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Abstract. We have developed a “network robot system” framework
with the objective of enabling practical deployment of social robots to
provide real-world services in everyday social environments. This frame-
work addresses practical issues in social human-robot interaction by in-
tegrating ambient intelligence systems, networked data stores, human
supervisors, and centralized planning. All of the elements of the system
have been developed and tested in public and commercial spaces such as
shopping malls, resulting in a flexible robot control architecture based on
practical, real-world requirements. We describe several elements of the
system and demonstrate examples of its use in five years of real-world
field deployments and research. Finally, we present the Ubiquitous Net-
work Robot Platform (UNR-PF), an internationally-standardized high-
level architecture for service robots based on our framework.

Keywords: network robot systems, human-robot interaction, ambient
intelligence, cloud robotics, ubiquitous computing.

1 Social Robots in the Real World

Among the many fields of robotics, perhaps no application captures the public
imagination like social robots – robots which are a part of our everyday lives,
taking the role of social peers, interacting with people conversationally using
speech, gaze, and gesture. Yet social robotics is also one of the youngest fields in
robotics. Research has been progressing steadily in fields like computer vision,
speech processing, and motion planning for safety, and a number of inspiring
studies have demonstrated that social robots can be used as museum guides
[4, 31], as receptionists for assisting visitors [11], and as peer-tutors in schools
[16]. However, today’s reality is that most demonstrations of social robotics are
still confined to laboratory trials.

Many of the reasons for the continued absence of robots in our everyday
social spaces stem from the fact that the noise and unpredictability of the real
world and the complexity of social interactions provide enormous challenges
for recognition and planning. In a busy shopping mall, school, or train station,
a robot needs to localize itself in a world where products and furniture are
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constantly moved around; recognize and track people moving through changing
lighting conditions in crowded, unstructured spaces; determine the intentions of
people around it; and ultimately to interact with people, identify who it is talking
to, perform speech recognition for natural language amid significant noise, and
in the end provide a useful service.

With advances in algorithms and improved hardware, many of these recogni-
tion and planning problems may be solved in the near (or not-so-near) future.
However, by augmenting the limited on-board capabilities of standalone robots
using ambient intelligence systems and networked resources, it is possible to
accelerate the development of social robots despite the limitations of today’s
technology.

Fig. 1. Shopping arcade and laser range finders

By embedding sensor systems in the environment as shown in Figure 1, we
are able to use networked resources to provide recognition, planning, and coordi-
nation between robots, extending their capabilities far beyond the limitations of
standalone robots. Combining these ambient intelligence systems with networked
data sources and human operators available in the network to occasionally assist
with difficult recognition and planning tasks, we have been able to demonstrate
prototype robot systems to provide a variety of services in long-term deployments
in real shopping malls and other social spaces.

The work presented in this chapter spans about five years of research and field
studies aimed towards deploying social robots in public and commercial spaces.
We will present an overview of the systems we have developed, as well as some
of the practical problems we have faced in the process.

In a world where humans are becoming more and more connected through
wireless networks and mobile devices, it is our belief that the “network robot
system” approach [25], using environmental sensor systems, is the inevitable
future direction of robot system architectures. We hope that the contributions of
our work provide a framework for future systems to provide ubiquitous coverage
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Fig. 2. Example scenes using our Network Robot System framework. (a) helping a
customer with shopping, (b) collaboration between heterogeneous robots.

of social robot services, and ultimately to enhance the quality, enjoyment, and
humanity of our lives.

This framework has been successfully used by our research group (Fig. 2 (a))
and in collaboration with others (Fig. 2 (b)) in several field deployments, and we
will present many examples of robot services we have implemented in the field
using this framework.

Most importantly, the lessons learned throughout our development process
have been distilled into a generalizable architecture called the Ubiquitous Net-
work Robot Platform (UNR-PF), which is recognized by international stan-
dards organizations. These standards describe an architecture which will con-
nect robots with sensor networks and mobile devices, and enable high-level robot
services to be developed independently and executed on a wide variety of robotic
platforms, including those based on popular software frameworks such as ROS
and RT-Middleware.

2 Human Tracking

A cornerstone of much of our research is a system we have developed for si-
multaneously tracking the position and body orientation of large numbers of
pedestrians, in order to support the spatial perception of robots for navigational
interactions. Our technique combines data from a network of laser range finders
mounted at torso height. In the tracking algorithm, an individual particle filter
is created to estimate the position and velocity of each human over time, and a
parametric shape model representing the person’s cross-sectional contour is fit
to the observed data at each step.

This section will provide an overview of our tracking system. Details of the
algorithms used and measures of performance can be found in [9]. This tracking
system has been used throughout six years of experiments and field trials, and
it has been made into a commercial product called ATRacker1 which has been
used both for robotic and non-robotic applications.

1 ATRacker is sold by ATR-Promotions. http://www.atr-p.com/HumanTracker.html
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2.1 Related Work

Much of the human-tracking research to date has been based on leg tracking, for
both mobile robotics [27, 37] and environmental monitoring [2, 5, 39]. This has
historically been motivated in part by the fact that many robots use laser sensors
for obstacle avoidance, and for that reason already have laser sensors mounted
near the ground. However, their visibility is often limited by those same obstacles,
making floor-level sensors a good choice for on-board robot systems but less so
for wide-area environment monitoring in cluttered spaces.

In our work, the laser sensors constitute an essential part of a ubiquitous
sensor network used exclusively for human tracking in real environments. For
this reason, it is important for the sensors to be mounted higher, above furniture
and ground clutter. Thus the sensors in our system are mounted on poles at a
height of 85-90 cm, where the arms and torso can be clearly observed, as shown
in Figure 3:

Fig. 3. The ATRacker system features Hokuyo laser range finders mounted on portable
poles which can easily be placed in public spaces

Placing the sensors at this height does have the drawback that small children
cannot be tracked. This may be acceptable in scenarios where adults are the
primary targets of services, provided that the robots are capable of using on-
board sensors to detect nearby children for safety reasons.

2.2 Tracking

State Model. The state vector tracked by the particle filter consists of four
variables: x, y, v, and θ. The variables x and y represent the position of the
human being tracked. Although the speed v, and direction θ of motion could be
calculated a posteriori from the position data, these variables are included in the
state and updated at every step to enable the person’s position to be projected
forward through time for more accurate tracking. These variables are used in
the motion model, described below.
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Motion Model. At every update of the particle filter, each particle is prop-
agated according to a motion model. The purpose of this motion model is to
approximate the probability of a state xt based on the previous state xt−1. To
capture the balance between randomness and predictability in human motion, a
Gaussian noise component is added to each particle’s v and θ values. We then
propagate the (x, y) motion linearly according to the resultant v and θ values of
the particle.

Likelihood Model. The purpose of the likelihood model is to approximate the

value of p(zt|x[m]
t ) based on sensor measurements. In this case, the measurement

vector z is an array of raw sensor range data. An effective likelihood model must
provide a robust likelihood estimate in spite of noisy sensor data, partial and
full occlusions, and the irregular and varying shapes of human bodies.

