > σ̄ ∗ (blue solid line with ◦ in Fig. 2)

It should be mentioned, that the yield surface is allowed to partly move outside of
the bounding surface, as long as the considered stress points on the yield surface
(σ̄ , τmax) and (σ̄ , τmin) stay inside.

5. Limited linear kinematical hardening:
For the limited linear kinematical hardening, the hardening rule of Prager [29]
is applied: π̇ = C ε̇p, where C denotes the kinematical hardening modulus and
ε̇p denotes the plastic strain rate. As shown in [14, 38], the back-stresses are
restricted by:

f (π , σH) = X2 − (σH − σY )2 = 0 (31)

Hence, the back-stress X ≤ σ̄ ◦ cannot exceed the value σ̄ ◦ = σH − σY . In
consequence, alternating plasticity can only occur if σ̄ ≤ σ̄ ◦, because then X = σ̄

is possible.
On the contrary, for σ̄ > σ̄ ◦, the restriction of the back-stresses leads to X = σ̄ ◦,
which enforces incremental collapse. The resulting maximum value of admissible
shear stress for limited linear hardening is:
√

3 τP =
{√

3 τu = σY if σ̄ ≤ σ̄ ◦
√

σ 2
Y − (σ̄ − σ̄ ◦)2 if σ̄ > σ̄ ◦ (dotted line in Fig. 2)

It is worth to mention, that this is in agreement with the solution presented in [3]
for a specific nonlinear Prager’s rule: π̇ = C ε̇p − (γ /C)2 X2

eq ε̇p. The back-stress
corresponding to the stabilized cycle has only to be replaced by σ̄ ◦ = C/γ .
Further, it should be mentioned that this is exactly the result which can be obtained
by using the theorem by Stein, because (31) obviously corresponds to (21b). This
could be expected, since the considered hardening law is based on an associated
flow rule.

6. Limited nonlinear kinematical hardening:
Finally, for the limited nonlinear kinematical hardening the hardening rule of
Armstrong and Frederick [2] is used:

π̇ = 2

3
C ε̇p − C

π

X∞
ṗ (32)

where ṗ =
√

2
3 ε̇p : ε̇p and X∞ = σ̄ ◦ = σH − σY .
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For this hardening law, the considered example has been intensively investigated
by several authors. The first solution has been proposed by Lemaitre and Chaboche
[17], followed by Saxcé and coworkers [7], where an analytical solution is derived
and verified by an alternative theoretical calculation on the basis of the bipotential
approach. In [4, 5] an analytical solution is presented for the plane strain state,
which can be transferred to the plane stress state considered here simply by
setting ν = 0. Moreover, a numerical implementation is given, which is in perfect
agreement with the analytical solution. Finally, Staat and Heitzer [36] obtained
lower bound results using a finite element computation with basis reduction. In
all these references, it turns out that the back-stresses are restricted even more
than in the linear hardening case:

X = σ̄
σH − σY

σH
(33)

Since σH > σY , this leads to ∀σ̄ : X < σ̄ . Noteworthy, this restriction enforces
incremental collapse in the whole loading domain, and alternating plasticity only
can occur in case of pure shear, σ̄ = 0. Consequently, a significant influence
of the restriction on the back-stresses can be observed, which contradicts some
statements presented in literature, see e.g. [1]. The according maximum value of
admissible shear stress reads:√

3 τAF = σY

σH

√
σ 2

H − σ̄ 2 (dash-dot line in Fig. 2)

The results for all of the above mentioned cases are shown in Fig. 2 for an arbitrarily
chosen value σH/σY = 3/2, where both axes of the plot are scaled to the according
shakedown value in the perfectly plastic case, σ0 and τ0, respectively.

Noteworthy, the limited linear hardening model [29] predicts a higher shakedown
load than the limited nonlinear one [2]. Furthermore, the nonlinear model only pre-
dicts failure due to incremental collapse, whereas in the linear case two different
regions exist, one of which represents the incremental collapse and the other one
represents alternating plasticity. However, both models give a lower value for the
shakedown load than the unrestricted one resulting from the optimization problem
(PH), as expected according to the discussion above.

5 Conclusions

Concluding, it could be shown that the lower bound shakedown analysis is well
suited to determine the limit states of materials or structures. In particular, formula-
tions have been investigated which addressed: perfectly plastic behavior, unlimited
kinematical hardening, limited linear kinematical hardening, and limited nonlinear
kinematical hardening. The most important result of these investigations is the fact
that an unrestricted hardening law is implicitly applied whenever the back-stresses
are not restricted by an according subsidiary constraint in the optimization problem.
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Even more, the result of such unrestricted problems gives the highest shakedown
factor, which can be obtained by any hardening law. Nonetheless, specific hardening
laws can be incorporated as indicated above by formulating additional constraints
in the optimization problem. This is still covered by the shakedown theorem and its
proof. In that sense, the general character of the theorem itself is not curtailed by the
discussion above.
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Theoretical Basis and a Finite Element
Formula for the Direct Calculation
of Steady Plastic States

Denis A. Tereshin and Oleg F. Cherniavsky

Abstract Direct methods discussed in the literature address mainly the
determination of an elastic shakedown boundary, and insufficient attention has been
paid to the practically important case of inelastic steady cyclic structural response.
To fill this gap, this paper extends a systematic direct approach to safety factor and
cyclic state assessment beyond elastic shakedown, which is applicable for any kind of
steady cyclic elastic-plastic deformation. In order to construct the limit state bound-
aries, the basic theorems of elastic and inelastic shakedown accounting for material
hardening are formulated uniformly for all the possible combinations of ratcheting
and alternating plasticity. A special emphasis is put on practical material descrip-
tion for each kind of limit state. After the cyclic state under prescribed loading is
classified, a direct approach created on the same theoretical framework is employed
to determine the evolution of the strain and stress fields over the cycle. Mathemati-
cally, this results in a convex constrained optimization problem, which is formulated
making use of finite element discretization. The proposed optimization approach is
validated through the Bree problem, with the results agreeing well with the analytical
solution to the problem.

1 Introduction

Structural low cycle deformation has three stages: the first one is an initial stage
with material hardening or softening, the second one is a steady cycle stage and
the third one is a tertiary stage leading to crack initiation. The time span of the
initial stage and the amount of the correspondent damage strongly depend on
the fabrication technique, with material property data being usually unavailable,
and the material models being complicated and inaccurate. Therefore, the damage
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gained over this stage is usually neglected. At a tertiary stage, material softening
caused by the increasing damage prevails. Material behaviour at this stage has been
insufficiently investigated, and the unstable deformation processes peculiar to mater-
ial softening are difficult to be evaluated and analyzedwith the existing computational
techniques. Practically, the damage yielded at the last stage is usually assessed and
predicted using the data obtained by monitoring and calculations. The calculations
are conducted under the assumption of the stability of deformation.

In a steady state, material hardening is balanced by softening. Since this stage
occupies the most lifetime, the whole structural life can be often predicted correctly
knowing the steady cycle parameters. In the framework of the steady cyclemodel, the
stress cycle is supposed to be closed, and plastic strain rates—to repeat exactly each
cycle. There are four main types of steady cyclic states [1], with material behaviour
and properties being particular to each type. Each type of steady deformation leads to
a certain structural limit state and failure mode. The deformation type is determined
by the combination of the plastic strain increment �ε′′:

�ε′′ =
T∫

0

ε̇′′dτ = ε′′(τ + T) − ε′′(τ ), (1a)

(where ε̇′′ denotes the plastic strain rate, τ is time, T is the cycle period) and by the
plastic strain range δε′′:

δε′′ = max
τ

ε′′ − min
τ

ε′′ − ∣∣�ε′′∣∣ (1b)

where τ ranges over one cycle. These states are conveniently classified with a load
interaction diagram also known as the Bree diagram, shown in Fig. 1 for a pipe under
constant internal pressure and through-wall linear thermal transients [2]:

• elastic shakedown (δε′′ = 0,�ε′′ = 0) occurs in regions I and II of the diagram;
• alternating (reversed) plasticity (δε′′ �= 0,�ε′′ = 0)—in region III;
• incremental plasticity collapse (ratcheting) (δε′′ = 0,�ε′′ �= 0)—in region V;
• a combination of the last two (δε′′ �= 0,�ε′′ �= 0)—in region IV.

It is worth noting that whereas material deformation and damage behaviour for
the first three states can be described correctly by the engineering material models,
the study to the combined deformation material behaviour is only at the beginning
[3]. Another complication is that the engineering material models are usually spe-
cific for each deformation type. In particular, the elastic-perfectly plastic material
model can represent material behaviour for pure ratcheting, but it does not reflect the
essential deformation features in the case of non-infinitesimal strains in alternating
plasticity or in combined deformation. So a priory the engineer has to provide the
computational software with an appropriate material model before understanding
the real structural response, though the response is dependent on loading and can
rarely be predicted without computations. To solve this issue, the interaction diagram
is useful as its boundaries give the estimates of limit loads and allow determining
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Fig. 1 Load interaction
diagram

the type of component deformation. Thus, the problem of steady cycle assessment is
twofold: firstly, it is necessary to construct the interaction diagram to find the loading
corresponding to the limit states of the structure, and, secondly, the steady structural
response under prescribed repeated loading should be computed.

For the first time the general theorems of the existence and uniqueness of cyclic
steady state were proved by Frederick and Armstrong [4] using Drucker’s postulate
and the assumption of material stability. They argue that physical convergence to a
steady state is asymptotic and obeys the exponent law, so itwas inferred that for steady
cyclic state assessment, a computation over only a few first cycles is sufficient. How-
ever, the engineering practice evidences that this postulate does not generally hold.

In reality, the deformation convergence to a steady state in excess of shakedown
can proceed quite slowly over many tens of cycles. The computations over loading
history show that cyclic deformation converges especially slowly in severe alternating
flow combined with incremental collapse [1] (zone IV in Fig. 1). In such a case the
whole stress-strain history is arduous to compute using the step-by-step approach,
as not the amount of the degree of freedom but a long loading history becomes the
main obstacle. The problem of a slow convergence to a steady state is caused by
the fact that the parameters of the exponential law evolve during deformation, and a
small change in the cycle parameters between subsequent cycles does not necessarily
implies that the state is close to a steady one. Consequently, extrapolation to a period
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greater than an order of the computed cycle number becomes meaningless especially
in combined deformation.

This issue necessitates the development of an approach capable of finding the
steady cycle parameters (strain range and increment) directly. Although a variety of
efficient procedures for elastic shakedown have already been proposed and imple-
mented employing low and upper bound theorem aswell as primal-dual theory [5–8],
there are only few approaches being developed for steady plastic response. Among
them are the algorithm by Chen and Ponter [9], which captures the plastic shake-
down boundary between zones III and IV, and the technique by Spiliopoulos and
Panagiotou [10] employing the residual stress decomposition method to determine
structural response for any steady cyclic state.

To find the solution to a steady cycle problem, the latter two approaches iteratively
adjust either the elasticity parameters or the residual stress field. Alternatively, the
problem of determining a steady plastic response under prescribed cyclic loading can
be stated as a convex constrained optimization problem [11] by the unified approach
used in this study to derive the shakedown theorem. So the aim of the present study
is to extend a mathematical optimization approach combined with finite element
discretization to the steady cycle problem so as to create an approach for obtaining
the cycle parameters for any point of the interaction diagram.

This work begins with stating the governing equations for a solid plastic body in
Sect. 2; then Sect. 3 outlines the rules for material description in steady cyclic states.
The individual theorems for separate elastic shakedown boundary determination are
formulated in a unified way in Sect. 4, and a similar formula for an arbitrary steady
cycle under given loading is deduced in Sect. 5. Finally, the approach is tested with
a model problem for different steady cycles in Sect. 6.

2 Governing Equations for a Plastic Body
Under Cyclic Loading

Direct steady cycle computations are based on the classical plasticity theory relations
complemented by a stress cycle closure condition.

The total stress in a steady cycle is constituted by the fictitious elastic σ (e) and
residual ρ stresses; the latter includes the initial residual stress ρo at the beginning
of a cycle and the residual stress increment accumulated since then over time τ :

σ = σ (e) + ρ = σ (e) + ρ◦ +
τ∫

0

ρ̇ dτ (2)

The total strain consists of the elastic strain ε′, which is caused by the fictitious elastic
σ (e) and the residual ρ stresses, the plastic ε′′ and thermal ε′′′ strains:

ε = ε′ + ε′′ + ε′′′ = ε(e) + E−1 : ρ + ε′′ + ε′′′, (3)
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ε̇ = ε̇′ + ε̇′′ + ε̇′′′ = ε̇(e) + E−1 : ρ̇ + ε̇′′ + ε̇′′′ (4)

For the sake of simplicity, the elasticity tensor E in Eqs. (3) and (4) is assumed to
be time independent.

The equilibrium for the fictitious elastic stresses σ (e) holds naturally. For the
residual stress field ρ, equilibrium over a body and the boundary conditions at the
part of its surface Sp with prescribed tractions can be stated as follows:

∇ · ρ◦ = 0 in V , ρ◦ · n = 0 at Sp, (5)

∇ · ρ̇ = 0 in V , ρ̇ · n = 0 at Sp (6)

Since the fields of the total strain rate ε̇ and sum of the elastic fictitious and thermal
strain rates in Eq. (4) are compatible, the plastic strain rate ε̇′′ field and the strain rate
field caused by the residual stresses ρ̇ are also compatible to a displacement rate u̇
field at any time. For small strains and displacements this leads to

ε̇′′ + E−1 : ρ̇ = 1

2
(∇u̇ + (∇u̇)T ) (7)

For simplicity let us omit the boundary conditions at the body surface where dis-
placements are given.

To account for kinematic and isotropic hardening through the back stress tensor
S and parameter k respectively, the stress σ ∗ on the yield surface obeys [12]

f
(
σ ∗ − S

) − k2 = 0 (8)

The actual stress lies inside or on the yield surface:

f (σ − S) − k2 ≤ 0 (9)

and is associated with the plastic strain by the flow rule:

ε̇′′ = α∇σ f (σ − S), α ≥ 0, (10)

where plastic multipliers α are determined by the hardening law. The plastic strains
can be nonzero only if the stress σ is on the yield surface, i.e.

α[f (σ − S) − k2] = 0 (11)

Even if f(σ − S) − k2 = 0 is satisfied, these strains are zero in unloading:

α = 0 if f (σ − S) − k2 = 0 and ḟ (σ − S) ≤ 0 (12)

For the determination of �ε′′ and δε′′, condition (12) is usually not used in the
analysis as yield surface is a mathematical model of a complicated phenomenon,
and, practically, the parameters of a cycle are expressed through finite increments.
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Nonlinear constraints (11) are satisfied at every material point over all times and
can be substituted by the requirement that the functional

I =
T∫

0

dτ

∫

V

(
σ ∗ − σ

) : ε̇′′dv (13)

must be zero:
I = 0 (14)

in which the stress σ ∗ satisfies Eq. (8) and relates to the strain ε̇′′ through Eq. (10).
If the actual stresses σ satisfying (9) were not equal to σ ∗ associated with ε̇′′

by Eq. (10), it follows from Drucker’s postulate that the functional I would take on
a positive value. At a solution, within plastic zones, stress histories are uniquely
defined, and equality holds at least for those components of σ and σ ∗ which are
associated with ε̇′′, so the functional I yields the minimum equal to zero.

The closure condition for a steady cyclemay be enforced either in terms of residual
stresses by forcing them to repeat every cycle:

�ρ (T) =
T∫

0

ρ̇dτ = 0, (15)

or, equivalently, in terms of strains by ensuring the plastic strain field increment �ε′′
over a cycle to be compatible with the displacement field increment � u:

�ε′′(T) = 1

2
(∇(�u) + (∇(�u))T ) (16)

Note that making use of Eqs. (5)–(7), (15), functional (13) can be simplified for
steady cycles as [11]:

I =
T∫

0

dτ

∫

V

(
σ ∗ − σ

) : ε̇′′dv =
T∫

0

dτ

∫

V

(
σ ∗ − σ (e)

)
: ε̇′′dv (17)

Thus, the system defining a steady cyclic state is constituted by Eqs. (5)–(10) and
(14) complemented by cycle closure condition (15) or (16).

3 Material Behaviour Description

In engineering strength and service life assessments it is important to properly
prescribe the relation between the stresses σ ∗ (and, consequently, all the stress-strain
history in steady cycling) and plastic strains through Eqs. (8) and (10). Although the
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Fig. 2 Isotropic and
kinematic hardening
description

stresses σ ∗ depend on material hardening at an initial unsteady stage, practically, the
material hardening properties can often be supplied in spite of the lack of the data
for this stage. This section discusses both the main rules for material description and
the tests necessary for material data acquisition. These tests should be conducted in
the same environment, temperature range and with the same cyclic pre-conditioning
as the structural component.

In cyclic loading, the deviator back stress tensor S in Eqs. (8)–(12) is conveniently
presented as the sum: S = S0 + Sτ . The first component S0 determines the origin of
a cycle as Fig. 2 shows; it depends on the preceding load history and does not vary
in a cycle. The cycle origin corresponds to the center of the yield surface (8), so the
parameter k signifies the yield stress. The second term Sτ accounts for kinematic
hardening during a cycle. The parameters Sτ and k depend on such conditions as
temperature, environment and the strain history from the beginning of a cycle. Like
S0, the parametersSτ and k can also dependon the loadinghistory preceding the cycle.
However in a steady cycle, S0, Sτ and k become independent from the cycle count.

The functions S and k and the domains of their validity are determined by tests,
with the experiments being set for a particular deformation mode and for the purpose
of computation.

Any deformation assessment necessitates yield criterion (8) to be particularized
for the working conditions experienced by the component. If alternating plasticity is
expected, the material properties are determined from strain-controlled cyclic tests
(Fig. 3a). The material model should account for the Bauschinger effect, the cyclic
hardening or softening gained over the initial unsteady stage and finite (nonzero)
tangent stiffness at the tips of the stress-strain loop. Material parameters for an
alternating plasticity steady cycle are often independent from the mean stress and
the strain accumulated, i.e. from S0.

In incremental plasticity, material behaves as it does in a steady loading combined
with elastic reverse loadings (Fig. 3b). A steady strain accumulation can take place
only without strain-hardening in a cycle (Sτ = 0).

Material properties in combined loading dependonboth cyclic and static damages,
and, therefore, the material behaviour is affected by interacting alternating plasticity



88 D.A. Tereshin and O.F. Cherniavsky

(a) (b) (c)

Fig. 3 Deformation behaviour in alternating plasticity (a), incremental collapse (b) and a combined
deformation (c)

and ratcheting. In a steady cyclic state this complicated phenomenon can be described
in a simpler way through hysteresis loop parameters and the loop tip locus curve
defined through parameter kL as shown in Fig. 3c.

The experimental studies conducted for a number of steels and alloys [13] show
that if the static damage is less than the cyclic one, ratchet strain influence on a
steady cyclic state can often be neglected. This fact supports the hypothesis that
under some restrictions the function Sτ does not depend on the strain accumulated
in the cycle and over the previous deformation. However, the horizontal locus line
of loop tips does depend on cyclic hardening and softening, with the line location
being impossible to be determined solely from monotonous loading tests except for
cyclically stable materials.

Thematerialmodel for a particular cyclic limit state created according to the above
reasoning should be supplied individually to the correspondent formula deduced in
the following sections.

4 Cyclic Limit State Theorems

The individual formulae for different cyclic limit states derived in this section provide
theoretical ground for constructing an interaction diagram. With the interaction dia-
gram one can infer the type of the steady cyclic state under given loading and assess
the safety factors against the limit states. In the sequel, the cyclic limit state theorems
are uniformly derived from the complete set of governing relations (Sect. 2), with
the formulae making use of the material models according to Sect. 3.

Let us parameterize each loadwith its own parameter. These parameters define the
combined load for any instant and specify the path to a limit state. As the parameters
are introduced for convenience, let us define the parameter ni for the ith load as a
factor for the corresponding elastic fictitious stress field. In computations for all the
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limit state boundaries, without loss of generality one can suppose that all the factors
are specified except for one denoted as np.

4.1 Individual Theorems for the Elastic Shakedown Boundaries

Let us start from the formulae for elastic shakedown boundary delimiting region II
from regions III–V in the interaction diagram (Fig. 1). These formulae are deduced
individually for reversed plasticity and incremental collapse.

4.1.1 The Formulae for Alternating Plasticity

The boundary between elastic shakedown region II and alternating plasticity one III
in Fig. 1 can be found either from the condition that np attains maximum without
alternating plasticity, or that np is minimal subject to the strain range δε′′ is nonzero.
In both statements theremust be no strain increment over the cycle. The first argument
leads to the lower bound statement, and the second—to the upper bound:

n−
p = max np if δε′′ = 0, �ε′′ = 0, i.e. ε̇′′ ≡ 0, (18)

n+
p = min np subject to δε′′ �= 0, �ε′′ = 0 (19)

Let us eliminate the redundant relations form the system of Eqs. (5)–(10), (14),
and (15) or (16) for a steady cycle.

As according to Eq. (18) there is no plastic deformation, Eqs. (6), (7), (10), (14)
and (16) are satisfied trivially, and, therefore, can be excluded from the system of
constraints. Plastic deformation in the limit state of alternating plasticity is local: only
themost stressed point or some equally stressed points of the body undergo plasticity,
whereas the other body part forms an elastic core which controls the deformation.
According to the solution uniqueness statement [4], the residual stresses are unique
only in plastic zones.Therefore, one can alwaysfinda residual stress field that satisfies
Eq. (5). Consequently, this constraint is also redundant. The plastic strain range of a
loop vanishes, so deformation hardening is negligible and Sτ becomes zero as well.
Denoting the result of combining ρ0 and a time-independent part of the fictitious
stresses as σ ◦, the only nontrivial constraint (9) for problem (18) can be rewritten as:

f
(
σ (e)

τ + σ ◦ − S0
)

− k2 ≤ 0 (20)

where σ
(e)
τ is the time-dependent part of σ (e), k is the proportional elastic limit (in

an initial assessment can be taken as the yield stress) obtained from strain controlled
cyclic tests (Fig. 3a). Thus, steady alternating plasticity cannot take place if there
exists any permanent stress field σ o, the sum of which with the time dependent
elastic fictitious stresses σ

(e)
τ yields a plastically admissible stress state, i.e. Eq. (20)

is satisfied with the appropriate S0 and k for any instant.
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The isotropic hardening gained over an initial stage is usually small except for
the case of special hardening technologies. If the kinematic hardening parameter
S0 does not affect the isotropic hardening parameter k, which is common, e.g. for
isothermal deformation in a certain strain range or for a small strain-hardening, the
back stress S0 in Eq. (20) can also be combined with σ o so as not to be accounted for
as a separate variable. In such a case the initial stage gives rise to a residual stress
field that makes the loop at the most stressed points of the body symmetric.

Let us extend the upper bound given by Eq. (19) by considering along with the
given structure (which has the yield stress k and the stress on the yield surface
σ ∗) the hardened structures, which have greater yield stresses nk (n ≥ 1) and the
correspondent stresses on the yield surface nσ ∗, with n being allowed to be distributed
nonuniformly over the body. The solution to such relaxed problem is obviously the
same as for the original one, with the problem extension allowing the elimination
of some constraints. Since one can form the extended problem so that Eqs. (5)–
(7), (9) are always satisfied, and do not affect the actual solution, these constraints
are not essential for the formula and can be excluded. The associate flow rule by
Eqs. (8) and (10) does not change. Taking into account that plastic flow in the limit
state of alternating plasticity is instantaneous and local in the body, cycle closure
condition (16) and functional (17) in Eq. (14) can be rewritten as the sums:

�ε =
m∑

l=1

ε̇′′
l = 0, (21)

m∑

l=1

(
nσ ∗

l − σ
(e)
l

)
: ε̇′′

l = 0, (22)

where m stands for the number of time instants yielding occurs in a cycle. As
Drucker’s postulate leads to the inequality (n − 1) σ ∗

l : ε̇′′
l ≥ 0, condition (22)

finally takes the following form:

m∑

l=1

(
σ ∗

l − σ
(e)
l

)
: ε̇′′

l ≤ 0 (23)

Thus, the constraint system of upper bound (19) includes only Eqs. (8), (10), (21)
and (23), which means that a steady alternating flow will happen if there exists a
plastic mechanism satisfying these constraints.

Alternating plasticity limit state formula given by Eqs. (18)–(23) leads to a
primal-dual problem of quadratic programming. This algorithm is implemented in
the software described in [1], which can be used jointly with the conventional FEM
software capable of conducting elastic analysis.

It is worth noting that a disproportional change of the stress components in a
cycle leading to a curvilinear stress path and yielding more than twice per cycle can
seriously influence the onset of alternating flow. So against the widespread opinion,
alternating yielding can start if the largest elastic fictitious stress component has the
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range only of 1.5 yield stress in plain stress state and of 1 yield stress in triaxial stress
state [1].

4.1.2 The Formulae for Incremental Collapse

Let us make similar formulations for the boundary between an elastic shakedown
region (area II in Fig. 1) and a steady incremental collapse region (area V) employing
the same approach:

n−
p = max np if δε′′ = 0, �ε′′ = 0, i.e. ε̇′′ ≡ 0, (24)

n+
p = min np subject to δε′′ = 0, �ε′′ �= 0 (25)

For a correct estimate, the yield stress kL in computations should be taken as the
ultimate stress of the material [1, 11]. Lower bound statement (24) differs from prob-
lem (18) because displacements are accumulated in the process of nonlocal plasticity;
therefore, Eq. (5)must be retained in the constraint system. This leads to the static for-
mulation: incremental collapse cannot take place if there exists any time-independent
self-equilibrated stress field ρo the superposition of which with the elastic fictitious
stress field σ (e) yields a plastically admissible stress state for any instant.

In kinematical counterpart (25) cycle closure condition (16) is retained, and
Eq. (17) is transformed like (22) to

m∑

l=1

∫

V

(
σ ∗

l − σ
(e)
l

)
: ε̇′′

l dv ≤ 0 (26)

So the upper bound statement reads: a steady incremental collapse will happen if
there exists a plastic mechanism satisfying Eqs. (8), (10), (16), (25) and (26).

Had the limit states not been differentiated, the results obtained would coincide
with the classical Melan and Koiter theorems [14] and be true only for an elastic-
perfectly plastic material with strain-independent yield stress.

4.2 Individual Theorems for Inelastic Shakedown Boundaries

The upper boundaries of pure alternating plasticity or incremental collapse regions
delimit these regions from the region of combined steady deformation (region IV in
Fig. 1). The formulation deduction in this section is made by reasoning similar to
that of Sect. 4.1

4.2.1 The Formulae for the Upper Boundary of Alternating Plasticity

The upper boundary of reversed plasticity delimits regions III and IV in Fig. 1 and
corresponds to the onset of ratcheting against the background of alternating plasticity.
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Material behaviour is described by means of the functions Sτ and k obtained from
tests under different strain ranges. In addition, the horizontal locus line of the loop
tips is defined by the parameter kL dependent on both cyclic and static damages [13]
as Fig. 3c shows.

Assume that alternating plasticity computations for material with a certain yield
stress k have been performed for any loading by enforcing stain loop to be closed (see
Fig. 3a), i.e. excluding the possibility of ratchet strain, to obtain the reversed plasticity
stresses σ (a). The stresses σ (a) are composed of the fictitious elastic stresses σ (e) and
the residual stresses ρ(a):

σ (a) = σ (e) + ρ(a) (27)

With this decomposition for a limit cycle, in which ratcheting begins by the
existing alternating plasticity, the optimization formulae differ from problems (24)
and (25) only by the additional time-dependent self-equilibrated stress ρ(a) term. So
one has the lower bound formulation:

n−
p = max np

s.t.

∣∣∣∣
f (σ (e) + ρ◦ + ρ(a) − S0) − k2L ≤ 0
∇ · ρ◦ = 0 in V , ρ◦ · n = 0 at Sp

(28)

which leads to the statement: incremental collapse cannot take place if there exists a
time-independent self-equilibrated stress field ρo, the sum of which with the reversed
plasticity stresses σ (a) yields an admissible stress state for any instant.

The upper bound formula is similar to (25) except for the fact that alternating
plasticity is allowed:

n+
p = min np

s.t.
m∑

l=1

∫

V

(
σ ∗

l − σ
(a)
l

)
: ε̇′′

l dv ≤ 0
(29)

also subject to Eqs. (8), (10), and (16), in which kL is used instead of k. This results
in that a steady incremental collapse will happen if there exists a plastic mechanism
satisfying all the constraints mentioned.

4.2.2 The Formulae for the Upper Boundary of Incremental Collapse

The upper boundary of incremental collapse separates regions IV and V in Fig. 1.
Similarly to the case when alternating plasticity shakes down, if alternating plasticity
is at the onset in a state of pronounced ratchet straining, the material does not usually
cyclically strain-harden or soften noticeably over an initial deformation stage before
a cyclic steady deformation.

At first, computations for incremental collapse should be made for a range of
loads for the determination of the incremental plasticity stresses σ (p). In these
computations, as Fig. 3b shows, yielding at reverse half-cycles is suppressed by
making k great enough as compared to kL (see Fig. 3c), with kL being taken equal
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to the ultimate stress [11]. Denoting the residual part of the stresses σ (p) in these
solutions as ρ(p), the lower bound formulation reads: alternating plasticity cannot
take place if there exists such self-equilibrated stress field ρo that its sum with the
incremental plasticity stress σ (p) represents an admissible stress state for any instant:

n−
p = max np

s.t.

∣∣∣∣
f (σ (e) + ρ◦ + ρ(p) − S0) − k2 ≤ 0
∇ · ρ◦ = 0 in V , ρ◦ · n = 0 at Sp

(30)

As in the determination of the alternating plasticity bound (Sect. 4.1.1), the para-
meter k in Eq. (30) is determined by the proportionality limit, or approximated by
the yield stress, obtained in a steady loading test. As opposed to the elastic ficti-
tious stresses σ (e), the stresses σ (p) in problem (30) similarly to the stresses σ (a) in
formulae (28), (29) are nonlinearly dependent on the loads.

The upper bound formula takes the form:

n+
p = min np

s.t.

∣∣∣∣∣∣

m∑

l=1

(
σ ∗

l − σ
(p)

l

)
: ε̇′′

l ≤ 0

�ε′′ = 0

(31)

also subject to Eqs. (8) and (10). It argues that an alternating plasticity will happen
if there exists a plastic mechanism satisfying all the constraint system of Eq. (31).

5 Formula for a Steady Cyclic State Under
Prescribed Loading

In the unified approach to cyclic strength and service life assessment, a direct
technique for a steady cycle can serve as a tool, firstly, for pre-computation σ (a)

and σ (p) necessary for bound construction in Sects. 4.2.1 and 4.2.2, and, secondly,
for actual structural steady cyclic response determination under given cyclic loading.

A formula for a steady cyclic state can be derived by substitution for one of the
steady cycle relations listed in Sect. 2 by a specific functional, which recasts the
problem in an optimization form. There are different ways to write the steady cycle
problem in an optimization form making use of extremum principles in mechanics
[14]. One possibility is in the substitution of equality (14) by the condition of mini-
mization of the same functional (17). The functional is subject to all the other steady
cycle relations unchanged and attains zero at the exact minimizer:

I+ = min I (32)

subject to Eqs. (5)–(10) and (15) or (16).
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The mechanical sense of such relaxation is that by rejecting Eq. (11) the plastic
strain rates ε̇′′ are allowed to be nonzero even for the stresses σ being not on the yield
surface. Condition (11) is satisfied at the exact minimizer of problem (32). A simple
technique employing this formula and finite element discretization for numerical
estimations of a steady cycle is considered hereafter in Sect. 6.

As the solutions to the model problems of trusses and frames have demonstrated
and the test problem in Sect. 6 confirms, one of the advantages of such approaches
is that the cycle parameters δ ε′′, � ε′′ are accurately estimated with only 4–5 time
points per cycle, even though the strain rate history may deviate notably.

It is worth to stress that cyclic plastic deformation can sometimes be unstable and
lead either to structural buckling [1], or to non-uniform deformation and material
redistribution. These issues are not addressed in this study.

6 Direct Finite Element Computations of a Steady Cycle

This section validates formula for a steady cycle (32) by considering the classical
problem [2] of a pressurized thin-walled cylinder subject to cyclic through-wall
thermal transients making use of the analytical solution to this problem.

The resulting convex constrained optimization problem is stated using finite ele-
ment discretization. In this simple optimization approach the equality constraints are
enforced by means of quadratic penalties; and the inequality ones by logarithmic
barriers. The influence of time discretization step on the result accuracy is studied.

6.1 Temporal and Spatial Discretization

Let us make time discretization as Fig. 4 shows, where time instant l is in the range
from the beginning of a cycle (l = 0) to its end (l = m), with both coinciding by
the fact the cycle is closed. Hereafter, the plastic strain ε′′

l , displacement ul, residual
stress ρl (l = 0, m) have the meaning of increments, whereas ρ0 is the initial residual
stress, and the elastic stress σ

(e)
l corresponds to the lth instant.

Fig. 4 Time discretization
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Employing finite element spatial discretization with the deformation matrix B,
the self-equilibrium condition (5), (6) for the initial residual stress is formulated as:

BT ρ0 ≡
NG∑

i=1

wiBT
i ρ0i = 0, (33)

where NG is the total number of the Gauss integration points; wi is the integration
weight of point i. From now on all vectors and matrices indexed by i or j imply the
local ones for the ith or jth point, whereas the matrices not indexed—the global ones.
For example, Hook’s relation between the stress and strain for point i at time instant l
is σ

(e)
il = Eiε

(e)
il , with εT

il = {εil
x εil

y εil
z 2εil

xy 2εil
yz 2εil

zx}, but the global
relation is σ

(e)
l = Eε

(e)
l .

In place of Eq. (7), one finds the displacements ul induced by the plastic strain
increment ε′′

l by solving the FE problem with the global stiffness matrix K:

ul = K−1
NG∑

i=1

(
wiBT

i Eiε
′′
il

)
(34)

and then restores the residual stresses:

ρl = E
(
Bul − ε′′

l

)
(35)

The total stress evolves through the cycle points discretely as Fig. 4 illustrates:

σ il = σ
(e)
il + ρi0 +

l∑

h=1

ρih (36)

The cycle closure condition (15) takes the form of

m∑

l=1

ρil = 0 (37)

and the stress admissibility condition (9) is required to be satisfied:

f (σ il) ≤ k2, l = 1, m, i = 1, NG (38)

Accepting the von Mises yield criterion the functional I in Eq. (32) is written as:

I =
m∑

l=1

NG∑

i=1

(√
2/3wik

√
ε

′′T
il Diε

′′
il − wiσ

eT

il ε′′
il

)
(39)

where Di = Diag{1 1 1 1/2 1/2 1/2}.
Thus, the mathematical optimization problem is stated as: minε′′,ρ,u I subject to

Eqs. (33)–(38) for l = 1, m, i = 1, NG, in addition to which, one must impose the



96 D.A. Tereshin and O.F. Cherniavsky

incompressibility constraints on the plastic strains by making the strain deviatoric:

DViε
′′
il = 0, l = 1, m, i = 1, NG (40)

where DVi is the diad projecting to tensor’s spherical part: DVi = 1/3 (1 1 1 0 0 0)T

(1 1 1 0 0 0).
For eliminating displacements, by substitution Eqs.(34)–(35) one gets to:

ρl = −EPε′′
l , l = 1, m, (41)

with the matrix P = I − BK−1 ∫
V BT EdV projecting an arbitrary strain field to the

subspace of self-equilibrated strain fields.
For convenience, let us accept the notation from Vu and Yan et al. [7], which

simplifies energy relations: eil = wiD1/2ε′′
il—for strain increment vector;

∧
Bi =

wiD
1/2
i Bi—for deformation matrix, so that

∑m
l=1 eil = ∧

Biu; til = D−1/2
i σ

(e)
il and

βil = D−1/2
i

ρil—for stress vectors. In these definitions Di
−1/2 and Di

1/2 are diago-
nal symmetric matrices such that: Di

−1/2 = (Di
1/2)−1 and Di = Di

1/2Di
1/2.

Von Mises stress admissibility condition (38) for point i and instant l can be
presented in terms of the Euclidean norm:

∥∥∥∥∥
(Ii − DVi)

(

til + βi0 +
l∑

h=1

βih

)∥∥∥∥∥
≤ √

2/3k (42)

Let us define the matrix G, a component Gij of which relates plastic strain at point
j to the induced residual stress at point i:

βil = Gijejl, l = 1, m, i, j = 1, NG (43)

where Gij = D−1
i E_wi

∧
BiK−1

∧
Bj

T E_wjD
−1
j − D−1/2

i E_wiD
−1/2
j δij (δij = 1 if i = j,

δij = 0 if i �= j; E_wi = (1/wi)Ei). Then the problem formula simplifies to:

I− = min
e, β0

NG∑

i=1

m∑

l=1

(√
2/3k

√
eT

il eil + ε20 − tT
il eil

)
(a)

s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

NG∑

i=1

∧
Bi

T βi0 = 0 (b)

NG∑

j=1
Gij

m∑

l=1
ejl = 0 (c)

DVieil = 0 (d)

f̄il =
(

βi0 +
NG∑

j=1
Gij

l∑

h=1
ejh + til

)T

(Ii − DVi) (e)

×
(

βi0 +
NG∑

j=1
Gij

l∑

h=1
ejh + til

)

− (2/3) k2 ≤ 0

(44)
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where all the constraints are satisfied for i = 1, NG, l = 1, m, and the first
constraint ensures initial residual stress self-balance, the second—cycle closure, the
third—plastic incompressibility conditions, and the last one replaces Eq. (42).

According to Vu and Yan et al. [7] a small regularization parameter ε0 was intro-
duced to Eq. (44) in order to make it differentiable at eil = 0.

6.2 Simple Computational Approach

The conditions of plastic incompressibility (44d), cycle closure (44c) and initial
residual stress self-equilibrium (44b) are enforced by means of quadratic penalties,
which with Eq. (44a) make up an extended object function:

f0 =
NG∑

i=1

m∑

l=1

(√
2/3k

√
eT

il eil + ε20 − tT
il eil

)
+ c1

2 E
NG∑

i=1

m∑

l=1
eT

il DVieil

+ c2
2E

NG∑

i=1

NG∑

j=1

(
m∑

l=1
(eil)

T

(
NG∑

g=1
GT

giGgj

)
m∑

l=1

(
ejl

)
)

+ c3
2ELe

NG∑

i=1

NG∑

j=1

(
βT

i0

∧
Bi

∧
Bj

T βj0

)

, (45)

where c1, c2, c3 are penalty coefficients, Le—the typical element size, E—Young
modulus.

An unconstrained mathematical optimization problem is formulated using loga-
rithmic barrier functions for inequality constraints (44e):

min
e, β0

F0, (46)

in which F0 = f0 − (1/t)
∑NG

i=1
∑m

l=1 log(−f̄il).
Having denoted the vector collecting all the inequality constraint functions f̄il as f̄ ,

one can write the stationarity (minimum) condition of F0 as a central path condition:

∇f0 +
NG∑

i=1

m∑

l=1

λil∇ f̄il = 0

−diag(λ)f̄ − (1/t)I = 0 (47)

which from another viewpoint is the modified Karush-Khun-Tucker equations of the
problem of functional (45) minimization subject to Eq. (44e) [15], with the gradients
taken with respect to the primal (e, β0) and dual λ variables. So, solving system (47)
one applies a simple primal-dual interior-point approach; and the greater the para-
meter t, the closer the solution of Eq. (47) to the solution to the original problem
given by Eq. (44).
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However, before solving Eq. (47), one has to find by means of a phase I method
a feasible point (e, β0) satisfying all the inequality constraints (44e), e.g.:

min
e, β0

S

s.t. f̄il(eil, βi0) ≤ S, i = 1, NG, l = 1, m,
(48)

The solution process is initialized by setting S to make all the constraints in
Eq. (48) strictly satisfied and proceeds till the parameter S is reduced below zero,
which means all the inequality constraints (44e) are strictly satisfied.

Equation (47) is solved bymeans of Newton’s method using the analytical expres-
sions of the first and second derivatives to obtain the primal (� e, �β0) and dual
�λ variable increments. At the second stage, exact line search was employed, since
without line search, Newton’s method experiences convergence difficulties when
||eil|| ≥ ε0. The line search procedure uses the extended object function F0 as a
merit function and ensures that λ � 0 and the incremented value of (e, β0, λ)

is feasible. Basing on the current value of the surrogate duality gap η = f̄Tλ the
parameter t is determined in each iteration as: t = μ · NG · m/η; where the greater
parameter μ is, the more aggressively t increases.

6.3 Test Problem

The analytical solution to the problemof pressurized thin-walled tubemadeof elastic-
perfectly plastic material under repeated thermal loading [2] was used to prove the
optimization formulation (44) is capable of yielding the solution. If a Tresca yield
condition is implied, this problem becomes equivalent to the plain stress problem
corresponding to a cross section of the tube under the same time-varying thermal
stress σt and the constant stress σp equal to the hoop stress caused by pressure in
the tube. The structure was discretized with rectangular quadratic finite elements as
Fig. 5a shows (0y points along a radial direction, 0x—in a hoop one), each element
having nine integration points. TheUx displacement at the left edge is restrained, and
ux of all the nodes at the right edge is identical. In the beginning of a cycle temperature
varies fromuniformdistribution at the initial timepoint to a linear distributionwith the
maximal gradient along 0y axis (see Fig. 5b), and then goes back in the end of a cycle.

For validation, comparisons between the analytical and numerical solutions were
made for two loading conditions corresponding to pointA, which lies in the incremen-
tal collapse region V in Fig. 1, and for point B located in the combined deformation
region IV.

For initialization, S was taken such as to strictly satisfy all the inequality con-
straints. Computations were started with ε0 ≈ 10−2 and small coefficients ci of about
10−5 so as not to paymuch attention to the equality constraints of the original problem
(Eq. (44b–d)) at this stage. The phase I method (48) converged rapidly since inequal-
ity constraint functions expressed by Eq. (44e) are quadratic, and the algorithm based
on Newton’s method performed immediately at quadratically convergent stage.
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(a) (b) (c) (d)

Fig. 5 Problem sketch (a), temperature distributions (b), comparison of computed and analytical
plastic strains (c) and total stresses (d)

In the main minimization phase, convergence difficulties entailed by the sum of
the Euclidean norms term in the object function F0 (46) were remedied by the proper
choice of μ value, combined with adjusting the regularization parameter ε0 and the
penalty coefficients ci. In general, the object function reduced successfully when μ

was relatively small of about 1–5, and all of the four terms in Eq. (45) had nearly the
same order of magnitude. However, approaching the boundary defined by inequality
constraints Eq. (44e), the method can drastically slow down [16]. This obstacle was
dealt with by a temporal reduction of μ for several iterations to about 0.05, after
which the point became repelled enough form the boundary for the object function
to be reduced further.

At the end of the minimization process, ε0 was adjusted to be 10−5–10−6 (2–3
orders of magnitude less than the maximal ||eil||), and the coefficients ci amounted
to 105–1010 for the constraints given by Eq. (44b–d) to be fulfilled.

6.3.1 Incremental Deformation

Let us first discuss the results for point A in the interaction diagram (Fig. 1), at which
pure incremental collapse is expected. The constant stress σp amounts to 0.75 σy, the
maximal thermal stress σt = 2σy.

Three mesh patterns were used to solve the problem: 5 elements in column and
2 in row, as Fig. 5a depicts, 10× 1 elements, and 5× 1 elements. Only two instances
were considered over cycle period (m = 2) corresponding to no temperature applied
and to the full thermal load (see Fig. 5b).

The convergence process and results obtained for different mesh patterns are
nearly the same. It should be admitted that in spite of the fact that the penalty
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coefficients ci were increasedgradually, and the regularization coefficient ε0 appearing
in the sum of norms term was also reduced gradually, the convergence during main
optimization phase was neither fast nor stable since Newton’s method is naturally
not suited for the sum of norms problem. So it required about a hundred of iterations
to converge.

Nevertheless, even though the cycle was discretized over time only by two time
points corresponding to the extremes of thermal load, one can see a good correspon-
dence between the numerical solution (solid lines) and the reference analytical one
(dashed lines) shown in Fig. 5c, d for the plastic strain increments εx and total stress
σx distributions along 0y axis. Figure5 shows the results only for 5×2 finite element
mesh, as for the other meshes there is no distinguishable difference. It is worth noting
that due to object function (44a) regularization with ε0, the solution fields occurred
to be almost uniform in 0x direction and showed no deformation instability intrinsic
to a non-hardening material.

Figure5c shows that the strain increment over the cycle is compatible; the checks
confirm that the residual stress β0 is self-equilibrated, and the plastic strain is devia-
toric, which means the constraints presented by Eq. (44b–d) are satisfied.

6.3.2 Incremental Deformation with Alternating Plasticity

The performance of the direct method at point B in the Bree diagram (σp = 0.5σy,
σt = 4.0σy) is of special interest as it corresponds to a combined deformation, which
makes physical convergence to a steady cycle quite slow. The mesh for this test was
created as a 5 × 1 pattern (Fig. 6a).

Fig. 6 Problem sketch (a), temperature distributions (b), comparison of computed and analytical
plastic strains (c)
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Fig. 7 Temperature distributions (a), comparison of computed and analytical plastic strains incre-
ments over half-cycle (b) and total stress (c)

The first trial was made, as in the previous case, with only two time instants per
cycle. Figure6 shows a considerable deviation from the exact solution both in the
strain increment �εx , which is underestimated, and the strain range δεx , which is,
on the contrary, overestimated.

However, having introduced two intermediate time instances as Fig. 7a shows
(m = 4), the results become much closer to the analytical solution, and the strain
(Fig. 7b) and stress (Fig. 7c) distributions match to the exact ones much better. There-
fore, though amore complicated deformation history generally requires more refined
time discretization, by increasing the parameter m to a value of less than 10, one can
expect a satisfactory result improvement.

7 Conclusions

This study attempts to develop a unified direct method based approach for the evalua-
tion of an elastic-plastic steady cyclic structural response. For this aim, the theorems
of elastic and inelastic shakedown accounting for material hardening are formulated
in a unified way for all the four cyclic limit states. These theorems form a theoretical
basis for the construction of a full interaction diagram for a structural component.
This diagram allows to classify the deformation of the component and, then, to use
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an appropriate material model in the direct computation method for cyclic steady
state assessment.

Thedirect formula for an arbitrary steady cycle (in incremental collapse, alternating
plasticity or in combination of the both) under prescribed cyclic loading is deduced
in the same way as the theorems and takes on a similar mathematical form.

The applicability of such approach has been demonstrated by the solutions to the
classical Bree problem. In these solutions the resulting convex equality and inequality
constrained optimization problem is stated making use of finite elements. The solu-
tion results for two types of cyclic state agree well with the analytical solutions to the
problem. Thus, this formulation has been proved to be able, in principle, to capture
the proper results for all the parameters of a steady cycle such as plastic strains and
stresses, even though the simple computational approach is only for demonstration.

Thus, it has been shown that this formula is equally suitable for any kind of
deformation including a combined one, for which the conventional step-by-step
approaches are often excessively time expensive. As the computational tests show,
another advantage of such direct technique is that the necessary number of time
increments per cycle for reasonable strain range δε′′ and increment �ε′′ estimates
seems to be small, e.g. in the case of pure incremental collapse, only two instances
per cycle resulted in a good stress and strain estimate.
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On the Statistical Determination of Yield
Strength, Ultimate Strength, and Endurance
Limit of a Particle Reinforced Metal Matrix
Composite (PRMMC)

Geng Chen, Utku Ahmet Ozden, Alexander Bezold,
Christoph Broeckmann and Dieter Weichert

Abstract In this paper we present a numerical methodology to determine the load
bearing capacity of a random heterogeneous material. It is applied to a particu-
late reinforced metal matrix composite (PRMMC), WC-30 Wt.% Co, to predict
its strength against both monotonic and cyclic loads. In this approach, limit and
shakedown analysis based on Melan’s static theorem [30] is performed on represen-
tative volume element (RVE) models generated from real material microstructure
and the obtained results are converted to macroscopic load domains through homog-
enization. To evaluate microstructure’s impact on the overall material strength, the
relationship between strength and composite structure is investigated by means of
statistics. Meanwhile, several numerical issues, e.g. the impact of RVE’s size, mesh
density, as well as the discrepancy between 2D and 3D models, are studied.

Keywords PRMMC · Shakedown · Statistical RVE · Homogenization · Melan’s
theorem

1 Introduction

In civil and mechanical engineering, determining the capability of structures to
support different types of loadings plays a central role. The recent trend for increas-
ing application of composite material and the gradual replacement of conventional
metallic materials in structural components, set forth new challenges for this classic
problem. In the context of heterogeneous materials, it is known that the strength
depends on their microstructural features [17, 40]. Thus to fully exploit the potential
of such materials, it requires to understand decisive factors influencing composite’s
strength, especially the contribution of material’s microstructure.
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Particulate Reinforced Metal Matrix Composites (PRMMC) consist of the ductile
binder and brittle inclusion particles. This combination constitutes a large class of
existing composite structures. Compared to fiber reinforced composites PRMMCs
generally show higher isotropy and demand less effort for manufacturing [20]. How-
ever, the randomness in the distribution of reinforcement grains entails consider-
able spatial variation of material behavior. This leads to two consequences: first,
material’s response to external loading is quite localized; second, representative vol-
ume elements (RVE) do not exist in a strict sense—it means not a singular model
of finite size is capable to completely reflect the overall material behavior [39]. The
randomness of microstructure also introduces difficulties in the numerical represen-
tation of the material. Two prominent problems are the modeling technique of the
microstructural geometry and the size effect of RVE investigated in many studies
[5, 14, 21, 32, 36, 46].

