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Abstract. This paper proposes rewriting modulo SMT, a new tech-
nique that combines the power of SMT solving, rewriting modulo the-
ories, and model checking. Rewriting modulo SMT is ideally suited to
model and analyze infinite-state open systems, i.e., systems that inter-
act with a non-deterministic environment. Such systems exhibit both
internal non-determinism, which is proper to the system, and external
non-determinism, which is due to the environment. In a reflective for-
malism, such as rewriting logic, rewriting modulo SMT can be reduced
to standard rewriting. Hence, rewriting modulo SMT naturally extends
rewriting-based reachability analysis techniques, which are available for
closed systems, to open systems. The proposed technique is illustrated
with the formal analysis of a real-time system that is beyond the scope
of timed-automata methods.

1 Introduction

Symbolic techniques can be used to represent possibly infinite sets of states
by means of symbolic constraints. These techniques have been developed and
adapted to many other verification methods such as SAT solving, Satisfiability
Modulo Theories (SMT), rewriting, and model checking. A key open research
issue of current symbolic techniques is extensibility. Techniques that combine
different methods have been proposed, e.g., decision procedures [28,29], unifica-
tions algorithms [7,11], theorem provers with decision procedures [1,10,32], and
SMT solvers in model checkers [3,18,27,36,38]. However, there is still a lack of
general extensibility techniques for symbolic analysis that simultaneously com-
bine the power of SMT solving, rewriting- and narrowing-based analysis, and
model checking.

This paper proposes a new symbolic technique that seamlessly combines
rewriting modulo theories, SMT solving, and model checking. For brevity, this
technique is called rewriting modulo SMT, although it could more precisely be
called rewriting modulo SMT+B , where B is an equational theory having a
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matching algorithm. It complements another symbolic technique combining nar-
rowing modulo theories and model checking, namely narrowing-based reachabil-
ity analysis [8,26]. Neither of these two techniques subsumes the other.

Rewriting modulo SMT can be applied to increase the power of equational
reasoning, e.g., [16,17,21], but its full power, including its model checking
capabilities, is better exploited when applied to concurrent open systems.
Deterministic systems can be naturally specified by equational theories, but
specification of concurrent, non-deterministic systems requires rewrite theories
[24], i.e., triples R = (Σ,E,R) with (Σ,E) an equational theory describing sys-
tem states as elements of the initial algebra TΣ/E , and R rewrite rules describing
the system’s local concurrent transitions. An open system is a concurrent sys-
tem that interacts with an external, non-deterministic environment. When such
a system is specified by a rewrite theory R = (Σ,E,R), it has two sources of
non-determinism, one internal and the other external. Internal non-determinism
comes from the fact that in a given system state different instances of rules in R
may be enabled. The local transitions thus enabled may lead to completely dif-
ferent states. What is peculiar about an open system is that it also has external,
and often infinitely-branching, non-determinism due to the environment. That
is, the state of an open system must include the state changes due to the environ-
ment. Technically, this means that, while a system transition in a closed system
can be described by a rewrite rule t→t′ with vars(t′) ⊆ vars(t), a transition in an
open system is instead modeled by a rule of the form t(−→x ) → t′(−→x ,−→y ), where
−→y are fresh new variables. Therefore, a substitution for the variables −→x �−→y
decomposes into two substitutions, one, say θ, for the variables −→x under the
control of the system and another, say ρ, for the variables −→y under the control
of the environment. In rewriting modulo SMT, such open systems are described
by conditional rewrite rules of the form t(−→x ) → t′(−→x ,−→y ) if φ, where φ is a
constraint solvable by an SMT solver. This constraint φ may still allow the envi-
ronment to choose an infinite number of substitutions ρ for −→y , but can exclude
choices that the environment will never make.

The non-trivial challenges of modeling and analyzing open systems can now
be better explained. They include: (1) the enormous and possibly infinitary non-
determinism due to the environment, which typically renders finite-state model
checking impossible or unfeasible; (2) the impossibility of executing the rewrite
theory R = (Σ,E,R) in the standard sense, due to the non-deterministic choice
of ρ; and (3) the, in general, undecidable challenge of checking the rule’s condi-
tion φ, since without knowing ρ, the condition φθ is non-ground, so that its E-
satisfiability may be undecidable. As further explained in the paper, challenges
(1)–(3) are all met successfully by rewriting modulo SMT because: (1) states are
represented not as concrete states, i.e., ground terms, but as symbolic constrained
terms 〈t;ϕ〉 with t a term with variables ranging in the domains handled by the
SMT solver and ϕ an SMT-solvable formula, so that the choice of ρ is avoided;
(2) rewriting modulo SMT can symbolically rewrite such pairs 〈t;ϕ〉 (describing
possibly infinite sets of concrete states) to other pairs 〈t′;ϕ′〉; and (3) decidability
of φθ (more precisely of ϕ ∧ φθ) can be settled by invoking an SMT solver.

Rewriting modulo SMT can be integrated with model-checking by exploiting
the fact that rewriting logic is reflective [15]. Hence, rewriting modulo SMT can
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be reduced to standard rewriting. In particular, all the techniques, algorithms,
and tools available for model checking of closed systems specified as rewrite
theories, such as Maude’s search-based reachability analysis [14], become directly
available to perform symbolic reachability analysis on systems that are now
infinite-state.