Fig. 4. A typical single-sensor laser scan. (Left) The positions of humans relative to
the scanner can be seen. (Center) Occupancy information. (Right) Edge information.

Laser scan data provides two qualitatively distinct types of information useful
for estimating human positions: occupancy information, indicating whether a
certain point is occupied or empty, and edge information, indicating a contour
which may correspond with the edge of a detected object. Fig. 4 illustrates the
distinction between these two kinds of information.

To determine likelihood values from the raw sensor data, it is first necessary
to create a background model. Our system uses an adaptive background model
which is updated over time to determine the best estimate of the true back-
ground distance. Occupancy likelihood is then determined by dividing the world
into three regions: ”open”, ”shadow”, and ”unobservable”. The ”unobservable”
region is beyond the background model for that sensor, and thus can contribute
no information. The ”open” region has been observed by the sensor to be unoc-
cupied, and the remaining space is considered ”shadow”. Note also that every
”shadow” region lies behind an ”edge”.

The likelihood model used to compute p(zt|x[m]
t ) is expressed in Eq. 1 and 2

and includes components reflecting both occupancy and edge information.
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p(zt|x[m]
t ) =

1

nsensors

nsensors∑

i=1

pi(zt|x[m]
t )− pcollocation (1)

pi(zt|x[m]
t ) =

{
pshadow + pedge(zt|x[m]

t ) in a shadow region

popen in an open region
(2)

For a point in a shadow region (strictly speaking, we consider only those
regions wide enough to contain a human), the likelihood in Eq. 2 is calculated as

the sum of a constant value pshadow and a likelihood pedge(zt|x[m]
t ), calculated

as a normal distribution centered upon a point located one approximate human
radius behind the observed edge. (In our calculations a value of 25cm was used.)
This reflects the fact that people are highly likely to be found just behind an
observed edge, yet can plausibly exist anywhere in a shadow region (e.g. the
occluded person in Fig. 4).

For a point in an open region (or in a shadow region too narrow to contain a
human), the likelihood is theoretically zero, but for reasons described below is
set to a small but nonzero constant value popen. In this case, edge information
is irrelevant.

Finally, in Eq. 1, these likelihood values are averaged across all nsensors sen-
sors for which the proposed point lies within the sensor’s ”open” or ”shadow”
range, i.e. not ”unobservable” to that sensor. To prevent two particle filters from
tracking the same human, a value pcollocation is subtracted from this result. Its
value is calculated as a sum of normal distributions surrounding each of the
other humans, based on the list of human positions from the previous time step.

Body Shape Model. After each update of the particle filter, we update a
shape model to find a best fit to the torso and arm positions of each pedestrian.
Although variations in clothing, backpacks, objects being carried, and individual
body size and walking style make it difficult to develop a precise, yet general-
izable, model, we found a simple three-circle model to be effective for tracking
body orientation.

Our model is illustrated in Figure 5. A central, large circle represents the
person’s torso, and two smaller circles represent the arms. This model has six
parameters which can be varied to best match a subject’s cross-sectional body
contour.

The update procedure for fitting the shape model to observed data is based
on fitting the observed contour of the body to an empirically-derived probabil-
ity distribution. The details of this procedure are presented in [9]. After these
parameters have been adjusted, it is possible to estimate the direction in which
a person is facing, even if they are standing still.

2.3 Tracking Results

The tracking accuracy of this system is highly dependent upon several factors,
including the placement geometry and number of sensors and the degree of
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Parameter Description

θ Body orientation
ϕ Arm separation angle

ϕL = θ + ϕ for left arm
ϕR = θ − ϕ for right arm

dL Distance of left arm from body
dR Distance of right arm from body
rarm Arm radius
rtorso Torso radius

Fig. 5. Our three-circle model, with the six variable parameters indicated

crowding in the space. Our measurements in laboratory tests have shown accu-
racy as good as 4.6 cm ± 2.7 cm [9], and users in the field have reported accuracy
ranging from 6 cm to 15 cm. Body direction tracking was found to be 8.2 ± 13.8
degrees in our laboratory studies, with occasional 180 deg reversals due to the
nearly-symmetrical shape of the human body.

Shape Model Matching. To illustrate the quality of the shape model match-
ing, Figure 6 shows raw data from five frames taken during the course of a single
stride, overlaid with the model-based estimates for those time frames. Note that
the swinging of the arms is clearly visible from the data, and that the model
follows this movement closely.

Fig. 6. Example of arm and torso movement during a single stride. Top: Five frames of
raw data from laser scanners taken at 320ms intervals. Bottom: Corresponding human
shape model positions for each frame.
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3 Abstracting and Anticipating Trajectories

Once a high-precision pedestrian tracking system is available in an environment,
the next step is to extract socially meaningful knowledge from the data. This
section will present an overview of a series of techniques for abstraction of peo-
ple’s trajectories and a service framework for using these techniques to enhance
the services provided by mobile social robots. The details of our algorithms and
evaluation results for this system can be found in [15].

For a robot providing services to people in public spaces such as shopping
malls, it is important to distinguish potential customers, such as window shop-
pers, from other people, such as busy commuters. The framework presented here
enables a designer to make a robot proactively approach customers who exhibit
some target local behavior, e.g. walking idly or stopping. This technique was
used in a field trial to offer shop recommendations to visitors [28].

The techniques proposed in this section also enable information about the
use of space and people’s typical global behaviors to be automatically extracted
from pedestrian trajectory data. This information enables the robot to anticipate
spatial areas in which people are likely to perform the target behaviors, as well
as anticipating the probable local behaviors of specific individuals a few seconds
in the future. If slow-moving robots can anticipate a person’s future behavior,
they can start moving early to approach potential customers [26].

3.1 Abstraction Techniques

We use a series of three abstraction techniques for people’s trajectories: local be-
havior, use of space, and global behavior. We define the term local behavior to
refer to basic human motion primitives, such as walking, running, going straight,
and so on. The observation of these local behaviors can then reveal information
about the use of space, that is, general trends in people’s behavior in different
areas of the environment. Finally, for more insight into the structure of people’s
behaviors, we look at global behavior, that is, overall trajectory patterns com-
posed of several local behaviors in sequence, such as “entering through the north
entrance, walking across a street, and stopping at a shop.” Global behaviors are
highly dependent on the specific environment.

