Composition of Graph-Transformation-Based
DSL Definitions by Amalgamation

Francisco Durdn®
University of Malaga, Mélaga, Spain
duran@lcc.uma.es

Abstract. Given a graph-grammar formalization of DSLs, we build on
graph transformation system morphisms to define parameterized DSLs
and their instantiation by an amalgamation construction. Results on
the protection of the behavior along the induced morphisms allow us
to safely combine definitions of DSLs to build more complex ones. We
illustrate our proposal on our e-Motions definition of the Palladio DSL.
The resulting DSL allows us to carry on performance analysis on Palladio
models.

1 Introduction

In Model-Driven Engineering (MDE) [43], models are used to specify, simulate,
analyze, modify, and generate code. One of the key ingredients making this app-
roach particularly attractive is the use of domain-specific languages (DSLs) [49]
for the definition of such models. DSLs offer concepts specifically targeted at a
particular domain, which allow experts in such domains to express their prob-
lems and requirements in their own languages. On the other hand, the higher
amount of knowledge embedded in these concepts allows for much more complete
and specialized generation of executable solution code from DSL models [30].

The application of these techniques to different domains has resulted in the
proliferation of DSLs of very different nature: the more specific for a particu-
lar domain a DSL is, the more effective it is. However, DSLs are only viable
if their development can be made efficient. With this goal in mind, DSLs are
often defined by specifying their syntax in some standard formalisms, such as
MOF, thus facilitating the use of generic frameworks for the management of
models, including their composition, the definition of model transformations,
use of model editors, etc.

Syntax is however just part of the story. Without a definition of the opera-
tional behavior of the defined DSLs, we will not be able to simulate or analyze
the defined models. In recent years, different formalisms have been proposed for
the definition of the behavior of DSLs, including UML behavioral models [19,22],
abstract state machines [3,10], or in-place model transformations [9,39]. Between
all these approaches, we find the use of in-place model transformations particu-
larly powerful, not only because its expressiveness, but also because it facilitates
its integration with the rest of the MDE environment and tools.

© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 1-20, 2014.
DOI: 10.1007/978-3-319-12904-4_1

2 F. Duran

While we have reasonably good knowledge of how to modularize DSL syn-
tax, the modularization of language semantics is an as yet unsolved issue. Given
a graph-grammar [6,14,42] formalization of DSLs, we build on graph transfor-
mation system (GTS) morphisms to define composition operations on DSLs.
Specifically, we define parameterized GTSs, that is, GTSs which have other
GTSs as parameters. The instantiation of such parameterized GTSs is then pro-
vided by an amalgamation construction. We present formal results about GTSs
and GTSs morphisms between them. Specifically, we are interested on how these
morphisms preserve or protect behavior, and what behavior-related properties
may be guaranteed on the morphisms induced by the amalgamation construc-
tion defining the instantiation of parameterized GTSs. Of particular interest for
our goals is the identification of the circumstances in which we can guarantee
protection of behavior when DSLs get instantiated.

In the rest of the paper, we propose the use of parameterized DSLs, we
present their implementation in the e-Motions system, and show its potential
presenting the definition of the e-Motions implementation of a significant part
of the Palladio DSL. Although we motivate and illustrate our approach using
the e-Motions language [37], our proposal is language-independent, and all the
results are presented for GTSs and adhesive HLR systems [16,34]. e-Motions
graphical specifications are translated into Maude specifications [38]. Given this
transformation, models in DSLs developed in e-Motions, may be “simulated” in
accordance to the given semantics. Since the resulting specification is a valid
theory in rewriting logic, Maude’s formal tools, as its reachability analysis tool
or its model checker, may be used on it.

The rest of the paper is structured as follows. Section 2 introduces behavior-
reflecting and -protecting GTS morphisms, the construction of amalgamations
in the category of GTSs and GTS morphisms, and several results on these amal-
gamations. Section 3 presents the e-Motions definition of the Palladio DSL and
how the composition operations presented in Sect. 2 are used to provide mecha-
nisms to carry on performance-related monitoring and analysis of systems. The
paper presents some related work in Sect. 4 and finishes with some conclusions
and future work in Sect. 5.

