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Foreword

The methods of plastic analysis result in designs based on strength and have proven to
be very useful in solving many engineering problems. Limit states design is in
widespread use in the design of civil structures, where it has been instrumental in
improving the efficient use of materials. One of the early proponents of plastic
analysis, Lord Baker, came to consider elastic solutions to be an improper design tool
for structural frames after stresses measured in frames of real buildings bore little
relation to those calculated using elastic analysis. The analysis of shakedown is more
limited to specialized applications, typically involving components that operate at
high temperature with periodic cooling cycles, such as pressurized pipes and vessels
in elevated temperature service. Components of high temperature boilers or reactors,
and coke drums are examples where operational limits may be imposed by the
excessive deformation (ratcheting) that occurs when shakedown is not achieved.

One of the first tentative applications of elements of plastic design dates back
almost four centuries to Galileo’s calculation of the collapse load of a cantilever
beam. Throughout the next centuries, there were further isolated applications of
various fundamental ideas of plastic analysis. A true analysis of plastic failure
comprising the concept of plastic slip and a yield condition is found in Coulomb’s
study of earth-retaining walls for military fortifications at the end of the eighteenth
century. The nineteenth and the first half of the twentieth centuries saw the
development of the criteria of plastic failure and the associated flow rules, along
with applications to design such as the theory of slip lines.

The theory of plasticity and associated static and kinematic theorems were
developed in the twentieth century starting in the 1930s when Gvozdev proved the
static and kinematic theorems of limit analysis. At about the same time, Melan
derived the static shakedown theorem, which includes the static theorem of limit
analysis as a special case. Curiously, this fact was not realized until quite a while
later. The fundamental theorems of plasticity, such as the consistency condition of
plastic flow and the principle of maximum dissipation, became available in the
1940-1950s through the work of Horne, Greenberg, Hodge and Prager. The theory
is developed the furthest for elastic perfectly plastic material behaviour.
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One of the earliest and most seminal comprehensive contributions is due to
Koiter. He provided a clear formulation of the lower bound (static) and upper bound
(kinematic) shakedown theorems, which gave a necessary and sufficient condition
for the energy dissipation under cyclic loading to remain bounded over time. That
situation is referred to as (elastic) shakedown and is equivalent to stating that the
structure approaches purely elastic cycling. A later extension of the concept of
shakedown includes the regime of alternating plasticity where the deformation is
bounded over time, but the plastic dissipation is not. The formal extension of the
shakedown theorems to this case is still the subject of active research. Of great
practical value is the path-independent property of the plastic limit state and of the
shakedown limit state, i.e. these limit states are independent of the order and history
of load application, although the plastic deformation on the way to a limit state is
generally path dependent. Direct methods use these concepts to arrive at a fully
plastic state. Their use for simple problems is well established, but their general-
ization to arbitrary loading and general plastic constitutive behaviour still represent
an area of very fertile research.

The papers collected in this volume are concerned with the plastic limit and
shakedown solutions obtained through direct methods. Three paths may be fol-
lowed when solving limit states or shakedown problems to obtain the desired load
level at limit collapse or at the shakedown boundary. Firstly, a solution may be
achieved by solving the full set of continuum mechanics equations along with the
constitutive equations of nonlinear elastic-plastic material behaviour. Direct
methods, on the other hand may obtain statically admissible stress fields or kine-
matically admissible deformation fields and then improve the solution by iteration.
Another type of direct methods formulates and solves a (typically nonlinear)
optimization problem based on the upper or lower bound theorem.

In the recent past, plastic solutions for practical design applications have been
obtained mostly by finite element software, which solves the full set of continuum
mechanics equations. Such solutions are computationally relatively expensive when
the objective is to obtain a plastic collapse or shakedown limit state. Direct
methods, on the other hand, solve only the part of the problem that is required to
approach the desired limit state. Particularly for shakedown problems, which
require cyclic analysis when the full load history is applied, direct solutions can be
much more efficient than the solutions of the full continuum mechanics problem.
Tantalizingly, it has been difficult to derive direct methods that can consistently
solve all types of problems more efficiently. The promise of direct methods has thus
not yet been fully realized. There are efficient methods for special problems and
there are general optimization algorithms that could solve any well-posed problem,
but which have often been computationally inefficient. For this reason, direct
methods continue to be an area of active research.

The present collection showcases important results from the latest research on
direct methods of limit and shakedown analysis that were presented at the Fourth
International Workshop on Direct Methods (DM2013), held at the Mediterranea
University of Reggio Calabria, Italy, in October 2013. The papers in this volume
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will be valuable to any readers working in the field of direct methods who want to
get an appreciation of recent advances, as well as any others interested in getting an

overview of active research topics in this field.

Mississauga, Canada Wolf Reinhardt



Preface

Over the last decades powerful numerical methods have been developed to carry
out one of the oldest and most important tasks of design engineers, which is to
determine the load carrying capacity of structures and structural elements. Partic-
ularly attractive among these methods are the so-called “Direct Methods”,
embracing Limit—and Shakedown Analysis because they allow rapid and direct
access to the requested information in mathematically constructive manners without
cumbersome step-by-step computation.

This collection of papers is devoted to this subject. It is the outcome of a
workshop hosted by the University of Reggio Calabria in October 2013, in line with
previous workshops at RWTH-Aachen University, University of Technology and
Sciences of Lille, and National Technical University of Athens and give an
excellent insight into the state of the art in this broad and growing field of research.

The individual contributions stem namely from the areas of new numerical
developments rendering the methods more attractive for industrial design, exten-
sions of the general methodology to new horizons of application, probabilistic
approaches and specific technological applications. The papers are arranged in the
order as presented in the workshop.

It might be worth noting that the success of the workshops and the growing
interest in Direct Methods in the scientific community were motivations to create
the association IADiMe (http://www.iadime.unirc.it/) as a platform for exchange of
ideas, advocating scientific achievements and not least, promotion of young sci-
entists working in this field. It is open for all interested researchers and engineers.

The editors warmly thank all the scientists who have contributed by their out-
standing papers to the quality of this edition.

—We hope you enjoy reading it!

Reggio Calabria, August 2014 Paolo Fuschi

Reggio Calabria Aurora Angela Pisano
Aachen Dieter Weichert
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A Stress-Based Variational Model for Ductile
Porous Materials and Its Extension
Accounting for Lode Angle Effects

Long Cheng, Vincent Monchiet, Géry de Saxcé and Djimédo Kondo

Abstract The aim of this work is to derive by homogenization techniques a
macroscopic plastic model for porous materials with von Mises matrix. In contrast to
the Gurson’s well known kinematical approach [19] applied to a hollow sphere, the
proposed study proceeds by means of a statical limit analysis procedure, for which
a suitable trial stress field is proposed. In the first part, the formulation of the stress
variational model is developed, by considering the Hill’s variational principle, and
introducing a Lagrange’s multiplier to solve the resulting saddle-point minimization
problem. This methodology being opposite to the Gurson’s kinematical approach,
complements the limit analysis methods for porous materials. The second part is
devoted to an application of the proposed approach to the porous materials with von
Mises matrix. To this end, an axisymmetric model is first studied by adopting a suit-
able trial stress field, which is composed by a heterogeneous part corresponding to the
exact solution of hydrostatic loading and a homogeneous part for capturing the shear
effects. We derive closed form formula which depends not only on the first and second
invariant of the macroscopic stress tensor but also on the sign of the third invariant
of the stress deviator. Moreover, an extension of the above axisymmetric model to
the general case of non-axisymmetric loadings by introducing a more general trial
stress field is studied. The established new yield locus explicitly depends on the effect
of the third invariant (equivalently the Lode angle). The obtained results are fully
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2 L. Cheng et al.

discussed and compared to existing models, available numerical data and to Finite
Elements results obtained from cell calculation carried out during the present study.

1 Introduction

More than 30years ago, Gurson [19] proposed a kinematically-based limit analysis
approach of a hollow sphere and hollow cylinder having a von Mises rigid plastic
matrix. This approach delivered an upper bound of the macroscopic criterion which
depends on the pressure and on the von Mises equivalent stress. Several extensions
of Gurson’s model have been further proposed in the literature, the probably most
important developments being those accounting for void shape effects [15, 16, 25].
Plastic anisotropy was treated by Benzerga and Besson [2], Monchiet et al. [26].
Other extensions take into account the plastic compressibility of the matrix through
associated Drucker-Prager model for applications to polymer and cohesive geoma-
terials [1, 18, 21, 22, 24].

In Gurson’s footsteps, all the above limit analysis-based models of ductile porous
media are obtained by using kinematical approach which requires the choice of a
suitable trial velocity field. On the other hand, few works have been made to develop
a theoretical dual stress based model. One may mention the pioneering study of [17],
even it has been phenomenologically inspired. A statical limit analysis attempt has
been first done for ductile porous media by Sun and Wang [31] who developed a
semi-analytical approach which aimed to deliver a lower bound criterion. Despite
the interest of the above approaches by Sun and Wang [31], the resulting criteria are
in fact obtained by some fitting procedure based on numerical computations.

From a more general point of view, it must be noted that, although the direct and
accurate knowledge of the stress field is of great interest in plasticity due to the fact
that the yield criterion is often expressed in terms of stress components, the main
reason which probably explains the preference in past studies of the kinematical
approach which leads to upper bounds is technical: the dissipation function is non
smooth but only for null plastic strains. As it is generally the case for limit analysis
of microporous ductile materials, the reference cell (the hollow sphere in the present
study) is completely plastified at limit state and the dissipation functional is smooth,
differentiable with respect to the trial velocity field parameters. And as it is well
known in duality theory, the more a functional is smooth, the more its dual one is
non smooth. It is exactly what occurs in plasticity where the stress functional is much
more difficult to manage due to its non smoothness concentrated in the satisfaction
of the yield criterion.

The principal aim of this study is to face this difficulty and to open a new
way—alternative and complementary to Gurson like models—to build macroscopic
yield criteria for ductile porous materials thanks to a stress model leading to a
macroscopic criterion. The developed approach also enters in the framework of limit
analysis, which is a general method to determine the plastic collapse of structures
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under proportional loading [30]. The variational formulation of the lower bound the-
orem is based on Hill’s functional [20] of which we present a specialized version
adapted to the homogenization techniques by applying it to the hollow sphere model.
The lower bound is conserved only if the trial stress field is statically and plastically
admissible. This condition is very difficult to strictly satisfy in a hollow sphere. In
order to obtain a full analytical model, the key idea is to satisfy only the equilib-
rium equations, relaxing the plastic criterion with Lagrange’s multipliers. Moreover,
the stress condition at the void boundary is also difficult to satisfy by simple trial
stress fields capturing the shear effects that break the central symmetry; it will be
also relaxed. A priori, the final picture could seem too rough but, although the trial
stress field is rather simple with a strict number of field parameters able to fit the
hydrostatic and deviatoric macro-stress components, the present approach provides
a rather accurate model, as it will be shown. Indeed, the lower bound will be lost
but, but by comparison to accurate numerical data, the interest and the validity of the
new results will be demonstrated.