In addition, since timing is highly critical for social interactions, we also focus
on the problem of anticipating the motion and behavior of customers, to deter-
mine where the robot should move and which customers the robot should ap-
proach. For example, if a robot is designed to invite customers to a shop, it should
approach people who are walking slowly and possibly window-shopping. To ap-
proach those customers, two anticipation techniques are presented: location-
based anticipation, based on aggregate behavior patterns observed in the
environment, and behavior-based anticipation, based on anticipating the
specific behavior of an individual person.
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3.2 Robot Application Scenario

We conducted our experiments at Universal CityWalk Osaka, a popular en-
tertainment and shopping arcade located by the entrance to Universal Studios
Japan, a major theme park. We operated the robots within a 20 m subsection of
the arcade, with shops selling clothing and accessories on one side and an open
balcony on the other. Within this space, our objective was to enable robots to
approach people and offer shop-recommendation services or entertain people.
Since many people walking through the space were in a hurry and not interested
in talking with the robot, one of our goals was to avoid those busy people and
target instead people who appeared to be leisurely window-shopping.

Fig. 7. Placement of laser range finders at the Universal CityWalk Osaka site

The motion of people through this area was monitored using the tracking
platform presented in Section 2. Six SICK LMS-200 laser range finders were
mounted around the perimeter of the trial area at a height of 85 cm (Figure 7).

3.3 System Design

Figure 8 shows how the sensor information is used to assist with providing robot
services. In our framework, data from the position tracking system is abstracted
into local behaviors and global behaviors in the recognition system. This infor-
mation is then used to anticipate the robot’s optimal position and generate a
roaming path for the robot or to approach a specific individual.

Data Collection. Pedestrian motion data was first collected for a week in the
shopping-arcade environment, from 11am-7pm each day, including 5 weekdays
and 2 weekend days. We chose this time schedule because the shops open at
11am, and the number of visitors drops after 7pm, after the theme park closes
in the evening.

In this environment, the major flow consisted of customers crossing the space
from the left to the upper right or vice versa, generally taking about 20 seconds
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Fig. 8. Service framework

to go through. We removed trajectories shorter than 10 seconds, in order to avoid
noise from false detections in the position tracking system. In all, we gathered
21,817 visitor trajectories.2

3.4 Local Behavior

As defined earlier, “local behaviors” represent basic human motion primitives.
We began our analysis with a classification system which uses SVM (support
vector machine) to categorize trajectories based on their velocity, direction, and
shape features.

Trajectories were first normalized by rotating them to fit their starting points
to the origin and its longest direction to the x axis. A set of 32 features was then
extracted describing the shape and size of each trajectory. These features in-
cluded x-coordinates, y-coordinates, and tangent angles of points sampled along
each third of the trajectory, along with min, max, and average x and y values
for the overall trajectory shape and a number of angles calculated within the
trajectory.

A subset of the trajectories were then manually labeled as belonging to a
specific “style” category, describing the trajectory’s shape, (walking straight,
turning left, turning right, etc.), and a “speed” category, describing the walking
speed. This was performed for 5-second and 2-second trajectories, and around
200 trajectories were used for each category.

2 In this study, we obtained approval from shopping mall administrators for this
recording under the condition that the information collected would be carefully man-
aged and only used for research purposes. The experimental protocol was reviewed
and approved by our institutional review board.
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We then combined these data sets and aggregated the detailed behavior classes
into the following four local behavior categories: fast-walk (walking quickly in one
direction), idle-walk (walking more slowly in one direction), wandering (turning
in one direction or the other, or making a U-turn), and stop. Figure 9 shows
examples of these local behaviors.

Fig. 9. Example trajectories for local behaviors: (a) fast-walk, (b) idle-walk, (c) wan-
dering, (d) stop

We define the position Pn
t of visitor n at time t to include the x-y coordinates

(x, y) as well as Boolean variables indicating the presence or absence of local
behavioral primitives Pfast−walk, Pidle−walk, Pwandering, and Pstop.

Each trajectory has a sequence of local behaviors represented by these Boolean
variables at each time step t. These values are computed by sending the most
recent 2-second and 5-second trajectory segments to the SVM classifiers at each
time step.

Analysis of Accumulated Trajectories. We then performed an analysis of
the local behaviors to obtain a higher-level understanding of the use of space
and people’s global behaviors. This analysis constitutes the foundation for the
robot’s ability to anticipate people’s local behaviors.

Use of Space (Map). The first analysis task was to identify how the space was
used, and how the use of space changed over time. We applied the ISODATA
clustering method [1] to achieve this. First, we partitioned the time into one-hour
segments categorized as weekday or weekend. We then partitioned the space into
a 25cm grid, mapping the environment into 2360 grid elements, and we clustered
together the elements with similar local behavior frequencies.

Figure 10 shows a visualized output of the analysis for 40 spatial partitions
and 4 temporal partitions of the space. The partitions are color-coded according
to the dominant local behavioral primitive in each area.

In some areas, the use of space was very clearly observed to change as a func-
tion of time. For example, in Figure 10 (a), busy-walk is the dominant primitive
in most of the space during weekdays in the daytime, whereas on weekends and
evenings, idle-walk is more common. The map also provides insight into the
spatial distribution of these behaviors, wherein it is clear that people stop at
the rest spaces and the bench, or slow down in front of a map of the shopping
arcade. Customers sometimes slowed down, stopped, and looked at this map.
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Fig. 10. Analysis of the use of space. (a)Weekday 11am-5pm, weekend 12-1pm
(b)Weekday 5-6pm (c)Weekday 6-7pm (d)Weekend 11am-12pm, 1-7pm

The statistical analysis clearly revealed this phenomenon as defining a distinct
behavioral space.

The areas where the wandering primitive was dominant are colored with pink
(or very light gray). All maps in Figure 10 show the space immediately in front
of the shop as having this property.

To summarize, we have demonstrated that through this analysis technique,
we can separate space into semantically meaningful areas such as the corridor,
the space in front of the shop, the area in front of the map, and the rest space. It
also reveals how usage patterns change over time, such as the change of dynamics
in the space in front of the shop.

3.5 Global Behavior

Global behaviors represent the overall spatiotemporal sequence of local behaviors
performed by a pedestrian across a full trajectory. Here we will introduce a
method of extracting clusters of global behaviors which represent the typical
overall behavior patterns of people in the space.

State Chain Models. We analyzed trajectories based on the state chain model
illustrated in Figure 11. That is, we converted Pn

t , which is represented in x-y
coordinates, to a sequence of states, Si = {sit0, sit1, . . .} based on spatial parti-
tioning. sit is defined as sit = {n ∈ N |pit ∈ An} where An is the partition the point
in trajectory p belongs to. In the example in Figure 11, the trajectory starting
from partition 1, stayed in partition 1 for 3 time steps, then entered briefly into
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Fig. 11. State chain model

partition 2, and moved back to the partition 1 . . . , which is represented as the
sequence of states 1, 1, 1, 2, 1, . . .

Distance between trajectories. We calculate the distance between two state chains,
Si and Sj, by using a dial pulse (DP) matching method (widely used in many re-
search domains, e.g. [24]), which is identical to the comparison of strings known
as the Levenshtein distance. Figure 12 illustrates this trajectory comparison tech-
nique. Here, we set the distance between partitions as the distance between the
centers of the partitions. The cost for “insert” and “delete” operations is calcu-
lated as this partition distance plus a constant parameter, which represents the
tradeoff cost between time and space.