For PRMMC with high binder content, the matrix failure is a major cause of overall
material failure [38] and the strength of the composite is highly depends on matrix
phase’s capability to resist plastic failure. Similar to single phase material, strength
of a globally elasto-plastic composite can be characterized by three strengths: yield
strength, ultimate strength and endurance limit. They correspond to elastic limit,
plastic limit and shakedown limit of the material, respectively.

The link between endurance limit and shakedown on micro scale has already
been noted by Drucker [13]. The idea has further been studied by Dang Van who
developed his well known criterion [12], which calculates the condition of elastic
shakedown on grain level and allows determining the endurance of material under
complex multi-axial loading situations. Nevertheless, since often serious stress and
strain localization will be observed within the heterogeneous material, this criterion
is not fully satisfying for composites. To take into account the contribution of the
composite structure, one has to consider numerical approaches [7, 16].

Applying direct methods (DM) in the Melan-Koiter path-independent spirit
[23, 30] to study the problem has some advantages. On the one hand, it allows
to consider the composite structure and on the other hand it avoids performing
cumbersome step-by-step calculation. This method has become increasingly pop-
ular in recent decades: as example, Weichert et el. [42], Schwabe [35], Maier [28],
Magoariec et al. [27], Zhang et al. [45], You et al. [44], Chen et al. [10, 11] solve the
problem by a static approach. In contrast, Carvelli [6], Chen and Ponter [9], Li [26],
and Barrera [3] deal the problem by the kinematic approach.

The implementation of DM according to Melan’s theorem involves solving a con-
strained extremal problem, and conventional mathematical programming methods
cause serious difficulties when model size grows. This is the main reason that exist-
ing studies, to the authors’ knowledge, are restricted to idealized microstructures. To
study more complex microstuctures, one has to rely on highly efficient optimization
algorithms. The interior point method introduced by Karmarkar [22] has demon-
strated high efficiency in solving linear programming (LP) problems and it attracted
interests from different disciplines [15, 41]. More recently, the algorithm has been
introduced to solve nonlinear programming (NP) problems. An additional advantage
of the interior point method is its capability in dealing with large scale problems.
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The number of iterations it requires to converge is much smaller than the polynomial
upper bound and is almost independent upon the problem size [43]. Therefore, many
researchers have incorporate this algorithm with DM. This includes problem-tailored
codes [25, 33, 37, 47], and reformulating problems in such a way that they can be
efficiently solved by general-purpose solvers [4, 18, 31].

In the present study, WC-70 Wt.% Co is used as a typical PRMMCs to study both
monotonic and cyclic limit loads. The technique developed in a previous study [8]
is applied in order to overcome the aforementioned main obstacles. Using a series
of scanning electron microscope (SEM) images obtained from the material finite
element (FE) models are built. Then first, static limit and shakedown problems are
constructed on each RVE and solved by an interior-point method based solver. In the
second step, the load domains obtained in the previous step are converted to macro-
scopic strength through the homogenization technique. To estimate the dependence
of the strength on structure, the obtained results are evaluated statistically. In order to
identify factors that influence the quality of numerical results, several characteristics
of FE models, e.g. the impact of RVE’s size, mesh density, as well as the difference
between 2D and 3D model, are investigated and discussed in detail.

2 Limit and Shakedown Analysis of Random
PRMMC Material

2.1 Micromechanical Homogenization
of Elasto-Plastic Materials

Homogenization theory links physical fields in two well-separated scales, i.e. the
microscale y in which structural details of RVE are distinguishable and the macro
scale x in which a RVE is recognized as a macroscopic point. For a heterogeneous
composite, once exposed to external loading, its microscopic stress field � in y and
the macroscopic counterpart in x satisfy the relationship:

� = 1

�

∫

Ω

σ (y)dv. (1)

Here � indicates the RVE domain. Analogously, macroscopic strain E can be
defined as

E = 1

�

∫

Ω

ε(y)dv. (2)

When all constituents of the composite are elastic, � and E are correlated by the
effective elastic tensor C:

� = C : E. (3)
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For a globally isotropic composite, C depends only on the effective Young’s modulus
E and effective Poisson’s ratio υ.

A characteristic of PRMMCs is that stress and strain are strongly non-uniform
due to heterogenity, thus the onset of local plasticity can take place even when �

is fairly low. To assess the plastic strain in the macro scale, Suquet [38] proposed a
measure: the effective plastic strain Ep which is a work conjugate to � defined as:

Ep = E − C
−1 : �. (4)

This way, the global yield strength of a composite �Y can be set as the stress leading
to 0.1 % global strain:

�Y = arg(Ep
eq(�eq) = 0.1 %). (5)

Here, Ep
eq and �eq represent equivalent macroscopic plastic strain and stress, respec-

tively. In the present study, all phases are assumded to obey the von Mises yield
criterion. Thus Ep

eq and �eq can be formulated as:

Ep
eq =

√
2

3
(Ep)′ : (Ep)′, (6a)

�eq =
√

3

2
�′ : �′. (6b)

The apostrophe in (6a, 6b) indicates the deviatoric part of a tensor. It is important to
note that an individual RVE is not isotropic, despite macroscopic isotropy of WC-Co
in the elastic as well as the plastic range. For this reason, we take the average of
strength in two orthogonal directions �Y

11 and �Y
22 as the measure of composite’s

global strength.

2.2 Static Theorem and Its Numerical Reformulation

The static shakedown criterion for a elastic-perfectly plastic material can be for-
mulated as follows: shakedown occurs if there exist a safety factor α > 1 and a
time-independent residual stresses field ρ, whose superposition with the purely elas-
tic stresses σE does not exceed the yield condition F at any time t > 0:

F
(
ασ E(y, t) + ρ̄, σY

)
≤ 0, (7a)

∇ · ρ̄ = 0 in �, (7b)

σE(y, t) · n = t on ∂�t, (7c)

ρ̄ · n = 0 on ∂�t . (7d)
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Here �t denotes the part of the boundary where tractions t are prescribed. In case of
von Mises yield criterion, the function F becomes:

F(σ , σ Y ) =
√

3

2
σ ′ : σ ′ − σ Y . (8)

By employing (7a–7d) to each RVE, its respective admissible load domains will be
identified. Since plastic limit can be regarded as a special case of shakedown where
σE evolves monotonically through t, this condition holds as well for the limit analysis.

When σ E is entailed by a set of NL independent loads Pi, due to linearity following
relationship holds:

σE

(
NL∑

i=1

Pi(y)

)

=
NL∑

i=1

σE (Pi(y)). (9)

Here, an individual load Pi can be separated into two parts including a varying
magnitude scalar μi and a time invariant base vector P̂i:

Pi(y, t) = μi(t)P̂i(y). (10)

Since each particular load μi varies within the interval [μ−
i , μ+

i ], a loading profile
can be considered as a trajectory in space L spanned by {P̂i}. As shown by König
[24], it is sufficient to only consider the convex hull of the loading history, which is
defined by the NC = 2NL corners of the polyhedral loading domain. This way, (7a)
can be simplified to a time independent form:

F
(
ασ E(P̂i) + ρ̄, σY

)
≤ 0, i ∈ [1 . . . NC] (11)

By FE discretization and replacing (7a) by (11), the shakedown condition (7a–7d)
becomes:

(PORI) max .
ρ̄

α, (12a)

s.t. : [C] {ρ̄} = {0} , (12b)

F(ασE
i (P̂k) + ρ̄i, σ

Y
i ) ≤ 0, i ∈ [1, NGS], k ∈ [1, NC]. (12c)

Here, NGS is the number of total Gaussain points in a model, and matrix C the
self-equilibrium matrix defined as:

[C] =
NGS∑

m=1

wm |Jm|[Bm]T . (13)

Matrix B consists of spatial derivatives of shape functions and maps displacements
into strains; w is the weight factor of integration points; J is the determinant of the
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Jacobian matrix. For FE models having NK nodes and NDoF degrees of freedom for
each node, one obtains C ∈ R

NDoF·NK×6NGS where NDoF equals 3 for 3D case, and
2 for 2D case.

In the current study, ultimate strength �U and endurance limit �∞ are considered
for the non-reverse axial loading which correspond to 1 load vertex and 2 load vertices
in L , respectively. To exclude anisotropy, strengths will be evaluated on various
directions and their average value will be taken. The simplest way to achieve this is
following the approach illustrated in Fig. 1: arbitrary orthogonal stresses �E

11 and �E
22

are prescribed alternately on a purely elastic reference RVE, and entailed microscopic
stress fields σE

11(y) and σ E
22(y) are calculated, respectively. By introducing an angle

θ , a combined loading P̂1 can be formed as a joint effect of �E
11 and �E

22. Therefore,
to calculate �U , the shakedown condition is required to be satisfied at vertex P̂1.
Analogously, to calculate �∞, the same condition should hold simultaneously at
vertices P̂1 and P̂2.

Some efficiency issues associated with the implementation of shakedown theorem
(12a–12c) has been noticed concerning inequality constraints (12c). For pragmatic
reasons, this condition should be reformulated to improve the efficiency of optimiza-
tion algorithm. Akoa et al. [2] have suggested to convert convex quadratic constraints
into Euclidean ball constraints. Several key steps of this approach are briefly intro-
duced here.

For the original shakedown problem PORI in (12a–12c), primal variables are
components of residual stress at every Gaussian point. More specifically:

1. ρ̄ = {ρ̄11, ρ̄22, ρ̄33, ρ̄12, ρ̄13, ρ̄23}T for 3D case,
2. ρ̄ = {ρ̄11, ρ̄22, ρ̄12}T for 2D plane stress case,
3. ρ̄ = {ρ̄11, ρ̄22, ρ̄33, ρ̄12}T for 2D plane strain case.

The reformulation introduced in [2] changes the primal variables to a linear trans-
formation of total stress σ where σ = ασE + ρ̄. The relationship between the new

Fig. 1 Superposition of
elastic stress
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primary variable {u, v} and σ in the 3D case follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

u5

v

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

σ Y

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 −1/2 −1/2 0 0 0

0
√

3/2 −√
3/2 0 0 0

0 0 0
√

3 0 0

0 0 0 0
√

3 0

0 0 0 0 0
√

3

1 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (14)

and in 2D plane strain case:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1

u2

u3

v

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 1

σ Y

⎡

⎢⎢⎢⎢
⎣

1 −1/2 −1/2 0

0
√

3/2 −√
3/2 0

0 0 0
√

3

1 0 1 0

⎤

⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (15)

and in 2D plane stress case:

⎧
⎪⎨

⎪⎩

u1

u2

u3

⎫
⎪⎬

⎪⎭
= 1

σ Y

⎡

⎢⎢
⎣

1 −1/2 0

0
√

3/2 0

0 0
√

3

⎤

⎥⎥
⎦

⎧
⎪⎨

⎪⎩

σ11

σ22

σ12

⎫
⎪⎬

⎪⎭
. (16)

This transformation matrix denoted by U is applied to each σ , and v retained from all
Gaussian points are put collectively into a global vector v = {v1, v2, . . . , vm}T where
m = NGS and v ∈ R

NGS. Applying the new primal variable, shakedown problem
PORI in (12a–12c) can be reformulated into an equivalent form:

(PReform) max . α, (17a)

s.t. :
NGS∑

r=1

[Ar]
{

u1
r

}
+ [B]

{
v1

}
− α

{
w1

}
= 0, (17b)

Where:
{

w1
}

= [C]{σE(P̂1)} (17c)
{

u2
r

}
−

{
u1

r

}
= α [U]

{
σ 2,E

r − σ 1,E
r

}
(17d)

∥∥∥u1,2
r

∥∥∥ ≤ 1. (17e)

In (17a–17e), number within superscript indicates load vertex. For all 2D and 3D
models, [Ar] is defined as:

[Ar] = √
2σ Y [Dr][L−T ] (18)
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The other variables of (18) in 3D case are defined by:

L3D =

⎡

⎢⎢⎢⎢
⎣

√
2 0 0 0 0√

2/2
√

3/
√

2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

(19a)

D3D
r = [

(CrT)1 (CrT)2 (CrT)4 (CrT)5 (CrT)6
]

(19b)

B3D = [
(C1T)3 (C2T)3 · · · (CNGST)3

]
(19c)

T3D =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1/2 1/2 1/2 0 0 0
−1/2 1/2 1/2 0 0 0
−1/2 −1/2 1/2 0 0 0

0 0 0 1/
√

6 0 0
0 0 0 0 1/

√
6 0

0 0 0 0 0 1/
√

6

⎤

⎥⎥⎥⎥⎥⎥
⎦

(19d)

while in 2D plane strain case:

LP. Strain =
⎡

⎣

√
2 0 0√

2/2
√

3/
√

2 0
0 0 1

⎤

⎦ (20a)

DP. Strain
r = [

(CrT)1 (CrT)2 (CrT)4
]

(20b)

BP. Strain = [
(C1T)3 (C2T)3 · · · (CNGST)3

]
(20c)

TP. Strain =

⎡

⎢⎢
⎣

1/2 1/2 1/2 0
−1/2 1/2 1/2 0
−1/2 −1/2 1/2 0

0 0 0 1/
√

6

⎤

⎥⎥
⎦ (20d)

and in 2D plane stress case:

LP. Stress =
⎡

⎣
1 −1/2 0
0

√
3/2 0

0 0
√

3

⎤

⎦ (21a)

DP. Stress
r = Cr (21b)

Here (X)i represents the ith column of matrix X. We note that, according to (16), the
converted variable does not contain v for the plane stress case. Thus the term [B]{v1}
does not exist in this case as well.

When the numerical scheme (17a–17e) is used for limit analysis, due to the
absence of P̂2, equality constraints (17d) is removed.
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2.3 Solving the Quadratically Constrained Programming
(QCP) by Primal-Dual Interior Point Method

In order to obtain the shakedown factor α, the optimization problem (17a–17e) has
to be solved. This is a typical QCP problem because inequality constraints (17e)
are quadratic functions. By introducing the slack variable s to convert inequality to
equality constraints, this problem can be written in a general form:

(PStandard) min . −α = f (x), (22a)

s.t. : cE(x) = 0, (22b)

cI(x) − s = 0, (22c)

s ≥ 0. (22d)

The vector x consists of ur and v for all elements at all P̂i as well as the loading
factor α. By denoting the dimension of the converted variable in each Gaussian
point as DCV , then depending on if model is in 3D, plane strain or plane stress,
DCV equals 6, 4, or 3, respectively. Within the given QCP problem, primal variables
are x and s. In 3D or plane strain case x ∈ R

[NC·(DCV−1)+1]·NGS+1, while in plane
stress case x ∈ R

NC·DCV·NGS+1 due to the absence of v1. Meanwhile, for all three
cases, s is constantly a vector in R

NC·NGS. The objective function (23a) is linear with
negative loading factor as the function value. Equality constraints (23b) are obtained
from self-equilibrium condition (17b) and time-independence condition (17d). The
quadratic inequality constraints (23c) represent the von Mises yield criterion.

To avoid the complication of direct dealing with (22d) a barrier problem is
constructed:

min
x,s

f (x) − μ

m∑

i=1

log si, (23a)

s.t. : cE(x) = 0, (23b)

cI(x) − s = 0. (23c)

Here μ is a positive barrier parameter.
The first-order Karush-Kuhn-Tucker (KKT) conditions of (23a–23c) write:

∇f (x) − A T
E (x)y − A T

I (x)z = 0, (24a)

−μS−1e + z = 0, (24b)

cE(x) = 0, (24c)

cI(x) − s = 0. (24d)

In (24a–24d), dual variables y and z are lagrangian multipliers to equality con-
straints and inequality constraints, respectively. AE consists of gradients of equal-
ity constraints where AE = [∇cE,1,∇cE,2, . . . ,∇cE,n]. Because the equality
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constraints are linear, their gradients become constant values. In 3D and plane
strain models AE has (NK · NDoF) + (NC − 1) · (DCV − 1) · NGS rows and
[NC · (DCV − 1) + 1] · NGS columns, while in plane stress models, AE has
(NK · NDoF) + (NC − 1) · DCV · NGS rows and NC · DCV · NGS columns. Similar
to AE , AI is defined as [∇cI,1,∇cI,2, . . . ,∇cI,m]. Because cI are quadratic, their
gradients ∇cI are linear functions. The number of rows in AI is same as AE , but the
number of its columns is NC · NGS, which is independent on the model type. Matrix
S in (24b) is defined by S = diag(s), and e is a unit vector. The term μS−1e in (24b)
is yielded from ∇s(μ

∑m
i=1 log si).

The nonlinear system (24a–24d) can be solved with Newton’s method by given
numerical scheme:
⎡

⎢⎢⎢
⎣

∇2
xxL 0 −A T

E (x) −A T
I (x)

0 Z 0 S

A T
E (x) 0 0 0

A T
I (x) −I 0 0

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

px

ps

py

pz

⎤

⎥⎥⎥
⎦

= −

⎡

⎢⎢⎢
⎣

∇xf (x) − A T
E (x)y − A T

I (x)z

Sz − μe

cE(x)

cI(x) − s

⎤

⎥⎥⎥
⎦

.

(25)

In (25), L represents the lagrangian for the barrier problem (23a–23c):

L (x, s, y, z) = f (x) − yTAE(x) − zT (AI(x) − s). (26)

whereas Z, analogous to S, is defined as Z = diag(z); I is the unit matrix.
To implement the primal-dual interior point method, one starts with a predefined

barrier parameter μ and a feasible initial solution {x0, s0, y0, z0}T . By solving the
system (25) a Newton’s step can be calculated. This step will be corrected with
respect to the fraction to boundary rule, and the corrected step will be taken to
update both primal and dual variables. This procedure will be repeated, and once the
error function E defined as:

E = max{‖∇xf (x)−A T
E (x)y −A T

I (x)z‖, ‖Sz −μe‖, ‖cE(x)‖, ‖cI(x)− s‖} (27)

drops below a predefined threshold, μ will be updated and solution to the evolved
barrier problem will be calculated by the same iterative scheme. One can prove that
with μ ↓ 0, solution to the barrier problem is exactly the same as the one to original
problem.

3 Numerical Results

3.1 Finite Element Models for Statistical Analysis

20 RVE models with different microstructure have been prepared. We distinguish
two groups: Group 1 consists of 10, each 30µm-by-30µm, RVEs numbered consec-
utively from 1 to 10. The models in Group 2, however, have a size 40µm-by-40µm
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10 µm
(a) (b)

Fig. 2 a SEM image b RVE model converted from SEM image

with numbers from 11 to 20. All models are based on real WC-Co microstructures
obtained from a scanning electron microscope (SEM) observation using a backscat-
tering detector (Fig. 2). In these images the dark grey area is the Co phase, while the
bright areas are the WC grains with their characteristic prismatic shape. The average
grain size is dWC = 2.35µm . To convert these SEM images to the corresponding FE
models an automatic technique developed in [8] is employed. This technique is capa-
ble of generating a triangular element based adaptive finite element mesh. It adopts
a denser mesh in vicinity to phase interfaces and a coarser mesh elsewhere (Fig. 2).

Both plane stress and plane strain models are investigated. It should be noted that in
previous studies plane strain models are observed to give more accurate prediction on
the elasto-plastic behavior of given composite in small strain regime [8, 34]. To check
the error caused by finite element type, the current study considers also a special typed
3D model which consists of a thin layered wedge elements obtained by extracting
the 2D model in the 3rd direction for 1µm. Intuitively, we refer these 3D models to
2.5D models, and they are regarded as compromise between plane stress and plane
strain, which correspond to two extremes about the stiffness in the 3rd direction.

For simplicity, the materials for both constituents are considered as elastic-perfect
plastic materials with parameters illustrated in Table 1. It is worthy to note that current
study is restricted to small deformation and assumes plastic failure as the only failure
mechanism.

The procedure of numerical limit and shakedown analysis can be summarized
as follows: first, RVE models are built in commercial finite element software
ABAQUS 6.12 [1]. By using a self-developed Python script, these models are pre-
scribed with global loading as explained in Sect. 2.2 and reference elastic stress

Table 1 Material properties
of both phases

E (GPa) μ [−] σ Y (MPa)

WC 700 0.24 2,000

Co 210 0.30 279
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fields are calculated. In the second step, the geometrical setup of models and their
associated stress results are output to MATLAB [29] to build the optimization prob-
lem (17a–17e). In the subsequent step, the constructed QCP problem is submitted to
an interior point method solver, Gurobi [19], to calculate loading factor α. By taking
a series of θ ∈ [0, π ] strengths in many different directions are calculated and they
together form an entire feasible load domain. By projecting this domain to π -plane
and fit the projection to a perfect semi-circle, a direction-independent strength value
is obtained which best characterizes the overall strength of a RVE. In the final step,
strength of each RVE retrieved from the best fit are collected and interpreted by a
statistical analysis. In such analysis three measures of a random variable x are eval-
uated. These measures include mean value x̄, standard deviation xSD, and coefficient
of variance defined as:

Cx = xSD

x̄
. (28)

3.2 Comparative Study Between Plane Stress,
Plane Strain and 2.5D Models

In [8] it has been shown that the discrepancy between plane stress and plane strain
models becomes more obvious when global plasticity accumulates. Also, once global
plasticity has reached a critical level, the mechanical behavior reflected by these two
model variances are fundamentally different. In the present study, we further studied
how these two element types influence the strength prediction.

It should be noticed, even for a FE model with fixed mesh pattern, the scale of its
associated optimization problem still greatly depends on the element type: a 2D RVE
model is arbitrarily picked to illustrate this difference. The model is taken from Group
2 and consists of 17,739 elements and 17,915 nodes. The scale of the optimization
problem related to this model is given in Table 2. The table shows that the problem
scale increases significantly when a 2D model is extended to 2.5D. A comparison
of plane stress and 2.5D model pointed out that the number of primal variables has
increased for around 6 times, while dual variables for around 2.5 times.

As has been stressed, plane stress and plane strain correspond to two extreme cases
about strength in the 3rd direction and the original intention to introduce 2.5D model
is to overcome such obstacle. However, beside such advantage 2.5D model also, unex-
pectedly, exhibits advantage in mesh insensitivity. For a 30µm-by-30µm RVE, two

Table 2 Scale of optimization problem for a FE mesh with different element types

Limit analysis Shakedown analysis

P. Stress P. Strain 2.5D

Num. Var 35,478 70,956 212,868 390,258

Num. EQ 17,914 17,914 53,742 142,437

Num. InEQ 17,739 17,739 35,478 70,956
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Coarse mesh Fine mesh

Fig. 3 RVE model with different mesh density

0

300

600

900

1200

1500

Limit Analysis 

2.5D Coarse P.Strain Coarse P.Stress Coarse
2.5D Fine P.Strain Fine P.Stress Fine

22
[M

pa
]

Σ11 [MPa ]

0

200

400

600

800

-1500 -1000 -500 0 500 1000 1500 -800 -600 -400 -200 0 200 400 600 800

Shakedown Analysis

Σ11 [MPa ]

Σ 2
2

[M
pa

]
Σ 2

2

[M
pa

]
Σ 2

2
[M

pa
]

Fig. 4 Limit and shakedown domains for RVE Nr. 2 meshed with different element types

element densities are adopted. As can be observed from Fig. 3, the model with coarse
mesh contains only 5,784 elements, whereas the number of elements in fine mesh
model is almost doubled which renders 9,940. Limit and shakedown domains for both
models are shown in Fig. 4. The domains obtained in limit analysis enlarge along
with the increase of out-of-plane strength. Meanwhile, it is also evident that plane
strain models have extremely high strength around θ = π/4. This can be explained
as follows: for plane strain, θ = π/4 corresponds to the loading condition of globally
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hydrostatic stress. Since hydrostatic stress does not contribute to the von-Mises yield
condition, material under this load can sustain exceptionally high global stress.

Unlike limit domains that are insensitive to discretization, shakedown domains
appear to have more dependence on the mesh density, which means the local behavior
has more influence on the overall performance of material. Comparing shakedown
domains of different model types, it is manifest that 2.5D model is least sensitive to
mesh density. For this reason, 2.5D models are used in the remaining part of our study.

3.3 Statistical Analysis and Study on the Size Effect

To prepare finite element models for statistical analysis, a uniform mesh setting is
adopted to all involved models. For each individual microstructure, elements cover-
ing the non-critical regions were assigned with a global size of 0.8µm; and near the
phase boundaries a finer mesh is used with an edge size of 0.2µm. Under this config-
uration, the number of elements for 30µm-by-30µm RVEs varies roughly between
6,000–9,000, and 13,000–18,000 for 40µm-by-40µm RVEs. The size of the opti-
mization problem can be estimated by referring to Table 2.

As Table 3 indicates results are dispersively distributed. Because RVEs inside the
same group are fixed in size and constituents, this reflects the contribution of the
microstructure. Results shown in Table 3 can be interpreted as follows: The micro-
structure has a considerable impact on different global material properties which is
in general strong for the nonlinear than the linear ones. For example, the normalized
variance of Poisson’s ratio for Group 1, CGroup2

ῡ is less than 0.013. But the same

indicator of endurance limit, CGroup2
�U , becomes 0.193. A transverse comparison has

been made between the distribution of �U and �∞ (Fig. 5). According to Fig. 5,
the scatter of �U is more pronounced than �∞, for the reason outlined above. This
indicates the structure to have more influence on the former parameter.

Normally larger RVEs will retain smaller Cx compared to smaller RVEs, but
exceptions can occasionally be observed: e.g. CGroup1

�U is 0.176, but CGroup2
�U increases

Table 3 Statistics of selected
global material properties

Model group Parameters x̄ xSD Cx

Group 1 Ē (GPa) 394.41 33.98 0.086

(30µm-by-30µm) ῡ [-] 0.273 0.007 0.027

�Y (MPa) 440.45 72.74 0.165

�U (MPa) 504.22 88.87 0.176

�∞ (MPa) 373.93 30.64 0.082

Group 2 Ē (GPa) 388.78 21.18 0.055

(40µm-by-40µm) ῡ [-] 0.276 0.003 0.013

�Y (MPa) 416.83 40.65 0.097

�U (MPa) 527.65 102.37 0.193

�∞ (MPa) 369.59 27.08 0.073
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Fig. 5 Distribution of �U

and �∞ associated to
models in Group 1
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to 0.193 (Fig. 6). More interestingly, the size effect also depends on properties being
considered. For example, it happens simultaneously that CGroup2 < CGroup1 for �U ,
and in contract CGroup2 > CGroup1 for the other properties including Ē, ῡ, �Y . A pos-
sible reason can be the effect of localization: when a global feature depends severely
on some localized material behavior, the increase of RVE size can not fully expel
the occurrence of such local effect and thus will not enhance the quality of a model.

Localization is the cause of another noteworthy phenomenon: for both model
groups �∞ are smaller than �Y . In the first glance, this result may seems disturbing,
nevertheless it can be well understood from the difference between �Y and load
leading to the onset of local plasticity. To a certain extent, the development of local
plasticity does not contribute much to �Y because of its limited share of volume.
However, for �∞, since it doesn’t allow alternating plasticity to take place at any
material point, its value is sensitive to stress concentration. In summary, �∞ < �Y

reflects serious stress concentration, and it also implies that alternating plasticity is
the major cause of the plastic failure of current composite.



120 G. Chen et al.

4 Conclusions

In this paper, it is presented how lower-bound DM, homogenization technique and
statistical analysis can be used to study the strength of non-periodic PRMMC mate-
rials. The material investigated, WC-30 Wt.% Co, is a typical random PRMMC with
complex microstructure. Main findings:

• By adopting an efficient algorithm, DM can be used to study composites with
complex real microstructure.

• Although 2.5D models lead to optimization problems of greater size, this model
type is more advantageous: first, the out-of-plane strengths in 2.5D models are
more reasonable. Second, in shakedown analysis these models are more mesh
insensitive.

• �U is relatively mesh insensitive, increasing with the increase of the out-of-plane
stiffness.

• Size effect of RVEs is not absolute; its increase does not necessarily leads to
decrease of disparity among models. If a macroscopic material behavior to be
studied depends strongly on localized behavior, then enlarging RVE size will not
continuously make the model more objective.

• Highly localized alternating plasticity is the major cause of the failure and it leads
to �Y > �∞.

Finally, it should be emphasized that the material model and failure scenario assumed
in this paper is over-restrictive. Future work should take into account kinematic
hardening and material damage. Also, for reliable results, the statistical investigations
have to be performed on an much larger number of numerical tests.
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A New Starting Point Strategy
for Shakedown Analysis
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Abstract Shakedown analysis is currently implemented by the coupling of finite
element methods with techniques of computational optimization. Engineering struc-
tures problems contain a large number of variables and constraints, leading to large-
scale nonlinear programming problems, since, usually, nonlinear yield criteria are
preferred. The respective algorithms use iterative techniques to solve the problem
at hand and the selection of a starting point is of crucial importance for their per-
formance. To this goal the elastic limit solution could be applied, which yields a
feasible point, since the zero residual stress identically satisfies the null space con-
ditions. The present study proposes a mechanically motivated, simple technique to
obtain an initial feasible point with nonzero residual stresses starting from the plastic
shakedown analysis. The residual stresses obtained by this problem are generally
infeasible and they are projected into the null space of the equilibrium conditions in
order to yield a feasible set of self-equilibrating nonzero stresses. Next, this feasible
point is completed by a safety factor, obtained from a one-dimensional optimization
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problem of elastic limit type. The applicability and appropriateness of this approach
is studied by numerical comparisons.

1 Introduction

Engineering structures have usually to be designed towithstand during their lifetime a
large number of varying loadswithout knowing their exact history. These loadsmight
exceed the elastic limit and several failure mechanisms are possible. In instantaneous
collapse (plastic collapse) the static bearing capacity is exceeded and the system fails
during the first load cycle. Ratcheting, also called incremental collapse happens if
after every load cycle plastic strain is accumulated. Failure might occur even if total
plastic strain is limited and small, but increments in an alternating manner occur.
This failure mode is called alternating plasticity or plastic shakedown.

Direct methods [1–4] can be conveniently used to determine if a system is safe
taking into account the aforementioned mechanisms. Shakedown analysis in par-
ticular can define the safety margins of a structure under loads varying arbitrarily
but within a defined bounded region. Otherwise, a huge number of conventional
step-by-step elastoplastic analyses with different loading and unloading scenarios is
needed. Therefore, direct methods are efficient tools to calculate the bearing capacity
avoiding cumbersome step-by-step calculations.

Quasi-lower bound techniques, based on the shakedown theorembyMelan [1], are
currently implemented by the coupling of finite element methods with techniques of
computational optimization. Depending on the yield criteria type, linear or nonlinear
programming methods can be used. Convexity and differentiability are two features
of major importance for nonlinear criteria, since their absence may provoke serious
burdens to nonlinear programming algorithms. For engineering structures the aris-
ing problems are usually very large scale, constrained, nonlinear but convex. Such
problems can be treated by a number of optimization software packages. Examples
of widely available respective software are free codes as IPOPT [5], SeDuMi [6],
SDPT3 [7] or commercial packages like MOSEK [8].

Due to the size of the problems encountered in engineering practice or the yield
criterion type, algorithms applied might have low efficiency. Several techniques are
presented in the literature to improve computational performance of the direct meth-
ods. For problems arising in J2-plasticity, second order cone programming (SOCP)
algorithms are very efficient, even for large scale problems. Christiansen and Ander-
sen [9], Trillat and Pastor [10], Bisbos et al. [11] and Krabbenhøft et al. [12] have
successfully used SOCP algorithms. However, not all problems fit within the SOCP
scheme. Interestingly, the plastic interaction surfaces described in European struc-
tural steel design norm EC3, are generally nonlinear and for some cases non-convex.
Limit and shakedown analysis under the EC3 criteria leads to large scale nonlin-
ear problems very difficult to handle. In [13, 14] a systematic method to construct
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ellipsoidal approximations to these yield criteria is described. Using these ellipsoidal
approximations, the arising problems become SOCP and upper and lower bounds to
the safety factors can be derived.

Codes IPSA [15–17] and IPDCA [18, 19] belong to the family of Interior point
algorithms specially tailored for limit (cf. e.g. [20–23]) or shakedown (cf. e.g. [24,
25]) problems. IPDCA and IPSA have proven to be efficient even for real scale
engineering problems under the von Mises yield criterion. Moreover, a selective
strategy was implemented in IPSA. The plastically most active zones of the structure
are detected. Then, the entire system is reduced to a substructure containing only
these zones. Subsystems are solved with a significantly lower cost.

Semidefinite programming (SDP) constitutes a straightforward generalization of
SOCP framework. SDP can be used to mathematically model more complex yield
criteria as the Tresca or the Mohr-Coulomb ones (see e.g. [26]). Also, SDP has been
used to solve shakedown problems under ellipsoidal variable load domains [27].
More general load domains in parameterized form have been treated in [28] for
polyhedral yield criteria.

Selection of appropriate starting points is crucial for the performance of all opti-
mization algorithms used in the direct methods of plasticity. Appropriate starting
points can significantly reduce computational time, while unfavorable onesmay even
lead to failure of convergence.Yildirim andWright [29] andGertz et al. [30] proposed
warm start procedures for linear and nonlinear interior point algorithms respectively.
Mehrotra [31] proposed a method based on the solution of quadratic optimization
problems, which was later simplified by Stojkovic and Stanimirovic [32]. Recently
starting point strategies are gaining importance in direct method problems [17, 18].
Akoa et al. [18] proposed an initial solution vector and some values for the Lagrange
multipliers. Later Simon, Höwer and Weichert [17] took into account the underly-
ing mechanical problem and used the elastic limit values as an initial guess. Both
approaches lead to significantly improved computational times compared to using
the zero point. In the present paper a new simple technique to produce a feasible
starting point for shakedown problems is presented. The new starting point contains
non-zero residual stresses and leads to improved solution times.

The plan of the paper is as follows. Shakedown analysis under the nonlinear von
Mises yield criterion is discussed in next section. The third section constitutes the
heart of the paper. Therein, the starting point strategies already used in the literature
are shortly presented and the new strategy is introduced and discussed in detail.
The fourth section contains numerical examples to illustrate the effectiveness of the
proposed strategy. Finally some concluding remarks close the paper.

2 Shakedown Analysis Under von Mises Yield Criterion

Let us consider a structure discretized using the finite element method with NE
elements, with NU free degrees of freedom and with NG numerical integration
points (Gauss points) for the wholemodel. The quasi-lower bound elastic shakedown
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analysis problem in mathematical notation can be written:

PESD max α (1a)

s.t. :
∑

Cjρj = 0 (1b)

s(i)
j = αv(i)

j + ρj (1c)

s(i)
j ∈ Fj for i = 1, . . . , NV , j = 1, . . . , NG (1d)

α is the required safety factor. Subscript j runs over the NG Gauss points and
superscript (i) runs over the NV vertices of the variable load domain. v(i)

j represents

the known elastic stress vector at the jth GP due to the ith loading and s(i)
j is the

respective local elastoplastic stress vector, which must be contained within the local
yield criterion setFj. The local vector ρj contains the respective residual stresses, and
Eq. (1b) represents the condition, that the residual stresses must be self-equilibrating.
In this equation, Cj is a known equilibrium matrix, depending on the discretization
and the boundary conditions. The primary problem unknowns are: (α,ρj) and the

secondary ones s(i)
j . For NV= 1, the load domain shrinks to a single point and the

shakedown turns into a limit analysis problem.
Depending on the yield criteria setsFj, PESD can be a linear or nonlinear program-

ming problem. If the yield criteria sets are polyhedral, it becomes a linear program-
ming problem. Otherwise, under nonlinear yield criteria, a nonlinear programming
(NLP) problem must be solved. The algorithms deployed for the last depend on the
type of nonlinearity of the criteria. In the present work, the von Mises criterion will
be used. This yield criterion can be formulated as an Euclidean length constraint
(cf. e.g. [11]), if the stresses are properly transformed. For the simple plane stress
problem:

Ĉj = Cj Q−1
j , v̂(i)

j = Qj v(i)
j , ρ̂j = Qj ρj

where

Qj = 1

σY

⎡

⎣
1 −0.5 0
0 0.5

√
3 0

0 0
√
3

⎤

⎦

After these transformations the resulting problem becomes:

Pv.Mises,SOCP αESD = max α (2a)

s.t. :
∑

Ĉjρ̂j = 0 (2b)

ŝ(i)
j = α v̂(i)

j + ρ̂j (2c)
∥∥∥ŝ(i)

j

∥∥∥ ≤ 1.0 for i = 1, . . . , NV , j = 1, . . . , NG (2d)
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As already mentioned, the problem unknowns comprise: the safety factor α, the
NG transformed local residual stress vectors ρ̂j and the NGxNV local vertex trans-

formed elastoplastic stress vectors ŝ(i)
j . By merging all the problem variables we get

the following solution vector:

x = [ρ̂1, . . . , ρ̂j, . . . , ρ̂NG, ŝ(1)
1 , . . . , ŝ(i)

j , . . . , ŝ(NV)
NG , α]

Evidently, the resulting optimization problem can take the rather abstract form (e
is a vector with zero entries, except the last one, which equals one):

Pv.Mises,SOCP max eT x (3a)

s.t. : Ax = 0 (3b)

cI(x) ≥ 0 (3c)

The equalities Eq. (3b) comprise the null space condition and the linear depen-
dencies defining the elastoplastic stresses ŝ(i)

j .
In the following, the software IPOPT [5] will be used to solve this optimization

problem. IPOPT is a public domain package for general nonlinear optimization
problems using the Interior Point Method (IPM). IPOPT requires smoothness of
the involved functions and parameters have to be adjusted for each problem type.
Particularly important for the present work is that IPOPT allows the user to define
the starting point.

Selecting a user-defined starting point for the optimization problem depends on
the algorithm used for the solution, i.e. some solvers require the starting point to be
feasible, or require values for the Lagrange multipliers. IPOPT allows for infeasible
initial values. It checks only if the initial point stays “far enough” from the bounds.
If, for example a variable is set to its lower bound, then IPOPT modifies the user
defined starting point so that it is sufficiently away from the boundary.

3 Starting Point Strategy

Several heuristics to select suitable points are studied in the literature. Yildirim and
Wright [29], Gertz et al. [30] proposed several procedures for linear and nonlinear
interior point algorithms for linear and nonlinear programming respectively. Another
method was proposed by Mehrotra [31] based on the solution of quadratic optimiza-
tion problems and was later simplified by Stojkovic and Stanimirovic [32]. The
trivial option to select a feasible starting point is to use zeros for all the values of
the variables. Then both the equality and inequality constraints are fulfilled. This is
a common option from mathematical point of view, but still is far from the optimal
starting point. The elastic limit [17] can be another feasible initial point that leads to
improved solution times.
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3.1 The Three Problem Types

Let us now summarize the three problem types, associated with the shakedown
analysis of structures, namely the elastic shakedown problem, the elastic limit (first
yield) problem and the plastic shakedown (alternating plasticity) problem.

3.1.1 Elastic Shakedown Analysis Problem

PESD αESD = max α (4a)

s.t. :
∑

Cjρj = 0 (4b)

s(i)
j = αv(i)

j + ρj (4c)

s(i)
j ∈ Fj for i = 1, . . . , NV , j = 1, . . . , NG (4d)

The null-space condition Eq. (4b) introduces a coupling between the stress states
at the various stress check points (Gauss points) of the structure. Omitting this linear
coupling (complicating) constraint reduces the problem to the much simpler plastic
shakedown problem.

3.1.2 Plastic Shakedown Analysis Problem

PPSD αPSD = min α∗
j for j = 1, . . . , NG (5a)

α∗
j = max α (5b)

s.t. : s(i)
j = αv(i)

j + ρj (5c)

s(i)
j ∈ Fj for i = 1, . . . , NV (5d)

The local maximization problem Eqs. (5b)–(5d) constitutes the lower level of the
minmax problem, where the global minimization problem Eq. (5a) is the upper level
one.

A similar minmax problem is obtained if we set the residual stresses zero, satisfy-
ing the null space condition. This problem is the first yield or elastic limit problem.

3.1.3 Elastic Limit Problem

PELM αELM = min α∗
j for j = 1, . . . , NG (6a)

α∗
j = max α (6b)

s.t. : s(i)
j = αv(i)

j (6c)

s(i)
j ∈ Fj for i = 1, . . . , NV (6d)
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These simpleminmax problems are computationally very cheap.Moreover,PELM

is a one-dimensional optimization problem. For convex yield criteria sets Fj, PESD

is a convex optimization problem, but it is not a strictly convex one, since the objec-
tive function is linear. Consequently, the optimal value αESD is unique, but there
are several solution points, i.e. pairs of (αESD, ρESD) with different residual stress
fields ρESD. This fact holds also for the plastic shakedown problem. The following
inequality holds:

αELM ≤ αESD ≤ αPSD (7)

In many cases the elastic and plastic shakedown analysis safety factors coincide.
Moreover, if the load domain is a centrally symmetric bounded hyper-polyhedron
centered at the origin it can be shown that αELM = αESD = αPSD.

3.2 The New Starting Point Strategy

Now, a new starting point strategy starting from the plastic shakedown problem is
presented. Let ρPSD

j be the stresses obtained by the local plastic shakedown analysis
problems. In general they are not self-equilibrating, since they satisfy the yield criteria
conditions but the null space condition is violated, i.e.:

∑
Cjρ

PSD
j �= 0

We compute the self-equilibrating stresses ρ∗
j , which are nearest to the stresses

ρPSD
j , by solving the simple linear projection problem.

3.2.1 Euclidean Projection into the Null Space of the Equilibrium Matrix

Find ρ∗
j min 1/2

∑
(ρ∗

j − ρPSD
j )T (ρ∗

j − ρPSD
j ) (8a)

s.t. :
∑

Cjρ
∗
j = 0 (8b)

The pair (αPSD,ρ∗
j ) generally does not satisfy the yield criterion, i.e. it represents

an infeasible point for the elastic shakedown problem. However, we can combine ρ∗
j

with an appropriate value of α to obtain a feasible point. This task is accomplished
by solving the followingminmax problem, which is a simple generalization ofPELM .
This one-dimensional problem has the residual stresses as data.
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3.2.2 Generalized Elastic Limit Problem

PGELM αPSD = min α∗
j for j = 1, . . . , NG (9a)

α∗
j = max α (9b)

s.t. : s(i)
j = αv(i)

j + ρ∗
j (9c)

s(i)
j ∈ Fj for i = 1, . . . , NV (9d)

The pair (αGELM ,ρ∗
j ) constitutes the new starting point we propose. The main

reasons for our motivation are:

• The stresses ρPSD
j are well-centered, at least for yield criteria having the form of

norm constraints, which is true for von Mises and Tresca criteria (cf. [11, 24]).
This fact greatly facilitates the application of IPMs.

• Generally, we can complete some residual stress field ρfeas, satisfying the null
space condition, with a value of αfeasobtained via PGELM in order to obtain a
feasible point of PESD. For feasible pairs (αfeas, ρfeas), the following inequality
holds:

afeas ≤ aESD ≤ aPSD (10)

Obviously Eq. (10) is specialized to Eq. (7) if PELM is used as stating point.

• Very often, the case αESD = αPSD occurs. This is prone to appear especially in
problems with free variables, as e.g. the spherical (volumetric) parts of the stress
tensor in 3D shakedown analyses under deviatoric yield criteria.

• In several decomposition techniques for mathematical optimization [33], a com-
mon first solution step is to relax the complicating (coupling) constraints. Then,
the original problem decomposes in a series of several, independent simpler prob-
lems. For the case of shakedown, the complicating constraints are the null space
condition.

Figure1 depicts a flow chart with the starting point strategy presented here. This
methodology can be applied to general nonlinear criteria and frame or shell structures
even for very large scale problems.

It is expected, that, using the plastic shakedown factor and the corrected residual
stress field, the high stress zones of the structure can be determined in early phases
of the whole iteration process. So, this initial point strategy can be combined with
the selective algorithm [16] and further improve the solution efficiency. If the active
zone is concentrated, then the selective algorithm would be very efficient.
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Fig. 1 Starting point strategy flow chart

3.3 Initial Values for the Lagrange Multipliers

To initialize the interior point algorithms efficiently initial values for the solution
vector are not enough. Appropriate values for the Lagrangemultipliers should be also
assigned. This is not an easy task and the selection of incorrect Lagrange multipliers
might have the opposite result and lead to increased solution times.

Akoa et al. [18] suggested useful estimations for the Lagrange multipliers sepa-
rately corresponding to the equalities and the inequalities. Although the suggested
values lead to better solution times compared to using simply zeros, all the equalities
and inequalities are treated the same way and the Lagrange multipliers are not even
close to their final values. According to [30] large initial values for the multipliers
should be avoided, so regarding the equality multipliers smaller values should be
more appropriate.



132 K. Nikolaou et al.

In [17] Simon, Höwer andWeichert the initial values for the Lagrange multipliers
were selected to satisfy the complementary slackness conditions, hence:

λI0 = μ0

cI(x0)

μ0 is the initial value for the barrier parameter. The multipliers connected to the
equalities were set to a constant value since selecting other values would require
solving a huge dense (not sparse) system of equations. So λE0 are set equal to:

λE0 = 10−2

Using these values the starting point should be near the central path of the problem.
For the currently presented starting point strategy, these values will be used.

IPOPT requires for the warm start the selection of some values for the Lagrange
multipliers connected to the variable bounds. For our case no variable has finite
bounds, so these values are fixed to zeros.

4 Numerical Examples

In this section some numerical examples are used to show the efficiency of the new
starting point strategy. Materials are considered isotropic, homogeneous with elas-
tic perfectly plastic behavior. Geometrical nonlinearities and material damage were
ignored. All the elastic stresses calculations were carried out by a simple research
FORTRANFEMcode usingCST elements with oneGauss point per element. For the
computations a Dell laptop with an Intel Core i5-3210M Processor @2.50GHz and
4GB RAMwas used. The open source optimization package IPOPT [5] was used to
solve the arising nonlinear optimization problems. Several IPOPT options, for exam-
ple different barrier update strategies, initial values for the barrier or the Lagrange
multipliers were tested and some comments on the optimal selection of these val-
ues are made. Since interior point algorithms are complex mathematical tools and
warm-start strategies for interior point methods are still under development, from
only a few examples we cannot derive general conclusions, but the presented results
illustrate the method’s potential.

4.1 Square Plate with Central Hole

The classical problem of a square plate with a circular hole (Fig. 2) subjected to
biaxial uniform loads P1 and P2 varying proportionally in an arbitrary manner was
considered. This example has beenwidely used in the literature (cf. e.g. [34–41]). 880
CST elements were used to model the structure; due to symmetry only one quarter
of the plate was examined. The von Mises criterion is used without linearization.
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Fig. 2 Square plate with a central hole and FEM model

Table 1 Geometrical and
material properties for the
square plate

L = 100mm E = 210 GPa

Geometry t = 10mm Material v = 0.30

D = 20mm σY = 235 MPa

Table1 presents the geometry of the problem and the properties of the material
used. Two loading spaces will be considered. The first one, �1 with only load P1
varying arbitrarily between 0 and 100 MPa and �2with both load patterns P1 and P2
varying proportionally between 0 and 100.

�1 = {P : P = μP1, μ ∈ [0, 1] P1 = 100MPa}
�2 = {P : P = μ(P1 + P2), μ ∈ [0, 1] P1 = P2 = 100MPa}

Some results from the literature that were used to validate the model for the refer-
enced load space are presented in Table2. The values are normalized with respect to
the yield stress: ᾱ = αP/σY . Table3 contains the load factors for several limit states.

Figures3 and 4 depict the residual and total vonMises stress fields of the structure
for the two load cases respectively. All graphs are plotted on the same scale.

Four different starting point strategies were compared: the zero one, the one
proposed byAkoa et al. [18] the elastic limit used by Simon et al. [17] and, finally, the
present strategy. Moreover, a randomly-generated starting point has been included
in order to get a better comparison of the results. For the stress variables random
numbers between −1 and 1 were used since stresses in the optimization problem are
normalized with respect to the yield stress. For the safety factor random numbers
between0 and2αELM were selected.All starting points yielded the same safety factor.

The results are presented in Table4. Results concerning the random number start-
ing points are the average values of a set of 20 problems that were solved. Although
the mean time seems better than just using zeros, it has to be noted that there was a
large deviation of the results. All times reported concern the solution of the warm-
started optimization problem.
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Table 2 Comparison of
numerical results

Authors Normalized shakedown factor ᾱ

�1 �2

Belytschko (1972) [34] 0.571 –

Hamilton et al. (1996) [35] 0.586 0.852

Gross-Weege (1997) [36] 0.611 0.882

Muscat et al. (2003) [37] 0.641 0.870

Zhang et al. (2004) [38] 0.634 0.893

Chen et al. (2008) [39] 0.649 –

Zhang et al. (2012) [40] 0.641 0.893

Present solution 0.633 0.857

Table 3 Load factors for
different limit states

Load factorα Normalized load factor ᾱ

�1

Elastic limit 0.744 0.316

Gen. elastic limit 0.755 0.321

Elast. shakedown 1.487 0.633

Plastic shakedown 1.487 0.633

Limit analysis 1.928 0.820

�2

Elastic limit 1.137 0.484

Gen. elastic limit 0.830 0.353

Elast. shakedown 2.014 0.857

Plastic shakedown 2.273 0.967

Limit analysis 2.014 0.857

Several IPOPT option combinations were used; the results presented above refer
to those leading to the biggest time reduction. This set of optimal options was used
for all the problems solved. The adaptive barrier update strategy was preferred to
the monotone one. Using the monotone barrier update strategy requires a bigger
number of iterations, but every step is completed faster. μ0 = 10 (see par.3.3)
was used to initiate the Lagrange multipliers. Not providing information for the
Lagrange multipliers leads to a less significant time reduction and for some cases
even to time increase. It was observed that the monotone update strategy is more
sensitive to μ selection. Selecting inappropriate values for the Lagrange multipliers
or for the barrier parameter can lead to computational times larger compared to those
for using zeros. Mehrotra’s predictor-corrector algorithm, which is incorporated in
IPOPT, can improve the efficiency of linear and convex quadratic programming
problems starting from zeros. But combined with non-zero starting points leads to
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Fig. 3 Residual and total von Mises stress fields for �1
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Fig. 4 Residual and total von Mises stress fields for �2
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Table 4 Shakedown results
for different starting point
strategies

Shakedown factor Iterations CPU time (s)

�1

Zeros 1.487 30 165.251

Akoa 1.487 23 118.172

Random 1.487 31 30.997

Simon 1.487 26 23.218

Present 1.487 17 15.678

�2

Zeros 2.014 21 83.737

Akoa 2.014 18 71.278

Random 2.014 24 24.574

Simon 2.014 18 16.568

Present 2.014 15 13.968

relatively poor performance. Infeasible starting points can be used by IPOPT, but
initial results show low efficiency. Using the elastic limit values leads to a significant
reduction compared to the first strategy, but using the newly proposed strategy further
reduces solution time, namely 16–32% compared to the elastic limit and 83–90%
compared to zeros. By the results it can be seen that using random variables could
be a better strategy than just selecting zeros. But as mentioned above times reported
are mean times and the deviation is large. So random number points are considered
inappropriate starting points (Figs. 5 and 6).

