
Modelling and Verifying Contract-Oriented
Systems in Maude

Massimo Bartoletti1, Maurizio Murgia1, Alceste Scalas1(B),
and Roberto Zunino2

1 Università Degli Studi di Cagliari, Cagliari, Italy
{bart,alceste.scalas}@unica.it, murgia88@gmail.com

2 Università Degli Studi di Trento, Trento, Italy
roberto.zunino@unitn.it

Abstract. We address the problem of modelling and verifying contract-
oriented systems, wherein distributed agents may advertise and stipulate
contracts, but — differently from most other approaches to distributed
agents — are not assumed to always behave “honestly”. We describe an
executable specification in Maude of the semantics of CO2, a calculus
for contract-oriented systems [6]. The honesty property [5] characterises
those agents which always respect their contracts, in all possible execu-
tion contexts. Since there is an infinite number of such contexts, honesty
cannot be directly verified by model-checking the state space of an agent
(indeed, honesty is an undecidable property in general [5]). The main
contribution of this paper is a sound verification technique for honesty.
To do that, we safely over-approximate the honesty property by abstract-
ing from the actual contexts a process may be engaged with. Then, we
develop a model-checking technique for this abstraction, we describe an
implementation in Maude, and we discuss some experiments with it.

1 Introduction

Contract-oriented computing is a software design paradigm where the interaction
between clients and services is disciplined through contracts [4,6]. Contract-
oriented services start their life-cycle by advertising contracts which specify their
required and offered behaviour. When compliant contracts are found, a session is
created among the respective services, which may then start interacting to fulfil
their contracts. Differently from other design paradigms (e.g. those based on the
session types discipline [10]), services are not assumed to be honest, in that they
might not respect the promises made [5]. This may happen either unintentionally
(because of errors in the service specification), or because of malicious behaviour.

Dishonest behaviour is assumed to be automatically detected and sanctioned
by the service infrastructure. This gives rise to a new kind of attacks, that
exploit possible discrepancies between the promised and the actual behaviour. If
a service does not behave as promised, an attacker can induce it to a situation
where the service is sanctioned, while the attacker is reckoned honest. A crucial

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 130–146, 2014.
DOI: 10.1007/978-3-319-12904-4 7

Modelling and Verifying Contract-Oriented Systems in Maude 131

problem is then how to avoid that a service results definitively culpable of a
contract violation, despite of the honest intentions of its developer.

In this paper we present an executable specification in Maude [9] of CO2,
a calculus for contract-oriented computing [4]. Furthermore, we devise and imple-
ment a sound verification technique for honesty. We start in Sect. 2 by introducing
a new model for contracts. Borrowing from other approaches to behavioural con-
tracts [5,8], ours are bilateral contracts featuring internal/external choices, and
recursion. We define and implement in Maude two crucial primives on contracts,
i.e. compliance and culpability testing, and we study some relevant properties.

In Sect. 3 we present CO2 (instantiated with the contracts above), and an
executable specification of its semantics in Maude. In Sect. 4 we formalise a
weak notion of honesty, i.e. when a process P is honest in a given context, and
we implement and experiment with it through the Maude model checker.

The main technical results follow in Sect. 5, where we deal with the problem of
checking honesty in all possible contexts. To do that, we start by defining
an abstract semantics of CO2, which preserves the transitions of a participant
A[P], while abstracting those of the context wherein A[P] is run. Building upon
the abstract semantics, we then devise an abstract notion of honesty (α-honesty,
Definition 11), which neglects the execution context. Theorem 5 states that α-
honesty correctly approximates honesty, and that — under certain hypotheses —
it is also complete. We then propose a verification technique for α-honesty, and
we provide an implementation in Maude. Some experiments have then been car-
ried out; quite notably, our tool has allowed us to determine the dishonesty of a
supposedly-honest CO2 process appeared in [5] (see Example 5).

Because of space limits, we make available online the proofs of all our state-
ments, as well as the Maude implementation, and the experiments made [2].

2 Modelling Contracts

We model contracts as processes in a simple algebra, with internal/external
choice and recursion. Compliance between contracts ensures progress, until a
successful state is reached. We prove that our model enjoys some relevant prop-
erties. First, in each non-final state of a contract there is exactly one participant
who is culpable, i.e., expected to make the next move (Theorem 1). Furthermore,
a participant always recovers from culpability in at most two steps (Theorem 2).

Syntax. We assume a finite set of participant names (ranged over by A,B, . . .) and
a denumerable set of atoms (ranged over by a, b, . . .). We postulate an involution
co(a), also written as ā, extended to sets of atoms in the natural way. Definition 1
introduces the syntax of contracts. We distinguish between (unilateral) contracts
c, which model the promised behaviour of a single participant, and bilateral
contracts γ, which combine the contracts advertised by two participants.

Definition 1. Unilateral contracts are defined by the following grammar:

c, d ::=
⊕

i∈I ai ; ci

∣
∣

∑
i∈I ai . ci

∣
∣ ready a.c

∣
∣ rec X. c

∣
∣ X

132 M. Bartoletti et al.

where (i) the index set I is finite; (ii) the “ready” prefix may appear at the
top-level, only; (iii) recursion is guarded.

Bilateral contracts γ are terms of the form A says c | B says d, where
A �=B and at most one occurrence of “ready” is present. The order of unilateral
contracts in γ is immaterial, i.e. A says c | B says d ≡ B says d | A says c.