Fig. 12. Comparison of trajectories based on DP matching. (a) Two trajectories. (b)
Comparison of state chains of trajectories.

The trajectories are segmented into 500 ms time steps, and they are compared
with each other based on the physical distance between them at each time step.
To this is added a cost function, based on “insert” and “delete” operation costs
in the DP matching, where we defined the cost of a single insertion or deletion
to be 1.0 m.

Clustering and Visualization. We then grouped trajectories using k-means
clustering to identify typical visiting patterns. The distance between trajectories
was provided from DP matching method mentioned above.
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Figure 13 shows a visualization of the global behaviors at k=6. For this visual-
ization, we separated the space into 50 similarly-sized partitions by the k-means
method [19], although the actual computation used 2360 partitions. In this vi-
sualization, each area is colored according to its dominant local behavior primi-
tive, and transitions between adjacent areas are shown as arrows. For example,
blue represents fast-walk, and green represents idle-walk. Solid colors indicate a
frequency of occurrence of at least one standard deviation above average, and
lighter tints represent weaker dominance, down to white if the frequency is at
least one standard deviation below average.

The transitions between adjacent areas are computed for each pair of adjacent
areas by counting the transitions in the state chains of the trajectories that
belong to each global behavior. Frequent transitions between adjacent areas are
shown by arrows.

Fig. 13. Six typical patterns of global behavior. (a) From right to left. (b) From right
and stop at the shop. (c) From left to right. (d) Rest at the rest space. (e) Around the
rest space and right. (f) Around the shop and bench.

We can interpret about six typical global behaviors from Figure 13:

1. Pass through from right to left (7768 people)
2. Come from the right, and stop at the shop (6104 people)
3. Pass through from left to right (7123 people)
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4. Rest at the rest space (213 people)
5. Around the rest space and right (275 people)
6. Around the shop and bench (334 people)

In this space, the train station was located to the left and the theme park to
the right, so it is possible to interpret the meaning of several of these global
behaviors. For example, people often came to stop at the shop while returning
from the theme park, but not when coming from the train station.

In summary, this analysis technique has enabled us to extract typical global
behavior patterns. These results show that most people simply pass through this
space while a smaller number of people stop around the rest space or the map
area. People tend to stop at the shop more often when they come from the right,
a result which makes intuitive sense, as the shopping arcade is designed mainly
to attract people coming back from the theme park.

3.6 Anticipation of Behaviors

Robots differ from other computing systems in that they are mobile, and it takes
some time for a robot to reach a person in need of its service. Thus, the ability
to anticipate people’s actions is important, as it enables the robot to proactively
pre-position itself so it can provide service in a timely manner.

We assume here that the robot’s service is targeted towards people who are
performing some particular local behavior, such as stop or idle-walk. The robot
system uses the results of the analysis about the use of space and global behav-
ioral primitives to anticipate the occurrence of this “target behavior”. At the
same time, the robot system tries to avoid people who are performing particular
local behaviors, such as fast-walk, which we refer to as “non-target behavior”. To
anticipate local behaviors, we use two mechanisms: location-based anticipation
and behavior-based anticipation.

Location-Based Anticipation. The robot uses the use-of-space information
shown in Figure 10 to estimate the locations in which people will be statistically
likely to perform the target behavior and unlikely to perform non-target behav-
iors. Figure 14 shows an example anticipation map. The darker areas represent
areas where the system anticipates both a high likelihood of the target behavior
and a low likelihood of the non-target behavior.

The robot roams through this high-likelihood area looking for people. At each
time slice t, the system updates the roaming path, Px , to maximize the roaming
value calculated from candidates of all possible straight-line paths from 1m to
5m in length on the 25cm-grid.

Usage Example. In one scenario, the robot’s task might be to invite people
to visit a particular shop. In this case, selecting idle-walk as the target behavior
and fast-walk as the non-target behavior might be appropriate, since the robot
wants to attract people who have time and would be likely to visit the store.
Figure 14 (a) is the anticipation map for this scenario, calculated for the behavior
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Fig. 14. Example of anticipation map. (a) Weekday 11am-5pm, idle-walk. (b) Weekday
11am-5pm, stop.

patterns observed on weekdays between 11am and 5pm. Several areas away from
the center of the corridor are colored, and the roaming path is set in front of
the shop. Note that the best path in this case is slightly below the line shown
in the figure, but this area is very close to the boundary of the observed map.
The robot’s final path was translated about 50cm away from the edge for safety
reasons.

In a different scenario, the robot’s task might be to entertain idle visitors
who are taking a break or waiting for friends. Particularly because this shopping
arcade was situated near a theme park, this is quite a reasonable expectation.
In this case, it would be more appropriate to select stop as the target behavior
and fast-walk as the non-target behavior. Figure 14 (b) is the anticipation map
for this second scenario. In this case, only a few areas are colored. The roaming
path is set to the bottom-right area.

Note that since the roaming path was automatically calculated based on the
anticipation map, no additional knowledge about the space was provided by
designers.

3.7 Behavior-Based Anticipation

The second technique used for anticipating local behaviors is to estimate the
global behaviors of people currently being observed, and then to use that infor-
mation to predict their expected local behaviors a few seconds in the future.

For this analysis, we used only trajectories from our dataset that were at least
20 seconds in length, resulting in a set of 11,063 trajectories. We clustered these
trajectories into 300 global behavior patterns, and for each cluster we identified
a representative trajectory at the center of that cluster.

To predict the global behavior of a new trajectory which has been observed
for T seconds, the system compares the new trajectory with the first T seconds
of the center trajectories of each of the 300 clusters, using the same DP matching
technique applied earlier for deriving the global behaviors. The cluster with the
minimum distance from the new trajectory is considered to be the best-fit global
behavior for that trajectory.
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(a) (b)

Fig. 15. (a) Global behavior prediction accuracy. (b) Prediction error for position.

Figure 15 (a) shows the prediction accuracy for observed trajectories from 0
to 25 seconds in length. We used 6 of the 7 days of data to create the prediction
model, and tested its ability to predict the remaining one day of the accumu-
lated data. The prediction is counted to be successful if the predicted global
behavior matches the classification result after observing the whole length of the
trajectory.

The result labeled “1st” shows the case where the best-fit global behavior at
time T was correct, and the result labeled “5 best” shows the result if we define
success to mean that correct global behavior falls within the top 5 results.

We found that prediction accuracy increases with time as more information is
available, and performance levels off after 20 seconds. Since there are 300 global
behaviors, we believe that a success rate after 10 seconds of 45% and after 15
seconds of 71% for “5 best” represents fairly good performance.

Likewise, we computed the ability of our technique to predict a person’s fu-
ture position based on an average of the 5 best global behaviors. Figure 15 (b)
compares our method with position prediction based on simple projection of the
person’s velocity over the last second. As the velocity method cannot account
for motions like following the shape of the corridor, our method is about twice
as accurate.