Fig. 5 Objective function versus number of iterations for �1
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Fig. 6 Objective function versus number of iterations for �2

5 Conclusion

Shakedown analysis of engineering structures leads to large scale nonlinear opti-
mization problems. Computational cost is a major issue for the algorithms employed.
The starting point has a strong influence on the computational time required. In the
present paper a new starting point strategy was presented. Instead of using very small
values for the variables or the elastic limit values, a feasible point with nonzero resid-
ual stresses was obtained by the plastic shakedown analysis. The stresses obtained
this way are projected into the null space of the equilibrium conditions so that the
equalities are fulfilled. Then a one-dimensional optimization problem of elastic limit
type, called the generalized elastic limit, is used to define the shakedown factor that
combined with the projected stresses satisfies the yield criterion at every Gauss point.

The main advantages of the presented method are that it is highly parallelizable,
so even for large scale problems starting points can be calculated with insignificant
computational cost. It is general enough to cover several linear and nonlinear criteria
and different types of structures. Also it can be combinedwith the selective algorithm
for further improved efficiency.

Appropriate algorithm options have been carefully selected in order to exploit the
starting points potential. IPOPT requires a starting value for all the variables of the
problem. Optionally the user can provide information for the Lagrange multipliers.
Providing a different than zeros initial value for the variables can reduce the solution
time. Moreover, providing appropriate Lagrange multipliers can further improve the
algorithms performance. But, if the values are not selected carefully, the opposite
result might occur. The effect of the starting points is also heavily influenced by
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IPOPT options like the barrier update strategy, linear solver selection, use of special
algorithms like Mehrotra’s predictor corrector etc. Since nonlinear programming
problems are very complex, we cannot jump to any conclusions for the optimal
options easily. Further parametric studies and the use of different optimization algo-
rithms could give a better insight into the still open subject of warm starting interior
point methods.

As shown by the numerical examples studied, compared to other starting points
the efficiency of the newly proposed strategy can be very high. 16–32% faster than
the elastic limit and more than 83% compared to zeros. Having the ability to solve
large scale problems fast is very important for practical applications and opens the
way to shakedown analysis of improved/complicated structural models (i.e. taking
into account hardening or use higher order elements). Further research is currently
underway. Using different optimization solvers (for example IPSA or IPDCA) could
give a very interesting insight in warm starting effects in interior point methods, a
topic that is also interesting for the optimization community.
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Yield Design of Periodically
Heterogeneous Plates

Jeremy Bleyer, Duc Toan Pham, Patrick de Buhan and Céline Florence

Abstract This work addresses the determination of the overall strength capacities
of periodically heterogeneous plates within a yield design framework. Illustrative
applications focus, notably, on reinforced concrete slabs infire conditions.Ahomoge-
nization procedure and related numerical tools are proposed to compute macroscopic
strength criteria expressed in terms of generalized forces (membrane and bending
solicitations). To this end, a yield design auxiliary problem is formulated on the repre-
sentative three-dimensional unit cell and a numerical resolution by a static approach is
presented, making use of simple 3D equilibrium finite elements. A particular empha-
sis is put on the link between the local strength criterion of steel and concrete and the
resulting optimization problem, which can be formulated, either as a second-order
cone programming (SOCP) problem or, more generally, as a semi-definite program-
ming (SDP) problem. A first illustrative example of a concrete slab with a single
array of steel bars will be used to validate the approach. Then, the influence of fire
conditions on the strength capacities of reinforced concrete slabs will be investigated
and numerical computations will be confronted to experimental results.

1 Introduction

Direct methods such as yield design or limit analysis of heterogeneous structures can
be difficult to perform due to the presence of rapidly and strongly varying material
properties on a large scale structure. Despite the efficiency of modern computational
techniques, numerical computations on heterogeneous structures are, therefore, out
of reach due to the high degree of local refinement needed to correctly capture such
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variations and provide sufficiently accurate solutions or bounds. To overcome these
difficulties, it seems natural to replace the initially heterogeneous problem by an
equivalent homogeneous one which is likely to be much easier to solve. Homoge-
nization theory in yield design for periodically heterogeneous media, initially devel-
oped by Suquet [1] and de Buhan [2], is a proper framework which gives a consistent
definition of the strength domain of the equivalent homogeneous medium. It relies
on the resolution of an auxiliary yield design problem formulated on the unit cell
with specific boundary conditions.

An analytical determination of such macroscopic strength criteria is, in gen-
eral, limited to simple geometries or macroscopic loadings [2, 3]. Hence, numerical
approaches have to be used to determine the macroscopic strength criterion. Even if
elasto-plastic computations can be performed on the unit cell [4], direct limit analysis
or yield design computations are more straightforward and easier to perform. This
approach has been adopted for porous media [5, 6], periodic plates solicited in their
own plane [3, 7], masonry walls [8] or stone column reinforced soils [9].

Such numerical approaches generally rely on a finite element discretization of the
unit cell and the formulation of the auxiliary problem as an optimization problem.
Since many yield criteria can be written using conic constraints [10–12] (either
quadratic or semi-definite cones), the arising convex optimization problembelongs to
the categoryof conic programming. Interior-point solvers, initially designed for linear
programming only, have been developed to encompass this broader class of problems
and implemented in commercial codes such as the Mosek software package [13]
for instance. Today, these solvers are considered by the scientific community as the
most efficient numerical tools for such problems due to their excellent performance
in practice.

This work will be devoted to the formulation and numerical resolution of auxil-
iary yield design problems for periodic plates in membrane and bending solicitations
using a conic programming formulation. Section2 is devoted to the formulation of the
problem in a yield design homogenization framework. Section3 treats the numer-
ical aspects of finite element discretization and conic programming formulation.
Finally, some illustrative applications are presented in Sect. 4 and a specific proce-
dure designed to take into account the effect of fire conditions on the macroscopic
strength domain, is also discussed.

2 Homogenization Theory in Yield Design for Periodic Plates

2.1 Initial Heterogeneous Yield Design Problem

We consider a heterogeneous plate of thickness h modeled as a three-dimensional
continuum Ω , the middle plane of which, denoted by ω, is supposed to lie in the
(O, e1, e2) plane. The thickness direction is given by the vector e3 (Fig. 1).
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Fig. 1 Homogenization procedure for periodic plates

Assuming that the plate loading depends upon several loading parameters Q,
the domain K of potentially safe loads Q is defined, according to the yield design
theory [14, 15], as the set of loads such that there exists at least one statically admis-
sible (S.A.) stress field σ(x) satisfying the strength criterion at each point of the
plate:

K = {Q | ∃σ(x)S.A. withQ, ∀x ∈ Ω σ(x) ∈ G (x)} (1)

where G (x) denotes the convex strength criterion at a point x in the plate expressed
in terms of the local stress tensor σ .

2.2 Homogeneous Yield Design Plate Problem

The present work deals with plates for which the strength properties are periodic in
their in-plane direction, that is, there exists two vectors a1 and a2 in ω such that G (x)
can be reproduced by periodicity along a1 and a2:

G (x + n1a1 + n2a2) = G (x), ∀x ∈ Ω, ∀n1, n2,∈ Z (2)

The two vectors a1 and a2 define the parallelepipedic unit cell of the periodic plate.
The natural idea of homogenization theory is to substitute the local heterogeneous
strength criterion G (x) formulated in terms of local stress tensors by a homoge-
nized or macroscopic strength criterion Ghom with equivalent strength properties
formulated in terms of generalized forces of the plate, as illustrated in Fig. 1. In the
following, it will be supposed that the plate is infinitely resistant to shear forces so
that the macroscopic strength criterion will be expressed in terms of a membrane
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force tensor N and a bending moment tensor M. In this case, the set of potentially
safe loads for the homogenized problem can be defined as:

Khom = {Q | ∃N(x), M(x)S.A. withQ, ∀x ∈ ω N(x), M(x) ∈ Ghom} (3)

The principal difference with respect to the definition of K is that the stress fields to
be considered are now generalized forces consistent with a plate model and defined
on the plate middle plane ω while the strength criterion Ghom is now homogeneous.

The main result of homogenization theory in yield design [1, 2] states that both
setsK andKhom becomes identical under an appropriate definition ofGhom and under
the hypothesis that the different length scales are separated which reduces here to
the following hypotheses:

• h � L, this hypothesis states that the thickness in the transverse direction of the
continuum is sufficiently smaller than the characteristic length L in the plane ω so
that Ω can be modeled as a thin plate;

• a � L, this hypothesis states that the typical length scale of the variation of the
strength properties in the plane ω is much smaller than the characteristic length
of the structure in this plane, so that the initially heterogeneous material can be
replaced by an equivalent homogeneous one.

In the case when h � a, i.e. when the plate thickness is much smaller than the
material properties variation length, it is possible to replace the initial heterogeneous
3D continuum by a heterogeneous plate (implicit up-scaling procedure) and perform
the homogenization of the strength properties on a plate model directly [16]. In the
present work, we will assume that h ∼ a so that both up-scaling procedures have to
be performed in one step [8, 17, 18]. In particular, the unit cell will be modeled as a
3D continuum.

2.3 Definition of the Macroscopic Strength Criterion
Form the Solution of a Yield Design Auxiliary Problem

The macroscopic strength criterion is defined and computed via the resolution of a
specific auxiliary yield design problem formulated on the plate unit cell A. Its middle
plane is denoted byωA. The appropriate conditions to formulate an appropriate auxil-
iary problem in the framework of periodic homogenization theory are the following:

• zero distributed body forces;
• periodic conditions on the lateral boundary of the unit cell and stress-free boundary
conditions on the tip and bottom surfaces;

• averaging relation relating the microscopic stress fields to the macroscopic gener-
alized forces.

Hence, we introduce the set SA(N, M) of tensor stress fields σ defined on the unit
cell which are statically admissible with a macroscopic membrane tensor N and a
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macroscopic bending moment M as follows:

σ ∈ SA(N, M) ⇐⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

div σ = 0 ∀ξ ∈ A (4a)

[[σ · n]] = 0 through Γ (4b)

σ · n ωA−antiperiodic (4c)

σ · e3 = 0 for ξ3 = ±h/2 (4d)

Nij = 1

|ω|
∫

A

σijdξ i, j = 1, 2 (4e)

Mij = 1

|ω|
∫

A

(−ξ3σij)dξ (4f)

(4)

where [[·]] denotes the jump of the quantity · through any possible discontinuity
surface Γ . Note that the boundary conditions correspond to traction-free conditions
on the top and bottom surfaces of the plate, whereas the stress vector σ · n should
be antiperiodic only on the lateral boundaries of the plate.

Finally,Ghom is defined as the set of allmacroscopicmembrane forces and bending
moments for which there exists such a stress field σ , satisfying the local strength
criterion every where. That is:

Ghom =
{
(N, M) s.t. ∃σ ∈ SA(N, M); σ(ξ) ∈ G (ξ) ∀ξ ∈ A

}
(5)

Let us remark that a kinematic definition of Ghom, through the definition of its
support function Πhom where virtual velocity fields are considered, is also possible
but will not be considered in this work.

3 Numerical Resolution of the Auxiliary Problem

In this section, the auxiliary yield design problemwill be solved using a finite element
lower bound static approach in association with conic programming.

3.1 Finite Element Discretization of the Unit Cell

In the following, the unit cell A is discretized using NE tetrahedral equilibrium finite
elements. Hence, the six components of the stress tensor are assumed to vary linearly.
The values at the 4 vertices are then arranged in a 24 components vector σ e =
{σ (1)

11 , σ
(1)
22 , . . . , σ

(4)
23 }T .

Due to the linear variation of σ , the equilibrium equation (4a) is exactly satisfied
by enforcing it at only one point inside each element Ae through a 3× 24 matrix De:

div σ = 0 ∀ξ ∈ Ae ⇐⇒ Deσ e = 0 (6)
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The continuity equation (4b) is enforced at each vertex of a face shared by two
adjacent elements e and e′ using a 9 × 48 matrix Ce,e′

:

[[σ · n]] = 0 ∀ξ ∈ Ae ∩ Ae′ ⇐⇒ Ce,e′
{

σ e

σ e′

}
= 0 (7)

The enforcement of the periodic boundary condition (4c) on the lateral boundary
Alat can be expressed in a similar way:

σ · n+ + σ · n− = 0 ∀ξ ∈ Alat ⇐⇒ Pe,e′
{

σ e

σ e′

}
= 0 (8)

whereas the traction-free condition on the top and bottom surfaces is written as:

σ · n = 0 ∀ξ3 = ±h/2 ⇐⇒ Seσ e = 0 (9)

The averaging relations are computed as follows:

Nij = 1

|ω|
∫

A

σijdξ ⇐⇒ N =
⎧
⎨

⎩

N11
N22
N12

⎫
⎬

⎭
=

[
ÃN

1
. . . ÃN

NE
]

︸ ︷︷ ︸
AN

⎧
⎨

⎩

σ 1
...

σNE

⎫
⎬

⎭
(10)

Mij = 1

|ω|
∫

A

σijdξ ⇐⇒ M =
⎧
⎨

⎩

M11
M22
M12

⎫
⎬

⎭
=

[
ÃM

1
. . . ÃM

NE
]

︸ ︷︷ ︸
AM

⎧
⎪⎨

⎪⎩

σ 1

...

σNE

⎫
⎪⎬

⎪⎭
(11)

All the equilibrium, continuity and boundary condition constraints are finally
assembled into a global constraint matrix C such that

Σ ∈ SA(N, M) ⇐⇒
CΣ = 0

N = ANΣ

M = AMΣ

(12)

where Σ =

⎧
⎪⎨

⎪⎩

σ 1

...

σNE

⎫
⎪⎬

⎪⎭
collects all stress components. It is to be noted that, since all

equations are exactly satisfied, the previous relation defines a subset of the set of
statically admissible stress fields.

3.2 Fulfillment of the Strength Criterion Using
Conic Constraints

In the present work, illustrative examples are concerned with reinforced concrete
slabs so that the local strength criterion will either be a vonMises criterion (for steel)
or a Mohr-Coulomb criterion with tension cut-off (for concrete).
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3.2.1 von Mises Strength Criterion

Introducing the following matrices:

P = 1

3

⎡

⎢⎢⎢⎢⎢⎢
⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

, D = 1

2

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥
⎦

(13)

the vonMises strength criterion
√

1
2 s : s ≤ k, where s = σ− 1

3 (tr σ)1 is the deviatoric

stress and k the ultimate shear stress, is written at each vertex i of all elements as
follows: √

σ (i) T PDPσ (i) ≤ ki (14)

where ki is the value of the ultimate shear stress at vertex i. It can also be written as:

‖D1/2Pσ (i)‖ ≤ ki (15)

which is a second-order cone (SOC) constraint. This type of constraint is particularly
suited to interior point solvers such as the Mosek software package.

3.2.2 Mohr-Coulomb Strength Criterion with Tension Cut-Off

A Mohr-Coulomb criterion with tension cut-off has been adopted to model the
strength behavior of concrete:

f (σ ) ≤ 0 ⇐⇒
{

KpσI − σIII ≤ fc
σI ≤ ft

with σI ≥ σII ≥ σIII , Kp = 1 + sin φ

1 − sin φ
(16)

where fc is the ultimate strength of concrete in compression, ft its tensile strength, φ
the friction angle and σI , σII , σIII the principal stresses.

Contrary to the von Mises criterion, this criterion is formulated in terms of prin-
cipal stresses which are not known beforehand. To obtain another representation, let
us introduce an auxiliary variable y such that KpσI −σIII ≤ KpσI +y ≤ fc. Recalling
that σI ≥ σII ≥ σIII , we then have −σI ≤ −σII ≤ −σIII ≤ y. Hence, this inequality
can also be written in the form of a matrix inequality: −S � yI3 where S is the
matrix of the components of σ in a given basis, I3 the identity matrix of size 3 × 3
and X � Y means that the matrix Y − X is semi-definite positive.

Similarly, we have also that KpσIII + y ≤ KpσII + y ≤ KpσI + y ≤ fc, which
is equivalent to KPS + yI3 � fcI3. Finally, the tension cut-off condition gives:
σIII ≤ σII ≤ σI ≤ ft or also S � ftI3.
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In the end, the Mohr-Coulomb criterion with tension cut-off can be written in the
following form:

f (σ ) ≤ 0 ⇐⇒

⎧
⎪⎨

⎪⎩

KpS + yI3 + X = fcI3
−S − yI3 + Y = 0

S + Z = ftI3

with X, Y, Z � 0 (17)

This form, which has been previously obtained in [10, 11], involves linear matrix
equalities and auxiliary positive semi-definite matrices X, Y and Z. These semi-
definite constraints can also be accommodated using Mosek in its version 7.0 [13].

3.3 Formulation of the Optimization Problem

We can now formulate the optimization problem corresponding to the resolution of
the auxiliary yield design problem. In practice, Ghom will be obtained by finding the
maximal amplification factor λ+ along a prescribed direction (N0, M0) such that
λ+(N0, M0) ∈ Ghom. Hence, the corresponding optimization problem reads as:

λ+ = max λ

s.t. λN0 − ANΣ = 0

λM0 − AMΣ = 0

CΣ = 0

σ (i) ∈ Ki i = 1, . . . , 4NE

(18)

This problem consists in optimizing a linear function of the unknowns under linear
equality constraints and conic constraints at each vertex where Ki is a cone repre-
senting the strength criterion. It can be either a second-order Lorentz cone (in the von
Mises case (15)) or cones of semi-definite matrices in the case of a Mohr-Coulomb
criterion (17). Hence, the problem reduces either to a SOCP problem or SDP problem
depending on the strength criteria of the unit cell.

Finally, it is to be noted that since all equations are satisfied and since the criterion
is satisfied inside each element (due to the linear variation of σ and convexity), the

maximum point λ+(N0, M0) belongs to Ghom, so that the macroscopic criterion
obtained by varying the direction (N0, M0) is a strict lower bound estimate for Ghom.

4 Illustrative Applications

4.1 Validating Example

The first example is concerned with a cubic unit cell of unitary side length made of
concrete and a steel reinforcing bar oriented in direction 1, located at a distance zs =
−0.3below themiddle plane (Fig. 2). The concrete ismodeledusing aMohr-Coulomb
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Fig. 2 Unit cell geometry of
the first example

strength criterion with a friction angle of φ = 37◦, a compressive strength of fc = 30
MPa and a negligible tensile strength ft ≈ 0. The steel rebar is modeled using a von
Mises criterion with a uniaxial strength fs = 500 MPa. The volume fraction of steel
is 1% (square cross section of 0.1× 0.1).

In order to validate the computations, the strength criterion Gc of the unreinforced
unit cell (concrete only) has been computed as well as the homogenized criterion
Ghom of the reinforced unit cell. A simple analytical lower bound Glb of the macro-
scopic strength criterion can also be obtained using the fact that the volume fraction
of steel is small whereas fc � fs. In this case, it can be proved [19] that the state of
stress is almost uniaxial in the reinforcement σ = σ se1 ⊗ e1 and equal to σ c in the
concrete. The membrane force and bending moment derived from the stress state in
the concrete are denoted by Nc and Mc. Then, the total membrane force and bending
moment are given by:

N = Nc + Asσ
se1 ⊗ e1 (19)

M = Mc − Aszsσ
se1 ⊗ e1 (20)

where As is the section of the steel bar. Now, if σ c ∈ G c satisfies the local concrete

strength criterion and |σ s| ≤ fs, then (N, M) ∈ Ghom. Therefore, denoting by Gc

the concrete strength criterion expressed in terms of generalized forces, we have the
following lower bound estimate for Ghom:

Glb = Gc ⊕ Ls ⊆ Ghom (21)

where Ls = {(Nse1 ⊗ e1,−zsNse1 ⊗ e1); |Ns| ≤ Ny = Asfs}. This construction
means that the lower bound approach is obtained by translating the criterion of the
concrete only along the generalized vector ±Ny(e1 ⊗ e1,−zse1 ⊗ e1). A kinematic
approach would show that this simple construction coincides with Ghom in the limit
of infinitely small volume fraction of steel and infinite contrast between steel and
concrete resistances.
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1

3

2

Fig. 3 Projections on the plane N11 − N22

2

3

1

Fig. 4 N11 − M11 interaction diagram

First, the projections of the different criteria onto the planeN11−N22 ofmembrane
forces in directions 1 and 2 are represented in Fig. 3. Hence, all components of M
as well as the N12 component are left as free optimization variables. The criterion
for concrete only Gc (blue dashed lines) corresponds to a square in the compression
region only because of the fact that the tensile strength has been neglected. The
inclusion of a reinforcement improves both traction and compression strengths in
the N11 direction but not in direction 2, as expected. Furthermore, the numerically
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obtained macroscopic strength criterion (red circles) perfectly matches the analytical
lower bound (black solid lines) which is obtained by translating the criterion of
concrete by the previously mentioned vectors here drawn in red.

In Fig. 4, the axial-bending interaction diagram along the direction 1 has been
represented (all Nij = Mij = 0 except for i = j = 1). Here, the classical result of
the criterion for concrete only, consisting of two parabolas, is retrieved. The effect
of the reinforcement expands the interaction diagram in a direction along vectors
±(1 MN, 0.3 MN.m) as confirmed by the analytical lower bound.

4.2 Fire Resistance of Reinforced Concrete Slabs

The second illustrative application is concerned with the fire resistance of reinforced
concrete (RC) slabs. Experiments have been conducted by the French Scientific and
Technical Center for Building and were aimed at studying the evolution of strength
properties (uniaxial bending capacity in a first step) of RC slabs in fire conditions.
Four-points bending tests have been performed on RC slabs previously placed in an
oven which heated the bottom surface of the RC slabs (Fig. 5). At a given stabilized
temperature inside the oven and temperature gradient across the plate thickness, four-
points bending tests have been performed up to failure. The aim of this example is to
compare these experimental results to numerical computations using the previously
described approach.

Fig. 5 Experimental setup of 4-points bending tests in fire conditions and RC slabs geometry
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Fig. 6 Reduction factors for concrete (left) and steel (right) as a function of temperature

4.2.1 Computations in Fire Conditions

The general principle of the computations in fire conditions is rather straightforward.
The strength characteristics of concrete and steel at ambient temperature are known
from characterization experiments and thermocouples have been placed at various
heights in the plate thickness during the tests so as to measure the temperature
distribution through the thickness during the experiment.

The key point concerns the degradation of the strength properties of concrete and
steel with the temperature. These strength properties introduced in the numerical
simulations have been decreased according to Eurocodes prescriptions providing
so-called reduction factors kc(Θ) and ks(Θ) which are decreasing functions of the
temperature Θ , so that fc(Θ) = kc(Θ)fc,amb and fs(Θ) = ks(Θ)fs,amb where fc,amb
(resp. fs,amb) is the compressive strength of concrete (resp. uniaxial strength of steel)
at ambient temperature. For the materials used in this experiment, such reduction
factors are represented in Fig. 6. The concrete friction angle is assumed to remain
unaffected by the temperature increase.

Therefore, to a given temperature profile across the slab thickness, is associated
a non-uniform distribution of strength properties in the plate thickness. Yield design
computations have then been performed on this unit cell with these non-uniform
distributions so as to obtain a macroscopic strength criterion depending on the tem-
perature field: Ghom(Θ(z)).

4.2.2 Numerical Results

We performed computations on the unit cell represented in Fig. 7 with the four
different temperature profiles represented in Fig. 8. The corresponding N11 − M11
interaction diagrams have been represented in Fig. 9. It can clearly be observed that
as the temperature increases, the interaction diagram reduces in size because of the
reduction of all strength properties. Besides, it also “rotates” due to the fact that,
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Fig. 7 Unit cell geometry and mesh for the second example

Fig. 8 Temperature fields used in the computations
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Fig. 9 Evolution of the N11 − M11 interaction diagram with respect to the temperature

owing to the temperature gradient, the lower part of the slab becomes weaker than
the upper part.

4.2.3 Confrontation to Experimental Results

In the experiments, two sets of materials for steel and concrete have been considered
and 4-points bending tests have been performed until failure at ambient temperature
aswell as at an oven temperature approaching 1,000 ◦C. The temperature distribution
in such fire conditions is close to the one represented in Fig. 8 for Θmax = 1,060 ◦C.
The choice of a 4-point bending test enables to relate directly the ultimate load at
failure to the ultimate pure bending moment in the direction of the slab, since the
bendingmoment is constant in themiddle span of the structure. Hence, ultimate loads
obtained from the experiments have been compared to those obtained from numerical
computations of the ultimate bending moment. These results are reported in Fig. 10
for ambient and fire conditions and for the two different material sets. It can be seen
that the numerical predictions, labeled in light blue and light red, compare very well
to the ultimate loads measured in the experiments labeled in dark blue and dark red.
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Fig. 10 Comparison of ultimate loads obtained from the experiments and numerical computations

5 Conclusions

A homogenization procedure for assessing the strength properties of periodically
heterogeneous plates has been presented in the framework of yield design theory. The
presentworkmore specifically focuses on the casewhen the typical length of the plate
heterogeneities and the plate thickness are of the same order. In this case, the unit cell
is modeled as a 3D body on which an auxiliary yield design problem is formulated,
the resolution of which enables to compute the macroscopic strength domain. A
lower bound static approach using 3D equilibrium finite elements is presented and
a conic optimization problem is formulated. Finally, the proposed method is applied
to reinforced concrete slabs in fire conditions. It allows to predict, for instance, the
evolution of interaction diagrams with respect to different temperature fields. These
results are also confronted to ultimate loads obtained from experiments carried out
in fire conditions.

It would be interesting to complete this work by an upper bound kinematic
approach on the same problem, so as to bracket the exact macroscopic strength crite-
rion, since the present method only yields lower bounds. Besides, further work could
also investigate the use of such criteria in global computations on a complex structure.
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RSDM-S: A Method for the Evaluation
of the Shakedown Load of Elastoplastic
Structures

Konstantinos V. Spiliopoulos and Konstantinos D. Panagiotou

Abstract To estimate the life of a structure, or a component, which are subjected to a
cyclic loading history, the structural engineer must be able to provide safety margins.
This is only possible by performing a shakedown analysis that belongs to the class of
direct methods. Most of the existing numerical procedures addressing a shakedown
analysis are based on the two theorems of plasticity and are formulated within the
framework of mathematical programming. A different approach is presented herein.
It is an iterative procedure and starts by converting the problem of loading margins
to an equivalent loading of a prescribed time history. Inside an iteration, the recently
published RSDM direct method is used, which assumes the decomposition of the
residual stresses into Fourier series and evaluates its coefficients by iterations. It is
proved that a descending sequence of loading factors is generated which converges,
from above, to the shakedown load factor when only the constant term of the series
remains. An elastic-perfectly plastic with a von Mises yield surface is currently
assumed. The method may be implemented in any existing FE code and its efficiency
is demonstrated by a couple of applications.

Keywords Direct methods · Shakedown analysis · RSDM

1 Introduction

High levels of cyclic loading are often applied on civil and mechanical engineering
structures. The main source of such loadings on civil engineering structures, like
bridges, pavements, buildings, offshore structures are heavy traffic, earthquakes or
waves. Mechanical engineering structures, like nuclear reactors and aircraft gas tur-
bine propulsion engines, also operate under high levels of cyclic mechanical and
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temperature loads. Under all these kinds of loadings, these structures are forced to
develop plastic strains.

The question to assess the life cycle of a structure, or a structural component, so that
it can safely carry the applied loads, is answered, mostly, on the basis of cumbersome
time stepping calculations. To this end, one has to know the exact time history. A
better alternative, that requires much less computing time, is offered by the direct
methods that may predict whether, under the given loading, the structure will become
unserviceable due to collapse or excessive inelastic deformations. In addition, if the
complete time history of loading in not known, but only its variation intervals, direct
methods are the only way to establish safety margins. Typical examples of direct
methods are the limit and shakedown analyses.

One may prove that for structures whose material is stable [1] an asymptotic state
exists [2]. Direct methods are numerical approaches that attempt to estimate this state
right from the start of the calculations. The search for the elastic shakedown state is
based, for small displacements and elastic-perfectly plastic structures, on either the
lower bound [3] or the upper bound theorems [4].

Various extensions of the above theorems to the large displacement regime have
appeared (e.g. [5]) or to elastic-perfectly plastic cracked bodies (e.g. [6]). The prob-
lems of different elasto-plastic behavior like linear (e.g. [7]) or non-linear kinematic
hardening (e.g. [8]) have also been considered. Non associated plasticity behaviors
have also been addressed (e.g. [9]). Shakedown theorems have also been written on
the basis of gradient plasticity concepts [10].

As also mentioned above, the vast majority of the direct methods for the solution
of the shakedown problem make use of either the lower or the upper bound theorems
of plasticity. They are formulated within the framework of mathematical program-
ming (MP) and aim to minimize or maximize an objective function. Depending on
whether either the objective function or the constraints or both are linear or non-
linear one has to solve a linear (e.g. [11]) or a nonlinear (e.g. [12]) programming
problem.

Various techniques have been used to solve the MP program, among which one
could mention the reduced basis technique (e.g. [13]). Since the advent of the interior
point algorithms, which proved valuable to solve large scale optimization problems,
many researchers have formulated, used and applied them to the shakedown analysis
(e.g. [14–16]). Both the fields of solid and soil mechanics are referred to. More recent
applications have recently appeared in [17].

The Linear Matching Method (LMM) [18] is one of very few alternative proce-
dures to the MP methods. The approach is a generalization of the elastic compensation
method [19] and is based on matching a linear problem to a plasticity problem. A
sequence of linear solutions, with spatially varying moduli, is generated that provide
upper bounds that monotonically converge to the least upper bound. The method
has been widely applied to several steel structural components and recently to the
limit analysis of concrete beams [20]. The method was further extended beyond
shakedown, for loadings that can be decomposed into constant and time varying
components, so as to provide an upper bound estimation of the ratchet boundary
[21, e.g.], for a recent version.
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A direct method to predict any long-term steady cycle of an elastic-perfectly plastic
structure under a given cyclic loading was suggested recently [22]. The physics of
the steady cycle, which assumes the cyclic nature of the residual stresses, is the
main ingredient of the method. It has been called the Residual Stress Decomposition
Method (RSDM) and is based on decomposing the residual stresses in Fourier series
inside a cycle of loading.

The numerical procedure, presented herein, is a direct method for shakedown
analysis [23]; it makes use of the RSDM, and is thus called RSDM-S. Since only the
variation intervals are now known, the problem is converted to a prescribed loading
problem by drawing a curve between these intervals. Starting from a load factor
calculated so as to be above shakedown an iterative procedure is generated which
is proved to converge to the shakedown load factor from above. Two examples of
application are given. The whole approach is shown to be stable and computationally
efficient, with uniform convergence.

2 Cyclic Elastoplastic States

A structure having volume V and surface S is subjected to cyclic surface tractions
on one part and on the other part of S to zero displacements.

If the set of loads P(t) that act on S is a cyclic loading we may write:

P(t) = P(t + nT) (1)

with t being a time point inside the cycle; T is the period of the cycle, n = 1, 2, . . . ,

denotes the number of full cycles. Bold letters are used, herein, to denote vectors and
matrices.

Let us suppose that the structure is made of an elastic-perfectly plastic material.
Let us further suppose that our structure has been discretized to finite elements and
the stresses and strains refer to the Gauss points (GP).

The structure will develop, at a time point τ = t/T inside the cycle, a stress field
σ(τ), which may be decomposed into an elastic part σel(τ), that equilibrates the exter-
nal loading P(τ), assuming a completely elastic behavior, and a self-equilibrating
residual stress part ρ(τ) that is due to inelasticity. Therefore:

σ(τ) = σel(τ) + ρ(τ) (2)

The strain rates can also be decomposed analogously:

ε̇(τ) = ėel(τ) + ε̇r(τ) (3)

The residual strain rate itself may be decomposed into an elastic and a plastic part
[22]. Thus the final compatibility equation is expressed as:

ε̇(τ) = ėel(τ) + ε̇el
r (τ) + ε̇pl(τ) (4)
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The elastic strain rates are related to the stress rates through the elasticity matrix
D, whereas the plastic strain rate vector ε̇pl(τ) through the gradient to the flow rule:

σ̇el(τ) = D · ė

ρ̇(τ) = D · ε̇el
r (5)

ε̇pl = λ · ∂f

∂σ

where f is the yield surface and σ is a stress state on the yield surface, i.e. f (σ) = 0.
A state of stress that lies either inside or on the yield surface, i.e.f (σ∗) ≤ 0, is an
allowable stress state, whereas a state of stress σ∗that lies inside the yield surface,
i.e.f (σ∗) < 0, is a safe stress state.

As already mentioned in the introduction, for an elastoplastic material which is
stable in the Drucker’s sense [1], an asymptotic cyclic state always exists in which
the stresses and strain rates stabilize and become periodic with the same period of
the cyclic loading [2].

Depending on the amplitude of the load we may have unsafe conditions for the
structure at hand, such as ratcheting or alternating plasticity, where we have asymp-
totically non vanishing plastic strain rates, or a safe long-term structural behavior,
where, further plastic straining ceases to exist. This condition is the elastic shake-
down.

The conditions for elastic shakedown to occur are given by Melan [3] which
consists of two statements [24]:

(a) The structure will shake down under a cyclic loading, if there exists a time-
independent distribution of residual stresses ρ̄ such that, under any combination
of loads inside prescribed limits, its superposition with the elastic stresses σel,
i.e. σel + ρ̄, results to a safe stress state at any point of the structure,

(b) Shakedown never takes place unless a time-independent distribution of residual
stresses can be found such that under all the possible load combinations the sum
of the residual and elastic stresses constitutes an allowable stress state.

These statements define the limit cycle for a structure subjected to a prescribed
loading program. Parameters of this cycle are the shakedown load factor and the
constant in time residual stress distribution which are unique and independent of the
preceding deformation history [24].

It is these two parameters that the procedure RSDM-S presented underneath esti-
mates. The method is based on the RSDM [22] which assumes the decomposition
of the residual stresses of any cyclic elastoplastic state in Fourier series:

ρ(τ) = 1

2
a0 +

∞∑

k=1

{cos(2kπτ) · ak + sin(2kπτ) · bk} (6)

with a0, ak, and bk being the coefficients of the series found iteratively by the RSDM.
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3 The Residual Stress Decomposition Method
for Shakedown Analysis (RSDM-S)

The procedure is formulated for a maximum number of two loads P1 and P2, although
it may be applied for more than two loads. The loads are assumed to vary between a
minimum value which for simplicity is assumed zero and a maximum value, which
are denoted by P∗

1 and P∗
2 respectively.

We may use any curve that passes through these two limits to express a cyclic
loading variation. The two loads may vary proportionally (Fig. 1a) or independently
(Fig. 2a).

(a) For proportional variation (Fig. 1)
The two loads in the time domain may be expressed by the following equation:

P(τ) =
{

P1(τ)

P2(τ)

}
=

{
P∗

1 · α(τ)

P∗
2 · α(τ)

}
(7)

with α(τ) being a time function common for both the loads. One possible smooth
variation of a fourth order polynomial may be seen in Fig. 1c.

(b) For independent load variation (Fig. 2)

α(τ)=3,3333τ4 - 6,6667τ3 + 0,1667τ2 + 3,1667τ
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It has been proved in [25] that due to the convexity of the yield surface if a structure
shakes down over the path that encloses the domain �, it certainly shakes down over
any loading path contained inside this domain. This enclosing path may be described
by the following equation:

P(τ) =
{

P1(τ)

P2(τ)

}
=

{
P∗

1 · α1(τ)

P∗
2 · α2(τ)

}
(8)

Two time functions are used now (Fig. 2b) and a possible smooth variation is
described in Fig. 2c, where a second degree polynomial is used for two quadrants
of the cycle, whereas a constant non-zero and a zero value are employed inside the
other two quadrants.

The load domains shown in Figs. 1 and 2 may be isotropically varied by multiply-
ing them with a factor γ. Thus the numerical procedure is built, so that, starting from
a load factor high above, this load factor is constantly lowered by shrinking the load
domain in a continuous way up to the point that the shakedown load factor is reached.
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The procedure is formulated herein for a von Mises yield surface. Although the
procedure is general it will be formulated in the present work for two-dimensional
structures of thickness d under plane stress conditions.

3.1 Initial Load Factor

From the way the loading time history is being constructed we may observe that
when the loads vary proportionally (Fig. 1b, c), there always exists a cycle point τ∗
that both the two loads attain their maximum values. On the other hand, for loads
varying independently (Fig. 2b, c) the cycle point τ∗ may be defined as the time point
for which one of the two loads becomes maximum, with the other one being zero.

For either case, one may find the equivalent von Mises elastic stress σ̄el at all the
GPs of the structure at time τ∗. Denoting by min σ̄el the non-zero minimum of these
stresses one may use an initial load factor equal to:

γ(0) = σY

min σ̄el (9)

where σY is the yield stress of the material.
By choosing this load factor the starting conditions are definitely above the shake-

down loading since the whole structure will have become plastic.

3.2 Development of the Procedure

Having found an initial solution, we use the RSDM [22] for the factored cyclic
loading γ(0) ·P(τ), to produce an initial estimate for ρ(0), a(0)

0 , a(0)
k , b(0)

k . Then we
enter the iterative phase, which consists of two iteration loops, one inside the other.

The following iterative steps are then followed:

1. Inside an iteration κ of the outer loop, starting with κ = 1, the following expres-
sion, which is the sum of the norms of the vectors of the coefficients of the
trigonometric part of the Fourier series of the residual stresses, is found:

ϕ
(
γ(κ−1)

)
=

∞∑

k=1

∥∥∥a(κ−1)
k

∥∥∥ +
∞∑

k=1

∥∥∥b(κ−1)
k

∥∥∥ (10)

2. An update of the loading factor may be calculated:

γ(κ) · P∗
1 = γ(κ −1) · P∗

1 − ω · [ϕ
(
γ(κ−1)

)
· d] (11)

The expression (11) actually monitors the level of the applied loads with the
reminder that d is the thickness of the structure. The update of the loading factor
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is chosen to be performed in conjunction with the maximum of the two peaks of
the applied loads, although any other time point could be used.
It should also be noted that ω is a convergence parameter, which will be discussed
below.

3. The following inequality is checked:

∣∣γ(κ) − γ(κ −1)
∣∣

γ(κ)
≤ tol (12)

4. If Eq. (12) holds, the procedure stops and γ(κ) = γ(κ −1) = γsh, otherwise we set

ρ(1)
(κ −1)(τ) = ρ(κ−1)(τ) (13)

Using the updated load factor of the outer loop, an inner loop of iterations con-
trolled by μ starts with μ = 1. The steps of this inner loop are virtually the same
steps with the RSDM [22].

5. The following expression is computed for each cycle point τ and for each GP:

σ(μ)(τ) = γ(κ)σel(τ) + ρ(μ)
(κ−1)(τ) (14)

where:
σel(τ) = α1(τ)σ

el
P∗

1
+ α2(τ)σ

el
P∗

2
(15)

with α1(τ), α2(τ)being the time functions for independent loading (Fig. 2b, c),
whereas α1(τ) = α2(τ) = α(τ)is the time function for the proportional loading
case (Fig. 1b, c).

6. It is checked whether the total effective stress σ̄(μ)(τ) > σY; if this does not hold
we set ξ = 0, otherwise:

ξ = σ̄(μ)(τ) − σY

σ̄(μ)(τ)
⇒ σ

(μ)
pl (τ) = ξ · σ(μ) (τ) (16)

This operation is a radial return [26] type rule and may be graphically seen in
Fig. 3. For a more detailed discussion the reader is referred to [22].
Steps 5 and 6 are repeated for every GP.

7. Assemble for the whole structure the new rate vector of the nodal forces Ṙ′(τ):

Ṙ′(τ) = γ(κ)Ṙ(τ) +
∫

V

BT · σ
(μ)
pl (τ)dV (17)

with Ṙ(τ) being the equivalent nodal forces for the loading Ṗ(τ)which may
be evaluated by differentiating the Eqs. (7) or (8), depending on the case of
loading. B is the compatibility strain-displacement matrix for the given FE
mesh.
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Fig. 3 Estimation of the
plastic straining inside an
iteration
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8. We find an update for ṙ(μ)(τ) using the relation

Kṙ(μ)(τ) = Ṙ′(τ) (18)

with K = ∫
V BTDBdV the structure’s stiffness matrix.

9. A value for ρ̇(μ)
(τ) is evaluated at each G.P.

ρ̇(μ)
(τ) = DBṙ(μ)(τ) − γ(κ)σ̇el(τ) − σ

(μ)
pl (τ) (19)

where σ̇el(τ) = α̇1(τ)σ
el
P∗

1
+ α̇2(τ)σ

el
P∗

2
The steps 5–9 are repeated for all the cycle time points.

10. By performing numerical time integration over the whole cycle we may obtain
an update of the Fourier coefficients [22]:

a(μ+1)
k = − 1

k π

1∫

0

{[
ρ̇(μ)

(τ)
]
(sin 2kπτ)

}
dτ

b(μ+1)
k = 1

k π

1∫

0

{[
ρ̇(μ)

(τ)
]
(cos 2kπτ)

}
dτ (20)

a(μ+1)
0

2
= −

∞∑

k=1

a(μ+1)
k + a(μ)

0

2
+

∞∑

k=1

a(μ)
k +

1∫

0

[
ρ̇(μ)

(τ)
]

dτ
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11. From these updates one may get an update for ρ(μ+1)(τ)using the iterative form
of (6):

ρ(μ+1)(τ) = 1

2
a(μ+1)

0 +
∞∑

k=1

{
cos(2kπτ) · a(μ+1)

k + sin(2kπτ) · b(μ+1)
k

}
(21)

12. Next we check whether the values of the residual stresses at the current and at
the previous iteration differ within some tolerance at some cycle point [22], for
example at the end of the cycle, where τ = t/T = 1, i.e.:

∥∥ρ(μ+1)(1)
∥∥ − ∥∥ρ(μ)(1)

∥∥
∥∥ρ(μ+1)(1)

∥∥ ≤ tolr (22)

In case this does not hold we set ρ(μ+1)

(κ−1)(τ) = ρ(μ+1)(τ) and go back to step 5 and

start a new iteration of the inner RSDM loop; otherwise we set ρ(κ)(τ) = ρ(μ+1)(τ)

and go back to step 1 and start a new iteration of the outer loop with κ = κ +1.
For accurate results, the values 10−4–10−5of tolr and 10−4 for tol are sufficient.

The corresponding tolerance value for the function of ϕ (Eq. (10)) is 10−3.
Due to the positive nature of ϕ, the algorithm generates a descending sequence

of cyclic solutions which ends up with the parameters of the limiting cycle for elas-
tic shakedown. Thus γsh is the elastic shakedown factor, and the constant term,
which is the only remaining term in the Fourier series, is the constant in time dis-
tribution of the residual stresses, unique [24] for the adopted prescribed loading
program.

3.3 Numerical Strategy

The numerical strategy adopted is to start the procedure with the convergence para-
meter ω = 1. This normally leads to a monotonic convergence, from above, to the
shakedown load. There could be cases, though, especially when we start from a
high initial value that an overshooting of the shakedown factor occurs. In such a
case, for the loading factor evaluated at the current iteration γ(κ), we would have
ϕ(γ(κ)) < 10−3; this loading factor is then not accepted and the convergence factor
is halved till we get a loading factor ϕ(γ(κ)) > 10−3 [23].

4 Application Examples

The method is applied to two examples of plated structures, a holed square plate under
biaxial load and a grooved plate under tension and bending. Plane stress conditions
are assumed.
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4.1 Plate with a Central Hole

A square plate having a central hole is treated as a first example of application. The
plate is subjected to two uniformly distributed loads acting at the two edges of the
plate (Fig. 4). Due to the symmetry of the structure and the loading only a quarter of
the plate is analyzed.

As far as the geometric characteristics of the plate, the ratio of the diameter D to
the length L of the hole was considered equal to 0.2; the ratio of the thickness d of
the plate to its length is taken 0.05. The case of a length L = 20 cm was used.

The finite element mesh is also shown in Fig. 4. Ninety-eight, eight-noded, isopara-
metric elements with 3 × 3 Gauss integration points were used.

The material data considered are Young’s modulus E = 210 Gpa, Poisson’s ratio
ν = 0.3 and yield stress σY = 360 Mpa.

Both cases of proportional and independent variations of loads are presented. The
shakedown loads for different ratios of the maximum values of the applied loads are
given in Figs. 5 and 6.

For the proportional loading case the time function of Fig. 1c is used. One may see
a good agreement with corresponding results (Fig. 5), reported in the literature [27].

For the independent load variation (Fig. 2), the time functions, whose equations
for each part of the cycle, shown in Fig. 2c, are used. One may see good agreement
(Fig. 6) with reported in the literature results that are based either on the LMM [27] or
a mathematical programming algorithm [28]. The better agreement with [28] is due
to the fact that a similar finite element mesh is constructed with the one used here.

One may realize the smoothness of the convergence of the method in Fig. 7 where
the case of P∗

1 = P∗
2 is shown. Analogous curves are obtained for all the other ratios.

L

P
1 (t)

P2(t)
P2(t)

x

y

P1(t)

GP1

GP2

L

D

Fig. 4 Geometry, loading and FE discretization of the plate
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Fig. 6 Shakedown domain for the case of independent loading

Only the initial value of ω = 1 was needed for convergence. In Fig. 8 one may also
see a typical evolution of the plastic stress to zero at one of most stressed GPs, that
are located at the two corners of the hole of the plate (Fig. 4). The CPU time reported
to reach a solution for an Intel Core i7 at 2.93 GHz with 4,096 MB RAM was of the
order of 40 s.
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Fig. 8 Evolution of the yy component of the plastic stress vector at GP2 at the 3T/4

4.2 Grooved Rectangular Plate Under Varying
Tension and Bending

The second example of application deals with a grooved rectangular plate subjected
to an in plane constant tension PN(t) and a linearly varying bending moment P M(t)
along the boundaries (Fig. 9). A rectangular loading domain is considered (Fig. 2)
with the two loads varying independently, having maximum values P∗

N = 1 and
P∗

M = 1, respectively. This example has been presented in [29].
The following geometrical data are used: R = 25 cm, L = 2 R and H = 4 R.
The plate is assumed homogeneous, isotropic, elastic-perfectly plastic with the

following material data: Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3
and yield stress σY = 111.62 MPa.
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Fig. 9 Geometry, loading of the grooved rectangular plate and its finite element mesh

Due to the symmetry of the geometry and the applied loads, only a half of the
structure has been modeled. The finite element mesh discretization of the plate is also
shown in Fig. 9. Two hundred and ninety-four, eight-noded, iso-parametric elements
with 3 × 3 Gauss integration points were used.

The shakedown domain obtained by the RSDM-S and its comparison with the
results from [29] is shown in Fig. 10.

Specifically in the case we have both in-plane tension and bending with P∗
N = P∗

M
the proposed RSDM-S gives a shakedown factor equal to 0.227 which quite close to
the value 0.236 of [29], where a different mesh and algorithm was used.

For this example, the initial convergence parameter ω = 1, in the process of the
iterations, had to be halved twice, due to an overshooting of the calculated shakedown
load to negative values.

Although the starting point was quite high as compared to the final result, the
descent was rapid as shown in the Fig. 11. In the insert of the figure, one may see,
after the initial descent, the smooth convergence towards the shakedown value.

In this example the CPU time reported to reach the solution for a CPU with the
same characteristics as above was of the order of 270 s.
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5 Concluding Remarks

A novel direct method to calculate the shakedown load of structures exhibiting elasto-
plastic material behavior when subjected to cyclic loadings has been introduced.

The procedure is iterative in its nature and starts by converting a loading of pre-
scribed limits to a loading of a prescribed cyclic history. This history is then multiplied
by a factor. A sequence of decreasing factors, whose initial value is calculated to be
above the shakedown load, is generated by the method. For each factored cyclic load-
ing history the distribution of the residual stresses of the corresponding cyclic elasto-
plastic state is estimated. This is done by decomposing these stresses into Fourier
series and finding their coefficients also iteratively. The procedure stops when only
the constant term of the series remains. Thus the method converges to the shakedown
load factor from above.
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It is a relatively simple method, formulated within the FE method. The stiffness
matrix of the structure needs to be formed and decomposed only once. Three terms
of the Fourier series are enough for accurate results. These two factors guarantee the
method to be numerically efficient.

The main advantage of the method is that the solution procedure provides a bet-
ter understanding of the physics of the problem than any method based on MP
algorithms. At the same time, the absence of such an algorithm makes it directly
implementable into any existing FE software.

Although the method has been applied here to two-dimensional structures, three-
dimensional structures can be also considered. It may also be extended to loading
domains of more than two loads. Other yield surfaces, except for von Mises, may be
considered. Also, besides perfect plasticity, other plasticity laws, like strain harden-
ing, may be taken care of.
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An Efficient Algorithm for Shakedown
Analysis Based on Equality Constrained
Sequential Quadratic Programming

Giovanni Garcea, Antonio Bilotta and Leonardo Leonetti

Abstract A new iterative algorithm to evaluate the elastic shakedown multiplier is
proposed. On the basis of a three field mixed finite element, a series of mathematical
programming problems or steps, obtained from the application of the proximal point
algorithm to the static shakedown theorem, are obtained. Each step is solved by an
Equality Constrained Sequential Quadratic Programming (EC-SQP) technique that
retain all the equations and variables of the problem at the same level so allowing
a consistent linearization that improves the computational efficiency. The numerical
tests performed for 2D problems show the good performance and the great robustness
of the proposed algorithm.