2 Formulation of the Statical Limit Analysis
for Porous Materials

In many theories of Mechanics, one of underlying mathematical structure consists
in a constitutive law, that is a graph M C X x Y from a linear space X into its dual
one Y. The dual pairing between these spaces will be denoted

XXY:(xyt— (xy) (D

where (x, y) is the inner product of the dual variable fields x and y, which can be, for
instance, the strain rate field d and stress field o.

Although general, the mathematical structure of graph is poverty-stricken for
applications to the science of materials and the continuum mechanics. A fruitful idea
is representing a constitutive law by a numerical function. The advantage is double:

e the constitutive laws can be classified in a convenient manner for theoretical and
numerical purposes,

e but—maybe above all—powerful variational methods can be developed for the
solving of boundary value problems by building functional from these functions.

In this work, we focus our attention on the constitutive laws of associated plasticity,
which can be derived from the framework of classic limit analysis.!

11t should be noted here that an extended limit analysis approach aiming at solving the problem of
non associated plasticity has already been proposed in literature [10] (see also [4, 7-9, 11]).
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2.1 Associated Plasticity and Superpotentials

The theory of associated plasticity is concerned by a class of materials (typically
metals and alloys) for which:

e the elastic domain is a smooth, convex and closed.
e the plastic strain rate is an exterior normal to the yield surface.

In mechanics, this class of materials can be represented with a generalized model
based on the existence of two convex superpotentials conjugating one to the other
7 (d) and ¢ (o) satisfying Fenchels inequality [13]:

vd',o), @)+ =(d, ) @)

A couple (d, o) is called extremal when variables are related by the constitutive law.
So equality is achieved in (2):

n(d) + ¢(0) =(d, o) 3)

The materials generated by superpotentials are called generalized standards mate-
rials. For instance, the associated plasticity is obtained by taking ¢ as the indicator
function of the elastic domain K (equal to zero when the stress field is statically
admissible and +o0o otherwise) and by considering the normal flow rule

dedg(o) 4)
Its Fenchel’s conjugate
7(d) = sup(d : o) (5)
oek

is called the support function of K. It is positively homogeneous of order 1. The

converse law reads
ocecon(d)

and the elastic domain K is nothing else d  (0). Taking into account (3), the normal
yielding rule (4) is satisfied if and only if

ccK and n(d)=d:o (6)

It is worthy to recall that the kinematical limit analysis theory is derived from Eq. (6)
simultaneously by considering the homogenization technique. While for the statical
limit analysis in this study, the start point must be the relation (4), which is nothing

else Hill’s inequality
Vo'e K, (0'—0):d<0 (7

Let us take a step back and recall a basic concept of convex analysis, the subdif-
ferential of the superpotential ¢ at a point 0 which is the (possibly empty) set:

I¢(0) = {d | Vo',  ¢(0") —¢(0) = (0’ —0) : d}. ®)
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For more details on convex analysis, the reader is referred for instance to [12, 27, 29].
Since ¢ € K entails ¢ () = 0, the inequality in (8) degenerates into (7) when ¢’ € K
and is true otherwise, the left hand member being infinite while the left hand one is
finite. Hence, the indicator function of the elastic domain can be perfectly expressed
as introducing the semicontinuous and convex indicator function:

0 if oek
+00 otherwise |’

¢(0) = [ 9

which will be considered for the statical limit analysis formulation in the following
sections.

2.2 Stress-Based Variational Approach: Application
of the Statical Limit Analysis to Porous Materials

In the perspective of limit analysis application to ductile porous materials, let us
consider a reference unit volume or macro-element 2 composed of a void w and
matrix £2); = §2 — w. The macro-element £2 is bounded by surface 9£2 and the void
o by dw. The matrix is made of a rigid plastic material with a yield criterion:

F(o) <0, (10)

where F' is a lower semicontinuous and convex function of the cauchy stress tensor
0. As classically, the normality law is assumed:

o oF

d=2¢ —,
00

(1)
where d is the strain rate tensor, while &” is the equivalent plastic strain rate.
It is worth to note again that, equivalently, the strain rate and stress tensor satisfy
Hill’s inequality (7), with the set of plastically admissible stress fields:
Sp=1{0 st. ceK or F(s) <0} (12)
and the stress fields must be statically admissible being elements of the following set:

Sy=1{0 sit. dive=0 in 2, 6-n=0 on dw, =0 in w}.

where n is the unit outward normal vector.
The set of kinematical admissible velocity fields classically reads:

HKy=A{v sit. vx)=D-x on 9£2}.

And, the strain rate field, symmetric part of the velocity gradient, is d(v) = grad;v.
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From the classical Hill lemma, the macroscopic stress X and macroscopic strain
rate D are obtained as volume averages of their microscopic counterparts ¢ and d:

1 1

2 2
Let us state Hill’s variational principal [20]:

Among the statically admissible stress fields, the true one makes the functional

/¢(0) dV—/(0~n)~vdS, (14)

an absolute minimum.

In (14), v is the imposed velocity on the part S, of the boundary of £2),. Adapted
to the context of the present homogenization problem, e.g. the problem of a hollow
sphere subjected to uniform strain rate boundary conditions v(x) = D - x on its
boundary 942, this principle requires to introduce the the following average functional
for the hollow sphere:

¢=°2€$a(|9|/¢(o)dv D: 2) (15)

where ¥ depends on the stress field o through:

|Q | /(on)@de

or equivalently (13), provided that the stress field o is statically admissible.
Indeed, letv and o be the velocity and stress fields at limit state. Taking into account
Hill’s lemma and d(v) € d¢ (o), it holds for any statically admissible fields o:

1
o / ($(0) = §(0) = (6" —0) :d(() dV = 0,
2

which proves that the limit stress field o realizes the minimum of the functional among
all the statically admissible stress fields o’. Defining the set of licit stress fields:

={oeS st o6e€.), ae in 2y}, (16)

let us notice that if o is licit, the value of the functional in (15) is finite, infinite
otherwise. The minimum being finite, it is realized only for licit fields. Because ¢
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vanishes almost everywhere for the licit fields, the above variational principle (15)
is equivalent to the following one:

in (=D :X), 17
;161}5,111( ) a7

The limit analysis approach consists in finding non trivial solutions qualified as fail-
ure mechanisms. It is expected that they exist only under an equality condition on ¥
that can be interpreted as the equation of the macroscopic yield surface.

In the same spirit, as in the work of [18], a first approximation consists in relax-
ing the yield criterion (10). Introducing Lagrange’s multiplier field x — A(x), this
constrained minimization problem is transformed into an equivalent saddle-point
problem:

max min (g(o, A) = 1 / AF(o)dV —D: z),
Az0 07, | 2 |Q
M

We perform a new approximation by imposing Lagrange’s multiplier field to be
uniform in £2;:

max min (.,2”(6, A=A

A>0 0

mg F(o) dV—D:E). (18)

M

that is equivalent to minimize the functional @ under the following condition:

1
mﬂ/ F(o)dV =0. (19)

Satisfying the condition (10) only in an average sense (Eq.19) but not locally
anywhere in £2) is a strong approximation but required here in order to make the
calculation possible. The minimum principle allows then to obtain the “best” solution
within the framework imposed by the adopted approximations. Hence, a stress vari-
ational macroscopic model (which will be called SVM in the following) can be
obtained from Eq. (19). Additionally, it should be emphasized that this model could
be seen as a quasi-lower bound due to the adoption of the relaxed licit stress fields
which appears as an uncontrollable approximation in the Hill’s variational principle
(15). Note that Gurson’s kinematically-based model is a true upper bound, all the
approximation that it had required being controllable.

The final and crucial step, detailed in the next section, is the choice of a trial stress
field depending on some parameters. After expressing it with respect to the invariants
of the macro-stress, the macroscopic loading function is:

F(X) = |512_|/F(6(2)) dv = 0. (20)
2m
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Thus, the saddle-point problem (18) reads:

maxmin (£ (X, A) = AF(¥)-D: %),
A>0 %

Performing the variation with respect to A provides the macroscopic yield condition:
F(X) =0,
and with respect to X' gives the macroscopic plastic flow rule:

L0F
D= AB—E(E). (21)

where A turns out then to be the plastic multiplier and must satisfy Kuhn-Tucker
conditions:

e A=0 if F <0, orif F=0 and F <0
e A>0 if =0 and ¥ >0

3 Stress-Based Variational Approach of Ductile Porous
Materials in Axisymmetric Loading Case [6]

Let us consider a hollow sphere (Fig. 1), made up of a spherical void embedded in
a homothetic matrix of a rigid-plastic isotropic and homogeneous material with von
Mises model:

F(0) = 0.(0) —00 <0,

Fig. 1 Hollow sphere model
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where 6, = ,/ %s : s is the von Mises equivalent stress defined from the deviatoric
part s of the stress tensor 0. As usually, the quantity o9 > O represents the yield stress
of the matrix material. The inner and outer radii of the hollow sphere are respectively
denoted by a and b, giving the void volume fraction f = (a/b)> < 1.