An internal sum
⊕

i∈I ai ; ci allows to choose one of the branches ai ; ci, to
perform the action ai, and then to behave according to ci. Dually, an external
sum

∑
i∈I ai . ci allows to wait for the other participant to choose one of the

branches ai . ci, then to perform the corresponding ai and behave according to
ci. Separators ; and . allow for distinguishing singleton internal sums a ; c from
singleton external sums a . c. Empty internal/external sums are denoted with 0.
We will only consider contracts without free occurrences of recursion variables X.

Example 1. An online store A has the following contract: buyers can iteratively
add items to the shopping cart (addToCart); when at least one item has been
added, the client can either cancel the order or pay; then, the store can accept
(ok) or decline (no) the payment. Such a contract may be expressed as cA below:

cpay = pay .
(
ok ; 0 ⊕ no ; 0

)

cA = addToCart . (rec Z. addToCart . Z + cpay + cancel . 0)

Instead, a buyer contract could be expressed as:

cB = rec Z.
(
addToCart ; Z ⊕ pay ; (ok . 0 + no . 0)

)

The Maude specification of the syntax of contracts is defined as follows:
sorts Atom UniContract Participant AdvContract BiContract

IGuarded EGuarded IChoice EChoice Var Id RdyContract.
subsort Id < IGuarded < IChoice < UniContract < RdyContract.
subsort Id < EGuarded < EChoice < UniContract < RdyContract.
subsort Var < UniContract.

The sorts IGuarded and EGuarded represent singleton internal/external sums,
respectively, while IChoice and EChoice are for arbitrary internal/external sums.
Id represents empty sums, and it is a subsort of internal and external sums
(either singleton or not). RdyContract if for contracts which may have a top-level
ready , while AdvContract is a unilateral contract advertised by some participant.
op -_ : Atom -> Atom [ctor].
eq - - a:Atom = a:Atom.
op 0 : -> Id [ctor].
op _._ : Atom UniContract -> EGuarded [frozen ctor].
op _;_ : Atom UniContract -> IGuarded [frozen ctor].
op _+_ : EChoice EChoice -> EChoice [frozen comm assoc id: 0 ctor].
op _(+)_ : IChoice IChoice -> IChoice [frozen comm assoc id: 0 ctor].
op ready _._ : Atom UniContract -> RdyContract [frozen ctor].
op rec _._ : Var IChoice -> UniContract [frozen ctor].
op rec _._ : Var EChoice -> UniContract [frozen ctor].
op _ says _ : Participant RdyContract -> AdvContract [ctor].
op _ | _ : AdvContract AdvContract -> BiContract [comm ctor].

The operator -models the involution on atoms, with eq - - a:Atom = a:Atom. The
other operators are rather standard, and they guarantee that each UniContract

respects the syntactic constraints imposed by Definition 1.

Modelling and Verifying Contract-Oriented Systems in Maude 133

Semantics. The evolution of bilateral contracts is modelled by
μ−→→, the smallest

relation closed under the rules in Fig. 1 and under ≡. The congruence ≡ is
the least relation including α-conversion of recursion variables, and satisfying
rec X. c ≡ c{rec X. c/X} and

⊕
i∈∅ ai ; ci ≡ ∑

i∈∅ ai . ci. The label μ = A says a
models A performing action a. Hereafter, we shall consider contracts up-to ≡.

Fig. 1. Semantics of contracts (symmetric rules for B actions omitted)

In rule [IntExt], participant A selects the branch a in an internal sum, and
B is then forced to commit to the corresponding branch ā in his external sum.
This is done by marking that branch with ready ā, while discarding all the other
branches; B will then perform his action in the subsequent step, by rule [Rdy].

In Maude, the semantics of contracts is an almost literal translation of that in
Fig. 1 (except that labels are moved to configurations). The one-step transition
relation is defined as follows:

crl [IntExt]: A says a ; c (+) c’ | B says b . d + d’
=> {A says a} A says c | B says ready b . d if a = - b.

rl [Rdy]: A says ready a.c | B says d => {A says a} A says c | B says d.

Compliance. Two contracts are compliant if, whenever a participant A wants
to choose a branch in an internal sum, then participant B always offers A the
opportunity to do it. To formalise compliance, we first define a partial function
rdy from bilateral contracts to sets of atoms. Intuitively, if the unilateral con-
tracts in γ do not agree on the first step, then rdy(γ) is undefined (i.e. equal
to ⊥). Otherwise, rdy(γ) contains the atoms which could be fired in the first
step.

Definition 2 (Compliance). Let the partial function rdy be defined as:

rdy
(
A says

⊕

i∈I
ai ; ci | B says

∑

j∈J
bj . cj

)
= {ai}i∈I

if {ai}i∈I ⊆ {b̄j}j∈J
and (I = ∅ =⇒ J = ∅)

rdy(A says ready a.c | B says d) = {a}
Then, the compliance relation �� between unilateral contracts is the largest rela-
tion such that, whenever c �� d:

134 M. Bartoletti et al.

(1) rdy(A says c | B says d) �= ⊥
(2) A says c | B says d

μ−→→ A says c′ | B says d′ =⇒ c′ �� d′

Example 2. Let γ = A says c | B says d, where c = a ; c1 ⊕ b ; c2 and d =
ā . d1 + c̄ . d2. If the participant A internally chooses to perform a, then γ will
take a transition to A says c1 | B says ready ā.d1. Suppose instead that
A chooses to perform b, which is not offered by B in his external choice. In
this case, γ � A says b−−−−−→→. We have that rdy(γ) = ⊥, which does not respect item
(1) of Definition 2. Therefore, c and d are not compliant.