1 Introduction

Directs methods are largely used for the shakedown analysis of elastic-plastic struc-
ture under variable [5, 12, 16, 19, 20, 22, 24, 25] or cyclic loading [23] because
they an efficient alternative to time consuming incremental time-stepping calculations
(see also [6]). They are essentially based on Interior Point Methods but alternative
techniques as the linear matching method [8, 17] are efficiently employed too.

In [7, 11] an iterative algorithm has been proposed that makes possible to per-
forms the finite element shakedown analysis using a formulation similar to that
adopted for the evaluation of the equilibrium path of elastoplastic structure. In [9]
has been shown has this algorithm can be obtained from a mathematical program-
ming problem, consisting in the application of the proximal point algorithm to the
static shakedown theorem so defining a convergent sequence of safe states or steps
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that are solved by means of dual decomposition methods. Each proximal point step
coincides, in the elastoplastic case, with that defined using standard incremental iter-
ative algorithms [4, 13] based on Riks arc-length method while the optimization
subproblems, deriving from the dual decomposition technique, exactly correspond
to the standard return mapping by closest point projection scheme (CPP). We denote
from now on this method as SD-CPP (Strain Driven—Closest Point Projection) or
pseudo elastoplastic analysis.

The major advantage of the dual decomposition approach is that the inequality
constraints arising from the constitutive laws are eliminated from the step equa-
tions at the local level (Gauss point or finite element) using the CPP scheme, while
the stresses and the plastic multipliers are implicitly defined in terms of the dis-
placements. The finite step equations are so transformed into a nonlinear system
of equations, without inequalities, easily solved by means of standard arc–length
strategies. The global description of the algorithm is always performed in terms of
displacement variables alone.

It is worth of noting that the more usual descriptions based on displacement
variables alone can not be the best choice, while potentially more efficient and robust
analysis algorithms can be obtained by directly solving the proximal point step
equations maintaining all the variables of the problems at the same level. With this aim
in the present work an approach similar to that presented in [4] for the evaluation of the
equilibrium path of elastoplastic structures is proposed for shakedown analysis. The
proximal point step equations are solved by using an Equality Constraints Sequential
Quadratic Programming (EC-SQP) formulation instead of using dual decomposition
with a great advantage in terms of both robustness and efficiency.

Each QP iteration of the algorithm is organized in two phases: (i) a suitable esti-
mate of the active constraints at the current iteration is performed for a fixed value of
the load multiplier and the displacements, solving a problem similar to that defined by
the return mapping process; (ii) the new estimates of the step unknowns are obtained
solving an equality constrained quadratic programming problem that retains only the
active constraints. The second phase requires only the solution of a linear system of
equations, and is far cheaper to solve than the complete QP problem arising from
standard SQP strategies. The algorithm only require few modifications of existing
codes that evaluate the equilibrium path of elastoplastic structures by means of path
following incremental iterative algorithms (SD-CPP). From the computational point
of view each iteration has almost the same computational cost as a standard SD-CPP
step in the case of a single constraint, and a smaller cost in the multiple constraints
case. Furthermore the QP problem is obtained on the basis of a consistent lineariza-
tion of all the equations, so allowing the iterations to naturally evolve towards the
solution. To improve the computational efficiency, the solution of each linear system
required by the analysis is performed by means of a Gauss elimination of the locally
defined quantities (stresses and plastic multipliers).

In order to validate the proposed method, the work presents a numerical experi-
mentation by analyzing some 2D test problems under plane stress condition in both
cases of fixed and variable loads. The numerical analyses are performed using the
mixed finite elements proposed in [1–3]. These elements, which are based on a
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three field interpolation of displacements, stresses and plastic multipliers, have been
adopted for their accuracy and performance properties both for elastic and elasto-
plastic analysis as required by shakedown problems. This makes possible to avoid
the use of two kinds of elements as done in [9, 11] one with a good elastic behaviour
to correctly evaluate the plastic shakedown multiplier and one with a good plas-
tic behaviour and free of volumetric locking phenomena to performs the nonlinear
analysis. The obtained results highlight the improvement in terms of robustness and
computational cost with respect to previous proposal [9, 11] based on dual decom-
position but also with respect to the use of interior point methods, i.e. the most
efficient methods for solving nonlinear convex programming problems, in all the
cases considered.

2 A Mathematical Programming Formulation
for the Shakedown Analysis

In the following the static shakedown theorem is rewritten in terms of the involved
finite element quantities and of the total stress, making possible a unified treatment
of shakedown and limit analysis. The chosen FEM format is based on the general
three field interpolation presented in [3] but any other finite element, such as, for
example, a standard compatible one based on Gauss integration points, can be cast
in the framework proposed by giving the appropriate meaning to parameters and
operators.

2.1 The FEM Discrete Equation for the Static
Shakedown Theorem

We consider an elastoplastic body Ω subjected to bulk load b and tractions t, that
can varying with the time inside a given load domain.

Using the three fields interpolation proposed in [2, 3] we assume that displacement
u[x], stress σ [x] and plastic multiplier γ [x] of a point x ∈ Ω are interpolated as

u[x] := N[x]de σ [x] := S[x]βe γ [x] := G[x]κe, (1)

where N[x], S[x] and G[x] are the matrices containing the interpolation functions
and de, βe and κe are the vectors collecting the finite element parameters.

As usual for mixed finite elements we assume inter-element continuity only for the
displacement field u, while σ and γ will be defined locally inside the element, i.e. βe
and κe are local variables which are discontinuous across the elements. Furthermore
the interpolation functions in G are assumed to be nonnegative allowing the condition
γ ≥ 0 to be easily expressed by making κe ≥ 0. From now on, vector inequality
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will be considered in a componentwise fashion while we omit the dependence of the
quantities from x when clear from the context.

2.1.1 Equilibrium Equation

The interpolations introduced above allow to write the discrete form of the equilib-
rium equations as

Ae

{
QT

e βe − λpe

}
= 0 (2)

Ae being the standard assembling operator which takes into account the inter–element
continuity conditions on the displacement field and

Qe :=
∫

Ωe

ST DN, pe :=
∫

Ωe

NT b +
∫

∂�e

NT t (3)

are the element equilibrium operator and load vector while D is the continuum
compatibility differential operator, Ωe the element domain and ∂�e its boundary.
For the sake of the following discussion Eq. (2) can be rewritten as

QT β − λp = 0 (4)

where β and p denote the global vectors collecting all the stress parameters βe and
the applied loads pe, while QT the related global equilibrium matrix. From now on
a subscript e denotes the finite element description of a quantity.

2.1.2 The Elastic Envelope of the Stresses

We assume that the external actions p[t], variable with the time t , are expressed as
a combination of basic loads pi belonging to the admissible closed and convex load
domain

P :=
{

p[t] ≡
p∑

i=1

ai [t]pi : amin
i ≤ ai [t] ≤ amax

i

}

(5)

Denoting by β̂ i the elastic stress solution corresponding to pi , the elastic envelope Ŝ

Ŝ :=
{

β̂[t] ≡
p∑

i=1

ai [t]β̂i : amin
i ≤ ai [t] ≤ amax

i

}

(6)

defines the set of the elastic stresses β̂[t] produced by each load path contained in P.
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By construction Ŝ and P are convex polytopes and each β̂[t] ∈ Ŝ can be expressed
as a convex combination of the Nv elastic envelope vertexes β̂

α
that can be usefully

referred to the reference stress β̂
0

so obtaining

β̂[t] = β̂
0 +

Nv∑

α=1

sαβ̂
α

sα ≥ 0
Nv∑

α=1

sα = 1 (7)

If the external loads increase by a real number λ, called load domain multiplier, the

elastic envelope becomes λŜ :=
{
λβ̂ : β̂ ∈ Ŝ

}
.

2.1.3 Plastic Admissibility for Shakedown Analysis

Following [2, 3] and due to the local nature of the stress interpolation, the plastic
admissibility condition is rewritten on the element, in a weak form, as

∫

Ωe

δγ φ[σ ] ≡ ΔκT
e Φe[βe] = 0 ∀δγ ≥ 0, (8)

where Φe[βe] := ∫
Ωe

GT φ[βe] and φ is the yield function. Equation (8) allows to
control plastic admissibility in the Ne element so that β will be plastically admissible
if

Φ[β] ≤ 0 ⇐⇒ Φe[βe] ≤ 0, ∀e = 1 . . . Ne . (9)

Finally it is useful to express the plastically admissible condition for all the stresses
contained in the amplified elastic envelope λŜ translated by β̄. Due to the convexity
of Φ and Ŝ this can be easily expressed in terms of the plastic admissibility of all the

α vertexes of the amplified elastic domain βα = λ(β̂
α + β̂

0
) + β̄ as

Φ[λβ̂ + β̄] ≤ 0, ∀β̂ ∈ Ŝ ⇐⇒ Φ[βα] ≤ 0, ∀α (10)

where, from now on, a Greek superscript denotes vertex quantities.

2.1.4 The Static Theorem in Discrete Format
and the Mathematical Programming Point of View

The Bleich–Melan static theorem states that a load domain multiplier λs will be safe if
there exists a time-independent self-equilibrated stress field β̄ so that each stress in the
amplified and translated domain λs Ŝ+{β̄} is plastically admissible. The shakedown
multiplier λa can be evaluated as the maximum of these safe multipliers. The static
theorem can be reformulated in terms of total stress, instead of self–equilibrated
ones, making possible a unified notation for shakedown and limit analysis, i.e.
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maximize λs

subject to QT β = λsp0

Φ[β + λs β̂
α] ≤ 0, α = 1 . . . Nv

(11)

with p0 ≡ QT β̂
0

and β ≡ β̄ + λs β̂
0
. When β̂

0 = 0 we have the classic form in
terms of the self–equilibrated stress. Furthermore, without any loss in generality, we

can set β̂
0

as a generic vertex of Ŝ so β becomes the total stress of this vertex. When
the external load domain collapses in a single point (amin

i = amax
i ) Eq. (11) directly

transform into the standard form of the static theorem of limit analysis.
From now on we denote with Φα[β, λ] ≡ Φ[β + λβ̂

α] the shakedown yield
function.

3 Shakedown Analysis Using Dual
Decomposition Methods

The mathematical programming problem in Eq. (11) can be solved using efficient
interior point algorithms [5, 14, 19, 20] specialized to the shakedown case. We will
now resume an alternative approach, already presented in [7, 9, 11] where further
details can be found, that will be the basis for the new proposal. The approach uses
the proximal point method to generate a convergent sequences of steps and a dual
decomposition strategy to solve each step.

3.1 The Proximal Point Method
and the Pseudo-elastoplastic Step

The proximal point method is applied to (11) by defining a sequences of subproblems
or steps by adding a quadratic positive term to the objective function, i.e.

maximize Δξ(n)λ(n) − 1

2
ΔβT HΔβ

subject to QT β(n) − λ(n)p0 = 0

Φ[β(n), λ(n)] ≤ 0

(12)

where the superscript (·)(n) will denote quantities evaluated in the nth step, the
symbol Δ(·) = (·)(n) − (·)(n−1) is the increment of a quantity from the previous
step and Δξ(n) > 0 is an assigned real positive number. To simplify the notation we
collected all Φα[β, λ] in the global vector Φ[β, λ] = {Φ1, . . . ,ΦNv}. Finally H is
the compliance matrix and is defined by the following equivalence
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∑

e

βT
e Heβe = βT Hβ with He :=

∫

Ωe

ST C−1S (13)

where C is the elastic matrix. Note how, due to the local nature of the stress inter-
polation, H has a block diagonal structure that couples only the finite element stress
parameters. The finite element will be, from now on, the local level of the analysis.

3.1.1 First Order Conditions

Introducing the dual multipliers Δd and Δκ associated to the equalities and inequal-
ities constraints of (12) respectively, the finite step equations are defined by the first
order conditions of the following Lagrangian L (n)

L (n) = Δξ(n)λ(n) − 1

2
ΔβT HΔβ + ΔdT (QT β(n) − λ(n)p0) − ΔκT Φ[β(n), λ(n)].

(14)
In order to simplify the notation the superscript (n) will be omitted from now on.

In particular from the stationary condition of (14) with respect to β and Δκ we
obtain the finite step form of the constitutive law, i.e. the plastic admissibility and
plastic consistence conditions for shakedown

{
rσ ≡ −HeΔβe + QeΔde − Ae[βe, λ]Δκe = 0

rμ ≡ Φe[βe, λ] ≤ 0, Δκe ≥ 0, Δκe
T Φe[βe, λ] = 0,

(15a)

where Ae[βe, λ] :=
(

∂Φe[βe,λ]
∂βe

)T
. In the fixed load cases Eq. (15a) coincide with

the backward-Euler integration of the elasto-plastic constitutive equations.
Due to the discontinuity of βe and κe across the elements Eq. (15a) are expressed

with respect to element quantities alone when Δde and λ are assigned. For this reason
they will be denoted, from now on, as local equations while βe and κe will be denoted
as local variables. Following [4] a task that uses only local variables and equations
will be said to be at the local level.

In the same fashion the stationary condition with respect to Δd and λ furnishes
the equilibrium equations and the normalization condition, coupling all the variables
of the problem and defining the global level of the analysis,

{
ru ≡ QT β − λp0 = 0

rλ ≡ Δξ − ΔdT p0 − ΔκT Φ,λ = 0
(15b)

where Φ,λ :=
(

∂Φ[β,λ]
∂λ

)
. Equation (15b) will be denoted, from now on, as global

equations while d and λ will be denoted as global variables.
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In the case of limit analysis Eq. (15a, 15b) exactly corresponds to a step of the arc-
length algorithm used to solve the incremental elastoplastic problem [7, 11]. Due to its
meaning in the case of fixed loads we call this kind of analysis pseudo elastoplastic.
Δd and Δκ assume the meaning of displacements and plastic multipliers of the
problem.

As for elastic perfectly plastic structures the limit load can be evaluated by recov-
ering the complete equilibrium path by means of path-following algorithms, in the
same fashion the skakedown multiplier can be obtained by evaluating a sequence of
states, z(n) := {λ(n),β(k), d(n), κ (n)}, obtained by solving a series of problems (12),
i.e. defining a pseudo-elastoplastic equilibrium curve [7]. In [9] it has been shown
that starting from the known elastic limit z(0), the sequence z(n) generated in this
way is safe in the sense of the static theorem and monotonously increasing in λ(n).
In the case λ(n) = λ(n−1) with Δd 	= 0, it is simple to shown that Δβ = 0 and we
have from (11) the convergence to the desired shakedown multiplier.

Finally note as the equation format reported in Eqs. (12) and (15a, 15b) is quite
general and similar expressions could be obtained using other finite elements. In
particular for a standard compatible finite element the local level coincides with
the Gauss point, βe becomes the Gauss point stress and κe the Gauss point plastic
multiplier, plastic admissibility and consistency are imposed at each Gauss point and
the operators consequently transform.

3.2 The Dual Decomposition Solution
of the Pseudo Elastoplastic Step

The similarity of Eq. (15a, 15b) with standard strain driven path-following elasto-
plastic analysis suggests that also the same method of solution can be used. This is
the approach followed in [7, 11] and it is based on an exact solution of the local
conditions in (15a) for an assigned value of Δde and Δλ, so expressing βe and κe

as implicit functions of the displacements and of the load multiplier. This step is
performed at the local level by using a return mapping by closest point projection
process as in the case of the standard incremental elastoplastic analysis. This can be
shown by noting that Eq. (15a) are the first order conditions of the following problem

⎧
⎨

⎩

max
βe

βT
e QeΔde − 1

2
ΔβT

e HeΔβe,

subject to: Φe[βe, λ] ≤ 0.

(16)

where the number of constraints depends on the parameters used to interpolate γ ,
that is on the dimension of κe, and on the number of vertexes of the element elastic
envelope Ŝe. As Δde is constant with respect to the maximization, it is possible to
rewrite problem in (16) as
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⎧
⎨

⎩

min
βe

1

2

(
βe − β∗

e

)T He
(
βe − β∗

e

)
,

subject to: Φe[βe, λ] ≤ 0.

(17)

that is the convex projection of the trial stress (or the elastic predictor) β∗
e , defined by

β∗
e = β(n−1)

e + H−1
e QeΔde, (18)

onto the elastic shakedown domain bounded by the convex function Φe[βe, λ]. From
the closest point projection (CPP) in Eq. (17) we have the stresses and the plastic
multipliers as a function of Δd and λ

β = β[z(n−1), Δd, λ], Δκ = Δκ[z(n−1), Δd, λ]

and of the known initial step quantities collected in z(n−1).
Omitting the dependence from z(n−1) the global Eq. (15b) can be rewritten, in

terms of Δd and λ, as

{
ru ≡ QT β[Δd, λ] − λp0 = 0

rλ ≡ Δξ − ΔdT p0 − Φ,T
λ Δκ[Δd, λ] = 0

(19)

If the nonlinear system (19) is solved by means of a Newton iteration as in [7, 9],
we obtain:

{
Δd j+1 = Δd j + ḋ,

Δλ j+1 = Δλ j + λ̇,
with

{
K j ḋ − λ̇y j = −r j

u,

−y j T
ḋ + λ̇ h j

λλ = −r j
λ ,

(20)

where K j ≡ ∂ru/∂d is the algorithmic tangent matrix while r j
λ and r j

u are the
residuals defined in Eq. (19) evaluated in (d j , λ j ) after performing the return mapping
process (17) to evaluate β[Δd j , λ j ] and Δκ[Δd j , λ j ], while

y j ≡ ∂ru

∂λ

∣∣∣∣
(λ j ,d j )

= ∂rλ

∂d

∣∣∣∣
(λ j ,d j )

h j
λλ ≡ ∂rλ

∂λ

∣∣∣∣
(λ j ,d j )

.

We have convergence to a new equilibrium point when the norm of r j
u become

sufficiently small, in this case we set z(n) = z j . We recall that the use of a modified
Newton method that uses the initial elastic stiffness matrix assures global, even if
simply linear, convergence [7].
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3.3 The Optimization Point of View and the Motivation
for a New Strategy

The dual decomposition solution strategy of the proximal point step exactly coincides
in the fixed load case with the standard Strain Driven algorithms used in incremental
elasto-plasticity with the stresses evaluated by means of a return mapping by Closest
Point Projection scheme (SD-CPP). The reinterpretation previously described (see
also [4, 9]), allows to extend the use of classical elastoplastic algorithms to the
shakedown case.

The optimization point of view also makes simple to compare the previous
described strategy with other direct methods in the evaluation of the shakedown
multiplier. The dual decomposition, in fact, allows to split the optimization problem
in the small CPP subproblems (17) defined at the local level that allows to obtain the
dual function and in the solution of the global equations (19), that correspond to the
first order condition of the so evaluated dual function, by a Newton method. In this
way it is possible to simplify the solution of the optimization problem and a small
cost for each iteration is required. On the other hand, due to the decomposition, the
convergence when compared with interior point strategies, can be slow especially
when the elastic stiffness matrix is used.

In following section we propose a new formulation to solve the proximal point
step (12) that unlike the SD − CPP, attempts to use a consistent linearization of all
the equations and variables at the same time.

4 A New Solution Scheme for the Pseudo Elastoplastic Step

This section presents the new solution algorithm based on the application of the SQP
method to solve the mathematical programming problem in Eq. (12). By exploiting
the decomposition point of view we devised a strategy which only solve, at the
global level, a system of nonlinear equations similar to those presented in Eq. (20)
and which is characterized by minimal algorithmic differences but greater robustness
with respect to dual decomposition formulations.

4.1 The Linearized Equations for the Elastoplastic Step
and the Sequential Quadratic Programming (SQP)
Formulation

The starting point of the new algorithm is the linearization of the step equations (15a,
15b) with respect to all the involved variables, maintaining the full mixed format of
the problem. In what follows we will denote with z j = {κ j

e ,β
j
e , d j , λ j } the current,

known, estimate of the step solution z(n) and with z j+1 = z j + ż the new estimate
we are searching for. From the linearization of the local equations (15a) we obtain:
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{
−Het β̇e + Qeḋe − A j

e κ̇e − λ̇a j
λ = −r j

σ ,

Φe
j+1[β, λ] ≤ 0, Δκe

j+1 ≥ 0, (Δκe
j+1)T Φe

j+1 = 0.
∀e (21a)

where a j
λ = Ae,

j
λ Δκe

j a comma means derivatives with respect to the symbol that
follows and

Het ≡ He +
∑

k

Δκek
∂�ek

∂βe

∣∣∣∣
βe=β

j
e

, Φe
j+1 ≡ Φe

j + A j
e

T
β̇e + λ̇Φe

j ,λ

Δκ
j

ek and �ek are the kth components of Δκ
j
e and Φe

j respectively. The linearization
of the global finite step equation (4) gives:

{
QT β̇ − λ̇p0 = −r j

u

−ḋ
T

p0 − κ̇T Φ,
j
λ − a jT

λ β̇ − a j
λλλ̇ = −r j

λ

(21b)

where a j
λλ = (Δκ j )T Φ,λλ.

Equation (21a, 21b) could also be obtained has the first order condition of the
following j th QP subproblem obtained by applying the sequential quadratic pro-
gramming (SQP) approach to (15a, 15b).

max Δξλ̇ − β̇
T

HΔβ j − 1
2 λ̇2a j

λλ − λ̇β̇
T

a j
λ − 1

2 β̇
T

Het β̇

subj. r j
u + QT β̇ − λ̇p0 = 0

Φ j+1[β, λ] ≤ 0,

(22)

Equation (22) furnishes the new estimate z j+1 in the form

z j+1 = {λ j + λ̇,β j + β̇,Δd j+1,Δκ j+1}. (23)

4.2 The EC-SQP Formulation

A direct application of standard optimization algorithms to the solution of the QP
sub-problems defined in (22) can hardly be competitive with respect to the dual
decomposition approach because of the large number of degrees of freedom and
constraints. For this reason we use the equality constraint sequential quadratic pro-
gramming (EC-SQP) approach proposed in [4] for incremental elasto-plasticity to
which we remind for further details.

Each iteration of the EC-SQP approach consists of two phases: (i) estimation
of the active set of constraints; (ii) solution of an equality constrained quadratic
program that imposes the apparently active constraints and ignores the apparently
inactive ones.
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The idea is to identify the active inequality constraints, i.e. the components of
Φ

j+1
e for which equality holds, using information available at a point z̄ j+1 = z j + ˙̄z

near to z j+1 but which is less expensive to evaluate. Once the active set is known, the
solution of an equality constrained QP, requiring only the solution of a linear system
of equations, gives the new estimate z j+1. Moreover, by maintaining a pseudocom-
patible format in the solution of the linear system, a scheme similar to that presented
in Eq. (20) is obtained at global level.

4.2.1 The Detection of the Active Set of Constraints

The estimation of the active constraints is performed by advocating the decompo-
sition point of view, i.e. solving an optimization problem obtained by the original

ones (21a) for a fixed, properly assumed, value of the global variables: d̄
j+1 = d j

and λ̄ j+1 = λ j , i.e. for ḋ = 0 and λ̇ = 0 so obtaining from Eq. (21a)
{−Het

˙̄βe − A j
e ˙̄κe = −r j

σ ,

Φ̄
j+1
e ≤ 0, κ̄e

j+1 ≥ 0, (κ̄e
j+1)T Φ̄

j+1
e = 0.

∀e (24)

where the symbols with a bar denote the estimates of the new quantities. In particular
Eq. (24) is the first order conditions of the following QP problem:

⎧
⎨

⎩

min
(β̇e)

: 1

2
( ˙̄βe)

T Het
˙̄βe + ( ˙̄βe)

T g j ,

subj.: A jT
e

˙̄βe + Φ
j
e ≤ 0,

∀e (25)

where g j = He(β
j
e − β∗

e) and β∗
e = β(n−1)

e + H−1
e QeΔd j

e . The decoupled QP
problems (25), have the same form as a standard CPP scheme, and it can be easily
solved at the local level by using the Goldfarb-Idnani active set method [11]. The
evaluation of the set of active constraints is then continuously updated with the
iterations and, if Δd j converges to Δd(n+1), the active set converges to that of the
nonlinear problem.

Letting β̄e
j+1 = β

j
e + ˙̄βe it is easy to show how problem (25) is also equivalent,

apart from an inessential constant in the objective function, to the following CPP
minimization

⎧
⎪⎨

⎪⎩

min
(β̄e

j+1
)

: 1

2
(β̄e

j+1 − β tr
e )T Het (β̄e

j+1 − β tr
e ),

subject to: Φ̄
j+1
e ≤ 0,

∀e. (26)

which allows a formulation of the problem in terms of a predictor/corrector strategy,
i.e. the solution of problem (26) coincides with the trial stress defined as

β tr
e = β

j
e + H−1

et (QeΔd j − HeΔβ
j
e ),
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if Φe[β tr
e ] ≡ Φ

j
e + (A j

e )
T (β tr

e − β
j
e ) ≤ 0.

4.2.2 The Solution of the QP Equality Constraint Scheme

The second step of the algorithm consists in the solution of Eq. (21a, 21b) retaining,
as equalities, only the active constraints evaluated in the previous step. When the
active set is not void the solution is given by the following system of equations:

⎡

⎢⎢⎢⎢
⎣

· A jT
e · Φ

j
e ,λ

−A j
e −Het Qe −a j

λ

· QT
e · −p0e

−(Φ
j
e ,λ )T −(a j

λ)
T −pT

0e −aλλ

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

κ̇e

β̇e

ḋe

λ̇

⎤

⎥⎥⎥⎥
⎦

= −

⎡

⎢⎢⎢⎢⎢
⎣

r j
μ

r j
σ

r j
u

r j
λ

⎤

⎥⎥⎥⎥⎥
⎦

, z j+1 = z j + ż, (27)

where the further condition κ j+1 ≥ 0 needs to be imposed.
System (27) is easily solved by static condensation of the local defined quantities

obtaining at the global level the same format as system (20) with different meaning
of the operators. In particular, recalling that the QP scheme in (25) solves the first
two equations of (27) zeroing the global variables we obtain

⎧
⎨

⎩

β̇e = ˙̄βe + H−1
et (Qeḋe − λ̇a j

λ)

κ̇e = ˙̄κe + W
(

A jT
e H−1

et (Qeḋe − λ̇a j
λ) + λ̇Φ

j
e ,λ

) (28)

where W =
[
AT

j H−1
et A j

]−1
. At the global level then we have to assemble the

condensed element contribution as

Ae

(
QT

e Et Qe

)
ḋ − λ̇y j = −Ae

(
r j

cu

)
, −(y j )T ḋe + hλλλ̇ = −r j

cλ, (29)

where the quantities in Eq. (29) are so defined

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Et = H−1
et − H−1

et A j
e WA jT

e H−1
et

y j = p0 + Ae
(
ŷ
)

r j
cu = r j

u + QT
e (r̂σ )

hλλ = −(Φ
j
e ,λ )T (WΦ

j
e ,λ − YT aλ) + aT

λ ŷ − aλλ

r j
cλ = r j

λ + (Φ
j
e ,λ )T (YT r j

σ + Wr j
μ) − (a j

λ)
T r̂σ



190 G. Garcea et al.

being

Y = H−1
et A j

e W, ŷ = Et a
j
λ + YΦ

j
e ,λ , r̂σ = Et r j

σ − Yr j
μ

Note as Et has the same expression as the algorithmic tangent matrix evaluated by
dual decomposition methods. Also note as Et and Y are evaluated at each step of the
QP problem, by the optimization algorithm used. In the case of an element with zero
active constraints the solution is simply obtained deleting the inequality constraints
and so obtaining an elastic step:

κ
j+1
e = 0, β̇e = H−1

e Qeḋe, Et = H−1
e .

4.2.3 Comparison with SD-CPP Formulations

A comparison between the new EC-SQP and the SD-CPP methods can be useful at
this stage. With this aim it is useful to recast the j th iteration of SD-CPP method in
a format similar to that of the EC-SQP method as follows

Step 1 Obtain the values of β j and Δκ
j
e by solving the closest point projection

scheme in Eq. (17), that is by exactly solving Eq. (15a) with r j
μ = 0 and

r j
σ = 0 for the fixed, actual value, of the global variables d j and λ j .

Step 2 With the active set of constraints evaluted in the Step 1 solve the system (27)
to obtain the increment in the global variables ḋ and λ̇, as better described
in the follows.

The Step 2 is obtained by solving system (27) with the condition r j
μ = 0 and

r j
σ = 0 being zeroed by the and the active set obtained from previous step. We

presents the comparison in the more simple case of fixed loads (elasto-plasticity) but
similar conclusions apply to variable loads case. We obtain

⎡

⎢⎢
⎣

· A jT
e · ·

−A j
e −Het Qe ·

· QT
e · −p0e

· · −pT
0e −aλλ

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

κ̇e

β̇e
ḋe

λ̇

⎤

⎥⎥
⎦ = −

⎡

⎢⎢
⎣

0
0
r j

u

r j
λ

⎤

⎥⎥
⎦ , z j+1 = z j + ż, (30)

From the first two equations we obtain with same algebra

κ̇e = WA jT
e H−1

et Qeḋe, β̇e = Et Qeḋe (31a)

where Et and W and aλλ have the same expression as for the EC-SQP algorithm
previously described. From the global equation we obtain
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{
QT

e Et Qeḋe − λ̇p0e = −r j
u

−pT
0eḋe − aλλλ̇ = −r j

λ

(31b)

Eq. (31a, 31b) are the standard equation obtained with strain-driven strategies [18].
With this interpretation of the strain driven formulation it be clear that it evaluates

the active set of constraints at the iteration j +1 by exactly solving the local equation
for the value of the global unknown at the j th iteration. In our proposal we detect
the active set by the linearized value of the local equations for a fixed value of the
global equation at j then we solve the complete system in j + 1.

4.3 A Final Remark

In the large series of numerical tests performed, only partially reported in the next
section, the method has always shown an impressive robustness. In particular it was
possible to verify, in all numerical tests, how the convergence to the correct new
solution step z(n) is achieved even when the algorithm is initialized with a point z0

very distant from the final solution z(n), validating the choice of maintaining the
cheap estimation of the active set as proposed without any supplementary improving
strategy.

Finally, the adoption of a line search scheme can assure the global convergence
of the algorithm with a little computational extra-cost, see for example [15, 21] and
references therein.

5 Numerical Results

In order to evaluate the performance of the proposed algorithm, we propose some
numerical tests regarding 2D problems in plane stress conditions, under the action
of various kinds of loads and for von Mises materials.

To test the robustness of the new algorithm, for each test a series of equilibrium
or pseudo-equilibrium paths at increasing values of the first arc–length parameters
are evaluated. In particular, denoting by zE the elastic limit solution, that for the
shakedown is evaluated for the reference load p0, the analyses are performed for an
initial extrapolation evaluated as Δz(1) = α(1)zE , selected so that the component
of the displacements in a given point reaches a prescribed value. As the initial arc-
length parameter is evaluated as a function of the extrapolated displacements using
the second of Eq. (15b) we can force the analyses to perform large steps simply
by increasing α(1). The convergence to a new equilibrium point, in the sequel is
considered as achieved when the norm of the residuals is less than a given tolerance,
i.e. ‖ru‖+‖rσ ‖+‖rμ‖ ≤ toll, while the analysis is stopped when the displacement
component of a specified point reaches a prescribed value. For each new step the
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variables are initialized as z(n) = α(n)z(n−1) where α is selected as a function of the
difference between the number of iterations required to achieve convergence in the
previous step and the number of desired iterations, denoted with lpsd (see [10, 11]),
that is the strategy is adaptive. If the residual norm increases by more than 10 times
its first value the iterations are stopped and a failure in convergence is reported, that
is a false step. In this case the analysis restarts from the last evaluated equilibrium
point but using a half of the value of α(n) used in the previous iteration. After 15
consecutive false steps the analysis is stopped. A false step can also occur if we don’t
reach convergence after more than a prescribed number of iterations denoted as lpsm .

The following indicators are compared in order to highlight the efficiency and
the robustness of each nonlinear strategy: (I) the number of points in the evaluation
of the pseuso-equilibrium path, denoted as “stps”, the number of false steps due to
both failure or slow convergence are reported in brackets; (II) the total number of
the iterations required for each step to converge, denoted as “lps”.

Note as in the case of the SD-CPP algorithm a backtracking line search is adopted
in the solution of the global equations in order to also tackle with larger step sizes
while the analysis with the new EC-SQP algorithm is always performed without any
globalization technique. It is important to say that without the line search only in the
case of the smallest step size initialization the SD-CPP analysis is capable to perform
the analysis without failures for all the tests analyzed. With respect to the CPU time
this penalizes the SD-CPP iteration that, as shown in [4], is already more expensive
than the EC-SQP one.

The finite element used in the numerical tests was proposed in [3]. It is a four-node
element with a bi-linear interpolation of the displacement field and a 5-parameter
stress field interpolation which improves the in-plane bending behavior of the ele-
ment. In [3] several elements with different interpolations of the plastic multiplier
field were tested and among them we chose the more simple one, denoted as FC1, and
characterized by a constant interpolation of the plastic multiplier all over the element.

5.1 Description of the Test Problems

The first example regards a classical stress concentration test for a plate with a circular
hole subject to biaxial uniform loads on the free edges. The geometry, the material,
the applied loads and the mesh used in the analyses, are shown in Fig. 1. The test is
analyzed with respect to both the fixed load cases and the variable one. In particular
for the fixed load case the analysis is performed setting α1 = 1 and α2 = 1. For
the shakedown case the load domain is evaluated by assuming 0.6 ≤ α1 ≤ 1 and
0.6 ≤ α2 ≤ 1.

The second test problem is the symmetric continuous beam depicted in Fig. 2
where all the data relative to the material and the applied loads are reported. The
analyses are performed with respect to fixed and variable loads. In particular the limit
analysis is performed assuming α1 = 0.6 and α2 = 1.0 while for the shakedown
case the load domain is defined by by assuming 0.6 ≤ α1 ≤ 1 and 0.6 ≤ α2 ≤ 1.
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Fig. 1 Plate with a circular hole: problem data and meshes used in the analysis
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Fig. 2 Symmetric continuous beam: problem data and meshes used in the analysis

The collapse and shakedown multipliers are compared with those obtained by
several authors as reported for example in [11, 25].

5.1.1 Limit Analysis

Table 1 reports the results obtained with the SD-CPP and EC-SQP algorithms for
all the assigned initial increments of the observed displacement parameter, ranging
from 2e − 6 to 1e − 2 and on the basis of two different meshes. The analyses are
stopped when the max value 1e − 2 is reached or exceeded. As can be observed
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Table 1 Plate with circular hole, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 15(−) 51 17(1) 52 2e − 6

7(−) 29 14(4) 49 1e − 4

4(1) 17 14(7) 49 1e − 3

5(5) 18 12(9) 45 1e − 2

EC-SQP 24(−) 69 26(−) 75 2e − 6

12(−) 42 13(−) 46 1e − 4

5(−) 23 5(−) 25 1e − 3

1(−) 14 1(−) 20 1e − 2

Limit analysis report, vA,max = 5e − 3, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λc = 0.9096 FC1(Mesh1); λc = 0.9011 FC1(Mesh2)

Table 2 A symmetric continuous beam, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 33(1) 96 33(−) 101 2e − 4

22(−) 74 22(−) 77 5e − 3

17(2) 61 16(1) 59 5e − 2

19(6) 66 18(6) 63 1

EC-SQP 33(−) 99 33(−) 100 2e − 4

23(−) 80 21(−) 77 5e − 3

14(−) 52 13(−) 53 5e − 2

1(−) 11 1(−) 13 1

Limit analysis report, vA,max = 1e − 1, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λc = 5.585 FC1(Mesh1); λc = 5.535 FC1(Mesh2)

the robustness of the algorithm proposed is good showing a smooth decrease in the
number of required steps and iterations according to the assigned step size. For the
greatest initial step size it performs the evaluation of the collapse state with a single
step and without any loss in accuracy. On the contrary the standard SD-CPP algorithm
is adversely affected by the increase in the step size registering occurrences of step
failure already from the second size of the first step increment.

Table 2 reports the results obtained for the second test problem. Also in this case
two different meshes have been used. The assigned initial increments of the observed
displacement parameter range from 2e − 4 to 1. The analysis is stopped when the
max value 1 is reached or exceeded. Also in this case for the greatest initial step size
the evaluation of the collapse state is obtained in a single step.
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5.1.2 Shakedown Analysis

Tables 3 and 4 report the results obtained for the shakedown analysis for the plate with
a hole and the continuous symmetric beam, respectively. The analysis are performed
with the same assigned initial increments of the observed displacement parameter of
the corresponding limit analysis case.

Also for the shakedown case the SD-CPP algorithm it is unable to deals with
large step sizes while the EC-SQP algorithm treats large step increment effectively.
In particular for both the test problems and for the two finite element grids the
analyses obtain the correct multipliers in a single step.

Table 3 Plate with circular hole, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 17(1) 61 21(2) 74 2e − 6

14(4) 58 16(4) 61 1e − 4

14(8) 51 14(7) 55 1e − 3

15(11) 57 17(12) 64 1e − 2

EC-SQP 25(−) 80 28(−) 90 2e − 6

13(−) 52 14(−) 58 1e − 4

6(−) 37 6(−) 38 1e − 3

1(−) 18 1(−) 21 1e − 2

Shakedown analysis report, vA,max = 5e − 3, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λc = 0.8946 FC1(Mesh1); λc = 0.8838 FC1(Mesh2)

Table 4 A symmetric continuous beam, mesh 12 × 12 (338 dofs)

Mesh1 Mesh2

stps (fls) lps stps (fls) lps incr

SD-CPP 27(−) 93 26(−) 89 2e − 4

21(2) 76 20(2) 75 5e − 3

28(5) 72 19(5) 74 5e − 2

19(8) 68 18(8) 68 5e − 1

EC-SQP 28(−) 102 26(−) 100 2e − 4

15(−) 60 14(−) 64 5e − 3

12(−) 62 12(−) 58 5e − 2

1(−) 27 1(−) 20 5e − 1

Shakedown analysis report, vA,max = 1e − 1, toll = 1e − 4, desired = 12, max = 50. Computed
collapse multiplier: λa = 3.294 FC1(Mesh1); λa = 3.264 FC1(Mesh2)
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6 Conclusions

In this paper the method presented in [4], for the incremental elastoplastic analysis
has been extended to shakedown. The method evaluate the shakedown multipliers
by a sequences of pseudo elastoplastic steps obtained by applying a proximal point
method to the Melan static theorem. Each step is solved by means of an EC-SQP that
retains, at each iteration, all the variables of the problems. In the solution process
the set of active constraints is obtained by solving a simple quadratic programming
problem which has the same structure and variables of a standard return mapping by
closest point projection scheme, i.e. it is decoupled and it can be solved at a local
level (finite element, Gauss point). The solution of the equality constraint problem
is performed by means of a static condensation of the locally defined variables,
stress and plastic multiplier parameters, for which the inter element continuity is not
required so obtaining, at the global level, a pseudo-compatible scheme of analysis
that has the same structure as classic path following arc-length methods.

The numerical results are performed adopting the finite element interpolation
proposed in [3]. This finite element uses a three field interpolation with a good
accuracy with respect to both the elastic and elastoplastic response. This makes the
proposed numerical framework particularly suitable for shakedown analysis. The
numerical results show the improvement in robustness and efficiency with respect to
previous proposals.

The presentation and the application are limited to the perfect plasticity case but
its extension to other more complex cases is possible [20].
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Limit Analysis on RC-Structures
by a Multi-yield-criteria Numerical
Approach

Aurora Angela Pisano, Paolo Fuschi and Dario De Domenico

Abstract The present study proposes a multi-yield-criteria limit analysis numerical
procedure for the prediction of peak loads and failure modes of reinforced concrete
(RC) elements. The proposed procedure, which is a generalization of a previous one
recently presented by the authors, is hereafter applied to structural elements rein-
forced either with traditional steel bars and stirrups or with fiber reinforced polymer
(FRP) sheets used as strengthening system. The procedure allows to take into account
the actual behaviour, at a state of incipient collapse, of steel, FRP and concrete by
a finite element (FE) based plasticity approach where concrete is governed by a
Menétrey-Willam-type yield criterion, FRP reinforcement obey to a Tsai-Wu-type
yield criterion and steel reinforcement follow the von Mises yield criterion. To check
the effectiveness and reliability of the numerically detected peak loads and failure
modes a comparison with experimental laboratory findings, available in literature for
large-scale specimens, is presented.

Keywords Limit analysis · Multi-yield-criteria · Reinforced concrete structures

1 Introduction

The design of concrete structures reinforced either with classical steel bars or with
innovative FRP bars, as well as the strengthening or the rehabilitation of existing steel
RC structures through externally bonded FRP sheets or strips, are subjects of great
interest in the field of civil engineering. This interest is witnessed by a huge amount
of analytical and experimental research studies proposed in the relevant literature
in the last decades (see e.g. [2, 9]). Among the several methods already developed
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and the different aspects analyzed, from an engineering point of view, it is of utmost
importance the knowledge at ultimate (collapse) state of the load carrying capacity of
such structures. This task can indeed be pursued, within a plasticity-based approach,
using Limit Analysis. Although plain concrete is not a ductile material, experimental
studies have shown that the presence of longitudinal web or stirrups reinforcement,
as well as of FRP laminates, render the global behaviour of RC structural elements
quite ductile so justifying the applicability of approaches based on plasticity theory
[3, 5, 10]. It is the realm of the so called direct methods which often utilise finite
element method (FEM) in conjunction with optimization algorithms such as linear
[27] and nonlinear programming [11, 14, 28]. These approaches indeed do not allow
the treatment of post elastic phenomena that may arise in concrete structures, such as
localization, fracture, damage, creep etc., and that can be faced by coupling plasticity
with fracture or damage mechanics theories within step-by-step analyses (see e.g.
[12, 15, 30]); however, they can give information on the behaviour at limit (collapse)
states of such structures, so resulting very useful for design purposes. In this context
it has to be framed the present study.

The promoted approach belongs to a wider research program started by the authors
in the context of laminates of FRP [18, 19, 21] and extended to RC structures with
reference to a Menétrey-Willam (M-W)-type yield criterion with cap in compres-
sion [8, 20, 22]. In the latter studies, two limit analysis methods, namely the Linear
Matching Method, LMM, [24], and the Elastic Compensation Method, ECM [16],
have been applied under the hypothesis that reinforcement behave as indefinitely
elastic. This assumption has inevitably produced some drawbacks. In particular only
those structures whose behaviour at incipient collapse is dominated by crushing of
concrete, that is the case of the so-called over-reinforced structures, can be appro-
priately analyzed, while for under-reinforced structures, where reinforcement often
attain their limit capabilities, the methods result less accurate. To overcome this lim-
itation and improve the overall analysis of the RC structural elements at collapse
enhancements of the methods have been presented in [23]. The present study pro-
poses a further advanced version of the methods that considers possible yielding of
steel bars as well as collapse of FRP sheets. To this purpose the paper proposes a
three yield criteria limit analysis formulation in which concrete is governed by a
Menétrey-Willam-type yield criterion with cap in compression, steel reinforcement
follow the von Mises yield criterion and FRP reinforcement obey to a Tsai-Wu-type
yield criterion. This allows to predict the peak loads of those RC structures in which
steel and/or FRP reinforcement play an important role in the behaviour exhibited at
a state of incipient collapse. The effectiveness of the proposed approach is shown by
comparison of the obtained numerical predictions with the experimental findings on
steel reinforced beams strengthened in flexure using GFRP sheets.

It is worth noting that the promoted procedure is of general (wider) applicability,
the only essential requisite being the strict convexity of the yield criteria assumed
for the constituent materials.

The paper is organized as follows: after this introductory section, Sect. 2 gives
the principles of the LMM and ECM employed in the limit analysis procedure and
this with reference to a generic, strictly convex, yield criterion; Sect. 3 recalls few
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analytical expressions of the Menétrey-Willam-type yield criterion enriched with a
cap in compression, of the Tsai-Wu-type yield criterion and of the von Mises yield
criterion, just to set up the constitutive relations; Sects. 4 and 5 particularize the LMM
and ECM to the three yield criteria here considered; Sect. 6 gives the results obtained
by analyzing large scale RC beams strengthened with FRP sheet and compares these
results with the available experimental tests; finally Sect. 7 draws some conclusions.

2 Limit Analysis: Basic Concepts and Numerical Issues

Limit analysis allows the direct evaluation of the load bearing capacity of a structure
or of a structural element. In its classical formulation the theory of limit analysis
refers to perfectly plastic structures, made of standard materials, and it is based on
a lower and an upper bound theorem [6, 26]. The bound theorems allow the exact
determination of the (unique) load value that will cause collapse.

The upper bound theorem states that an upper bound, say PUB , to the collapse load
multiplier for a given body of volume V is given by:

PUB =
∫

V σ Y
j ε̇c

j dV
∫
∂Vt

p̄i u̇c
i d(∂V)

, (1)

where: ε̇c
j = λ̇ ∂f /∂σj are the components of the strain rate at collapse having the

direction of the outward normal to the yield surface f (σj) = 0 (with λ̇ > 0 a scalar
multiplier); σ Y

j are the stresses at yield associated to the given compatible strain
rates ε̇c

j ; u̇c
i are the related displacement rates. Moreover, p̄i are the surface force

components of the reference load vector p̄ acting on the external portion ∂Vt of the
body surface. For simplicity, only surface forces are considered. The set (ε̇c

j , u̇c
i )

defines a collapse mechanism.
On the other hand, the lower bound theorem states that if at every point within

V exists a stress field σ̃j which satisfies the condition f (̃σj) ≤ 0 and in equilibrium
with the applied load P p̄ for a value of P, say PLB, then PLB is a lower bound to the
collapse limit load multiplier.

The two assertions above, as known, lead to two classical approaches of limit
analysis, namely: the kinematic and the static one. If the loads produced by their
application are equal to each other, circumstance verifiable only for standard mate-
rials, then they equal the collapse load. As a matter of fact, the success of limit
analysis approaches has been determined also by the possibility to apply the theory,
with due attention, outside the realm of perfect plasticity so allowing the study of
structures made of non standard materials. The non standard limit analysis theory is
based on the two Radenkovic’s fundamental theorems which can be summarized as:
“every value of the limit load for a non standard body is located between two fixed
boundaries defined by the values of the limit loads computed considering the body
made by two standard materials whose yield surfaces are one outer, the other inner,
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to that of the nonstandard material.” Obviously, within a nonstandard Radenkovic’s
approach only a range of collapse load multiplier values can be located between two
computed bounds, the uniqueness of the limit load being missing.

The nonstandard approach will be followed hereafter, the main constituent mate-
rials of the addressed structural elements being indeed modelled by plasticity-based
criteria of non associative type. The assumed yield surface playing the double role
of outer and inner “standard” surfaces mentioned before. The promoted approach is
based on sequences of FE elastic analyses as well as on the use, in concomitance,
of two distinct limit analysis numerical methods, i.e.: the LMM which follows the
kinematic approach of limit analysis theory [18, 20, 24] and the ECM which is
grounded on the static approach [16, 21, 22]. For sake of brevity, the LMM and the
ECM will be discussed with reference to a generic, strictly convex, yield surface,
namely an ellipsoid in principal stress space. To this concern it is worth noting that
the applicability of the whole approach is independent from the assumed stress field
representation as will appear more clear in Sects. 4 and 5 where the adopted yield
criteria will be explicited.

2.1 Upper Bound Evaluation via LMM

The LMM, firstly theorized by Ponter and Carter [24] for von Mises materials and
then extended to more complex materials in [20–22], is an iterative procedure involv-
ing one sequence of linear analyses. The linear analyses are carried on the structure
made, by hypothesis, of a linear viscous fictitious material with spatially varying
moduli, DI (I ranging over the elastic constants entering the considered material),
and imposed initial stresses, σ̄j (j ranging over the considered (needed) stress compo-
nents). The adjective fictitious highlights the property of the material endowed with
elastic parameters which may assume different values at different points; the latter
being Gauss points (GPs) in a FE discrete model of the structure.

An easy understanding of the method can be achieved by looking at its geometrical
interpretation sketched in Fig. 1. At the current iteration, say at the (k − 1)th FE-
analysis, the fictitious structure (i.e. the structure under study with its real geometry,
boundary and loading conditions but made of fictitious material) is analyzed under
loads P(k−1)p̄i, with P(k−1) load multiplier and p̄i assigned reference loads.

The fictitious linear solutions computed, at each Gauss Point of the FE mesh, can
be represented by a point P(k−1)

L lying on the complementary dissipation rate equipo-

tential surface referred to the fictitious viscous material, say W (k−1)(σ
� (k−1)
j , D(k−1)

I ,

σ̄
(k−1)
j ) = W̄ (k−1), whose geometrical dimensions and center position depend on the

fictitious values D(k−1)
I and σ̄

(k−1)
j fixed at the current GP. The point P(k−1)

L with its

coordinates, say σ
� (k−1)
j in the chosen principal stress space, shown in the sketch

of Fig. 1, represents the fictitious solution in terms of stresses while the outward
normal at P(k−1)

L , say the normal of components ε̇
� (k−1)
j , represents the fictitious

solution in terms of linear viscous strain rates. At this stage the fictitious moduli and
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Fig. 1 Geometrical sketch, in the principal stress space, of the matching procedure, from iteration
(k − 1) to (k), at the current GP within the current element

initial stresses are modified so that P(k−1)
L is brought onto the yield surface of the real

constitutive material the analyzed structure is made with. The latter surface is here
presented by the ellipsoidal shaded surface of Fig. 1. Namely P

(k−1)
L is brought to

identify with point P(k−1)
M , having the same outward normal of P(k−1)

L but lying on
the real material yield surface.