3.1 Proposed Axisymmetric Trial Stress Field

In this subsection we first consider the hollow sphere model subjected to an axisym-
metric loading. Let us propose a trial stress field as the sum of the following fields:

e A heterogeneous part corresponding to the exact field under isotropic loadings,
which in spherical coordinates with orthonormal frame {e,, €4, €9} reads:

W _ ay,_ 1L
o) = Ao(ln(r)l 2(eg®e9+e¢®e¢)), (22)

where Ay is a constant parameter.
e A homogeneous deviatoric part which is taken in the following form, in the
cylindrical coordinates with orthonormal frame {e,, ey, €;}:

o = Ai(e, ®e, +ey Doy —2e. Bey), @3)

where 1 is the second order unit tensor, while A is also constant parameter.
Consequently, in the matrix §2j7, the resultant two parameters-based trial stress
field in the matrix can be written as:

o =0l +06?, (24)

Note here that a vanishing stress field is considered in the void w. Moreover, it should
be point out that the choice of the above stress field, defined by (24), together with
(22) and (23), implies that

1

. 1
E’\,/lozdzl |/Gmdvzm/x-(on)dszo. (25)
dw

[0)

where o, = tr(0)/3 is the microscopic mean stress. Consequently, Eq. (25) appears
as arelaxed form of the void boundary condition, for which itis difficult to be satisfied
by such a simple stress field, and then the statically variational principle (17) must
then be considered with the following relaxed set of licit stress fields:

S ={o st dive=0, 6€.%, inQ2y, 6=0 inw and X4 =0}. (26)

at the place of .#] defined by (16).
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In order to determine the stress-based variational model, it is convenient to trans-
form both two parts of the trial stress field (24) in the same coordinates. For instance,
in cylindrical coordinates, (24) can be derived as:

1
o= |:(— In (;) + Ecosze)Ao +A1i| (e, @)
+ [(— In (g) + %)Ao +A11| (e¢ ®e¢)
+ [(— In (%) + % sin29) Ao — 2A1] e, ®e)

Ao .
— 5 sinécosd (e, @e.+e.®e))

3.2 Macroscopic Yield Criterion Under Axisymmetric Loading

It is then readily to calculate the microscopic equivalent stress:

Ao\> 3
O = \/(70) + J40As (3cos20 — 1) + (341)? (27)

and it follows that the macroscopic stress tensor takes the form:

Ao Inf
Y =— 3 1+(1 _f)Al(ep®ep+e¢®e¢_2e2®ez)’ (28)

It can be calculated from Eq. (28):

S = —Aoinfv To=30-1A1l, J=-=20-4A. (9

where X, X, and J3 are the macroscopic mean stress, the macroscopic equivalent
stress and the macroscopic stress deviator, respectively. For simplification, let us
introduce the following stress quantities:

5 X, 5 3%n ~ J3

= - SR - 30
3 TEGE (30)

1—f "7 2mf’

The microscopic equivalent stress (27) can be recast into:

0, = \/2"3 + 22 — 5ign(J3) Ze Zn(3cos26 — 1),

in which sign(J3) is the sign of the macroscopic third invariant of stress tensor

Obtained fI'OIn: ~
ion(J3) 27 J3 an(A)
sign J2) = — — — —sign A1).
3 2 3 e3 !
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The macroscopic yield condition (20) can be then calculated as:

T
1 - . - -
3 / \/Z‘g + X2 —sign(J3) X, X (3cos? 0 — 1)sin df = oy (31)

Consequently, the macroscopic yield criterion takes the final form:

=224+ 52 7()—o0y <0, (32)

where: . -~
¢ = —sign(Us) =T — ign(J3)—1 (33)
= —Sign ———=_— — —Sign — =
s s T YT R
with
. 3(1 —
o 30=Dg (34)
>, 2Inf
2

T being the stress triaxiality classically defined as T = >

It should be noted that { depends not only on the sign of the third invariant of the
stress deviator but also on that of the stress triaxiality, and on the porosity.
The function _# (¢) in Eq.(32) is then defined as:

/(g):%/\/]-k%@cosz@—l); sin6 do. (35)
0

and has the following closed-form expression:

o for—1<¢ <0:

BAGES (\/ {+ —— «/— arcsin %i_'), (36)

e for0<¢ <1:

2-¢, «/ +V20F0) V6 2—-¢) In@2-2¢)
JI++ + —
F = ( J_ 2-¢ 12 NE3 )
(37)

Eq. (32) together with (36) and (37) constitute a stress-based variational yield func-
tion (noted as SVM) for ductile porous material of which the matrix obeys the von
Mises criterion. It is clearly shown that this macroscopic criterion depends not only
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on X, and X,, but also on the sign of the third invariant sign(J3). This kind of
dependence has been clearly noted in [3] in the context of the Gurson-like kinemat-
ical approach.

3.3 Flow Rule and Porosity Evolution Under Axisymmetric
Loading

According to the SVM criterion (32), it is interesting to derive the macroscopic flow
rule giving the plastic deformation from normality rule:

b= ilZ _ J ()%

6% (-2 /52 + 52
d 7 () Ty Z2+ 52

d¢ 4nf)> 22491 —f)*x2

— ksign(J3)

107 | 3%
3 0% 4(nf)2/ 52 + 52
T/ 22 4+ 52
+ Esign( 1Y

3 d¢  4(nf)?22+9(1—f)> 52

Dy

where A is the plastic multiplier and

12(1 —f)Inf [4(nf)? =91 —f)*T?]
K =

4(Inf)>+91 —f)> T2 (38)

while the expression of d_# ({)/d¢ can be developed for —1 < ¢ < 0 as:

dye _ -1 ig=-2 31 (39)
d¢ 415IvI+e 415]1V61C] 2-¢

and for0 < ¢ <1 as:

dge) 1 e (2+§)lnﬁ+m

dc—4JT+¢ 240372 2-¢
_ﬁ[ﬂln(z_g)H]Jriwl+;(2+;)+J@(4+;)
48T L ¢ 120G+ +20(1+0)
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In fact, the macroscopic flow rule can be recast into the following form:

A A (@) . d g @) T(T*—1)
e = —— | L= — 2sign(J 40
1—f[ 14172 BT (T2+1)3} o

A JOT . dg@g) T?-1
= ——— | L= 4 2signU 41
oY |: = sign(J3) T 1)3] 41

It can be obviously found that the macroscopic yield rule (40) and (41) obtained from
the stress-based variational approach under axisymmetric loading case depends only
on the sign of third invariant of the stress deviator and on the the stress triaxiality.
Finally, the void growth equation can be also derived as classically from the mass
balance equation, f = 3 (1 — f) D,,, which can be suitably rewritten in the form:
f Dy,
D, =3(1-f) D, (42)
Consequently, the void growth is sensitive not only to stress triaxiality but also to the
sign of J3.
For completeness, we provide in Appendix (Sect. 6) the illustration and validation
of the stress variational model from the comparison with the numerical computations
and with the available numerical bounds in literature.

4 Extension to a Load Depended Stress Variational Model

In this section, we aim at deriving a new stress variational model for ductile porous
media with a non-axisymmetric trial stress field. A macroscopic criterion depending
not only on the macroscopic mean and equivalent stresses (X, and X,), but also on
the third invariant of the stress deviator J3 (or Lode angle 6; ) will be expressed, while
in the Sect. 3.1 only the sign of J3 was taken into account under the axisymmetric
loading case.

4.1 Proposed Non-axisymmetric Trial Stress Field

Owing to the central symmetry of the hollow sphere model, we propose a trial non-
axisymmetric trial stress field, which contains two part as follows,

e The same heterogeneous part corresponding to the exact solution under pure hydro-
static loadings as expressed by Eq.(22) in Sect.3.1.
e A homogeneous part which is non axisymmetric and taken for capturing the shear
effect:
e =B, wB=0 (43)
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Hence, the final trial stress field in the matrix can be written as
o=0 4@ (44)

which turns to be null in the void w.
It follows that the non-axisymmetric macroscopic stress field read:

E:—%Alnf~1+(l—f)B (45)

Next, let us compute that in mechanics, there are three invariants for defining the
plastic limit state. From (45) and (43), they can be respectively calculated:

e Macroscopic mean stress, i
X = —§A Inf (46)

e Macroscopic equivalent stress,

Yo = (1 _f) Beq 47)

where B, is the equivalent quantity associated to the deviator B (or microscopic

stress deviator of 0):
/3
B, = EB :B (48)

e Third invariant of the macroscopic stress deviator,
J3 = (1 —f)* det(B) (49)
For convenience, let us introduce the stress based quantities:

. 3%, A - e = J3
_ Jhr=—— 50
3 T—7) (50)

= ==, X,, =B, = ,
" 2mmf 20 T T T —f

from which, the macroscopic Lode angle 67 can be defined as:

25 _ 215 6, < 60° (51)

cos(30y) = — = s
253 2%}

4.2 Macroscopic Yield Criterion Under
Non-axisymmetric Loading

From Eqs. (22), (43) and (44) the deviator s of the local stress field can be written as:

s=sD 4@ =5V 1B (52)
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where s is the deviator calculated from (22). Hence, the equivalent stress can be
obtained from:

Op = \/g [s@ s 4250 5@ 4 5@ ;5@ (53)

It can be calculated from (52) and (53) that

A? A 2
@M. M. 2 _ @ .2 _ 2
ss/is =—, s s =——B, §“:58“ ==-B 54
6 2 3¢ (>4)
for which expression of B is determined in the following.
Indeed, in order to compute the stress quantity B in spherical coordinates, let us
first express the principal stress tensor of B in cartesian coordinates with orthonormal
frame {ey, ey, e;}:

B=DBj(exQe; —e;Qe;) +Barley,Qey —e; Qey), (55)

for which the components can be expressed (without loss of generality) in the form:

IR X, . X, Yo .
B = -3 cos(fr) + —sin(0r), By = -3 cos(fr) — — sin(0r) (56)

N N

Consequently, one can then reexpress B in spherical coordinates; it follows immedi-
ately that

[ [& cos(8)(3cos>(0) — 1) + e sin(0y) sin>(0) cos(2¢)i| (57)
=1-7|73 L NG L

where 6 and ¢ are the polar angle and azimuthal one in spherical coordinates system.
As a result, the microscopic equivalent stress (53) can be written as

— 2 2
O, = T — 73+Be‘] (58)

Taking into account (46), (47) and (54), (58) can be recast in the form:

9x2 90X, %1 X2

4ln2f+2(1 —fHnf (1 —f)2 ©3)

Go = /52 — 35,8+ 52 =\/
where X is the macroscopic counterpart of B; it reads:

~ Ee 2 Ee . .2
Y =0-f)B= 3 cos(fr)(3cos”(#) — 1) + — sin(fr) sin“(0) cos(2¢) (60)

V3
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Hence, the local von Mises yield criterion can be expressed as

. .. 3X,x
F(o(;)):ae—a():\/zg,Jr):g— lf]f

—0p =0 (61)

Let us recall that for obtaining the macroscopic criterion from (20), one need to
integrate (61) over the matrix. However, due to the presence of the azimuth angle ¢ in
the expression of X7, (60), there is no closed form solution. In order to overcome this
difficulty, a simple idea consists in performing a Taylor series expansion (around 0)
till the third order, this leads to the following approximation:

. . 3,21
01=,/22+Z‘,2~\/1— = =
‘ "o =&+ 22

3X., 2L
201 —f)(Z2 + 22)

Op > f],%l—{—ffez~|:l—

9¥2x? 2753 53
8(1—H2(ZL+ 12 16(1 —)3(Z2 + £2)3

Next, the final integration includes the computation of the following integrals:

1
— | ZdS=0
V% / L
S(r)
1 432
— [ zlds ===
47 / L 45
NG)
1 3 1633 5
e XpdS = 015 cos(fr)(4cos“ (L) — 3)
S(r)

Finally, from (20), the macroscopic criterion is obtained as:

c’x? 3}
F ~D (1 — 90D: + 945DC6 cos(0L) (4 cos>(6L) — 3)) —0p <0 (62)

where we have denoted C and D the following functions of ¥

D(X) = /22 4 22

B 923“r 2 C(Z)——3§m— 9%,
T Vamif (1 -H T 1—f  20—f)nf

(63)
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It should be underlined that the established criterion (62) depends not only on the
the macroscopic mean stress and equivalent stress, but also explicitly on the Lode
angle (or the third invariant of the stress deviator).