We say that a contract is proper if the prefixes of each summation are pairwise
distinct. The next lemma states that each proper contract has a compliant one.

Lemma 1. For all proper contracts c, there exists d such that c �� d.

Definition 2 cannot be directly exploited as an algorithm for checking compliance.
Lemma 2 gives an alternative, model-checkable characterisation of �� .

Lemma 2. For all bilateral contracts γ = A says c | B says d:

c �� d ⇐⇒ (∀γ′. γ −→→∗ γ′ =⇒ rdy(γ′) �= ⊥)

In Maude, the compliance relation is defined as suggested by Lemma 2. The
predicate isBottom is true for a contract γ whenever rdy(γ) = ⊥. The operator
<> used below allows for the transitive closure of the transition relation. The
relation c |X| d is implemented by verifying that the contract A says c | B says d
satisfies the LTL formula �¬ isBottom. This is done through the Maude model
checker.

eq <{l} g> |= isBottom = is rdy(g) eq bottom.
op _|X|_ : UniContract UniContract -> Bool.
eq c |X| d = modelCheck(<A says c | B says d>, [] ~isBottom) == true.

Example 3. Recall the store contract cA in Example 1. Its Maude version is:
op Z : -> Var.
ops addToCart pay ok no cancel : -> Atom.
ops CA CPay CB : -> UniContract.
eq CPay = pay . (- ok ; 0 (+) - no ; 0).
eq CA = addToCart . (rec Z . addToCart . Z + CPay + cancel . 0).

Instead, the Maude implementation of the buyer contract cB in Example 1 is:
eq CB = rec Z . (- addToCart ; Z (+) - pay ; (ok . 0 + no . 0)).

We can verify with Maude that CA and CB are not compliant:
red CA |X| CB.
result Bool: false

The problem is that CB may choose to pay even when the cart is empty. We can
easily fix the buyer contract as follows, and then obtain compliance:
red CA |X| (- addToCart ; CB).
result Bool: true

Modelling and Verifying Contract-Oriented Systems in Maude 135

Culpability. We now tackle the problem of determining who is expected to make
the next step for the fulfilment of a bilateral contract. We call a participant
A culpable in γ if she is expected to perform some actions so to make γ progress.

Definition 3. A participant A is culpable in γ (A ˙�̇γ in symbols) iff γ
A says a−−−−−→→

for some a. When A is not culpable in γ we write A ˙�̇γ.

Theorem 1 below establishes that, when starting with compliant contracts, exactly
one participant is culpable in a bilateral contract. The only exception is A says 0 |
B says 0, which represents a successfully terminated interaction, where nobody is
culpable.

Theorem 1. Let γ = A says c | B says d, with c �� d. If γ −→→∗ γ′, then either
γ′ = A says 0 | B says 0, or there exists a unique culpable in γ′.

The following theorem states that a participant is always able to recover from
culpability by performing some of her duties. This requires at most two steps.

Theorem 2 (Contractual exculpation). Let γ = A says c | B says d. For
all γ′ such that γ −→→∗ γ′, we have that:

(1) γ′ �−→→ =⇒ A ˙�̇γ′ and B ˙�̇γ′

(2) A ˙�̇γ′ =⇒ ∀γ′′.γ′ −→→ γ′′ =⇒
{
A ˙�̇γ′′, or
∀γ′′′.γ′′ −→→ γ′′′ =⇒ A ˙�̇γ′′′

Item (1) of Theorem 2 says that, in a stuck contract, no participant is culpable.
Item (2) says that if A is culpable, then she can always exculpate herself in at
most two steps, i.e.: one step if A has an internal choice, or a ready followed by
an external choice; two steps if A has a ready followed by an internal choice.

We specify culpability in Maude as follows. The formula {l} g |= --A-->>
is true whenever g has been reached by some transitions of A. The participant
A is culpable in g, written A :C g, if g satisfies the LTL formula O --A-->>
(where O is the “next” operator of LTL). This is verified through the Maude
model checker.

op --_->> : Participant -> Prop.
eq {A says a} g |= -- A ->> = true.
eq {l} g |= -- A ->> = false [owise].
op _ :C _ : Participant BiContract -> Bool.
eq A :C g = modelCheck(g, O -- A ->>) == true.

3 Modelling Contracting Processes

We model agents and systems through the process calculus CO2 [3], which we
instantiate with the contracts introduced in Sect. 2. The primitives of CO2 allow
agents to advertise contracts, to open sessions between agents with compliant
contracts, to execute them by performing some actions, and to query contracts.

136 M. Bartoletti et al.

Syntax. Let V and N be disjoint sets of session variables (ranged over by x, y, . . .)
and session names (ranged over by s, t, . . .). Let u, v, . . . range over V ∪ N , and
u,v range over 2V∪N .

