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Abstract. An intelligent cane robot was designed for aiding the elderly
and handicapped people walking. The robot consists of a stick, a group
of sensors and an omni-directional basis driven by three Swedish wheels.
Multiple sensors were used to recognize the user’s “walking intention”,
which is quantitatively described by a new concept called intentional di-
rection (ITD). Based on the guidance of filtered ITD, a novel intention-
based admittance motion control (IBAC) scheme was proposed for the
cane robot. The experiment results demonstrated that the user feels more
natural and comfortable when walking with the assistance of cane robot
controlled by the IBAC strategy. To detect the fall of user, a detection
method based on Dubois possibility theory was proposed using the com-
bined sensor information from force sensors and a laser ranger finder
(LRF) fixed on the cane robot. The human fall model was represented in
a two-dimensional space, where the relative position between the Zero-
Moment-Point (ZMP) and the center of support triangle was utilized as
a significant feature. The effectiveness of proposed fall detection method
was also confirmed by experiments.

Keywords: Intelligent Cane Robot, Intention Estimation, Admittance
Control, Fall Detection, Zero Moment Point (ZMP), Possibility Theory.

1 Introduction

The world is facing challenges of rapid aging population. Elderly people may
suffer from low levels of physical strength due to muscle weakness, which affects
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their motion ability significantly. Restricted movement lowers the performance of
most activities of daily living (ADLs). In addition, the growing elderly population
causes the shortage of young people for nursing care. Therefore, walking-aid
robots find their application in the nursing and therapy field for these mobility
impaired people.

A number of walking-aid robots have been proposed in the last decade, in-
cluding RT-Walker, PAMM, and so on. So far, the walking-aid robot systems
may be mainly classified into two groups according to mobility factor, i.e., the
system moving on the ground according to the motion of the subjects and the
system giving effects of walking to the subjects. The former system is active-type
walker [1] [2] which is driven by servo motor. The latter corresponds to a system
driven by servo brakes and is passive-type walker [3] [4]. There is still much space
for improvement of the present walker systems. First, most walkers can only be
used in the indoor environment. Second, the cumbersome design makes them be
difficult to operate by novices. In addition, many old persons are not so weak
that they have to be nursed carefully. Moderate support, like a cane or stick, is
sufficient to help them go outside and improve their ADL functioning to a great
extent. In this sense, a robot cane system may be more useful than walkers due
to its flexibility and handiness.

Spenko proposed the well-known PAMM system in [5] together with a Smart-
cane robot. This cane robot has relative small size but the nonholonomic kine-
matics reduces its maneuverability. To make the cane robot can be used in
most of the living environment (e.g. the narrow corridor, the elevator etc.), an
omni-directional moving ability is required. Recently, commercial omni-wheels
are available and applied in the area of walker systems[6]. Based on the wheels,
small omni-directional platform can be constructed. In this article, an intelligent
cane system was proposed and investigated based on a commercially available
three-wheeled omni-directional platform.

2 Mechanical Design of Intelligent Cane Robot

The intelligent cane robot system consists of several parts: a tiltable metal stick,
an omni-directional base, a control subsystem, and a group of sensors.

The tilt mechanism of metal stick is realized by two servo motors whose
rotation axes are perpendicular to each other (see Fig. 1). By rotating the two
motor, the stick can tilt to any direction. This may improve the stability of cane
robot when a fall event suddenly occurs.

The omni-directional base is comprised of three commercial omni-wheels and
the corresponding actuators. The resultant moving velocity is confined less than
1.2m/sec so as to ensure the safety of user. Despite the small size, the load
capacity of this mobile base is up to 50 kilograms.

In the sensor group, a six-axis force sensor is mounted at the end of stick to
measure the interaction forces between the robot and the user. The walking in-
tention of user can be inferred from the measured forces, which will be illustrated
in Section 3. Two laser ranger finders (LRFs) are used to measure the distances
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Fig. 1. The intelligent cane robot system

between the stick and the legs, and between the stick and the body, respectively.
By online sampling the distance information, fall-prevention function of the cane
robot may be implemented as Hirata did in [7].

3 Walking Intention Based Motion Control of Intelligent
Cane Robot

3.1 Modeling and Estimation of Human Walking Intention

Preliminary Definitions and Force Analysis. The coordinate definition of
human-cane robot system is shown by Fig. 2, in which the coordinate system
O − x1y1z1 is the reference frame. The local coordinate system O − xryrzr is
fixed on the cane robot and rotates with the yaw angle ψ. The coordinate system
O − xIyIzI is related to the intentional direction, which is illustrated in the
following.