2 Graph Transformation and GTS Amalgamations

Graph transformation [14,42] is a formal, graphical and natural way of expressing
graph manipulation based on rewriting rules. In graph-based modelling (and
meta-modelling), graphs are used to define the static structures, such as class and
object ones, which represent visual alphabets and sentences over them. A more
detailed presentation of the results in this section may be found in [11].

2.1 Rules, Rule Morphisms, and Rule Amalgamations

Our formalisation is developed for weak adhesive high-level replacement (HLR)
categories [14], making it much more general. The concepts of adhesive and

Composition of Graph-Transformation-Based DSL 3

(weak) adhesive HLR categories abstract the foundations of a general class of
models, and come together with a collection of general semantic techniques
[16,34]. Thus, e.g., given proofs for adhesive HLR categories of general results
such as the Local Church-Rosser, or the Parallelism and Concurrency Theorem,
they are automatically valid for any category which is proved an adhesive HLR
category. The category of typed attributed graphs, the one of interest to us, was
proved to be adhesive HLR in [18].

In the DPO approach to graph transformation, a rule with application
conditions p is of the form (L Ly TR R, ac) with graphs L, K, and R, called,
respectively, left-hand side, interface, and right-hand side, some kind of monomor-
phisms (typically, inclusions) [and r, and ac a (nested) application condition on
L. A graph transformation system (GTS) is a pair (P, 7) where P is a set of rule
names and 7 is a function mapping each rule name p into a rule (L LR R, ac).

An application of a rule p = (L Ly R R,ac) to a graph G via a match
m: L — G, such that m satisfies ac, written m |= ac, is constructed as two
gluings (1) and (2), which are pushouts in the corresponding graph category,
leading to a direct transformation G 22 H.

l r

L K R
mi (€] i (2) J{

G<=—D——H

ac D>

Application conditions may be positive or negative. Positive application condi-
tions have the form Ja, for a monomorphism a : L — C, and demand a certain
structure in addition to L. Negative application conditions of the form Aa forbid
such a structure. A match m : L — G satisfies a positive application condition Ja
if there is a monomorphism ¢ : C — G satisfying goa = m. A matching m satis-
fies a negative application condition Aa if there is no such monomorphism. Given
an application condition Ja or Aa, for a monomorphism a : L — C, another appli-
cation condition ac can be established on C, giving place to nested application
conditions [25]. Given an application condition ac on L and a monomorphism
t: L — L', then there is an application condition Shift(¢, ac) on L’ such that for
all m’ : L' — G, m' |= Shift(t,ac) & m=m'ot = ac.

ac [— [/< Shift(t, ac)

N S
G

To improve readability, we assume projection functions ac, lhs and rhs,
returning, respectively, the application condition, left-hand side and right-hand
side of a rule. Thus, given a rule r = (L L KLR, ac), ac(r) = ac, lhs(r) = L,
and rhs(r) = R.

4 F. Duran

We only consider injective matches, that is, monomorphisms. If the matching
m is understood, a DPO transformation step G 22 H will be simply written
G =2 H. A transformation sequence p=p1...pn: G="Hviarules p1,...,p,
is a sequence of transformation steps p; = (G; 2 H;) such that G; = G,
H, = H, and consecutive steps are composable, that is, G;;1 = H; for all
1 <7 < n. The category of transformation sequences over an adhesive category
C, denoted by Trf(C), has all graphs in |C| as objects and all transformation
sequences as arrows.

Parisi-Presicce proposed in [36] a notion of rule morphism very similar to the
one below, although we consider rules with application conditions, and require
the commuting squares to be pullbacks instead of pushouts.

Definition 1 (From [11], Rule morphism). Given graph transformation
rules p; = (L; e K; =5 Ry, acy), fori=0,1, a rule morphism f: py — p1 is
a tuple f = (fr, fx, fr) of graph monomorphisms fr,: Lo— Ly, fx: Ko— K1,
and fr: Ry— Ry such that the squares with the span morphisms ly, 11, 9, and
r1 are pullbacks, as in the diagram below, and such that acy = Shift(f1., aco).

l
Po ICLCODLonKogRO
\
fl/ fLi/ pb fé(pb l’fR

p1 : acy > L1<TK171>R1
1

Asking that the two squares are pullbacks means, precisely, to preserve the
“structure” of objects. L.e., we preserve what should be deleted, what should
be added, and what must remain invariant. Of course, pushouts also preserve
the created and deleted parts, but they reflect this structure as well, which we
do not want in general. With componentwise identities and composition, rule
morphisms define the category Rule.