Definition 4. The syntax of CO2 is given as follows:

Systems S ::= 0
∣
∣ A[P]

∣
∣ s[γ]

∣
∣ S | S

∣
∣ (u)S

∣
∣ {↓u c}A

Processes P ::=
∑

i πi.Pi

∣
∣ P | P

∣
∣ (u)P

∣
∣ X(u)

Prefixes π ::= τ
∣
∣ tell ↓u c

∣
∣ dou a

∣
∣ askuφ

Systems are the parallel composition of participants A[P], delimited systems
(u)S, sessions s[γ] and latent contracts {↓u c}A. A latent contract {↓x c}A rep-
resents a contract c (advertised by A) which has not been stipulated yet; upon
stipulation, the variable x will be instantiated to a fresh session name. We assume
that, in a system of the form (u)(A[P] | B[Q]) | · · ·), A �= B. We denote with
K a special participant name (playing the role of contract broker) such that, in
each system (u)(A[P] | · · ·), A �= K. We allow for prefix-guarded finite sums of
processes, and write π1.P1+π2.P2 for

∑
i∈{1,2} πi.Pi, and 0 for

∑
∅ P . Recursion

is allowed only for processes; we stipulate that each process identifier X has a
unique defining equation X(x1, . . . , xj)

def= P such that fv(P) ⊆ {x1, . . . , xj} ⊆ V,
and each occurrence of process identifiers in P is prefix-guarded. We will some-
times omit the arguments of X(u) when they are clear from the context.

Prefixes include silent action τ , contract advertisement tell ↓u c, action exe-
cution dou a, and contract query asku φ (where φ is an LTL formula on γ). In
each prefix π �= τ , u refers to the target session involved in the execution of π.

In Maude, we translate the syntax of CO2 almost literally. Here we just show
the sorts used; see [2] for the full details.

sorts System Process Prefix SessionName SessionVariable SessionIde
GuardProc Sum IdeVec ProcIde ParamList.

subsort SessionName < SessionIde < IdeVec.
subsort Qid < SessionVariable < SessionIde < IdeVec.
subsort GuardProc < Sum < Process.
subsort SessionIde < ParamList.

The sort SessionIde is a super sort of both SessionVariable and SessionName.
Session variables can be of sort Qid; session names can not. Sort IdeVec models
sets of SessionIde (used as syntactic sugar for delimitations), while ParamList

models vectors of SessionIde (used for parameters of defining equations).

Semantics. The CO2 semantics is formalised by the relation
μ−→ in Fig. 3, where

μ ∈ {A : π | A �=K}∪{K : fuse}. We will consider processes and systems up-to the
congruence relation ≡ in Fig. 2. The axioms for ≡ are fairly standard — except
the last one: it collects garbage terms possibly arising from variable substitutions.

Rule [Tau] just fires a τ prefix. Rule [Tell] advertises a latent contract {↓x c}A.
Rule [Fuse] finds agreements among the latent contracts: it happens when there
exist {↓x c}A and {↓y d}B such that A �= B and c �� d. Once the agreement is
reached, a fresh session containing γ = A says c | B says d is created. Rule [Do]

allows a participant A to perform an action in the session s containing γ (which,

Modelling and Verifying Contract-Oriented Systems in Maude 137

Fig. 2. Structural equivalence for CO2 (Z,Z′ range over systems or processes).

Fig. 3. Reduction semantics of CO2 .

accordingly, evolves to γ′). Rule [Ask] allows A to proceed only if the contract γ
at session s satisfies the property φ. The last three rules are mostly standard. In
rule [Del] the label π fired in the premise becomes τ in the consequence, when
π contains the delimited name/variable. This transformation is defined by the
function delu(π), where the set fnv(π) contains the free names/variables in π. For
instance, (x)A[tell ↓x c.P] A: τ−−−→ (x) (A[P] | {↓x c}A). Here, it would make little
sense to have the label A : tell ↓x c, as x (being delimited) may be α-converted.

Implementing in Maude the semantics of CO2 is almost straightforward
[19]; here we show only the main rules (see [2] for the others). Rule [Do] uses
the transition relation => on bilateral contracts. Rule [Ask] exploits the Maude
model checker to verify if the bilateral contract g satisfies the LTL formula phi.
Rule [Fuse] uses the operator |X| to check compliance between the contracts
c and d, then creates the session s[A says c | B says d] (with s fresh), and

138 M. Bartoletti et al.

finally applies the substitution {s / x}{s / y} (delimitations are dealt with as
in Fig. 3).

crl [Do] : A[do s a . P + P’ | Q] | s[g] => {A : do s a} (A[P | Q] | s[g’])

if g => {A says a} g’.

crl [Ask] : A[ask s phi . P + P’ | Q] | s[g] => {A : ask s phi} A[P | Q]

if g |- phi.

crl [Fuse] : (uVec , vVec) ({x c}A | {y d}B | S) => { K : fuse}

(s , vVec) (s[A says c | B says d] | S{s / x}{s / y})

if uVec == (x , y) / c |X| d / s := fresh(0 , S).

4 Honesty

A remarkable feature of CO2 is that it allows for writing dishonest agents which
do not keep their promises. Intuitively, a participant is honest if she always
fulfils her contractual obligations, in all possible contexts. Below we formalise
the notion of honesty, by slightly adapting the one appeared in [3]. Then, we
show how we verify in Maude a weaker notion, i.e. honesty in a given context.

We start by defining the set OA
s (S) of obligations of A at s in S. Whenever

A is culpable at some session s, she has to fire one of the actions in OA
s (S).

Definition 5. We define the set of atoms OA
s (S) as:

OA
s (S) =

{
a | ∃γ, S′ . S ≡ s[γ] | S′ and γ

A says a−−−−−→→
}

We say that A is culpable at s in S iff OA
s (S) �= ∅.

The set of atoms RDA
s (S) (“Ready Do”) defined below comprises all the actions

that A can perform at s in one computation step within S (note that, by rule
[Del], if s is a bound name then RDA

s (S) = ∅). The set WRDA
s (S) (“Weak Ready

Do”) contains all the actions that A may possibly perform at s after a finite
sequence of transitions of A not involving any do at s.