3.8 Conclusion

Here we have reported a series of abstraction techniques for retrieving infor-
mation about people’s behavior from their trajectories. Based on a set of over
twenty thousand trajectories accumulated using robust tracking with multiple
laser range finders, we were able to determine statistical patterns of local be-
haviors and use clustering to reveal typical global behavior patterns in the envi-
ronment. These results enable us not only to identify human behavior and target
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robot services appropriately, but also to anticipate people’s future behavior,
enabling robots to more effectively approach fast-walking pedestrians in dynamic
environments.

4 The Network Robot System

Aside from these frameworks for robust pedestrian tracking and trajectory anal-
ysis, a number of other components are necessary for deploying social robot
teams in real public environments. In this section, we will present our overall
robot control framework, which provides coordination between robots operating
in the same environment, manages the assignment and scheduling of robot ser-
vices, allows human operators to assist the robots in difficult recognition tasks,
and enables structured knowledge sharing between system elements.

The framework we have developed is based on a “Network Robot System”
(NRS) design philosophy, in which the robots themselves are merely the visible
component of a network which integrates environmental sensor systems, cen-
tral planning servers, cloud-based knowledge resources, and human users and
supervisors. These elements will be summarized here. A detailed report of the
requirements and components used to build this system, together with empirical
results from field experiments, can be found in [10].

Although the studies we have conducted with this framework focus on tasks
such as guiding customers in a shopping mall, our intention is to share a general
approach which can be useful in service robot deployment scenarios like those
explored by other groups, e.g. trash collection [21], pedestrian guidance [6], and
assisting people in hospitals [22], supermarkets [36], and offices [34].

4.1 System Overview

The high-level elements of our system are shown in Fig. 16. These include a sens-
ing framework, several information registries, a coordination module for
navigational coordination and path planning, a system for service allocation,
and support from a human supervisor. Table 1 summarizes these elements.

In this section we will present a general description of each module of our
system as well as specific instances of these modules from our implementations.

4.2 Sensing Framework

The sensing framework used in this system has already been described. Its role
is to perform precise tracking, trajectory analysis, and behavior anticipation for
pedestrians in the environment.

Another important function is identification of individuals, as it enables per-
sonalization of robot services. In our work, we have used techniques such as
RFID [29, 18], visual face recognition using OKAO Vision3 software, and Wi-Fi-
based identification using smartphones for this task. By combining these results

3 OKAO Vision, OMRON Corporation,
http://www.omron.com/r d/coretech/vision/okao.html
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Fig. 16. Overall architecture of our Network Robot System framework

with the high-precision position information available from the position tracking
systems, we can locate known individuals with high precision.

In addition to these functions, the human tracking system is often used to
assist with robot localization [7], because maps of public spaces often change
dramatically from day to day or during the day, as shown in Figure 17. In such
environments, fixed sensors provide a better absolute reference than changing
features such as product displays.

In fact, we have found precise localization to be quite important for human-
robot interaction, as inconsistencies between the coordinate frames of different
robots can cause a number of coordination problems. In the example shown in
Fig. 18 (left), robots R1 and R2 have slight localization errors, perceiving their
own poses to be R1’ and R2’. Both robots believe they have identified separate
people in need of help, but they have actually detected the same person, resulting
in multiple robots offering services to the same person, as shown in the photo.
In Fig. 18 (right) one robot has mistaken another for a pedestrian and is trying
to initiate a social interaction with it. Since our robots are humanoid in form,
they can be mistakenly detected as people by some sensor systems. This has
resulted in robots offering services to each other, as shown in the photo. These
two problems were common in our early field trials.
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Fig. 17. Example of an area in a shopping mall where features change from day to
day. Top: photos on two different days. Bottom: laser scan maps of the area on two
different days.

Fig. 18. Social robot failures that can occur due to localization problems. Left: Ex-
ample of multiple robots approaching the same person. Right: Example of a robot
mistaking another robot for a human and talking to that robot instead of an actual
customer.
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Table 1. Key system elements and functions

System Element Functionality
Sensing framework Robust tracking of people

Recognize and anticipate people’s behavior
Assist in robot localization
Identify individuals

Information registries Store information about robots
Store information about environments
Store information about customers

Path planning and
spatial allocation

Coordinate robot paths to avoid conflicts and deadlock
Ensure smooth locomotion near people
Provide paths based on robot type

Service allocation Coordinate robot services
Enable users to request services
Assign services based on anticipated need

Support from a
human operator

Support for recognition
Direct control of robot
Ability to control multiple robots

4.3 Information Registries

Roughly speaking, three categories of information are needed to support a net-
work robot system, summarized in Table 2.

The Robot Registry (RR) includes information about the capabilities of each
robot, which can be used by a central planner for path planning within each
robot’s mobility constraints and appropriate allocation of robots to perform
services. This information is used by the planner to allocate robots to services
appropriate to their capabilities, e.g. assigning a cart robot to a baggage-carrying
task.

The User Registry (UR) holds personal information about customers (or other
service recipients) and is necessary for applications where personalized services
are to be provided. For example, in some of our field experiments, customers
provided their shopping list information via smartphones. Such information is
stored in the UR together with the customer’s name and known device ID.

The Map Registry (MR) includes navigation and safety maps of an environ-
ment, to be used for localization and path planning. In our implementation, nav-
igation maps are generated through offline SLAM using laser scan and odometry
data recorded from robots, and safety zone maps are generated by hand.

The safety zone maps are necessary because public environments often contain
dangerous areas that a robot cannot detect with its sensors. Transparent and
reflective objects such as glass doors and mirrors, or drop-offs such as downward
steps, can be difficult or impossible for robots to detect with laser range finders
or cameras. Fig. 19 shows some examples of obstacles that are difficult for robots
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Fig. 19. Dangerous areas in a shopping mall. Left: glass walls. Center: movable tables
and shelves where only legs are visible to ground-level LRF’s. Right: movable clothing
rack where only the center pole is visible to ground-level LRF’s.

Table 2. Summary of information registries

Registry Name Data Provided
Robot Registry (RR) Services offered

Navigable terrain types
Maximum clearance
Maximum speed
Ownership

Map Registry (MR) Localization map
Dangerous areas
Traversability map

User Registry (UR) Customer name
Mobile device ID
Application content
Personalization data

to detect with ground-level laser range finders (a typical way for robots to detect
obstacles). Maps of these invisible obstacles are stored in the MR.

4.4 Coordination Module

The coordination module addresses the needs of path planning and of spatial
coordination between robots. Access to limited spatial resources is actively man-
aged so as to avoid deadlock between robots which are competing to occupy a
critical space, such as advertising robots crowding near an entrance or several
robots with low battery attempting to access a charging station. When a robot
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requests use of a limited spatial resource, the coordination module will grant
permission only if the space is not already in use.