A key concept in the constructions in Sect.2.3 is that of rule amalgama-
tion [2]. The amalgamation of two rules p; and ps glues them together into
a single rule p to obtain the effect of the original rules. lL.e., the simultaneous
application of p; and po yields the same successor graph as the application of
the amalgamated rule p. The possible overlapping of rules p; and ps is captured
by a rule pg and rule morphisms f : pg — p1 and g : pg — po.

Definition 2 (From [11], Rule amalgamation). Given graph transforma-
tion rules p; = (L; & K; % Ry, ac;), fori=0,1,2, and rule morphisms f: py —
p1 and g: pg — p2, the amalgamated production p1 +,, p2 s the production
(L LKL R, ac) in the diagram below, where subdiagrams (1), (2) and (3) are
pushouts, I and r are induced by the universal property of (2) so that all subdia-
grams commute, and ac = Shift(fr,aca) A Shift(gr, acy).

Composition of Graph-Transformation-Based DSL 5

l n
aco > Ly NT 2 /KO N i /Ro «
fr aco > L2 b K2 T R2
(1) PAC) yaue)
acy > Ly <= K, Ry
gr -~ 1 T1
AN fr N N
ac > [, . K - R

Notice that in the above diagram all squares are either pushouts or pull-
backs (by the van Kampen property [34]) which means that all their arrows are
monomorphisms (by being an adhesive HLR category).

2.2 Typed Graph Transformation Systems

A (directed unlabeled) graph G = (V, E,s,t) is given by a set of nodes (or
vertices) V, a set of edges F, and source and target functions s,t: E — V. Given
graphs G; = (V;, E;, s;,t;), with ¢ = 1,2, a graph homomorphism f: G; — Ga is
a pair of functions (fy : Vi — Vo, fg : E1 — Es) such that fy o s; = s9 0 fp and
fyv oty =ty o fg. With componentwise identities and composition this defines
the category Graph.

Given a distinguished graph TG, called type graph, a TG-typed graph (G, gc),
or simply typed graph if TG is known, consists of a graph G and a typing homo-
morphism gg : G — TG associating with each vertex and edge of G its type
in TG. However, to enhance readability, when the typing morphism gs can
be considered implicit, we will often refer to a typed graph (G,gg) just as
G. A TG-typed graph morphism between T'G-typed graphs (G, g; : G; — TG),
with ¢ = 1,2, denoted f: (G1,91) — (G2, g2), is a graph morphism f: G; — Gs
which preserves types, i.e., g2 o f = ¢1. Graph is the category of T'G-typed
graphs and TG-typed graph morphisms, which is the comma category Graph
over TG.

If the underlying graph category is adhesive (resp., adhesive HLR, weakly
adhesive) then so are the associated typed categories [14], and therefore all
definitions in Sect.2.1 apply to them. A TG-typed graph transformation rule
p=(L LrD R, ac) is a span of injective TG-typed graph morphisms and a
(nested) application condition on L. Given TG-typed graph transformation rules
pi = (L; & K; 5 Ry ac;), with i = 1,2, a typed rule morphism f: p; — po is
a tuple (fr, fx, fr) of TG-typed graph monomorphisms such that the squares
with the span monomorphisms [; and r;, for ¢ = 1,2, are pullbacks, and such
that ace = Shift(fr,ac1). TG-typed graph transformation rules and typed rule
morphisms define the category Rulerg, which is the comma category Rule
over TG.

Following [6], we use forward and backward retyping functors to deal with
graphs over different type graphs. A graph morphism f: TG — TG’ induces a for-
ward retyping functor f~ : Graphpg — Graphrg, with f~(g1) = f o g1 and
f7(k: g1—g2) = k by composition, as shown in the diagram in Fig. 1(a). Simi-
larly, such a morphism f induces a backward retyping functor f<: Graphrg —

. G» Gy ———— G
// k/ ‘ 9 k/‘/
. M

b6 —— TG s G —% G/
’ f
(a) Forward retyping functor. (b) Backward retyping functor.

Fig. 1. Forward and backward retyping functors.