Definition 6. For all S, A and s, we define the sets of atoms:

RDA
s (S) =

{
a | ∃S′ . S

A: dos a−−−−−→ S′
}

WRDA
s (S) =

{
a | ∃S′ . S

A: �=dos−−−−−→∗S′ ∧ a ∈ RDA
s (S′)

}

where we write S
A: �=dos−−−−−→ S′ if ∃π. S

A: π−−−→ S′ ∧ ∀a. π �= dos a.

A participant is ready if she can fulfil some of her obligations. To check if A is
ready in S, we consider all the sessions s in S involving A. For each of them,
we check that some obligations of A at s are exposed after some steps of A not
preceded by other dos of A. A[P] is honest in a given system S when A is ready
in all evolutions of A[P] | S. Then, A[P] is honest when she is honest in all S.

Modelling and Verifying Contract-Oriented Systems in Maude 139

Definition 7 (Honesty). We say that:

1. S is A -free iff it has no latent/stipulated contracts of A, nor processes of A
2. A is ready in S iff S ≡ (u)S′ ∧ OA

s (S′) �= ∅ =⇒ WRDA
s (S′) ∩ OA

s (S′) �= ∅
3. P is honest in S iff ∀A : (S is A -free ∧ A[P] | S −→∗ S′) =⇒ A is ready in S′

4. P is honest iff, for all S, P is honest in S

We have implemented items 2 and 3 of the above definition in Maude (item
4 is dealt with in the next section). CO2 can simulate Turing machines [5],
hence reachability in CO2 is undecidable, and consequently WRD, readiness
and honesty are undecidable as well. To recover decidability, we then restrict to
finite state processes: roughly, these are the processes with neither delimitations
nor parallel compositions under process definitions.

In Maude we verify readiness in a session s by searching if A can reach (with
her moves only), a state which allows for a dos a move, for some a.

op ready? : Participant SessionName System Module -> Bool.
eq ready?(A,s,S,M:Module) = metaSearch(M:Module, upTerm(< S > A s),

’<_>__[’S1:System , upTerm(A) , upTerm(s)],
’S1:System => ’‘_‘_[’l:SLabel,’S2:System] /\
’_:_[upTerm(A),’do__[upTerm(s),’a:Atom]] := ’l:SLabel,
’*, unbounded, 0) =/= failure.

We start the search from the term < S > A s, whose meta-representation is
obtained through the upTerm function. The search is performed according to the
A-solo semantics of CO2 (see Definition 10), which blocks all do at s. This is
done by the operator < > . Then, we look for reachable systems S1 where A can
fire a do at s. If the search succeeds, ready? returns true. Note that if A has no
obligations at s in S, ready? returns false — uncoherently with Definition 7. To
correctly check readiness, we define the function ready (see [2]), which invokes
ready? only when OA

s(S) �= ∅.
Verifying honesty in a context is done similarly. We use metaSearch to check

that A is ready in all reachable states. The operator < > gives the CO2 semantics.

op search-honest-ctx : Participant System Module -> ResultTriple?.

eq search-honest-ctx(A,S,M:Module) = metaSearch(M:Module, upTerm(< S >),

’<_>[’S:System], ’ready[upTerm(A), ’S:System,’S:System, upTerm(M:Module)]

= ’false.Bool, ’*, unbounded, 0).

op honest-ctx : Participant System Module -> Result.

ceq honest-ctx (A , S , M:Module) = true

if search-honest-ctx (A , S , M:Module) == failure.

ceq honest-ctx (A , S , M:Module) = downTerm (T:Term , < (0).System >)

if {T:Term,Ty:Type,S:Substitution} := search-honest-ctx (A,S,M:Module).

Example 4. A travel agency A queries in parallel an airline ticket broker F and a
hotel reservation service H in order to organise a trip for some user U. The agency
first requires U to pay, and then chooses either to commit the reservation or to
issue a refund (contract CU). When querying the ticket broker (contract CF), the
agency first receives a quotation, and then chooses either to commit and pay the
ticket, or to abort the transaction. The contract CH between A and H is similar.

140 M. Bartoletti et al.

eq CU = pay . (commit ; 0 (+) refund ; 0).
eq CF = ticket . (commitF ; payF ; 0 (+) abortF ; 0).
eq CH = hotel . (commitH ; payH ; 0 (+) abortH ; 0).

In addition to the contracts above, the agency should respect the following con-
straints: (a) the agency refunds U only if both the transactions with F and H

are aborted; (b) A pays the ticket and the hotel reservation only after it has
committed the transaction with U; (c) either both the transactions with F or
H are committed, or they are both aborted. A possible specification in Maude
respecting the above constraints is given by the following process P:

eq P = (xu , xf , xh) (tell xu CU . do xu pay.
((tell xf CF . PF) | (tell xh CH . PH) | PU)).

eq PF = do xf ticket . (do xh commitH . 0 + do xf abortF . 0).
eq PH = do xh hotel . (do xf commitF . 0 + do xh abortH . 0).

eq PU = ask xh ([] ~ payH) . do xu refund . 0 +
t . do xu commit . (do xf payF . 0 | do xh payH . 0).