Dynamic path planning is also provided, both to avoid collisions between
robots and to ensure smooth movement among pedestrians, based on tracking
data from the sensing framework. An example is shown in Figure 20.

Fig. 20. Coordinating multiple robots: (a) Robots are given non-conflicting paths to
reach their respective customers, (b) Each robot provides its service

The coordination module can also generate socially-meaningful paths, based
on the robot’s current service task. For example, approach paths should be com-
puted to approach people from a frontal direction rather than the side or back
[32, 26]. A robot can also communicate intention through its locomotion, as
illustrated by the example of “friendly patrolling” [12].

The path planner also considers traversability constraints. Some robots can
traverse uneven surfaces, slopes, or small steps, while others cannot. These dif-
ferences are reflected in a traversability map for each robot type, stored in the
MR, and are used in path planning.

4.5 Service Allocation

The service allocator is the central planning mechanism which assigns services
to robots and monitors the execution of those services. It handles service re-
quests, identifies service opportunities, handles reservations for future services,
and coordinates service allocation across multiple robots by considering the pri-
orities of services and the capabilities and physical locations of the robots in its
allocation algorithm.

In our framework, each service to be provided by robots is comprised of sev-
eral service tasks, which are execution units managed by the server. The server
contains logic determining which service tasks should be executed, under which
conditions, by which types of robots. Once the server assigns a service task to
a robot, the robot itself handles the details of service task execution, reporting
back to the server upon success or failure.
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On-demand services. For on-demand services, customers need a means to request
services directly from the system, e.g. using a smartphone, or from the robots
directly. In either case, the requests are sent to the service allocator. Service
requests can be for immediate service or reservations for future services.

Fig. 21. Basic flow of service task allocation

Proactive services. For “proactive,” or “targeted” services, such as giving di-
rections, recommending shops, or advertising services, the robots will approach
unknown people to offer their services. In such cases, the service allocator must
identify opportunities for providing services, rather than responding to requests,
and allocation logic must be developed to assign robots to services based on an-
ticipation of who will need or want the service. To do this, it uses the statistical
model of pedestrian behavior provided by the primitive analyzer, described in
Section 3 to target and avoid people performing specific behaviors.

For example, in the case of robots advertising for a shop, the system could be
configured to target customers who are exhibiting “stop” or “idle walk” behav-
ior, in the spatial region in front of the shop, and to avoid customers who are
performing “busy walk” primitive.

The model of global behaviors can be used to predict customers who are
likely to perform this behavior in this area several seconds before they arrive,
which gives the system time to allocate a robot and for that robot to move into
the appropriate area. The robot is then sent to approach the person and give
information about the shop.

4.6 Support from a Human Operator

While robots today have greater capabilities for sensor recognition, dynamic
planning, error detection, and error recovery than ever before, they are still
far from ready to be deployed autonomously alongside humans in unstructured,
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Fig. 22. Operator using a teleoperation console to supervise four robots

public environments. For the foreseeable future, we expect that there will always
be a human supervisor present behind the scenes to monitor and assist robots
at some level.

In our system, supervisors typically use an interface such as that shown in
Fig. 22 to assist the robot’s recognition of sensor inputs, e.g. speech recogni-
tion or person identification, and to monitor for and correct sensing errors, e.g.
identifying dangerous situations or correcting localization. The robot performs
its own speech, gesture, and motion planning autonomously, and the role of the
human is only to provide occasional sensor inputs.

In rare cases, an operator will need to control the robot directly to handle
“uncovered” situations, such as an unexpected question from a customer, or
replanning the robot’s path to avoid unmodeled obstacles. In these cases, the
robot cannot respond autonomously, so the human controls the robot directly.

Finally, some mechanism is needed to enable one operator to manage multiple
robots. Techniques such as proactive timing control [8] and conversation fillers
[30] can help improve performance of semi-autonomous robot teams in social
interactions.

In the future, as the technology for speech recognition and robot localiza-
tion improves, the responsibilities of the operator will most likely shift towards
handling only rare, exceptional situations and monitoring robots for safety and
quality of service. Such a high-level supervisory operator could potentially man-
age large teams of robots, much like a supervisor at a modern call center.
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4.7 Standardization

An open standard for the architecture for robotic services presented here has
been formalized and is currently the focus of much standardization work and
prototype development. It is known as the Ubiquitous Network Robot Platform
(UNR-PF), and its details are introduced in [14].

The common platform architecture was discussed in the International Telecom-
munication Union Telecommunication Standardization Sector (ITU-T), study
group 16 (SG16) as an application of ubiquitous sensor network (USN). The
proposal was accepted as a standardization work item in 2011 and was issued as
recommendation F.747.3 in March 2013.

Fig. 23. Overview of the UNR-PF architecture

Figure 23 shows the UNR-PF architecture.
Some extensions in the open platform include an Operator Registry, so that

robot operators with varying skills can be accommodated and assigned by the
system as human supervisors for specific tasks, and a separation of the plat-
form into local platforms (LPF) and global platforms (GPF), to accommodate
deployments in multiple locations.

The standardization of common interfaces between service applications and
robotic functional components, that includes robots and sensing framework, is
treated in OMG as the Robotic Interaction Service (RoIS) Framework specifica-
tion, which was issued in Feburary 2013 as RoIS 1.0 specification.
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5 Field Deployments

We have deployed the systems described here in several locations, for both short-
and long-term field studies as well as experiments for research and many months
of development and testing. In this section, we will summarize the kinds of
services that were provided in these field trials and how they were supported by
the Network Robot System.

Robots. For most of these trials, we used various models of “Robovie,” an in-
teractive humanoid robot designed for communication using speech and human-
like gesture [17](Figure 24). Robovie has a head with three degrees of freedom
(DOF), two arms with four DOF each, and a wheeled differential-drive mobile
base. Its height and weight are 120 cm and 40 kg. On its head it has two CCD
cameras as eyes and a speaker for a mouth. It is equipped with basic computa-
tion resources, and it communicates with the NRS via wireless LAN. We used
corpus-based speech synthesis [20] for generating speech. For some applications,
we used a shopping-cart robot capable of carrying a shopping basket, shown in
Figure 24, with no head or arms but the same speech synthesis and locomotion
capabilities.

Fig. 24. Robots used in these studies, left to right: Robovie II, Robovie IIs, shopping-
cart robot, Robovie-R3

Environments. Different versions of our system have been used in a variety of
locations, including an elderly care home, elementary schools, a train station, and
a science museum. However, the field deployments described here were mainly
conducted in two locations. The first was the Universal CityWalk Osaka shopping
arcade described in Section 3, and the second was APiTA Town Keihanna, a
shopping mall near our laboratory which includes a large entry atrium, several
aisles between shops with open storefronts, and a supermarket.
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5.1 Targeted Services

In many scenarios, we have used the results of the primitive analysis presented in
Section 3 to target robot services to people based on the context of their spatial
or behavior primitives, rather than responding to explicit requests.