Graph g, with f<(g}) = g1 and f<(k¥': g] — g4) = k: g1 — go by pullbacks and
mediating morphisms as shown in the diagram in Fig. 1(b). Since, as said above,
we refer to a T'G-typed graph G — TG just by its typed graph G, leaving TG
implicit, given a morphism f: TG — TG', we may refer to the TG -typed graph
by f7(G).

A typed graph transformation system over a type graph TG, is a graph
transformation system where the given graph transformation rules are defined
over the category of T'G-typed graphs. Since we deal with GTSs over different
type graphs, we will make explicit the given type graph. This means that, from
now on, a typed GTS is a triple (TG, P,w) where TG is a type graph, P is
a set of rule names and 7 is a function mapping each rule name p into a rule
(L L KLR, ac) typed over TG.

The set of transformation rules of a GTS specifies a behavior in terms of the
derivations obtained via such rules. A GTS morphism defines then a relation
between its source and target GTSs by providing an association between their
type graphs and rules.

Definition 3 (From [11], GTS morphism). Given typed graph transforma-
tion systems GTS; = (TG;, P;,7;), for i = 0,1, a GTS morphism f: GTSy —
GTSy, with f = (fre, fp, [r), is given by a morphism frg: TGy — TGy, a
surjective mapping fp: Py — Py between the sets of rule names, and a family of
rule morphisms fr = {f?: f7(mo(fp(p))) — m1(p)}pep, -

Given a GTS morphism f: GTSy; — GTS;, each rule in GTS; extends a rule
in GTSy. However if there are internal computation rules in GTS; that do not
extend any rule in GTSy, we can always consider that the empty rule is included
in GTSp, and assume that those rules extend the empty rule. Notice that to deal
with rule morphisms defined on rules over different type graphs we retype one
of the rules. Typed GTSs and GTS morphisms define the category GTS.

2.3 GTS Amalgamations and Preservation of Behavior

Given a GTS morphism f: GTSy — GTS;1, we say that it reflects behavior if for
any derivation that may happen in GTS; there exists a corresponding derivation
in GTSO

Composition of Graph-Transformation-Based DSL 7

Definition 4 (From [11], Behavior-reflecting GTS morphism). Given
transformation systems GTS; = (TG, P;,7;), for i =0,1, a GTS morphism
f: GTSy — GTS; is behavior-reflecting if for all graphs G, H in |Graphrg, |,
all rules p in Py, and all matches m: lhs(my(p)) — G such that G 2= H, then

< m
Fogp(Q) M) e 1y i QTS

We call extension morphisms to those morphisms between GTSs that only add
to the transformation rules elements not in their source type graph. All extension
GTS morphisms are behavior-reflecting [11].

Definition 5 (From [11], Exztension GTS morphism). Given graph
transformation systems GTS; = (TG, Py, m;), for i =0,1, a GTS morphism
f: GTSy — GTSy, with f = (fre, fp, fr), is an extension morphism if fra is
a monomorphism and for each p € Py, mo(fp(p)) = fra(m(p)).

When a DSL is extended with alien elements that do not interfere with its
behavior, e.g., to measure or to verify some property, we need to guarantee that
such an extension does not change the semantics of the original DSL. Specifically,
we need to guarantee that the behavior of the resulting system is exactly the
same, that is, that any derivation in the source system also happens in the
target one (behavior preservation), and any derivation in the target system was
also possible in the source one (behavior reflection). The following definition of
behavior-protecting GTS morphism captures the intuition of a morphism that
both reflects and preserves behavior, that is, that establishes a bidirectional
correspondence between derivations in the source and target GTSs.

Definition 6 (From [11], Behavior-protecting GTS morphism). Given
transformation systems GTS; = (TG;, Py, 7;), for i = 0,1, a GTS morphism f:
GTSy — GTS, is behavior-protecting if for all graphs G and H in |Graphrg, |,

s m
all rules p in Py, and all matches m : lhs(m(p)) — G, g54(G) %

GGo(H) <= G2 H

We find in the literature definitions of behavior-preserving morphisms as mor-
phisms in which the rules in the source GTS are included in the set of rules
of the target GTS (see, e.g., [24,28]). Although these morphisms trivially pre-
serve behavior, they are not useful for our purposes. Notice that, in our case, in
addition to adding new rules, we are enriching the rules themselves.

GTS amalgamation provides a very convenient way of composing GTSs. The-
orem 1 below establishes behavior-related properties on the induced morphisms.