The technique proposed in this paper is illustrated with the formal analysis
of the CASH scheduling protocol [13]. This protocol specifies a real-time system
whose formal analysis is beyond the scope of timed-automata [2].

2 Preliminaries

Notation on terms, term algebras, and equational theories is used as in [6,19].
An order-sorted signature Σ is a tuple Σ = (S,≤, F ) with a finite poset of

sorts (S,≤) and set of function symbols F . The binary relation ≡≤ denotes the
equivalence relation generated by ≤ on S and its point-wise extension to strings
in S∗. The function symbols in F can be subsort-overloaded and satisfy the
condition that, for w,w′ ∈ S∗ and s, s′ ∈ S, if f : w −→ s and f : w′ −→ s′ are
in F , then w ≡≤ w′ implies s ≡≤ s′. A top sort in Σ is a sort s ∈ S such that if
s′ ∈ S and s ≡≤ s′, then s′ ≤ s. For any sort s ∈ S, the expression [s] denotes
the connected component of s, that is, [s] = [s]≡≤ .

The symbol X denotes an S-indexed family X = {Xs}s∈S of disjoint vari-
able sets with each Xs countably infinite. Expressions TΣ(X)s and TΣ,s denote,
respectively, the set of terms of sort s and the set of ground terms of sort s;
accordingly, TΣ(X) and TΣ denote the corresponding order-sorted Σ-term alge-
bras. All order-sorted signatures are assumed preregular [19], i.e., each Σ-term
t has a least sort ls(t) ∈ S s.t. t ∈ TΣ(X)ls(t). For S′ ⊆ S, a term is called
S′-linear if no variable with sort in S′ occurs in it twice. The set of variables of
t is written vars(t).

A substitution is an S-indexed mapping θ : X −→ TΣ(X) that is different
from the identity only for a finite subset of X. The identity substitution is
denoted by id and θ|Y denotes the restriction of θ to a family of variables Y ⊆ X.
Expression dom(θ) denotes the domain of θ, i.e., the subfamily of X for which
θ(x) �= x, and ran(θ) denotes the family of variables introduced by θ(x), for
x ∈ dom(θ). Substitutions extend homomorphically to terms in the natural way.
A substitution θ is called ground iff ran(θ) = ∅. The application of a substitution
θ to a term t is denoted by tθ and the composition of two substitutions θ1 and θ2
is denoted by θ1θ2. A context C is a λ-term of the form C = λx1, . . . , xn.c with
c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it can be viewed as an n-ary function
C(t1, . . . , tn) = cθ, where θ(xi) = ti for 1 ≤ i ≤ n and θ(x) = x otherwise.

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)st
, u ∈ TΣ(X)su

,
and st ≡≤ su. A conditional Σ-equation is a triple t = u if γ, with t = u a
Σ-equation and γ a finite conjunction of Σ-equations; it is called unconditional
if γ is the empty conjunction. An equational theory is a tuple (Σ,E), with Σ
an order-sorted signature and E a finite collection of (possibly conditional) Σ-
equations. It is assumed that TΣ,s �= ∅ for each s ∈ S. An equational theory
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E = (Σ,E) induces the congruence relation =E on TΣ(X) defined for t, u ∈
TΣ(X) by t =E u iff E 
 t = u by the deduction rules for order-sorted equational
logic in [25]. Similarly, =1

E denotes provable E-equality in one step of deduction.
The E-subsumption ordering �E is the binary relation on TΣ(X) defined for any
t, u ∈ TΣ(X) by t �E u iff there is a substitution θ : X −→ TΣ(X) such that
t =E uθ. A set of equations E is called collapse-free for a subset of sorts S′ ⊆ S
iff for any t = u ∈ E and for any substitution θ : X −→ TΣ(X) neither tθ nor
uθ map to a variable for some sort s ∈ S′. The expressions TE(X) and TE (also
written TΣ/E(X) and TΣ/E) denote the quotient algebras induced by =E on the
term algebras TΣ(X) and TΣ , respectively; TΣ/E is called the initial algebra of
(Σ,E). A theory inclusion (Σ,E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called
protecting iff the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct
of the initial algebra TΣ′/E′ is a Σ-isomorphism, written TΣ/E � TΣ′/E′ |Σ .
A set of equations E is called regular iff vars(t) = vars(u) for any equation
(t = u if γ) ∈ E.

Appropriate requirements are needed to make an equational theory E admis-
sible, i.e., executable in rewriting languages such as Maude [14]. In this paper,
it is assumed that the equations of E can be decomposed into a disjoint union
E � B, with B a collection of structural axioms (such as associativity, and/or
commutativity, and/or identity) for which there exists a matching algorithm
modulo B producing a finite number of B-matching solutions, or failing other-
wise. Furthermore, it is assumed that the equations E can be oriented into a set
of (possibly conditional) sort-decreasing, operationally terminating, and conflu-
ent conditional rewrite rules

−→
E modulo B. The conditional rewrite system

−→
E

is sort decreasing modulo B iff for each (t → u if γ) ∈ −→
E and substitution θ,

ls(tθ) ≥ ls(uθ) if (Σ,B,
−→
E ) 
 γθ. The system

−→
E is operationally terminating

modulo B iff there is no infinite well-formed proof tree in (Σ,B,
−→
E ). Further-

more,
−→
E is confluent modulo B iff for all t, t1, t2 ∈ TΣ(X), if t →∗

E/B t1 and
t →∗

E/B t2, then there is u ∈ TΣ(X) such that t1 →∗
E/B u and t2 →∗

E/B u.
The term t ↓E/B∈ TΣ(X) denotes the E-canonical form of t modulo B so that
t →∗

E/B t↓E/B and t↓E/B cannot be further reduced by →E/B. Under the above
assumptions t↓E/B is unique up to B-equality.