To control the cane robot in accordance with the user’s intention, it is nec-
essary to quantify and formulate the human walking intention. Therefore, an
important concept called “Intentional Direction (ITD)” is proposed in our pre-
vious work [8] to comply with this requirement.

Definition 1. The direction to which a person intends to move is referred to as
intentional direction (ITD).

As illustrated by Fig. 2, the ITD is not always parallel to the sagittal plane be-
cause there are various possible walking modes, including lateral moving, turning
around etc.. Note that the ITD can be evaluated by the angle between the for-
ward direction (FW) and the ITD itself. ρ(n) is used to denote the time-variant
ITD in the rest of the paper. Here n is the time scale.
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Fig. 2. Quantitative representation of the intentional direction (ITD). The eyesight line
is denoted by the broken line, which indicates the direction that the user is intentional
to move.

During the user’s walking aided by the cane robot, the measured force and
torque at time n are denoted by F(n) and n(n). The measurement can be rep-
resented in different coordinate systems as follows:{

F(n) =
[
rFx(n)

rFy(n)
rFz(n)

]T
r
=

[
IFx(n)

IFy(n)
IFz(n)

]T
I
,

n(n) =
[
rnx(n)

rny(n)
rnz(n)

]T
r
=

[
Inx(n)

Iny(n)
Inz(n)

]T
I

(1)

Except the direction, the quantity of this intention is characterized by the
absolute value of measured resultant force IFy(n) along the ITD.

State Model of ITD. The dynamic model of ITD is required to obtain the
quantitative formulation of the user’s walking intention. Since the dynamics of
ITD has different forms in different walking modes, we first enumerate all possible
walking modes. Because only several modes are often used in the daily life, the
enumeration procedure can be simplified. In this study, we are concerned about
five simple walking modes, which are listed in TABLE 1. The transition diagram
of the five modes is also illustrated in Fig.3.

To detect the transition between any two walking modes, the following as-
sumptions are concluded from common experiences.

Assumption 1. In mode I, the ITD is supposed to be always zero.

Assumption 2. In mode II, the ITD is supposed to be a constant.

Assumption 3. In mode III, the ITD monotone converges to zero from an
initial non-zero value.
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Table 1. POSSIBLE WALKING MODES

Mode Description

I Stop

IIa Go straight forward
IIb Go straight in other directions

IIIa Turn to the right
IIIb Turn to the left

Fig. 3. Transition diagram of possible walking modes

Normally, there is some target one wants to move towards during turning
around. Assumption 3 is then proposed based on this fact (see Fig. 4). During
the process of turning around, the value of ρ(n) decreases gradually and finally
converges to zero, which causes a transition to mode I or II.

According to these assumptions and the proposed walking modes, a hybrid
linear state model of ITD can be obtained as follows:

ρ(n+ 1) = Aσ(n) · ρ(n), σ(n) ∈ {I, II, III} (2)

where σ(n) is used to denote the different walking mode given by TABLE 1. The
state transition matrices are given by

AI = 0, AII = 1, AIII = a(n) (3)

where a(n) satisfies
0 < a(n) < 1 (4)

Observation Model of ITD. Note that the state variable ρ(n) cannot be
directly measured. The interaction forces between the user and cane robot reflect
the walking intention. Obviously, the ITD is along the direction of resultant force
of Fx and Fy if there are no measurement noises. Thus, the observation model
of ITD is described by

y(n) = tan−1

(
rFx(n)
rFy(n)

)
= ρ(n) + ω(n) (5)
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ω(n) is a combination of sensor noises and human gait habit. Normally, different
people have different gait habit during walking (e.g., some people unintentionally
move laterally even when they walk straight forward). For the sake of simplicity,
ω(n) is assumed as a white noise sequence with a user-dependent covariance
Q(ρ). It is observed that the values of Q(ρ) are almost same for the same user.
Thus, conventional Kalman filter is very suitable for estimating the ITD in mode
II and III.

( )nρ

( )n mρ +

( ')n mρ +
target

Fig. 4. Typical turning around move mode

Online Estimation of ITD Based on Kalman Filters. In this section,
we discuss the approach to online estimate the ITD from measured forces. The
first problem that should be solved is how to detect the walking mode transi-
tion. In this study, we use a rule-based method to infer current walking mode
σ(n). Fuzzy threshold detection methods are used to check if some rule is satis-
fied. These rules are generated from common-sense experiences and described as
follows.