4.3 Macroscopic Flow Rule Under
Non-axisymmetric Loading

We aim now at deriving the plastic strain rate from the normality rule. Unlike the
conventional modeling, the three invariants of the macroscopic criterion (62) are
taken into account. Not only the mean strain rate D,, and the equivalent one D, have
to be computed, but also the contribution Dy related to the third invariant of deviator
J3 will be provided. It is worthy to interpret that Dy can indicated the influence of
the Lode angle upon the w-plane of principal stress space to the macroscopic plastic
flow rule. Let us first define the macroscopic stress,

Xm = \VJ: (64)
Hence, the dissipation power /1 can be written as
n=D:%=3%,D,+ X.D,+ XDy (65)

Moreover, considering the macroscopic criterion (62), the macroscopic strain rate
can be obtained from the associated flow rule

. 0.F 1 .0.% . 0.F
De=A"2L, Dy=-AT22, Dy=A20 (66)
X, 37 0%, 0 X
It follows that D,, D,, and Dy can be expressed in explicit forms:
[ ap c?2DZ 372 %7
D, =A S — S
X, 90 D*
C3J3 (5 9D 72973 6 729J3
o\ ey Cx6 3 5557 ©7)
70 \ D03z, Xx¢ D’ X

X, 90 D4

212 C 4 9D
N J3 72972 3 3C°D 55 — 5D 55 68)
70\ X6 D7

PY BCl EC S e (69)
="17005\ =8 3

Dy = - A

1{% 32 20D —3C* P2
3
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where

ic 9 D 9%, oD 2%,
%, 20—f)lnf’ 0%, 2DInf 8%, D(—f)>

Finally, the plastic void growth rate can be obtained from the mass balance equa-
tion. It expression can be obtained from (42) by taking into account the plastic flow
rule (67) and (68) and eliminating the plastic multiplier ATt obviously shows that
the void growth rate depends on the third invariant of the stress deviator J3 (or the
Lode angle 6y).

4.4 Illustration of the Macroscopic Yield Criterion and Void
Growth Under Non-axisymmetric Loading

We provide in the subsection the illustration of the established criterion (62) and its
comparison with Gurson model and the stress-based variational model (SVM) under
axisymmetric loading provided in Sect.3.1. It is worthy to note again that the later
one has been derived from a closed-form formulation. A value of porosity f = 0.01
are adopted for the later illustration and comparisons.

First, five yield loci obtained from (62) are illustrated on Fig.2 with different
values of Lode angle: 97, = 0°, 15°, 30°, 45° and 60°, while the first and the last ones
are corresponding to (but not equivalent to) the macroscopic model (32) obtained
from the axisymmetric trial stress field (see Fig.3). It can be observed that the yield
surfaces obtained from other values of the Lode angle are absolutely between the

SVM3D(6 =0)
..-SVM3D(6L: 15°)
0.8 -»-SVM3D(6, = 30°) i
-m- SVMSD(6L= 45°)
_SVM3D(6L: 60°)
- 0.6 ]
;® f=0.01
0.4F e - ]
et RSN
0.73 T T 078 T
‘,.' ’,V o ‘. “-,\ S,
0.2 = ’ » x )
72 . . 72
072 5% 25 218 %"%71s
0—— 2 3 0 1
Zm / S,

Fig. 2 Illustrations of the yield surfaces obtained from the new established criterion SVM3D (62)
with five values of Lode angle: 6; = 0°, 15°, 30°, 45° and 60°. Porosity: f = 0.01
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1
~_
—Gurson
---SVM(-)
0.8 -= SVM(+) B
-»-SVM3D(6, = 0)
-=-SVM3D(6, = 60°)
0.6 J
o
© f=0.01
(0]
g 0.4f i
. ‘.' f ;‘P' |
s 0.7
0.2f 0.65 1
-2.2
0 -3 -2 -1 0
X /o
m 0

Fig. 3 Comparison between the yield surfaces obtained from the established criterion SVM3D
(62) with the closed form criterion of stress-based variational model (SVM(+) and SVM(—)) (32)
and the Gurson criterion [19]. Porosity: f = 0.01

“o-Gurson :o":
0.35[  —SVM3D (6, =0°) 1
03}  --SVM3D (6 =30°) 1
Hfl: 025  ---SVM3D (6 =60°) © ,
S 02 -
~Ja 0.15 1
0.1 |
0.05 .
0 |
0 2 1 6 8 10

T

Fig. 4 Evolution of porosity as function of the stress triaxiality for initial porosity f = 0.01 with
three values of Lode angle: 6, = 0°, 30° and 60°

above two ones. Consequently, it can be concluded that the yield surface displays a
slight asymmetry due to the value of Lode angle (or due to the value of third invariant).

Figure 4 illustrates the evolution of porosity given as function of stress triaxiality
T = 2’" for the case f = 0.01. It can be observed that, the ones with axisymmtric
loadmgs (61, = 0 and 60°) give two extremal values of the void evolution for a fixed
value of triaxiality, while for another case with non axisymmetric state (67, = 30°)
is exactly between the two extremal ones. Slight differences due to the Lode angle
(or the third invariant of stress deviator) can be observed.
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5 Conclusion

In this study, we have proposed a stress-based variational approach of ductile porous
materials in the framework of Limit Analysis. This has been done by applying
homogenization theory combined with the statical limit analysis approach. The stress
variational model under axisymmetric loading and the one under non-axisymmetric
loading, fully described in the work, takes advantage of Hill’s variational principle
for which relaxed licit stress fields have been adopted. The established results clearly
provide expressions of the statically-based macroscopic criteria. Due to the relaxed
internal boundary condition resulting from the chosen trial stress fields, the criterion
could be seen only as a quasi-lower bound. An interesting feature of the established
criterion is its dependence not only on the two stress invariants X, and X, but
also on the third invariant of the stress deviator (or on the Lode angle); this leads to
specific asymmetries of the macroscopic criterion.

The results derived from the obtained criterion are fully assessed by means of com-
parison with existing analytical criteria, with available numerical bounds and finally
with our Finite Elements results. This has allowed to demonstrate the interest of the
new theoretical results. For completeness, we also provide voids growth equations
which clearly show the effects of the third invariant in addition to that of the stress
triaxiality. This topic of the effect of stress states on ductile fracture is a growing and
is deserving attention in several recent studies: see for instance [14, 23, 28].

6 Appendix: Illustration and Validation for the Macroscopic
Model Under Axisymmetric Loading

Due to assumptions on the stress fields which have been introduced for the analytical
derivation, the new criterion SVM (32) could be seen just as a quasi-lower bound.
However, it still preserves the exact solution of the hollow sphere subjected to a
hydrostatic loading, X,,/c0 = —2/3In(f), and leads to the same expression of the
limit pure shear load as that given by the Gurson criterion, X, /oy = 1 —f. Moreover,
as mentioned before, due to the presence of the third invariant /3 in the SVM criterion,
the yield surface exhibits an asymmetry about the axis X,, = 0. For instance, the
yield surfaces with two values of porosity f = 0.01 and f = 0.064 are deliberately
plotted on Fig.5 for negative and positive X,. It is noted that the SVM criterion
presents some relative small differences with the Gurson one, the surfaces predicted
by SVM being strictly “below” the Gurson’s ones, simultaneously coincident with
them for hydrostatic loading (exact result) and pure deviatoric one. Finally, the slight
asymmetry of the SVM yield surfaces can also be observed on Fig. 5, with the nota-
tions of SVM(+) and SVM(—) for the yield surfaces corresponding to J3 > 0 and
J3 < 0, respectively (Fig. 6).

Noticeable difference with Gurson criterion is observed for small porosities. This
can be explained by that in the context of the SVM, the observed difference may found
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Fig.5 Comparison between the yield surfaces obtained from the SVM (32) and the Gurson criterion
[19]. Porosity f = 0.01

Fig.6 Comparison between the yield surfaces obtained from the SVM (32) and the Gurson criterion
[19]. Porosity f = 0.064

its origin in the inaccuracy resulting from the relaxation of the yield condition in the
matrix, this condition being enforced only in the mean. For small porosities, large
plastic strain heterogeneities may occur in the vicinity of the cavities and the above
procedure consisting to relax the yield condition should be inaccurate. It is clear that
the proposed model can be improved by considering a more refined admissible stress
field able to avoid such procedure.

Next, the yield surfaces obtained by means of the stress variational approach
will be compared with Finite Element Method (FEM) solutions obtained during the
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present study. The computations are carried out by means of ABAQUS/Standard
software and a user subroutine MPC (Multi-Points Constraints). The main reason
for which we need to enforce MPC conditions in the code is that we have to impose
the velocity field v from v = D - x (on the external boundary of the hollow sphere)
such that the constraint of constant macroscopic stress triaxiality (7 = X,/ X,) be
fulfilled. In practice, as in [18], this is done by applying a constant macroscopic
stress ratio X, / X, corresponding to the desired X,/ X,. Note that the implementa-
tion of this procedure is the one that is already described in [5] for the study of voids
interaction and coalescence.

The comparisons between the surfaces obtained from the SVM, the Gurson’s
model and the FEM solutions are illustrated on Fig. 7 only for the first quadrant (the
slight asymmetry of the SVM surface is disregarded) and for the relative smaller
porosity f = 0.01. We can observe that in this cases, the FEM solutions are almost
between the upper bound (Gurson’s model) and the proposed yield criterion (SVM).
This fact shows that the SVM could be seemed as a quasi lower bound for the porous
materials which have relatively small values of porosity, especially for porous metal
materials.

Moreover, Fig.8 displays the comparisons between the predictions of the SVM
criterion and the numerical bounds for f = 0.01. It should be noted that, even the
FEM solution is between the numerical bounds, the yield surface of SVM is generally
below the numerical LB, except for the loadings with high values of stress triaxiality
T = X%,/ X, for which it interestingly lies between the two bounds and coincides
with the exact value of the hydrostatic loading.