A Σ-rule is a triple l → r if φ, with l, r ∈ TΣ(X)s, for some sort s ∈ S,
and φ =

∧
i∈I ti = ui a finite conjunction of Σ-equations. A rewrite theory is

a tuple R = (Σ,E,R) with (Σ,E) an order-sorted equational theory and R
a finite set of Σ-rules. The rewrite theory R induces a rewrite relation →R
on TΣ(X) defined for every t, u ∈ TΣ(X) by t →R u iff there is a rule (l →
r if φ) ∈ R and a substitution θ : X −→ TΣ(X) satisfying t =E lθ, u =E rθ,
and E 
 φθ. The relation →R is undecidable in general, unless conditions such
as coherence [37] are given. A key point of this paper is to make such a relation
decidable when E decomposes as E0 �B1, where E0 is a built-in theory for which
formula satisfiability is decidable and B1 has a matching algorithm. A topmost
rewrite theory is a rewrite theory R = (Σ,E,R), such that for some top sort
State, no operator in Σ has State as argument sort and each rule l → r if φ ∈ R
satisfies l, r ∈ TΣ(X)State and l /∈ X.
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3 Rewriting Modulo a Built-In Subtheory

This section introduces the concept of rewriting modulo a built-in equational
subtheory and presents its main properties. Detailed proofs can be found in
[33,34].

Definition 1 (Signature with Built-ins). An order-sorted signature Σ =
(S,≤, F ) is a signature with built-in subsignature Σ0 ⊆ Σ iff Σ0 = (S0, F0) is
many-sorted, S0 is a set of minimal elements in (S,≤), and if f : w −→ s ∈ F1,
then s /∈ S0 and f has no other typing in F0, where F1 = F\F0.

The notion of built-in subsignature in an order-sorted signature Σ is modeled by
a many-sorted signature Σ0 defining the built-in terms TΣ0(X0). The restriction
imposed on the sorts and the function symbols in Σ w.r.t. Σ0 provides a clear
syntactic distinction between built-in terms (the only ones with built-in sorts)
and all other terms.

If Σ ⊇ Σ0 is a signature with built-ins, then an abstraction of built-ins for t
is a context λx1 · · · xn.t◦ such that t◦ ∈ TΣ1(X) and {x1, . . . , xn} = vars(t◦) ∩
X0, where Σ1 = (S,≤, F1) and X0 = {Xs}s∈S0 . Lemma 1 shows that such an
abstraction can be chosen so as to provide a canonical decomposition of t with
useful properties.

Lemma 1. Let Σ be a signature with built-in subsignature Σ0 = (S0, F0). For
each t ∈ TΣ(X), there exist an abstraction of built-ins λx1 · · · xn.t◦ for t and
a substitution θ◦ : X0 −→ TΣ0(X0) such that (i) t = t◦θ◦ and (ii) dom(θ◦) =
{x1, . . . , xn} are pairwise distinct and disjoint from vars(t); moreover, (iii) t◦

can always be selected to be S0-linear and with {x1, . . . , xn} disjoint from an
arbitrarily chosen finite subset Y of X0.

In the rest of the paper, for any t ∈ TΣ(X) and Y ⊆ X0 finite, the expression
abstractΣ1(t, Y ) denotes the choice of a triple 〈λx1 · · · xn.t◦ ; θ◦ ;φ◦〉 such that
the context λx1 · · · xn.t◦ and the substitution θ◦ satisfy the properties (i)–(iii)
in Lemma 1 and φ◦ =

∧n
i=1 (xi = θ◦(xi)).

Under certain restrictions on axioms, matching a Σ-term t to a Σ-term u can
be decomposed modularly into Σ1-matching of the corresponding λ-abstraction
and Σ0-matching of the built-in subterms. This is described in Lemma 2.

Lemma 2. Let Σ = (S,≤, F ) be a signature with built-in subsignature Σ0 =
(S0, F0). Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and
B1 regular, linear, collapse free for any sort in S0, and sort-preserving, if t ∈
TΣ1(X0) is linear with vars(t) = {x1, . . . , xn}, then for each θ : X0 −→ TΣ0(X0):

(a) if tθ =1
B0

t′, then there exist x ∈ {x1, . . . , xn} and w ∈ TΣ0(X0) such that
θ(x) =1

B0
w and t′ = tθ′, with θ′(x) = w and θ′(y) = θ(y) otherwise;

(b) if tθ =1
B1

t′, then there exists v ∈ TΣ1(X0) such that t =1
B1

v and t′ = vθ;
and

(c) if tθ =B0	B1 t′, then there exist v ∈ TΣ1(X0) and θ′ : X0 −→ TΣ0(X0) such
that t′ = vθ′, t =B1 v, and θ =B0 θ′ (i.e., θ(x) =B0 θ′(x) for each x ∈ X0).
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Definition 2 introduces the notion of rewriting modulo a built-in subtheory.