Rule set. (Rule-Based Method)

1. IF σ(n − 1) �= I AND rFx(n) ≈ 0 AND rFy(n) ≈ 0 AND rnz(n) ≈ 0,
THEN σ(n) = I.

2. IF σ(n − 1) �= IIa AND rFx(n) ≈ 0 AND |rFy(n)| > 0 AND rnz(n) ≈ 0,
THEN σ(n) = IIa

3. IF σ(n− 1) �= IIb AND |rFx(n)| > 0 AND |rFy(n)| > 0 AND rnz(n) ≈ 0,
THEN σ(n) = IIb

4. IF σ(n− 1) �= IIIa AND rnz(n) > 0, THEN σ(n) = IIIa
5. IF σ(n− 1) �= IIIb AND rnz(n) < 0, THEN σ(n) = IIIb

In mode I and II, the dynamics of ITD is described by a linear state model.
Therefore a conventional Kalman filter is suitable to be applied to online estimate
the ITD.
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In mode III, the state model of ITD can be rewritten as

ρ(n+ 1) = (a0 +Δa(n)) · ρ(n) (6)

where a0 is a constant and satisfies 0 < a0 < 1.Δa(n) is the model uncertainty. It
is well known that normal Kalman filter will generally not guarantee satisfactory
performance when uncertainty exists in the system model. Thus, we choose a
robust Kalman filter to calculate the estimation of ITD in this case [9].

We conclude the above discussion by proposing the following online ITD es-
timation algorithm.

Algorithm 1. (Online ITD Estimation Algorithm)
Input: F(n− 1), n(n− 1), y(n), ρe(n− 1), σ(n− 1)

1. Apply the rule-based method to determine σ(n)
2. IF σ(n− 1) = σ(n) THEN
3. SWITCH σ(n)
4. CASE I:Let ρe(n) = 0
5. CASE II:
6. Use the Kalman filter to infer ρe(n)
7. IF σ(n) = IIa THEN let ρe(n) = 0
8. CASE III:
9. Use the robust Kalman filter to infer ρe(n)
10. ELSE
11. Let ρe(n) = y(n) to initialize the filter.
12. ENDIF

Output: ρe(n), σ(n)

3.2 Walking Intention Based Admittance Control

The cane robot motion controller uses an admittance control scheme based on
the inferred human intention, which is called intention based admittance control
(IBAC) scheme. The conventional admittance control uses an admittance model
emulates a dynamic system and gives the user a feeling as if he is interacting with
the system specified by the model. This model is defined as a transfer function
with the users forces and toques, F (s), as the input and the reference velocity
of cane robot, V (s), as the output. It is expressed as:

G(s) =
V (s)

F (s)
=

1

Ms+B
(7)

where M and B are the mass and damping parameters respectively.
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ITD ( )I
yF n

( )I
xF n

my

mx

By

Bx

Fig. 5. The principle of IBAC scheme

During walking, people feel comfortable if the cane is easily maneuvered in
the ITD and hardly maneuvered in the direction perpendicular to the ITD. To
meet the requirement, we propose the IBAC scheme in which two admittance
models are used. One model is defined for the motion along the ITD, which has
selected mass and damping parameters from the acceptable area presented in
[5]. The other model is defined for the motion perpendicular to the ITD, which
has much bigger mass and damping parameters. The general idea is shown by
Fig. 5. The final three-DOF mass-damping model for our cane robot is defined
as:

Md · q̈d +Bd · q̇d = F (8)

where state qd and the measured force F are represented in the coordinate frame
{I} based on the current walking intention, satisfying

qd =

⎡
⎣ Ixd

Iyd
Iρd

⎤
⎦
I

,F =

⎡
⎣ IFx

IFy

nz

⎤
⎦
I

(9)

Matrices Md and Bd are the desired mass and damping coefficients. These
coefficients are described by

Md =

⎡
⎣Mx

d 0 0

0 My
d 0

0 0 Jz
d

⎤
⎦ ,Bd =

⎡
⎣Bx

d 0 0

0 By
d 0

0 0 Bz
d

⎤
⎦ (10)

where Mx
d >> My

d, Jz
dand Bx

d >> By
d, Bz

d
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Fig. 6. Control diagram of the whole system