0.9

0.8
0.7
0.6

0.5

T /o

0.4
0.3
0.2

0.1

Fig. 7 Comparison between the yield surfaces obtained from the SVM (32), the Gurson criterion
[19] and the FEM solution. Porosity: 0.01
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Fig. 8 Comparison between the yield surfaces obtained from the SVM (32), the numerical bounds
[32] and the FEM solution. Porosity: 0.01

D, 3(1=f)

Fig. 9 Evolution of porosity as function of the stress triaxiality for initial porosity f = 0.01.
Comparison between SVM predictions and that of Gurson model

Finally, Fig. 9 illustrates the evolution of porosity f = 0.01 given as function of
stress triaxiality for three values of initial porosity. It is noted that despite the few
influence of the sign of third invariant on the macroscopic criterion, a noticeable
effect is noted for the porosity variation. The results are also compared with that
predicted by the Gurson model. Clear differences are observed, particularly for high
stress triaxialities for which the Gurson model is known to overestimate the variation
of the porosity.
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Limit Analysis and Macroscopic Strength
of Porous Materials with Coulomb Matrix

Franck Pastor, Djimedo Kondo and Joseph Pastor

Abstract The paper is devoted to the numerical Limit Analysis of a hollow
spheroidal model with a Coulomb solid matrix. In a first part the hollow spher-
oid model is presented, together with its axisymmetric FEM discretization and its
mechanical position. Then, after an adaptation of a previous static code, an original
mixed (but fully kinematic) approach dedicated to the axisymmetric problem was
elaborated with a specific quadratic velocity field associated to the triangular finite
element. Despite the less good conditioning inherent to the axisymmetric modeliza-
tion, the final conic mixed code appears very efficient, allowing to take into account
numerical meshes highly refined. After a first validation in the case of spherical cav-
ities and isotropic loadings, for which the exact solution is known, numerical bounds
of the macroscopic strength are provided for both cases of spherical and spheroidal
voids. Effects of the friction angle as well as that of the void aspect ratio are fully
illustrated.

1 Introduction

Focused to the axisymmetric problem, the present paper aims at responding to
two purposes. First it generalizes the linear programming formulations of the limit
analysis (LA) in the axisymmetric case for Coulomb materials of [22, 31]: this is
partly motivated by recent papers about this subject that only give, in fact, estimates of
the resulting bounds, as recently pointed out in [26]. The second purpose deals with
the determination of the macroscopic plasticity criterion of the porous Coulomb
material with spheroidal voids, never investigated up to now, on the basis of the
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Gurson-like hollow spheroid problem. To overcome the conditioning difficulties of
the classic upper bound (or kinematic) approach for solving this problem, a new
axisymetric mixed formulation is presented which preserves the rigorous kinematic
character of the resulting solutions. This study was also motivated by the recent
results about porous materials with Drucker-Prager matrices in [18]; in this paper
the corresponding kinematic mixed approach has allowed—with very much lower
computation times—significative improvements of the upper bounds obtained by
previous fully 3D numerical methods.

The famous Gurson plasticity criterion [9] is based on the consideration of a
hollow von Mises sphere or cylinder in the framework of the Limit Analysis (LA)
kinematic approach. Recent studies were devoted to porous materials with a Drucker-
Prager matrix and spherical voids ([8, 11, 28], etc.). Even in this relatively simple
case of spherical voids, there is no theoretical attempt to micromechanically derive
a macroscopic criterion for the Coulomb porous material. This is undoubtedly due
to difficulties inherent to the Coulomb criterion which involves all the three stress
invariants.

Several extensions of the Gurson model taking into account void shape effects
have been also proposed in order to solve various practical cases (see for exam-
ple [5-7, 15, 16]). Up to our knowledge, similar theoretical studies with pressure-
sensitive matrices and non-spherical voids do not exist in the literature: clearly, in
this case of spheroidal voids also, there is a strong need of an appropriate research
effort to obtain efficient estimates.

On the other hand, using finite element discretizations, both static and kinematic
methods of LA have been elaborated for Gurson’s problems with cylindrical cavities
([4, 23, 27]). In [30] the Gurson criterion (then with a von Mises matrix) is shown to be
relevant for materials with spherical voids by using the same tools and an new three-
dimensional numerical model. Using also the hollow sphere model, a recent paper
[19] was devoted to spherically porous materials with pressure-sensitive matrices
obeying the Drucker-Prager, Mises-Schleicher and Green criteria. On the other hand,
in the case of a von Mises matrix, these numerical studies have been extended to
take into account the void shape effects by considering a central spheroid void in a
matrix with a confocal boundary [21]. They concluded on the relevance of the criteria
proposed by the above mentioned studies of Gologanu and Leblond, at least for the
investigated porosity cases. Very recently, as mentioned before, these approaches
have been extended to the hollow spheroid problem with a Drucker-Prager matrix in
[18]. They provided very original bounds which are expected to be used as reference
results for validation of future theoretical investigations.

Therefore, the second purpose of the present paper is concerned with providing
lower/upper bound results to be used as reference values for forthcoming attempts
to determine approximate criteria for porous Coulomb materials in the framework
of limit analysis (LA) applied to the model of the hollow sphere or spheroid. Indeed,
these numerical approaches provide rigorous bounds (a posteriori controllable) to
the macroscopic criterion. Moreover, due to the selected projection approach, the
direction of the kinematically admissible (macroscopic) strain rates can be easily
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obtained as the normal to the kinematic approach in the projection plane, since the
homogenized material complies with the associated flow law.

First, we briefly present the hollow spheroid problem and its formulation in terms
of LA. Then, we recall the basis of the LA static and mixed methods, and the corre-
sponding expressions for the Coulomb material necessary for obtaining the bounds,
or to assess them by post-analysis of the optimal fields. The next step presents the
ad hoc extended static approach, and details the new formulation of the mixed (but
rigorously kinematic) method, in the axisymmetric case for the Coulomb problem.
Let us note that it is the first time that the LA mixed approach is applied to an axisym-
metric finite element problem with this frictional material. After a validation on the
hollow sphere problem under isotropic loading whose the exact solution is known,
we finally provide the results of the axisymmetric tests for two values of the friction
angle of the Coulomb criterion and three aspect ratios of the cavity. A comparison
with Drucker-Prager results of [18] is also given, in order to point out the differences
of the two porous material criteria, all porous Coulomb test exhibiting corners, not
the Drucker-Prager ones.

2 The Hollow Spheroid Model

The hollow spheroid model is made up of a spheroidal cavity embedded in a confocal
spheroidal cell. The solid matrix is a Coulomb material, homogeneous and isotropic.
Figure 1 presents the geometric model, where the given aspect ratio a;/b; and the
porosity f allow to determine the parameters (a and b,) of the confocal spheroidal
boundary. Let us consider first the three-dimensional point of view, and note ¥
and D the macroscopic stress and strain rate tensors. These quantities are related to

Fig.1 The hollow spheroid model and its FEM axisymmetric discretization (a1 /b = 0.5,f = 0.1)
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the microscopic fields by the averages over the model of volume V:

1 1
Y= V/Uij dvV, D= ﬁ/(uinj + ujn;) ds, (1)
\4 aVv

where u denotes the velocity vector and n the normal vector to the boundary dV of
the model.

Under the uniform strain rate boundary conditions, i.e. u; = Dj;x; (Where x rep-
resents the position vector), on the external boundary, the virtual dissipated power
Pioy = V Xj;Djj can be written as follows:

P =VQ0-q, @)
where the loading vector Q and the generalized velocity g here are defined as:

S+ %

o

o5

(Ex - EY) v Oa= yzs 05 =Xn, Qo= 2y

2 (Dy+D 1
q1 =Dy + Dy + Dy, 4225(%_D1)’ q3=—Dx—Dy),

q4 = 2Dy;, g5 = 2Dz, g6 = 2Dyy.

From the matrix isotropy and the spheroidal geometry of the model, the result-
ing material is transversally isotropic around the axis z. Hereafter is investigated
the macroscopic criterion g(X') in the (Oxyz) anisotropy frame of Fig.1. We
search the projection of g(X) in the (Q1, Q2) plane by optimizing O, for fixed
Q1 = X, other stress components defined in (2) being free. Consequently,
33—Egij = 0 = 2Djj for i # j, and % = 0 = g3 since the macroscopic material
complies with the normality rule. Loadings can then be restricted to principal strain
rates D as well as X' ((Oxyz) is a transverse isotropy frame), with D, = D, and
Yy = X. Finally, the problem involves only two non-zero loading parameters,
01 and Q».

Then, from the symmetries of the whole model, the quarter of the meridian
plane of the hollow spheroid is meshed into triangular elements as shown in Fig. 1,
right. Note that the macroscopic equivalent stress X, is, in the present case, linked

to O» by:
3
Eeqz\/zz/:2/:|Q2|=|Ex_22|=|2/3_xz|» 3)
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where X’ is the deviatoric part of X. In this case we can substitute in the above
relations X, to Xy and to Xy (X, unchanged), and D, to Dy and Dy. The loading
conditions u; = Djjx; here become u, = D, p, u; = D;z.

To obtain the static approach, we have first extended the axisymmetric finite ele-
ment code and the process defined in [24]. For the kinematic approach, we have
elaborated an original axisymmetric version of the mixed kinematic approach based
on specific quadratic velocities in the triangular elements. These ad hoc formulations
avoids the possible singularities of the axisymmetric equations in order to preserve
the rigorous bounding character of the solutions. Hereafter, we present the static
process and we detail the new axisymmetric mixed method, and their application
to the investigated problem. The final resulting graphs are presented for the usual
values of the friction angle ¢ = 10° and 20°, and for the aspect factor a;/b; = 1,
0.5 and 0.2.

3 LA Methods and Coulomb Criterion

The main goal of limit analysis is the determination of the locus of the limit loads
which corresponds to the macroscopic plasticity criterion in the present micro-macro
problem. Classically, the limit loads can be determined by using the static (or lower
bound) and the kinematic (or upper bound) methods.

3.1 The Static Method

The first one is the static method which is in terms of stresses and leads to a lower
bound to the limit loads. A stress field is said admissible if it is statically admis-
sible (SA), and plastically admissible (PA), i.e. verifying the (convex) plasticity
criterion f(0); a loading vector Q (o) is admissible if the corresponding o is admis-
sible. Let us denote K the set of the admisible loading vectors. The final problem
reads:

Qiim = (Qf. ... 200, ... O (4.0)
ro =max {1, O(c) = (0f,....20¢, ..., 0D} (4.f)

where the stress tensors o are admissible, and Q, is a fixed admissible loading
vector. In fact, Relation (4.i and 4.ii) holds when all admissible fields o can be
taken into account, which is not the case in general. Then, by varying the direc-
tion of Qy, a set of admissible Q, located near or on 9K, is obtained: the small-
est convex envelope of the corresponding points in K is an inner approach of the
boundary 0K, i.e. a lower bound to the exact macroscopic criterion investigated
here.
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3.2 The Mixed Kinematic Method

On the other hand, a so-called mixed kinematic formulation was pioneered by
Anderheggen and Knopfel [1] for finite element continuous velocity and a linearized
von Mises criterion, resulting in linear programming (LP) problems. An extension
to the discontinuous velocity case, based on the assumption that the LP duality
properties remain valid in non-linear programming, was proposed in [10]. A general
extension to discontinuous velocity fields and convex optimization was successfully
experienced in [17, 20] for homogeneous von Mises and Gurson materials in plane
strain. This mixed formulation is here modified as:

max F=Vqq-Q (5.0)
Q,0, T
s.t. /d codV +/[u] -T'dS =Vqu)-Q VKAu, (5.ii)
\% Sq
flo) <0, fu(T) <0, (5.ii)

where d is the strain rate tensor, o the stress tensor, S; the union of the velocity
discontinuity surfaces, T’ the stress vector on these surfaces and f;,;(T”) the projec-
tion of f(¢’) on the Mohr plane associated to the discontinuity surface of normal n.
In (5.i-5.iii) the velocity field u must be kinematically admissible (KA), i.e. piecewise
continuous with bounded discontinuities [«] and verifying the boundary conditions
and the loading condition g(u#) = g4. It can be seen in the above mentioned papers
that the optimal velocity field will also be PA (plastically admissible), i.e. there exist
everywhere a stress tensor o or a stress vector 7”7 associated to the strain rate tensor or
to the velocity jump by the normality law corresponding to f (o) = 0 or f,,,(T") = 0,
respectively.