The process P first opens a session with U, and then advertises the contracts CF

and CH, and in parallel executes PU. The process PF gets the ticket quotation, then
either commits the hotel reservation, or aborts the flight reservation. Dually, PH
gets the hotel quotation, then either commits the flight reservation, or aborts the
hotel reservation. Note that the two choices in PF and PH ensure that constraint
(c) above is satisfied: e.g., if PF fires the commitH (resp. abortF) prefix, the abortH

(resp. commitF) branch in PH is disabled, and only commitF (resp. abortH) can be
selected. The process PU checks if a refund is due to U. When the atom payH is
no longer reachable in session xh, the ask passes, and the refund is issued. This
guarantees constraint (a). In the τ -branch, PU commits the transaction with U,
and then proceeds to pay both F and H. This satisfies constraint (b). Note that
it may happen that PU chooses to commit even when CF or CH are not stipulated.
Although this behaviour is conceptually wrong, it does not affect honesty. Indeed,
honesty does not consider the domain-specific constraints among actions (e.g.
(a), (b), (c) above), but only that the advertised contracts are respected.

We have experimented the function honest-ctx by inserting P in some con-
texts S where all the other participants U, F and H are honest (see [2] for details).
The Maude model checker has correctly determined that P is honest in S.

red honest-ctx(A , S , [’TRAVEL-AGENCY-CTX]).

rewrites: 53950741 in 38062ms cpu (38058ms real) (1417429 rewrites/second)

result Bool: true

Even though we conjecture that P is honest (in all contexts), we anticipate
here that the verification technique proposed in Sect. 5 does not classify P as
honest. This is because the analysis is (correct but) not complete in the presence
of ask: indeed, the precise behaviour of an ask is lost by the analysis, because it
abstracts from the contracts of the context.

Modelling and Verifying Contract-Oriented Systems in Maude 141

5 Model Checking Honesty

We now address the problem of automatically verifying honesty. As mentioned
in Sect. 1, this is a desirable goal, because it alerts system designers before they
deploy services which could violate contracts at run-time (so possibly incurring
in sanctions). Since honesty is undecidable in general [5], our goal is a verification
technique which safely over-approximates honesty, i.e. it never classifies a process
as honest when it is not. The first issue is that Definition 7 requires readiness
to be preserved in all possible contexts, and there is an infinite number of such
contexts. To overcome this problem, we present below an abstract semantics of
CO2 which preserves the honesty property, while neglecting the actual context
where the process A[P] is executed.

The definition of the abstract semantics of CO2 is obtained in two steps.
First, we provide the projections from concrete contracts/systems to the abstract
ones. Then, we define the semantics of abstract contracts and systems, and we
relate the abstract semantics with the concrete one. The abstraction is always
parameterised in the participant A the honesty of which is under consideration.

The abstraction αA(γ) of a bilateral contract γ = A says c | B says d
(Definition 8 below) is either c, or ctx .c when d has a ready .

Definition 8. For all γ, we define the abstract contract αA(γ) as:

αA(A says c | B says d) =

{
c if d is ready-free
ctx a.c if d = ready a.d′

We now define the abstraction αA of concrete systems, which just discards all
the components not involving A, and projects the contracts involving A.

Definition 9. For all A, S we define the abstract system αA(S) as:

αA(A[P]) = A[P] αA(s[γ]) = s[αA(γ)] αA({↓x c}A) = {↓x c}A
αA(S | S′) = αA(S) | αA(S′) αA((u)S) = (u)(αA(S)) αA(S) = 0, otherwise

Abstract semantics. For all participants A, the abstract LTSs �−→→A and
μ−→A on

abstract contracts and systems, respectively, are defined by the rules in Fig. 4.
Labels 	 are atoms, with or without the special prefix ctx — which indicates
a contractual action performed by the context. Labels μ are either ctx or they
have the form A : π, where A is the participant in −→A, and π is a CO2 prefix.

Rules for abstract contracts (first row in Fig. 4) are simple: in an internal
sum, A chooses a branch; in an external sum, the choice is made by the context;
in a ready a.c the atom a is fired. The rightmost rule handles a ready in the con-
text contract. For abstract systems, some rules are similar to the concrete ones,
hence we discuss only the most relevant ones. Rule [α-Do] involves the abstract
transitions of contracts. The behaviour of abstract systems also considers context
actions, labelled with ctx . If c � φ, then the ask φ passes, indepedently from the
context (rule [α-Ask]). If c �� ¬φ, then the ask φ may pass or not, depending and

142 M. Bartoletti et al.

the context (rule [α-AskCtx]). Rule [α-Fuse] says that a latent contract of A may
always be fused (the context may choose whether this is the case or not). The
context may also decide whether to perform actions within sessions ([α-DoCtx]).
Unobservable context actions are modelled by rules [α-Ctx] and [α-DelCtx].

Fig. 4. Abstract LTSs for contracts and systems (full set of rules in [2]).

To check if A[P] is honest, we must only consider those A-free contexts not
already containing advertised/stipulated contracts of A. Such systems will always
evolve to a system which can be split in two parts: an A-solo system SA contain-
ing the process of A, the contracts advertised by A and all the sessions containing
contracts of A, and an A-free system Sctx.

Definition 10. We say that a system S is A-solo iff one of the following holds:

S ≡ 0 S ≡ A[P] S ≡ s[A says c | B says d] S ≡ {↓x c}A
S ≡ S′ | S′′ where S′ and S′′ A-solo S ≡ (u)S′ where S′ A-solo

We say that S is A-safe iff S ≡ (s)(SA | Sctx), with SA A-solo and Sctx A-free.

The following theorems establish the relations between the concrete and the
abstract semantics of CO2. Theorem 3 states that the abstraction is correct, i.e.
for each concrete computation there exists a corresponding abstract computa-
tion. Theorem 4 states that the abstraction is also complete, provided that a
process has neither ask nor non-proper contracts.