Definition 7 (From [11], GTS Amalgamation). Given typed graph trans-
formation systems GTS; = (TG;, P;,m;), for i = 0,1,2, and GTS morphisms
f: GTSy — GTS, and g: GTSy — GTSy, the amalgamated GTS GTS = GTS,
+ars, GTSs is the GTS (TG, P, 7) constructed as follows. We first construct the
pushout of typing graph morphisms frg: TGy — TG1 and grg: TGo — TGa,
obtaining morphisms frg: TGa — TG and grg: TGy — TG. The pullback of
set morphisms fp: P, — Py and gp: P, — Py defines morphisms fp: P — P

8 F. Duran

and Gp: P — Py. Then, . for each rule p in P, the rule 7(p) is defined as the
amalgamation of rules fTG(’]TQ(fP() and §7(m1(gp(p))) with respect to the

kernel rule fTG(gTG(Wo(gP(fP())))-

GTSy — '~ 618,
gi’ f V?j
GTS; > GTS

The following result gives conditions under which behavior-related guarantees
can be established on the morphisms induced by the amalgamation construction.

Theorem 1 (From [11]). Given typed transformation systems GTS; = (TG;,

P, m;), for i = 0,1,2, and the amalgamation GTS = GTS, +ars, GTS2 of
GTS morphisms f: GTSy — GTS: and g: GTSy — GTSz, if f is a behavior-
reflecting GTS morphism, then f is a monomorphism, and if g is an extension
and behavior-protecting morphism, then g is behavior-protecting as well.

GTS, ——~ GTS,
g¢ 7 va
GTSQ ““““““““““““““ > @

3 Non-functional Properties as Parameterized Domain
Specific Languages

In previous work [12, 48], we have explored the modular definition of non-functional
properties as parameterized DSLs in the e-Motions framework [37]. These ideas
were further exploited in [35] to provide a modular reimplementation of a substan-
tive part of the Palladio Architecture Simulator [26] to perform predictive analy-
sis of architectural software models. In particular, we re-implemented the Palladio
Component Model [1], its workload model, and parts of its stochastic expressions
model.

We explicitly modeled simulations as graph transformations in the e-Motions
framework, and then, each NFP to be analyzed was modeled as an independent,
parameterized DSL ready to be composed with the base Palladio model. The
modular definition of NFPs as separate, parameterized DSLs allows its reuse,
but also makes it easy to define additional NFPs to be analyzed. For a particular
analysis problem, the relevant NFP DSLs can then be selected from a library
and composed as required.

The results presented in Sect.2.3 provides guarantees for preservation of
semantics under composition, that is, the consideration of additional NFPs (sat-
isfying certain restrictions) do not change the behavior of the system being
modeled.

Composition of Graph-Transformation-Based DSL 9

In this section, we introduce Palladio, e-Motions, and then the definition
of the Palladio DSL in the e-Motions system. We pay special attention to the
definition of observers and how they are ‘woven’ with the Palladio system to
enrich the definition of its behavior for the observation of NFPs.

3.1 The Palladio DSL

The Palladio Architecture Simulator [26] is a predictive software analysis tool.
It consists of a number of metamodels, foremost the Palladio Component Model
(PCM) [1], that allow the high-level modeling of component-based architectures
and their properties relevant for performance and reliability analysis. Palladio
supports predictive analyses by transformation into a program that runs a sim-
ulation of the architecture’s behavior, and by transforming to formalisms more
amenable to analysis—e.g., Queuing Petri Nets.

Figure 2 shows the usage model and the component specification of a very
simple example, provided as part of the distribution of the Palladio Architecture
Simulator. The usage model in Fig. 2(a) specifies the way tasks arrive into the
system. In Palladio, the work load may be either closed or open. To be closed
(ClosedWorkload object) means that the number of requests is fixed by the popu-
lation attribute, and their corresponding inter-arrival rate given by the think time
attribute. Alternatively, an OpenedWorkload object represents an infinite stream
of arrivals. According to the usage model in Fig. 2(b), each work arriving to the
system consists on a system call action to a component, Anlnterface.do, and then
a delay with a fixed time of 1.0 time units.