The previous formulation gives the exact solution if all velocity and stress fields
could be taken into account. In general this is not the case when we consider a
discretization of the mechanical system in finite elements. However, the following
axisymmetric formulation is formulated for preserving the fully kinematic character
of the final result by using convexity properties concerning the set of the PA strain
rates (and of the PA velocity jumps) and the unit dissipated powers.

3.3 The Coulomb Material

The original Coulomb criterion reads:
f(0) = |oi —0j| —2c cos¢ + (0; + 0j) singp < 0 (6)

where o; and o; refer to the principal stresses without any a priori order (i,j = 1, 2, 3,
i # J), c is the cohesion of the material and ¢ the internal friction angle. In [22], this
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criterion is written in the axisymmetric case in the form of three conic inequalities
that are linearized to obtain a linear programming problem. From [24] the Coulomb
criterion finally results in one conic inequation and three linear inequations:

\/(ap —0)2 412, < U,
U < —asing + 2c¢ cos ¢,

. 7)
1—sin ¢ cos ¢ (
U=~ (0‘ — 209 1+sin¢) +4¢ g
1+sin ¢ cos ¢
U= (O‘ — 200 g ) T4¢ g

witho = 0, + 0.
In the Mohr plane related to a velocity discontinuity facet of normal 7, the Coulomb
criterion classically reads:

Ju(T) = low| +optang —c <0, ®)

Let us recall the PA (plastic admissibility) condition for the strain rates and the
volumic dissipated power [25]:

(\di| + |do| + |d3]) sin < tr(d) ; Tyor(d) = tafl St )

where di, d> and d3 are the principal strain rates. From (9), the domain of the PA
strain rates is a convex cone whose apex corresponds to the null tensor.
The corresponding relations about the velocity discontinuities read:

[u,]
tan ¢

[tn] > |[us] | tan @ ; mwyise([u]) = ¢ = c| [u]| (10)

The expressions (9) and (10) here are only used in the post-analysis of the optimal
solution of the mixed method.As mentioned before, two numerical implementation
methods were carried out for this study. We first begin with the static method, more

precisely the static iterative process which will deliver a lower bound for the solution
of the Limit Analysis problem.

4 Numerical Implementation of the Axisymmetric
Static Method

4.1 The Stress Field

Since the affine formulation is too “poor” to give satisfactory results, the FEM dis-
continuous stress field is expressed with quadratic functions, as follows:
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0, =A +Bp +Cz +Hpz +1p> +J72%,
09 =A +Bop + Cz + Hppz + Ipp®> +J 722,
o, =A;+ B:p + Cz+ Hzpz +12102 +JZZ2,
Tp; = B:p + Hypz + I p°.

Y

It is worth noting that the formulation has been adjusted so as to eliminate p from
the fraction denominators containing p, in the equilibrium equations.

4.2 The SA Conditions

From (11), the SA conditions give rise to linear relations satisfying the definition of the
macroscopic stresses, the equilibrium equations inside the triangles, the stress vector
continuity across the element sides, the boundary and symmetry stress conditions in
the horizontal plane of the (hemispherical) mesh.

4.3 The PA Conditions

The conic inequation of (7) was first used as such, and enhanced with the conic
code MOSEK. Unfortunately, this conic formulation did not appear robust enough
with significative meshing sizes. In a second attempt the cone was “PieceWise Lin-
earized” (as in [24]), using the classic “PWL” method generating a polyhedric cone
and a system of m linear inequations; the resulting problem was solved with the
(interior point) linear programming code XA [3]. Due to the necessity of a m value
sufficient to obtain precise results, the conditioning problems persisted for the spher-
oidal case.

Finally, only the so-called “BTN” linearization (based on a projection of cones) of
Ben Tal and Nemirovski [2] (see [23]) induced a sufficiently robust formulation for
the oblate cavity tests. This method gives an equilibrated number of additional rows
(3m + 1) and auxiliary columns (2 m) so that using m = 6 is equivalent to the PWL
approach with a polyhedron of 2" = 64 sides, i.e. a value inducing an unreachable
size of the final problem when using the PWL approach.

Moreover, because of the non-affine character of the stress field, the criterion
cannot be verified everywhere by imposing it at the three apexes of the triangle only.
Hence, the criterion is imposed at fifteen points (or more) regularly located in the
element. Fortunately, the quadratic variation and the discontinuities of the stress field
made that only moderately sizes of the mesh were necessary in the tests, due also to
efficiency of the iterative process below.
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4.4 The Post-analysis Process

After the optimization, a rigorous post-analysis is carried out:

e verification of the stress vector continuity across every boundary between adjacent
elements; in fact, the stress vector jump is always smaller than 107;

e subdivision of each element into a large number of “subtriangles” (more than
200); accurate computation of Q1 and Q> values, by integral calculation on each
subtriangle, followed by a summation on the whole domain;

e verification of the Coulomb criterion inside each subtriangle of each element; this
verification is performed with the three original inequations (6), since the stress
field is known at this stage.

To set an example, let us verify the following inequation in a subtriangle:

o] — o] —2c cos¢ + (01 + 02) sing < 0;

lo1—02|+(01+07) sin g

One has to calculate the k ratio: k = 3ccosd

k<1,

if £ > 1, the current “faulty” element’s number is stored and, if & is greater than
the value previously stored during the current post-analysis step, k replaces this
previous smaller value;

e if at least one element is non-PA, the optimization is reiterated, after modification
of the PA conditions in each “faulty” element: the original cohesion, c, or its
previously modified value, c. is replaced with a new smaller fictitious ¢, value:
cc = c¢/k, in order to make the PA conditions in this element more severe during
the next optimization step;

e the whole process is reiterated, as many times as necessary, as long as the solution
is not found admissible everywhere in the domain, with respect to the original
Coulomb criterion.

and verify the inequality:

5 Numerical Implementation of the Axisymmetric
Mixed Method

The axisymmetric mesh in the frame (p, z) is given on the right of Fig. 1 with 4 sectors
(ng = 4)and 4 layers (n, = 4). Foreach aspectratioa; /b of the cavity and fora given
porosity, the matrix boundaries of the mesh are adapted to obtain their confocal forms.
Since these boundaries are not homothetic, the porosity of the resulting mesh is not
exactly the same as the input one. Therefore, in a first step for each case of porosity and
aspect ratio, the distribution of the angle « is optimized to obtain the desired porosity
by progressively concentrating this distribution towards the more curved zone.
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5.1 The Virtual Velocity Field

In each triangle, the FEM discontinuous displacement velocity field is expressed as

follows:
u,=pA+Bp+Cz)

ug =0 (12)
uz=D+E,o+Fz+sz+I,02+Jz2

J _Bup'd _up.d _auz_d _ l(Z)up_'_BMZ):> () = [BIX) (13)
p_apa Q_p’ Z_aZ7 pz—2 az ap -
Thus, each triangle generates nine constants (X; = A, B, ..., J) which are the

final virtual variables of the discretized model. The resulting strain rate field inside
the triangle can be easily cast into the form {d(p, z)} = [B(p, z)]{X} where the com-
ponents of X are the (virtual) variables of the triangle. From this choice, the resulting
strain rate tensor d cannot become singular and it varies linearly in the element: this
linearity will be used later to (strictly) upper bound the (convex) dissipated power
on the triangle.

Along a inter-element side the velocity jump [u] is quadratic. To upper bound
as above the corresponding dissipated power, the jump is linearized by enforcing
the jump at the side middle to be equal to half the sum of its values at the ends of
the discontinuity. Note that another interesting methodology for maintaining the PA
character of a quadratic [u] along the discontinuity is given in [14], but it is not easily
applicable when using the present mixed method.

Note also that, in the recent LA numerical literature for axisymmetric problems,
the drawback of the singularity at the origin is avoided by enforcing the PA condi-
tions only at the centroid of the element, giving by this way only an estimate of the
real solution.

5.2 Formulation of the Mixed Kinematic Method

5.2.1 Contribution of the Element Velocity Fields

The first part of the integral in (5.ii) becomes here, for a triangle of volume V:

Pv=/d:0dV=27r/{d}’{a},odpdz (14)
% v

As detailed in [17, 19], from the Karush-Kuhn-Tucker optimality conditions, the
product {d}{c} becomes the convex unit dissipated power my(d) in the optimal
solution. Then, we substitute to this product its linear interpolation .2 ({d}'{c})
between its values at each vertex of the triangular element. Since the product p.Z
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is quadratic, the integral [ p.Z dp dz is classically calculated from its values at the
medium of the sides of the triangle. Since each term of the product is linear, the final
result depends only on the product values at the element vertices. Consequently,
a stress tensor {0} = (0,, 04, 09, apZ)T is assigned at each vertex of the triangle,
without any variation assumption over the triangle.

We finally obtain for the triangle with vertices i = 1 to 3 and area A:

Py <5 Cildl o) (1)
i=1,3

where C; = 20; + pit1 + piv2, With pg = p1 and ps = pa.

It is important to note that the strain rate d of the optimal solution will be PA at
the vertices of the triangle; from the convexity of the set of PA strain rates associated
to the present (convex) criterion, and from the linear variation of d in (13), it can
be deduced (as first noticed in [13]) that the strain rate will be PA all over the
element, a sine qua non condition for preserving the upper bound character of the
result.