Modelling and Verifying Contract-Oriented Systems in Maude 143

Theorem 3. For all A-safe systems S, and for all concrete traces η:

S
η−→∗S′ =⇒ ∃η̃ : αA(S)

η̃−→A
∗αA(S′)

Furthermore, if η is A-solo and S is ask-free, then η = η̃.

Theorem 4. For all ask-free abstract system S̃ with proper contracts only:

S̃ −→A
∗ S̃′ =⇒ ∃S, S′ A-safe. αA(S) = S̃ ∧ S −→∗ S′ ∧ αA(S′) = S̃′

The abstract counterparts of Ready Do, Weak Ready Do, and readiness are
defined as expected, by using the abstract semantics instead of the concrete
one (see [2] for details). The notion of honesty for abstract systems, namely
α-honesty, follows the lines of that of honesty in Definition 7.

Definition 11 (α-honesty). We say that P is α-honest iff for all S̃ such that
A[P] −→A

∗ S̃, A is ready in S̃.

The main result of this paper follows. It states that α-honesty is a sound approx-
imation of honesty, and — under certain conditions — it is also complete.

Theorem 5. If P is α-honest, then P is honest. Conversely, if P is honest,
ask-free, and has proper contracts only, then P is α-honest.

In Maude, we implement abstract semantics for system and contracts for one-
step transitions. We obtain their transitive closure, discarding labels, with the
operator < >. The function ready in search-honest computes abstract readiness.

op search-honest : Process Module -> ResultTriple?.

eq search-honest(P , M:Module) = metaSearch(M:Module, upTerm(< A[P] >),

’<_>[’S:System], ’ready[’S:System,’S:System, upTerm(M:Module)]

= ’false.Bool, ’*, unbounded, 0).

op honest : Process Module -> Result.

ceq honest (P, M:Module) = true if search-honest (P,M:Module) == failure . ceq honest (P,

M:Module) = downTerm (T:Term , < (0).System >)

if {T:Term, Ty:Type, S:Substitution} := search-honest (P , M:Module).

Honesty is checked by searching for states such that A is not ready. If the
search fails, then A is honest. As in Sect. 4, this function is decidable for finite
state processes, i.e. those without delimitation/parallel under process definitions.
The following example shows a process which was erroneously classified as honest
in [5]. The Maude model checker has determined the dishonesty of that process,
and by exploiting the Maude tracing facilities we managed to fix it.

Example 5. A store A offers buyers two options: clickPay or clickVoucher. If a
buyer B chooses clickPay, A requires a payment (pay) otherwise A checks the
validity of the voucher with V, an online voucher distribution system. If V val-
idates the voucher (ok), B can use it (voucher), otherwise (no) B must pay. We
specify in Maude the contracts CB (between A and B) and CV (between A and V) as:

144 M. Bartoletti et al.

eq CB = clickPay . pay . 0 +
clickVoucher . (- reject ; pay . 0 (+) - accept ; voucher . 0).

eq CV = ok . 0 + no . 0.

We can specify in Maude a CO2 process for A as follows:

eq P = (x)(tell x CB . (do x clickPay . do x pay . 0 +
do x clickVoucher . ((y) tell y CV . Q))).

eq Q = do y ok . do x - accept . do x voucher . 0 +
do y no . do x - reject . do x pay . 0 + R.

eq R = t . (do x - reject . do x pay . 0).

Variables x and y in P correspond to two separate sessions, where A respectively
interacts with B and V. The advertisement of CV causally depends on the stip-
ulation of the contract CB, because A must fire clickVoucher before tell y CV.
In process Q the store waits for the answer of V: if V validates the voucher (first
branch), then A accepts it from B; otherwise (second branch), A requires B to pay.
The third branch R allows A to fire a τ action, and then reject the voucher. The
intuition is that τ models a timeout, to deal with the fact that CV might not be
stipulated. When we check the honesty of P with Maude, we obtain:

red honest(P , [’STORE-VOUCHER]).
rewrites: 31649 in 72ms cpu (77ms real) (439545 rewrites/second)
result TSystem: < ($ 0,$ 1)(A[do $ 0 - reject . do $ 0 pay . (0).Sum] |

$ 0[- accept ; voucher . 0(+)- reject ; pay . 0] | $ 1[ready ok . 0]) >

This means that the process P is dishonest: actually, the output provides a state
where A is not ready. There, A must do ok in session y ($1), while A is only ready
to do a -reject at session x ($0). This problem occurs when the branch R is
chosen. To recover honesty, it suffices to replace R with the following process R’:

eq R’ = t . (do x - reject . do x pay . 0 | (do y no . 0 + do y ok . 0)).

red honest(P’ , [’STORE-VOUCHER]).

rewrites: 44009 in 32ms cpu (30ms real) (1375195 rewrites/second)

result Bool: true

6 Conclusions

We have described an executable specification in Maude of a calculus for contract-
oriented systems. This has been done in two steps. First, we have specified a
model for contracts, and we have formalised in Maude their semantics, and the
crucial notions of compliance and culpability (Sect. 2). This specification has
been exploited in Sect. 3 to implement in Maude the calculus CO2 [4]. Then,
we have considered the problem of honesty [5], i.e. that of deciding when a
participant always respects the contracts she advertises, in all possible contexts
(Sect. 4). Writing honest processes is not a trivial task, especially when multiple
sessions are needed for realising a contract (see e.g. Example 4 and Example 5).
We have then devised a sound verification technique for deciding when a par-
ticipant is honest, and we have provided an implementation of this technique in
Maude (Sect. 5).