Figure 2(b) shows the specification of the component, in which the control
flow may branch into one of two flows. Each branch is associated with a particular
branch probability to indicate the likelihood of a particular branch being taken.
Finally, resource demands, i.e. CPU or HDD, are expressed as probability dis-
tributions. This is the kind of information required to perform execution-time
analysis on the component’s behavior as is standard in software performance
engineering (see, e.g., [45]). In addition, we could model failure information to
support reliability analysis.

The Palladio Simulator offers the results of the analysis of performance and
reliability of the system being analyzed in different formats.

3.2 The e-Motions System

e-Motions [37] is a graphical framework that supports the specification, simula-
tion, and formal analysis of real-time systems. It provides a way to graphically
specify the dynamic behavior of DSLs using their concrete syntax, making this
task very intuitive. The abstract syntax of a DSL is specified as an Ecore meta-
model, which defines all relevant concepts—and their relations—in the language.
Its concrete syntax is given by a GCS (Graphical Concrete Syntax) model, which
attaches an image to each language concept. Then, its behavior is specified with
(graphical) in-place model transformations.

10 F. Duran

g! defaultUsageScenario

<«ClosedWorkload> >

. N @ Population: 1
#*> Anlnterface.do @ aName . & Think Time: 1000
5 Delay Time: 1.0

(a) Usage Model.

Abranch
;‘g"\ aName ,:&"\aName
7 Probability: 0.3 i, Probability: 0.7
f compute } computeMore
ResourceDemands ResourceDemands
B Exp(1) <CPU> % DoublePDF[(1.0; 0.25000000) (2.0; 0.50000000) (3.0; 0.25000000)] <CPU>
FailureOccurrenceDescriptions FailureOccurrenceDescriptions

(b) Resource-Demanding Service-Effect specification (RDSEFF).

Fig. 2. Minimum Example: Workload and component specification in Palladio.

In-place transformations are defined by rules, each of which represents a
possible action of the system. These rules are of the form [NAC]* x LHS —
RHS, where LHS (left-hand side), RHS (right-hand side) and NAC (negative
application conditions) are model patterns that represent certain (sub-)states of
the system. The LHS and NAC patterns express the conditions for the rule to
be applied, whereas the RHS represents the effect of the corresponding action.
A LHS may also have positive conditions, which are expressed, as any expression
in the RHS, using OCL [40]. Thus, a rule can be applied, i.e., triggered, if a
match of the LHS is found in the model, its conditions are satisfied, and none
of its NAC patterns occurs. If several matches are found, one of them is non-
deterministically chosen and applied, giving place to a new model where the
matching objects are substituted by the appropriate instantiation of its RHS
pattern. The transformation of the model proceeds by applying the rules on
sub-models of it in a non-deterministic order, until no further transformation
rule is applicable.

e-Motions provides a model of time, supporting features like duration, peri-
odicity, etc., and mechanisms to state action properties. There are two types
of rules to specify time-dependent behavior, namely, atomic and ongoing rules.
Atomic rules represent atomic actions with a duration. Atomic rules with dura-
tion zero are called instantaneous rules. Ongoing rules represent actions that

Composition of Graph-Transformation-Based DSL 11

progress continuously over time while the rule’s preconditions (LHS and not
NACs) hold. Both atomic and ongoing rules can be scheduled, or be given an
execution interval. From a DSL definition, e-Motions generates an executable
Maude [5] specification which can be used for simulation and analysis [38]. Other
tools in the Maude formal environment, as its model checker or its reachability
analysis tool, can also be used on this specification.

3.3 An e-Motions Re-implementation of Palladio

As for any DSL, the definition of the PCM includes its abstract syntax, its
concrete syntax and its behavior. Since Palladio has been developed following
MDE principles, and specifically it is implemented using the Eclipse Modeling
Framework, its metamodel may be used as abstract syntax definition of Palladio
in e-Motions.! Palladio models consists of several views, namely UsageModel,
System, etc., corresponding to the different developer roles participating in the
architecture of a system. These models are conformant to metamodels Core PCM,
StoEx, Units, ...used by the different Eclipse plug-ins in the PCM Bench. As we
will see in Sect. 3, using the PCM as abstract syntax will allow us to take models
generated in the Palladio Simulator into e-Motions, and to use them to perform
simulations in the e-Motions definition of Palladio.