5.2.2 Contribution of the Velocity Discontinuities

The second part of the integral in (5.ii) is the sum of the power contribution of each
discontinuity surface Lj_; (of ends noted 1 and 2):

P, = / [u] - T'dS = 2= / ([ul}{T"} pdpdz (16)

Li_s Ly

According to [25], the product [u] - T’ becomes the dissipated power 74 ([u]) when
the stress vector 77 and the velocity jump vector [u] are associated (by the normality
law) relatively to the f,; (T/ ) criterion. Here also, we can use the convexity of m;([u«])
since [u] is constrained to vary linearly along the discontinuity side: to the product
{[u]}'{T’} we substitute its linear interpolation .Z ( { [ul} (T’ }) between its values
at each end of the discontinuity side of normal n. Then, we can upper bound Py
by calculating the quadratic expression with Simpson formula, and by using the
linearity of each term of the product p.Z. By allocating an auxiliary stress vector 7/ =
(0nn, onr) (expressed in the orthonormal (n, ¢) frame of the side) at each of the two
apices of the discontinuity side L_;, we finally obtain:

P= 203 G (). a7)
i=1,2

where [ is the length of L1_»> , C; = 2p; + pi+1 with p3 = pj. It can be noted that
the optimal jump [«] will be PA all along Li_» from the convexity of the PA jump
set associated to the criterion f;;.
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5.2.3 Expression of the External Power

To the global vector of the virtual u-velocities are added the generalized velocities
q1, 42, q3 in order to form the final virtual vector {u}. Thus, from (2), the external
power can be written as:

Py = V(g- Q) = V{g)" {0} = () VIBI{O} (18)

where {g} = [B1" {u}.

5.2.4 The PA Stress Conditions

In the global (x, y, z) reference frame, the Coulomb yield condition is written as in
(7), where the cone can be easily cast into the Lorentz form required by the conic

optimizer MOSEK [12]:
Je+ad<U (19)

together with the three inequalities for each vertex of the triangular elements.
The criterion (8) for the stress vector T’ gives rise to the following inequalities:

/
O,

wtostang <c, —o,, +o,tang <c, (20)

which results in two linear constraints in terms of the real variables o, and o,, for
each ends of the discontinuity sides.

5.2.5 The Final Mixed Problem and the KA Conditions

Finally, the numerical form of the variational mechanical problem (5.i-5.iii) is as
following:

Max V{g}{Q}
s. t. —[al{o} — [«'IT"} + VIBI{Q} = 0,
fl@) <0 Yo fu(T) <0 VT, 21
+KA velocity conditions.
Indeed, a systematic change of d and u in terms of the final {X} virtual variables is
performed through specific subroutines of the Fortran code which generates the final
problem in the MPS format required by MOSEK.
As shown in the detailed analysis of [17, 19], we can identify the dual variables of

the solution of this optimization problem with the {X} components. This analysis also
details how the resulting velocity field is plastically admissible and how, by adding
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auxiliary columns, the kinematically admissible character of the optimal velocity
field can be ensured, as in the following.

e We previously defined two supplementary rows (constraints) whose associated
virtual variables are ¢, g»> and two new columns for the corresponding macro-
scopic stresses Q1, Q2. At each apex and at the middle of the boundary triangle
sides, we impose the loading conditions u, = D,p, u; = D z. This is done
by adding one additional column (i.e., an additional variable) for each of these
conditions. Let us note the chosen kinematic parameters as {g} = [Ap]{D} with
(DY = (Dy, D;); then, for example, the terms of a condition u, — pD, =0 =
Uy — plAp]~Hq) = 0 are dispatched on the (X, g) components (corresponding to
u, and g) of the additional column.

e A similar technique is used to impose the null symmetry value to the u, compo-
nents on the p axis, and to make that the jump [«] of the middle of the discontinuity
side is equal to half the sum of its end values.

6 Application to Sphere and Spheroid Models

In the following tests, the porosity f is taken equal to 0.1, and the friction angles to
10° and 20°, for the sake of homogeneity.

6.1 Comparison with Exact Results for Spherical Voids

Table 1 gives the values obtained with the static and mixed codes for isotropic loadings
(i.e. @2 = 0) in tension and compression, together with the exact values given in
[29]. It can be seen that the exact solution was always located between the numerical
bounds that are very close; this also points out that the linearization of the matrix
boundaries has no real influence with the selected ng values. All the calculations were
made on an Apple Mac Book Pro with a 2.7 GHz Core i7 and 16 gigabytes of RAM.
In the case of the static approach, the final numerical LP problem involved 1,024
triangles giving rise to 384,000 constraints and 249,000 free variables. For one point
of the searched macroscopic criterion, 56 iterations, of approximately one minute
each, were needed to obtain the convergence of the process described in Sect.4.4.

Table 1 Comparison to Em Friction angle (p 10° 20°
exact values [29]—Coulomb - -
matrix—spherical Compression | Present-static —5.0970 | —10.705
void—porosity Exact value —5.1397 | —10.805
f = 0.1—cohesion Present-kinematic | —5.1531 | —10.844
¢ =1—(ns.ny) : (16, 16)/ Tension Present-static 20543 | 1.4851
static, (48, 48)/kinematic
Exact value 2.0704 1.4911
Present-kinematic 2.0717 1.4916
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The final mixed mesh of 9,200 triangles gives a conic problem with a constraint
matrix involving 276,100 rows, 276,350 columns, and 27,650 Lorentz cones; the
problem is solved in about 20's by the version 5 of Mosek, using the four cores of the
Intel Core i7 processor. This remarkable performance is mainly due to the quadratic
variation of the velocity field and to the relatively small size of the final problem even
for a very refined meshing of the problem. It can be also noted that the linearization
of the velocity discontinuities, in order to preserve the kinematic character of the
method, has not a significative influence on the performance in terms of upper bound
solutions.

6.2 Numerical Results for Axisymmetric Loadings
in the Spherical Void Case

In the reference [24], the hollow sphere problem with a Coulomb matrix was inves-
tigated, unfortunately only for non-negative Q» only. The corresponding results
are recalled (JCAM dashed lines) in Figs.2 and 3, for the friction angles ¢ =
10° and 20°, respectively.

The JCAM static approach (in blue color) was obtained with a PWL version of
the static code: this explains the better results (continuous lines) by using the present
(conic projection) algorithm of Ben Tal and Nemirovski of Sect.4.3. It can be seen

— kine-sphere, ¢ = 10°
— stat-sphere, ¢ = 10°
- = JCAM-kine
- — JCAM-stat

Fig. 2 Present results—Coulomb matrix—f = 0.1—spherical cavity—¢ = 10°; ¢ =1
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4@ .
— kine-sphere, ¢ = 20°

— stat-sphere, ¢ = 20°
- — JCAM-kine
- — JCAM-stat

—12

Fig. 3 Present results—Coulomb matrix—f = 0.1—spherical cavity—¢ = 20°; ¢ = 1

also that the proposed mixed kinematic code has allowed similar improving of the
previous results (dashed red lines) obtained with a classic kinematic approach that
cannot run the refined meshes allowed by the mixed code.

The final kinematic and static criterions are very close, and always in the good
order, even when they are almost indistinguishable. The presence of the singular
points on the average stress axis are confirmed. The influence of the third stress invari-
antis also shown (recall that the second invariant is here X, = |Q>|), since, owing to
the isotropy of the macroscopic material, the plasticity criterion only depends on the
three stress invariants. Indeed, in the Figs. 2 and 3, the X, axis would be a symmetry
axis of the plasticity criterion if this one does not depend on the third stress invariant.
It must be emphasized that in the present case, the influence of third stress invariant
comes from a combination of an effect that exists even if the matrix is not sensitive
to the this third invariant, and of that which comes from the Coulomb matrix. In par-
ticular, the apexes on figure are signatures of this sensitivity of the Coulomb matrix.
These points will be commented again in the following when comparing Coulomb
and Drucker-Prager matrices.

6.3 Porous Coulomb Material with Oblate Voids

We consider first the case of the 0.5 aspect ratio aj/b; where both axisymmetric
codes are used. The case of the aspect ratio 0.2 is then investigated by using the
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same static and mixed code. Recalling that this problem has not been studied in the
literature up to now, it should be useful to remember that the present axisymmet-
ric bounds are also strict bounds when considering the full 3D problem, in the Q;
space.

6.3.1 Casea;/b; = 0.5

In Figs.4 and 5 are shown the results for an oblate cavity having an aspect ratio
aq / b 1= 0.5.

First, the kinematic and static bounds, here also are very close, always remaining
correctly ordered as in the case of spherical cavities. It can be seen that the graphs
presents a small rotation around the frame origin, the singular point being not on the
average stress axis. As expected in this case of transverse isotropy, taking into account
that the axis of the anisotropy frame (x, y, z) are also loading axis, the influence of
the third stress invariant is here more important.

— kine, a/b = 0,5, ¢ = 10°
— stat, a/b= 0,5, ¢ = 10°

Fig. 4 Present results—Coulomb matrix—f = 0.1; a; /by = 0.5—¢ = 10°;¢c =1



Limit Analysis and Macroscopic Strength of Porous Materials with Coulomb Matrix 43

A QQ

—10

— kine, a/b=0,5, ¢ = 20°
— stat, a/b=0,5, ¢ = 20°
|

Fig. 5 Present results—Coulomb matrix—f = 0.1; a; /b; = 0.5—¢ = 20°;¢c =1

6.3.2 Casea;/b; =0.2

Figures 6 and 7 illustrate the results for an oblate cavity having this time the aspect
ratio a; /by = 0.2. Here, the bounds are close, however in a lesser extent than above
for mainly compressive loadings, and the dissymmetry with respect to the average
stress axis is noticeably more important.

For comparison between the two cases with the two usual pressure-dependent
matrices, we report also the graphs obtained for a Drucker-Prager matrix in the
reference [18]; both graphs are reported to the cohesion c, after identification of the
two criteria in plane strain from [25], in such a manner that the boundary of the
domain of plastically admissible stresses for Drucker-Prager is innerly tangent to the
corresponding Coulomb boundary. As expected, the criterion of the porous Drucker-
Prager material remains innerly tangent to the porous Coulomb criterion, without any
angular point in the Drucker-Prager case. Again, existence of such angular points
is a signature of the sensitivity of the Coulomb matrix to the third invariant of the
stress deviator. Since angular points might induce strong effects in strain localization
phenomena, it can be seen that replacing the Coulomb criterion with an ad hoc
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\ ///

\tl\ G — kine, a/b=0,2, ¢ = 10°

AN //// — — kine-Drucker-Prager
= -2 — stat, a/b= 02, ¢ = 10°

- — stat-Drucker-Prager

Fig. 6 Present results—Drucker-Prager matrix—f = 0.1; a1 /b1 = 0.2—¢ = 10°;c =1
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Fig. 7 Present results—Coulomb matrix—f = 0.1; a; /by = 0.2—¢ =20°, ¢ =1
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Drucker-Prager for elastoplastic 3D computations can be problematic, even for the
present porous materials.