Modelling and Verifying Contract-Oriented Systems in Maude 145

Related work. Rewriting logic [12] has been successfully used for more than two
decades as a semantic framework wherein many different programming models
and logics are naturally formalised, executed and analysed. Just by restricting
to models for concurrency, there exist Maude specifications and tools for CCS
[17], the π-calculus [16], Petri nets [15], Erlang [14], Klaim [18], adaptive sys-
tems [7], etc. A more comprehensive list of calculi, programming languages, tools
and applications implemented in Maude is collected in [13].

The contract model presented in Sect. 2 is a refined version of the one in [5],
which in turn is an alternative formalisation of the one in [8]. Our version is
simpler and closer to the notion of session behaviour [1], and enjoys several
desirable properties. Theorem 1 establishes that only one participant may be
culpable in a bilateral contract, whereas in [5] both participants may be culpable,
e.g. in A says a ; c | B says ā ; d. In our model, if both participants have an
internal (or external) choice, then their contracts are not compliant, whereas e.g.
a.c and ā.d (both external choices) are compliant in [5,8] whenever c and d are
compliant. The exculpation property established by Theorem 2 is stronger than
the corresponding one in [5]. There, a participant A is guaranteed to exculpate
herself by performing (at most) two consecutive actions of A, while in our model
two any actions (of whatever participant) suffice.

As far as we know, the concept of contract-oriented computing (in the mean-
ing used in this paper) has been introduced in [6]. CO2, a contract-agnostic calcu-
lus for contract-oriented computing, has been instantiated with several contract
models — both bilateral [3,5] and multiparty [4,11]. Here we have instanti-
ated it with the contracts in Sect. 2. A minor difference w.r.t. [3,5,11] is that
here we no longer have fuse as a language primitive, but rather the creation
of fresh sessions is performed non-deterministically by the context (rule [Fuse]).
This is equivalent to assume a contract broker which collects all contracts, and
may establish sessions when compliant contracts are found. In [5], a participant
A is considered honest when, in each possible context, she can always exculpate
herself by a sequence of A-solo moves. Here we require that A is ready (i.e. some
of her obligations are in the Weak Ready Do set) in all possible contexts, as
in [3]. We conjecture that these two notions are equivalent. In [3] a type system
has been proposed to safely over-approximate honesty. The type of a process
P is a function which maps each variable to a channel type. These are behav-
ioural types (in the form of Basic Parallel Processes) which essentially preserve
the structure of P , by abstracting the actual prefixes as “non-blocking” and
“possibly blocking”. The type system relies upon checking honesty for channel
types, but no actual algorithm is given for such verification, hence type inference
remains an open issue. In contrast, here we have directly implemented in Maude
a verification algorithm for honesty, by model checking the abstract semantics
in Sect. 5.

Acknowledgments. This work has been partially supported by Aut. Region of Sar-
dinia under grants L.R.7/2007 CRP-17285 (TRICS) and P.I.A. 2010 project “Social
Glue”, and by MIUR PRIN 2010-11 project “Security Horizons”, and by EU COST
Action IC1201 “Behavioural Types for Reliable Large-Scale Software Systems”
(BETTY).

146 M. Bartoletti et al.

References

1. Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-based
client/server systems. In: PPDP (2010)

2. Bartoletti, M., Murgia, M., Scalas, A., Zunino, R.: Modelling and verifying
contract-oriented systems in Maude. http://tcs.unica.it/software/co2-maude

3. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. In: Beyer,
D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp.
305–320. Springer, Heidelberg (2013)

4. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in Co2. Sci.
Ann. Comp. Sci. 22(1), 5–60 (2012)

5. Bartoletti, M., Tuosto, E., Zunino, R.: On the realizability of contracts in dishonest
systems. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 245–
260. Springer, Heidelberg (2012)

6. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
7. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling

and analyzing adaptive self-assembly strategies with maude. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: Specification and programming in rewriting logic. In: TCS (2001)

10. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

11. Lange, J., Scalas, A.: Choreography synthesis as contract agreement. In: ICE (2013)
12. Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten, J.C.M.,

Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 384–400. Springer,
Heidelberg (1990)

13. Meseguer, J.: Twenty years of rewriting logic. JLAP 81(7–8), 721–781 (2012)
14. Neuhäußer, M., Noll, T.: Abstraction and model checking of core Erlang programs

in Maude. ENTCS 176(4), 143–163 (2007)
15. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework

for Petri Nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN
2001. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001)

16. Thati, P., Sen, K., Mart́ı-Oliet, N.: An executable specification of asynchronous
pi-calculus semantics and may testing in Maude 2.0. In: ENTCS 71 (2002)

17. Verdejo, A., Mart́ı-Oliet, N.: Implementing CCS in Maude 2. In: ENTCS 71 (2002)
18. Wirsing, M., Eckhardt, J., Mühlbauer, T., Meseguer, J.: Design and analysis of

cloud-based architectures with KLAIM and maude. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 54–82. Springer, Heidelberg (2012)

19. Şerbănuţă, T.F., Roşu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2), 305–340 (2009)

http://tcs.unica.it/software/co2-maude

	Modelling and Verifying Contract-Oriented Systems in Maude
	1 Introduction
	2 Modelling Contracts
	3 Modelling Contracting Processes
	4 Honesty
	5 Model Checking Honesty
	6 Conclusions
	References