3.3 Experiment Study

Investigating Observation Noise. Three university students (subject A, B
and C) utilized the cane robot realizing mode II and III in these experiments.
Same experiments were performed by them while wearing the brace to imitate
a handicapped people. To verify the white noise assumption of the observation
noise, firstly the subjects were requested to intentionally maneuver the robot
moving straight along five fixed directions, which is shown by Fig. 7. From these
experiments, we can investigate the observation noise characteristics of ITD by
applying statistic techniques. For moving-straight experiments (mode II), the
observation noise ω(n) can be easily obtained and analyzed from the observa-
tion model (5). For the obtained noise signal of each experiment, we tested both
the normality and independence of residuals by applying Jarque Bera and Port-
manteau test methods. It was found that more than 80% of the experiment
results passed the statistical tests. Thus, a white noise assumption is thought to
be acceptable in our study.

Further, the results of evaluated covariance Q of the white observation noise
ω(n) are also depicted in Fig. 7. For each subject, the direction-dependent Q
of this subject can be thought as a random variable. Coefficients of variation
(cv) of these random variables were calculated and found to be less than 10%.
Therefore, it is reasonable to assume that values of Q are almost the same
in different directions for the same person, as pointed out in subsection B of
section III. Another interesting phenomenon that should be pointed out is that
the covarianceQ of the subject wearing a brace is higher than that of the subject
performing a normal walking. This proves the fact that the observation noise of
a handicapped peoples walking is usually bigger than that of a normal people.

Motion Control on Flat Ground. In the experiments for illustrating the
validity of the IBAC control strategy, subject A utilized the cane robot to im-
plement two series of walking modes.

The inferred ITDs and their observations based on force signals are shown
in Fig. 8(a) and Fig. 9(a). Trajectories of estimated mode are also shown in
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Fig. 7. The covariance of noise when a person moves straight

these figures, where we use integers from 1 to 5 to denote the five walking
modes sequentially (see the value of mode trajectory depicted by the dot-dash
line). Note that even if there are some fault recognitions of mode transition, the
performance of rule-based mode transition function is sufficiently satisfactory
in the practice. In the experiment results, the main fault recognitions of mode
transitions are mistaking mode IIa for mode IIb. This will not affect the system
performance much because mode IIa is actually a special case of mode IIb.
The advantage of fast detection of mode IIa is to quickly get an accurate ITD
estimation (ρe(n) = 0), which can be used to guide the motion control very
clearly. However, even mode IIa is mistaken for mode IIb, the ITD which is
estimated by Kalman filter is nearly equal to zero and smooth enough to obtain
a satisfactory intention-based motion control.

As mentioned above, Kalman filter and robust Kalman filter are used in mode
II and III respectively. Coefficient a(n) in model (3) satisfies a(n) = a0 +Δa(n)
with a0 = 0.93, |Δa(n)| < 0.3. Comparing with the observation y(k) from the
noisy force signals, the online estimated ITD ρe(n) reflects the human intention
smoothly and distinctly, which provides explicit guidance to the IBAC controller.
In particular, when the subject moves straight forward, which is the walking
mode in most of the time, the inferred ITD is exactly the forward direction.
This reduces meaningless lateral movements of the cane robot to a great extent.
In addition, typical force responses are shown in Fig. 8(b) and Fig. 9(b) of the
walking experiments.

Comparison Experiment Study. As illustrated in section V.A, observation
noise of the ITD always exists while the cane robot is operated by either a
normal user or an imitated disabled user. If a conventional force control approach
is applied, the cane robot will move unexpectedly due to the effect of noise.
This unexpected motion makes the user feel uncomfortable and deteriorates
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(a) Observed and inferred ITD vs Time (ms)

(b) Force signals vs Time (ms)

Fig. 8. Experiment 1 on the flat ground (I→IIa→IIb→I)
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(a) Observed and inferred ITD vs Time (ms)

(b) Force signals vs Time (ms)

Fig. 9. Experiment 2 on the flat ground (I→IIa→IIIa→IIa)
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the maneuverability of robot. To safely assist the elderly or disabled walking,
the proposed IBAC approach overcomes the disadvantage of conventional force
control to a great extent. The validity of IBAC approach is further illustrated
by the following experimental comparison study.

In this experiment, a subject was asked to perform two series of walking modes
depicted by Fig. 10. A conventional admittance control (CAC) strategy which is
often used in [5] was tested first and the motion trajectories of cane robot were
recorded. The same experiments were conducted on the cane robot controlled
by the IBAC strategy.