The fictitious solution in terms of strain rates, namely ε̇
� (k−1)
j ≡ ε̇

c (k−1)
j , where

the apex c stands for “at collapse”, as well as the stress coordinates of P(k−1)
M , say the

stresses at yield σ
Y (k−1)
j , give all the information pertaining to a state of incipient

collapse built at the current GP. In particular, the fictitious strain rates ε̇
� (k−1)
j ≡

ε̇
c (k−1)
j , with the associated displacement rates u̇� (k−1)

j ≡ u̇c (k−1)
j , define a collapse

mechanism. The related stresses σ
Y (k−1)
j are the pertinent stresses at yield. Indeed,

for the formal analogy existing between the linear viscous problem and the linear
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elastic problem the strain rates ε̇
� (k−1)
j can be evaluated as linear elastic strain rates,

viewing W (k−1) = const as the complementary energy equipotential surface of the
fictitious material. While the described modification of D(k−1)

I and σ̄
(k−1)
j implies

that the “modified” W (k)(σ
� (k)
j , D(k)

I , σ̄
(k)
j ) = W̄ (k−1) matches the yield surface at

point P(k−1)
M , see again Fig. 1.

Operatively, the matching procedure performed at the current GP starts with the
search of the stress point P(k−1)

M on the yield surface having an assigned strain rate
ε̇� (k−1) ≡ ε̇c (k−1) as outward normal.

It is worth noting that if the yield surface is strictly convex such point P(k−1)
M is

uniquely determined by the given normal ε̇� (k−1). If this normal belongs to a cone of
normals pertaining to a vertex (nonsmooth corner) if any, of the yield surface, point
P

(k−1)
M simply identifies with this vertex.

If the expounded rationale is repeated at all GPs of the mesh, a collapse mecha-
nism, (ε̇c (k−1)

j , u̇c (k−1)
i ) with the related stresses at yield, σ Y (k−1)

j can be defined for
the whole structure and, by Eq. (1), an upper bound value to the collapse load multi-
plier, say P(k)

UB
, can be evaluated at current (k −1)th FE elastic analysis. However, the

above stress at yield, computed through the matching, do not meet the equilibrium
conditions with the acting loads P(k−1)p̄i and the procedure is carried on iteratively
until the difference between two subsequent PUB values is less than a fixed tolerance.

Convergence requires that the W (k) = W̄ (k−1) matches the yield surface at P(k−1)
M

and otherwise lies outside the yield surface (see [25]). In the following the LMM is
applied simultaneously to concrete, FRP and steel reinforcement.

2.2 Lower Bound Evaluation via ECM

The ECM conceived by Mackenzie and Boyle [16] with reference to steel and then
modified to deal with more complex materials in Pisano et al. [18, 22] is aimed to
construct an admissible stress field, suitable for the evaluation of a PLB , in the spirit of
the static approach of limit analysis. Also the ECM is an iterative procedure involving
many sequences of linear elastic FE-based analyses, in which highly loaded regions
of the structure are systematically weakened by reduction of the elastic moduli and
this in order to simulate a stress redistribution arising within the structure before
attaining its limit strength threshold. Also in this case the procedure can be more easily
explained by means of a geometrical sketch as the one given in Fig. 2 with reference
to a generic yield surface F(σj, DI , σ̄j) = 0. The ECM starts with a first sequence,
say s = 1, of FE elastic analyses, carried on the structure endowed with the proper
(real) material elastic parameters and suffering applied initial loads P(s)

D p̄i = P(1)
D p̄i.

At the current iteration, say at the (k − 1)th FE analysis, the elastic stress solution is
computed at the GPs of the mesh. Such values, averaged within the current element
#e, allow to define a solution “at element level”, which, as shown in the sketch of
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Fig. 2 Geometrical sketch,
in the principal stress space,
of the ECM at current
iteration (k − 1) of the
current sequence s. Stress
points representing the
elastic solution at elements
#1, #2, . . . , #e, . . . , #n; with
P

(k−1)
R denoting the

“maximum stress” among all
the elements
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Fig. 2, locates in the principal stress space a stress point, sayP e(k−1)
# e .PY(k−1)

# e denotes
the corresponding stress point at yield (i.e. lying on the yield surface) measured on the

direction
−→
OP

e
# e

/|−→OP
e
# e|. In the figure are reported other stress points, representing

the average stress elastic solution within the elements #1, #2, . . . , #e, . . . , #n. If the

elastic solution at the #eth element is such that |−→OP
e
# e|(k−1) > |−→OP

Y
# e|(k−1) then the

element’s Young modulus is reduced according to the formula:

E(k)
#e = E(k−1)

#e

[
|−→OP

Y
# e|(k−1)

|−→OP
e
# e|(k−1)

]2

(2)

where the square of the updating ratio, within the square bracket, is used to increase
the convergence rate.

After the above modulus variation, the maximum stress value has to be detected
in the whole FE mesh, namely the value corresponding to the stress point farthest

away from the yield surface, say P
(k−1)
R in the sketch of Fig. 2. If |−→OPR|(k−1)

is

greater than |−→OP
Y
R |(k−1)

(as drawn Fig. 2) a new FE analysis is performed within
the current sequence trying to re-distribute the stresses within the structure; and
this by keeping fixed the applied loads but with the updated E(k)

#e values given by
Eq. (2). The iterations are carried on, inside the given sequence, until all the stress
points just reach or are below their corresponding yield values, which means that an
admissible stress field has been built. Increased values of loads are then considered
in the subsequent sequences of analyses, each one with an increased value of P(s)

D ,

till further load increase does not allow the stress point P(k−1)
R to be brought below
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yield by the re-distribution procedure. A PLB load multiplier can then be evaluated at
last admissible stress field attained for a maximum acting load P(s)

D p̄i, say at s = S,
and at last FE analysis, say at k = K , as:

PLB = |−→OP
Y
R |(K) P (S)

D

|−→OPR|(K)
. (3)

3 Yield-Criteria for RC Structures

As outlined in the introductory section, this study is focused on concrete elements
reinforced with steel bars and externally strengthened with FRP sheets. The main
goal is indeed to apply the limit analysis approach, described in Sect. 2, to the yield
criteria assumed for the constituent materials of the analyzed RC elements, namely:
concrete, FRP laminates and steel. The main constitutive assumptions are given next.

Concrete is assumed as an isotropic nonstandard material obeying a plasticity
model derived from the Menétrey-Willam [17] (M-W) failure criterion; this criterion
is defined by the following expression:

F (ξ, ρ, θ) =
[√

1.5
ρ

f ′
c

]2

+ m

[
ρ√
6f ′

c

r (θ, e) + ξ√
3f ′

c

]

− 1 = 0; (4)

where:

r (θ, e) = 4
(
1 − e2

)
cos2 θ + (2e − 1)2

2
(
1 − e2

)
cos θ + (2e − 1)

[
4

(
1 − e2

)
cos2 θ + 5e2 − 4e

]1/2 ;

m := 3
f

′
c

2 − f
′
t

2

f ′
c f

′
t

e

e + 1
. (5)

Equation (4) is given in terms of three stress invariants ξ, ρ, θ known as the Haigh
Westergaard (H-W) coordinates; m is the friction parameter of the material depend-
ing, as shown in Eq. (5), on the compressive strength f

′
c , the tensile strength f

′
t as well

as on the eccentricity parameter e, whose value governs the convexity and smooth-
ness of the elliptic function r (θ, e). The eccentricity e describes the out-of-roundness
of M-W deviatoric trace and it strongly influences the biaxial compressive strength
of concrete. To limit the concrete strength in high hydrostatic compression regime,
a cap, closing in compression the surface defined by Eq. (4), is adopted. This cap,
formulated in the H-W coordinates, can be given the shape:

ρCAP (ξ, θ) = −ρMW (ξa, θ)

(ξa − ξb)
2

[
ξ2 − 2ξa (ξ − ξb) − ξ2

b

]
, with { ξb ≤ ξ ≤ ξa

0 ≤ θ ≤ π
3

; (6)
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where ρMW (ξ, θ) is the explicit form of the parabolic meridian of the M-W surface
that, looking at Eq. (7), can be given by:

ρMW (ξ, θ) = 1

2a

{
−b (θ) +

[
b2 (θ) − 4a c (ξ)

]1/2
}

, with { ξa ≤ ξ ≤ ξv

0 ≤ θ ≤ π
3

; (7)

and where:

a = 1.5
(
f ′
c

)2 ; b (θ) = m√
6f ′

c

r (θ, e) ; c (ξ) = m√
3f ′

c

ξ − 1. (8)

The values ξa, ξb and ξv entering Eqs. (6) and (7) locate the cap position and can
be detected experimentally.

It is worth noting that the Menétrey-Willam surface equipped with a cap in com-
pression is strictly convex and smooth, except for the vertices on the hydrostatic axis,
and it is hereafter assumed as yield criterion for concrete. A realistic representation
of concrete requires to take into account the dilatancy so a non-associated flow rule
is also postulated.

The FRP laminate, the strengthening sheets are made with, are assumed as a
composite, orthotropic, nonstandard material obeying a plasticity model derived from
the Tsai-Wu failure criterion [29]. By denoting with 1 and 2 the principal directions
of orthotropy in plane stress case as well as indicating, as usual in this context,
σ6 ≡ τ12, the adopted Tsai-Wu-type yield surface is given by:

F(σ1, σ2, σ6) = F11 σ 2
1 + F22 σ 2

2 + F66 σ 2
6 + 2 F12 σ1σ2

+ F1 σ1 + F2 σ2 − 1 = 0, (9)

where:

F1 := 1

Xt
+ 1

Xc
; F2 := 1

Yt
+ 1

Yc
; F11 := − 1

Xt Xc
;

F22 := − 1

Yt Yc
; F66 := 1

S2 ; F12 := −1

2

√
F11F22; (10)

with: Xt , Xc the longitudinal tensile and compressive strengths respectively; Yt , Yc

the transverse tensile and compressive strengths respectively and S the longitudinal
shear strength. In Eq. (10) the compressive strengths Xc and Yc have to be considered
intrinsically negative. Equation (9) represents in the space σ1, σ2, σ6 an ellipsoid
whose major axis lies on the σ6 = 0 plane and it is rotated by an anticlockwise angle
of 45◦ with respect to the σ1 axis. This surface is hereafter assumed as yield criterion
for the FRP composite reinforcement. Also in this case a non-associated flow rule is
postulated.

Finally, steel follows the von Mises yield criterion which is one of the most popular
criteria applied to describe the behaviour of perfectly plastic ductile materials. For
a generic, multi-axial, loading condition and considering that ρ2 = 2J2 (with J2
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second stress deviatoric invariant) the von Mises yield surface, being σy the yield
strength, is expressed in the form:

F(ρ) = 3

2
ρ2 − σ 2

y = 0, (11)

that, in the case of uniaxial stress condition, like the one recorded in the reinforcement
bars, simply reduces to σ1 = σy, being σ1 the first principal stress, measured along
the bar longitudinal direction. As known, in the principal stress space the von Mises
yield surface of Eq. (11) is represented by a cylinder, indefinite along the hydrostatic
axis, circumstance that does not satisfy the required condition of strict convexity.
However the limit analysis procedure will be pursued on the deviatoric plane where

the von Mises criterion is a circle of radius ρy =
√

2
3σy.

4 Three-Yield-Criteria LMM

The LMM procedure presented in Sect. 2.1, with reference to a generic strictly con-
vex yield surface, can be now easily specified for concrete, FRP and steel. To this
aim, taking into account the assumed yield criteria, it will be sufficient to spec-
ify the apposite expressions of the complementary energy equipotential surface
W (k−1)(σ

� (k−1)
j , D(k−1)

I , σ̄
(k−1)
j ) = W̄ (k−1) that has to be consistent with the yield

criterion in use. Looking at concrete, governed by the M-W-type yield surface by
Eqs. (4)–(8), the pertinent complementary energy equipotential surface, in the Haigh-
Westergaard coordinates, depends on the bulk modulus K , on the shear modulus G as
well as on initial stresses, ξ̄ and ρ̄. With reference to the rationale of Sect. 2.1, then,
referring to Fig. 1, the elastic moduli DI identify with G and K , while σ̄j correspond to
ξ̄ and ρ̄. At the current iteration (k −1) of the LMM procedure and at the current GP
within the mesh, the right complementary energy functional can be given the shape:

W (k−1) (ξ, ρ) =
(
ξ − ξ̄ (k−1)

)2

6K(k−1)
+

(
ρ − ρ̄ (k−1)

)2

4G(k−1)
. (12)

Equation (12), written as W (k−1) = W̄ (k−1) represents, in the principal stress
space, a prolate spheroid having semi axes proportional to the elastic parameters
(G (k−1), K (k−1)) and coordinates of the center depending on the initial stresses
(ξ̄ (k−1), ρ̄ (k−1)).

The LMM acts updating the elastic moduli and the initial stresses of Eq. (12)
in such a way that the spheroid is modified in shape and position till matching is
realized on the M-W-type surface at the stress point of given outward normal. In
this context the normal components are the volumetric and deviatoric strain rates of
the fictitious linear solution, namely: ε̇

� (k−1)
v ≡ ε̇

c (k−1)
v and ε̇

� (k−1)
d ≡ ε̇

c (k−1)
d . The

above matching point P(k−1)
M (ξY (k−1), ρY (k−1)) gives, with its H-W coordinates, the
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associated stresses at yield. A nonlinear system of 5 equations provides the searched
matching point. The quite complex geometrical problem associated to the LMM
applied to M-W-type yield surface has been deeply discussed in a recent paper by
the authors [20].

For the FRP strengthening sheets, at a current iteration (k −1) and at a current GP,
the complementary energy functional consistent with the T-W-type yield criterion,
given by Eqs. (9) and (10), can instead be written as:

W
(
σj, E(k−1)

j , ν
(k−1)
12 , σ̄

(k−1)
j

)

= 1

2

[
σ 2

1

E(k−1)
1

+ σ 2
2

E(k−1)
2

+ σ 2
6

E(k−1)
6

− 2 ν
(k−1)
12

σ1 σ2

E(k−1)
2

− 2

(
σ̄

(k−1)
1

E(k−1)
1

− ν
(k−1)
12

σ̄
(k−1)
2

E(k−1)
2

)
σ1 − 2

(
σ̄

(k−1)
2

E(k−1)
2

− ν
(k−1)
12

σ̄1
(k−1)

E(k−1)
2

)
σ2

−2
σ̄

(k−1)
6

E(k−1)
6

σ6 + σ̄
(k−1)2

1

E(k−1)
1

+ σ̄
(k−1)2

2

E(k−1)
2

+ σ̄
(k−1)2

6

E(k−1)
6

− 2 ν
(k−1)
12

σ̄
(k−1)
1 σ̄

(k−1)
2

E(k−1)
2

]

,

(13)

where E6 is the shear modulus G12. The surface obtainable by Eq. (13) represents
in the stress space (σ1, σ2, σ6) an ellipsoid whose semi axes amplitude depend on
the elastic moduli, while its center position depends on the initial stresses. Referring
again to the sketch of Fig. 1, that can be easily redrawn with reference to the stress
components σ1, σ2, σ6, the elastic parameter DI identify with E1, E2, E6, ν12, while
σ̄j corresponds to σ̄1, σ̄2, σ̄6. The ellipsoid W (k−1) = W̄ (k−1) is in all similar to the
Tsai-Wu-type yield surface and this simplifies the matching procedure. By appropri-
ately choosing the initial values of the elastic parameters and initial stresses of the
fictitious material, the complementary energy surface may indeed result homothetic
to the T-W-type surface and the matching procedure can be realized just by a rescal-
ing of the complementary energy surface. To this aim it is sufficient to rescale by
only one scalar coefficient the elastic parameters Ej, which govern the amplitude of
the axes of W (k−1) = W̄ (k−1), through the updating formula:

E(k)
j = E(k−1)

j (Λ(k−1))2, (j = 1, 2, 6) (14)

being the scalar coefficient Λ(k−1) the homothetic ratio between the two ellipsoids,
[18, 19]. In this case homothety implies that W = W̄ , at matching, simply coincides
with the yield surface. The points P(k−1)

L and P
(k−1)
M not only have the same normal

of components ε̇
c (k−1)
j , with j = 1, 2, 6, (as required by matching) but they belong,

since the beginning, to the same straight line passing through the stress space origin.
Eventually, at matching, the coordinates of P(k−1)

M , namely σ
Y (k−1)
j with j = 1, 2, 6

give the pertinent stresses at yield.
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The application of the LMM results even more simple with reference to the von
Mises yield criterion. Nevertheless, the sketch of Fig. 1 becomes meaningless, the
von Mises yield surface being in the principal stress space a cylinder indefinite along
its axis coincident with the hydrostatic axis. The procedure can indeed be carried on
with reference to the deviatoric plane where the essential requisite of strict convexity
is recovered, the von Mises surface being a circle. Looking at the geometrical sketch
of Fig. 3a, under the hypothesis of incompressible fictitious material the pertinent
complementary energy potential functional consistent with a von Mises material, at
a current iteration (k − 1), can be written as:

W(ρ, E(k−1)) = 3ρ2

4E(k−1)
(15)

which, if written in the shape W (k−1) = W̄ (k−1), represents a circle concentric to the
von Mises one. With reference to Fig. 3a, the linear fictitious solution at a current
iteration, (k − 1), and at the current GP can be represented by the deviatoric stress

Fig. 3 Geometrical sketch
of the limit analysis
procedure in the deviatoric
plane for steel bars: a
matching procedure from
iteration (k − 1) to (k)

performed at current GP of
current bar elements; b stress
points measured within the
steel bar elements
#1, #2, #3, . . . , #e, . . . , #n to
apply ECM, ρ

(k−1)
R denoting

the “maximum stress”
among the bar elements

θ

1
'σ

O

( ) ( ) ( ) ( 1),ρ = −⎡ ⎤⎣ ⎦
k k k kW E W

yρ ( 1) ( 1)k k
L ρ− −≡( 1)−k

M

( -1)k
d

(a)

(b)

ε

( -1) ( -1) ( -1) ( -1),ρ =⎡ ⎤⎣ ⎦
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invariant, point Q(k−1)
L (|OQ

(k−1)
L | ≡ ρ(k−1)), having outward normal the deviatoric

strain rate ε̇d
(k−1).

To find the corresponding matching point Q(k−1)
M it is sufficient to move along the

radius
−−→
OQL

(k−1) that is to re-scale the complementary energy surface by modifying
the Young modulus E(k−1) with the updating formula:

E(k) = E(k−1) ρy

ρ(k−1)
(16)

that brings W (k−1) = W̄ (k−1) to coincide with the von Mises deviatoric circle of
radius ρy. In the case of uniaxial stress condition, as the one detected in the steel
bars, Eq. (16) is further simplified, i.e.:

E(k) = E(k−1) σy

σ
(k−1)
1

. (17)

The key idea of the present approach is now achievable: the LMM is applied
simultaneously to all the FEs of the discrete model of the RC structure, i.e. to each
GP of each element. The proper yield condition and matching procedure will be used
at the GPs of the FEs describing concrete, FRP sheets and steel bars.

When, at current iteration and for each GP of the FE mesh the stresses at yield,
the corresponding strain rates at collapse, together with the associated displacement
rates at collapse, are known, it is possible to compute an upper bound multiplier, say
P(k)

UB, by applying Eq. (1) that particularizes as follows:

P(k)
UB =

∫
V (ξY (k−1) ε̇

c (k−1)
v + ρY (k−1) ε̇

c (k−1)
d + σ

Y (k−1)
j ε̇

c (k−1)
j + ρy ε̇

c (k−1)
d )dV

∫
∂Vt

p̄i u̇c (k−1)
i d (∂V)

.

(18)

As said, the iterative procedure is carried on until the difference between two
subsequent PUB values is less than a fixed tolerance.

5 Three-Yield-Criteria ECM

Following the same rationale of the previous section, the ECM, presented in its
general formulation in Sect. 2.2, is also applied to the whole structure. The admissible
stress field for a given maximum applicable load has to be detected with respect to
each of constituent materials yield surface.

With reference to concrete and FRP sheets, the point P e(k−1)
# e of Fig. 2 has to

be simply interpreted with the pertinent coordinates, namely: (ξ
e(k−1)

# e , ρ
e(k−1)
# e ,

θ
e(k−1)

# e ) in the Haigh-Westergaard coordinates when dealing with M-W-type yield
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surface or (σ
e(k−1)

# e1
, σ

e(k−1)
# e2

, σ
e(k−1)

# e6
) when working on FRP sheets within the (σ1,

σ2, σ6) stress space. PY(k−1)
# e denotes the corresponding stress point on the yield

surface, measured on the direction
−→
OP

e
# e

/|−→OP
e
# e| and the reduction formula given

by Eq. (2) holds true and it has to be applied if the elastic solution at the #eth element

is such that |−→OP
e
# e|(k−1) > |−→OP

Y
# e|(k−1).

In particular, assuming that the concrete Poisson ratio v remains constant, the
updating of the Young modulus by Eq. (2) is equivalent to modify the bulk modulus
K(k−1)

#e and shear modulus G(k−1)
#e by the same reducing factor. When dealing with

FRP reinforcement the reduction is applied instead to the three element’s Young
moduli of #e, namely to E(k)

# ej
, j = 1, 2, 6.

With reference to steel, at the current iteration (k −1), the deviatoric stress invari-
ant ρ

(k−1)
#e evaluated within the steel bar elements #1, #2, . . . , #e, . . . , #n, can be

represented as in Fig. 3b. As said, in the elements where ρ
(k−1)
#e is greater than ρy the

elastic modulus must be modified (reduced). This goal can be achieved by varying
the elastic modulus as in Eq. (16). It is worth to remark that the “modulus variation”
realized by Eq. (16) possesses, in this case, a completely different meaning. When it
is applied within the LMM, the above variation (reduction or increse), is driven by a
fixed strain rate and, as said, it is oriented to build a collapse mechanism. On the other
hand when such modulus variation is applied within the ECM it is always a reduction
necessary to bring a not admissible stress onto the yield surface so realizing a stress
redistribution oriented to build an admissible stress field. It has also to be noted that
the LMM acts on all the GPs of the FE mesh. All the GPs are viewed as possible sites
where a mechanism might arise. The confinement of the plasticized zone is obtained
only at convergence. On the contrary, the ECM acts only on the elements charac-
terized by stress quantities greater than the yielding ones in the attempt to mimic a
stress redistribution within the structure. Also in this case, it has been numerically
experienced that the convergence rate increases if the square of the updating ratio,
ρy/ρ

(k−1)
#e , is used so the updating formula becomes:

E(k)
#e = E(k−1)

#e

[
ρy

ρ
(k−1)
# e

]2

. (19)

Within the current sequence, after the described moduli redistribution on concrete,
FRP laminates and steel bars, the three maximum stress values have to be detected
in the whole FE mesh. Precisely, the three stress points farthest away from the yield
surfaces considered, say P

(k−1)
R for concrete or FRP and ρ

(k−1)
R for steel bars.

Referring again to Figs. 2 and 3b if |−→OPR|(k−1)
is greater than |−→OP

Y
R |(k−1)

or ρ
(k−1)
R

is greater than ρy a new FE analysis is performed within the current sequence keeping

fixed the applied load but with the updated E(k)
#e given by Eqs. (2) and (19). The

iterations are carried on, inside the given sequence, until all the stress points just reach
or are below their corresponding yield values, which means that an admissible stress
field has been built. Increased values of loads are then considered in the subsequent
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sequences, each one with an increased value of P(s)
D , till further load increase does

not allow the maximum stresses to be brought below yield by redistribution. A PLB

load multiplier can then be evaluated at last admissible stress field attained for a
maximum acting load P(s)

D p̄i, say at s = S, and at last FE analysis, say at k = K , as
the minimum between the three values:

PLB = min

⎧
⎨

⎩

⎡

⎣|−→OP
Y
R |(K) P (S)

D

|−→OPR|(K)

⎤

⎦

CONCR

;
⎡

⎣|−→OP
Y
R |(K) P (S)

D

|−→OPR|(K)

⎤

⎦

FRP

; ρy
P (S)

D

ρ
(K)
R

⎫
⎬

⎭
.

(20)

6 Applications

The main goal of the following applications is to verify the reliability of the
expounded three-yield-criteria limit analysis numerical procedure in predicting the
limit state (peak load and failure mechanism) of structural RC elements strength-
ened by FRP sheets. Experimental findings on large scale specimens, taken from the
relevant literature, have been numerically reproduced and the obtained results have
been compared with those given by the laboratory tests.

In all the numerical analyses a perfect bonding between steel bars and concrete
as well as between FRP sheets and concrete has been assumed. Reference is made
to the experimental works of Almusallam and Al-Salloum [1] who tested, up to
failure, steel reinforced concrete beams strengthened with Glass FRP (GFRP) sheets.
Indeed, the above quoted paper faces a number of experimental tests, carried out to
investigate the effects of the GFRP strengthening on the flexural capacity and central
deflection of the beams, so that the experimental campaign considers beams with and
without GFRP reinforcements. Only some of the available experimental results are
then taken into consideration, namely those in which the sheets of GFRP are present.
In particular, using the same label of Almusallam and Al-Salloum [1], the analyzed
beams are: GB2, GB4 and GB6.

The beams are simply supported and subjected to four-point bending test through
two line loads Pp̄/2 placed at the same distance with respect to the mid-span. For
all the considered specimens, P denotes the load multiplier, while p̄ denotes the
line reference load whose resultant is assumed equal to 100 kN. Figure 4a shows the
mechanical scheme used for beams together with all the geometrical details. Only half
specimen is modeled due to symmetry with respect to the longitudinal direction. The
beams are reinforced with different arrangement of internal steel bars and stirrups,
and strengthened with different arrangement of GFRP sheets as reported in Fig. 4b.
Furthermore, the relevant material properties for concrete and GFRP reinforcement
are given in Tables 1 and 2 respectively, while, for what concerns steel a Young
modulus of 200 GPa and a yield strength σy of 537 MPa have been assumed for all
specimens.
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Fig. 4 Mechanical model of the analyzed simply-supported beams GB2, GB4, GB6: a geometry,
loading and boundary conditions; b cross section geometry with reinforcement arrangement (after
Almusallam and Al-Salloum [1]); all the dimensions are in mm

Table 1 Mechanical
parameters of concrete for the
analyzed beams

Specimen label Concrete properties

f ′
c (MPa) f ′

t (MPa) Ec (GPa)

GB2 36.00 1.98 32.31

GB4 36.60 2.00 32.47

GB6 33.80 1.92 31.70



Limit Analysis on RC-Structures by a Multi-yield-criteria Numerical Approach 215

Table 2 Mechanical parameters of FRP laminae of the strengthening sheets

FRP lamina moduli FRP lamina strengths

E1 (GPa) E2 (GPa) G12 (GPa) v12 Xt (MPa) Xc (MPa) Yt (MPa) Yc (MPa) S (MPa)

30.0 30.0 3.80 0.28 600 600 600 600 89

It has to be noted that in Table 1 the uniaxial tensile strength value has been

computed as f
′
t = 0.33

√
f ′
c as suggested by Bresler and Scordelis [4], and the elastic

concrete modulus has been assumed Ec = 22(f
′
c/10)

0.3
according to Eurocode 2.

Moreover, for what concerns the choices related to the adopted concrete constitutive
model, the value of the eccentricity parameter e of the M-W-type yield surface has

been evaluated by the expression e =
[
2 + f

′
t /f

′
c

] / [
4 − f

′
t /f

′
c

]
, the f

′
t /f

′
c being

assumed as a measure of the material brittleness. Finally, the value of ξv can be
expressed as ξv = √

3f
′
c

/
m, while ξa and ξb have been set equal to ξa = 0.7923 f

′
c

and ξb = 1.8964 f
′
c as suggested by Li and Crouch [13].

Concerning the numerical model, it is worth noting that in both LMM and ECM
the elastic analyses can be carried out by any commercial FE code. In the following
applications the ADINA code has been used while a Fortran main program has been
used to drive the FE analyses within the sequences. The elastic analyses performed
within the LMM and ECM have been carried out using FE meshes of 3D-solid
8-nodes elements with 2 × 2 × 2 GPs per element for modeling concrete, 2-D-
solid plane stress 4-nodes elements for modeling GFRP laminates and 2-nodes,
1-GP, truss elements for modeling steel bars and stirrups. To set up the FE model of
each analyzed specimen a preliminary mesh sensitivity study, to assure an accurate
FE elastic solution, has been performed. More precisely, the number of 3D-solid
elements is 504, that of truss elements is 246, while the number of 2D-solid elements
ranges from 80 to 160.

The obtained numerical results are reported in Table 3 in which, for the three
analyzed specimens, are given: the peak load multiplier experimentally detected
PEXP; the predictions in terms of upper and lower bound values, PUB and PLB,
and the relative errors (in %), Err(PUB) and Err(PLB), computed as the difference

Table 3 Peak load multipliers for the analyzed RC beams: values experimentally detected, PEXP;
values of the upper and lower bounds, PUB and PLB; relative errors, Err(PUB) and Err(PLB)

Specimen label Peak load multipliers Relative error %

PEXP PUB PLB Err(PUB) Err(PLB)

GB2 0.562 0.596 0.498 6.05 −11.39

GB4 0.587 0.649 0.550 10.56 −6.30

GB6 0.635 0.671 0.580 5.67 −8.66
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Fig. 5 Comparison between numerical and experimental peak load multipliers for the analyzed
beams

between the numerical detected values and the experimental ones over the experi-
mental one.

With the adopted definition of the relative errors, the upper bound values are
expected to have a positive relative error, while the lower bound values are expected
to have a negative relative error. The inspection of the numerical findings highlights
the very good prediction obtained with the proposed three-yield-criteria limit analy-
sis approach. In order to have a more immediate perception of the quality of the
numerical predictions, the data of Table 3 are drawn in Fig. 5 as histograms. Other
quite encouraging results have been obtained on FRP strengthened RC beams and
slabs (see e.g. [7]), but are not reported here for lack of space.

The LMM gives also some hints on the type of failure mechanisms. Such a pre-
diction in fact is given by the possibility to point out the plastic zone (portions of
the FE-mesh where the collapse mechanism has been eventually located) at “last
converged solution” of the LMM. Just to show one of the analysed cases, the plots
of the principal (compressive) strain rates ε̇c

3 within RC concrete elements and of
the principal strain rates ε̇c

1 within GFRP elements have been considered for beam
GB4, at convergence. Plots are shown in Fig. 6a, b. By inspection of Fig. 6 it is pos-
sible to observe a plasticized zone, corresponding to a plastic hinge spread at beam
center. This zone appears reasonably narrow and located where the damaged zones
have been actually experimentally detected, as confirmed by the photograph given
in Fig. 6c concerning beam GB4 at failure. It is worth to mention that the band plots
of Fig. 6a, b provides only qualitative information of the failure mechanisms, but
they can be anyway useful to localize critical zones or weaker members within larger
structural systems.
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x

(a)

(b)

(c)

y

Fig. 6 Prediction of the failure mechanism for the beam GB4. Band plots of principal strain rates, in
the deformed configuration, at last converged solution of the LMM. a RC elements; b FRP laminate
elements; c photograph at midspan of beam GB6 at failure (after Almusallam and Al-Salloum [1])

7 Concluding Remarks

A multi-yield-criteria limit analysis numerical procedure for the prediction of peak
loads and failure modes of steel-reinforced concrete elements strengthened with
FRP laminates has been proposed. The behavior at ultimate state of the constituents,
namely: concrete, FRP sheets and steel bars has been taken into account by a numer-
ical procedure that involves, in concomitance, a Menétrey Willam-type yield crite-
rion with cap in compression for concrete, a Tsai Wu-type yield criterion for the FRP
strengthening reinforcement and the von Mises yield criterion for steel bars. The lack
of associativity, postulated for concrete, to deal with its dilatancy, and for the FRP
sheets, due to their compositive nature, has led to search for an upper and a lower
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bound to the peak load multiplier of the whole RC structural element. The former has
been pursued by the LMM, the latter by the ECM. Both methods have been applied
simultaneously to the three finite element types adopted to model concrete, FRP and
steel; each type obeying the proper yield criterion. Large scale prototypes of a few
FRP-strengthened RC beams, experimentally tested up to failure, have been numer-
ically analyzed. The reliability and effectiveness of the proposed methodology has
then been proved by comparison between experimental and numerical results show-
ing also the capability of predicting, even if qualitatively, the failure mechanism type
of the analyzed element.
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Shakedown Analysis Within the Framework
of Strain Gradient Plasticity

Castrenze Polizzotto

Abstract A class of rate-independent material models is addressed within the
framework of isotropic strain gradient plasticity. These models exhibit a size depen-
dence through the strengthening effects (Hall–Petch effects), whereby the yield stress
is related to the effective plastic strain by a suitable second-order partial differen-
tial equation with related boundary conditions. For a perfectly plastic material with
strengthening effects, the classical concepts of plastic and shakedown limit analysis
do hold, which lead to size dependent plastic and shakedown limit loads according to
the dictum: smaller is stronger. In the perspective of a development of direct methods
for applications to small-scale structures within micro/nano technologies, a shake-
down theory for perfectly plastic materials with strengthening effects, previously
elaborated by the present author [51], is presented and discussed. Apart from the
inevitable mathematical complications carried in by the more complex constitutive
behavior of the material herein considered, the overall conceptual architecture of the
shakedown theorems remain within the classicalMelan and Koiter theoretical frame-
work. Further research efforts are needed to develop specific numerical procedures
for the computation of the plastic and shakedown limit loads and the concomitant
collapse mechanisms.

1 Introduction

Experimental observations show that, at micro/nano scales, crystalline materials
exhibit a size dependent behavior whereby the yield stress, or strength, increases
with the decreasing of grain size (the so-called Hall–Petch effects, or “strengthen-
ing”), see e.g. [10, 13, 25, 26, 60]. For an overview of the rich literature on this
subject, see [1, 2, 18, 19, 21, 24, 27].
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Fredriksson and Gudmundson [15] and, independently, Gurtin and Anand [19]
employed similar power-law visco-plasticmodels in the purpose to describe strength-
ening effects, in such a way that, as the power law exponent tends to zero, a rate-
independent plasticity behavior is approached. This method was improved for one-
dimensional structures [5] and for pluri-dimensional ones obeying simplified con-
stitutive laws [32]. Borg [6] extended the work by Gurtin and Anand [19] to crystal
plasticity; AbuAl-Rub [1] addressed the influence of a boundary layer upon strength-
ening effects.

Within the framework of isotropic gradient plasticity, a different approach was
employedbyPolizzotto [50] to describe the strengthening effects.Namely, a strength-
ening potential was introduced, say ψst(κ,∇κ), which is a degree-one positively
homogeneous function of the effective plastic strain, κ , and of its gradient, such that
the related thermodynamic forces (a scalar and a vector, called “primitive strengths”)
prove to be functions of the same type, but of degree zero. Consistent with thermo-
dynamics principles, the primitive strengths provide the basis to the strengthening
law of the material, in which the strengthening stress Y , measuring the increase (or
decrease) of the yield strength produced by plastic deformation, is related to the
effective plastic strain κ , through a relation having the shape of a second-order PDE
(Partial Differential Equation) with higher order boundary conditions. Y is shown to
depend on the current state of plastic deformation, but not on the past history of it.

Polizzotto [50] addressed the idealized case of a perfectly plastic material exhibit-
ing strengthening effects and showed that the classical plastic limit analysis frame-
work can be extended to such materials. The relevant collapse load problem was
discussed and the solution uniqueness proved. Also, the extended forms of the lower
bound and upper bound theorems were proved, together with the static-type max-
imum principle and kinematic-type minimum principles. With the aid of a simple
numerical example, the collapse load was shown to increase with the decreasing
of the structure’s size. The resulting nonstandard plastic limit analysis proves to be
mathematically more complex than the classical one, but suitable FEM-based pro-
cedures can lead to the evaluation of the relevant safety factor for micro/nano scale
structures. Promising examples of evaluations of this kind were given in [5].

An extension of the above nonstandard plastic limit analysis, already achieved
by [51], consists in a nonstandard shakedown theory for the considered class of
strengthening materials. The interest in such a shakedown theory lies upon the need
for suitable safety evaluation methods, or criteria, to be applied to micro/nano scale
structures. This shakedown theory is reproposed in the present paper for informative
purposes.

The proposed shakedown theory proves to be quite different from another one
previously given by the author [47]. The latter theory comprises as particular cases a
number of known gradient plasticity models of the literature, in which the gradient of
plastic strain, or of anothermeasure of plastic deformation, is explicitly involved, like
in the gradient plasticity theories [1–3, 5, 14, 15, 18, 19, 45]. However, the proposed
theory is able to describe the so-called energetic size effects, but not the strengthening
effects. It was found, in fact, that the shakedown limit load is independent of the
particular (gradient-type) hardening law of the material, hence it is size-independent.
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On the contrary, in the present case of perfectly plastic material with strengthening
effects, the plastic and shakedown limit loads are size dependent and exhibit a sort
of Hall–Petch effects under the action of cyclic, or repeated, loads.

The outline of the paper is as follows. In Sect. 2 the constitutivemodel is described
with emphasis on the strengthening potential and its main features. Suitable thermo-
dynamic considerations are employed to derive the state equations and the plasticity
evolution laws. The nature of the shakedown problem is addressed in Sect. 3, where
some basic definitions of shakedown theory are recalled together with the relevant
literature. Section4 is devoted to the proof of the static shakedown theorem, Sect. 5
is analogously devoted to the proof of the kinematic theorem. Section6 addresses the
extension to strengthening materials of the lower bound and upper bound theorems;
also, the complete set of equations governing the shakedown limit load problem in
the presence of strengthening effects is established and discussed in some details.
An application is reported in Sect. 7, where the shakedown analysis of a micro-scale
two-bar system under cyclic thermal loading is accomplished. It is shown that the
shakedown boundary expands with the decreasing of the sample size.

Notation. A compact notation is used, with boldface letters denoting vectors or
tensors of any order. The scalar product between vectors or tensors is denoted with
as many dots as the number of contracted index pairs. For instance, denoting by
u = {ui }, v = {vi }, ε = {εi j }, σ = {σi j }, τ = {τi jk} and A = {Ai jkh} some vectors
and tensors, one can write: u · v = ui vi , σ : ε = σi jε j i , A : ε = {Ai jkhεkh},
A
...τ = {Ai jkhτ jkh}, AT ...τ = {Ai jkhτk ji }. The summation rule for repeated indices

holds and the subscripts denote components with respect to an orthogonal Cartesian
co-ordinate system, say x = (x1, x2, x3). An upper dot over a symbol denotes its
time derivative, u̇ = ∂u/∂t . The symbol ∇ denotes the spatial gradient operator, i.e.
∇u = {∂i u j }. The symbol e = {ei jk} indicates the alternating third order tensor. The
symbol := means equality by definition. Other symbols will be defined in the text at
their first appearance.

2 The Constitutive Model

The considered material is elastic-plastic and has a nonsimple nature. It exhibits no
hardening, except for a fictitious isotropic one aimed at simulating strengthening
effects (Hall–Petch effects), that is, the increase of the material initial (i.e. of the
material being plastically undeformed) yield stress (or strength). The strengthening
effects represent a form of size dependence of thematerial behavior, which in general
is accompanied by other similar forms of size dependence, like for instance the size
dependent hardening rate, but here we only consider a perfectly plastic material
with strengthening effects for simplicity sake. The constitutive features of the latter
material model were addressed in details by Polizzotto [50, 51]. For self-containment
reasons they are briefly resumed in this section.
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2.1 Thermodynamics Basis

Let the Helmholtz free energy potential of the material be of the form:

ψ = 1

2
εe : E : εe + ψst(κ,∇κ) (1)

where εe = ε − εp is the elastic strain tensor, difference between the total and the
plastic strain tensors; E denotes the fourth-order elasticity moduli tensor with its
usual symmetries; κ , the effective plastic strain; whereas ψst is the strengthening
potential. Isothermal conditions are considered for simplicity.

The potential ψst is a degree-one positively homogeneous function of κ and ∇κ ,
κ being a field C1-continuous in the volume V occupied by the material. It satisfies
the condition ψst → 0 for ∇κ → 0, meaning that no strengthening effects arise in
conditions of uniform plastic strain. The partial derivatives:

Y0 := ∂ψst

∂κ
, Y1 := ∂ψst

∂(∇κ)
, (2)

here referred to as the primitive strengths, prove to be homogeneous functions like
ψst, but of degree zero. As in the case of a the dissipation potential of flow plasticity
[33, 36], the potential ψst subtends the existence of a deformation-theory plasticity-
like law in which the primitive strengths Y0 and Y1 are bounded by a strengthening
surface, sayφ = φ(Y0, Y1) ≤ 0, and are related to the strain quantities κ,∇κ through
the normality rule, that is:

κ = μ
∂φ

∂Y0
, ∇κ = μ

∂φ

∂Y1
(3)

where μ is a consistency coefficient satisfying the Kuhn–Tucker conditions:

φ = φ(Y0, Y1) ≤ 0, μ ≥ 0, μφ(Y0, Y1) = 0. (4)

Primitive strengths below the strengthening limit, i.e. such that φ < 0, pertain to
thematerial being plastically undeformed, hencewithout strengthening effects. Prim-
itive strengths at the strengthening limit (φ = 0) pertain to the material being plas-
tically deformed with plastic strains featured by the vector (κ,∇κ) lying upon the
outward normal to the surfaceφ = 0 at the point (Y0, Y1). In turn, the latter conditions
imply the existence of a degree-one homogeneous functionψst(κ,∇κ) satisfying (2).

In order to derive the thermodynamic restrictions on the constitutive equations for
the material at hand, the so-called “residual-based strain gradient plasticity theory”
is employed [7, 44–46, 48, 49, 52, 53], of which only the essential details are here
given. The starting point is the Clausius–Duhem inequality which, in the present case
of nonsimple material, reads:

D := σ : ε̇ − ψ̇ + P ≥ 0 in V . (5)
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where D denotes the dissipation density; σ , the applied Cauchy stress; and P , the
so-called (nonlocality) energy residual. In Eq. (5), P represents the long distance
interaction energy density, vanishing only in the case of simple material.

The following constitutive assumptions hold:

• The insulation condition, which states that no long distance interactions occur
between the material particles and the exterior ambient, hence (in the assumed
absence of interfaceswith surface energy) the volume integral of P must vanish, i.e.

∫

V

P dv = 0. (6)

• The bilinear dissipation condition, consequence of the Onsager reciprocity prin-
ciple assumed to hold also in the present context. It states that D exhibits a bilinear
form in terms of independent plastic strain rates and related thermodynamic forces,
that is (in the present case in which the nonlocality is confined to the strengthening
behavior),

D := σ : ε̇p − Y κ̇ in V (7)

where Y is a scalar-valued force working through κ̇ .

• The locality recovery condition, which aims to guarantee that the material behaves
as a simple one in the case of uniform plastic strain and requires that the residual
P vanishes correspondingly.

On expanding the time derivative of ψ and with some mathematics, from (5) we
can obtain the equality:

D = (σ − E : εe) : ε̇e + σ : ε̇p

− (Y0 − ∇ · Y1) κ̇ − ∇ · (Y1κ̇) + P in V (8)

which, substituting D from (7), with an integration over V and taking into account
(6), gives

∫

V

(σ − E : εe) : ε̇edv +
∫

V

(Y − Y0 + ∇ · Y1)κ̇ dv −
∫

S

n · Y1κ̇ = 0. (9)

Since the latter holds for whatever deformation mechanism and evolution law, the
following relations are obtained as necessary and sufficient conditions, i.e.

σ = E : εe in V (10)

Y = Y0 − ∇ · Y1 in V

κ̇ = 0 on S(1)
c , n · Y1 = 0 on S(1)

f

}

(11)
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where Y0 and Y1 denote the primitive strengths in (2), whereas the residual is
determined as

P = ∇ · (Y1κ̇) in V . (12)

Let us note that relations (10)–(12) make the dissipation D of (7) coincide with the
one of (5).

Equation (10) is obviously the elasticity law and requires no comments. In (11)1,
Y represents the strengthening stress, i.e. the increase (or decrease) of the initial
material strength, such that the plastically deformed material is characterized by an
actual initial strength expressed as σy = σ0 + Y with Y depending on the primitive
strengths. Equation (11)1 represents a Y − κ relation in the form of a second order
PDEwhich is accompanied by the higher order boundary conditions in (11)2, (which
hold both in rate, as well as in time-finite form). The symbols S(1)

c and S(1)
f denote

complementary parts of the boundary surface S := ∂V . In S(1)
c , the onset of plastic

strain is impeded and dislocations are forced to pile up; in S(1)
f dislocations can

move freely and encounter no resistence. At points of V where φ < 0 (plastically
undeformed material), the indeterminate primitive strengths have to be set equal
to zero, such that Y = 0 correspondingly. Equations (3), (4) and (11) govern the
strengthening law obeyed by the material undergoing a strengthening process. The
material strengthening depends on the current state of plastic deformation, not on its
past history.

Equation (7) provides the (nonnegative) intrinsic dissipation power density, dif-
ference between the plastic power density, σ : ε̇p, and the dissipation power density
pertaining to the strengthening process, Y κ̇ . The latter term appears here as a sub-
tractive one because the strengthening effects are in the present model accounted for
as fictitious (isotropic) hardening effects accompanied by the (irreversibly) stored
energy Y κ̇ .

Equation (12) expresses the energy residual P as the divergence of the vectorY1κ̇ .
It satisfies the insulation condition, i.e.

∫

V

Pdv =
∫

S

n · Y1κ̇da = 0, (13)

as a consequence of the higher order boundary conditions (11)2.
Since for ∇κ ≡ 0, hence κ uniform in V , it is Y1 ≡ 0 by (2)2, and thus P ≡ 0 by

(12),we can conclude that the locality recovery condition is satisfied correspondingly.

2.2 A Choice for the Strengthening Potential

Among many possible choices for ψst, for later use, let us choose a simple one in
the form

ψst = σ0 (p − κ), p :=
√

κ2 + 	2‖∇κ‖2 (14)
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where σ0 denotes the initial strength and 	 is an internal length scale parameter. For
	 → 0 (simplematerial) it isψst = 0 identically, which implies that no strengthening
effects arise in a simple material for whatever plastic deformation. For 	 �= 0, but
‖∇κ‖ = 0, again we have ψst = 0, which means that in a nonsimple material under
uniform strain no strengthening effects are allowed to occur.

The partial derivatives (2) take on the form

Y0 = σ0

(
κ

p
− 1

)
, Y1 = 	2σ0

∇κ

p
(15)

which, like (2), hold as long as plastic deformation is not trivially vanishing; otherwise
Y0 and Y1 are indeterminate, but below the strengthening limit, i.e. φ(Y0, Y1) < 0.
We can obtain the equation φ = 0 through a Legendre–Fenchel transformation [33]
applied to (2), which is here implemented by rewriting (16) in the inverted form

κ = p

σ0
(Y0 + σ0), ∇κ = 1

	2

p

σ0
Y1, (16)

then substituting the latter into the expression of p of (14) and dividing by p (assumed
different from zero), we obtain

φ :=
√

(Y0 + σ0)2 + 1

	2
‖Y1‖2 − σ0 = 0 (17)

which is the desired strengthening surface. Then, by (3), we can write

κ = μ(Y0 + σ0)/σ0, ∇κ = 1
	2

μY1/σ0

μ = p for φ = 0, μ = 0 for φ < 0

}
(18)

Finally, Eq. (11) particularizes as

Y = σ0

[
κ
p − 	2 ∇ ·

(∇κ
p

)
− 1
]

in V

κ̇ = 0 on S(1)
c , 	2∂nκ/p = 0 on S(1)

f

}

(19)

which is the pertinent second-order differential-form Y − κ relation. For 	 = 0
(simple material), obviously it is Y ≡ 0, S(1)

c = ∅ and the higher order boundary
conditions in (19) disappear.

The strengthening surface in (17) can be represented in the planewith co-ordinates
Y0 + σ0, ‖Y1‖. It has the shape of an ellipse centered at point (−σ0, 0) and with
diameters 2σ0 and 2	σ0, Fig. 1. On letting 	 increase from 	 = 0 to 	 → ∞, the
ellipse changes in shape. Namely, whereas the diameter along OA remains fixed, the
diameter along OB increases from zero to ∞.
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Fig. 1 Family of
strengthening ellipses
generated by varying the
internal length parameter 	

2.3 Plasticity Evolution Laws

On the basis of the dissipation expression (7), the plasticity evolution laws of the
material, in the assumed hypothesis of rate-independent associative plasticity, can
be cast, by a standard notation, as follows:

f = f (σ , Y ) := f0(σ ) − Y − σ0 ≤ 0
λ̇ ≥ 0, λ̇ f (σ , Y ) = 0
ε̇p = λ̇ f,σ , κ̇ = −λ̇ f,Y = λ̇

⎫
⎬

⎭
in V (20)

where λ̇ denotes the relevant consistency coefficient. It can be proved that, for what-
ever choice of the relevant variables, but complying with (20), the dissipation D
of (7) proves to be nonnegative and therefore the Clausius–Duhem inequality (5) is
satisfied correspondingly.

The yielding laws (20) obey a maximum dissipation principle, namely

D(ε̇p, κ̇) = max(σ ,Y ) (σ : ε̇p − Y κ̇)

subject to f (σ , Y ) ≤ 0.

}
(21)

The latter problem provides the stress state (σ , Y ) under which a locally specified
plastic strain mechanism (ε̇p, κ̇) is allowed to occur. The optimal objective function
is the dissipation function, D(ε̇p, κ̇), which satisfies the relations:

σ = ∂ D

∂ ε̇p
, Y = −∂ D

∂κ̇
. (22)
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These hold as long as the plastic mechanism is not trivially vanishing; otherwise,
the stresses (σ , Y )—constitutively determined through the state equations (10) and
(11)—prove to be just plastically admissible, i.e. f (σ , Y ) ≤ 0.