The concrete syntax is provided by a GCS model in which each concept in the
abstract syntax of the DSL being defined is linked to an image. Since these images
are used to graphically represent Palladio models in e-Motions, we have used the
same images that the Palladio Simulator uses to represent these concepts. This
way, we maintain the PCM’s look in the e-Motions definition (see rules in Fig. 3).

In e-Motions, we describe how systems evolve by describing all possible
changes of the models by corresponding visual time-aware in-place transforma-
tion rules. We may visualize each execution of a Palladio model has a token
moving around such model. An action with a token has the control of execution.
In fact, there might be several concurrent executions, since new tasks may keep
arriving to the system, depending on its work load. The execution of each of these
tasks proceeds independently, as far as the required resources are available.

For illustration purposes, Fig. 3 shows two of the rules defining the behavior
of Palladio in e-Motions. As above explained, an open workload specifies an
infinite stream of tasks arriving at the system with some inter-arrival time given
by a random variable with some probability distribution. Each generated task
executes the specified scenario, and then leave the system. Figure 3(a) shows the
OpenWorkloadSpec rule, which specifies the behavior of a UsageScenario usSc with
an OpenWorkload ow. When the rule is triggered, a new token is added to the first
action of the system, i.e., the start action. The rule is fired every owRate, which
is a local variable whose value is given by ow’s random variable.

A ScenarioBehavior, which is included in a UsageScenario, as the one shown in
Fig. 2, describes the behavior of the system components by using actions Start,

! The actual metamodel used is a conservative extension of the PCM to include
additional concepts such as tokens, see below. The interested reader is referred to
[35] for details.

12 F. Duran

E_" OpenWorkloadSpec -B_

(O Tin [owR eov‘lare] EntryLevelSystemCall
°“‘£ ,g LHS Tin[0.0] I RHS
33> >
elsc sToken alsc sToken
token token
worklpad workjoad - W\ & UM\
S usSc operationSignature
Hse completed = false completed = false|
29 29 operationSianature
signature signature

| . scenarioBehaviour E cToken
scenarioBehaviour L‘ =

scBeh scBeh

¥ " describedService describedService
rdseff rdseff
actibns actions ¥ ¥7
start
stayrt e stéps steps compToken
-
token start start ;
newToken ™ Ng token
\/ owRate : Int = ow.interArmivalTime_OoenWorkload| \ i completed = false
specification.tolnteger() us wiTh sToken.cToken.ocllsUndefined()

completed = false

(a) OpenWorkload rule. (b) Component call.

Fig. 3. New task rule specification.

Stop, EntryLevelSystemCall, Branch, and Loop. Figure 3(b) models the EntrylLevel-
SystemCall action, which is used to invoke an operation in a component. If a
(sub)-state matches the LHS of the rule, the SToken object associated to the
EntryLevelSystemCall action remains in this action, while a new CToken is created
and linked to the start action of the invoked component (effectively building up
a call stack). As the rule’s header shows, this rule is instantaneous (it takes zero
time).

The complete e-Motions definition of the Palladio DSL is available at http://
atenea.lcc.uma.es/Palladio.

Once the whole DSL has been defined, and given a model as initial state,
it may be simulated by applying the rules describing its behavior. This model
does not collect information on NFPs, and therefore is not ready for performance
analysis. We enrich them later, as explained in the following section.

3.4 Parameterized DSL for NFP Observation

Troya, Rivera and Vallecillo proposed in [47] an approach for the specification and
monitoring of non-functional properties of DSLs using observers. Observers are
objects with which we extend the e-Motions definition of systems for the analy-
sis of NFPs by simulation, such as mean and maximum cycle times, busy and
idle cycles of operation units, throughput, mean-time between failures, etc. We
explored in [12,48] how to define observers generically and independently from
any system, so that they can afterwards be woven and merged with different sys-
tems. Given systems described as DSLs and generic DSLs defining the different
observers, we can use the composition mechanisms presented in Sect. 2.3 to com-
bine them. The result is that we can use the combined enriched system DSL to

http://atenea.lcc.uma.es/Palladio
http://atenea.lcc.uma.es/Palladio

Composition of Graph-Transformation-Based DSL 13

monitor NFPs of our systems. Theorem 1 proves that, given very natural require-
ments on the observers and the instantiating mappings, the system thus obtained
is a conservative enrichment of the original system, in the sense that the observers
added do not change the behavior of the system.