To quantitatively evaluate the coincidence between the motion of cane robot
and the users walking intention, we assume a metric which is given by

D(cane, ITD) =
1

N

N∑
i=1

√
(xc(i)− xfit(i))

2
+ (yc(i)− yfit(i))

2
(11)

where N is the data number of a motion trajectory of cane robot. (xc(i), yc(i))
is the i-th point in the motion trajectory. (xfit(i), yfit(i)) is the i-th point of the
best-fit line through the point set of the motion trajectory. Note that the best-fit
line should be obtained according to the given walking mode series, which reflect
the users walking intention. For instance, the best-fit line of walking experiment
A (see Fig. 10(a) consists of two straight lines representing the walking mode IIa
and IIb respectively. The best-fit line of walking experiment B (see Fig. 10-(b)
is composed of two straight lines (representing mode IIa at the beginning and
end of the walking mode series) and an arc (representing mode IIIa).

Fig. 11 shows two comparison results of walking experiments on flat ground
using the IBAC strategy and the conventional admittance control strategy. The
difference between the robot motion trajectory in the case of using the IBAC
strategy and its best-fit line is much smaller than that in the case of using normal
admittance control. This fact was further proven by calculating the average
values of D(cane,ITD) after conducting a number of comparison experiments in
different cases illustrated in the above subsections (see Table 2). As a conclusion,
smaller values of D(cane,ITD) are obtained when the IBAC strategy is applied
to our cane robot. That is, there are less unexpected motions of the cane robot
if the IBAC strategy is employed. This is very important in the sense of making
the user feel safe and comfortable while operating the cane robot.

Table 2. Comparison of D(cane, ITD) using different control strategies

Subject Experiment number Average Value of D (CAC) Average Value of D (IBAC)

A 50 0.0129 0.006
B 50 0.0117 0.006
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4 Fall Detection Using Intelligent Cane Robot

4.1 ZMP Estimation

In this study, a novel method is proposed to detect the risk of falling in the elderly
based on Zero-Moment-Point (ZMP) estimation. The ZMP is a very important
concept of the motion planning for biped robots, and also can be applied in
the area of tripedal or multiped robot. There are two walking modes of legged
robot from a stability viewpoint; one is statically stable walking and the other is
dynamically stable walking. For dynamically stable walking robot, the ZMP can
be computed using the equations (12), (13). The stability can be achieved by
controlling the position of ZMP of the robot to be inside the support polygon.

xzmp =

n∑
i=1

mixi (z̈i + g)−
n∑

i=1

miẍizi −
n∑

i=1

Iiy θ̈iy

n∑
i=1

mi (z̈i + g)
(12)

yzmp =

n∑
i=1

miyi (z̈i + g)−
n∑

i=1

miÿizi −
n∑

i=1

Iixθ̈ix

n∑
i=1

mi (z̈i + g)
(13)

where mi is the mass of link, Iix, Iiy are the inertial components, θix, θiy are the
acceleration of link (as shown in Fig. 12).

Unfortunately, these equations can only be used to compute the ZMP for a
robot system, not for a human. Since the human is an uncontrollable factor in
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Fig. 12. The simplified link model of human walking

our human-cane system, we cannot control the movement and rotation of each
part of human body. Furthermore, the position of each link (xi, yi, zi) cannot be
obtained by the existing sensors of the cane robot system. Therefore, we cannot
control or even estimate the ZMP of user by using Eq. (12), (13).

Thus, the statically stable walking model is applied to estimate the users
ZMP. The static model can remain statically stable if and only if its center of
gravity (COG) projects vertically inside the support polygon. In a quasi-static
case, the ZMP is proved be equivalent to the projection of COG. According to
this principle, the falling risk can be detected by the statically walking model
given by

xcog =

n∑

i=1

xifi

n∑

i=1

fi

, ycog =

n∑

i=1

yifi

n∑

i=1

fi

(14)

where xi, yi (n=1, 2, 3) denote the position of ground reaction force (the LRF
is origin of the coordinate system). fi denotes the magnitude of ground reaction
force measured by the 6-axis force sensor and on-shoe load sensor that will be
illustrated as follows.

4.2 Sensor Configuration

To apply the statically mode model (14), a wearable load sensor system was
proposed to obtain the dynamical ground reaction force. This system includes
four parts which is shown in Fig. 13-(A).