A consequence of themaximum dissipation principle is theDruckerian inequality
[33, 36]:

(σ − σ ∗) : ε̇p − (Y − Y ∗)κ̇ ≥ 0 (23)

where the pairs (σ , Y ) and (ε̇p, κ̇) correspond to each other through the evolution
laws (20), whereas the pair (σ ∗, Y ∗) is any plastically admissible stress state, i.e.
f (σ ∗, Y ∗) ≤ 0. Another consequence is the doubled Druckerian inequality, which
reads:

(σ ′ − σ ′′) : (ε̇p
′ − ε̇p

′′
) − (Y ′ − Y ′′)(κ̇ ′ − κ̇ ′′) ≥ 0, (24)

where the two sets of primed and doubly primed quantities are arbitrary, but each
satisfies the evolution equations (21) and (22).

Strong Druckerial inequality. For the purposes of the present paper, the strong
Druckerian inequality is of paramount importance. This is obtained from (23) when
the latter holds only under the more stringent condition f (σ ∗, Y ∗) < 0. A conse-
quence of the latter condition is that inequality (23) holds as an equality if, and only
if, the plastic deformation mechanism is trivially vanishing, i.e. ε̇p = 0, κ̇ = 0.

Note that a maximum dissipation principle holds also for the strengthening laws
(2) to (4), namely

ψst(κ,∇κ) = max(Y0,Y1) (Y0κ + Y1 · ∇κ)

subject to φ(Y0, Y1) ≤ 0

}
(25)

Also note that the latter principle implies a Druckerian inequality as

(Y0 − Y ∗
0 )κ − (Y1 − Y∗

1) · ∇κ ≥ 0 (26)

where the pairs (Y0, Y1) and (κ,∇κ) are related to each other through the strength-
ening laws (3) and (4), and the pair (Y ∗

0 , Y∗
1) does not exceed the strengthening limit,

i.e. φ(Y ∗
0 , Y∗

1) ≤ 0.

3 The Shakedown Problem

Although the shakedown problem iswell understood in the literature (see e.g. [17, 30,
36, 61, 62]), some comments on the nature of this problem are believed to be helpful.

Let a (micro/nano scale) body of volume V and boundary surface S := ∂V obey
the constitutive equations of Sect. 2, namely Eqs. (3), (4), (10) and (11), as well as
the plasticity evolution laws (20). The body is referred, in its undeformed state, to
orthogonal Cartesian co-ordinates, say x = (x1, x2, x3), is clamped at points of
the portion Sc of S, free at point of the complementary part S f = S \ Sc. The
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nonstandard surface partition S = S(1)
c ∪ S(1)

f —not necessarily coincident with the

standard one, i.e. S = Sc ∪ S f —specifies the portion (S(1)
c ) where some idealized

substrate impedes the onset of plastic strains (κ̇ = 0) with consequent dislocations
pileups, and the complementary portion (S(1)

f ) where dislocations can move freely,
no dislocations pileups occur and thus the relevant Peach–Koehler force is vanishing
(n · Y1 = 0). The latter partition of S is typical of micro/nano scale bodies, in which
material inhomogeneities, or defects, here represented by dislocations,may influence
substantially the overall body’s response to the loads.

The body is subjected to body forces specified in V , tractions specified on S f ,
imposed displacements specified on Sc. Thermal-like strains can also be imposed in
V , but for simplicity sake we shall ignore them in the theoretical treatment. All these
loads may act in a quasi-static manner, or even dynamically. We let these actions
be collectively represented by means of the (fictitious) elastic stress response, say
σ E (x, t). This denotes the stress response of the body to a specified load history,
say L(t), t ≥ 0, computed under the assumption of purely elastic material behavior
(σ0 = ∞) and homogeneous initial conditions (at t = 0).

A typical characteristics of the shakedown problem under discussion is that the
load history L(t) can be anyone within a specified set, say Π (load domain). Every
Admissible Load History, (ALH), L(t) ∈ Π , represents a potentially active load
history for the body. On letting L(t) vary in all possible ways in Π , the relevant
elastic stress response path σ E (x, t) at every x ∈ V belongs to a (finite) stress
domain the convex hull of which is denoted Σ(x), whereas in the whole V they
belong to a (finite) stress domain the convex hull of which is Σ , the union of all
Σ(x). We can thus write:

σ E (x, t) ∈ Σ(x) ∈ Σ ∀t ≥ 0, ∀x ∈ V . (27)

The boundary Γ := ∂Σ denotes the elastic stress response envelope; Γ (x) :=
∂Σ(x) is its projection at x. The smallest subset of Γ (x), say ΓB(x), the convex
hull of which coincides with Σ(x), is the basic elastic stress response envelope at x.

With no loss in generality, we assume that the local stress domain Σ(x) has the
shape of a hyperpolyhedron of N ≥ 2 vertices, denoted σ E

i (x), (i = 1, 2, . . . , N ),
and called the basic elastic stresses at x, hence ΓB(x) has a discrete form consisting
in these N stress points, i.e.

ΓB(x) = {σ E
i (x) ∀i ∈ I (N ), x ∈ V } (28)

whereas ΓB is the union of all ΓB(x) in V .
The actual elastic-plastic response of the considered body to a generic ALH can in

principle be computed making use of the set of constitutive equations established in
Sect. 2, together with the equilibrium (or motion) and compatibility equations. By its
own nature, the shakedown problemdoes not need for such (likely cumbersome, step-
by-step) analyses, but rather it requires the application of suitable direct methods able
to ascertain whether some shakedown safety criteria are satisfied by the considered
structure/load system [34, 35].
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Shakedown means that the structure subjected to variable repeated loads, after
some initial period of limited plastic deformations, then responds to the subsequent
loads elastically, without further plastic deformations (and thus, in the present con-
text, without further strengthening effects). The shakedown theorems of the literature
assess the pre-requisites of the structure/load system in order to guarantee that shake-
down certainly occurs eventually during the deformation process. The latter theorems
arewell known for awide class of constitutive laws (perfect plasticity, linear and non-
linear hardening, size dependent hardening, damage, shape memory, poroplasticity
and temperature dependent yield stress), quasi-static and dynamic load conditions,
geometric nonlinearities. It is not the purpose of the present paper to review the
related literature, but it will suffice to quote a few representative papers and books
with their reference lists: [8, 9, 11, 17, 22, 23, 28–31, 34–43, 54, 57–59, 61–63].

Shakedown theory was extended to nonlocal (integral) elasticity by Polizzotto
et al. [55] and to gradient plasticity with size dependent hardening by Polizzotto [47].
Strengthening effectswere addressed, as previouslymentioned, in the paper by Poliz-
zotto [51]. The content of the latter paper is herein summarized for seminal purposes.

4 Melan-Type Static Shakedown Theorem

Let M̄ = {σ̄ r , Ȳ , Ȳ0, Ȳ1} denote a set of load-independent stress-like space variables,
collectively denoted static shakedown parameters, (SSPs). The set M̄ is admissible
if the relevant fields satisfy the following restrictions:

∇ · σ̄ r = 0 in V, n · σ̄ r = 0 on S f

Ȳ = Ȳ0 − ∇ · Ȳ1 in V, n · Ȳ1 = 0 on S(1)
f

φ(Ȳ0, Ȳ1) ≤ 0 in V

⎫
⎬

⎭
(29)

Namely, σ̄ r is required to constitute a residual stress field, whereas Ȳ must be some
strengthening stress field associated to primitive strengths fields Ȳ0 and Ȳ1 nowhere
exceeding the strengthening surface and satisfying the static-type higher order bound-
ary condition.

Let M̄ collect all sets M̄ and M̄A all the admissible ones. With the just intro-
duced notion of SSPs, we intend to prove the static, orMelan-type, theorem of shake-
down theory for strengthening materials, in a unified form for either quasi-static, or
dynamic, loads.

Static shakedown theorem
Anecessary and sufficient condition in order that shakedown occurs in a (micro/nano
scale) structure subjected to (either quasi-static, or dynamic) variable repeated loads,
characterized by a discrete set ΓB of basic elastic stresses, is that there exists a set of
admissible SSPs, say M̄ = {σ̄ r , Ȳ , Ȳ0, Ȳ1} ∈ M̄A, such as to satisfy the following
static shakedown criterion, namely:

f̄i := f (σ E
i + σ̄ r , Ȳ ) ≤ 0 in V, ∀i ∈ I (N ). (30)
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Proof A classical reasoning scheme is followed for this proof. For the necessity part
of the theorem, let us assume that shakedown occurs. Then, plastic deformations
promoted by any ALH, together with the consequent strengthening effects, must
stop at a certain time, say ta . The subsequent response is of purely elastic nature and
has the form σ = σ E (x, t) + σ r

a(x), Y = Ya(x), where the quantities (.)a denote
values at time ta . Obviously, the yield condition is satisfied, i.e.

f (σ E (x, t) + σ r
a(x), Ya(x)) ≤ 0 in V, ∀i ∈ I (N ), ∀t ≥ ta (31)

Since the latter inequality holds for whatever ALH, it is also satisfied within σ E (x, t)
replaced by any stress point in Σ(x) and in particular by anyone of the basic elastic
stresses, σ E

i ,∀i ∈ I (N ). In other words, (31) implies the inequalities:

f (σ E
i + σ r

a, Ya) ≤ 0 in V, ∀i ∈ I (N ). (32)

This coincides with (30), but σ̄ r ≡ σ r
a and Ȳ ≡ Ya .

For the sufficiency part of the theorem, let us proceed in steps.
Step 1. Let us assume that the shakedown criterion (30) is satisfied, but in a more

stringent form as:

f̄i := f (σ E
i + σ̄ r , Ȳ ) ≤ −η in V, ∀i ∈ I (N ) (33)

where η denotes an arbitrary (small) positive scalar. Also, let L(t), t ≥ 0, be any
ALH and let u, σ , . . ., denote the related actual elastic-plastic response. Due to the
convexity of f , inequalities (33) imply that:

f = f (σ E (x, t) + σ̄ r (x), Ȳ (x)) ≤ −η in V, ∀t ≥ 0 (34)

where σ E (x, t) is the elastic stress response to the chosen ALH.
Step 2. With the above in mind, let us introduce the response functionals:

A1(t) :=
∫

V

1

2
ρ(u̇ − u̇E ) · (u̇ − u̇E ) dv

+
∫

V

t∫

0

μd(u̇ − u̇E ) · (u̇ − u̇E )dt dv

+
∫

V

1

2
(σ − σ E − σ̄ r ) : E−1 : (σ − σ E − σ̄ r )dv, (35)

A2(t) :=
∫

V

[
ψst(κ,∇κ) − Ȳ0κ − Ȳ1 · ∇κ

]
dv, (36)
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Both A1(t) and A2(t) depend on the chosen ALH by the related elastic response,
as well as by the actual elastic-plastic response, herein described by the velocity u̇,
the stress σ and the effective plastic strain κ; they also depend on the set M̄ of SSPs,
which we establish to coincide with the one entering the shakedown criterion (30).
In (35) ρ and μd are the mass density and the damping coefficient, which must be
taken equal to zero in the case of quasi-static loads.

Step 3. The functional A(t) := A1(t) + A2(t) is positive definite. Obviously, this
is true for A1(t). As for A2(t), let us note that the strengthening potential ψst, due
to its degree-one homogeneity, can be written as

ψst(κ,∇κ) = Y0κ + Y1 · ∇κ, (37)

where Y0 and Y1 are given by (1). Also, let us note that the integrand of (36) is
nonnegative, since, by (37),

ψst(κ,∇κ) − Ȳ0κ − Ȳ1 · ∇κ

= (Y0 − Ȳ0)κ + (Y1 − Ȳ1) · ∇κ ≥ 0 in V (38)

as a consequence of the SSPs being admissible, i.e. M̄ ∈ M̄A, as well as of the
Druckerian inequality applied to the strengthening surface, Eq. (26).

Step 4. The time derivative of A(t) reads as follows:

Ȧ(t) =
∫

V

[
ρ(ü − üE ) + μd(u̇ − u̇E )

]
· (u̇ − u̇E )dv

+
∫

V

(σ − σ E − σ̄ r ) : E−1 : (σ̇ − σ̇ E )dv

+
∫

V

(Y0 − Ȳ0)κ̇ + (Y1 − Ȳ1) · ∇κ̇dv. (39)

Next, using the principle of the virtual power and the divergence theorem applied to
the last integral and considering the identity

ε̇p = ε̇ − ε̇E − E−1 : (σ̇ − σ̇ E ) (40)

along with the higher order boundary conditions (11)2 and (29)2, Eq. (39) becomes:

Ȧ(t) = −
∫

V

[
(σ − σ E − σ̄ r ) : ε̇p − (Y − Ȳ )κ̇

]
dv. (41)

Step 5. Since the stress pair (σ E +σ̄ r , Ȳ ) satisfies (34), then the strongDruckerian
inequality holds as far as the scalar η is positive, namely
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(σ − σ E − σ̄ r ) : ε̇p − (Y − Ȳ )κ̇ ≥ 0 in V, ∀t ≥ 0. (42)

This implies Ȧ(t) < 0, that is, A(t) decreases at a nonzero rate as far as the plastic
deformation process continues. Because A(t) cannot become negative, it eventually
must stop decreasing. A subsequent (likely finite) time ta must exist, such that Ȧ(t) =
0,∀t ≥ ta , and thus inequality (42) is satisfied as an equality correspondingly. By
the strong Druckerian inequality, such an occurrence implies that no more plastic
deformations, nor strengthening effects, can further be produced. Since this result
holds for whatever ALH, we can conclude that shakedown certainly occurs under
condition (34). The same conclusion can be inferred on letting η → 0, but we
have to admit that at the limit the structure finds itself in a shakedown limit state
exposed to some impending inadaptation collapse mode. The proof of the theorem
is complete. �

In the absence of a strengthening potential, that is, ifψst = 0, the above shakedown
theorem coincides with the classical one for perfect plasticity [29].

As a corollary to the theorem above, we can prove that, under condition (34) not
only shakedown certainly occurs, but the total plastic dissipation produced in the
structure within the relevant deformation process proves to be bounded. This can be
proved in a straightforward manner following the classical Koiter procedure [29].
Namely, let us again consider inequality (35) with some η > 0, but rewritten in the
equivalent form

f (β(σ E + σ̄ r ), βȲ ) ≤ 0 in V, ∀t ≥ 0 (43)

where β > 1 is suitably chosen. Via the well-known Koiter procedure, we easily
arrive at the inequality:

D(ε̇p, κ̇) ≤ β

β − 1

[
(σ − σ E − σ̄ r ) : ε̇p − (Y − Ȳ )κ̇

]
. (44)

Then, with an integration over V × (0, t1) and remembering (41), we can obtain:

t1∫

0

∫

V

D(ε̇p, κ̇)dv dt <
β

β − 1
[A(0) − A(t1)] <

β

β − 1
A(0) (45)

which holds for arbitrary t1, even for t1 → ∞. Assuming zero plastic deformation
at t = 0, the (bounded) scalar A(0) is given by

A(0) =
∫

V

1

2
σ̄ r : E−1 : σ̄ rdv. (46)
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5 Koiter-Type Kinematic Shakedown Theorem

Let M̂ := {ε̂p1, κ̂1, . . . , ε̂pN , κ̂N , ε̂
p
, κ̂, û} denote a set of plastic strain, effective plas-

tic strain and displacement fields in space, which are collectively referred to as kine-
matic shakedown parameters, (KSPs). The pairs (ε̂

p
i , κ̂i ), i ∈ I (N ), are associated

to the basic elastic stress, σ E
i , respectively, but are not a consequence of the corre-

sponding loads. The set M̂ is admissible if the relevant KSPs satisfy the following
restrictions:

ε̂
p = ∇sym û in V, û = 0 on Sc

κ̂i ≥ 0 and C1−continuous in V, κ̂i = 0 on S(1)
c

ε̂
p =

i=N∑

i=1
ε̂
p
i , κ̂ =

i=N∑

i=1
κ̂i in V

⎫
⎪⎪⎬

⎪⎪⎭
(47)

This means that the (fictitious) ratchet strain field ε̂
p is compatible with displace-

ments û vanishing on Sc, and that the effective plastic strains κ̂i are differentiable
and satisfy the kinematic-type higher order boundary condition on S(1)

c . The scalar
κ̂ (total effective plastic strain) is unconstrained.

We let M̂ collect all the KSPs, M̂A all the admissible ones. Every set M̂ of KSPs
describes some kind of impending inadaptation collapse mechanism, or kinemati-
cally admissible plastic strain cycle after Koiter’s language [29]. Equipped with the
above notion of KSPs, we can prove the following theorem.

Kinematic shakedown theorem
A necessary and sufficient condition in order that shakedown certainly occurs in a
(micro/nano scale) structure subjected to (either quasi-static, or dynamic) variable
repeated loads, characterized by a discrete set ΓB of basic elastic stresses, is that the
kinematic shakedown criterion, i.e.

E [M̂] :=
i=N∑

i=1

∫

V

[
D(ε̂

p
i , κ̂i ) − σ E

i : ε̂
p
i

]
dv +

∫

V

ψst(κ̂,∇κ̂)dv ≥ 0, (48)

is satisfied for whatever admissible KSPs, M̂ ∈ M̂A.

Proof For the necessity part of the theorem let us admit that shakedown occurs. Then,
by the static shakedown theorem given for granted, there must exist some admissible
SSPs, say M̄ = {σ̄ r , Ȳ , Ȳ0, Ȳ1}, such that the yield condition f (σ E +σ̄ r , Ȳ ) ≤ 0 and
the strengthening condition φ(Ȳ0, Ȳ1) ≤ 0 are satisfied everywhere in V . Therefore,
by the maximum dissipation principles, (21) and (25), applied to every set M̂ of
KSPs, we can write:

D(ε̂
p
i , κ̂i ) ≥ (σ E

i + σ̄ r ) : ε̂
p
i − Ȳ κ̂i in V, ∀i ∈ I (N )

ψst(κ̂,∇κ̂) ≥ Ȳ0κ̂ + Ȳ1 · ∇κ̂ in V

}

(49)
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Hence, by the aid of the latter inequalities, remembering (47)2 and (48), and by the
divergence theorem, we can write:

E [M̂] ≥
∫

V

(
Ȳ0κ̂ + Ȳ1 · ∇κ̂ − Ȳ κ̂

)
dv

=
∫

V

(
Ȳ0 − ∇ · Ȳ1 − Ȳ

)
κ̂ dv +

∫

S

n · Ȳ1κ̂ da. (50)

Since, by (29)2 and (47)2, the r.h.s. of (50) is vanishing, Eq. (50) can be recognize to
coincide with the kinematic shakedown criterion (48).

As for the sufficiency part of the theorem, let inequality (48) be satisfied, but in a
more stringent form, say

Eβ [M̂] :=
i=N∑

i=1

∫

V

[
D(ε̂

p
i , κ̂i ) − βσ E

i : ε̂
p
i

]
dv

+ β

∫

V

ψst(κ̂,∇κ̂)dv ≥ 0 ∀M̂ ∈ M̂A, (51)

where β > 1 is some scalar coefficient. As the set M̂A can be thought of to include
the trivially vanishingKSPs, for which Eβ = 0, it follows that theminimumproblem:

min
M̂

Eβ [M̂] s.t. M̂ ∈ M̂A (52)

admits a solution (possibly also in correspondence to a nontrivial set of KSPs).
This implies that the relevant Euler–Lagrange equations also admit a solution. The
characteristic structure of the latter equations is thus fundamental to reveal the
physical/mechanical implications of condition (51). We can obtain the mentioned
equations with the Lagrange multiplier method. For this purpose, let the compatibil-
ity constraints in (47) be appended to (51) so obtaining the augmented functional

E ∗
β = Eβ +

∫

V

(βσ̂
r
) :
(

∇sym û −
i=N∑

i=1

ε̂
p
i

)

dv −
∫

Sc

(n · βσ̂
r
) · û da (53)

where βσ̂
r denotes a (symmetric) stress-like Lagrange multiplier. The other con-

straints in (47) are left as side conditions to (53). The first variation of (53), after
some mathematics, can be cast as follows:

δE ∗
β =

i=N∑

i=1

∫

V

δε̂
p
i :
[

∂ D

∂ ε̂
p
i

− β(σ E
i + σ̂

r
)

]

dv + β

∫

S f

n · σ̂
r · δû da
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+
i=N∑

i=1

∫

V

δκ̂i

[
∂ D

∂κ̂i
+ β

(
∂ψst

∂κ̂
− ∇ · ∂ψst

∂(∇κ̂)

)]
dv

+
i=N∑

i=1

∫

S

n · ∂ψst

∂(∇κ̂)
δκ̂i da − β

∫

V

∇ · σ̂
r · δû dv

+ β

∫

V

δσ̂
r :
(

∇sym û −
i=N∑

i=1

ε̂
p

)

dv + β

∫

S f

n · σ̂
r · δû da. (54)

The identically vanishing of δE ∗
β for arbitrary variations gives the desired Euler–

Lagrange equations as in the following:

∇ · σ̂
r = 0 in V, n · σ̂

r = 0 on S f (55)

Ŷ0 := ∂ψst

∂κ̂
, Ŷ1 := ∂ψst

∂(∇κ̂)
in V (56)

Ŷ := Ŷ0 − ∇ · Ŷ1 in V (57)

n · Ŷ1 = 0 on S(1)
f (58)

β(σ E
i + σ̂

r
) = ∂ D

∂ ε̂
p
i

in V, ∀i ∈ I (N ) (59)

βŶ = −∂ D

∂κ̂i
in V, ∀i ∈ I (N ) (60)

besides Eq. (47)2 and (47)3.
Equation (55) states that the Lagrange multiplier σ̂

r proves to be a residual stress
field. Equations (56)–(58) state that the primitive strengths Ŷ0, Ŷ1, obtained as par-
tial derivatives of ψst(κ̂,∇κ̂), provide a strengthening stress Ŷ complying with the
strengthening law, such that the set M̂ = {σ̂ r

, Ŷ , Ŷ0, Ŷ1} is a set of admissible SSPs,
i.e. M̂ ∈ M̄A. Moreover, the stress pairs {β(σ E

i + σ̂
r
), βŶ }, ∀i ∈ I (N ), being each

derived from the dissipation function D, satisfy the yield conditions, i.e.

f (β(σ E
i + σ̂

r
), βŶ ) ≤ 0 in V, ∀i ∈ I (N ) (61)

Since β > 1, the latter inequalities amount to

f (σ E
i + σ̂

r
, Ŷ ) < 0 in V, ∀i ∈ I (N ) (62)

which, by the static shakedown theorem, implies that shakedown certainly occurs.
We can thus conclude that, under assumption of validity of the kinematic shakedown
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criterion (51) with β > 1, shakedown occurs. The same conclusion can be admitted
to occur even at the limit for β → 1, but then the structure finds itself in a shakedown
limit state exposed to some kind of impending inadaptation collapsemode. The proof
of the theorem is complete. �

In the absence of a strengthening potential, that is, ifψst = 0, the above shakedown
theorem coincides—except for the proof technique—with the classical counterpart
one for perfect plasticity [29].

6 Lower Bound and Upper Bound Theorems

The lower bound and upper bound theorems of classical shakedown theory [29]
can be extended to strengthening materials. For this purpose, let the applied load
be amplified by a factor s > 0, such that the related elastic stress response can be
denoted with the symbol sσ E (x, t), hence sσ E

i (x) denote the basic elastic stresses.
We call s the “load multiplier”.

The considered structure/load system is featured by a particular value of s, say
sc, such that shakedown certainly occurs under loads amplified by s < sc, does not
if s > sc. sc is called shakedown limit load multiplier. Its value is of obvious interest
for applications. Under loads amplified by sc, shakedown can still be thought of to
occur, but the structure finds itself, correspondingly, in a shakedown limit state with
an impending inadaptation collapsemode, either alternating plasticity, or ratchetting,
also of practical interest.

6.1 Extended Lower Bound Theorem

Let us call statically and plastically admissible a load multiplier , say s̄, one which
can be associated to a set of admissible SSPs, say M̄ = {σ̄ r , Ȳ , Ȳ0, Ȳ1} ∈ M̄A, such
as to satisfy the static shakedown criterion (30), which here takes on the form:

f̄i := f (s̄σ E
i + σ̄ r , Ȳ ) ≤ 0 in V, ∀i ∈ I (N ). (63)

By the static shakedown theorem of Sect. 4, this definition implies that shakedown
certainly occurs under a load amplified by s̄. The value of sc := max s̄ is thus the
maximum of s for which shakedown occurs. Formally we can write:

sc = max s̄ subject to :
constraints in Eqs. (31) and (72)

}
(64)

It results that s̄ ≤ sc and thus any statically and plastically admissible load multiplier
is a lower bound to sc. This is the (extended) lower bound theorem.
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6.2 Extended Upper Bound Theorem

Let us consider a set of admissible KSPs, say M̂ = {ε̂p1, κ̂1, . . . , ε̂pN , κ̂N , ε̂
p
, κ̂, û} ∈

M̂A satisfying the normalization condition, that is

i=N∑

i=1

∫

V

σ E
i : ε̂

p
i dv = 1. (65)

Then, we call kinematically admissible the load multiplier, say ŝ, given by

ŝ :=
i=N∑

i=1

∫

V

D(ε̂
p
i , κ̂i ) dv +

∫

V

ψst(κ̂,∇κ̂) dv. (66)

The upper bound theorem states that any such ŝ cannot be smaller than sc, the
shakedown load multiplier.

In order to prove the latter statement, let us rewrite (66) in the equivalent form:

E [M̂] =
i=N∑

i=1

∫

V

[
D(ε̂

p
i , κ̂i ) dv − scσ

E
i : ε̂

p
i

]
dv

+
∫

V

ψst(κ̂,∇κ̂) dv = ŝ − sc (67)

which is obtained from (66) by subtracting sc from both sides and using (65). Since
shakedown occurs under loads amplified by sc, by the kinematic shakedown theorem
the kinematic shakedown criterion functional E [M̂] proves to be nonnegative for
whatever KSPs, such that we have from (67) the inequality ŝ ≥ sc.

The shakedown load multiplier can alternatively be computed as the minimum
upper bound value, i.e.

sc = min

(
i=N∑

i=1

∫

V
D(ε̂

p
i , κ̂i ) dv + ∫

V
ψst(κ̂,∇κ̂) dv

)

s.t. the constraints in Eqs. (47) and (65)

⎫
⎪⎬

⎪⎭
(68)

6.3 The Shakedown Limit Load Problem

In the previous subsections the shakedown limit loadmultiplier, sc, has been formally
expressed either as themaximum lower bound value, or as theminimum upper bound
value. In principle, these maximum and minimum problems can be addressed for the
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numerical evaluation of sc. But this problem proves to be quite more complex than
in classical shakedown theory as a consequence of the strengthening effects to be
accounted for.

Another way to address the above problem consists in writing out the complete
set of equations governing the shakedown limit state of the structure, which is gen-
erated by the load being amplified by sc. Under this load, the structure is exposed to
an impending inadaptation (or non-instantaneous) collapse mode (either alternating
plasticity, or ratchetting), which becomes an actual inadaptation collapse mode as
soon as the shakedown multiplier slightly exceeds the limit value sc. Addressing
this equation set by means of FEM techniques may be a useful way to solve the
shakedown load problem.

The equation set under discussion can be derived as the Euler–Lagrange equa-
tions associated either to problem (64), or (68). Let us proceed with the former. On
appending the pertinent constraint equations to the negative objective function, we
have the augmented functional:

L = −s +
i=N∑

i=1

∫

V

κi

[
f0(sσ

E
i + σ r ) − Y − σ0

]
dv

+
∫

V

κ(Y − Y0 + ∇ · Y1) dv −
∫

S(1)
f

κn · Y1κ da

+
∫

V

∇ · σ r · u dv −
∫

S f

n · σ r · u da +
∫

V

μφ(Y0, Y1) dv (69)

where the upper bars have been eliminated for simplicity. The fields u, κi ≥ 0, κ ,
μ ≥ 0 are suitable Lagrange multipliers. Writing the first variation of (69) and with
some straightforward mathematics (details are skipped for brevity), we can arrive at
the pertinent Euler–Lagrange equations. These read:

∇ · σ r = 0 in V, n · σ r = 0 on S f (self stresses) (70)

σ M
i := scσ

E
i + σ r in V, ∀i ∈ I (N ) (Melan stresses) (71)

fi := f0(σ
M
i ) − Y − σ0 ≤ 0, κi ≥ 0, κi fi = 0 in V, ∀i ∈ I (N ) (72)

ε
p
i = κi

∂ fi

∂σ M
i

in V, ∀i ∈ I (N ) (73)

εp =∑i=N
i=1 ε

p
i , in V

εp = ∇symu in V, u = 0 on Sc

}
(compatibility conds.) (74)
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i=N∑

i=1

∫

V

σ E
i : ε

p
i dv = 1 (normalization condition) (75)

κ =
i=N∑

i=1

κi in V (total effective plastic strain) (76)

φ(Y0, Y1) ≤ 0, μ ≥ 0, μφ = 0
κ = ∂φ

∂Y0
, ∇κ = ∂φ

∂Y1

}
in V (77)

Y = Y0 − ∇ · Y1 in V

κ = 0 on S(1)
c , n · Y1 on S(1)

f

}

(strengthening law) (78)

The following can be remarked:

1. The vector-valued Lagrange multiplier u takes on the meaning of displacement
field, the analogous scalars, κi andμ take themeanings of consistency coefficients
in the yield conditions (72) and strengthening conditions (77), whereas κ has
the meaning of total effective plastic strain, Eq. (76). Equation (73) provides the
relationship between κi and ε

p
i . The stresses in (71) are conventionally called

“Melan stresses”.
2. Equations (70)–(74) are typical of classical shakedown, except for the presence

of the strengthening stress, Y , in the yield conditions (72). The type of impend-
ing collapse mode is revealed by the strain ratchet, εp, according to whether it
is nonvanishing, at least somewhere in V , (in which case we have ratchetting
behavior), or instead εp = 0 everywhere in V , hence u ≡ 0, (in which case we
have alternating plasticity behavior, or plastic shakedown).

3. The presence of the strengthening effects manifests itself also through the addi-
tional equation set (76)–(78), which describes the strengthened state of the mate-
rial and its coupling with plastic deformations. Since, by (77), Y0 and Y1 prove
to be some specific functions of κ and ∇κ like in (2), then Eq. (78)1 constitutes
a second order PDE relating Y to the total effective plastic strain κ . This PDE is
accompanied by the higher order boundary conditions (78)2. Equation (76) relate
the mentioned κ to the plastic strains ε

p
i through (73).

4. The maximum and minimum problems (64) and (68) represent true variational
principles associated to the shakedown limit load problem (70)–(78). It can be
proved that the shakedown limit load problem has a unique solution (if it exists)—
except perhaps for the residual stresses σ r in the region (if any) of V where the
material remains plastically undeformed (see [51] for details).

5. The shakedown limit load problem (70)–(78) is not an evolution problem, since
in fact no stress redistribution is demanded. The (fictitious) plastic strains asso-
ciated to every basic load sum up with one another to give rise to the impending
inadaptation collapse mechanism described by the strain field εp, compatible
with the displacements u vanishing on Sc. Since the above plastic strains, εp, are
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formed up by contributions occurring in different times during the load cycle,
the collapse mechanism cannot be an instantaneous one. The load can be further
amplified causing the structure to exit from the shakedown domain and enter one
in which actual plastic strains are produced under every load cycle. Was the load
proportional (N = 1), the collapse mechanism would be instantaneous and the
shakedown limit state would be a plastic collapse state.

6. The latter features are qualitatively the same as for a material without strength-
ening effects. These effects just cause an increase (or decrease, possibly) of the
shakedown limit load multiplier, in more or less extent depending on the size of
the considered body. The knowledge of the law in which the shakedown limit
load multiplier varies with the body’s size is of fundamental importance for
applications.

7 Application

For an application of the theory expounded in the preceding sections, a simple struc-
tural scheme typical of classical shakedown theory is considered, but in aminiaturized
configuration. The structural system is formed by two vertical bars of lengths L1 and
L2 = cL1 and cross sections A1 = A, A2 = ωA. The bar upper ends are fixed, the
lower ones are connected to a same vertically movable rigid block, as depicted in
Fig. 2.

The geometry of the sample is so scaled such as to make its greatest linear
dimension (L1) comparable with the material internal length parameter, 	. Each
bar has its extremes clamped to substrates impeding the onset of plastic strains
(hard boundaries), hence no uniform plastic strain distributions are permitted in each
bar. This bar model is elastic perfectly plastic and exhibits strengthening effects; it

(a) (b)

Fig. 2 Micro-scale two–bar system subjected to thermal cycles in bar 2 and to a permanent load
Q0 upon the rigid block: a Geometrical sketch; b Temperature variation as a function of time
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can be considered the homogenized equivalent of a series of crystals with interfaces
(similar to one used by Aifantis et al. [4], although for a different purpose).

Bar 2 is subjected to cyclically varying temperature, T (t) = θτ(t), with θ > 0 and
τ(t) taking cyclically the values 0 and 1. The rigid block is subjected to a permanent
load, say Q0 = ασ0(1 + ω)A, where α is a scalar parameter. The problem to solve
consists in finding the maximum value of θ such that the structural system shakes
down under the action of the thermal cycles, while the permanent load in taken fixed.
In doing this, the ability of the material to strengthen has to be considered. This
task can be achieved either addressing the maximum problem (64), or the minimum
problem (68), or even the equation set (70)–(78). Here the latter way is followed, with
the proviso that the solution is searched for within the framework of the particular
case presented in Sect. 2.2.

The thermo-elastic stresses in the bars prove to be:

σ E
1 (t) = σθτ(t) + ασ0m1, σ E

2 = −(σ θ/ω)τ(t) + ασ0m2, ∀t ≥ 0 (79)

where

σθ := αT θ Eωc

ω + c
, m1 := (1 + ω)c

ω + c
, m2 := m1/c; (80)

moreover, αT denotes the thermal expansion coefficient; E , the Young modulus.
Noting that the residual stresses in (70) can be written in terms of an arbitrary

scalar R as
σ r
1 = Rσ0, σ r

2 = −Rσ0/ω, (81)

and with the position β := σθ/σ0, the Melan stresses in (71) become:

σ M
1(1)/σ0 = β + αm1 + R, σ M

2(1)/σ0 = − β
ω

+ αm2 − R
ω
, (τ = 1)

σ M
1(0)/σ0 = αm1 + R, σ M

2(0)/σ0 = αm2 − R
ω
, (τ = 0)

}

(82)

The yield conditions (72) read, with the notation Yi + σ0 = σy := σ0ϕi , (i = 1, 2):

|σ M
i(τ )| ≤ σ0ϕi , (i = 1, 2; τ = 1, 0). (83)

Obviously, max β → max θ . The plot of max β (the latter being identified with
the shakedown limit sc) as a function of α is the shakedown contour line in the
(α, β)-plane (the so-called Bree-like diagram). On the basis of previous experience
on shakedown analysis, we can envision two distinct situations as follows.

7.1 Small α Values: Alternating Plasticity

For small α values, the shakedown limit state of the system is mainly conditioned by
the cyclic nature of the thermal loading; it in fact exhibits an alternating plasticity
behavior, in which bar 1 suffers reverse plasticity, whereas bar 2 remains elastic.
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Then, inequalities (83) written for i = 1 and enforced as equalities can be written as

σ M
1(1)/σ0 = β + αm1 + R = ϕ1

σ M
1(0)/σ0 = αm1 + R = −ϕ1

}

(84)

from where we get

β = βal := 2ϕ1, R = −ϕ1 − αm1. (85)

This result holds as far as bar 2 remains elastic, i.e., by (83) written for i = 2,

σ M
2(0)/σ0 = αm2 − R

ω
≤ ϕ2, (86)

which, eliminating R by means of (85)2, yields

α ≤ α̂ := ω

1 + ω
ϕ2 − 1

1 + ω
ϕ1 ≥ 0. (87)

The condition σ M
2(1)/σ0 ≥ −ϕ2 is always satisfied for α > 0, as it can be easily

verified.
Since ε

p
1(1) = −ε

p
1(0) all along bar 1, by (74) we have ε

p
1 = ε

p
1(1) +ε

p
1(0) = 0, εp2 =

ε
p
2(1) = ε

p
2(0) = 0 (alternating plasticity), hence ub = 0 (no ratchet displacement

of the rigid block). The total accumulated plastic strain is κ1 = 2εp1(1) in bar 1 and
κ2 = 0 in bar 2.

For the evaluation of the plastic strain profile in bar 1, i.e. the function ε
p
1(1)(η),

where η := y/L1 is the adimensional abscissa over bar 1, −1/2 ≤ η ≤ 1/2, we
follow [50]. Remembering (19)1, Eq. (85)1 proves to be the differential equation:

ϕ1(κ1,∇κ1) = ξ1ε
p
1(1)

p1
− 1

ξ1

⎛

⎝
ε
p ′
1(1)

p1

⎞

⎠

′
= s, (s := βal/2) (88)

where (·)′ = ∂η, ξ1 := L1/	 (size ratio), and

p1 =
√

(ξ1ε
p
1(1))

2 + (ε
p ′
1(1))

2. (89)

Due to the symmetry of the plastic strain profile, the differential equation (88) can
be integrated in the interval 0 ≤ η ≤ 1/2, with the higher order boundary conditions

ε
p ′
1(1)(0) = 0 and ε

p
1(1)(1/2) = 0. With the same numerical procedure used in [50]

for the plastic limit analysis problem, let us pose:

ε
p′
1(1)/ε

p
1(1) = −ξ1 tanΘ(η) (90)
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where Θ(η) is an unknown function required to satisfy the boundary conditions
Θ(0) = 0 and Θ(1/2) = π/2. By (90), Eq. (88) can be transformed into the integral
equation

Θ(η) = π + ξ1

2

∫ η

0 secΘ(t)dt
∫ 1/2
0 secΘ(t)dt

− ξ1η (91)

which satisfies the mentioned boundary conditions on Θ and s is given by

s = βal/2 = 1 + π/ξ1

2
∫ 1/2
0 secΘ(t)dt

. (92)

Equation (91) has been solved by means of an iterative procedure of the type:

Θn(η) = π + ξ1

2

∫ η

0 secΘn−1(t)dt
∫ 1/2
0 secΘn−1(t)dt

− ξ1η. (93)

Next, Eq. (90), by an integration, gives

ε
p
1(1)(η) = C exp

⎡

⎣−ξ1

η∫

0

tanΘ(t)dt

⎤

⎦ , (0 ≤ η ≤ 1/2) (94)

which represents the plastic strain profile of bar 1 in the thermal loading period and
satisfies the higher order boundary condition ε

p
1(1)(1/2) = 0.

Let us note that the normalization condition (75) involves only the thermoelastic
stresses written for β = 1 and α = 0, that is the stresses:

σ̃ E
1(1) = σ0, σ̃ E

2(1) = −σ0

ω
, σ̃ E

1(0) = σ̃ E
2(0) = 0. (95)

Since only bar 1 deforms plastically in the shakedown limit state being considered,
the normalization condition reduces to:

2AL1

1/2∫

0

σ̃1(1)ε
p
1(1)dη = σ0AL1〈εp1(1)〉

= 2σ0AL1C

1/2∫

0

exp[−ξ1

η∫

0

tanΘ(t)dt]dη = 1[work unit] (96)

where 〈εp1(1)〉 denotes the mean value of ε
p
1(1) over the bar length, L1. Equation (96)

then gives

C = 1[work unit]
2σ0AL1

∫ 1/2
0 exp

[−ξ1
∫ η

0 tanΘ(t)dt
]
dη

. (97)
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7.2 Higher α Values: Ratchetting

Equation (87) gives the value α̂ of the permanent load at which the transition from
alternating plasticity to ratchetting occurs. For α > α̂, the shakedown limit state
exhibits a ratchetting behavior, namely, both bars exceed—in the two half cycles,
respectively—the plastic limit in traction, but not in compression. Thus, enforcing the
yield conditions (83)written for i = 1, τ = 1 and then for i = 2, τ = 0,we canwrite:

σ M
1(1)/σ0 = β + αm1 + R = ϕ1

σ M
2(0)/σ0 = αm2 − R

ω
= ϕ2

}

(98)

from where we have, remembering (80)2 and (80)3,

β

1 + ω
+ α = 1

1 + ω
ϕ1 + ω

1 + ω
ϕ2. (99)

This equation represents a straight line of the (α, β)-plane, intersecting the α axis at
the point of abscissa

α = αL := 1

1 + ω
ϕ1 + ω

1 + ω
ϕ2. (100)

The scalar αL specifies the plastic collapse load of the system subjected to the
permanent load only.

By (74) we have ε
p
1 = ε

p
1(1), ε

p
2 = ε

p
2(0), ε

p
1(0) = ε

p
2(1) = 0 (ratchetting), and thus

κ1 = ε
p
1(1), κ2 = ε

p
2(0). In order to evaluate the ε

p
1(1) and ε

p
2(2) profiles, by (19)1 and

(98) we can write, respectively,

ϕ1(κ1,∇κ1) = ξ1ε
p
1(1)

p1
− 1

ξ1

⎛

⎝
ε
p ′
1(1)

p1

⎞

⎠

′
= s1 (101)

ϕ2(κ2,∇κ2) = ξ2ε
p
2(0)

p2
− 1

ξ2

⎛

⎝
ε
p ′
2(0)

p2

⎞

⎠

′
= s2 (102)

where

p1 =
√

(ξ1ε
p
1(1))

2 + (ε
p ′
1(1))

2, p2 =
√

(ξ2ε
p
2(0))

2 + (ε
p ′
2(0))

2. (103)

The differential equations (101) and (102) are both similar to (88) and can be solved
in a similar way. We can thus write, correspondingly:

Θi (η) = π + ξi

2

∫ η

0 secΘi (t)dt
∫ 1/2
0 secΘi (t)dt

− ξiη, (i = 1, 2) (104)
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si = 1 + π/ξi

2
∫ 1/2
0 secΘi (t)dt

, (i = 1, 2) (105)

ε
p
1(1) = C1 exp

⎡

⎣−ξ1

η∫

0

tanΘ1(t)dt

⎤

⎦ , (106)

ε
p
2(0) = C2 exp

⎡

⎣−ξ2

η∫

0

tanΘ2(t)dt

⎤

⎦ , (107)

and thus, by (87), (101) and (102), it is

α̂ = 1

1 + ω
(ωs2 − s1), αL = 1

1 + ω
(ωs2 + s1). (108)

Noting that the normalization condition is formally similar to (96), we can write
for C1 a formula similar to (97), i.e.

C1 = 1[work unit]
2σ0AL1

∫ 1/2
0 exp

[−ξ1
∫ η

0 tanΘ1(t)dt
]
dη

. (109)

Substituting from the latter into (106), the mean value of ε
p
1(1) can be expressed as

〈εp1(1)〉 = 1

σ0AL1
= ub

L1
(110)

where ub is the (nonvanishing) ratchet displacement of the rigid block. Analogously,
the mean value of ε

p
2(0) of (107) in L2 can be expressed as

〈εp2(0)〉 = 2C2

1/2∫

0

exp

⎡

⎣−ξ2

η∫

0

tanΘ2(t) dt

⎤

⎦ dη = ub

L2
(111)

which, by the aid of (110), gives

C2 = ub

2L2
∫ 1/2
0 exp

[−ξ2
∫ η

0 tanΘ2(t)dt
]
dη

= 1

2σ0AL2
∫ 1/2
0 exp

[−ξ2
∫ η

0 tanΘ2(t)dt
]
dη

(112)

from where we obtain C2 and thus, by (107), the plastic strain profile in bar 2.
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7.3 Results and Comments

On the basis of the numerical evaluations described above, the solution of the shake-
down problem at hand can be summarized as in the following.

In the (α, β)-plane, the shakedown contour line is a bilateral segment A − B −C ,
with co-ordinates A(αL , 0), B(α̂, βal), C(0, βal). The position of this line depends
on the value of 	. The line position closest to the axes origin corresponds to 	 = 0
(simple material), for which ϕ1 = ϕ2 = 1. The Bree-like diagrams of Fig. 3 looked
like the classical one (see e.g. [16, 56]). For any load below to this curve, shakedown
certainly occurs. At points upon the curve, the structure finds itself in a shakedown
limit state, subjected to an impending inadaptation collapse mode. The latter is an
alternating plasticity collapse mode for loads upon the “upper plateau” BC (where
the outward unit normal is parallel to the β-axis), but it is a ratchetting collapse
mode for loads upon the discendent branch AB (where the outward unit normal
has a nonzero α-component). What is interesting in the present result is that the
shakedown contour line ABC changes location with changing the ratio ζ . For ζ = 0
(simple material), the contour line lies upon its standard position A0B0C0, whereas
it expands with increasing ζ , from A0B0C0 to A1B1C1 for ζ = 1.

The plots of Fig. 4 provide the ways the values of βal (the alternating plasticity
limit load multiplier) and αL (plastic collapse limit load for β = 0) vary with varying
the ratio ζ . An almost linear variation law is recognizable. For ζ increasing from
zero to one, the load multiplier increases of almost three times.

Fig. 3 Bree-like diagrams in
the (α, β)-plane, showing the
shakedown contour lines
locations at increasing values
of the ratio ζ = 1/ξ = 	/L1,
from A0B0C0 at ζ = 0
(simple material) to A1B1C1
for ζ = 1 (micro-scale sizes)

Shakedown contour lines
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Fig. 4 Plots representing the
alternating plasticity
multiplier βal and the plastic
collapse multiplier αL as
functions of the ratio
ζ = 1/ξ1 = 	/L1. An almost
linear law is recognizable
with an increase of the load
multiplier of almost three
times as ζ increases from 0
to 1

plastic collapse

alternating plasticity
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8 Conclusions

An elastic perfectly plastic material model with strengthening effects (Hall–Petch
effects) has been considered and the classical shakedown theorems have been
extended to such materials. A micro-scale specimen subjected to cyclic thermal
loads combined with a permanent load clearly indicates that the shakedown limit
load increases with decreasing size and that the shakedown load boundary expands
correspondingly, in a way in which the Hall–Petch effects are classically known
to manifest themselves (see the literature quoted in Sect. 1). A main result of the
present work is that the gradient plasticity model advanced in [50] is able to predict
Hall–Pech type effects also within a contest of cyclic-type loadings.

The present work is founded on the assumptions that (i) the cyclic nature of
loadings, typical of shakedown analysis, does not modify the Hall–Petch effects in
their own way to manifest themselves under monotonic loads, and (ii) no interaction
between these effects and temperature exists, at least within certain limits of interest.
Although these assumptions appear to be quite reasonable, specific laboratory exper-
iments to probe them are hoped for. There is additionally a need for more efforts in
order to derive, from the present theoretical study, suitable computational methods
for practical applications to micro/nano technologies. These issues are left open to
future research.
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Shakedown Analysis of 3D Frames
with an Effective Treatment of the Load
Combinations

Giovanni Garcea, Leonardo Leonetti and Raffaele Casciaro

Abstract Using the Melan static theorem and an algorithm based on dual
decomposition, a formulation for the shakedown analysis of 3D frames is proposed.
An efficient treatment of the load combinations and an accurate and simple defini-
tion of the cross-section yield function are employed to increase effectiveness and
to make shakedown analysis an affordable design tool. The section yield function,
obtained by its support function values associated with presso-flexural mechanisms,
is defined as theMinkowski sum of ellipsoids. The return mapping process, resulting
from the dual decomposition, is solved at the element level by means of an algorithm
based again on the dual decomposition. It allows the separation of the problem at the
ellipsoid level and the use of a simple and inexpensive radial return mapping process
for its solution. A series of numerical tests are presented to show both the accuracy
and the effectiveness of the proposed formulation.

1 Introduction

Structures are subjected at different times to different load actions including dead
loads and variable natural and anthropic variable loads. Building codes fix the range
and extension of load variability through combination formulas.

Shakedown analysis furnishes, in a direct and elegant manner, a reliable safety
factor against plastic collapse, loss in functionality due to excessive deformation
(ratcheting) or collapse due to low cycle fatigue (plastic shakedown) [1] and also
provides valuable information about the internal stress redistribution due to plastic
adaptation phenomenon. The latter plays an important role in reducing tip stresses
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coming from the elastic solutions and allows to refer to smoother stress fields, better
suited for design purposes to improve both the elements dimensioning and the rein-
forcements design. The advantages can be noticeable in R.C. structures when the
rebars design is produced by fully automatic procedures.

Due to its importance as a tool for designers [2–5], in the last few years a notable
effort has been made to propose efficient numerical algorithms of analysis. The
interest in direct methods for limit and shakedown analysis has been encouraged by
the availability of new and efficient optimization algorithms [6–8] such as the Interior
Point method which is employed for solving very large non-linear problems, [9–11],
like those obtained in the Finite Element (FE) discretization of real-scale engineering
structures. An alternative approach to evaluate the shakedown safety factors in an
FE context of analysis, is represented by the specialized direct method proposed in
[12–14]. It is based on a strain-driven strategy of analysis hinged on closest point
projection return mapping schemes and Riks arc-length solution techniques. It can
be seen as the application of the proximal point algorithm to the static shakedown
theoremand in the solution of the resulting problembymeans of a dual decomposition
strategy [14].When applied to the static limit analysis theorem, themethod coincides
with a standard strain driven incremental elastoplastic analysis in which the stresses
are obtained by a Backward Euler integration process and the equilibrium path is
evaluated by means of a Riks arc-length strategy [15]. For its relation to standard
elastoplastic analysis, to which it reduces in the limit analysis case, it will be named
pseudo elastoplastic analysis and denoted as SD-CPP (Strain Driven—Closest Point
Projection).