Route Guidance. Figure 25 illustrates an application in which the robot gives
people directions. Near a large intersection in a shopping center, a robot is
waiting to offer route guidance to customers. A woman stops in front of a map
of the mall (Fig. 25 (a)). While looking at the map, she is approached and offered
help by the robot: “Are you looking for a particular shop?” (Fig. 25 (b)). The
robot then answers any of her questions by giving directions or accompanying
her to a destination. This scenario illustrates the need to recognize and anticipate
people’s needs, and the ability to allocate robot services accordingly.

Fig. 25. An example of a targeted service: (a) The sensing framework detects a woman
stopping in front of a map, then (b) The robot approaches her to offer information

Entertainment Application. In other trials we have had robots provide enter-
tainment by chatting with people. As mentioned earlier, the shopping arcade is
next to an amusement park, so it is a reasonable for the robot to be entertaining
people who have free time. We think that such an entertainment service would
be reasonable for a robot in other environments as well, as robots today are still
an exciting novelty.

In this case the robot approached people and chatted about the attractions in
the amusement park. For example, the robot said, “Hi, I’m Robovie. Yesterday,
I saw the Terminator at Universal Studios. What a strong robot! I want to be
cool like the Terminator. ’I’ll be back...’ ”. We set the target local behavior as
stop, and non-target as fast-walk, in order to serve people who are idle. Overall,
people seemed to enjoy seeing a robot that approached them and spoke.

Shop Recommendations. The second example is one in which the robot recom-
mends and invites the customer to visit a shop. In the shopping arcade, attract-
ing people’s attention to shops and products is an important task. We believe
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that this is also a reasonable service to expect from a robot, as the novelty of
robots makes them very effective in attracting people’s attention. The contents
the robot provided were simple; for example, the robot said, “Hello, I’m Robovie.
Do you enjoy shopping? I’d like to recommend this shop, where they sell clothes
by the kilogram!” Whenever it mentioned a shop, it pointed the direction of the
shop with a reference term “this” or “that” [33].

In the demonstration, many people were interested in the robot and listened
to its invitations. Figure 26 shows an impressive example where the robot ap-
proached a couple who were performing idle-walk. When the robot pointed to
the shop and gave its recommendation (Figure 26 (c)), they smiled with surprise
to see a robot performing a real business task. After the robot mentioned the
shop, the woman walked directly to the shop and entered it (Figure 26 (d)). Ob-
serving such behavior indicates that such an invitation task can be a promising
application. As indicated above, the robot was able to attract people’s attention
and redirect their interests to shops and products.

Fig. 26. A robot successfully inviting a person to a shop

5.2 Personalized Services

When personal information for individual customers is registered in the system,
the NRS enables personalized services to be provided. In one demonstration we
showed a scenario in which a registered customer uses her mobile phone at home
to request a robot to help her on her next shopping trip. She enters her shopping
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list verbally, using a mobile application which connects to the NRS (Fig. 27 (a)).
Upon her arrival at the mall (Fig. 27 (b)), a robot comes to greet her, identifies
her via her mobile phone, using wifi fingerprinting, and accompanies her through
the supermarket carrying her basket (Fig. 27 (c)). Based on their location in
the supermarket, the robot can remind her of items on her shopping list. This
scenario illustrates how the personal information can be used in services. It also
shows the need for a means of personal identification of the service recipient.

Fig. 27. An example of personalized service: (a) requesting a robot from her mobile
phone, (b) detecting the customer’s arrival, and (c) shopping with the customer

5.3 Shopping Assistance

In a medium-term study, shown in Figure 28, Iwamura et al. used the NRS to
provide robotic shopping assistance in a supermarket to 24 senior citizens over a
set of four shopping trips each [13]. In that study, humanoid and non-humanoid
robots were used to accompany the users through the supermarket, conversing
with them during the shopping trip. The dialogue was semi-autonomous, with
the timing chosen by the teleoperator and the contents chosen by an autonomous
system.

Fig. 28. Robot assisting elderly shoppers in a supermarket
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5.4 Mobility Assistance

Although in most of our field trials the objective has been to develop robots
which are highly autonomous, requiring a minimum level of intervention by an
operator, autonomy is not always the objective. In one project, we demonstrated
the possibility of using the NRS to support a robotic wheelchair, as shown in
Figure 29. In this scenario, a user reserves a wheelchair using a smartphone.
The system can detect when the user arrives at the shopping mall using the
smartphone’s GPS localization, and the robot goes out to meet the user. Once
the user is seated in the wheelchair, they can drive the wheelchair themselves
using a joystick, taking advantage of the wheelchair’s on-board safety system,
or they can request to go to a specific destination, using the path planning
functionality of the NRS.

Fig. 29. Robotic wheelchair supported by the Network Robot System. (Top) User
reserves the wheelchair robot ahead of time, and robot goes to meet the user as she
arrives. (Bottom) Robot guides user safely through shopping mall, avoiding dynamic
obstacles.

This scenario is motivated by the fact that many elderly wheelchair users
are not comfortable going out alone in their wheelchair, due to safety concerns.
This makes them dependent on family members whenever they want to go out.
However, by using a robotic wheelchair supported by the NRS, they can take ad-
vantage of built-in safety systems, automatic navigation, and most importantly,
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they can take comfort in knowing that a remote operator is available if they
have any trouble. In this scenario, the operator is not merely a replacement for
technologies which are not yet available, but is an essential part of the service.

5.5 Cross-Platform Collaboration

One strength of our NRS framework is the ability to easily integrate new robots,
new sensors, or new services to the system. Using simple protocols to connect
to the planning, coordination, and localization servers, third-party robots can
be integrated easily into the NRS without deep or complex software integration,
enabling collaboration between very different kinds of robots.

We have conducted collaborative work with the DustCart robot from the
EU Dustbot project (Fig. 30), and with Honda’s ASIMO robot (Fig. 2). In
these demonstrations, Robovie talked with visitors and initiated a collaborative
task, wherein the other robot performed some physical task, e.g. serving a drink
or carrying baggage, while Robovie continued talking to the visitor, offering
chatting or verbal instruction.

Fig. 30. Collaboration between Robovie and DustCart, supported by the NRS

In each case, only 1-2 weeks of implementation and testing were necessary
to integrate the new robots with the NRS platform and prepare a collaborative
robot demonstration. We have also conducted other NRS demonstrations with
robots such as Mitsubishi’s Wakamaru and Toshiba’s ApriPoco.

Discussion. Further details about people’s responses to robots were examined
in more detail in succeeding studies, e.g. a study of social behavior in approaching
humans [26] and integration of different capabilities of robots [28], which are
based on the techniques and service frameworks reported in this paper.