Definition 2 (Rewriting Modulo a Built-in Subtheory). A rewrite theory
modulo the built-in subtheory E0 is a topmost rewrite theory R = (Σ,E,R) with:

(a) Σ=(S,≤, F ) a signature with built-in subsignature Σ0=(S0, F0) and top sort
State∈S;

(b) E = E0 � B0 � B1, where E0 is a set of Σ0-equations, B0 (resp., B1) are
Σ0-axioms (resp., Σ1-axioms) satisfying the conditions in Lemma 2, E0 =
(Σ0, E0�B0) and E = (Σ,E) are admissible, and the theory inclusion E0 ⊆ E
is protecting;

(c) R is a set of rewrite rules of the form l(−→x1,
−→y ) → r(−→x2,

−→y ) if φ(−→x3) such that
l, r ∈ TΣ(X)State, l is (S \ S0)-linear, −→xi :−→si with −→si ∈ S∗

0 , for i ∈ {1, 2, 3},
−→y :−→s with −→s ∈ (S \ S0)∗, and φ ∈ QFΣ0

(X0), where QFΣ0
(X0) denotes the

set of quantifier-free Σ0-formulas with variables in X0.

Note that no assumption is made on the relationship between the built-in vari-
ables x1 in the left-hand side, x2 in the right-hand side, and x3 in the condition
φ of a rewrite rule. This freedom is key for specifying open systems with a
rewrite theory because, for instance, x2 can have more variables than x1. On
the other hand, due to the presence of conditions φ in the rules of R that are
general quantifier-free formulas, as opposed to a conjunction of atoms, properly
speaking R is more general than a standard rewrite theory as defined in Sect. 2.

The binary rewrite relation induced by a rewrite theory R modulo E0 on
TΣ,State is called the ground rewrite relation of R.

Definition 3 (Ground Rewrite Relation). Let R = (Σ,E,R) be a rewrite
theory modulo E0. The relation →R induced by R on TΣ,State is defined for
t, u ∈ TΣ,State by t →R u iff there is a rule l → r if φ in R and a ground
substitution σ : X −→ TΣ such that (a) t =E lσ, u =E rσ, and (b) TE0 |= φσ.

The ground rewrite relation →R is the topmost rewrite relation induced by
R modulo E on TΣ,State. This relation is defined even when a rule in R has
extra variables in its right-hand side: the rule is then non-deterministic and such
extra variables can be arbitrarily instantiated, provided that the corresponding
instantiation of φ holds. Also, note that non-built-in variables can occur in l, but
φσ is a variable-free formula in QFΣ0

(∅), so that either TE0 |= φσ or TE0 �|= φσ.
A rewrite theory R modulo E0 always has a canonical representation in which

all left-hand sides of rules are S0-linear Σ1-terms.

Definition 4 (Normal Form of a Rewrite Theory Modulo E0). Let R =
(Σ,E,R) be a rewrite theory modulo E0. Its normal form R◦ = (Σ,E,R◦) has
rules:

R◦ = {l◦ → r if φ ∧ φ◦ | (∃l → r if φ ∈ R)〈λ−→x .l◦ ; θ◦ ;φ◦〉 = abstractΣ(l, vars({l, r, φ}))}.

Lemma 3 (Invariance of Ground Rewriting under Normalization). Let
R = (Σ,E,R) be a rewrite theory modulo E0. Then →R = →R◦ .
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By the properties of the axioms in a rewrite theory modulo built-ins R = (Σ,E0�
B0 � B1) (see Definition 2), B1-matching a term t ∈ TΣ(X0) to a left-hand side
l◦ of a rule in R◦ provides a complete unifiability algorithm for ground B1-
unification of t and l◦.

Lemma 4 (Matching Lemma). Let R = (Σ,E0 � B0 � B1, R) be a rewrite
theory modulo E0. For t ∈ TΣ(X0)State and l◦ a left-hand side of a rule in
R◦ with vars(t) ∩ vars(l◦) = ∅, t �B1 l◦ iff GUB1(t = l◦) �= ∅ holds, where
GUB1(t = l◦) = {σ : X −→ TΣ | tσ =B1 l◦σ}.

4 Symbolic Rewriting Modulo a Built-In Subtheory

This section explains how a rewrite theory R modulo E0 defines a symbolic
rewrite relation on terms in TΣ0(X0)State constrained by formulas in QFΣ0

(X0).
The key idea is that, when E0 is a decidable theory, transitions on the symbolic
terms can be performed by rewriting modulo B1, and satisfiability of the for-
mulas can be handled by an SMT decision procedure. This approach provides
an efficiently executable symbolic method called rewriting modulo SMT that is
sound and complete with respect to the ground rewrite relation of Definition 3
and yields a complete symbolic reachability analysis method. Detailed proofs of
the theorems presented in this section can be found in [34].

Definition 5 (Constrained Terms and their Denotation). Let R = (Σ,E,
R) be a rewrite theory modulo E0. A constrained term is a pair 〈t;ϕ〉 in TΣ

(X0)State × QFΣ0
(X0). Its denotation [[t]]ϕ is defined as [[t]]ϕ = {t′∈TΣ,State |

(∃σ : X0−→TΣ0) t′=tσ ∧ TE0 |= ϕσ}.