Despite its important implications and the development of new efficient numerical
methods shakedown analysis still seems confined to the research community instead
of being a common tool of structural design. This is, in part, still due to a series of
problems regarding the efficiency and the robustness of the algorithms of analysis
used. In particular, in the case of 3D frames, when considering standard rules as the
Eurocodes ones, to be used by designers, shakedown analysis requires a preliminary
fine tuning of two important aspects: (i) a suitable treatment of the usually large
number of load combinations; (ii) an accurate and simple definition of the yield
function which defines the nonlinear behavior of the generic cross-section. This last
aspect is also important when using standard path following elasto-plastic analyses.

Regarding the first point, we know that the number of different load conditions
entering into the combination sensibly affects the computational costs especially
when an approach based on the static theorem is used. For instance, in the very simple
case of load domain defined as a combination of basic actions varying between a
minimum and amaximum value, the elastic envelope, that is the set of elastic stresses
due to all possible loads in the combinations, becomes a convex polytope with 2p

vertexes p being the number of basic loads. For typical values of p (of order of ten) to
impose the plastic admissibility for all these vertexes strongly affects the efficiency
of the analysis. The difficulties further increase when the load domain definition is
not so trivial, as in the case of the actual design rules adopted in Eurocodes.

The plastic admissibility condition has, however to be checked at the finite element
or Gauss point level that we will call from now on the local level of analysis. As the
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larger part of the elastic stresses associated with the load domain vertexes could be in
the interior of the elastic envelope, in order to improve efficiency without affecting
the accuracy, we can use only the convex hull vertexes to check plastic admissibility.
Standard convex hull algorithms, however, require a preliminary evaluation of all the
points of the set before selecting, from these, those belonging to the convex hull so
they become very expensivewhen the number of load combinations is large. For these
reasons we present an approximate evaluation of the convex hull that retains only the
significant vertexes with respect to a piecewise external linearization of the yield sur-
face. Increasing the number of hyperplanes of the yield surface linearization allows
the evaluation of the true convex hull of the elastic domain. It will be shown, however,
that this simplified evaluation of the convex hull, also using a small number of hyper-
planes, does not produce errors that are meaningful from a practical point of view.

Regarding the second point, while the yield function of 3D frames is usually
evaluated considering only presso–flexural failures, so in a somewhat oversimplified
form, to computationally define accurate yield surfaces combining axial force and
two bending moments is not an easy task. This aspect is important not only for
shakedown analysis but also for limit and standard incremental elastoplastic analyses
and, for this reason, has received increasing attention in the literature [2, 4, 5, 16]. A
piecewise linearization often requires a large number of polyhedral facets to obtain
a sufficiently accurate approximation, which can have an important effect on the
quality of the estimated bounds [5], but also on the efficiency of the algorithm. Since
the yield criterion has to be verified at a large number of points throughout the whole
structure, a compromise between accuracy and computational efficiency is required
in the case of large-scale problems [12, 13].

Recently a strategy for approximating the true nonlinear yield surfaces by using a
Minkowski sumof ellipsoids (MSE), has been proposed for limit analysis problems in
[4] and the resulting SecondOrder Cone Programming problem has been solved with
the commercial code MOSEK. The MSE allows us to accurately describe the section
elastic domain using only a few analytical functions but it produces a noticeable
increasing of the number of variables of the problems, being the stresses parameters
now expressed as sums of ellipsoidal contributions, so penalizing the analysis in
terms of both efficiency and robustness especially in the shakedown case. In this
work with the aim of implementing an effective and reliable algorithm, we explore
the possibility of using the MSE, within the SD-CPP approach.

The decomposition strategy allows us to decompose the global optimization prob-
lem at the element level where we have to solve a smaller optimization subproblem.
Unfortunately the MSE representation of the elastic domain and of the stresses don’t
allow the use of standard return mapping algorithms commonly adopted in strain
driven analysis. In the paper we propose a solution scheme which exploits the dual
decomposition algorithm even at the local level and the exploitation of standard
formulation based on the elastic predictor/plastic corrector scheme and so mak-
ing the algorithm robust and effective. The approach is general, simple and can be
effectively employed also in standard path–following elasto-plastic analysis of a 3D
frame requiring few code modifications.
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In order to evaluate the effectiveness and accuracy of our proposal a series of
numerical tests are presented regarding both the accuracy and effectiveness of: (i) the
yield function approximation using the MSE and the consequent decomposed CPP
solution; (ii) the effect of using an approximate evaluation of the elastic envelope.

2 The 3D Beam Model

In the following the beam model and its discrete finite element version is briefly
presented. We refer to [17, 18] for more details.

2.1 Beam Kinematics and Statics

Let us consider a cylinder occupying a reference configuration B of length � con-
fined by the lateral boundary denoted by ∂B and two terminal bases Ω0 and Ω�.
The cylinder is referred to a Cartesian frame (O, x1 ≡ s, x2, x3) with unit vectors
{e1, e2, e3} and e1 aligned with the cylinder axis. In this system, see Fig. 1, we denote
with X = X0+x the position of a point P , X0 = se1 is the position of P with respect
to the beam axis, s being an abscissa which identifies the generic cross-section Ω[s]
of the beam, while x = x2e2 + x3e3 is the position of P inside Ω[s].

The displacement field u[X] of the model is expressed, as usual, as a section rigid
motion

u[X] = u0[s] + ϕ[s] ∧ x (1)

where u0[s] and ϕ[s] are the mean translation and rotation of the section, ∧ denotes
the cross product. The kinematics assumed in Eq. (1) allows us to evaluate, using
a standard linear 3D Cauchy continuum, the stress strain work W in terms of the
generalized strains and stresses on the section (see [17]) as

x1 x2

x3

x3

x

ΩΩ0

B

s

X0

X

Ω

∂B [0 n2 n3]T

Fig. 1 The cylindrical solid
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W ≡
∫

�

(N[s] · ε[s] + M[s] · χ [s])ds =
∫

�

tσ [s]T ρ[s]ds (2)

where ρ[s] = {ε[s],χ [s]} collects the generalized strain parameters ε and χ

defined as
ε[s] = u0,s [s] + e1 ∧ ϕ[s], χ = ϕ[s],s (3)

where, from now on, a comma stands for derivative and tσ [s] = {N[s], M[s]} are the
resultant force N[s] = {N1, N2, N3} and moment M[s] = {M1, M2, M3} defined as

N[s] =
∫

Ω

sdΩ, M[s] =
∫

Ω

x ∧ sdΩ. (4)

and s = σe1 is the traction applied to the generic cross section σ being the Cauchy
stress tensor. Finally the elastic constitutive laws are expressed as

ρ[s] = Htσ [s], H[s] =
[

HN N HN M

HT
N M HM M

]

(5)

where the coefficients of the cross-section compliance matrix H can be obtained as
in [17, 19, 20] (see also [21, 22] for the extension to generic anisotropic materials).

Furthermore we assume an elastic perfectly plastic material and the beam
section yield function can be defined in terms of the normal actions only t[s] :=
{N1, M2, M3} extracted from tσ [s]. In particular denoting the section elastic domain
with E[s] and with Φ[s, t[s]] the convex yield function of the section s, that we will
define explicitly in the next sections, we have

E[s] = {t[s] : Φ[s, t[s]] ≤ 0}. (6)

2.2 The Finite Element for the Beam

The beam equilibrium equation for zero body forces

N,s = 0, M,s +e1 ∧ N = 0 (7)

states that N and the torsional moment component M1 are constant, while the two
flexural components M2[s] and M3[s] of M[s] are linear with s and linked to the
shear resultants so that N2� = −(M3[�]− M3[0]) and N3� = (M2[�]− M2[0]). The
internal work then becomes

W ≡ N · (u0[�] − u0[0]) + M[�] · ϕ[�] − M[0] · ϕ[0] = dT
e QT

e βe (8)
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so allowing us to directly obtain the discrete form ofW without the need to use any
FEM interpolation for the kinematic variables. In Eq. (8) the vectors collecting the
finite element generalized parameters and the compatibility operator Qe are

βe =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

N

M2[0]
M3[0]
M2[�]
M3[�]

M1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, de =

⎡

⎢⎢
⎣

u0[0]
ϕ[0]
u0[�]
ϕ[�]

⎤

⎥⎥
⎦ , Qe = 1

�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−� eT
1 0 � eT

1 0

eT
3 −� eT

2 −eT
3 0

−eT
2 −� e3 eT

2 0

−eT
3 0 eT

3 � eT
2

eT
2 0 −eT

2 � eT
3

0 −� eT
1 0 � eT

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(9)

Equation (9) allows us to write the discrete form of the equilibrium equations as

QT β − λp = 0 with QT β = Ae{Qe
T βe} (10)

where β denotes the global vector collecting all the stress parameters βe and p is the
load vector. The global equilibrium matrix QT is obtained as usual by means of the
contribution of each finite element andAe is the standard assembling operator which
takes into account the inter–element continuity conditions on u and ϕ. From now on
a subscript e denotes the finite element counterpart of a global vector or matrix.

Letting tσ [s] = Dt [s]βe be the finite element interpolation for the generalized
stress the element elastic compliance matrix, is obtained from the equivalence

∫

�

tσ [s] · Htσ [s]ds = βT
e Heβe He =

∫

�

Dt [s]T HDt [s] ds (11)

We express the plastic admissibility of the beamfinite element in terms of the plas-
tic admissibility of its end section normal actions t[s] obtained from the generalized
stress element vector βe as t[s] = S[s] βe with s = 0, � that is

Φe[βe] :=
[
Φ[0, t[0]]
Φ[�, t[�]]

]
(12)

where Φe[βe] represents the element yield function and, as usual, inequalities are
intended in componentwise. Note that, both sections s = 0 and s = � share the same
value of the normal action N1 as prescribed by the beam equilibrium Eq. (7), so the
plastic admissibility for the two sections is coupled.

From now on we denote with a subscript the dependence of the quantities on the
section while a vector column will be represented between curly brackets in the body
of the text.
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3 Shakedown Analysis Based on the Proximal
Point Method and Dual Decomposition

In this section the approach proposed in [14] is particularized to the shakedown
analysis of a 3D frame.

3.1 The Envelope of Elastic Stresses

We assume that the external actions p[t], variable with the time t , are expressed as a
combination of p basic loads pi belonging to the convex admissible load domain P.
This is defined according to the Eurocode rules [23] which prescribe p combination
of different load conditions, each of them obtained by considering one of the load
conditions pk as the leading one and the others p j , j �= k as accompanying. All
of these are affected by a safety factor α j varying from αmin

j to αmax
j and by a

combination factor ψk j ≤ 1 (ψkk = 1). So the load domain is defined by

P ≡
p⋃

k=1

P
(k), P

(k) ≡
{

p ≡
p∑

i=1

ψkiαi pi : αmin
i ≤ αi ≤ αmax

i

}

. (13)

Denoting with t̂[s, t] = {N̂1[s, t], M̂2[s, t], M̂3[s, t]} the set of the elastic normal
actions produced by each load path contained in P we define the elastic envelope
S[s] of the generic beam section s

S =
p⋃

k=1

S
(k), S

(k) :=
{

t̂ ≡
p∑

i=1

ψkiαi t̂i : αmin
i ≤ αi ≤ αmax

i

}

(14)

where t̂i are the normal actions elastic solution for pi while the dependence on s will
be omitted, from now on, for easerer writing.

Finally if the external loads increase by a real number λ, called the load domain

multiplier, the elastic envelope becomes λS :=
{
λt̂ : t̂ ∈ S

}
.

3.2 The Plastic Admissibility Conditions for Shakedown

Shakedown requires that all the stresses contained in the amplified elastic envelopes
λS[s], translated by t[s], will be plastically admissible. Due to the convexity of
Φ[s, t[s]], this is easily expressed in terms of plastic admissibility of the Nv stress
vertexes of the convex hull of S. This means that we can directly substitute Swith its
convex hull, i.e. a convex polytope whose vertex will be, in general, a subset of the
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p · 2p stresses corresponding to the vertexes of P. With this substitution, each t̂ ∈ S

can be expressed as a convex combination of the Nv of the convex hull vertex t̂
α
:

t̂ =
Nv∑

α=1

ξα t̂
α
, ξα ≥ 0,

Nv∑

α=1

ξα = 1 (15)

where, from now on, a Greek superscript denotes a vertex of S[s].
Letting λ t̂

α[s] + t[s] be the vertexes of the amplified and translated hull, the
plastic admissibility condition for all stresses in λS[s] ⊕ {t[s]} becomes

λS[s] ⊕ t[s] ∈ E[s] ⇐⇒ λ t̂
α[s] + t[s] ∈ E ∀α (16)

Defining shakedown yield functions for the generic section s as Φs[λ, t[s]] ≡
{Φs[λt̂

1 + t[s]], . . . ,Φs[λt̂
Nv + t[s]]} we obtain the shakedown yield function for

the element as

Φe[λ,βe] :=
[
Φ0[λ, t[0]]
Φ�[λ, t[�]]

]
(17)

Note that the number of vertexes Nv in the convex hull depends on the section
considered.

3.3 The Pseudo-elastoplastic Step for Shakedown Analysis

Shakedown analysis is performed using the algorithm proposed in [12–14] (see also
[24]), which corresponds to the application of the proximal point method to the
Melan static theorem. A sequence of subproblems or steps are obtained by adding a
quadratic positive term, using the element compliance matrix He in Eq. (11), to the
objective function of the Melan static theorem

maximize Δξ(n)λ(n) − 1

2

∑

e

Δβe
T HeΔβe

subject to QT β(n) − λ(n)p0 = 0

Φe[λ,βe] ≤ 0, ∀e

(18)

where the superscript (·)(n) will denote quantities evaluated in thenth step, the symbol
Δ(·) = (·)(n) − (·)(n−1) is the increment of a quantity from the previous step and

Δξ(n) > 0 is an assigned real positive number. The load p0 ≡ QT β̂
0
associated

with the equilibrium equation to a reference stress β̂
0
is used to simply recast the

formulation in Eq. (18) with that of limit analysis (see [14] for further details).
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3.3.1 First Order Conditions

Introducing the dual multipliers Δd and Δκ associated with the equality and
inequality constraints of (18) respectively, the finite step equations are defined by
the first order conditions of the following Lagrangian L (n)

L (n) = Δξ(n)λ(n) − 1

2

∑

e

Δβe
T HeΔβe + ΔdT (QT β(n) − λ(n)p0)

−
∑

e

Δκe
T Φe[βe

(n), λ(n)]
(19)

In order to simplify the notation the superscript (n) will be omitted from now on.
In particular, from the stationary condition of (19) with respect to β and Δκ and

remembering Eq. (10) we obtain the finite step form of the constitutive law, i.e. the
plastic admissibility and plastic consistence conditions for shakedown

{
rσ ≡ −HeΔβe − Ae[βe, λ]Δκe + QeΔde = 0

rμ ≡ Φe[βe, λ] ≤ 0, κe ≥ 0, κe
T Φe[βe, λ] = 0,

(20a)

where Ae[βe, λ] :=
(

∂Φe[βe,λ]
∂βe

)T
. Note that, when Δde and λ are assigned, the

admissibility conditions (20a) are expressed in terms of element quantities alone.
For this reason they will be denoted, from now on, as local equations and βe and κe

will be denoted as local variables. Following [24] a task that uses only local variables
and equations will be said to be at the local level.

In the same way the stationary condition with respect to Δd and λ furnishes the
equilibrium equations and the normalization condition, coupling the global variables
of the problem and defining the global level of the analysis,

⎧
⎪⎨

⎪⎩

ru ≡ QT β − λp0 = 0

rλ ≡ Δξ − ΔdT p0 −
∑

e

Δκe
T Φe,λ = 0 (20b)

where Φe,λ :=
(

∂Φe[βe,λ]
∂λ

)
. Equation (20b) will be denoted, from now on, as global

equations while d and λ will be denoted as global variables.
In fixed load cases, that is for a single vertex of the load domain, Eq. (20a) coincide

with the backward-Euler integration of the elasto-plastic constitutive equations while
Eq. (20a, 20b) exactly correspond to a step of the arc-length algorithm used to solve
the incremental elastoplastic problem [12, 13, 15]. Due to its meaning in the case of
fixed loads we call this kind of analysis pseudo elastoplastic. Δd and Δκe assume
the meaning of displacements and plastic multipliers of the problem.
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As for elastic perfectly plastic structures the limit load can be evaluated by recov-
ering the complete equilibrium path by means of path-following algorithms, in the
same fashion the skakedown multiplier can be obtained by evaluating a sequence
of states, z(n) := {λ(n),β(k), d(n), Δκe

(n)} by solving a series of problems (18), i.e.
defining a pseudo-elastoplastic equilibrium curve [12]. In [14] it has been shown that
starting from the known elastic limit z(0), the sequence z(n) generated in this way is
safe in the sense of the static theorem and monotonously increasing in λ(n). In the
case λ(n) = λ(n−1) with Δd �= 0 it is simple to show (see [14]) that we have the
convergence at the desired shakedown multiplier.

3.4 The Dual Decomposition Solution of the Pseudo
Elastoplastic Step

The similarity of Eq. (20a, 20b) with standard strain driven path-following elasto-
plastic analysis suggests that the same method of solution can also be used. This is
the approach followed in [12, 13] and it is based on an exact solution of the local
conditions in (20a) for an assigned value of Δde and Δλ, so expressing βe and κe

as implicit functions of the displacements and of the load multiplier. This step is
performed at the local level by using a return mapping by closest point projection
process. Equation (20a) are, in fact, the first order conditions of the following problem

⎧
⎨

⎩

min
βe

1

2

(
βe − βe

∗)T H
(
βe − βe

∗) ,

subject to: Φe[βe, λ] ≤ 0.
(21)

that is the convex projection of the trial stress (or the elastic predictor) βe
∗, defined

by
βe

∗ = βe
(n−1) + H−1QeΔde, (22)

onto the elastic shakedown domain bounded by the convex function Φe[βe, λ].
From the closest point projection (CPP) in Eq. (21) we have the stresses and the

plastic multipliers as a function of Δd and λ

β = β[z(n−1), Δd, λ], Δκ = Δκ[z(n−1), Δd, λ]

and of the known initial step quantities collected in z(n−1).
Omitting the dependence on z(n−1) the global Eq. (20b) can be rewritten, in terms

of Δd and λ, as

{
ru ≡ QT β[Δd, λ] − λp0 = 0

rλ ≡ Δξ − ΔdT p0 − Φ,T
λ Δκ[Δd, λ] = 0

(23)
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If the nonlinear system (23) is solved by means of a Newton iteration as in [12, 14],
we obtain:

{
Δd j+1 = Δd j + ḋ,

Δλ j+1 = Δλ j + λ̇,
with

{
K j ḋ − λ̇y j = −r j

u,

−y j T
ḋ + λ̇ h j

λλ = −r j
λ ,

(24)

where K j ≡ ∂ru/∂d is the algorithmic tangent matrix while r j
λ and r j

u are the
residuals defined inEq. (23) evaluated in (d j , λ j ) after performing the returnmapping
process (21) to evaluate β[Δd j , λ j ] and Δκ[Δd j , λ j ], while

y j ≡ ∂ru

∂λ

∣∣∣∣
(λ j ,d j )

= ∂rλ

∂d

∣∣∣∣
(λ j ,d j )

h j
λλ ≡ ∂rλ

∂λ

∣∣∣∣
(λ j ,d j )

.

We have convergence to a new equilibrium point when the norm of r j
u become

sufficiently small, in this case we set z(n) = z j . We recall that the use of a modified
Newton method that uses the initial elastic stiffness matrix assures global, even if
simply linear, convergence [12].

4 The Elastic Domain of the Beam Section

In this section we briefly present the construction of the 3D elastic domain for each
beam section using the approach recently proposed by Bleyer and De Buhan [4]
(see also [5] and [2]). Then we propose a simple way to use the Minkowski sum
of ellispoids in the return mapping process of the strain driven analysis previously
described.

The algorithm we propose is general and can be used not only for shakedown but
also for any other analysis based on return mapping processes like those currently
employed for the reconstruction of the equilibrium path of elastoplastic structures.

4.1 Evaluation of the Support Functions of the Beam
Elastic Domain

We assume that the beam section domain Ω is the union of nd sub domain Ωi in
which thematerial is homogeneous (see Fig. 2). For eachΩi , the plastic admissibility
condition is expressed in terms of normal stress only as−σci ≤ σ11 ≤ σti whereσti is
the ultimate normal stress in tension (positive) andσci in compression (negative). This
corresponds to assume, as is usual for technical applications involving slender beams,
infinitely resistant frame members with respect to shear effects as well as torsion.
Hence the yield surface will be drawn in the 3D space involving axial force N1 and
bending moments M2 and M3 that is it depends on vector t[s] = {N1, M2, M3} only.
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Fig. 2 Beam section with
different material

Fig. 3 Support function for
the the elastic domain

Due to the section rigid motion hypotheses a generic section collapse mechanism
will be defined by the position of the neutral axis

ε1 + x3 χ2 − x2 χ3 = 0 (25)

Denoting with ε̇ = {ε1, χ2, χ3} the vector collecting the collapse mechanism para-
meters we have

πE[ε̇] = max{ε̇T t : t ∈ E} (26)

i.e. πE[ε̇] is the signed distance with respect to the origin of the hyperplane tangent
to E and with normal ε̇. πE[ε̇] is then the support function of E (see Fig. 3).

The vector ty ∈ E collecting the generalized section resultants associated with ε̇

by the max condition in Eq. (26), can be evaluated by the expression



Shakedown Analysis of 3D Frames with an Effective Treatment . . . 265

ty =
⎡

⎣
Ny1
My2
My3

⎤

⎦ with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ny1 =
∑

i

⎛

⎜⎜
⎝

∫

Ω+
i

σti dΩi −
∫

Ω−
i

σci dΩi

⎞

⎟⎟
⎠

My2 =
∑

i

⎛

⎜⎜
⎝

∫

Ω+
i

x3σti dΩi −
∫

Ω−
i

x3σci dΩi

⎞

⎟⎟
⎠

My3 =
∑

i

⎛

⎜⎜
⎝

∫

Ω+
i

x2σci dΩi −
∫

Ω−
i

x2σti dΩi

⎞

⎟⎟
⎠

(27)

where σti and σci are the yield normal stress in traction and in compression, respec-
tively andΩ+

i andΩ−
i are the portion of d Si in traction or compression. The integrals

can be easily evaluated by the numerical procedure described in [5].
This definition states that, for each position of the neutral axis defined by ε̇k the

corresponding generalized stress tyk on the boundary of the section elastic domain
E[s] is obtainedby consideringuniaxial stress fields reaching theirmaximumstrength
capacity in each region, either in tension or in compression.

4.2 The Approximation of E Using a Minkowski
Sum of Ellipsoids

Once the support function values πE[ε̇k] for a series of Np direction ε̇k have been
obtained, we use them to approximate E by means of a Minkowski sum of NE
ellipsoids using the approach proposed in [4], to which we refer for further details.
The I th ellipsoid is defined by the following equation

EI [CI , cI ] =
{

t : ‖J−1
I (t − cI )‖ − 1 ≤ 0

}
(28)

where ‖ ·‖ stands for the Euclidean norm, the symmetric and definite positive matrix
CI = CT

I = JT
I JI gives the shape and orientation and cI the origin of the ellipsoid.

The support function of EI is

πEI [n] = ‖JI n‖ + nT cI (29)

As the support function of the Minkowski sum of convex sets is the sum of their
support functions [4] we have that
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πE [n] =
NE∑

I=1

πEI [n] =
NE∑

I=1

‖JI n‖ + nT c (30)

where c = ∑
I cI . From now on, capital romans letters are used to denote the I th

ellipsoid.
With the procedure adopted in [2, 4] we obtain, from the values of πE[ε̇k] evalu-

ated for Np directions ε̇k , the unknowns that define JI (six for each ellipsoid) and c
using the following minimization problem

min
(JI ,c)

Np∑

k=1

(πE[ε̇k] − πE [ε̇k])2 (31)

Eq. (30) allows us to approximate the elastic domain as the Minkowski sum of n
ellipsoids and of a singleton c, as

E[s] ≡
⎛

⎝
NE⊕

I=1

EI

⎞

⎠⊕ c, EI ≡ E [CI , 0] (32)

Denotingwith a subscript the dependence of the quantities on the section s Eq. (32)
means that the condition for static variable ts ≡ t[s] to be admissible is that it has to
be expressed as the sum of NE + 1 contributions

t[s] =
⎛

⎝cs +
NE∑

I=1

ts I

⎞

⎠ ∈ E[s] ⇐⇒ ts I ∈ EI (33)

Introducing the ellipsoid vector tsE = {ts1, . . . , ts NE } the plastic admissibility of
the stress ts in terms of the ellipsoid decomposition of the yield functions φs I [ts I ] ≡
‖J−1

s I ts I ‖ − 1 of the section in s rewrites as

{
t[s] = cs + Σ stsE

ΦsE [tsE ] ≤ 0
(34)

where ΦsE [tsE ] := {φs1[ts1], . . . , φs NE [ts NE ]} and the matrix Σ s is implicitly
defined by Eq. (33).

4.2.1 The Shakedown Yield Function as MSE

The shakedown yield function is defined in terms of the translated by ts vertexes of S
that is defining the admissibility of each tαs = λt̂

α

s + ts . Expressing tαs = cs +Σ stαsE
as MSE the plastic admissibility condition in Eq. (34) rewrites for shakedown as
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{
cs + Σ stαsE = λ t̂

α

s + ts

ΦsE [tαsE ] ≤ 0
∀α (35)

Introducing the vectors psE = {λt̂
1
s − cs, . . . , λt̂

Nv
s − cs} and the shakedown

yield function of the section ΦsE [λ, tsE ] := {ΦsE [t1sE ], . . . ,ΦsE [tNv
sE ]} Eq. (35)

rewrites as ⎧
⎨

⎩

− Isαts + Σ sE tsE = psE

ΦsE [λ, tsE ] ≤ 0
(36)

where matrices Isα and Σ sE are implicitly defined by Eq. (36).

4.3 Simplified Evaluation of the Elastic Envelope

Following the König [25] theorem a general rule adopted in numerical shakedown
analyses consist in considering only the convex hull of the loading history in P i.e., in
our case, the p · 2p load vertexes of the polytope in Eq. (13). Adopting this approach
the elastic stresses we have to check for plastic admissibility are those corresponding
to load vertexes.

However, as described in Sect. 3.2, using the convexity of the elastic domainE, the
control of the plastic admissibility can be performed by referring to the convex hull
of S. It involves only local quantities defined on the finite element (in our proposal
the normal actions of the beam end sections). When the value of p increases it is
possible that part of the elastic stresses associated with the load domain vertexes, are
in the interior of the local elastic envelope. This means that, while at the global level
we have to retain all the load vertexes, at the local level only a part of these will define
the convex hull of S and then will be significant to impose the plastic admissibility
condition. This is more clear if we consider the simple example of a truss structure
in which the plastic admissibility condition for the normal resultant N1 is defined by
−Ny ≤ N1 ≤ Ny , with Ny a reference yield value. In this case the convex hull of each
bar is defined only by the two vertexes corresponding to the maximum and minimum
value achieved, within all load combinations, by the normal resultant N1, i.e. we have
two vertexes for each bar, instead of p · 2p, independently from the value of p.

Then, the use of the vertexes of the convex hull of S produces, in general, a
reduction of the number of constraints of the optimization problem to be solved.
For this reason it is always convenient, independently from the method of solution
adopted, with respect to both effectiveness and robustness and does not introduce any
approximation. It is worth mentioning as this aspect is not considered in shakedown
algorithms due both to (i) the limited number of load conditions usually analyzed,
(ii) a not clearly distinction between the global and the local level of the analysis.

An other important problem regards the evaluation of the convex hull of S. The
use of standard algorithms presents some inconvenient as they require: (i) first to
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evaluate the 2p p vertexes corresponding to the load combinations; (ii) then to select
the Nv of these defining the convex hull of S.

To overcome these difficulties in the following, we propose a fast, simplified
procedure that directly provides the Nv significant vertexes in S as themost restrictive
with respect to the supporting hyperplanes of the section yield functionE[s], defined
in Eq. (26). In fact, shakedown yield condition for the section can be rewritten as

f [t, λ, n] :=
{

nT (t + λ t̂) − πE[n]
}

≤ 0, ∀t̂ ∈ S (37)

for all unitary vectors n. Obviously, only vertexes t̂
β ∈ S satisfying the condition

b[n] := nT t̂ = max (38)

for some n and are then significant in Eq. (37). A suitable approximation for this
selection rule is obtained by considering only a certain number Nh of relevant direc-

tions nh and select vertex t̂
h
associated with nh by maximizing the projection b[nh]

for all possible t̂ ∈ S. Recalling the definition (14) of S, this condition rewrites as

bh := max
k=1···p{bhk}, bhk =

p∑

j=1

γk j nT
k t̂ j , γk j :=

〈
ψk j αmin

j if nT
k t̂ j < 0

ψk j αmax
j if nT

k t̂ j ≥ 0
(39)

We obtain t̂
h = ∑p

i=1 γki t̂i using the same kth combination that gives bh . The use

of this selection rule allows us to associate one vertex t̂
h
with each direction nh and

then to drastically reduce the number Nv of vertexes to be considered. In fact, we will
have Nv ≤ Nh . In particular note that Nv < Nh if different directions are associated
with the same vertex as usually occurs.

The filter rule previously described corresponds to retain, as vertexes of S, only
those thatwould be usedwhen a piecewise external linearization of the elastic domain
(see [13]) is adopted. As will be shown in Sect. 5, usually few control directions are
sufficient to give very accurate results. In any case, as this selection is performed once
and for all at the beginning of the analysis, it is also possible to use a large number
of directions in order to select all the vertexes of the convex hull of S. It is worth
to note that the filtering procedure it is only used to select the convex hull vertexes
while the shakedown analysis always uses, a yield function described by ellipsoids.

The proposed algorithm presents further advantages: (i) it directly provides the
relevant vertexes of the elastic envelopewithout needing of the preliminary evaluation
of all the vertexes corresponding to the load domain (2p for each Sk using Eq. (13))
and the successive selection of those characterizing the convex hull of the domain;
(ii) moreover, it is also suitable for load combinations defined in a more complex
fashion with respect to that presented in Eq. (13) like, for instance, the combinations
including contribution of dynamical modes through SRSS or CQC combination rules
which are used in seismic analysis.
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4.4 The Closest Point Projection Problem
in Terms of Minkowski Sums of Ellipsoids

The CPP scheme in Eq. (21) has now to be expressed in terms of the MSE in which
we write the plastic admissibility condition in Eqs. (12) and (36). To build up an
efficient and accurate algorithm it has to be solved efficiently and in a robust fashion.
In particular remembering that ts = Ssβe for s = 0, � and introducing the following
vector quantities

βE =
⎡

⎣
βe
t0E
t�E

⎤

⎦ , pE =
[

p0E
p�E

]
QT
E =

[−I0αS0 Σ0E 0
−I�αS� 0 Σ�E

]
,

the CPP problem rewrites as

⎧
⎪⎪⎨

⎪⎪⎩

minimize
1

2
βe

T Heβe − βe
T Heβe

∗

subject to QT
E βE = pE

ΦE [βE ] ≤ 0

(40)

where ΦE [βE ] = {Φ0E [t0E ],Φ�E [t�E ]} .

4.4.1 The Return Mapping Solution of the Closest
Point Projection Problem

The CPP problem defined in Eq. (40) over the element can be solved using an
approach similar to that used for solving the global problem in Eq. (18).

In particular the CPP problem has again the equality constraints as complicating
constraints that couple all the ellipsoids contribution and various dual decomposition
techniques can be applied for its solution. In the following we briefly describe one
of these to illustrate how the dual decomposition and the proximal point algorithms
can be applied to this problem.

We again add quadratic terms to the objective function of problem (40) so obtain-
ing again a sequence of steps n as for Eq. (18). The nth of these steps is defined by
the problem ⎧

⎪⎪⎨

⎪⎪⎩

minimize
1

2
ΔβT

E HE ΔβE

subject to QT
E βE = pE

ΦE [βE ] ≤ 0

(41)
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where

HE = diag
[
H, H1

1, . . . , Hα
I . . .

]
, ΔβE = βE − β0E :=

⎡

⎣
βe − β∗

e
Δt0E
Δt�E

⎤

⎦

The positive definite matrices Hα
I can be appropriately selected to simplify the solu-

tion process.
Letting Δv be the Lagrangian multipliers of the equality constraints and ΔκT

E
be that of the inequality ones we obtain the following first order condition for the
problem (41)

rv := QT
E βE − pE = 0

rβ := HE (βE − β0E ) − QE Δv + AκE = 0

ΦeE [βE ] ≤ 0, ΔκE ≥ 0, ΔκT
E ΦeE = 0

(42)

are solved using a dual decomposition technique

• Elastic predicor
Assuming Δκ = 0 in the last equations (42) we have

β∗
E = β0E + H−1

E (QE Δv) (43)

that represents the ellipsoids decomposition of trial stress β∗
E . The initial

value of the process is obtained by substituting the so evaluated β∗
E in the

first of Eqs. (42) so obtaining

KE Δv = p̄E

where
KE = QT

E H−1
E QE , p̄E = pE − QT

E β0E

• Return mapping corrector
With fixed Δv the following problem is solved

⎧
⎨

⎩
minimize

1

2
(βE − β∗

E )T HE (βE − β∗
E )

ΦE [βE ] ≤ 0
(44)

that represents the CPP problem for the stress decomposed as MSE. Due to
the block nature of matrix HE and of the yield function ΦE [βE ] it can be
separated for each ellipsoid component as follows
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⎧
⎪⎨

⎪⎩

min
βe

α
I

1

2

(
tαs I − tα∗

s I

)T Hα
eI

(
tαs I − tα∗

s I

)
,

subject to: φI [s, tαs I ] ≤ 0.

(45)

where tα∗
s I is the component of β∗

E in Eq. (43) that corresponds to tαs I . The
solution of this problem, using the predictor corrector scheme is really very
simple when we select for Hα

eI the same matrix CI that defines the corre-
sponding constraint, obtaining in this way a standard radial return mapping
process.

• Equality constraints solution
At the element level we have to solve the equality constraints

QT
E βE [v] − pE = 0 (46)

As in the previous algorithm we use a Newton scheme that letting

{
Δv j+1 = Δv j + v̇

KtE v̇ = −rv j ,

where the algorithmic tangent matrix KtE = QT
E CtE QE can easily be

updated starting from the initial valued CE = H−1
E . In fact we obtain for

radial return mapping that

CtE = diag{· · · Hα
eI

1 − cα
s I

, · · · }

where 0 ≤ cα
s I ≤ 1 is a scalar function of the plastic multiplier.

5 Numerical Results

In this section we present some tests regarding the accuracy and the efficiency of the
new proposal in the shakedown analysis of 3D reinforced concrete frames.

5.1 Yield Function and Elastic Envelope Vertexes
for an L-Shaped Section

In Fig. 4 the yield function approximations for L shaped reinforced concrete (see also
[5]) are reported on the basis of 1, 3 and 5 ellipsoids. The points in blue correspond



272 G. Garcea et al.

Fig. 4 Yield function approximations with 1, 3 and 5 ellipsoids for the considered cross-section

Basic elastic actions
N̂1 M̂2 M̂3 αmin

j αmax
j

t̂ 1 407.6 -829.9 -412.4 -0.716 0.311
t̂2 1174.1 -456.7 566.8 -0.929 -0.156
t̂3 -5380.2 96.7 550.7 0.698 0.831
t̂4 237.9 943.4 -17.6 0.584 0.868
t̂5 -1127.1 958.6 361.7 0.357 0.919

Fig. 5 Convex hull evaluation, the approximated one in red

to the true values of tyk . The increase in accuracy is evident in the case of more
ellipsoids.

In Fig. 5 we report, for the same section, the convex hull vertexes of S for a
sequence of 5 assigned t̂ j with 0 ≤ α j ≤ 1. The Figure corresponds to the exact and
approximate evaluation of S using the 26 filtering hyperplanes proposed in [5]. It is
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worth noting as the true convex hull of Se is defined by 22 ≤ 25 = 32 vertexes while
the filtering procedure only select 18 vertexes.

5.2 Shakedown Analysis of a Continuous Beam

The first numerical test on shakedown analysis refers to the multibay simply sup-
ported beam shown in Fig. 6, with constant section characterized by ultimate strength
M0 and already analyzed in [5]. Two elements are used to describe each horizontal
span. External loads are defined by the simple rule

p[t] := α1[t]P1 + α2[t]P2,

{
0 ≤ α1[t] ≤ 1

0 ≤ α2[t] ≤ 1

The values regarding the elastic multiplier and the elastic and plastic shakedown
multipliers are shown in Table1 for the assigned ratio P2 = 2 P1 and using a different
number of ellipsoids and the exact or approximate evaluation of the convex hull.

In particular, in this simple case, the use of the simplified evaluation of the convex
hull furnishes exactly, for each section, the true convex hull vertexes also using only
the 26 filtering hyperplanes in [5]. Differences in the evaluation of themultipliers can
be observed by changing the number of the ellipsoids used to approximate the elastic
domain. In particular, the elastic limit λe and the shakedownmultiplier λa present the
larger differences due to the worst approximation of the elastic domain in the zone
with N1 ≈ 0 that characterizes the elastic solution. A better match is obtained for
the plastic multiplier λp (see [14] for its definition). On the contrary the shakedown
multiplier λa presents negligible differences as the stresses corresponding to the
ratcheting mechanism are in the zone of the maximum flexural moment, that is in
the zone of E better approximated also with a single ellipsoid (see Fig. 7).

Fig. 6 Loads and geometry for the continuous beam

Table 1 Shakedown
multipliers

1 Ellipsoid 3 Ellipsoids

Nh = 26 Exact Nh = 26 Exact

λe 82.205 82.205 75.822 75.822

λs 124.57 124.57 128.97 128.97

λp 168.39 168.39 174.33 174.33
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Fig. 7 Continuous beam: yield domain approximation for the rectangular section

Fig. 8 Loads and geometry

5.3 Shakedown Analysis of a 3D Frame

The second test refers to the four storey 3D frame shown in Fig. 8 and already
analyzed in [5]. The structure is under the action of varying horizontal concentrated
loads P1 = P cos(α), P2 = P sin(α), P3 = ±P1, P4 = ±P2. These forces act
in the presence of distributed vertical loads P5 applied on the beams and defined in
Table2. The results refer to a counterclockwise angle of α = π/4 with respect to the
direction of P1. The load domain is defined by

p[t] =
5∑

i=1

αi [t]Pi ,

⎧
⎪⎨

⎪⎩

− 1 ≤ α1[t], α2[t] ≤ 1

− 1 ≤ α3[t], α4[t] ≤ 1

0.9 ≤ α5[t] ≤ 1
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Table 2 3D Frame:
Shakedown multipliers

Single ellipsoid Three ellipsoids

Nh = 26 Exact Nh = 26 Exact

λe 40.765 40.765 38.610 38.610

λs 41.205 41.205 40.005 39.925

λp 47.206 47.206 47.330 47.330

The simplified evaluation of S has been performed using the 26 hyperplanes
defined in [5]. In this case the selection rule described in Sect. 4.3 don’t furnishes
exactly the same vertexes as the exact convex hull of S for each section. However
the results are coincident (or practically coincident) with those obtained using the
complete convex hull, as can be observed in Table2 where the values of the elastic
λe, plastic λp and shakedown λa multipliers are reported.

Some differences, in the evaluation of themultipliers can be observed by changing
the number of the ellipsoids used to approximate the elastic domain.

6 Conclusions

An FEM procedure for the shakedown analysis of 3D frames subject to complex
loading conditions has been presented, based on the iterative method proposed in
[12, 14]. Only flexural plastic mechanisms have been considered while the yield
surface of the section has been obtained by approximating the true values obtained
by exploiting the support function concept, by means of a Minkowski sum of ellip-
soids. The return mapping by closest point projection process, coming from the dual
decomposition algorithm, is further decomposed with a dual technique. In this way
a simple and effective radial return mapping process can be used for its solution.

With the aim of reducing the number of vertexes of the elastic envelope of each
section an approximate convex hull is evaluated retaining only the significant vertexes
with respect to a piecewise external linearization of the yield surface. Increasing the
number of hyperplanes we can evaluate the true convex hull of the elastic domain.
However the numerical tests show how the error, also when using a limited number
of hyperplanes, is not meaningful from a practical point of view.

The algorithm proposed can be effectively used for the design and the analysis of
reinforced concrete 3D frames subject to complex and large load combinations.
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Uncertainty Multimode Failure
and Shakedown Analysis of Shells

Thanh Ngo. c Trần and M. Staat

Abstract This paper presents a numerical procedure for reliability analysis of thin
plates and shells with respect to plastic collapse or to inadaptation. The procedure
involves a deterministic shakedown analysis for each probabilistic iteration, which
is based on the upper bound approach and the use of the exact Ilyushin yield surface.
Probabilistic shakedown analysis deals with uncertainties originated from the loads,
material strength and thickness of the shell. Based on a direct definition of the limit
state function, the calculation of the failure probability may be efficiently solved
by using the First and Second Order Reliability Methods (FORM and SORM). The
problem of reliability of structural systems (series systems) is handled by the applica-
tion of a special technique which permits to find all the design points corresponding
to all the failure modes. Studies show, in this case, that it improves considerably the
FORM and SORM results.

Keywords Limit analysis · Shakedown analysis · Reliability analysis · Multimode
failure · Non-linear optimization

1 Introduction

The plastic collapse limit and the shakedown limit which define the load-carrying
capacity of structures are important in assessing the structural integrity. Due to the
high expenses of experimental setups and the time consuming full elastic-plastic
cyclic loading analysis, the determination of these limits by means of numerical
direct plasticity methods has been of great interest to many designers. Moreover, a
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certain evaluation of structural performance can be conducted only if the uncertainty
of the actual load-carrying capacity of the structure is taken into consideration since
all resistance and loading variables are random in nature. To ensure the safety of
the structures to be designed, two approaches are normally used [1]. The classical
approach fixes the values of the safety factors and chooses the values of the design
variables to satisfy the safety conditions. All the variables involved are then assumed
to be deterministic and fixed to particular quantiles, i.e. mean value or characteristic
values [2]. The probability-based approach deals directly with realistic random vari-
ables to find the global probability of failure as the basic design criterion. Obviously,
the later problem is more difficult since the evaluation of the probability of failure
is not an easy task, especially when the structure has more than one failure mode
(multimode failure or multiple design points). In this case, analysis of the structural
system is required to evaluate the safety of the structure as a whole [1]. To handle
problems of this kind, the real structure is sometimes modelled by an equivalent
system in such a way that all relevant failure modes can be treated [2].

The reliability analysis of plates and shells with respect to plastic collapse or
to inadaptation was formulated on the basis of limit and shakedown theorems [3].
The technique was based upon an upper bound approach using a re-parameterized
exact Ilyushin yield surface and nonlinear optimization procedures. Based on a direct
definition of the limit state function, the non-linear problems may be efficiently solved
by using the First and Second Order Reliability Methods (FORM and SORM). In
order to get the design point, a non-linear optimization was implemented. FORM and
SORM match particularly well with direct plasticity methods because they render
the problem time invariant.

The non-linear optimization algorithm developed in [3] is guaranteed to converge
to a minimum-distance point on the limit state surface, provided that the limit state
function is continuous and differentiable. However, as with any non-convex opti-
mization problem, it is not guaranteed that the solution point is the global minimum-
distance point when the system has more than one failure mode. This paper aims at
extending the method developed in [3] for the probabilistic shakedown analysis of
multimode-failure plate and shell structures. A method to successively find the mul-
tiple design points of a component reliability problem, when they exist on the limit
state surface, is presented. Each design point corresponds with an individual failure
mode or mechanism. FORM and SORM approximations are applied at each design
point followed by a series system reliability analysis to lead to improved estimates
of the system failure probability.

2 Deterministic Shakedown Analysis of Shells

2.1 Governing Equations

In this study, we restrict ourselves to the case of homogeneous materials and shells of
constant thickness in which the yield limit σy and thickness h are the same at every
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Gaussian point of the structure. So we can write

σy = Yσ0, h = Zh0, (1)

where σ0, h0 are constant reference values and Y, Z are random variables. Let E
denote the Young’s modulus, ν is the Poisson’s ratio, Nαβ, Mαβ, ε̄αβ, καβ(α, β ∈
{1, 2}) are the physical membrane forces, bending moments, mid-plane strains and
curvatures, respectively (Fig. 1). We define the non-dimensional stress and strain
resultant vectors as follows

σ = [
n m

]T
, ε = [

ē k
]T

, (2)

with

n = 1

N0

[
N11 N22 N12

]T
, m = 1

M0

[
M11 M22 M12

]T
,

ē = 1

ε0

[
ε̄11 ε̄22 2ε̄12

]T
, k = 1

κ0

[
κ11 κ22 2κ12

]T
,

(3)

and N0 = σ0h0, M0 = σ0h2
0/4, ε0 = σ0(1 − ν2)/E and κ0 = 4ε0/h0 are the

normalized quantities.
The quadratic strain intensities are defined by

Pε = 3

4

(
dε p)T P1dε p, (≥0)

Pεκ = 3
(
dε p)T P2dε p,

Pκ = 12
(
dε p)T P3dε p, (≥0)

(4)

s

N11

N22

M12

M11
N12

12N

12M

M22

q

1

3s

2s

Fig. 1 Static shell quantities
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where dε p denotes the increment of the plastic strain resultant vector, and
Pi (i = 1, 2, 3) are

P1 =
(

P 0
0 0

)
, P2 =

(
0 P/2

P/2 0

)
, P3 =

(
0 0
0 P

)
, P =

⎛

⎝
4/3 2/3 0
2/3 4/3 0
0 0 1/3

⎞

⎠ .

(5)

By introducing some parameters as

υ = Pε

Pκ

, β = − Pεκ

Pκ

and γ = υ − β2, (6)

then, the plastic dissipation function for a shell structure may be written in the form [4]

D p(ε̇ p) = YN0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γ K0

)
, (7)

with

β1 = Z

2
− β, β2 = Z

2
+ β, K0 = ln

⎛

⎝

√
β2

1 + γ + β1
√

β2
2 + γ − β2

⎞

⎠ . (8)

2.2 Upper Bound Shakedown Analysis

Consider a convex polyhedral load domain L and a special loading path consisting
of all load vertices P̂k (k = 1, . . . , m) of L. Let σ E denote the fictitious elastic stress
resultant vector, u̇ denote the velocity fields, Bi denote the deformation matrix, and
wi be the weighting factor of the i th Gauss point (i = 1, . . . , NG). According to the
kinematic shakedown theorem, the upper bound shakedown load multiplier may be
formulated as [4]

αlim = min
NG∑

i=1

m∑

k=1

wi YN0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γ K0

)
,

s.t.:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∑

k=1
ε̇ik = Bi u̇ ∀i = 1, . . . , NG,

NG∑

i=1

m∑

k=1
wi N0ε0ε̇

T
ikσ

E
ik = 1.

(9)

By introducing some new notations

ėik = wi ε̇ik, tik = N0ε0σ
E
ik , B̂i = wi Bi , (10)
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and replacing dε p in Eq. (4) by ė for calculating the quadratic strain intensities Pε,
Pεκ and Pκ , the formulation in (9) is simplified as follows

αlim = min
NG∑

i=1

m∑

k=1
YN0ε0

√
Pκ

3

(
β1

√
β2

1 + γ + β2

√
β2

2 + γ + γ K0

)
,

s.t.:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∑

k=1
ėik = B̂i u̇ ∀i = 1, . . . , NG,

NG∑

i=1

m∑

k=1
ėT

iktik = 1.

(11)

Note that βi and γ in (11) are the same as those in (9) after replacing ε̇ or dε p by ė.
Dealing with the nonlinear constrained optimization problem (11), an efficient iter-
ative algorithm for large-scale optimization problems which is successfully applied
in [4, 5] is employed. Details of the iterative algorithm can be found in [5]. It is noted
that when m = 1, the formulation (11) reduces to limit analysis.

3 Probabilistic Formulation

Let X = (X1, X2, . . . , Xn) be an n-dimensional random variable vector char-
acterizing uncertainties in loads, material strength and shell thickness, and x =
(x1, x2, . . . , xn) be realizations of X. The deterministic safety margin is based on
the comparison of a structural resistance (threshold) R and loading S. With R, S
are functions of X, the structure fails for any realization with non-positive failure
function or limit state function, i.e.

g(X) = R(X) − S(X)

⎧
⎨

⎩

<0 for failure,
=0 for limit state,
>0 for safe structure.

(12)

The limit state function g(x) = 0, defines the limit state hyper-surface ∂ F which
separates the failure region F = {x| g(x) < 0} from the safe region. The failure
probability Pf is the probability that g(X) is non-positive, i.e.

Pf = P (g(X) ≤ 0) =
∫

F

fX(x)dx, (13)

where fX(x) is the n-dimensional joint probability-density function. In general, eval-
uation of the integral in (13) for an arbitrary failure region may not be possible.
Therefore, approximation methods are obviously needed. In this study, the First-
and Second-Order Reliability Methods (FORM and SORM) are used to evaluate
the failure probability. FORM and SORM are the most effective methods if gradient
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information is available [6]. The details of probabilistic limit and shakedown analysis
for one design point can be found in [7, 8].

3.1 Definition of the Limit State Function

As mentioned above, the limit state function contains the parameters of structural
resistance and loading. By normalization with the actual load P , the limit state
function can be expressed by the form [3, 4]

g = αlim − 1, (14)

in which αlim is the shakedown load factor calculated by (11). The limit state function
is the function of the yield stress variable Y = Xn−1, thickness variable Z = Xn and
load variables X j ( j = 1, . . . , n − 2). The actual load Q, in general, can be defined
by its components as follows

Q =
n−2∑

j=1

x j Q0
j , (15)

where x j and Q0
j are the realization and constant reference load of the j th basic load

variable Xj, respectively. By that way, the actual fictitious elastic stress resultants σ E

and t can also be decomposed as

σ E =
n−2∑

j=1

x jσ
0
j , t =

n−2∑

j=1

x j t0
j . (16)

The Jacobian and the Hessian of the limit state function, ∂g/∂x and ∂2g/∂x2, are
needed for the FORM and SORM as well as for finding the most likely failure points.
They must be first calculated at each probabilistic iteration in the physical x-space.
Then it is mapped into the standardized Gaussian u-space by using the chain rule

∇u g(u) = ∇u g(x) = ∇x g(x)∇ux,

∇2
u g(u) = ∇u (∇x g(x)∇ux) = (∇ux)T ∇2

x g(x)∇ux + ∇x g(x)∇2
u x.