Given an e-Motions definition of Palladio as the one presented in Sect. 3.3,
we can then enrich it with the definition of the observers we wish, which can
be selected from a library of generically specified observers. Specifically, we can
select those observers that monitor the properties available in the Palladio Sim-
ulator, but also others that monitor other properties. The NFPs chosen can then
be analysed by simulation.

Let us consider a generic DSL for monitoring the response time, which is
one of the properties available in Palladio. Response time can be defined as the
time that elapses since a request arrives to a system until it is served. Hence, the
same generic notion allows us to measure the response time of information pack-
ets being delivered through a network, of cars being manufactured in a produc-
tion line, or of passengers checking-in in an airport. Given a system description,
to measure response time, we just need to register the time at which requests
arrive to the system, and the time at which they are completed. With this data
and a simple calculation, we can easily get the response time.

A generic DSL achieving this is shown in Fig.4. Its abstract syntax (the
metamodel in Fig. 4(a)) contains three generic and two concrete classes—generic
classes are shown with a shaded background. System, Server and Request are
parameter classes to be instantiated by specific classes, as explained below. The
System class represents the whole system, which is composed of a set of Servers.
These, in turn, can have Requests that they have to process. The class RespTi-
meOb represents the observer for measuring the response time. Note that there
is yet another observer in this metamodel, TimeStampOb, used to store the times
at which Requests arrive.

The behavior of this DSL is defined by the three in-place transformation
rules in Fig. 4, in which parametric concepts have no concrete syntax, they are
depicted as boxes, and have a shaded background. Observer objects have a con-
crete syntax, that will also be used to depict them in the woven rules (see below).
Rule CreateRespTOb deals with the creation of the response time observer. Its LHS
includes a condition that avoids the creation of new observer objects if there is
one, ensuring that only one of these observers is created per instantiated object.
The observer is associated to the system in its RHS. Rule RequestArrives gener-
ates a time stamp observer whenever a new Request appears. The observer gets
associated to the Request and keeps the time at which it appears in the system—
note the presence of the system object Clock, which provides the current time.
Finally, rule CompletedRequest computes the response time every time a Request
is consumed—the Request and its associated observer have disappeared in the
RHS. Attribute counter of RespTimeOb keeps the number of completed Requests,
while tAcc contains the addition of cycle times of all Requests, i.e., the time they
have spent in the system. Finally, attribute respT uses the former two attributes
to calculate the response time of the System.

14 F. Duran

[RespTimeOb
= counter : EInt

S MObJ o tacc : Emnt
0.1 | = respT : EDouble

1, *|Servers

5 Server reqgsts H Request ts0b H TimeStampOb)|
otStamp : Eint

0.* 0.1
(a) Abstract syntax
RequestArrives
LHS E] CreateRespTOb | B RHS LRS) T in (M) IREGE
s : System gRE clk r : Request
| \‘/*I

EI s : System rt)
rtob : o

uiths.rt0b.ocllsUndefined(} W
TS

tStamp = clk.time

(b) Behavior: CreateRespTOb (c) Behavior: RequestArrives
LHS =2 CompletedRequest | |REDS
(® Tin (NM] |
s : System 1 : Server ok ok s : System s : Server
D servers D ‘1\7,;‘ \’7 |:] servers |:]

regsts

rob r: Request tob

ts
t
o [)= o
RT S il
counter = rt.counter + 1

tAcc = rt.tAcc + clk.time - ts.tStamp
respT = (rt.tAcc + clk.time - ts.tStamp) / (rt.counter + 1)|

(d) Behavior: CompletedRequest

Fig. 4. Response Time observer DSL definition.

3.5 Adding Observers to System Specifications

To add observers to our e-Motions specifications, we may compose the observer
DSLs with the DSL of our system, the e-Motions definition of Palladio in our
case. Let us use the amalgamation construction in Sect. 2.3 for it. Let us call
DSLopserver to the Response Time DSL from Sect.3.4, and let us consider
the inclusion morphism from its parameter sub-DSL, DSLp,,.. Given this inclu-
sion morphism and a binding morphism B from DSLp,, to the Palladio DSL,
DSLpgadio, we can build its amalgamation as shown in Fig.5. The result are
morphisms 7 and B to the DSL PMO, which is the Pal