7 Conclusion

The first purpose of the present paper was to generalize the formulations of the
limit analysis (LA) in the axisymmetric case of [24], in order to obtain robust conic
formulations without losing the rigorous bound character of the solutions. The second
purpose was to provide numerical, but rigorous bounds to the macroscopic criterion of
a “porous Coulomb material” with spherical and oblate voids, a problem not studied
in the literature up to now, at least to our knowledge. These bounds, not only allow to
characterize the macroscopic plastic properties of this class of materials, but are also
expected to serve as a reference results for forthcoming theoretical investigations.

To obtain accurate results for the non-spherical voids, the static approach was
modified to use the conic projection algorithm of [2], and an original mixed axisym-
metric approach has been elaborated which results in a second order conic program-
ming problem. Both resulting codes have allowed remarkable performances by using
specific quadratic fields together with FEM refinements of the problem unreachable
before. After a validation in the case of a spherical cavity and isotropic loadings, by
comparison to the known exact solution, we provide illustrations of the macroscopic
plasticity criterion. This has been done for usual values of the friction angle and of
the void aspect ratio. The obtained results allow to highlight, among others, the shape
and the size of the plasticity criterion depending on the aspect ratio of the cavity.
A comparison with the porous Drucker-Prager material is finally given in order to
illustrate the noticeable differences with the present porous Coulomb material, the
same geometric and loading conditions being considered. In view of all the above
results, it is clear that the paper provides interesting bounding data which call for a
great effort in the theoretical side in order to formulate new macroscopic criterion
corresponding to the porous material with a Coulomb matrix.
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A Direct Method Formulation for Topology
Plastic Design of Continua

Zied Kammoun and Hichem Smaoui

Abstract In the present paper a method is proposed for continuous and black and
white topology optimization of continuum structures subject to static and plastic
admissibility conditions relative to a prescribed load. A significant feature of the con-
tinuous topology optimization problem is its outstanding similarity with the direct
static formulation of the limit analysis problem that can be written as a conic program-
ming problem. The discrete, e.i. black and white, topology optimization problem is
derived by simply introducing a penalization of intermediate densities in the objec-
tive function and is solved as a sequence of conic programming problems of the same
form as the continuous design problem. The proposed method is formulated in plane
strain using Tresca materials and is illustrated on continuous and discrete example
design problems taken from the literature.

Keywords Discrete topology - Optimization - Limit analysis

1 Introduction

Topology optimization of continuum structures has witnessed an intense research
effort during the last decades [1-5] that led to remarkable developments. The numer-
ous successful applications of topology optimization in industry [6] and the emer-
gence of powerful dedicated topology optimization software [4] reflect the degree of
maturity this discipline has reached.

It is noteworthy, however, that the work on topology optimization of continuum
structures has been predominantly focused on linear elastic material behavior. Elastic
design is traditionally the most common and most demanded type of design and
continuum topology design is not an exception in this regard. On the other hand,
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historically the analysis and design developments in the framework of elasticity
are usually followed by sustained activity extending these developments to plastic
behavior. But this does not seem to be the case for topology optimization.

Following the extensive work on topology optimization of elastic structures the
research in topology design has been concerned more with the incorporation of
advanced materials, multiphysics and multidisciplinary applications such as MEMS
and compliant mechanisms than with the extension to nonlinear material behavior.

Among other reasons, this is partly because the mathematical approaches under-
lying the topology design methodologies, such as the homogenization approach [7]
and the Simple Isotropic Microstructure (or Material) with Penalization (SIMP) [8],
strongly rely on the linear elasticity assumption.

Moreover, elastoplastic analyses that seek to determine response quantities, e.g.
evolution methods, are known for their high computational demand. On the contrary,
direct methods of limit analysis require lower computational effort to determine limit
states in terms of either stress field or displacement/velocity field solutions. When
information on the load response history is not needed and, say, only the limit stress
field is of interest, direct methods present an adequate alternative for plastic collapse
analysis. They are appropriate analysis tools for such applications as geotechnical
works like foundations, soil reinforcement and retaining structures. In an automated
design framework, where computational efficiency in the analysis is a primary fac-
tor, direct methods of limit analysis become attractive for their considerable com-
putational saving potential. Member sizing optimization of structures with specified
topologies, e.g. trusses and frames, subject to plastic design constraints has been
treated in the literature using direct methods of limit analysis [9]. To the authors’
knowledge, topology design of continuum media, involving direct limit analysis,
is inexistent in the literature prior to the recent work presented in [10, 11]. Previ-
ous research includes some work that has dealt with continuum topology design of
nonlinear elastic structures where the tools developed for the linear behavior were
adapted and extended to the nonlinear case [2] and the few tentatives that were
directed to design based on elastoplastic (e.g. [12]) or plastic analyses (e.g. [13])
involved evolution analysis methods.

The present work is concerned with the integration of direct methods of limit
analysis precisely, into a methodology for topology design of continuum structures.
It builds on the method presented in [10] and reported in [11] that generates optimum
continuous, also called porous, topologies to develop a methodology that synthesizes
so called black and white topologies.

The continuous design problem is formulated according to the microscopic (or
material) approach [11] and expressed in terms of continuous material densities as
design variables. The outstanding feature of the formulation is that it takes on a mathe-
matical form that is largely similar to that of a direct limit analysis problem. The same
code that is used in solving the analysis problem can actually be employed in finding
the optimum design. Moreover, the computational demand of the topology design
problem is expectedly, and has been demonstrated ([ 10]) to be, in the order of magni-
tude of that of a single limit analysis. Among the properties shared by both problems
a significant one is convexity, which has desirable implications on convergence.
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The continuous formulation has long been regarded as merely a prelude to the
end goal of a discrete, black and white, design methodology which often incorpo-
rates continuous optimization routines as part of the discrete optimization strategy.
However, the recent breakthroughs in material technology have regenerated interest
in continuous topologies. State of the art technology enables the manufacturing of
materials with a large variety of microstructures to suit an unlimited range of prop-
erties and property distributions, which creates demand for designs with continuous
topologies.

Yet discrete topology remains a major goal from the perspectives of industrial
applications and academic interest and the present work is intended to be a step
forward towards optimization of black and white topologies based on direct limit
analysis. After a brief presentation of the continuous formulation of the topology
optimization problem a modified formulation, involving a penalization technique, is
proposed to generate discrete topologies. A simple search procedure is then proposed
for solving the discrete design problem as a sequence of continuous design problems.
The procedure is discussed and tested on a number of example design problems and
solutions are compared with topologies found in the literature.

2 The Static Method of Limit Analysis

The main design constraint considered in the present work is that a specified loading
supported by the designed structure be statically and plastically admissible. The
terminology adopted here is defined in [14, 15] where a stress field o is said to
be statically admissible (SA) if field equilibrium equations, stress vector continuity,
and stress boundary conditions are satisfied. It is said to be plastically admissible
if f(o) < 0, where f (o) is the plasticity criterion of the material. A stress field o
that is both SA and plastically admissible will be said to be “admissible”. A loading
system Q € R" in equilibrium with a statically admissible stress field o, Q = Q(0),
is said to be admissible. The n components of Q are called loading parameters. The
relationship Q = Q(o), which usually describes either field equilibrium equations,
when body forces are present, or boundary conditions on the stress vector, is linear
in both cases. A solution of the limit analysis problem relative to the ith loading
parameter is found by solving the following optimization problem for an admissible
stress field o such that:

Qiim = (0], ... 200%, ..., 0D
Ao = max{r, Q) = (Qf,...., 207, ..., 0N} 1)

where Q7 is a specified admissible loading. The resulting loading Q(o) is a limit
loading of the mechanical domain with respect to the loading component Q?. This
formulation defines the static, lower bound problem of limit analysis, or static limit
analysis (LA) problem, as it will be dealt with in the present work. The static LA
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method determines the stress field at the limit state only. It generates no information
on the stress field at intermediate stages of loading nor on kinematic quantities at
any loading step. The payoff of this missing information is a lower computational
demand which is a paramount advantage in case that information is not necessary.
Another merit of the static approach is the status of rigorous lower bound of the
limit load.

3 Finite Element Formulation of the Static Problem

The numerical plane strain formulation of the static, lower bound problem is
described in detail in [16]. The planar mechanical domain §2 is discretized into tri-
angular finite elements. Considering the global reference frame (x, y), the stress field
is chosen to be linear in x and y within the element. Across inter element interfaces
it can be discontinuous provided the stress vector acting on the interface remains
continuous. The Tresca criterion is written as:

@) = (03 — 0,)? + 21)? — 25 <0, @)

2
S(o) = J(%) +13 <s 3)

where s denotes the shear strength, or cohesion, of the material. The following
conditions are imposed on the stress field in order to ensure its static and plastic
admissibility:

or equivalently as:

e Within the element, the equilibrium equations o;;; + y; = 0 expressed in the
Cartesian reference frame, where y = pg is the specific weight vector, p the mass
density and g the acceleration of gravity.

e Continuity conditions of the stress vector across discontinuity lines: for each dis-
continuity segment of normal n, the continuity of the stress vector T; = oy;n; is
imposed at the ends defining this discontinuity segment.

e Boundary conditions on the stress vector: ojjn; = Tid at each end of the boundary
element sides where the linearly varying stress vector 7¢ is imposed.

e Stress field plastic admissibility at each triangle vertex. This ensures plastic admis-
sibility over the total domain from the linear variation of the stress in a triangle
and the convexity of the criterion (2).

Introducing a change of variables such that the stress vector o is defined by the com-

ponents w, @ and 7y, denoted o, o_ and T, respectively, the plasticity

criterion can be written directly in the conic forms > /o2 4 2. The numerical opti-
mization problem, expressing the static limit analysis problem, can thus be written
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as a conic programming problem in the form:

Ao = max A

0(0) = (0f,...,20¢, ..., 0% 4)
S(o) <s,
o SA

and can, therefore, be solved using the conic programming code MOSEK [17] as in
[18-20].

4 Topology Optimization of Continua

Topology optimization of continuum structures aims at simultaneously optimizing
the shape of external and internal boundaries, the number of holes and the connec-
tivity within a specified domain £2p with given boundary conditions with respect to a
design objective function subject to a set of constraints. For elastic materials, in most
formulations the design objective consists of a global stiffness measure or a compli-
ance functional and the constraint is essentially a specified bound on the amount of
material. Among the various approaches that have been developed, two major classes
can be distinguished: the Microstructure and the Macrostructure approaches [2].

In the Microstructure approaches, also known as material approaches, the material
is assumed to be distributed in some microstructural form over the design domain
£20. The miscrostructure may correspond to some real or fictitious composite [7] or
to an isotropic porous material [SIMP]. It is customary to use a fixed, uniform finite
element mesh to model the structure within the entire design domain. The design
variables are assumed to be constant within each finite element. For the analysis, finite
elements are applied with properties that are related to the material characteristics of
the microstructures [2]. The discrete optimization consists i