The domain of σ in Definition 5 ranges over all built-in variables X0 and con-
sequently [[t]]ϕ ⊆ TΣ,State for any t ∈ TΣ(X0)State, even if vars(t) �⊆ vars(ϕ).
Intuitively, [[t]]ϕ denotes the set of all ground states that are instances of t and
satisfy ϕ.

Before introducing the symbolic rewrite relation on constrained terms induced
by a rewrite theory R modulo E0, auxiliary notation for variable renaming is
required. In the rest of the paper, the expression fresh-vars(Y ), for Y ⊆ X
finite, represents the choice of a variable renaming ζ : X −→ X satisfying
Y ∩ ran(ζ) = ∅.

Definition 6 (Symbolic Rewrite Relation). Let R = (Σ,E,R) be a rewrite
theory modulo built-ins E0. The symbolic rewrite relation �R induced by R on
TΣ(X0)State×QFΣ0

(X0) is defined for t, u ∈ TΣ(X0)State and ϕ,ϕ′ ∈ QFΣ0
(X0)

by 〈t;ϕ〉 �R 〈u;ϕ′〉 iff there is a rule l → r if φ in R and a substitution
θ : X −→ TΣ(X) such that (a) t =E lζθ and u = rζθ, (b) E0 
 (ϕ′ ⇔ ϕ ∧ φζθ),
and (c) ϕ′ is TE0-satisfiable, where ζ = fresh-vars(vars(t, ϕ)).

The symbolic relation �R on constrained terms is defined as a topmost rewrite
relation induced by R modulo E on TΣ(X0) with extra bookkeeping of con-
straints. Note that ϕ′ in 〈t;ϕ〉 �R 〈u;ϕ′〉, when witnessed by l → r if φ and
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θ, is semantically equivalent to ϕ ∧ φζθ, in contrast to being syntactically equal.
This extra freedom allows for simplification of constraints if desired. Also, such
a constraint ϕ′ is satisfiable in TE0 , implying that ϕ and φθ are both satisfiable
in TE0 , and therefore [[t]]ϕ �= ∅ �=[[u]]ϕ′ . Note that, up to the choice of the seman-
tically equivalent ϕ′ for which a fixed strategy is assumed, the symbolic relation
�R is deterministic because the renaming of variables in the rules is fixed by
fresh-vars. This is key when executing �R, as explained in Sect. 5.

The important question to ask is whether this symbolic relation soundly and
completely simulates its ground counterpart. The rest of this section affirmatively
answers this question in the case of normalized rewrite theories modulo built-
ins. Thanks to Lemma 3, the conclusion is therefore that �R◦ soundly and
completely simulates →R for any rewrite theory R modulo built-ins E0.

The soundness of �R◦ w.r.t. →R◦ is stated in Theorem 1.

Theorem 1 (Soundness). Let R = (Σ,E,R) be a rewrite theory modulo built-
ins E0, t, u ∈ TΣ(X0)State, and ϕ,ϕ′ ∈ QFΣ0

(X0). If 〈t;ϕ〉 �R◦ 〈u;ϕ′〉, then
tρ →R◦ uρ for all ρ : X0 −→ TΣ0 satisfying TE0 |= ϕ′ρ.

The completeness of �R◦ w.r.t. →R◦ is stated in Theorem 2. Intuitively, com-
pleteness states that a symbolic relation yields an over-approximation of its
ground rewriting counterpart.

Theorem 2 (Completeness). Let R = (Σ,E,R) be a rewrite theory modulo
built-ins E0, t ∈ TΣ(X0)State, u′ ∈ TΣ,State, and ϕ ∈ QFΣ0

(X0). For any ρ :
X0 −→ TΣ0 such that tρ ∈ [[t]]ϕ and tρ →R◦ u′, there exist u ∈ TΣ(X0)State and
ϕ′ ∈ QFΣ0

(X0) such that 〈t;ϕ〉 �R◦ 〈u;ϕ′〉 and u′ ∈ [[u]]ϕ′ .

Although the above soundness and completeness theorems, plus Lemma 3, show
that →R is characterized symbolically by �R◦ , for any rewrite theory R mod-
ulo E0, because of Condition (c) in Definition 6, the relation �R◦ is in general
undecidable. However, �R◦ becomes decidable for built-in theories E0 that can
be extended to a decidable theory E+

0 (typically by adding some inductive con-
sequences) such that

(∀φ ∈ QFΣ0
(X0)) φ is E+

0 -satisfiable ⇐⇒ (∃σ : X0 −→ TΣ0) TE0 |= φσ. (1)

Many decidable theories E+
0 of interest are supported by SMT solvers satis-

fying this requirement. For example, E0 can be the equational theory of natural
number addition and E+

0 Pressburger arithmetic. That is, TE0 is the standard
model of both E0 and E+

0 , and E+
0 -satisfiability coincides with satisfiability in

such a standard model. Under such conditions, satisfiability of ϕ ∧ φζθ (and
therefore of ϕ′) in a step 〈t;ϕ〉 �R◦ 〈u;ϕ′〉 becomes decidable by invoking an
SMT-solver for E0, so that �R◦ can be naturally described as symbolic rewriting
modulo SMT (and modulo B1).