(17)

The calculation of the Jacobian and the Hessian in the physical x-space is based on
a sensitivity analysis. Details of the calculation can be found in [4].

3.2 First- and Second-Order Reliability Methods

It is well-known that the most essential contributions to the failure probability come
from the vicinity of the most likely failure point if the distance from the origin in the
standardized Gaussian space to this point is suitably large [9]. The most likely failure
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point or the design point is the point on the limit state surface that has the shortest
distance to the origin in the u-space. FORM and SORM are analytical probability
integration methods in which the limit state function is approximated by a linear or
second-order surface at the design point in the u-space. If the limit state function
is not strictly non-linear, the probability of failure Pf can be determined with good
accuracy by FORM, where g (U) with g (0) > 0 is approximated by its Taylor
expansion gL (u) = g (u∗) + ∇u g (u∗)T (u − u∗) at the so-called design point u∗
(so that g (u∗) = 0, Fig. 2)

gL (u) = βHL + αT u,α = ∇u g (u∗)
|∇u g (u∗)| , βHL = −αT u∗. (18)

The vector α is proportional to the sensitivities ∇u g (u∗). The failure event is
equivalent to the event

{
αT u ≤ −βHL

}
, such that an approximation of the failure

probability

Pf,I ≈ P
(
αT U ≤ −βHL

)
= �(−βHL) = 1√

2π

−βHL∫

−∞
e−0.5z2

dz, (19)

where βHL is the distance from the origin in the u-space to the design point on the
limit state surface and �(.) is the standard Gaussian distribution function. βHL is
defined as the shortest distance from origin to the limit state surface ∂F, i.e.

βHL = min
g(u)=0

√
uT u (20)

A non-linear optimization algorithm which is based on the sequential quadratic
programming (SQP) is adopted to solve the optimization problem in (20). Details of
the algorithm can be found in [3].

Fig. 2 Safe and failure
regions with their linear and
quadratic approximations in
U-space



286 T.N. Trần and M. Staat

As an attempt to improve the accuracy of FORM, the limit state surface in SORM
is approximated by a quadratic hypersurface (Fig. 2)

gQ (u) = βHL + αT u + 1

2

(
u − u∗)T H

(
u − u∗) , (21a)

α = ∇u g (u∗)
|∇u g (u∗)| , H = ∇2

uu g (u∗)
|∇u g (u∗)| , βHL = −αT u∗, (21b)

where H is the scaled Hessian matrix of the limit state function. The main curvatures
κ j ( j = 1, . . . , n − 1) at the design point are equal to those of the limit state surface
in SORM. The failure probability is then calculated as a three term approximation
[7, 8, 10]

Pf,II = S1 + S2 + S3, (22a)

with

S1 = �(−βHL)

n−1∏

j=1

(
1 − βHLκ j

)−1/2
, (22b)

S2 = [βHL�(−βHL) − φ(βHL)]

×
⎧
⎨

⎩

n−1∏

j=1

(
1 − βHLκ j

)−1/2 −
n−1∏

j=1

(
1 − (βHL + 1)κ j

)−1/2

⎫
⎬

⎭
(22c)

S3 =(βHL + 1) [βHL�(−βHL) − φ(βHL)]

×
⎧
⎨

⎩

n−1∏

j=1

(
1 − βHLκ j

)−1/2 − Re

⎡

⎣
n−1∏

j=1

(
1 − (βHL + i)κ j

)−1/2

⎤

⎦

⎫
⎬

⎭
(22d)

where i = √−1, Re [.] represents the real part of the complex argument and φ(.) is
the standard Gaussian probability density function.

4 Multimode Failure

Structural systems can generally be characterized as series or parallel systems or
some combination of the two [11]. In series system, the formation of any individual
failure mode or mechanism is defined as system failure. For example, in statically
determinate or rigid-plastic structures, formation of a collapse mechanism results
in failure of the total system and therefore they can be modelled as series system
with each element of the series being a failure mechanism. In parallel system, failure
in a single element does not result in failure of the system, because the remaining
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elements may be able to sustain the external loads by redistributing of the loads.
A typical example of a parallel system is a statically indeterminate structure. Failure
of such structures always requires that more than one element fails before the structure
loses integrity and fails.

System-reliability analysis concerns the calculation of the failure probability when
the structure has more than one failure mode (multimode failure). Mathematically
we encounter system reliability analysis if the limit state surface is composed of
more pieces that generally intersect pairwise in sets of singular points. Each of these
pieces corresponds with an individual failure mode or mechanism. This section aims
at presenting a method to successively find all the design points of a system-reliability
problem, if they exist on the limit state surface. FORM and SORM approximations
are applied at each the joint density function by a series system reliability analysis
to obtain improved estimates of the system failure probability.

4.1 Bounds for the System Probability of Failure

If there are q failure mechanisms and the limit state surface is respectively described
by q equations

gi (X) = gi (X1, . . . , Xn) = 0, i = 1, . . . , q (23)

and if we denote the failure due to the i th mode as the random event Ei =
{x| gi (X) ≤ 0}, then the probability that the system fails is the probability that any
failure mechanism occurs. It means that

Pf = P
(
E1 ∪ E2 ∪ · · · ∪ Eq

) = P

( q⋃

i=1

Ei

)

. (24)

If the joint probability density function of the failure events fE (e) is known, then
the system probability of failure can be calculated by the q-dimensional integral

Pf = P

( q⋃

i=1

Ei

)

=
0∫

−∞
· · ·

0∫

−∞
fE (e1, . . . , eq)de1 . . . deq . (25)

Generally, evaluation of the system probability of failure through direct integration
of (25) may not be feasible, even if an expression exists for the joint density function of
failure modes, and all failure modes have been identified. In this case, bounds relieve
the necessity of evaluating the q-dimensional integral either analytically, numerically
or through Monte Carlo simulation [12, 13]. Several first-order bounds exist (e.g.
[14]) which only require knowledge of the individual probabilities of failure resulting
directly from the axioms of the probability theory. Unfortunately, these bounds may
be quite wide for structural reliability application [15]. More precise second-order
bounds can be given in terms of the individual failure probabilities and the joint
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failure probabilities between any two modes. If we denote the individual failure
probabilities as

Pi = P [gi (X) ≤ 0] , i = 1, . . . , q, (26)

then the bounds of the system probability of failure for a series system are [16]

P1 +
q∑

i=2

max

⎧
⎨

⎩
Pi −

i−1∑

j=1

Pij, 0

⎫
⎬

⎭
≤ Pf ≤

q∑

i=1

Pi −
q∑

i=2

max
j<i

(
Pij
)
, (27)

where the notation Pij has been used for the joint failure probability

Pij = P
[
gi (X) ≤ 0, g j (X) ≤ 0

]
. (28)

Since not all couples of the random events Ei are taken into account in Eq. (27)
the ordering of the modes has an effect on the bounds. Practical experience suggested
that ordering the failure modes according to decreasing values Pi may correspond to
the better bounds. In structural reliability, these bounds are frequently used and are
considered sufficiently accurate for most structural systems [15].

4.2 First-Order System Reliability Analysis

In a first-order system reliability analysis, the failure set is approximated by the
polyhedral set bounded by the tangent hyper-planes at the design points. Each design
point corresponds to a failure mode and they are the points on the limit state surface
that have smallest distances to the origin in the u-space. We denote the design points
in the u-space as u∗

i , i = 1, 2, . . . , q and their distances to the origin as βHLi = ∥∥u∗
i

∥∥,
which are the corresponding reliability indices. The individual failure probabilities
Pi are determined as

Pi = �(−βHLi ). (29)

The first-order approximation to Pij is obtained by approximating the joint failure
set by the set bounded by the tangent hyper-planes at the design points for the two
failure modes. Figure 3 presents the projection of the limit state surface for the two
failure modes on the plane containing the origin and the two design points u∗

i and
u∗

j . The joint failure probability Pij is thus calculated as

Pij = �
(−βHLi ,−βHL j ; ρij

) =
−βHLi∫

−∞

−βHL j∫

−∞
ϕ
(
x, y; ρij

)
dxdy, (30)

where the correlation coefficients between two failure modes ρij are

ρij = cos νi j =
(
u∗

i

)T u∗
j

βHLiβH L j
, (31)
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Fig. 3 Geometrical
illustration of first-order
system failure set
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and ϕ (x, y; ρ),

ϕ (x, y; ρ) = 1

2π
√

1 − ρ2
exp

[
−1

2

x2 + y2 − 2ρxy

1 − ρ2

]
, (32)

is the probability density function for a bivariate normal vector with zero mean values,
unit variances and correlation coefficient ρ.

Substituting the density function in (30) by the corresponding cumulative distri-
bution function �(x, y; ρ), which gives

Pij = �
(−βHLi ,−βHL j ; 0

)+
ρij∫

0

∂�
(−βHLi ,−βHL j ; z

)

∂ρ
dz

= �(−βHLi ) �
(−βHL j

)+
ρij∫

0

φ
(−βHLi ,−βHL j ; z

)
dz. (33)

Numerical techniques are available for evaluating the joint failure probability in
Eq. (33), e.g. Newton-Codes method. Simple bounds on the joint failure probability,
which is based on geometrical illustration of a multimode failure system, can also
be given, thus avoiding any numerical integration [11]. It should be noted that the
bounds (27) still estimate a solution of the generally unknown region with respect
to the exact value of the probability of failure. If we do not know where the values
of the probabilities are placed with respect to the exact values, we cannot confirm
that the bounds given above estimate the probability of failure. They bound some
approximation and we can only more-or-less reasonably expect that the approxima-
tion is close to the exact result and the bounds remain meaningful.
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4.3 Calculation of the Multiple Design Points

A real structure may have several failure modes or failure mechanisms and the exis-
tence of multiple failure modes (or multiple design points) may cause the following
problems in FORM and SORM. That is, the optimization algorithm which was devel-
oped in [3] may converge to a local design point. In that case, the FORM/SORM
solution misses the region of dominant contribution to the failure probability integral
and, thus, has large error. Even if the global design point is found, the neighborhoods
of the local design points may also have a significant contribution to the failure prob-
ability integral. Approximating the limit state surface only at the global design point
loses these contributions.

In this section, a simple method is presented for finding the multiple design points
of a system reliability analysis problem, when they exist on the limit state surface.
The method was developed by Kiureghian and Dakessian [17]. The basic idea of
the method is to construct “barriers” around previously found solutions, thus forcing
the algorithm to seek a new solution. Once all the design points are known, the
failure probability of series system is calculated by using first-order system reliability
method and second-order bounds as presented above.

Suppose that the first design point u∗
1 is already found by the non-linear opti-

mization algorithm developed in [3]. A ‘barrier’ for this point is then constructed
by adding a ‘bulge’ to the limit state surface. Thus, the limit state function for the
deformed surface is

g1 (u) = g (u) + B1 (u) , (34)

where B1 (u) defines the bulge fitted at u∗
1. Solving the optimization problem with

the new limit state function g1 (u) leads to a second design point u∗
2. In order to seek

the third solution point u∗
3, a bulge B2 (u) is now added at u∗

2 resulting in the new
limit state function g2(u) = g1(u) + B2(u). The process is repeated until all design
points are found. The limit state function for finding the qth design point thus, is

gq−1 (u) = g (u) +
q−1∑

i=1

Bi (u) (35)

Details of the definition of the bulges Bi (u) can be found in [17]. As is shown in
Fig. 4, it is possible for the optimization algorithm to converge to the points located
at the feet of the bulge, which are actually the spurious minimum-distance points.
However, practical experience showed that this occurs only when there is no other
genuine design point. Thus, convergence to a spurious point usually means that
no other genuine design point exists [17]. This nature can be used as the stopping
criterion of the algorithm.
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Fig. 4 Definition of a bulge
at design point u∗
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5 Numerical Applications

Numerical examples are presented in this section to assess the performance of the
proposed method. In all examples, the structures were made of elastic-perfectly
plastic material and flat 4-noded shell element was used to discretize the structural
domains. For each test case, analytical solutions are briefly introduced and compared.
The probabilistic limit and shakedown analysis of a pipe junction with two failure
modes is discussed in detail. Further tests of the method have been made in [18] for
the limit analysis of the well-known problem of a portal frame which exhibits three
failure modes.

5.1 Plastic Collapse of a Pipe-Junction Subjected
to Internal Pressure and Bending Moment

In this example, a pipe-junction subjected to an internal pressure p and a constant
bending moment M as shown in Fig. 5 (left) is considered. The essential dimensions
were chosen as D = 285 mm, d = 20 mm, s = 15 mm and t = 7.5 mm. The limit
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Fig. 5 Geometrical dimensions and FE-mesh of the pipe-junction

and shakedown loads of this pipe-junction were investigated in Vu et al. [19] using
the solid 20-node hexahedron element HEXA20 in Code_Aster and a primal-dual
shakedown algorithm. A deterministic assessment in terms of safety factors was made
in Vu et al. [19]. They also showed that the solid 8-node hexahedron element HEXA8
makes the structure much stiffer and large differences in the limit and shakedown
loads are observed in Fig. 6. Such differences in the deterministic analyses are critical
for the highly sensitive stochastic analyses.
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Fig. 6 Interaction diagram of the pipe junction showing the two failure modes of plastic collapse
and of non-shakedown and the numerical difference between the solutions with 8-nodes and 20-
nodes solid elements, Vu et al. [19]
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Table 1 Mean values and standard deviations of random variables—pipe-junction

Internal pressure
p (MPa)

Bending moment
M (Nm)

Yield stress
σy (MPa)

Mean value μ 14 720 234

Standard deviation σ 1.4 72 23.4

Loads and the yield stress of the material were supposed to be normally distributed
random variables with mean values and standard deviations given in Table 1. It was
expected that the pipe-junction has two failure modes: the failure of the large pipe
under pressure and the failure of the nozzle under pure bending, see Fig. 6.

Failure of the large pipe:
The exact fully plastic pressure of the large pipe can be obtained by

plim = 2√
3
σy ln(1 + 2s

D
) (36)

Let X1, X2 denote the two load random variables corresponding to pressure and
bending moment. The limit state function in the physical x-space is then defined by

g(X) = 2√
3

ln(1 + 2s

D
)Y − X1, (37)

is a linear function. Since both yield stress and pressure random variables are normally
distributed, the limit state function g(U) in the standardized Gaussian u-space is also
a linear function. If μp,M,r and σp,M,r are mean values and standard deviations of
three random variables: pressure p, bending moment M and yield stress σy . The
mean and standard deviation of the limit state function can be calculated as follows

μgS = 2√
3

ln(1 + 2s

D
)μr − μp, σgS =

√(
2√
3

ln(1 + 2s

D
)

)2

σ 2
r + σ 2

p, (38)

from which, the reliability index becomes

βHL = μgS

σgS
=

2√
3

ln(1 + 2s
D )μr − μp

√(
2√
3

ln(1 + 2s
D )
)2

σ 2
r + σ 2

p

= 4.283 (39)

Failure of the nozzle:
The exact fully plastic collapse limit bending moment of the nozzle is given by

Mlim = Wpσy, Wp = 1

6

[
(d + 2t)3 − d3

]
, (40)
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where Wp is the plastic section modulus. The limit state function in the physical
x-space is then defined by

g(X) = WpY − X2. (41)

The limit state function g(U) in the standardized Gaussian u-space is also a linear
function. Thus, the reliability index is obtained by

βHL = Wpμr − μM√(
Wp
)2

σ 2
r + σ 2

M

= 4.160 (42)

In our numerical analysis one half of the structure was discretized by 890 4-noded
flat shell elements as shown in Fig. 5 (right). The ‘barriers’ technique developed by
Der Kiureghian and Dakessian [17] was performed with the parameters γ = 0.4,
δ = 0.3 to define the bulges in order to find both design points as expected, and
numerical results of design points are presented in Table 2.

The global design point u∗
1 = 4.154 [0.321 0.857 −0.404]T with βHL1 =

4.154 was found firstly in the u-space (analytically βHL1 = 4.160). Three com-
ponents of u correspond to three basic variables p, M and yield stress σy , respec-
tively. The sensitivities a1, a2 of the loading variables p, M were positive whereas
the sensitivity a3 of the resistance variable σy was negative [13]. This design point
corresponds to the failure of the nozzle at its fully plastic bending moment since the
effect of M was dominant. After adding a bulge B1(u) at u∗

1, the algorithm converged
to the second design point u∗

2 = 4.296 [0.914 0.137 −0.383]T with βHL2 = 4.296
(analytically βHL2 = 4.283). This local design point corresponds clearly to the fully
plastic pressure of the large pipe because p had the greater contribution to the failure
of the structure. Then we supposed to proceed further and placed a bulge B2(u) at
u∗

2. Our search algorithm converged to u∗
3 = 4.432 [0.633 0.740 −0.228]T with

βHL3 = 4.432. The distance
∥∥u∗

3 − u∗
1

∥∥ = 1.640 between the two design points was
less than but close to the radius r1 = γβHL1 = 0.4 × 4.154 = 1.662 of the bulge,
thus confirming that u∗

3 is a spurious design point. If we further placed a bulge B3(u)

at u∗
3 and continue the algorithm, the point u∗

4 = 4.745 [0.831 0.478 −0.285]T

with βHL4 = 4.745 was found. Obviously it was also a spurious design point since
the distances

∥∥u∗
4 − u∗

2

∥∥ = 1.705 between the two design points u∗
2, u∗

4 was also less
than but close to the radius r2 = γβHL2 = 0.4 × 4.296 = 1.718 of the bulge. Thus,
at this stage, we stopped to search and assumed that there are only two design points

Table 2 Multiple design points and search steps—limit analysis (ai = ui / ‖u‖)
Step a1 a2 a3 βHL Nature Failure

1 0.321 0.857 −0.404 4.154 Global design point Nozzle

2 0.914 0.137 −0.383 4.296 Local design point Large pipe

3 0.633 0.740 −0.228 4.432 Spurious design point –

4 0.831 0.478 −0.285 4.745 Spurious design point –
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for this problem. It should be noted here that, the SQP algorithm worked well to find
all the optimal points in this case.

The linear approximation of the failure set was constructed by the tangent hyper-
planes at the two design points. The corresponding approximations of failure mode
correlations and joint failure mode probabilities are listed in Table 3. The numerical
single and system failure probabilities are presented in Table 4. It is observed that the
numerical reliability indices compare extremely well with analytical ones obtained
from Eqs. (39) and (42). The reliability indices have an error in the order of the
deterministic model i.e. of the direct plastic analysis. This demonstrates the impor-
tance of good convergence of the deterministic algorithm and of the precision of the
shell approximation. It is critically observed that some direct methods, which were
compared in Vu et al. [19] failed to converge to an acceptable solution. For highly
reliable structures a greater error of the deterministic model makes the probabilistic
analysis meaningless.

5.2 Shakedown of a Pipe-Junction Subjected
to Internal Pressure and Bending Moment

In this continuous example, the pipe-junction investigated in Sect. 5.1 was consid-
ered in which the pressure and bending moment vary within the range [0, p] and
[0, M], respectively. Consider the case where the maximal load magnitudes p and
M are random variables and the minimal magnitudes are fixed to be zero. Numerical
deterministic analyses lead to shakedown limits pSD = 0.079σy (if M = 0 Nm) and
MSD = 3.969σy Nm (if p = 0 MPa). If all the random variables are supposed to be
normally distributed with means and standard deviations given in Table 1, then the
semi-analytical reliability indices of the pipe-junction may be calculated as

Table 3 Failure mode correlations and joint failure mode probabilities—limit analysis (first order)

Failure mode correlations ρij Joint failure probabilities Pij × 105

1 2 1 2

1 1.0 0.566 1.634 0.0236

2 0.566 1.0 0.0236 0.870

Table 4 Failure probability of the pipe-junction—limit analysis (Pf × 105)

Method u∗
1 alone (Nozzle) u∗

2 alone (Large pipe) u∗
1 and u∗

2

FORM SORM FORM SORM FORM

Present 1.634 1.622 0.870 0.893 2.480

Analytical 1.591 0.922 –
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Table 5 Multiple design points and search steps—shakedown analysis (ai = ui / ‖u‖)
Step a1 a2 a3 βHL Nature Failure

1 0.235 0.892 −0.386 1.772 Global design point Nozzle

2 0.902 0.174 −0.395 1.933 Local design point Large pipe

3 0.576 0.783 −0.234 2.134 Spurious design point –

4 0.816 0.486 −0.312 2.407 Spurious design point –

βHL = 0.079μr − μp√
0.0792σ 2

r + σ 2
p

= 1.935 for the large pipe (43)

βHL = 3.969μr − μM√
3.9692σ 2

r + σ 2
M

= 1.776 for the nozzle (44)

Numerical results for finding both design points are presented in Table 5. The
global design point u∗

1 = 1.772 [0.235 0.892 −0.386]T with βHL1 = 1.772
was found firstly in the u-space (semi-analytically βHL1 = 1.776). This design
point corresponds to the failure of the nozzle since the effect of M is domi-
nant. After adding a bulge B1(u) at u∗

1, the algorithm converged to the second
design point u∗

2 = 1.933 [0.902 0.174 −0.395]T with βHL2 = 1.933 (semi-
analytically βHL2 = 1.935). This local design point corresponds clearly to the
failure of the large pipe because p had a greater contribution. Then we supposed
to proceed further and placed a bulge B2(u) at u∗

2. Our search algorithm con-
verged to u∗

3 = 2.134 [0.576 0.783 −0.234]T with βHL3 = 2.134. The distance∥∥u∗
3 − u∗

1

∥∥ = 0.703 between the two design points u∗
1, u∗

3 was less than but close
to the radius r1 = γβHL1 = 0.4 × 1.772 = 0.709 of the bulge, thus confirm-
ing that u∗

3 is a spurious design point. If we further placed a bulge B3(u) at u∗
3

and continued the algorithm, the point u∗
4 = 2.407 [0.816 0.486 −0.312]T with

βHL4 = 2.407 was found. Obviously it is also a spurious design point since the dis-
tances

∥∥u∗
4 − u∗

2

∥∥ = 0.743 between the two design points u∗
2, u∗

4 was also less than
but close to the radius r2 = γβHL2 = 0.4 × 1.933 = 0.773 of the bulge. Thus, at
this stage, we stopped to search and assumed that there were only two design points
for this problem.

The linear approximation of the failure set was then constructed by the tangent
hyper-planes at the two found design points. The corresponding approximations of
failure mode correlations and joint failure mode probabilities are listed in Table 6.
The numerical single and system failure probabilities are presented in Table 7.
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Table 6 Failure mode correlations and joint failure mode probabilities—shakedown analysis (first
order)

Failure mode correlations ρij Joint failure probabilities Pij × 102

1 2 1 2

1 1.0 0.520 3.820 0.684

2 0.520 1.0 0.684 2.662

Table 7 Failure probability of the pipe-junction—shakedown analysis (Pf × 102)

Method u∗
1 alone (Nozzle) u∗

2 alone (Large pipe) u∗
1 and u∗

2

FORM SORM FORM SORM FORM

Present 3.820 3.812 2.662 2.660 5.798

Semi-analytical 3.787 2.650 –

6 Conclusions

The present work provides an effective plastic analysis method for the integrity
assessment of general shells with multimode failure. Practical experience showed
that the existence of multimode failure (multiple design points) in component relia-
bility analysis could give rise to great errors in FORM and SORM approximations
of the failure probability. In this work, a technique has been performed with an SQP
algorithm to successively find the multiple design points of a system reliability prob-
lem, if they exist on the limit state surface. This technique was based upon a ‘barrier’
method by constructing a bulge around previously found design points, thus forcing
the algorithm to seek a new design point. Second-order bounds of the reliability of
series system were then calculated based on the first-order system reliability analy-
sis. Numerical examples showed that it improved considerably the estimates of the
system failure probability.
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Three-Dimensional Shakedown Solutions
for Cross-Anisotropic Cohesive-Frictional
Materials Under Moving Loads

Hai-Sui Yu, Juan Wang and Shu Liu

Abstract Based on Melan’s lower-bound shakedown theorem, shakedown analysis
of cross-anisotropic cohesive-frictional materials under three-dimensional moving
Hertz loads is presented. The material behaviour is characterised by a generalised
Mohr-Coulomb criterion. By means of a critical self-equilibrated residual stress
field, rigorous lower-bound shakedown solutions can be obtained through a simple
optimisation procedure. Influences of both elastic anisotropy and plastic anisotropy
are investigated. And shakedown solutions for a two-layered pavement system with
cross-anisotropic materials are also presented. Results imply that pavement design
based on the isotropic assumption may result in unsafe design against rutting.

Keywords Shakedown · Layered pavements · Cross-anisotropic · Mohr-Coulomb
criterion

1 Introduction

When an elastic-plastic structure is subjected to cyclic loads (larger than yield limit),
it may gradually adapt itself to the applied loads during initial load cycles, thereafter
deform purely elastically without any further plastic deformation. This behaviour is
termed as ‘shakedown’. The maximum load below which shakedown can occur is
regarded as ‘shakedown limit’. Shakedown analysis can be applied in the field of
pavement engineering. If the applied load is lower than the pavement shakedown
limit, pavement rutting depth will cease to increase after a number of load passes.
Otherwise, plastic deformation accumulates after each load application and excessive
rutting will eventually occur [3, 24].
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The determination of the shakedown limit, as an essential part in the application of
the shakedown concept, can be achieved either by means of numerical elastic–plastic
analysis (e.g. [29]) or by shakedown analysis. Compared with the numerical elastic–
plastic method, where full history of stress–strain curve is calculated, shakedown
analysis can directly obtain the shakedown limit by using the static/lowerbound
shakedown theorem [16] or the kinematic/upper-bound shakedown theorem [10].
Therefore, it has drawn a lot of attention from engineering researchers.

For the problem of pavements under repeated traffic loads, upper-bound shake-
down solutions have been presented for both two-dimensional (2D) pavement model
[4, 13] and three-dimensional (3D) pavement model [2]. Meanwhile, 2D lower-bound
pavement shakedown solutions [11, 17, 19–21, 27, 33] were proposed. Recently,
Yu [23] and Yu and Wang [28] performed lower-bound shakedown analysis for an
isotropic, homogenous cohesive-frictional half-space under a 3D moving surface
load. It should be noted that static and kinematic shakedown solutions provide lower
and upper bounds to the true shakedown limit respectively. This is because the static
shakedown theorem satisfies the internal equilibrium equations and the stress bound-
ary conditions, while the kinematic shakedown theorem satisfies the compatibility
condition for plastic strain rate and boundary conditions for velocity. Nevertheless,
some converged upper and lower bound solutions have been obtained. For instance,
in the case of 3D Tresca half-space subjected to a moving load, the lower-bound
shakedown solution (as obtained by [23, 28]) is 4.68 while the upper-bound shake-
down solution (as obtained by [18]) is 4.7. For conservative pavement design, this
paper will however focus on the development of lower-bound shakedown solutions
for more realistic cases in practice.

For many ground deformation problems, soils are assumed to have a single vertical
axis of symmetry with the same properties in any horizontal direction but different
properties in vertical direction. This kind of anisotropy is known as cross-anisotropy
or transverse isotropy. In the elastic range, the behaviour of a cross-anisotropic mate-
rial can be described as follows:

⎡

⎢⎢⎢⎢⎢⎢
⎣

δεxx

δεyy

δεzz

δεxy

δεxz

δεyz

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

1/Eh −υh/Eh −υvh/Ev

−υh/Eh 1/Eh −υvh/Ev

−υhv/Eh −υhv/Eh 1/Ev

1/2Gh
1/2Gvh

1/2Gvh

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

δσxx

δσyy

δσzz

δσxy

δσxz

δσyz

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

(1)

where the stress increments δσij and strain increments δεij are referred to Cartesian
axes (i.e. i and j denote x axis, y axis or z axis), with the z axis being vertical; Eh
is Young’s modulus in horizontal (H) direction; Ev is Young’s modulus in vertical
(V) direction; Gh is shear modulus in horizontal plane; Gvh is shear modulus in VH
plane; υh is Poisson’s ratio (effect of horizontal strain on complementary horizontal
strain); υvh is Poisson’s ratio (effect of vertical strain on horizontal strain); υhv is
Poisson’s ratio (effect of horizontal strain on vertical strain). There are another two
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correlations between these parameters (Eqs. 2–3), so that a cross anisotropic material
can be fully defined by five independent parameters.

Gh = Eh

2(1 + υh)
, (2)

υvh

υhv
= Ev

Eh
. (3)

Elastic properties of anisotropic soils have been widely explored. For example,
typical values of Ev/Eh for clays may range from 0.25 to 1.11 (e.g. [14, 22, 25]).
Experimental results for sands and gravel also show some degree of inherent
anisotropy with Ev/Eh from 1.06 to 2 (e.g. [8, 9, 12]). Graham and Houlsby [5]
proposed that the elastic anisotropy of natural clays can be described by three para-
meters: E∗ and υ∗ and α by giving the following definitions: Ev = E∗, Eh = α2E∗,
υh = υ∗, υvh = υ∗/α, Gvh = αE∗/(2 + 2υ∗), Gh = α2E∗/(2 + 2υ∗).

The property of anisotropy is also an inherent characteristic of asphalt concrete
caused by the non-uniform distribution of aggregates. Experimental data [32] show
that anisotropy of asphalt concrete under field compaction might also be approxi-
mated as cross-anisotropy with Ev/Eh ≈ 3.33. The significant anisotropy has impor-
tant implications for pavement design and analysis. Pavement design based on the
isotropic assumption may result in unsafe design against rutting and fatigue cracking.

Laboratory tests performed on soil specimens cut at different orientations have
also demonstrated the directional dependence of soil shear strength (e.g. [1, 6, 15]).
It has been suggested that the variation of soil cohesion with direction due to inherent
anisotropy is much more significant than the anisotropy of material friction angle
[1].

In this paper, previous 3D lower-bound shakedown analysis of Yu and Wang [28]
will be further developed to consider more realistic cases in pavement engineer-
ing, including variation of elastic and plastic material properties with direction, and
layered pavement system.

2 Problem Definition

This paper considers a cohesive-frictional layered system that is subject to a surface
contact loading limited to a circle of raidus a, as shown in Fig. 1. If tensile stresses
are treated as positive, then pressure p and traction q on the contact surface are
formulated as:

p = 3P

2πa3

(
a2 − x2 − y2

)
, (4)

q = 3Q

2πa3

(
a2 − x2 − y2

)
, (5)

where P is the total normal load applied in the z-direction (i.e. the vertical direc-
tion) and Q is the total shear load applied in the x-direction (i.e. the moving load
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Fig. 1 Problem definition
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direction). This load distribution is also known as the 3D Hertz load distribution. It has
a maximum pressure p0 = 3P/2πa2 at the centre of contact area (x = y = z = 0).
The normal and shear loads are assumed to be correlated by a frictional coefficient
μ = Q/P.

Materials for this layered system are assumed to be cross-anisotropic with a ver-
tical axis of symmetry. The elastic properties can be described by five parameters.
In Hanson [7], five elastic constants A11, A13, A33, A44, A66 were used to define the
material behaviour as below:
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⎤
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⎦

. (6)

In the present study, the following parameters are considered: Eh (or Ev), Ev/Eh,
Gvh/Gh, υh and υvh. These five constants correlate with Young’s modulus, shear
modulus and Poisson’s ratio as follows:

A11 = 1 − υvhυhv

EhEv�
, A13 = υhv + υhυhv

E2
h�

, A33 = 1 − υ2
h

E2
h�

, A44 = Gvh,

A66 = Gh = Eh

2(1 + vh)
, where � = (1 + υh) (1 − υh − 2υhvυvh)

E2
hEv

.

In terms of plastic anisotropy, it is assumed that the directional strength, in par-
ticular the variation of cohesion with direction, can be described by the following
mathematical expression [15]:

cθ = ch + (cv − ch) sin2 α, (7)

where ch and cv are the values of cohesion on the horizontal and vertical planes
respectively and cθ represents the cohesion measured on a plane inclined at an angle α

to the horizontal plane. If Mohr-Coulomb material is considered, the failure criterion
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should be generalised to consider directional strength variation. This gives [26]:

f = (σzz − σxx − 2σxz tan φ)2 + (cv − ch + 2σxz − σxx tan φ + σzz tan φ)2

− (cv + ch − σxx tan φ − σzz tan φ)2 ≤ 0, (8)

where φ is material friction angle.

3 Melan’s Lower-Bound Theorem

Melan’s lower-bound shakedown theorem states that an elastic-perfectly plastic struc-
ture will shakedown under repeated or cyclic loads if the yield condition at any point
is not violated by the combination of a self-equilibrated residual stress field and a
load-induced elastic stress field. If the applied load is denoted by λp0 and λ is a
dimensionless scale parameter, then all the induced elastic stress components are
proportional to λ. Melan’s shakedown theorem hence demands:

f (λσ e
ij + σ r

ij) ≤ 0, (9)

where σ e
ij is the elastic stress field due to the applied pressure p0, σ r

ij is the residual
stress field and f (σij) = 0 is the yield condition for the material.

4 Shakedown Analysis

Based on Melan’s shakedown theorem, the essence of shakedown analysis is to find
the maximum admissible load under which a self-equilibrated residual stress field
can be found so that the total stress state will not violate the yield criterion.

For the problem considered here, the material is cross-anisotropic with a vertical
axis of symmetry, the resulting permanent deformation and therefore the residual
stress field will be independent of the travel (x) direction. According to Yu [23],
under a moving 3D Hertz load distribution, plane y = 0 can be considered as the
most critical plane in the half-space and σ r

xx is the only possible residual stress in
this plane. Therefore, the total stresses for a point in the half space under the Hertz
load distribution can be defined as the sum of elastic stresses and residual stresses:

σxx = λσ e
xx + σ r

xx,

σzz = λσ e
zz,

σxz = λσ e
xz.

(10)

If the generalised, anisotropic Mohr-Coulomb yield criterion Eq. 8 is utilised
to describe the material yield condition and σyy is the intermediate stress, Eq. 10
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can be substituted to the yield criterion Eq. 8 to satisfy the requirement of Melan’s
shakedown theorem and this gives:

f = (
σ r

xx + M
)2 + N + P ≤ 0, (11)

where σ r
xx is self-equilibrated,

M = λσ e
xx − λσ e

zz + 2
(
ch − λσ e

zz tan φ
)

tan φ,

N = 4
(

tan2 φ + 1
) [(

λσ e
xz

)2 − (
ch − λσ e

zz tan φ
)2

]
,

P = 4 (cv − ch)
[
λσ e

xz − (
ch − λσ e

zz tan φ
)]

.

It should be noted that if cv equals to ch, then P is zero and Eq. 11 becomes
equivalent to the shakedown condition of Yu and Wang [28] for the special case of
isotropic materials.

A critical residual stress field that always fulfills the equilibrium condition is then
conceived by calculating min(−Mi + √ −Ni − Pi) (referred to as ‘minimum larger
root’) or max(−Mi − √−Ni − Pi) (referred to as ‘maximum smaller root’) at each
depth z = j (i is node number). The present shakedown problem can be written as a
mathematical formulation:

maximise λ,

subject to
⎧
⎨

⎩

f
(
σ r

xx (λσ e) , λσ e
) ≤ 0,

σ r
xx (λσ e) = min

z=j
(−Mi + √−Ni − Pi) or σ r

xx (λσ e) = max
z=j

(−Mi − √−Ni − Pi).

(12)

If a single layer of material is considered, Eq. 12 can be rewritten as:

maximise λ,

subject to f

(
λ,μ, Eh,

Ev

Eh
,

Gvh

Gh
, υh, υvh, φ, ch, cv

)
≤ 0.

(13)

As can be seen, the shakedown limit λsdp will be dependent on frictional coeffi-
cient μ, elastic parameters of materials (i.e. Eh, Ev/Eh, Gvh/Gh, υh and υvh), plastic
parameters of materials (i.e. ch, cv and φ). If a layered pavement system is consid-
ered, the shakedown limit will also be affected by layer thicknesses and material
properties of each layer.

When the load form, materials and layer thicknesses are determined, Eq. 13 can
be reduced to the following expression with only one variable λ:

maximise λ,

subject to f (λ) ≤ 0.
(14)
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5 Numerical Technique and Results

In the present study, numerical technique and results are firstly presented and dis-
cussed for a special case—homogeneous half-space, and then for cases with two-
layered materials.

5.1 Homogenous Materials

A numerical procedure has been developed in Wang and Yu [31] to solve the present
shakedown problem Eq. 12, so it will not be repeated here. It as well as the closed-
form expressions for elastic stress fields in a homogenous half-space [7] has been pro-
grammed into FORTRAN. In this section, lower-bound shakedown limit is defined
as k = λsdp0/ch.

Analyses were first conducted in consideration of elastic anisotropy only. As men-
tioned before, the elastic stress fields for a cross-anisotropic material are dependent
on five elastic parameters, and the following parameters were used in this study: Eh,
Ev/Eh, Gvh/Gh, υh and υvh. It has been found through sensitive study that variation
of Poisson’s ratio υh and υvh only has slightly influences on the shakedown limit.
Further investigations show that for the problem of a homogeneous half-space, the
shakedown limit is not influenced by Young’s modulus in a particular direction (i.e.
Eh or Ev), but affected by Young’s modulus ratio Ev/Eh. This finding is similar to
that for an isotropic homogeneous half-space, in which shakedown solutions do not
vary with Young’s modulus E.

Figure 2 demonstrates the influence of Young’s modulus ratio on lower-bound
shakedown limits when the material internal friction angle is 0 and 30◦. There exists
a peak shakedown limit at a given shear modulus ratio. However, it should be noted
that the elastic parameters of pavement materials are somewhat related. A series of
analysis then was performed to investigate the interactive effect of Ev/Eh and Gvh/Gh
on the shakedown limit. Results are presented in a logarithmic scale as shown in Fig. 3.
When the frictional coefficient μ is zero, failure always initiates below the surface
(i.e. subsurface failure), and the shakedown limit changes more quickly with Ev/Eh
than that with Gvh/Gh until a peak value is reached. In these figures, the peak value is
around 5 for φ = 0◦ and around 22 for φ = 30◦. When the frictional coefficient μ =
0.5, the critical points mostly lie on the surface (i.e. surface failure) and the change
of shakedown limit is dominated by the variation of Gvh/Gh, not Ev/Eh, except those
at the lower-right corner (their shakedown limits are controlled by subsurface critical
points). A maximum value k = 2 is also observed for the case φ = 0◦. These results
imply that when the elastic anisotropy is taken into account, shakedown solutions for
cohesive-frictional materials under a 3D Hertz load tend to be controlled by Ev/Eh
for subsurface failure cases but by Gvh/Gh for surface failure cases.

Figure 4 presents the shakedown limit against the frictional coefficient μ for differ-
ent values of cohesion ratio cv/ch, while the soil friction angle φ = 30◦. When cv/ch
is smaller than 1, the shakedown limit reduces as the frictional coefficient increases.
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Fig. 2 Influences of Young’s modulus ratio on lower-bound shakedown limits when μ = 0.
a φ = 0◦. b φ = 30◦

This trend follows that for isotropic solutions (i.e. cv/ch = 1) in [28]. It is interesting
to find out that when cv/ch is larger than 1, there exists a peak value of shakedown
solutions giving an optimum frictional coefficient μ (>0). This is different from the
isotropic solutions of which the value is always maximum when μ equals 0.

Results in Fig. 4 are also divided into surface failure cases and subsurface failure
cases by a dash line and a dot line. The dot line represents subsurface failure cases
of which value is controlled by 1/a (Eq. 15). On the left hand side of the dash line,
the critical point initiates below the surface and the lower-bound shakedown limit is
controlled by 1/b (Eq. 16). On the right hand side, the shakedown limit is controlled
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Fig. 3 Contour plot of shakedown limits. a μ = 0, φ = 0◦. b μ = 0, φ = 30◦. c μ = 0.5, φ = 0◦.
d μ = 0.5, φ = 30◦

by critical point on the surface. More results for different values of material internal
frictional angle can be found in Wang and Yu [31].

a = σ e
zz tan φ + σ e

xz. (15)

b = (σ e
zz tan φ − σ e

xz)
1 + tan2 φ

cv/ch + tan2 φ
. (16)
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Fig. 4 Influence of plastic anisotropy on shakedown limit when φ = 30◦

5.2 Layered Materials

Shakedown limits of a layered system can be solved by means of a MATLAB program
of Wang and Yu [30] using elastic stress fields obtained from finite element method.
Finite element analyses have been carried out by means of commercial software
ABAQUS integrated with a user subroutine UMAT which defines the mechanical
behaviour of cross-anisotropic materials.

In this study, a two-layered system is considered as shown in Fig. 5 in which
the normalised first layer thickness h1/D equals 1 (D is diameter of the contact
area). Typical mesh of finite element model is shown in Fig. 6. The simulated region
has a radius 5D and depth 6D. The front face represents the plane of symmetry
y = 0. There are restraints on two horizontal directions at the back face and another
restraint on vertical movement at the bottom face. The load distributions formulated
as Eqs. 4 and 5 are applied on the top surface within a half circle due to the symmetric
condition. The simulated region is discretised by twenty-noded, reduced-integrated,

Fig. 5 A two-layered
pavement system

h1/D=1 Sand or Asphalt

Clay Subgrade

D=2a

x

z
y

Travel direction
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x

z

y

Fig. 6 Typical mesh of a two-layered pavement model

brick elements (C3D20R), and mesh density is relatively high in the vicinity of
the loading area and near the interface between two layers. Results presented in this
section are for cases with normal loading only. Lower-bound shakedown limit of mth
layer is defined as km = λm

sdp0/c2 (m = 1, 2). Therefore, lower-bound shakedown
limit of the whole layered system k is the minimum value among all km.

In order to verify this numerical technique, comparison has been made between
shakedown limits of Wang and Yu [31] for Winnipeg Clay and those from present
analysis. It can be seen from Table 1 that good agreements have been achieved with
around 3 % error. In addition, elastic stress fields obtained through finite element
analyses also agree with analytical solutions of Hanson [7].

Two series of shakedown analysis have been carried out for this layered system:
the first one is a sand layer over day subgrade; and the second one is an asphalt layer
over clay subgrade. Material plastic anisotropy is not considered in this study. In
addition, it is assumed that the five elastic parameters (Eh, Ev/Eh, Gvh/Gh, υh and

Table 1 Comparison of shakedown limits for cross-anisotropic Winnipeg clay

Case Eh (MPa) Ev/Eh Gvh/Gh υvh υh k (Ref) k (this study) Difference (%)

1 9.35 0.53 0.73 0.17 0.23 4.00 3.87 3.2

2 6.96 0.41 0.64 0.08 0.12 3.74 3.63 2.9

3 7.67 0.52 0.72 0.17 0.23 3.97 3.85 3.0

4 5.76 0.76 0.87 0.23 0.27 4.37 4.24 3.0

Isotropy 4.68 4.56 2.6
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Table 2 Summary of material properties and shakedown limits for a sand-clay system

No. 1st layer—sand 2nd layer—clay k

E1v = 75 MPa, c1 = 10 kPa, φ1 = 30◦ E1v = 15 MPa, c2 = 20 kPa, φ2 = 0◦

E1v/E1h G1vh/G1h υ1h υ1vh k1 E2v/E2h G2vh/G2h υ2h υ2vh k2

1 1 1 0.2 0.2 10.20 1 1 0.4 0.4 34.87 10.20

2 1 1 0.2 0.2 9.80 2 1.4 0.4 0.49 44.63 9.80

3 1 1 0.2 0.2 10.60 0.5 0.7 0.4 0.28 25.65 10.60

4 1 1 0.2 0.2 11.07 0.3 0.55 0.4 0.24 21.15 11.07

5 1 1 0.2 0.2 11.11 0.25 0.5 0.4 0.2 19.79 11.11

6 1 1 0.2 0.2 11.30 0.2 0.45 0.4 0.18 18.40 11.30

7 1 1 0.2 0.2 11.50 0.15 0.39 0.4 0.16 16.90 11.50

8 3 1.73 0.2 0.35 15.80 0.5 0.7 0.4 0.28 15.00 15.80

9 2 1.4 0.2 0.28 13.57 0.5 0.7 0.4 0.28 17.84 13.57

10 1.5 1.2 0.2 0.24 12.23 0.5 0.7 0.4 0.28 20.54 12.23

11 0.75 0.87 0.2 0.174 9.68 0.5 0.7 0.4 0.28 30.45 9.68

12 0.5 0.71 0.2 0.14 8.46 0.5 0.7 0.4 0.28 39.45 8.46

13 0.3 0.55 0.2 0.1 6.89 0.5 0.7 0.4 0.28 56.56 6.89

υvh) are approximately related by a cross-anisotropy factor α defined in Graham and
Houlsby [5]: Ev/Eh = 1/α2, Gvh/Gh = 1/α, υvh = υh/α.

Table 2 summarises material properties, normalised shakedown limits of each
layer km and normalised shakedown limits of the layered system k for the first series
of analysis. It should be noted that case 1 represents isotropy assumption for both
sand and clay layer; cases 2–7 assume cross-anisotropic clay layer; and cases 8–13
consider the property of cross-anisotropy for both layers. Results show that lower-
bound shakedown limits k are all controlled by critical points in the first layer. Further
studies show that all critical points are located beneath the surface. While sand is
considered as an isotropic material, the rise of anisotropic factor of clay leads to an
obvious decrease of second layer shakedown limit and a slightly increase of first layer
shakedown limit (Fig. 8a). However, a reversed trend is observed if sand anisotropy
is also considered (Fig. 8b). The rate of change is relatively small in clay anisotropy
cases.

Materials and shakedown limits of the second series of analysis for an asphalt-clay
system is summarised in Table 3. Case 1 represents isotropy case for both layers; cases
2–6 assume cross-anisotropic clay layer; and cases 7–12 also consider asphalt cross-
anisotropy. Compared with Figs. 7, 8 exhibits similar trend of change for shakedown
limits of each layer. However, as two lines intersect in Fig. 8, shakedown limit of
the current system first rises then drops with increasing factor of clay anisotropy. In
reality, because the factor of anisotropy α tends to be smaller than 1 for asphalt (i.e.
Ev/Eh = 1/ α2 > 1), but larger than 1 for clay (i.e. Ev/Eh < 1), the shakedown
limit is more likely to be smaller than that under isotropic assumption. That is to say,
when the critical point lies on the surface of the second layer, pavement design tends
to be unsafe without consideration of cross-anisotropy.
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Table 3 Summary of material properties and shakedown limits for an asphalt-clay system

No. 1st layer—asphalt 2nd layer—clay

E1v = 690 MPa, c1 = 400 kPa, φ1 = 30◦ E1v = 15 MPa, c2 = 20 kPa, φ2 = 0◦

E1v/E1h G1vh/G1h υ1h υ1vh k1 E2v/E2h G2vh/G2h υ2h υ2vh k2 k

1 1 1 0.3 0.3 148.4 1 1 0.4 0.4 178.6 148.4

2 1 1 0.3 0.3 145.6 2 1.4 0.4 0.49 263.6 145.6

3 1 1 0.3 0.3 151.6 0.5 0.7 0.4 0.28 115.4 115.4

4 1 1 0.3 0.3 155.4 0.3 0.55 0.4 0.24 83.35 83.35

5 1 1 0.3 0.3 156.0 0.25 0.5 0.4 0.2 75.30 75.30

6 1 1 0.3 0.3 157.6 0.2 0.45 0.4 0.18 65.97 65.97

7 3 1.73 0.3 0.49 157.2 0.5 0.7 0.4 0.28 47.90 47.90

8 2 1.4 0.3 0.42 153.6 0.5 0.7 0.4 0.28 65.50 65.50

9 1.5 1.2 0.3 0.36 152.2 0.5 0.7 0.4 0.28 82.43 82.43

10 0.75 0.87 0.3 0.261 151.0 0.5 0.7 0.4 0.28 147.6 147.6

11 0.5 0.71 0.3 0.213 144.8 0.5 0.7 0.4 0.28 211.5 144.8

12 0.3 0.55 0.3 0.165 130.8 0.5 0.7 0.4 0.28 337.0 130.8

Fig. 7 Influence of factor of anisotropy in a sand-clay system

Fig. 8 Influence of factor of anisotropy in an asphalt-clay system
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6 Conclusions

Shakedown solutions for cross-anisotropic cohesive-frictional materials under
moving surface loads have been developed based on lower-bound shakedown theo-
rem. Elastic anisotropy was taken into account by means of elastic stress fields for
cross-anisotropic materials. Directional plastic anisotropy was also considered by
introducing a generalised Mohr-Coulomb criterion.

Results show that shakedown limits of the homogenous half-space are dominated
by Young’s modulus ratio Ev/Eh for the cases of subsurface failure and by shear
modulus ratio Gvh/Gh for the cases of surface failure. Plastic anisotropy is mainly
controlled by material cohesion ratio cv/ch, the rise of which increases the shakedown
limit until a maximum value is reached. The anisotropic shakedown limit varies with
frictional coefficient μ and the peak value may not occur at μ = 0 (i.e. normal load
only).

For a two-layered pavement system, the shakedown limit of the second layer
decreases with increasing clay anisotropic factor and decreasing first layer anisotropic
factor. This is compensated by a reversed trend of the shakedown limit of the first
layer.

Pavement design using shakedown theory can be carried out by making sure
that the pavement shakedown limit is no less than the pavement design load. The
influences of layer thicknesses and material properties on the pavement shakedown
limit can be found in Wang and Yu [30]. An optimum pavement design can be chosen
by considering other factors such as overall cost.
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