As shown in Fig. 14, the ground reaction forces f1, f2 and f3 are measured by
the 6-axis force sensor and on-shoe load sensors respectively. The three contact
points are denoted by P1, P2 and P3. The coordinate value of point P1, is easily
obtained for it is just the position of cane robot. By using a laser ranger finder,
the coordinate values of point P2 and P3 can be approximately calculated (see
the two yellow scanned segments on the legs in Fig. 14).
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Fig. 14. Sensory data required in ZMP estimation

4.3 Fall Detection Method Based on Fuzzy Theory

As shown in Fig. 15-(a), possible falling states include ‘forward falling’, ‘back-
ward falling’ and ‘sideward falling’. Here state ‘sideward falling’ consists of all
falling cases except forward and backward falling. In Fig. 15-(b), the positions
of point P1, P2, P3 and ZMP are depicted for all possible falling cases.

Obviously, an important feature indicating the user’s falling state is the rel-
ative position between the ZMP and point P0, which is the center of support
triangle with vertices P1, P2 and P3 (see Fig. 16). This relative position can
be described by a two-dimensional vector (Δx,Δy)T . While the user is walking
normally, the ZMP should fluctuate around P0 in a small area. This area dif-
fers from different people. When the user is falling down, the distance between
ZMP and P0 will increase suddenly. And the falling direction can also be easily
obtained by observing vector (Δx,Δy)T .
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Fig. 15. Walking states analysis

Fig. 16. The feature (Δx,Δy)T of fall detection

The distribution of feature during normal walking is analyzed similar to
[7]. Dubois possibility theory is applied to describe the distribution of vector−−−−−−→
P0PZMP = [Δx,Δy]

T
during the normal walking state [10].

The procedure starts by constructing the data histograms for Δx and ΔyT

during normal walking state. The number of bins h for a histogram is experimen-
tally determined. Each bin is represented by the center of the interval denoted
by yj . The height of each bar is the number of learning points, located in this
bin.

The probability distribution {p(yj) : j = 1, 2, · · · , h} is calculated by dividing
the height of each bin by the total number of learning points belonging to the
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same class. The possibility distribution {π(yj) : j = 1, 2, · · · , h} is deduced from
the probability distribution by the bijective transformation of Dubois and Prade
defined by

π(yk) =

h∑
j=1

min [p(yk), p(yj)] (15)

The membership functions μ(·) that characterize the fuzzy set “normal walk-
ing”, is finally calculated from the corresponding possibility distributions by
linear interpolation.

The fall detection is implemented by a very simple algorithm, which is illus-
trated as follows: (assuming the human walking behavior is monitored at discrete
times, n denotes the current time)

IF μ(Δx(n), Δy(n)) < c and μ(Δx(n − 1), Δy(n − 1)) < c, THEN a fall is
detected.

Constant c is a small positive number which indicates a very low possibility
of “normal walking” state.

4.4 Experiment Study

We experimented with the cane robot to illustrate the effectiveness of the pro-
posed methods. First, the possibility distribution of “normal walking” state is
investigated. Then the validity of fall detection method is verified by experi-
ments.
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Fig. 18. The membership degree function of “normal walking”
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Fig. 19. Fall detection experiment

Experiments of “Normal Walking”. A university students were requested
to operate the cane robot to conduct “normal walking” experiments. From the
experimental data, the possibility distributions of “normal walking” were ob-
tained as well as the membership degree function. The original trajectories and
corresponding data histograms of Δx(n) and Δy(n) are shown in Fig. 17 (I) and
(IV). The constant h is assumed to be 10. The probability distribution p(nk),
possibility distribution π(nk) are depicted in Fig. 17 (II), (III), (V) and (VI).
The obtained membership function μ(Δx(n), Δy(n)) is given in Fig. 18

Experiments of “Fall Detection”. In this experiment, the subject pretended
to fall down during walking. The fall detection rule described in section 4.3 was
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applied in the experiment. Constant c was chosen as 0.02. The fall was detected
promptly as shown by Fig. 19.

4.5 Conclusion

A new omni-directional type intelligent cane robot is developed for the elderly
and handicapped. Motion control and fall detection of this robot are studied
based on online estimating human walking intention and the position of ZMP.

The main contribution of this study lies in: 1) presenting dynamic models and
online inference algorithm for the human walking intention, which is significant
to lead the user walking in a natural and comfortable way. 2) proposing practical
ZMP based fall detection method during operating the cane robot. An intention
based admittance control (IBAC) scheme is also proposed and used to drive cane
robot. Experiments were performed on the flat ground to verify the effectiveness
of proposed algorithms.

Future work will focus on the investigation of fall prevention measures and
plentiful operation experiments by different users.
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