The symbolic reachability problems considered for a rewrite theory R modulo
E0 in this paper, are existential formulas of the form (∃−→z ) t →∗ u ∧ ϕ, with −→z
the variables appearing in t, u, and ϕ, t ∈ TΣ(X0)State, u ∈ TΣ(X)State, and
ϕ ∈ QFΣ0

(X0). By abstracting the Σ0-subterms of u, the ground solutions of
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such a reachability problem are those witnessing the model-theoretic satisfaction
relation

TR |= (∃−→x � −→y ) t(−→x ) →∗ u◦(−→y ) ∧ ϕ1(−→x ) ∧ ϕ2(−→x ,−→y ), (2)

where TR = (TΣ/E ,→∗
R) is the initial reachability model of R [12], t ∈ TΣ(X0)

and u◦ ∈ TΣ1(X) are S0-linear, vars(t) ⊆ −→x ⊆ X0, and −→y ⊆ X. Thanks to the
soundness and completeness results, Theorem 1, and Theorem 2, the solvability
of Condition (b) for →R can be achieved by reachability analysis with �R◦ , as
stated in Theorem 3.

Theorem 3 (Symbolic Reachability Analysis). Let R = (Σ,E,R) be a
rewrite theory modulo built-ins E0. The model-theoretic satisfaction relation in (2)
has a solution iff there exist a term v ∈ TΣ(X)State, a constraint ϕ′ ∈ QFΣ0

(X0),
and a substitution θ : X −→ TΣ(X), with dom(θ) ⊆ −→y , such that (a) 〈t;ϕ1〉 �∗

R◦

〈v;ϕ′〉, (b) v =B1 u◦θ, and (c) ϕ′ ∧ ϕ2θ is TE0-satisfiable.

In Theorem 3, since dom(θ) ⊆ −→y , and −→x and −→y are disjoint, the variables
of −→x in ϕ2θ are left unchanged. Therefore, ϕ2θ links the requirements for the
variables −→x in the initial state and −→y in the final state according to both ϕ1

and ϕ2. Also note that the inclusion of formula ϕ1 as a conjunct in the formula
in Condition (c) of Theorem 3 is superfluous because 〈t;ϕ1〉 �R◦ 〈v;ϕ′〉 implies
that ϕ1 is a semantic consequence of ϕ′.

5 Reflective Implementation of �R◦

This section discusses the design and implementation of a prototype that offers
support for symbolic rewriting modulo SMT in the Maude system. The prototype
relies on Maude’s meta-level features, that implement rewriting logic’s reflective
capabilities, and on SMT solving for E+

0 integrated in Maude as CVC3’s decision
procedures. The extension of Maude with CVC3 is available from the Matching
Logic Project [35]. In the rest of this section, R = (Σ,E0 � B0 � B1, R) is a
rewrite theory modulo built-ins E0, where E0 satisfies Condition (1) in Sect. 4.
The theory mapping R �→ u(R) removes the constraints from the rules in R.

In Maude, reflection is efficiently supported by its META-LEVEL mod-
ule [14], which provides key functionality for rewriting logic’s universal the-
ory U [15]. In particular, rewrite theories R are meta-represented in U as terms
R of sort Module, and a term t in R is meta-represented in U as a term t of
sort Term. The key idea of the reflective implementation is to reduce symbolic
rewriting with �R◦ to standard rewriting in an associated reflective rewrite the-
ory extending the universal theory U . This is specially important for formal
analysis purposes, because it makes available to �R◦ some formal analysis fea-
tures provided by Maude for rewrite theories such as reachability analysis by
search. This is illustrated by the case study in Sect. 6.

The prototype defines a parametrized functional module SAT(Σ0, E0�B0) of
quantifier-free formulas with Σ0-equations as atoms. In particular, this module
extends (Σ0, E0 � B0) with new sorts Atom and QFFormula, and new constants



256 C. Rocha et al.

var(X0) identifying the variables X0. It has, among other functions, a function
sat : QFFormula −→ Bool such that for φ, sat(φ) = � if φ is E+

0 -satisfiable, and
sat(φ) = ⊥ otherwise.

The process of computing the one-step rewrites of a given constrained term
〈t;ϕ〉 under �R◦ is decomposed into two conceptual steps using Maude’s met-
alevel. First, all possible triples 〈u ; θ ;φ〉 such that t →u(R◦) u is witnessed by
a matching substitution θ and a rule with constraint φ are computed1. Second,
these triples are filtered out by keeping only those for which the quantifier-free
formula ϕ ∧ φθ is E+

0 -satisfiable.
The first step in the process is mechanized by function next, available from

the parametrized module NEXT(R,State,QFFormula) where R, State, and
QFFormula are the metalevel representations, respectively, of the rewrite theory
module R, the state sort State, and the quantifier-free formula sort QFFormula.
Function next uses Maude’s meta-match function and the auxiliary function
new-vars for computing fresh variables (see Sect. 4). In particular, the call next
(((S,≤, F � var(X0)), E0 � B0 � B1, R◦), t, ϕ) computes all possible triples
〈u ; θ′ ;φ′〉 such that t �R◦ u is witnessed by a substitution θ′ and a rule
with constraint φ′. More precisely, such a call first computes a renaming ζ =
fresh-vars(vars(t, ϕ)) and then, for each rule(l◦ → r if φ), it uses the function
meta-match to obtain a substitution θ ∈ meta-match(((S, ≤, F � var(X0)), B0 � B1),

t↓E0/B0�B1 , l◦ζ), and returns 〈u ; θ′ ;φ′〉 with u = rζθ, θ′ = ζθ, and φ′ = φζθ.
Note that by having a deterministic choice of fresh variables (including those in
the constraint), function next is actually a deterministic function.