Practical Considerations. Aside from the target functionalities presented in
this paper, our experiences have shown a number of practical benefits provided
by the modular design of the NRS framework.
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When robots experience hardware problems – hard drive crashes, electrical
failures, etc., the modularity of the NRS framework makes it easy to swap a
backup robot into the system, enabling the experiment or demonstration to
continue in a nearly seamless way. Rather than statically specifying services,
paths, etc. within individual robots, the NRS dynamically allocates paths and
services, which minimizes the settings or code that need to be modified when
the composition of the robot team changes.

We have even replaced robots with different robot models – in one field trial
we had some hardware problems with a Robovie-R3 robot, and we were able to
seamlessly replace it with a Robovie-R2 (a robot with a very different design)
for an important demonstration. This was possible because differences in hard-
ware components and internal implementations of gestures and poses are hidden
beneath the abstraction layer of “service tasks,” enabling the different robots to
operate interchangeably within the network robot system.

The addition of new sensor types is also facilitated by our modular design. We
have developed a new version of our human-tracking system using RGBD sensors
[3]. Although developed by an independent team, such alternate sensor systems
can be seamlessly used with our robots if they support the data protocols in our
NRS framework design. This flexibility has been extremely helpful in managing
the complexity of heterogeneous robot deployments in multiple environments
with different sensor systems.

Finally, the use of the Map Registry makes it possible to easily switch envi-
ronments. We often move robots between our lab and various field trial envi-
ronments, and the local NRS at each environment enables the robots to auto-
matically make use of the latest navigation maps and receive path planning and
service allocation for that environment.

5.6 Conclusions

We have presented a framework for a Network Robot System, in which mobile
robots, planning servers, and sensors embedded in an environment are integrated
to provide robot services to people in social contexts. The requirements for this
framework, motivated by our experiences in several years of field trials, primarily
include the need for recognition and anticipation of people’s behavior, identifica-
tion of individuals, coordination of services and navigation paths between robots,
and supervision by a human operator.

We presented a field experiment showcasing the capabilities of this framework
by providing services with four robots in a shopping mall, and our results showed
that not only was the technical framework successful in supporting the robot
services, but that people who used the robots responded in a positive way, with
a great majority indicating that they would like to use services like these in the
future. This underscores the worth of conducting research and field experiments
to investigate and develop social robot services in real-world environments, and
we submit that the NRS approach is an effective and practical way to make such
robot deployments a reality.
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6 Cloud Networked Robotics

Although the NRS architecture has proven to be tremendously useful even with
today’s technology, the future promises many exciting possibilities for extending
this approach.

In particular, the trend towards using cloud-based resources is becoming a
popular new direction in robotics, and we believe it represents the natural next
step in evolution of the NRS. The technologies of web services and service-
oriented architecture (SOA), which form the technical foundation of cloud com-
puting, have also been applied to robotic technologies in three ways.

6.1 Cloud Computing

One of the performance bottlenecks in robotics has always been recognition.
Common sensory recognition tasks such as mapping and face and speech recog-
nition require heavy processing and have long been the focus of optimization
efforts. Tasks like these are excellent candidates for moving the processing load
to networked servers, and eventually remote server farms.

The field of social robotics presents a wide variety of difficult processing tasks -
recognition of social relationships and situations, recognition of human intention,
and decisions as to how to best interact with people to provide effective services
are complex tasks which could perhaps best be relegated to the cloud.

6.2 Sharing Data

Great benefits could be recognized from establishing shared data stores en-
abling social behavior generation or recognition. Online data exchanges such
as RoboEarth4 are already being developed as a means to provide cloud-based
knowledge support for networked robots [38]. We have already conducted a
proof-of-concept study demonstrating the integration of the UNR Platform and
RoboEarth, combining RoboEarth’s cloud-based support for robot recognition
and action scripts with the platform-independent service execution architecture
provided by the UNR-PF [35].

On the other hand, some knowledge stored in the information registries could
be highly proprietary to the owners of a NRS, whereas other knowledge, such as
map data, might be shareable or even outsourced to external services. Careful
consideration will need to be given to levels of privacy and ownership of informa-
tion when, for example, one organization licenses robots to multiple businesses.

Recently, several notions of cloud computing have been introduced into robotics
that are known as cloud-enabled or cloud robotics.

4 RoboEarth. http://www.roboearth.org
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6.3 Service Continuity

Another approach utilizes robotic resources as a cloud to solve the issue of contin-
uous support in robotic services. Since robotic services and robotic components
are considered services in SOA, they can cooperate with each other if they are
organized appropriately. Du et al. [40] introduced the concept of Robot as a Ser-
vice and the framework of a Robot Cloud Center. Quintas et al. [23] proposed
a service robotic system in which a group of robots and a smart-room share
acquired knowledge over an SOA. The above projects rely on both de facto and
de jure standards in the fields of networks, web service, knowledge represen-
tation for utilizing the technologies in SOA, and cloud computing. To realize
cloud networked robotics, common protocols for robotic services must also be
standardized for integration.

7 Conclusion

In this work, we have explored many aspects of the problem of how to enable
the deployment of social robots in real-world environments. The essential points
that have been presented are as follows:

– The use of external sensors to provide robust, high-precision tracking of
people in the environment to assist robots in navigational interactions.

– Development of empirical models of social behavior in a space, to enable
anticipation of people’s future behavior.

– The use of a human operator to assist a team of robots with difficult recog-
nition problems and unexpected situations.

– A framework for robot coordination, service allocation, and knowledge shar-
ing to support the operation of heterogeneous teams of service robots.

– A set of global standards for a robot service architecture enabling indepen-
dent application development for a networked ecology of of robots, sensors,
data resources, and mobile devices.

We have demonstrated stable implementations of each of the systems pre-
sented in this work through a series of robot experiments and long-term de-
ployments in several field environments over a period of about five years. The
effectiveness of these systems has been demonstrated in the field, and the field
experiences have contributed directly to the direction of this research. All of
the systems presented here are still in use as framework elements supporting a
variety of research in human-robot interaction.

Thus, this work provides a successful, concrete example of a coherent collection
of systems for human tracking, behavior analysis and anticipation, supervisory
teleoperation, interaction design, and robot service coordination, which together
enable the practical deployment of teams of social robots to provide services in
real-world environments.

It is our sincere hope that through our global standardization work for RoIS
and the UNR-PF, we can share with the world the practical knowhow gained
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through our years of experimentation, and that this contribution will help to
bootstrap and accelerate the development of commercial applications for service
robots as we enter the fledgling years of a new cloud robotics era.

Finally, beyond the engineering solutions and system design, the development
of this system has provided a deeper and more significant contribution - it has
enabled us to obtain an early glimpse of what the world will be like when robots
eventually work in real social environments.

Without actual, real-world deployment of robots, modeling and laboratory
experiments can only take us so far – we can only speculate about how people
may theoretically interact with robots and use their services in the future. But
the development and deployment of this system has provided a way to truly
observe and study real human-robot interactions in social environments, opening
the door to a wide variety of academic studies and commercial innovations.
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