Using the above-mentioned infrastructure, the parametrized module NEXT
implements the symbolic rewrite relation �R◦ as a standard rewrite relation in
the theory NEXT, extending META-LEVEL, by means of the following condi-
tional rewrite rule:

ceq 〈X:State;ϕ:QFFormula〉 → 〈Y :State;ϕ′:QFFormula〉
if 〈Y ; θ ;φ〉 S := next(R•,X, ϕ) ∧ sat(ϕ ∧ φ) = � ∧ ϕ′ := ϕ ∧ φ

where R• = ((S,≤, F � var(X0)), B,R◦). Therefore, a call to an external SMT
solver is just an invocation of the function sat in SAT(Σ0, E0 � B0) in order to
achieve the above functionality more efficiently and in a built-in way.

Given that the symbolic rewrite relation �R◦ is encoded as a standard
rewrite relation, symbolic search can be directly implemented in Maude by its
search command. In particular, for terms t, u◦, constraints ϕ1, ϕ2, F a variable
of sort QFFormula, the following invocation solves the inductive reachability
problem in Condition (2):

search 〈t;ϕ1〉 →∗ 〈u◦;F 〉 such that sat(F ∧ ϕ2).

1 Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the
number of matching substitutions θ thus obtained is finite.
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6 Analysis of the CASH Algorithm

This section presents an example, developed jointly with Kyungmin Bae, of
a real-time system that can be symbolically analyzed in the prototype tool
described in Sect. 5. The analysis applies model checking based on rewriting
modulo SMT. Some details are omitted. Full details and the prototype tool can
be found in [9].

The example involves the symbolic analysis of the CASH scheduling algo-
rithm [13], which attempts to maximize system performance while guaranteeing
that critical tasks are executed in a timely manner. This is achieved by main-
taining a queue of unused execution budgets that can be reused by other jobs to
maximize processor utilization. CASH poses non-trivial modeling and analysis
challenges because it contains an unbounded queue. Unbounded data types can-
not be modeled in timed-automata formalisms, such as those of UPPAAL [22]
or Kronos [39], which assume a finite discrete state.

The CASH algorithm was specified and analyzed in Real-Time Maude by
explicit-state model checking in an earlier paper by Ölveczky and Caccamo [30],
which showed that, under certain variations on both the assumptions and the
design of the protocol, it could miss deadlines. Explicit-state model checking has
intrinsic limitations which the new analysis by rewriting modulo SMT presented
below overcomes. The CASH algorithm is parametrized by: (i) the number N of
servers in the system, and (ii) the values of a maximum budget bi and period pi,
for each server 1 ≤ i ≤ N . Even if N is fixed, there are infinitely many initial
states for N servers, since the maximum budgets bi and periods pi range over
the natural numbers. Therefore, explicit state model checking cannot perform
a full analysis. If a counterexample for N servers exists, it may be found by
explicit-state model checking for some chosen initial states, as done in [31], but
it could be missed if the wrong initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state sys-
tems like CASH. Infinite sets of states are symbolically described by terms which
may involve user-definable data structures such as queues, but whose only vari-
ables range over decidable types for which an SMT solving procedure is available.
For the CASH algorithm, the built-in data types used are the Booleans (sort
iBool) and the integers (sort iInt). Integer built-in terms are used to model
discrete time. Boolean built-in terms are used to impose constraints on integers.

A symbolic state is a pair {iB,Cnf} of sort Sys consisting of a Boolean con-
straint iB, with and denoted ^, and a multiset configuration of objects Cnf,
with multiset union denoted by juxtaposition, where each object is a record like-
structure with an object identifier, a class name, and a set of attribute-value
pairs. In each object configuration there is a global object (of class global) that
models the time of the system (with attribute name time), the priority queue
(with attribute name cq), the availability (with attribute name available),
and a deadline missed flag (with attribute name deadline-miss). A configu-
ration can also contain any number of server objects (of class server). Each
server object models the maximum budget (the maximum time within which
a given job will be finished, with attribute name maxBudget), period (with
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attribute name period), internal state (with attribute name state), time exe-
cuted (with attribute name timeExecuted), budget time used (with attribute
name usedOfBudget), and time to deadline (with attribute name timeTo
Deadline). The symbolic transitions of CASH are specified by 14 conditional
rewrite rules whose conditions specify constraints solvable by the SMT decision
procedure. For example, rule [deadlineMiss] below models the detection of a
deadline miss for a server with non-zero maximum budget.

That is, the protocol misses a deadline for server S whenever the value
of attribute maxBudget exceeds the addition of values for usedOfBudget and
timeToDeadline (i.e., iNZT > iT + iT’), so that the allocated execution time
cannot be exhausted before the server’s deadline.

The goal is to verify symbolically the existence of missed deadlines of the
CASH algorithm for the infinite set of initial configurations containing two server
objects s0 and s1 with maximum budgets b0 and b1 and periods p0 and p1 as
unspecified natural numbers, and such that each server’s maximum budget is
strictly smaller than its period (i.e., 0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1). This infinite set
of initial states is specified symbolically by the equational definition (not shown)
of term symbinit. Maude’s search command can then be used to symbolically
check if there is a reachable state for any ground instance of symbinit that
misses the deadline:

A counterexample is found at (modeling) time two, after exploring 233 sym-
bolic states in less than 3 seconds. By using a satisfiability witness of the con-
straint iB computed by the search command, a concrete counterexample is found
by exploring only 54 ground states. This result compares favorably, in both
time and computational resources, with the ground counterexample found by
explicit-state model checking in [30], where more that 52,000 concrete states
were explored before finding a counterexample.
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7 Related Work and Concluding Remarks

The idea of combining term rewriting/narrowing techniques and constrained
data structures is an active area of research, specially since the advent of modern
theorem provers with highly efficient decision procedures in the form of SMT
solvers. The overall aim of these techniques is to advance applicability of methods
in symbolic verification where the constraints are expressed in some logic that
has an efficient decision procedure. In particular, the work presented here has
strong similarities with the narrowing-based symbolic analysis of rewrite theories
initiated in [26] and extended in [8]. The main difference is the replacement of
narrowing by SMT solving and the decidability advantages of SMT for constraint
solving.

M. Ayala-Rincón [5] investigates, in the setting of many-sorted equational
logic, the expressiveness of conditional equational systems whose conditions may
use built-in predicates. This class of equational theories is important because the
combination of equational and built-in premises yield a type of clauses which is
more expressive than purely conditional equations. Rewriting notions like con-
fluence, termination, and critical pairs are also investigated. S. Falke and D.
Kapur [16] studied the problem of termination of rewriting with constrained
built-ins. In particular, they extended the dependency pairs framework to han-
dle termination of equational specifications with semantic data structures and
evaluation strategies in the Maude functional sublanguage. The same authors
used the idea of combining rewriting induction and linear arithmetic over con-
strained terms [17]. Their aim is to obtain equational decision procedures that
can handle semantic data types represented by the constrained built-ins. H.
Kirchner and C. Ringeissen proposed the notion of constrained rewriting and
have used it by combining symbolic constraint solvers [20]. The main differ-
ence between their work and rewriting modulo SMT presented in this paper
is that the former uses narrowing for symbolic execution, both at the sym-
bolic ‘pattern matching’ and the constraint solving levels. In contrast, rewriting
modulo SMT solves the symbolic pattern matching task by rewriting while con-
straint solving is delegated to an SMT decision procedure. More recently, C.
Kop and N. Nishida [21] have proposed a way to unify the ideas regarding equa-
tional rewriting with logical constraints. More generally, while the approaches
in [5,16,17,20,21] address symbolic reasoning for equational theorem proving
purposes, none of them addresses the kind of non-deterministic rewrite rules,
which are needed for open system modeling. More recently, A. Arusoaie et al. [4]
have proposed a language-independent symbolic execution framework, within the
K framework [23], for languages endowed with a formal operational semantics
based on term rewriting. There, the built-in subtheories are the datatypes of a
programming language and symbolic analysis is performed on constrained terms
(called “patterns”); unification is also implemented by matching for a restricted
class of rewrite rules and uses SMT solvers to check constraints.

This paper has presented rewrite theories modulo built-ins and has shown
how they can be used for symbolically modeling and analyzing concurrent open
systems, where non-deterministic values from the environment can be represented
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by built-in terms [33,34]. In particular, the main contributions of this paper can
be summarized as follows: (1) it presents rewriting modulo SMT as a new sym-
bolic technique combining the powers of rewriting, SMT solving, and model
checking; (2) this combined power can be applied to model and analyze sys-
tems outside the scope of each individual technique; (3) in particular, it is ide-
ally suited to model and analyze the challenging case of open systems; and
(4) because of its reflective reduction to standard rewriting, current algorithms
and tools for model checking closed systems can be reused in this new symbolic
setting without requiring any changes to their implementation.

Under reasonable assumptions, including decidability of E+
0 , a rewrite theory

modulo is executable by term rewriting modulo SMT. This feature makes it
possible to use, for symbolic analysis, state-of-the-art tools already available for
Maude, such as its space search commands, with no change whatsoever required
to use such tools. We have proved that the symbolic rewrite relation is sound
and complete with respect to its ground counterpart, have presented an overview
of the prototype that offers support for rewriting modulo SMT in Maude, and
have presented a case study on the symbolic analysis of the CASH scheduling
algorithm illustrating the use of these techniques.

Future work on a mature implementation and on extending the idea of rewrit-
ing modulo SMT with other symbolic constraint solving techniques such as nar-
rowing modulo should be pursued. Also, the extension to symbolic LTL model
checking, together with state space reduction techniques, should be investigated.
The ideas presented here extend results in [33] and have been successfully applied
to the symbolic analysis of NASA’s PLEXIL language to program open cyber-
physical systems [33]. Future applications to PLEXIL and other languages should
also be pursued.
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30. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in real-time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)
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